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Abstract

High computational costs are encountered in topology optimization problems of geometrically nonlinear structures since
ntensive use has to be made of incremental-iterative finite element simulations. To alleviate this computational intensity,
educed-order models (ROMs) are explored in this paper. The proposed method targets ROM bases consisting of a relatively
mall set of base vectors while accuracy is still guaranteed. For this, several fully automated update and maintenance techniques
or the ROM basis are investigated and combined. In order to remain effective for flexible structures, path derivatives are added
o the ROM basis. The corresponding sensitivity analysis (SA) strategies are presented and the accuracy and efficiency are
xamined. Various geometrically nonlinear examples involving both solid as well as shell elements are studied to test the
roposed ROM techniques. Test cases demonstrates that the set of degrees of freedom appearing in the nonlinear equilibrium
quation typically reduces to several tenth. Test cases show a reduction of up to 6 times fewer full system updates.
2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).

eywords: Topology optimization; Geometric nonlinearity; Reduced-order modelings; Shells; Compliant mechanisms

1. Introduction

Topology optimization methods are highly-efficient structural design techniques which can assist in the devel-
pment of new design principles in innovative sectors of industry. Mainstream topology optimization methods
nclude SIMP [1], level set-based methods [2], ESO methods [3], BESO methods [4], and MMC (moving morphable
omponents) methods [5]. In the present work, we mainly focus on topology optimization using the SIMP method.

The majority of studies on topology optimization of mechanical structures assumes linear elastic material
ehavior and geometric linearity. Indeed, these simplifications are suitable for a large class of problems. However,
or specific classes, it is necessary to account for geometric nonlinearity in the analysis. Typically examples are thin-
alled structures [6,7], compliant mechanisms [8,9], and multi-stable structures with snap-through behavior [10].
onsequently, seeking efficient and effective methods to carry out topology optimization for structures exhibiting
eometric nonlinearity is of great practical relevance.

Several aspects cause topology optimization of geometrically nonlinear structures to be challenging. Compared
ith their linear counterparts, nonlinear structural optimization problems are computationally expensive since
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intensive use has to be made of incremental-iterative finite element simulations [11]. Besides, when deflections
and rotations become finite, although deformations may still be small, void elements in the design space may get
severely distorted and even “inverted”, causing the tangent stiffness matrices to be indefinite and/or ill-conditioned,
which may easily spoil the convergence of the nonlinear finite element analysis. This leads to catastrophic failure
of the overarching optimization process [12–14]. Furthermore, like topology optimization of eigen frequencies or
buckling loads, spurious modes will occur in low-density areas. The low-density areas are very flexible as compared
to areas with full densities, and may therefore control the lowest eigenmodes of the whole structure [15,16]. In the
present work, we primarily focus on the reduction of the computational burden associated with topology optimization
when geometrically nonlinearity is considered. Potentially, reduced-order models (ROMs) are powerful strategies
to deal with such problems.

ROMs attempt to use a small number of generalized variables to approximate the behavior governed by a large
umber of degrees of freedom (DOFs) associated with the full-order model (FOM). Each generalized variable
orresponds to a base vector which can be a natural frequency mode, buckling mode, a static displacement field
mong others [17–19]. The computational costs of a ROM depend heavily on the number of base vectors and effort
o create the basis. ROMs are potentially valuable for the incremental-iterative solution of large-scale problems, as
ncountered in structural nonlinear analysis. Chan and Hsiao [19] used the solution vectors and correction vectors
enerated during a modified Newton process as base vectors for nonlinear static analysis. Safjan [20] not only used
orrection vectors but also the lowest eigenvectors of updated tangent stiffness matrices. Kim et al. [21] constructed
OMs for nonlinear structural dynamic analysis of isotropic and functionally graded plates. They combined linear
OM solutions with additional nonlinear FOM static solutions, so-called “dual modes”, which were generated by
pplying a series of representative static loads on the structure.

In topology optimization, various applications of ROMs have been reported for linear settings. Amir et al. [22]
pplied a ROM for approximate reanalysis in topology optimization of linear structures. They demonstrated that
elatively rough approximations were acceptable in analysis since a consistent ROM-based sensitivity evaluation
as applied, in which the errors caused by the ROM are taken into account. Gogu [23] applied ROMs for

opology optimization of linear structures and enriched the ROM basis with previously calculated solutions.
ooijkamp and van Keulen [24] focused on topology optimization for linear transient thermomechanical problems.
reduced thermal modal basis augmented with static correction was used to replace the tedious backward transient

ntegration by analytical convolutions in the adjoint sensitivity analysis. Wang et al. [25] investigated large-scale
hree-dimensional linear topology optimization problems. They used the Krylov subspace method combined with
reconditioning techniques to solve the optimization problems and reduce the computing burden by recycling
elected search spaces from previously analyzed linear systems.

For ROM-based topology optimization in nonlinear settings, a few publications related to material nonlinearity
an be found. For instance, Xia and Breitkopf [26] presented a reduced multiscale model for macroscopic structural
esign considering material nonlinear microstructures. The ROM model uses Proper Orthogonal Decomposition
POD) and Diffuse Approximation to replace the detailed microscopic finite element analysis. However, for
eometric nonlinearity, publications can only be found in size and shape optimization problems, but for topology
ptimization. For example, for size optimization, Orozco and Ghattas [27] used ROMs to reduce the SQP-based
imultaneous analysis and design (SAND) problem taking into account geometric nonlinearity. The resulting reduced
roblem has the same size as the nested analysis and design (NAND) problem but achieves higher efficiency.
iven the promising results obtained in previous work, it is concluded that ROMs have great potential in topology
ptimization for geometrically nonlinear structures. Nevertheless, ROMs have never been introduced in this field.

In this paper, ROMs are applied to topology optimization problems for geometrically nonlinear structures aiming
t enhancing the computational efficiency of the associated incremental-iterative finite element simulations and
he corresponding sensitivity analysis. The proposed ROMs target a relatively small set of base vectors while the
ccuracy can still be guaranteed. For this, several fully automated update and maintenance strategies for the ROM
asis are investigated and combined. Besides, approximated ROM-based sensitivity analysis strategies (ARSA) are
resented and the accuracy of the SA strategies are examined and compared to consistent FOM-based sensitivity
nalysis (CFSA). In addition, a formulation of consistent ROM-based sensitivity analysis (CRSA) is presented in
he paper. However, no numerical tests are conducted for CRSA, since this sensitivity is rather unpractical for the
pdating techniques presented in this work. Finally, various geometrically nonlinear examples involving solid or

hell elements are studied to test the proposed ROM-based topology optimization techniques.
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This paper is organized as follows. In Section 2, the general formulation of geometrically nonlinear topology
ptimization is summarized. In Section 3, ROM-based finite element analysis strategies are discussed. Section 4
resents different updating and maintenance techniques of ROMs for geometrically nonlinear topology optimization.
ection 5 introduces the corresponding approximated ROM sensitivity analysis techniques for geometrically non-

inear structures. Section 6 provides several numerical experiments. ARSA is compared to CFSA and ROM-based
ptimization results are compared with those using FOMs. Finally, conclusions are given in Section 7.

. Geometrically nonlinear topology optimization

Topology optimization formulations associated with an objective function J , inequality constraints h, design
variables (pseudo densities) ρ and their corresponding lower bounds ρmin can be expressed by

min
ρ

J
[
d
[
ρ
]
, ρ
]
,

s.t. : h
[
d
[
ρ
]
, ρ
]

≤ 0,

0 < ρmin ≤ ρ ≤ 1.

(1)

Here “[∗]” denotes the function of “∗”, d represents mechanical responses, i.e. nodal degrees of freedom. Lower
bounds ρmin are typically set to avoid singularity caused by removing material.

In many cases, simplifying topology optimization to a linear setting is sufficient to achieve a good and reasonable
design. However, the linearity assumption is too restrictive for designs involving flexible structures exposed to finite
rotations and/or for which geometric stiffness plays a crucial role. These structures often exhibit finite deflections
and rotations, although the deformations remain small. Thus, it is paramount to consider geometric nonlinearity to
ensure the final design functions correctly.

The geometrically nonlinear equilibrium equations are formulated using the virtual work principle

δW int
= δW ext. (2)

Here, δW ext is the external virtual work and δW int represents the internal virtual work. In a discrete setting, the
external virtual work can be expressed by

δW ext
= fTδd, (3)

where f represents the external nodal loads. In order to avoid all finite element details, we shall introduce generalized
deformations and stresses. Their precise definition depends on the finite elements at hand and their implementation.
The internal virtual work in a discrete form can be expressed by

δW int
= σTδϵ, (4)

where σ represents the generalized stresses and ϵ the generalized deformations, with ϵ[d]. Given the geometrically
nonlinear setting, ϵ[d] is nonlinear in d. For the variations of ϵ it follows

δϵ = D [d] δd, (5)

where the components of D are determined by

Di j =
∂ϵi

∂d j
. (6)

A generalized constitutive relation can be used to express the generalized stresses in terms of the generalized
deformations. Since a linear elastic material model is assumed, this general expression can be formulated as

σ = Sϵ, (7)

where S is the generalized constitutive matrix. At element level, the matrices corresponding to D and S are denoted
by De and Se.

