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Epidemic propagation on complex networks has been widely investigated, mostly with invariant

parameters. However, the process of epidemic propagation is not always constant. Epidemics can

be affected by various perturbations and may bounce back to its original state, which is

considered resilient. Here, we study the resilience of epidemics on networks, by introducing a

different infection rate k2 during SIS (susceptible-infected-susceptible) epidemic propagation to

model perturbations (control state), whereas the infection rate is k1 in the rest of time. Noticing

that when k1 is below kc, there is no resilience in the SIS model. Through simulations and

theoretical analysis, we find that even for k2< kc, epidemics eventually could bounce back if the

control duration is below a threshold. This critical control time for epidemic resilience, i.e.,

cdmax, seems to be predicted by the diameter (d) of the underlying network, with the quantitative

relation cdmax � da. Our findings can help to design a better mitigation strategy for epidemics.
VC 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
[http://dx.doi.org/10.1063/1.4997177]

Recently, the dynamic modeling of complex networks has

become an important means for the analysis of epidemic

propagation. However, in the field of epidemiology, most

studies of epidemic spreading mainly focus on the phase

of epidemic outbreak on networks with nearly invariant

parameters. Epidemics can be affected by various pertur-

bations and may bounce back to its original state, pre-

senting corresponding resilient behaviors, which have

hardly been studied. In this paper, we perform studies on

the resilience of epidemics on networks by lowering the

infection rate during control state. After adding the

“control” stage, the simulation results on different types

of networks show that the epidemic can restore to the

original steady state in the finite network size under cer-

tain conditions. We find that the resilience of epidemic

propagation depends on the infection rate k2 with dura-

tion cd of control stage. In addition, the threshold, cdmax,

is strongly related to the network structure, which

appears to scale with network diameters. The discovery

of cdmax can provide advanced indicator for the resilience

of epidemics, which can help to design protection strategy

keeping systems from a secondary epidemic outbreaks.

I. INTRODUCTION

Complex systems1 in various fields, ranging from natu-

ral to engineering systems, such as ecosystems, financial

markets, and electric grids, can be viewed as complex net-

works. Such complex networks2–4 are frequently subject to

environmental changes or internal fluctuations. The dynam-

ics on networks5 may possess the capacity to retain the origi-

nal state essentially after perturbations. Such an adaptive

capability is defined as resilience.6–10 For example, it is

shown that the food chain11 in a biological network can with-

stand the shocks from a dramatic fall of one species and reor-

ganize into a connected ecological web.

The resilience of epidemics here means that the spread-

ing of epidemics recovers after various perturbations. Most

studies on epidemic spreading mainly focus on the phase of

the epidemic outbreak on networks.12–19 Correspondingly,

the parameters characterizing the processes of epidemic

transmission on networks are nearly invariant in most mathe-

matical epidemic models.20–22 In some cases,23–25 the epi-

demic spreading may be influenced or reduced by external

control of self-repairing mechanism.26,27 However, epidemic

may continue to spread by absorbing the perturbations and

recover to a stable trajectory, thereby presenting the above-

mentioned resilient behaviors.

Resilient behaviors in the context of epidemic propaga-

tion have rarely been studied. In this paper, we study the

resilience of epidemics on networks based on the classical

epidemic model. Three well-known epidemic mathematical

models are usually used in the study of epidemic transmis-

sion: SI (susceptible-infected) model, SIS (susceptible-

infected-susceptible) model, and SIR (susceptible-infected-

recovered) model.12,28,29 The classical SIS epidemic model

is one of the most general way to model the epidemic

dynamical behaviors on networks such as Erd}os-R�enyi (ER)

networks30 and scale-free (SF) networks.31 It is well known

that there exists a nonzero epidemic threshold kc
12,32 for ER

networks in the dynamics of epidemic outbreak. For a given

infection rate k � kc, the epidemic will spread out, and the

system will reach a stationary state with a finite stable den-

sity q of the infected population. However, if the infection

rate k is below the epidemic threshold kc, the epidemic will

ultimately die out, with no infected individuals (i.e., q ¼ 0).

In contrast, it has been demonstrated that the epidemic

threshold does not exist for SF networks with 2< c � 3.14a)daqingl@buaa.edu.cn
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This has prompted the propagation of viruses in such net-

works. When the parameter c > 3, the epidemic will spread

on these SF networks with an epidemic threshold kc.
33,34

In this paper, we perform studies on the resilience of

epidemic transmission with k varying over time in the classi-

cal SIS epidemic model, to model the perturbations (i.e.,

“control”). When the epidemic propagation is controlled

since a certain time instant (i.e., ct) for a duration cd, the

infection rate (k2) is smaller than k1 in the uncontrolled state.

Based on different durations of control (i.e., cd), the trans-

mission level of the epidemic would reflect distinct resilient

behaviors after the control. The issue being tackled in this

paper is whether the epidemic propagation can present resil-

ient behaviors and the corresponding critical condition.