In the SIMP method [1], the constitutive matrix is scaled at element level with element density ρe:
p
Se → ρe Se. (8)

3
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Here parameter p is used to penalize intermediate densities. A low value of p results in more intermediate density
elements, while a high value of p results in a less convex optimization problem but more crisp designs. Usually,
p = 3 is adopted [1].

Starting from Eq. (2), the equilibrium equation can be expressed as

DT [d] σ− f = q [d] − f = 0, (9)

here q = DTσ represents the so-called “internal” load.
To solve the governing equations, an incremental-iterative method is applied in the present work. For this, a load

actor λ is introduced. Thus, the external load f is written as a function of λ. Then, the equilibrium equation reads

q [d] − f [λ] = 0. (10)

ext, the corresponding rate equations follow as

KT [d]
dd
dλ

−
df
dλ

= 0, (11)

with the l × l tangent stiffness matrix KT being defined as

KT =
∂q [d]

∂d
. (12)

where l is the number of structural DOFs. Then, the incremental technique starting from load step i to i + 1 can
e formulated as

di+1
= di

+
(
KT

[
di])−1 (f [λi+1]

− q
[
di]) . (13)

After the load incremental has been applied, classical Newton iterations are carried out to obtain the corresponding
nonlinear solution. For a specific load level λi+1

= λc, the Newton iterations follow as

d j+1 = d j +
(
KT

[
d j
])−1 (f [λc]

− q
[
d j
])

. (14)

ere superscripts are used to identify the different load levels, whereas subscripts are used to indicate Newton
terations at a constant load level. The Newton iterations are continued until the convergence criterion is satisfied.
he latter is defined by the norm of the residual:

e f =
∥f [λc] − q

[
d j+1

]
∥

∥f [λc] ∥
≤ ϵ f . (15)

ere e f denotes the imbalance error, ϵ f a user-defined tolerance, and ∥∗∥ represents a norm. The latter for a vector

= [x1, x2, . . . ., xw], in this work, is denoted by ∥x∥ =

√
x2

1 + x2
2 + · · · + x2

w. Here w stands for the dimension,
which is the number of structural nodal DOFs in Eq. (15).

If the convergence criterion Eq. (15) is satisfied, the Newton iterations are converged. After convergence for a
particular load level, we move to the next load step and the corresponding nonlinear solution is obtained again
iteratively. As observed, since intensive use has to be made of incremental-iterative finite element simulations, the
solution may be very expensive particularly when the number of nodal degrees of freedom, gets large. Especially
in optimization, this become problematic because a large number of nonlinear problems has to be solved during
the design process. In order to enhance efficiency, reduced-order modeling is introduced in the next section.

3. ROM-based finite element analysis

Ritz’ method is used to reduce the kinematic DoFs. For this, the nodal degrees of freedom are approximated by

d = Ry, (16)

here d denotes the approximate nodal degrees of freedom for the full-order model and y are generalized
coordinates. The matrix R represents the ROM basis

R = [ϕ ,ϕ , . . . ,ϕ ], (17)
1 2 m

4



L. Zhang, Y. Zhang and F. van Keulen Computer Methods in Applied Mechanics and Engineering 416 (2023) 116371

H

T

H

H

e

w

A
c
w
s
r

H

t

H

t
c
s

where m is the number of base vectors and ϕi denotes an individual base vector. In order to obtain an efficient
ROM, it is essential that the number of base vectors (m) is significantly smaller than the number of nodal degrees
of freedom (l). Using Ritz’ method, the ROM-based governing equation can be expressed as

RT(q
[
d
]
− f) = 0. (18)

ere,

q
[
d
]

= DT [d] σ [d] = DT [Ry] (Sϵ [Ry]) . (19)

he corresponding rate equations follow as(
KT [y]

)−1 dy
dλ

−
RTf
dλ

= 0, (20)

with KT representing the m ×m reduced tangent stiffness matrix, which is expressed by full tangent stiffness matrix
KT

[
d
]
, i.e. KT [Ry], and ROM basis R :

KT [y] = RTKT [Ry] R. (21)

ere, the right-hand term can be assembled element-by-element:

RTKT [Ry] R =A
e

RT
e Ke

T [Ry] Re. (22)

ere, Re and Ke
T are corresponding matrices at element level.

As in the FOM setting, an incremental-iterative method can be applied to solve the nonlinear reduced governing
quations. For a specific load step λi+1

= λc, the ROM-based Newton iterations can be expressed as

y j+1 = y j + △y j+1, (23)

ith

∆y j+1 =
(
KT

[
y j
])−1 RT (f [λc]

− q
[
Ry j

])
. (24)

s can be seen from Eqs. (23) and (24), Newton iterations are based on the reduced tangent stiffness matrix. This
ontributes to the computational efficiency since the dimensions of the latter depends on the number of base vectors,
hich is much smaller than the number of structural DOFs. The ROM-based Newton iterations for a specific load

tep are continued until a ROM-based convergence criterion is met. The latter is defined by using the norm of the
educed residual:

er =
∥RT

(
f [λc] − q

[
Ry j+1

])
∥

∥RTf [λc] ∥
≤ ϵr . (25)

ere, er denotes the imbalance error and ϵr a user-defined tolerance. The dimensions of RT
(
f [λc] − q

[
Ry j+1

])
and RTf [λc] equal the number of base vectors.

After the ROM-based Newton iterations have converged, we get yc corresponding to λc. Next, we project yc to
get the ROM-based solution dc

for the nodal degrees of freedom by Eq. (16), and then assess its accuracy. If the
solution dc

is accurate, then it should also satisfy the full system equilibrium equation. This implies that the norm

of the full-system based residual, ∥f [λc] − q
[
dc
]
∥, should be sufficiently small. Hence, an error measure based on

he full-system residual is proposed as

η =

∥f [λc] − q
[
dc
]
∥

∥f [λc] ∥
. (26)

ere, the dimensions of f [λc] − q
[
dc
]

and f [λc] equal the number of structural nodal DOFs.

If η is smaller than a user defined tolerance δs , then the ROM-based solution is considered accurate. Otherwise,
he ROM-based solution, though well converged, is considered inaccurate and needs to be improved. For this,
orrection strategies and techniques to construct, update, and maintain the ROM basis are introduced in the next

ection.
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4. ROM basis

One of the most critical ingredient of the ROM is the choice of an appropriate set of base vectors. Effectively,
he required set may depend on both the current load level (λc), as well as on the structure, i.e. the design

at hand. An ideal set of base vectors should be linearly independent, requiring low computational cost for its
generation, and sufficiently complete to capture the nonlinear response of the structure. In addition, the number
of base vectors should be limited to ensure a small ROM basis. To meet the aforementioned requirements, firstly,
orthogonalization is applied to ensure linear independence (Details are provided in Appendix A). Secondly, the
ROM basis is initiated using FOM-based solutions. Thirdly, to ensure accuracy, FOM-based correction technique
is adopted. The initialization and the correction are provided in Section 4.1. Next, the ROM basis is augmented on
the basis of FOM-based solutions evaluated for previous designs. The details of this augmentation are described in
Section 4.2. In order to ensure the ROM basis remains compact, maintenance strategies are presented in Section 4.3.

4.1. Initialization and error control

At the very beginning of the optimization, i.e. at the first load step of the first optimization step, the ROM basis is
empty. Hence, the optimization is initiated using the full-order model. As reported in [19], including the converged
nonlinear solution and correction solutions obtained during Newton iterations constitute good ingredients for a
ROM-based nonlinear static analysis. In our practice, correction solutions of iterations do not effectively contribute
to the accuracy of ROMs, but increase the number of base vectors. Hence, in the proposed scheme, we exclusively
add the first converged nonlinear FOM solution, but also consider the first predictor solution, i.e. the FOM solution
to the linearized governing equation in the undeformed configuration. Following that, a ROM basis with these two
vectors can be used to generate a ROM-based solution for the next load step.

After convergence of a ROM-based analysis, the accuracy of the solution is evaluated using Eq. (26), which is
the full-order residual, but evaluated for the ROM-based solution. If the solution is accurate enough, i.e. η ⩽ δs ,
hen no correction is required and the current ROM solution will be accepted. If the error is too large, i.e. η > δs ,

correction is applied to eliminate the error. For this, starting from the present ROM-based solution, FOM-based
ewton iterations are conducted. Subsequently, the resulting converged FOM-based solution is regarded as the
nal result for the current load step. It is obvious that the correction based on the full system is relatively time-
onsuming. Thus, improving the accuracy of ROMs to reduce computing time for FOM-based corrections is essential
or efficiency. Consequently, before proceeding to the next load step, the resulting FOM-based nonlinear solution
s added to the ROM basis. Hence, the next load step will be based on the updated ROM basis. The extension of
he ROM basis is restricted by a maximum number of base vectors. If the ROM basis has reached the maximum
umber of base vectors, then specific base vectors will be removed from the basis. The details are provided in
ection 4.3.

.1.1. Path derivatives for flexible structures
A ROM basis, as described in the previous subsection, is accurate for most cases except for very flexible structures

ike structures exhibiting nearly inextensional bending. In these cases, the flexible bending mode is typically badly
epresented by the existing basis, leading to ROM-based responses which are far too stiff. To grasp this concept
ore easily, consider a cantilever beam subjected to pure bending. When the deformation is correctly captured in
nonlinear manner, we observe that the beam can bend into a circle. This circular shape indicates that the beam’s

ip experiences both out-of-plane and in-plane deflections. In contrast, a poorly represented flexible bending mode
ould exhibit insufficient in-plane deflection, i.e. excessive in-plane stiffness. One extreme case of the later is a

inear mode where no in-plane deflection appears. One solution for the issue is to introduce curvature information
n the load–deflection path, i.e. 2nd-order path derivatives. Such derivatives add information on the flexible bending
odes. More explanations can be found in Appendix B. In this section, the method of adding curvature information

s presented.
The 2nd-order path derivatives can be approximated by forward finite-differences

d2d
=

d∗
− 2d∗

∆λ∗ + d∗

2∆λ∗

. (27)

dλ2 (∆λ∗)2

6
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Fig. 1. Initialization and accuracy control for ROMs. The red line represents schematically the FOM-based solutions, the blue line the
ROM-based solution, Ri denotes the ROM basis corresponding to load level λi , ϕm are base vectors, and δs is a user-defined error
tolerance. Initialization is applied at the first load level

(
λ1) where ϕ1 denotes the linear FOM solution, ϕ2 the FOM-based nonlinear

solution, ϕ3 and ϕ4 perturbation solutions. Error checking is performed for each ROM-based solution. In the above illustration, for load
level

(
λ2), the error is acceptable and, thus, no FOM-based correction is applied. Consequently, R2 is used for load level

(
λ3). However,

for load level
(
λ3), too large an error is detected and a FOM-based correction is conducted and the ROM basis is extended by ϕ5, the

FOM-based nonlinear solution, as well as by ϕ6 and ϕ7. The latter follows from the corresponding perturbations. Subsequently, the same
logic as for

(
λ2) is applied for

(
λ4).

Here, d∗ denotes a FOM-based solution corresponding to the current load level λ∗, ∆λ∗ a small perturbation of
the load factor λ∗, d∗

∆λ∗ and d∗

2∆λ∗ are FOM-based perturbation solutions corresponding to perturbed load levels
(λ∗

+ ∆λ∗) and (λ∗
+ 2∆λ∗), respectively. Given the introduced orthonormalization (see Appendix A), a practical

approach to include the information on the 2nd-order path derivative is by simply adding d∗, d∗

∆λ∗ , and d∗

2∆λ∗ as
new base vectors. Note, the FOM-based solution d∗ has already been added to the basis. Starting from λ∗, the load
factor is perturbed twice to get d∗

∆λ∗ and d∗

2∆λ∗ . It is deserved to mention that including only d∗

∆λ∗ is equivalent
to adding current tangent information of the path. This can also contribute the accuracy to some extend. But for
very flexible structures, the curvature information is highly desired to ensure the accuracy, which can be roughly
achieved by adding d∗

2∆λ∗ . Here, we use the perturbation step ∆λ∗
= ∆λ × 10−3, i.e. ∆λ∗ is selected as a small

fraction of the applied load step ∆λ, which, based on our test cases, is effective. Since ∆λ∗ is very small, modified
Newton iterations can be employed to keep the updating computationally efficient, where the tangent stiffness matrix
corresponding to λ∗ is used for both steps. By adding d∗

∆λ∗ and d∗

2∆λ∗ , we efficiently add information on the
curvature of the loading path, thus improving the accuracy of the corresponding ROM-based solutions. For one
optimization step, the strategy is schematically illustrated in the Fig. 1, where Ri represents the ROM basis of load
step i .

4.2. Augmentation technique

In the previous sections, we described the ROM updating strategy for the first step in the optimization. Such
a method, in which we construct the ROM basis from scratch, can also be applied to subsequent optimization
steps. However, this would disregard the potential benefits of FOM-based solutions evaluated for previous designs.
The FOM-based solutions can be stored and could provide an accurate prediction of a slightly adapted design.
To maximize the use of previous FOM-based solutions, i.e. previous ROM bases, we propose an augmentation

technique in this section.

7
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t
S

Fig. 2. Augmentation of ROM basis where the red lines represent the FOM-based solutions, the blue lines the ROM-based solutions, Rk
i

denotes the ROM basis corresponding to load level λi in optimization step k, ϕm are base vectors, and δs is a user-defined error tolerance.
When k = 1, the same logic as described in Section 4.1 applies. For (k = 2, i = 1), instead of initializing the ROM basis with FOMs, we
ake R1

1 as the current ROM basis. Then, similar to the first optimization iteration, error checking is applied to the ROM-based solution.
ince the error in this example is acceptable, no FOM-based correction is applied. Hence, at

(
k = 2, λ1), we have R2

1 = R1
1. Next, before

R2
1 is used for the second load level, it is augmented by previous design’s ROM bases R1

2 and R1
3. After convergence, the error checking

is performed. Since no error correction is applied, at
(
k = 2, λ2), we have R2

2 = R1
3. Subsequently, the same strategy is applied to the

subsequent load levels and optimization steps. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

As an illustration, Fig. 2 depicts the first and second step of an optimization. Here Rk
i denotes the ROM basis

of load step i at optimization iteration k. When k = 1, the strategy as described in Section 4.1 applies. For k > 1
and i = 1, instead of using FOMs for initialization, we directly take Rk−1

1 as the current ROM basis to enhance the
efficiency. After convergence, error control, as described in Section 4.1, is applied and the ROM basis is updated
if too large an error is encountered. When k > 1 and i > 1, we check the base vectors of load level i and i + 1
from the previous optimization iteration k − 1. We add these base vectors if they are not included in the current
ROM basis. Then, the augmented ROM basis is applied to generate the ROM-based solution for the next load level.
Similarly, after convergence, the error control is applied and the ROM basis is updated if necessary.

4.3. Maintenance strategies

As shown, it is advantageous to include new base vectors throughout the optimization. The ROM basis is updated
on the one hand to maintain accuracy for different load levels. On the other hand, the ROM basis is adapted to new
designs when topology designs change. Given this, it is necessary to limit the maximum number of base vectors
in order to maintain compactness of the ROM basis. If the number of base vectors reaches the maximum, old
base vectors must be removed from the ROM basis to make room for new vectors. The corresponding strategy is
described in this section.

For a ROM basis R = [ϕ1,ϕ2, . . . ,ϕm], base vectors from ϕ1 to ϕm are sequentially added to R following
the strategy described in previous subsections. After adding each new vector, we apply the orthogonalization (see
Appendix A) to all vectors in the basis. This implies that the base vector added at last, i.e. ϕm , could make very
large contributions to the ROM-based solution, whereas, the vector added at first, i.e. ϕ1, could make very small
contributions. Consequently, when the basis is full and a new vector need to be added, we simply remove the first
base vector, i.e. ϕ1, in the ROM basis.

Furthermore, if the ROM basis is not full yet, it is possible to reduce the size even further without sacrificing
accuracy. This can be done by removing the base vector with the smallest contribution. The contribution c of base
i
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vector ϕi can be expressed by

ci =|
yi

ymax
|, (28)

here yi denotes generalized coordinates, “ | ∗ | ” means a absolute value, and

ymax = max(y1, y2, . . . , ym). (29)

f cmin = min{ci } < δrej, we then remove the base vector corresponding to cmin. Here δrej denotes a user-defined
mall value and we use 1 × 10−8 in this work. This method is known as “rejection”, which will be applied to all
OM-based load levels where the ROM-based solution is deemed accurate. So far, we have explained all related
trategies for initializing, updating, and maintaining the ROM basis. In order to use ROMs for optimization, we
till need to deduce the ROM-based sensitivities. More details can be seen in the next section.

. Design sensitivity analysis

For topology optimization, sensitivity analysis (SA) is essential. The adjoint method is frequently used since
he number of design variables is typically much larger than the number of constraints. The adjoint formulation
or FOMs is already well-known in the field. Hence, we just summarize it in Section 5.1 and refer to it as
onsistent FOM sensitivity analysis (CFSA). CFSA will be used when a FOM-based solution is available, e.g. after
nitialization and error correction. In fact, one could use CFSA for a ROM-based solution, but this would be
xpensive and, effectively, the resulting sensitivities are not consistent. Consequently, we derive the consistent ROM-
ased sensitivity analysis (CRSA) in Section 5.2, which requires derivatives of all base vectors. However, owing to
ur augmentation technique, which involves previous FOM solutions, such derivatives are rather impractical to be
onsidered. Therefore, an approximation is created for the CRSA, and the modified formulation is referred to as
he approximate ROM-based sensitivity analysis (ARSA).