According to the above-mentioned model, we analyze

epidemic spreading on three types of real networks (Facebook

network, Internet, and social network) and two types of net-

work models (ER networks and SF networks). The simulation

results have demonstrated that under certain conditions, the

epidemic can bounce back to the initial steady state in the

finite network scale. It is shown on ER networks that even for

k2< kc, the epidemic may eventually bounce back when con-

trol time is below a threshold. This is verified by our theoreti-

cal analysis of the recovery probability for epidemics, P,

calculated by the equation q ctþ cdð Þ ! 1
N. The critical

control time of the resilience (i.e., the critical time for the

extinction of epidemics, cdmax) seems to be predicted by

the diameter (d) of networks, with the quantitative relation

cdmax � da.

The contents of this paper are arranged as follows.

Section II is devoted to introducing the model used to study

the resilience of epidemics on networks based on the classic

SIS epidemic model. In Sec. III, we perform simulations on

different types of networks. Theoretical analysis is also per-

formed on the obtained results. In Sec. IV, we draw the con-

clusions and present the discussions.

II. MODEL

In the SIS epidemic model, nodes in the network are

divided into two compartments: susceptible individuals (S)

and infected individuals (I). Initially, a fraction of nodes,

which are randomly selected in the network, are infected. At

each time step, each susceptible node is infected by each of

its infected neighbors in the network with probability b.

Each infected node is cured and becomes susceptible again

with probability d simultaneously. The effective infection

rate is defined as k ¼ b/d.

In this paper, we study the resilience of epidemics under

perturbations, by changing the infection rate k to model the

perturbations (i.e., “control”). The model applied in net-

works describing the whole propagation process can be clas-

sified into three sub-phases by adding “control,” where the

starting time and the duration of the “control” are defined as

ct and cd, respectively:

Phase 1: The epidemic spreads with an infection rate k1

¼ b/d1 lasting ct time steps since the beginning t ¼ 0. The

probability b is set to a constant value in the entire process

of epidemic transmission.

Phase 2: When the “control” is introduced in the second

phase since time ct, the recovery rate d2 in the controlled

network is given larger than d1, i.e., k2 is smaller than k1.

This process will last for cd time steps.

Phase 3: The control is removed at time instant ct þ cd and

the epidemic propagates with the infection rate k3, equal to

k1 in phase 1.

In addition, the infection densities that we mainly

observe are defined as q1, qc, and qr for each stage. The

model can be explained by the following example. In the

Internet, some computers may become infected by a certain

virus. Accordingly, anti-virus efforts (“control”), i.e., opera-

tions including certain immunization process and restoration

with anti-virus software,35 will be implemented to stop or

lower the epidemic spreading, thus leading to a dramatic

decline of the infection rate. When the control is removed

due to the limited budgets or adaptation of virus, for different

control durations cd, the epidemic may lose its resilience or

resume to spread, therein presenting different resilient

behaviors. We study the critical condition by both simulation

and theoretical results that the epidemic can continue propa-

gating after the control phase.

We show the results of epidemic resilience on three

types of real networks (Facebook network, Internet, and

social network) and two types of network models (ER net-

works and scale-free networks). The Facebook network orig-

inates from the database on Stanford Large Network Dataset

Collection site.36 It contains 4039 nodes and 88 234 edges,

with the average degree of hki � 43:691. The data of

Internet come from the UCI Network Data Repository,41

whose average degree is hki � 4:219, including 22 963 nodes

and 48 436 edges. The dataset of social network (Googleþ)

with hki � 3:322 was collected by the Koblenz Network

Collection,36,42 which contains 23 628 nodes and 39 242

edges. In addition, these real networks have degree distribu-

tion, following a power-law distribution with the exponent c
� 1.3, 2.5, and 2.6, respectively. For an ER network with N

nodes, each node pair is independently connected with a

probability p. Then, we create an ER graph with a Poisson

degree distribution37 described as follows:

P kð Þ ¼ N � 1

k

� �
pk 1� pð ÞN�1�k: (1)

We create scale-free networks via the configuration

model,3 following a scale-free distribution P(k) � k–c, where

c is the degree exponent.

In this paper, we first focus on the key quantity about

the epidemics, i.e., the infection density q to study the resil-

ient behaviors of epidemic propagation. Meanwhile, the crit-

ical condition for the emergence of the resilient behaviors

will be studied. We also explore the probability of recovery

for epidemics, P, as a function of infection rate k2 in the sec-

ond phase and control duration cd. In order to find the critical

recovery time of resilience for the epidemic to “bounce

back,” we calculate the infection density qr in the third stage,

as a function of control duration (cd). In addition, under-

standing the relation between the resilience of epidemics

and network structure is essential to design the resilience

083105-2 Lu et al. Chaos 27, 083105 (2017)



strategy. The relation between the critical control time of

resilience cdmax and diameters (d) seems to be identified on

ER and SF networks.