.1. Consistent FOM sensitivity analysis (CFSA)

To deduce the adjoint formulations for the consistent FOM sensitivity, we introduce the equilibrium equation
q. (10) to the response function J by adjoint variables θ, where θ is a column, and the augmented response

unction J̄ is

J̄
[
d
[
ρ
]
, ρ
]

= J
[
d
[
ρ
]
, ρ
]
+ θT (f − q

[
d
[
ρ
]
, ρ
])

. (30)

o improve readability, d
[
ρ
]

is shortly represented by d.
The derivative of J̄ with respect to ρ is

d J̄
[
d, ρ

]
dρ

= J,d
[
d, ρ

] dd
dρ

− θT
(

q,d
[
d, ρ

] dd
dρ

+ q,ρ
[
d, ρ

])
+ J,ρ

[
d, ρ

]
, (31)

ere the comma “, ” represents partial derivatives. From Eq. (31), the computation of the expensive derivatives dd
dρ

can be avoided if the adjoint variables θ are selected as the solution of

KT
[
d, ρ

]
θ = J,d

[
d, ρ

]
. (32)

ere, one linear solution step need to be conducted. When KT is large, its decomposition could be expensive if it
s not available. After obtaining θ, the design sensitivity can be calculated by

dJ
[
d, ρ

]
dρ

=
d J̄
[
d, ρ

]
dρ

= −θTq,ρ
[
d, ρ

]
+ J,ρ

[
d, ρ

]
. (33)

Given that q,ρ is easy to evaluate, the only time-consuming term could be the solution of Eq. (32). In fact, one
could use CFSA for a ROM-based solution, but this would be expensive and, effectively, the resulting sensitivities

are still not consistent. Consequently, we derive (approximate) ROM-based sensitivity analysis in the next section.
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5.2. Consistent ROM-based sensitivity analysis (CRSA) and its approximation (ARSA)

At first, the consistent reduced-order sensitivity analysis (CRSA) is derived. We introduce the ROM-based
quilibrium function related to d (See Eq. (18)) to the response function J by adjoint variables µ. Here, µ is a
olumn. Meanwhile, we also introduce the FOM-based equilibrium function related to base vectors ϕ j (See Eq. (9))
o J by adjoint variables θ j . Here, θ j is also a column. Then, the augmented objective function can be defined as

J̄
[
d
[
ρ
]
, ρ
]

= J
[
d
[
ρ
]
, ρ
]
+ µT RT (f − q

[
d
[
ρ
]
, ρ
])

+

m∑
j=1

θT
j

(
fϕ − qϕ

[
ϕ j
[
ρ
]
, ρ
])

, (34)

where m is the number of base vectors. Next, to improve readability, d
[
ρ
]

is compactly denoted by d and ϕ j
[
ρ
]

by ϕ j .
Taking derivatives of Eq. (34) to design variables ρ, we get

d J̄
[
d, ρ

]
dρ

= J,d
[
d, ρ

] dd
dρ

+ J,ρ
[
d, ρ

]
+ µT dRT

dρ

(
f − q

[
d, ρ

])
− µTRT

(
q,d

[
d, ρ

] dd
dρ

+ q,ρ
[
d, ρ

])

−

m∑
j=1

θT
j

(
qϕ,d

[
ϕ j , ρ

] dϕ j

dρ
+ qϕ,ρ

[
ϕ j , ρ

])
,

(35)

here

µT dRT

dρ
=

m∑
j=1

µ j (
dϕ j

dρ
)T. (36)

nd

dd
dρ

=
dR
dρ

y + R
dy
dρ

, (37)

dR
dρ

y =

m∑
j=1

y j
dϕ j

dρ
. (38)

hen, the derivatives Eq. (35) can be expressed as

d J̄
[
d, ρ

]
dρ

=J,ρ
[
d, ρ

]
− µTRTq,ρ

[
d, ρ

]
−

m∑
j=1

θT
j qϕ,ρ

[
ϕ j , ρ

]
+

m∑
j=1

{
y j
(
J,d

[
d, ρ

]
− µTRTq,d

[
d, ρ

])
+ µ j

(
f − q

[
d, ρ

])T
− θT

j qϕ,d
[
ϕ j , ρ

]} dϕ j

dρ

+
(
J,d

[
d, ρ

]
R − µTRTq,d

[
d, ρ

]
R
) dy

dρ
.

(39)

he derivatives dy
dρ

are avoided if the adjoint variables µ satisfy

RTKT
[
d, ρ

]
Rµ = KT

[
d, ρ

]
µ = RT J,T

d

[
d, ρ

]
. (40)

Here KT
[
d, ρ

]
denotes the reduced tangent stiffness matrix. Since KT

[
d, ρ

]
is only associated with a few reduced

DoFs, the solution of Eq. (40) is conveniently obtained and will be evaluated in the final configuration. The tedious
part is to eliminate the derivatives of the base vectors dϕ j

dρ . For this, the corresponding adjoint variables θ j , for
j = 1, 2, . . . , m, have to satisfy

qT
ϕ,d

[
ϕ j , ρ

]
θ j = KT

[
ϕ j , ρ

]
θ j = y j

(
J,d

[
d, ρ

]
− µTRTK

[
d, ρ

])T
+ µ j

(
f − q

[
d, ρ

])
. (41)

Note, the tangent stiffness matrix KT
[
ϕ j , ρ

]
is related to FOMs. More specifically, it will be related to FOMs for

previous designs and/or different load levels due to the proposed updating scheme. Hence, this adjoint formulation

would call for availability of tangent stiffness matrices corresponding to other load levels and/or different designs.
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Table 1
Definition of terms used in the numerical examples.

Name Meaning

ONLY FOM Exclusively FOM-based method
ROM* ROMs without path derivatives and augmentation
(ROM∗)f The number of FOM-based correction updates in ROM* for each optimization step
(ROM∗)r The number of ROM-based updates in ROM* for each optimization step
ROM+A ROMs with augmentation without path derivatives
(ROM + A)f The number of FOM-based correction updates in ROM+A for each optimization step
(ROM + A)r The number of ROM-based updates in ROM+A for each optimization step
ROM+A+P ROMs with augmentation and path derivatives
(ROM + A + P)f The number of FOM-based correction updates in ROM+A+P for each optimization step
(ROM + A + P)r The number of ROM-based updates in ROM+A+P for each optimization step

Thus, it is not efficient to calculate these terms in the ROM-based sensitivities. Therefore, an approximated method
is proposed, which ignores the derivatives of ϕ j . This means that it is assumed that the dependency of ϕ j on ρ
has a relative minor effect on the resulting sensitivities. Following this strategy, the approximated formulation is
expressed as

dJ
[
d, ρ

]
dρ

≈ −µTRTq,ρ
[
d, ρ

]
+ J,ρ

[
d, ρ

]
. (42)

n Eq. (42), the adjoint variable µ is computed using Eq. (40). This implies that we do not need previous tangent
perators. Compared to CFSA, this strategy only needs a reduced-order linear analysis, which leads to computational
fficiency.

. Numerical examples

Several numerical examples involving shell elements and solid elements are studied in this section to evaluate the
roposed ROM-based techniques. The shell elements applied in this paper are 6-node, 12-DOF triangle elements,
hich can describe finite rotations by a co-rotation formulation. More detail are provided in the work of Van Keulen

nd Booij [28]. The solid elements are standard 6-node, 12-DOF tetrahedral elements with one integration point.
In the numerical tests, the efficiency of ROMs is measured by counting the number of ROM-based Newton

terations (ROM-based updates) and FOM-based correction iterations (FOM-based correction updates) for each
opology optimization step. These numbers are compared with the number of FOM-based Newton iterations (FOM-
ased updates) of an exclusively FOM-based strategy. To keep illustrations compact, several terms are defined in
he Table 1.

.1. Cylindrical shell

We embark on testing with a mildly nonlinear case to assess the effectiveness of the proposed ROMs. A
ylindrical shell is shown in Fig. 3, where all details of the problem have been provided and the quantities involved
ave consistent dimensions. We consider four different strategies for topology optimization, including ROM+A+P,
OM+A, ROM*, and “ONLY FOM”. A comparison of their efficiency is provided in Fig. 4. As observed in
ig. 4(a), “ONLY FOM” requires around 40 FOM-based updates every optimization step. Whereas, per optimization
tep, ROM* only requires 20 FOM-based updates and 60 ROM-based updates. Here, 60 ROM-based updates have
egligible effect on efficiency since each ROM-based update only requires factorization of a small matrix in a
0 × 10 dimension. For further efficiency improvement, augmentation is included (See the result for ROM+A shown
n Fig. 4(a)). Here, we can typically reduce the number of FOM-based updates to less than 20 per optimization
tep and logically, the number of ROM-based updates increases a bit to 60. Next, the impact of path derivatives is
tudied in Fig. 4(b). From the result, no obvious difference is obtained. It makes sense since path derivatives are
ainly for inextensional bending structures, but this example is not the case.
Corresponding convergence curves of the four strategies are compared in Fig. 5. Evidently, all strategies
nderwent nearly the same optimization progress and converge to the same final result. This implies that the
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Fig. 3. Cylindrical shell. All quantities have consistent dimensions. Here, F denotes nodal forces applied at points A and B, t thickness, E
Young’s modulus, λ load factor, ∆λ increment of λ, ϵ f the convergence tolerance for FOMs (See Eq. (15)), ϵr the convergence tolerance
for ROMs (See Eq. (25)), δrej the rejection tolerance (See Section 4.3), δs the error tolerance for ROM-based results (See Section 4.1), V
volume, uA

x displacement of point A in x direction, and uB
x displacement of point B in x direction.

Fig. 4. Efficiency test for the cylindrical model. The efficiency of ROMs is measured by counting the number of ROM-based updates and
FOM-based correction updates for each topology optimization step. In the left picture, blue shapes denote ROMs without path derivatives
and augmentation, where the up-pointing triangles are the number of ROM-based updates and the down-pointing triangles are corresponding
FOM-based correction updates. The red shapes denote ROMs with augmentation without path derivatives, where the circles are ROM-based
updates and the squares are FOM-based. In the right picture, the blue shapes represent ROMs with augmentation and path derivatives, where
the starts are the number of ROM-based updates and the crosses are the corresponding FOM-based updates. The red shapes here are the
same as the left picture. These numbers are compared with the number of FOM-based updates of exclusively FOM strategy, which are
shown by the green points in both the left and right pictures. From the distribution of the points, we can see that ROMs with augmentation
have better performance than ROMs with augmentation. The differences between ROMs with and without path derivatives are not distinct
for this example. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

approximation we made in ROM-based sensitivity analysis, i.e. ARSA, has negligible impacts on the optimization
progress and final result for this case. For details, we zoom in at an intermediate design of ROM+A+P, shown in

ig. 5, and look at its sensitivity of the constraint uA
x −2.5 < 0. The sensitivity value was obtained automatically by

RSA since the analysis ended with a ROM-based solution. As a comparison, we used FOMs to rerun the analysis
or the same intermediate design and extracted CFSA values as shown in Fig. 5. According to the results, ARSA
nd CFSA provide a consistent sign but differing magnitudes. These differences did not obviously lead ROM-
ased optimization progress to a different way from the FOM-based one. It indicates that there are possibilities for

ptimization to ignore the errors existing in sensitivity values.

12



L. Zhang, Y. Zhang and F. van Keulen Computer Methods in Applied Mechanics and Engineering 416 (2023) 116371

o

t
t
u
i
t
i
i
p
F

i
w
t
t
o
i

Fig. 5. Histories of objective values for the cylindrical model. For sensitivity evaluations, an intermediate design is selected from the
ptimization progress involving ROM+A+P method shown by the middle black–white figure. Focusing on this intermediate design, both

ARSA and CFSA are used to calculate the sensitivity values of uA
x with regard to all element pseudo densities. Different colors in ARSA

and CFSA results represent sensitivity values. As observed, ARSA and CFSA provide consistent signs but differing magnitudes at some
parts. These differences did not cause a big influence on the optimization progress and topology results. Both convergence and final design
are similar. The final topology results for FOMs and ROMs are identically shown in the black–white figure on the right. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

6.2. Cantilever solid beam

A cantilever beam is depicted in Fig. 6. In this figure, all details of the problem have been provided and quantities
involved have consistent dimensions. Given that the structure exhibits nearly inextensional bending behavior, it can
highlight the importance of introducing path derivatives.

We consider four strategies including ROM*, ROM+A, ROM+A+P, and “ONLY FOM” for topology optimiza-
ion. A comparison of their efficiency is shown in Fig. 7. First of all, we investigate the influences of augmentation;
he results can be found in Fig. 7(a). As observed, the “ONLY FOM” method requires around 40 FOM-based
pdates, whereas ROM* only needs 10 FOM-based correction updates per optimization step. When augmentation
s included, analyses are purely done by ROMs for 33 optimization steps and for the remaining 17 steps, no more
han 10 correction updates are needed. Logically, decreasing the number of FOM-based correction updates results
n a slight increase in ROM-based updates for ROM+A method. The increase hardly influences efficiency since
n each ROM-based update, only a small matrix in a 10 × 10 dimension is factorized. After the introduction of
ath derivatives, as shown in Fig. 7(b), analyses are purely done by ROMs for 45 optimization steps and only 5
OM-based correction updates are required in the remaining 5 optimization steps.

Corresponding convergence curves of the four strategies are compared in Fig. 8. In the figure, We zoom in at an
ntermediate design of ROM+A+P and look at its sensitivities for the constraint −uA

x −1.4 < 0. Here the sensitivity
as automatically obtained by ARSA since the analysis ended with a ROM-based solution. As a comparison, we

hen used FOMs to rerun the analysis for the same intermediate design and extracted CFSA values. According to
he results, nearly identical SA values are obtained by ARSA and CFSA, and obviously lead to nearly the same
ptimization progress and topology result of the four strategies. The corresponding topology results can be found

n Fig. 8.
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Fig. 6. Cantilever solid beam. All quantities have consistent dimensions. Here, F denotes a concentrate force applied to Point A, E Young’s
modulus, λ load factor, ∆λ load increment, ϵ f the convergence tolerance for FOMs (See Eq. (15)), ϵr the convergence tolerance for ROMs
(See Eq. (25)), δrej the rejection tolerance (See Section 4.3), δs the error tolerance for ROM-based results (See Section 4.1), V Volume, uA

z
displacement of Point A in z direction, and uA

x displacement of Point A in x direction.

Fig. 7. Efficiency test for the cantilever beam model. The efficiency of ROMs is measured by counting the number of ROM-based updates
nd FOM-based correction updates for each topology optimization step. In the left picture, blue shapes denote ROMs without path derivatives
nd augmentation, where the up-pointing triangles are the number of ROM-based updates and the down-pointing triangles are corresponding
OM-based correction updates. The red shapes denote ROMs with augmentation without path derivatives, where the circles are ROM-based
pdates and the squares are FOM-based. In the right picture, the blue shapes represent ROMs with augmentation and path derivatives, where
he starts are the number of ROM-based updates and the crosses are the corresponding FOM-based updates. The red shapes here are the
ame as the left picture. These numbers are compared with the number of FOM-based updates of exclusively FOM strategy, which are
hown by the green points in both the left and right pictures. From the comparison, ROM+A performs better than ROM*, and ROM+A+P

further improves the efficiency compared to ROM+A. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

6.3. Thin plate model

A thin plate model is described in Fig. 9. In this figure, all details of the problem have been provided and
quantities have consistent dimensions. In this example, we expect a very slender topology result where displacements
can increase largely between two neighboring load steps. In this way, the advantage of augmentation technique can
be clearly illustrated.

We use four strategies including ROM*, ROM+A, ROM+A+P, and “ONLY FOM” for topology optimization.
The efficiency is compared in Fig. 10. First of all, we investigate the influences of augmentation and the
results can be found in Fig. 10(a). As observed, the “ONLY FOM” method requires roughly 40 updates until
the 20th optimization step. Thereafter, it increases to approximately 70 when the structure has become more
slender. Similarly, after the 20th optimization step, ROM* intensively involves FOM-based correction updates.
This inaccuracy is mainly due to large displacement changes between neighboring load steps. The situation can

be improved by application of the augmentation technique. With augmentation from higher load levels of previous
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Fig. 8. Histories of objective values for the cantilever beam model. For sensitivity evaluations, an intermediate design is selected from the
ptimization progress involving ROM+A+P method shown by the middle black–white figure. Focusing on this intermediate design, both

ARSA and CFSA are used to calculate the sensitivity values of −uA
z with regard to all element pseudo densities. Different colors in ARSA

nd CFSA results represent sensitivity values, where ARSA and CFSA provide nearly identical results and lead to the same result shown
n the black–white figure on the right. (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

esigns, ROM+A needs fewer than 20 correction updates for the whole optimization progress. After involving path
erivative, as shown in Fig. 10(b), although slightly, the efficiency can be further improved compared with ROM+A.

Corresponding convergence curves are compared in Fig. 11. In the figure, we zoom in at an intermediate design
f ROM+A+P and look at its sensitivity of the constraint uA

z − 0.0015 < 0. Here the sensitivity was automatically
btained by ARSA since the analysis ended with a ROM-based solution. As a comparison, we used FOMs to rerun
he analysis for the same intermediate design and got CFSA values. According to the results, identical SA values
re obtained by ARSA and CFSA, and obviously lead to the same optimization progress and topology result of the
our strategies. The corresponding final topology is also shown in Fig. 11.

As is commonly understood, when a design exhibits mild nonlinearity, the differences between linear and
onlinear topologies may not be distinct. Thus, neglecting nonlinearity in the analysis may only lead to displacement
rrors but not an ineffective design. For relative high nonlinear cases, the differences between linear and nonlinear
opologies could be obvious. For this thin plate case, we can observe a noticeable distinctions between the linear and
onlinear topologies shown in Fig. 12. In alignment with the nonlinear case, for the linear case, we minimize the
olume while considering displacement constraints, but here the upper limit is established to be 100 times smaller
han the nonlinear case. As illustrated in Fig. 12, the nonlinear case distributes the material uniformly along the
ymmetrical boundary, attempting to move away from the simply supported boundary to form a flexible strip, which
an exhibit large deflections and rotations. For the linear case, the material is concentrated more towards the applied
orce, resulting in a design that is closely linked to the simply supported boundary. The results demonstrated that
isregarding nonlinearity can result not only in displacement errors but also in a different design.

.4. Spherical structure

A spherical structure is illustrated in Fig. 13. In this figure, all details of the problem have been provided and all
uantities have consistent dimensions. The structure is separately discretized with shell elements and solid elements.
e conducted topology optimization for both cases using the four strategies, and their efficiency and convergence

esults will be compared in the following subsections. Given that the structure exhibits nearly inextensional bending

ehavior, it can demonstrate the necessity of introducing path derivatives.
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Fig. 9. Square thin plate. All quantities have consistent dimensions. Here, F denotes a concentrated force applied to Point A, t thickness,
E Young’s modulus, λ load factor, ∆λ increment of λ, ϵ f the convergence tolerance for FOMs (See Eq. (15)), ϵr the convergence tolerance
or ROMs (See Eq. (25)), δrej the rejection tolerance (See Section 4.3), δs the error tolerance for ROM-based results (See Section 4.1), V
olume, and uA

z displacement of Point A in z-direction. Due to symmetry, a quarter of the plate is selected for optimization.

Fig. 10. Efficiency test for the thin plate. The efficiency of ROMs is measured by counting the number of ROM-based updates and
FOM-based correction updates for each topology optimization step. In the left picture, blue shapes denote ROMs without path derivatives
and augmentation, where the up-pointing triangles are the number of ROM-based updates and the down-pointing triangles are corresponding
FOM-based correction updates. The red shapes denote ROMs with augmentation without path derivatives, where the circles are ROM-based
updates and the squares are FOM-based. In the right picture, the blue shapes represent ROMs with augmentation and path derivatives, where
the starts are the number of ROM-based updates and the crosses are the corresponding FOM-based updates. The red shapes here are the
same as the left picture. These numbers are compared with the number of FOM-based updates of exclusively FOM strategy, which are
shown by the green points in both the left and right pictures. From the comparison, ROM+A is obviously superior to ROM*. ROM+A+P
performs slightly better than ROM+A. (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

.4.1. Spherical thin shell
For the structure meshed with shell elements shown in Fig. 13(b), we compare the efficiency of the four strategies

n Fig. 14. First, we look into the effects of augmentation excluding path derivatives. The results can be found in
ig. 14(a). The “ONLY FOM” method performs stably, which requires roughly 70 updates per optimization step.
or ROMs without augmentation, i.e. ROM*, it needs around 40 FOM-based and 80 ROM-based updates until the
0th optimization iteration. Thereafter, the number of both FOM-based and ROM-based updates becomes unstable.
specially, more than 80 FOM-based correction updates are required in the majority of optimization steps. After

ntroducing the augmentation (See results of ROM+A), the number of ROM-based updates becomes much smaller
ompared to ROM*, but is still around and even exceeds 80. The efficiency can be improved further by introducing
ath derivatives. As shown in Fig. 14(b), ROMs with path derivatives and augmentation, i.e. ROM+A+P, can reduce
the number of FOM-based correction updates to fewer than 40 for most optimization steps. However, the number
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Fig. 11. Histories of objective values for the square thin plate model. For sensitivity evaluations, an intermediate design is selected from the
optimization progress involving ROM+A+P method shown by the middle black–white figure. Focusing on this intermediate design, both
ARSA and CFSA are used to calculate the sensitivity values of uA

x with regard to all element pseudo densities. Different colors in ARSA
and CFSA results represent sensitivity values, where ARSA and CFSA provide nearly identical results and lead to the same result shown
in the black–white figure on the right. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 12. Comparison between linear and nonlinear topology results for the thin plate model. For both cases, we minimize volume with
isplacement constraints. For the linear case, the upper limit of displacement constraint is 0.0015 but for the nonlinear case, it is 0.15. At
he convergence, both displacement constraints are active.

f FOM-based corrections and ROM-based updates is still unstable. Particularly, at the 28th optimization step, we
bserve more than 100 FOM-based updates.

In order to understand the reasons behind the large number of FOM-based updates. We zoom in on the
ntermediate design at the 28th optimization step. Then, the ROM-based and the corrected FOM-based deformations
t the last load incremental step are shown in Fig. 14(b). As observed, a local buckling mode is clearly visible in
he middle low-density area of the ROM-based deformation figure. When looking at the corresponding FOM-based
eformations, we observe a completely different local buckling mode. Given the differences, FOMs are intensively
sed to transfer the ROM-based one to the FOM-based one. To address this, in future work, techniques for refining
OMs need to be explored.

Corresponding convergence curves for the four strategies are shown in Fig. 15. As observed, ROM+A+P
nd ROM+A converge to the same objective value, which is slightly larger than the “ONLY FOM” result. The
ifferences related to final topologies can be found in Fig. 15, which could result from the differences between
OM-based and FOM-based solutions, as well as the approximation introduced by the ROM-based sensitivity

A
nalysis method ARSA. The ARSA value of the constraint −uz −4 < 0 for an intermediate design can be observed

17
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(

t

Fig. 13. Spherical structure and its meshes. (a) is the geometry. All quantities have consistent dimensions. Coordinates of Point A is
r, θ, φ) = (10, 2π

5 , 0), Point B (r, θ, φ) = (10, 2π
5 , π

2 ), Point C (r, θ, φ) = (10, π
2 , 0), and Point D (r, θ, φ) = (10, π

2 , π
2 ). Here, F denotes

nodal forces applied to Point A and B, t thickness, E Young’s modulus, λ load factor, ∆λ increment of λ, ϵ f the convergence tolerance
for FOMs (See Eq. (15)), ϵr the convergence tolerance for ROMs (See Eq. (25)), δrej the rejection tolerance (See Section 4.3), δs the error
olerance for ROM-based results (See Section 4.1), V Volume, uA

z displacement of Point A in z direction, uA
x displacement of Point A in x

direction, uB
z displacement of Point B in z direction, and uB

x displacement of Point B in x direction. The model meshed with solid elements
is shown in (b). The number of solid elements is 34 740. The model meshed with shell elements is shown in (c). The number of shell
elements is 2316.

in Fig. 15. As a comparison, we reran the analysis using FOMs for the same intermediate design and got CFSA.
Here CFSA and ARSA have the same sign but different magnitudes. These errors could lead to different results
when structures become flexible. As for ROM*, it converges to nearly the same result as the “ONLY FOM” method.

This would not be surprising after looking at the efficiency test (see Fig. 14(a)). Since the inaccuracy of ROM*,

18
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Fig. 14. Efficiency test for the spherical thin shell. The efficiency of ROMs is measured by counting the number of ROM-based updates
nd FOM-based correction updates for each topology optimization step. In (a), blue shapes denote ROMs without path derivatives and
ugmentation, where the up-pointing triangles are the number of ROM-based updates and the down-pointing triangles are corresponding
OM-based correction updates. The red shapes denote ROMs with augmentation without path derivatives, where the circles are ROM-based
pdates and the squares are FOM-based. In (b), the blue shapes represent ROMs with augmentation and path derivatives, where the starts
re the number of ROM-based updates and the crosses are the corresponding FOM-based updates. The red shapes here are the same as the
eft picture. These numbers are compared with the number of FOM-based updates of exclusively FOM strategy, which are shown by the
reen points in both (a) and (b). From the results, ROM+A performs better than ROM*, though both of them show extremely unstable

update numbers. ROM+A+P has the best performance among the three ROM strategies. However, a large number of correction iterations
are still observed. To understand this, an intermediate design is selected and ROM-based analysis is performed. Concerning the final load
incremental step, corresponding ROM-based and the corrected FOM-based deformations are shown on the right. As observed, the ROM-based
and FOM-based results show different local buckling modes. Thus, FOMs are intensively involved to transfer the ROM-based one to the
FOM-based one.

nearly all of the load incremental steps ended with FOM-based solutions, and consequently, the optimization is led

by CFSA instead of ARSA.
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Fig. 15. Histories of objective values for the spherical thin shell model. An intermediate design is selected from the optimization progress
nvolving ROM+A+P method shown by the middle black–white figure. Focusing on this intermediate design, both ARSA and CFSA are used
o calculate the sensitivity values of −uA

z with regard to all element pseudo densities. Different colors in ARSA and CFSA represent sensitivity
alues. Here ARSA and CFSA provide a consistent sign with differing magnitudes. These errors lead to slightly different results when the
tructure is flexible, which are illustrated by the black–white topology results shown on the right. Here, designs, at the 70th optimization
teps, of ROM+A+P and ROM+A have a bit more material than the design of “ONLY FOM”. For ROM*, since its inaccuracy, nearly all
f the load incremental steps ended with FOM-based solutions, and consequently, the optimization is led by CFSA instead of ARSA. Then,
t converges to the same result as the “ONLY FOM” method.

.4.2. Spherical solid shell
For the structure meshed with solid elements in Fig. 13(c), we compare the efficiency of the four strategies

hown in Fig. 16. We start by examining the effects of augmentation and the results are shown in Fig. 16(a). Here,
he “ONLY FOM” method requires roughly 50 updates for most optimization steps, however, increasing to more
han 100 between the 20th and the 40th optimization step. We then zoom in on one of the intermediate designs
nd look at the deformation, see Fig. 16(a). As observed, the elements on the left bottom corner of the design are
nside-out due to compression, which leads to convergence difficulties in the FOM-based analysis. The convergence
ifficulties in FOMs also have big influence on ROM*, since it intensively uses FOMs for both error correction and
nitialization at every optimization step. For ROM+A, the influence becomes less severe since the augmentation
echnique reduces the times of switching back to FOMs and avoids FOM-based initialization at every optimization
tep. Here only for three of the optimization steps, ROM+A requires more than 20 correction updates and the
aximum number is about 40. If path derivatives are used (see Fig. 16(b)), a better result is obtained, though not

istinctly. Here, the largest number of FOM-based correction updates is roughly 30.
The corresponding convergence curves are compared in Fig. 17. Although the four strategies went through

ifferent optimization progresses, they ultimately achieve similar objective values. ROM+A and ROM+A+P
onverge to nearly the same objective value, which is a bit larger than the one of “ONLY FOM”. The differences in
opology can be seen on the right of Fig. 17, where more material appears in the middle of the ROM+A+P/ROM+A
esult. These variations could result from the differences between ROM-based and FOM-based solutions (δs = 0.5),
s well as the ARSA. The ARSA value of the constraint −uA

z −4 < 0 for an intermediate design from ROM+A+P
an be seen in Fig. 17. As a comparison, we then used FOMs to rerun the analysis for the same intermediate
esign and got CFSA values. According to the results, ARSA and CFSA provide a consistent sign but differing
agnitudes. These errors could lead to differences in results when the structure is flexible. As for ROM*, since
FSA is frequently used due to its inaccurate ROM-based solutions, it converges to nearly the same result as the
ONLY FOM” method.
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Fig. 16. Efficiency test for the spherical solid shell. The efficiency of ROMs is measured by counting the number of ROM-based updates
and FOM-based correction updates for each topology optimization step. In (a), blue shapes denote ROMs without path derivatives and
augmentation, where the up-pointing triangles are the number of ROM-based updates and the down-pointing triangles are corresponding
FOM-based correction updates. The red shapes denote ROMs with augmentation without path derivatives, where the circles are ROM-based
updates and the squares are FOM-based. In (b), the blue shapes represent ROMs with augmentation and path derivatives, where the starts
are the number of ROM-based updates and the crosses are the corresponding FOM-based updates. The red shapes here are the same as the
left picture. These numbers are compared with the number of FOM-based updates of exclusively FOM strategy, which are shown by the
green points in both (a) and (b). From the results, the ONLY FOM method encounters divergence difficulties between the 20th and the 40th
optimization steps. The reason is the instability of low-density elements as shown in the deformation figure. The convergence difficulties in
FOMs have big influence on ROM* since it intensively uses FOMs for both error correction and initialization at every optimization step.
For ROM+A, the influence becomes less severe since the augmentation technique improves accuracy and avoids FOM-based initialization at
every optimization step. Then, if path derivatives are used, a better result than ROM+A is obtained, though the differences are not distinct.

7. Conclusions

This study introduces ROMs to improve the computing efficiency of incremental-iterative, geometrically
nonlinear finite element simulations and the corresponding sensitivity analysis for topology optimization problems.
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Fig. 17. Histories of objective values for the spherical solid shell. An intermediate design is selected from the optimization progress involving
OM+A+P method shown by the middle black–white figure. Focusing on this intermediate design, both ARSA and CFSA are used to
alculate the sensitivity values of −uA

z with regard to all element pseudo densities. Different colors in ARSA and CFSA represent sensitivity
alues, where ARSA and CFSA provide a consistent sign with differing magnitudes. These errors lead to slightly different results when the
tructure is flexible, which are illustrated by the black–white topology results shown on the right. Here, designs, at the 50th optimization
tep, of ROM+A+P and ROM+A have a bit more material than the design of “ONLY FOM”. As for ROM*, since CFSA is frequently

used due to its inaccurate ROM-based solutions, it converges to nearly the same result as the “ONLY FOM” methods.

We have elaborately explained the initialization, update, error control, and augmentation techniques for the proposed
ROMs. Besides, we have proposed approximated ROM-based sensitivity analysis strategies (ARSA) for practical
and efficient use. Finally, the performance of the mentioned techniques has been examined by various geometrically
nonlinear examples involving both solid as well as shell elements, and the results have been benchmarked against
normal FOM-based ones.

Based on the findings, the proposed ROMs can effectively improve computing efficiency with a base vector
number of no more than 20. Especially, with the augmentation from previous designs, the ROMs’ efficiency can be
greatly improved. Importantly, path derivatives are necessary for flexible structures; otherwise, ROM-based analysis
lacks an effective description of flexible modes.

It is noticed that the ROM base also includes information from the void areas. As we use a Newton process, the
displacements and rotations may be less accurate in void areas than in the solid domain. Given the fact that we need
a basis which includes all nodal degrees of freedom, only selectively including nodal degrees of freedom is not an
option. Moreover, it would increase complexity of the method significantly. Finally, the examples demonstrate that
including all nodal degrees of freedom in the basis does not lead to complications. One issue caused by void areas
could be spurious local buckling behavior shown in the spherical shell example. To address the issue, additional
methodologies need to be employed, which is beyond the scope of the current paper.

With regard to sensitivities, we proposed an approximate ROM-based sensitivity analysis method (ARSA). Here,
we ignore the gradients of base vectors from previous designs with regard to design variables and consequently,
exclude previous tangent operators. In this way, we improve the efficiency of ROM-based sensitivity analysis.
The suggested ARSA can successfully guide most cases to the same solution as obtained using a FOM-based
formulation. However, for flexible structures, we observe slight differences between ROM-based and FOM-based
topology results. The differences could result from the errors introduced by ROM-based solutions as well as the
approximation brought in by ARSA.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential
competing interests: Lidan Zhang reports financial support was provided by China Scholarship Council.
22



L. Zhang, Y. Zhang and F. van Keulen Computer Methods in Applied Mechanics and Engineering 416 (2023) 116371

A

A

i

v

I

A

i
b
m

Data availability

Data will be made available on request.

cknowledgments

The work is supported by China Scholarship Council.

ppendix A. Normalization

Gram–Schmidt orthogonalization is applied to obtain a well-conditioned ROM basis once a new base vector is
ntroduced to the ROM basis. To illustrate the normalization progress, we start from an empty ROM basis R = [].

First, the bootstrapping process generates the FOM-based linear solution ϕ1. Then we introduce it to R. Since ϕ1
is the only one in the basis, orthogonalization is not required. Then, ϕ1 = ϕ1 and R = [ϕ1]. Here we use ϕ to
represent the base vector after orthogonalization.

Second, after the convergence of the FOM-based analysis, we introduce the FOM-based solution, i.e. ϕ2, to the
basis. Here we consider the ROMs without path derivatives for simple illustration. Now, the basis is not empty, we
need to apply the orthogonalization. Since ϕ2 is the latest vector, the corresponding deformation mode is closest
to the current and the next load step. Given this, the vector is regarded as the start point of normalization, and the
mode is completely maintained. Next, we remove ϕ2 from ϕ1, which means only the components orthogonal to ϕ1
in ϕ2 are attained. The orthogonalization can be explained by formulations

ϕ2 = ϕ2,

ϕ1 = ϕ1 −
⟨ϕ1,ϕ2⟩

⟨ϕ2,ϕ2⟩
ϕ2,

(A.1)

where ⟨a, b⟩ denotes the inner product of vectors a and b. Then R = [ϕ1,ϕ2]. Next, the R can be used for the
ROM-based analysis. If FOM-based error correction is required, then we need to add a new FOM-based solution
to the basis, i.e. base vector ϕ3. Following the same rules, we can get

ϕ3 = ϕ3,

ϕ2 = ϕ2 −
⟨ϕ2,ϕ3⟩

⟨ϕ3,ϕ3⟩
ϕ3,

ϕ1 = ϕ1 −
⟨ϕ1,ϕ2⟩

⟨ϕ2,ϕ2⟩
ϕ2 −

⟨ϕ2,ϕ3⟩

⟨ϕ3,ϕ3⟩
ϕ3,

(A.2)

Then R = [ϕ1,ϕ2,ϕ3]. For each new base vector, we apply the same rule. Generally, if we assume at a specific
load step, the corresponding ROM basis R before normalization with base vectors [ϕ1...ϕm], where ϕ1 is the first
ector added to R and ϕm is the vector just added to R. The Gram–Schmidt orthogonalization starts from ϕm and

ends at ϕ1. The orthogonalized progress is shown by

ϕm = ϕm,

ϕm−1 = ϕm−1 −
⟨ϕm−1,ϕm⟩

⟨ϕm,ϕm⟩
ϕm,

...

ϕ1 = ϕ1 −
⟨ϕ1,ϕm⟩

⟨ϕm,ϕm⟩
ϕm −

⟨ϕ1,ϕm−1⟩

⟨ϕm−1,ϕm−1⟩
ϕm−1 − · · · −

⟨ϕ1,ϕ2⟩

⟨ϕ2,ϕ2⟩
ϕ2,

(A.3)

n this way, a well-defined base vector is obtained and R = [ϕ1,ϕ2, . . . ,ϕm].

ppendix B. ROMs for inextensional-bending structures

In order to accurately simulate structures subjected to nearly inextensional bending, path derivatives are taken
nto consideration for the ROM basis. In this section, the necessity of considering path derivatives for inextensional-
ending structures is illustrated analytically. Next, the validity of path derivatives is highlighted by a numerical

odel.
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R

Fig. B.18. The pure-bending cantilever stripe. Here, E is Young’s modulus, M a moment, t thickness, λ load factor, ∆λ increment of λ,
ϵr the convergence tolerance of FOMs, ϵr the convergence tolerance of ROMs, δrej the rejection tolerance, and δs the error tolerance of

OM-based results.

Fig. B.19. Final FOM-based and ROM-based deformed configurations of the cantilever stripe.

B.1. A pure bending cantilever stripe model

In this section, we describe a cantilever plate, which is bent to a cylinder shell by the moment at the tip. The model
is shown in Fig. B.18, where 100 load steps are involved in the analysis. At first, the normal FOM-based method is
applied to the analysis and the deformed configuration at the last load step (λ = 1) is shown in Fig. B.19(a). The
number of FOM iterations is 199. Then, ROMs without path derivatives are applied to the analysis. We observe
that after the ROM-based analysis converges, FOM-based error correction is involved and convergence difficulties
appear during progress. The reason for the latter is that the corresponding ROM-based result provides a bad start
for FOM-based correction updates, and causes instabilities, shown in Fig. B.19(b), in the FOM-based correction
progress. The bad start provided by ROMs is mainly because of artificial in-plane stiffness introduced by ROMs.
In the next section, an analytical example is studied to better understand the problem.

B.2. Errors of ROMs in inextensional-bending structures

In order to understand artificial in-plane stiffness introduced by ROMs, a simple pure-bending problem for a
cantilever beam is illustrated in Fig. B.20. For pure-bending condition, the curvature is a constant along the length:

1
R

=
M
E I

, (B.1)

where 1
R is curvature, M is the moment, and E I is the bending stiffness. Thus, the shape of the deformed

configuration is a part of a circle with a radius of R. The displacement u along the x-axis and the displacement v
24
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Fig. B.20. A pure-bending cantilever beam subjected to the moment M . The Point A moves to Point A’ after bending. Here, R is the radius
f curvature.

long the y-axis at arbitrary points of the beam can be defined by Eq. (B.2).[
u
v

]
=

[
R · sin θ − x
R − R · cos θ

]
, (B.2)

ith

θ =
x
R

. (B.3)

If we introduce non-dimension variables η =
x
L and α =

L
R , the Eq. (B.2) can be expressed by:[ u

L
v
L

]
=

[
−η(1 −

sin[ηα]
ηα

)
1
α

(1 − cos [ηα])

]
. (B.4)

Then, taking the solution Eq. (B.4) as the only base vector, we can construct a ROM basis R =

[ u
L
v
L

]
. Then a

OM-based solution based on the basis R can be described as[ u
L
v
L

]
RO M

= C
[

−η(1 −
sin[ηα]

ηα
)

1
α

(1 − cos [ηα])

]
, (B.5)

here C represents the generalized DOF. Next, we use the ratio between stretching energy and bending energy
s the error measurement, since analytically, the stretching energy should be exactly zero for pure bending, and
umerically, the stretching energy should be very small compared to the bending energy. If the ratio is relatively
arge, then errors should exist in our solutions. Thus, the error measurement can be defined by

error =
Wstretching

Wbending
. (B.6)

Here, Wstretching represents stretching energy and Wbending bending energy.
In the pure bending problem, Wbending can be obtained directly by

Wbending =
1
2

Mα = (
1
2

)
E Iα2

L
. (B.7)

The stretching energy can be evaluated using the integration related to the bending stress σ11 and strain ϵ11:

Wstretching = (
1
2

)
∫

V
σ11ϵ11dV = (

1
2

)
∫ x=L

x=0
σ11ϵ11 Adx = (

A
2

)
∫ η=1

η=0
σ11ϵ11dη = (

AE
2

)
∫ η=1

η=0
ϵ11

2dη. (B.8)

hus, the error can be illustrated by

error =
Wstretching

= (12
L2

2 )(
1

2 )
∫ η=1

ϵ11
2dη. (B.9)
Wbending h α η=0
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Fig. B.21. Strain energy error encountered by ROMs. C is generalized coordinates and α is curvature.

ince

ϵ11 =
∂u
∂x

+
1
2

(
∂u
∂x

)2
+ (

∂v

∂x
)2, (B.10)

he integration in the Eq. (B.8) can be described by:∫ η=1

η=0
ϵ11

2dη =

∫ η=1

η=0
(cos(αη) − 1)2(C − C2)2dη = (

1
4α

sin(2α) −
2
α

sin α +
3
2

)(C − C2)2. (B.11)

tretching energy should be zero for pure bending. However, according to Eq. (B.11), the stretching energy is a
unction of the generalized coordinate C when the ROM is applied. The relationship between C , α, and strain
nergy error is illustrated in Fig. B.21 where L/h = 100. Here, C = 1 means we use the base vector Eq. (B.4)

to represent itself, and consequently, there are no errors. When C ̸= 1, we intend to use the base vector Eq. (B.4)
to represent nearby solutions, which is exactly the usual case in the ROM-based analysis. From the result, a subtle
perturbation of C will substantially increase error, i.e. stretching energy. With a fixed C ̸= 1, the error will reach
the peak when the structure is bent to a half-circle, where α is between 3 and 4. The reason for the large stretching
energy is that inextensional mode cannot be described by the base vector Eq. (B.4). The problem can be solved by
introducing the 2nd order of path derivative in the ROM basis, which can give ROMs more information associated
with the in-plane deformation.

B.3. FEA of the pure bending plate with path derivatives

The pure bending plate is tested again using ROMs with path derivatives. The maximum number of base vectors
is 20. The analysis result is shown in Fig. B.22. The ROM-based analysis can converge with path derivatives, and
the deformed configuration is the same as the FOM-based one. In the ROM-based method, the number of FOM
solves is only 93, and the number of ROM solves is 299. Compared to the FOM-based method, where the number
of FOM solves is 199, ROMs’ efficiency is dramatically enhanced.

Concerning this model, we will discuss the feasibility of replacing the full Newton method with the modified
Newton for path derivatives. At first, we analyze the plate model using ROMs involving the full Newton method.
The corresponding number of ROM-based and FOM-based correction updates are illustrated in Table B.2. Here,
we try different perturbation steps ∆λ∗

= ∆λ × ϵ by changing the perturbation parameter ϵ, where ∆λ is the load
incremental step. We also consider different convergence tolerances ϵp in the perturbed displacement generation
progress for path derivatives. The purpose is to define suitable ϵ and ϵp for the calculation. It can be seen in

−3 −4
Table B.2, when ϵ = 1 × 10 or 1 × 10 , we can obtain relative good results. Besides, similar to the finite
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Table B.2
The number of Newton iterations involving ROMs, where path derivatives are
calculated by full Newton method. In the table, ϵ is the perturbation, and ϵp is
the convergence tolerance in the path-derivative calculation loop. The tolerance ϵ f
in the error correction loop is 1 ∗ 10−5.

ϵ ϵp FOM ROM

1e−3 1e−5 105 322
1e−3 1e−8 98 310
1e−4 1e−5 103 311
1e−4 1e−8 94 302
1e−6 1e−5 148 303
1e−6 1e−8 113 564

Table B.3
The number of Newton iterations involving ROMs, where path derivatives are
calculated by modified Newton method. In the table, ϵ is the perturbation, and ϵp is
the convergence tolerance in the path-derivative calculation loop. The tolerance ϵ f
in the error correction loop is 1 ∗ 10−5.

ϵ ϵp FOM ROM

1e−3 1e−5 136 253
1e−3 1e−8 97 268
1e−4 1e−5 131 262
1e−4 1e−8 93 299
1e−6 1e−5 157 396
1e−6 1e−8 106 565

Fig. B.22. Final FOM-based and ROM-based deformed configurations of the pure bending stripe.

difference method, too small a perturbation parameter ϵ cannot lead to better results. Moreover, we can see that a
smaller ϵp can contribute to a better result.

Then, the same test is conducted with the modified Newton method and the results are shown in Table B.3. It
can be seen that similar to full Newton, good results can be obtained by modified Newton when ϵ = 1 × 10−3

or 1 × 10−4. Considering the latter, when ϵp = 1 × 10−8, the number of FOM-based correction updates involving
the modified Newton is nearly the same as the full Newton. Thus, modified Newton is feasible to replace the full
Newton method when a small tolerance ϵp is used for calculating perturbed displacements.
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