III. RESULTS

To study the resilient behaviors of epidemic propaga-

tion, we first perform simulations to obtain the infection den-

sity q as a function of time on different types of networks.

To observe the processes of epidemic transmission on real

networks, Facebook network, Internet, and social network

are examined with the SIS epidemic model, respectively. As

shown in Fig. 1(a), the epidemic spreads rapidly in the

uncontrolled stage, since there exits hub nodes in the topo-

logical structure of Facebook network. The infection density

is decreased when the epidemic is controlled with a lower

infection rate since time instant ct. When the control stage is

finished and infection rate is recovered, the epidemic can

soon restore to the same state before the control. For the

Internet shown in Fig. 1(b), the epidemic can bounce back to

the original steady state when the “control” is removed. As

shown in Fig. 1(c), the simulations on social network show

that the infection density can return to the initial stationary

state after the “control,” when k2 is below that of uncon-

trolled state. The infected individuals are decreased to zero

with a quite small k2 and the epidemic propagation comes to

an end without exhibiting resilience. The findings on the real

networks illustrate that under certain conditions, the epi-

demic can bounce back to the original steady state in the

finite network scale.

Then, we carry out simulations of the epidemic propaga-

tion on ER and SF networks. In the case of ER networks, we

acquire the results obtained from simulations shown in Fig.

2(a). It shows that the infection density q is decreased

quickly once the“ control” is added. When the “control” is

removed, the epidemic can also continue to spread and

recover to a steady state. It is known that the epidemic

threshold kc ¼ 1=hki through the theoretical calculation,38

when there is no control in ER networks. Here, the infection

rate for control phase is smaller than kc. Therefore, the trans-

mission capability of epidemics decreases with “control”

added. Afterwards, it recovers in the uncontrolled stage

FIG. 1. The infection density q as a function of time on real networks. (a) Facebook network with hki � 43:691 and N¼ 4039. The infection rates are

k1¼ k3¼ 0.3 and k2¼ 0.15 (circle). The infection rates are k1¼ k3¼ 0.12 and k2¼ 0.006 (triangle). (b) Internet with hki � 4:219 and N¼ 22963. The infection

rates are k1¼ k3¼ 0.3 and k2¼ 0.0375 (circle) and k2¼ 0.0167 (triangle). (c) Social network with hki � 3:322 and N¼ 23628. The infection rates are

k1¼ k3¼ 0.3 and k2¼ 0.125 (circle) and k2¼ 0.05 (triangle). Initially, 10% of nodes, which are randomly selected in network, are infected. The starting time

of control is ct¼ 50. The control duration is set to cd¼ 500. The numerical results are averaged over 300 iterations.

FIG. 2. The infection density q as a function of time on ER and SF networks.

(a) Simulation results (splashes) on ER networks with hki ¼ 10 for cd¼ 10,

compared with the theoretical values (solid line) as obtained from the classical

mean-field rate equation (red line) and Eqs. (3) and (4) (blue line). The infec-

tion rates are k1¼ k3¼ 0.2 for the uncontrolled period and k2¼ 0.08< kc¼ 0.1

for the controlled period, respectively. (b) Simulation results (splashes) for SF

networks with hki � 5:4 (m¼ 2 and c ¼ 2.5) [SF networks with hki � 4:5
(m¼ 3, c ¼ 3.5) in the inset] for cd¼ 10, 500, and 1000. The infection rates

are k1¼ k3¼ 0.3 for the uncontrolled period and k2¼ 0.15 for the controlled

period. Initially, 10% of nodes randomly selected in two networks are infected.

The starting time of control is ct¼ 10. The size of networks is N¼ 103. The

numerical results are averaged over 300 iterations.
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showing resilient behaviors. For SF networks with c ¼ 2.5

illustrated in Fig. 2(b), epidemics can always bounce back to

its original state in our simulations at different control dura-

tions. This may be due to the fact that the network has no

epidemic threshold for 2< c � 3. The findings explicitly

demonstrate the existence of the resilient behaviors for the

epidemic propagation on SF networks. In addition, in the

inset of Fig. 2(b), the changes of infected density q with vari-

ous given cd on SF networks with c ¼ 3.5 show that the epi-

demic could not exhibit resilience with a quite large cd.

Meanwhile, the dynamical mean-field rate equation is

applied to describe the processes analytically. For compari-

son, the classical mean-filed rate equation is shown below:

@q tð Þ
@t
¼ bhkiq tð Þ 1� q tð Þð Þ � dq tð Þ: (2)

The first quantity we study here in ER networks is the

density of infected nodes q(t). The governing equation,

which is mainly used for the analysis of this work, follows:

@q tð Þ
@t
¼
�
1� 1� bð Þhkiq tð Þ�

1� q tð Þð Þ � d1q tð Þ; (3)

when t� ct or t> ctþ cd.

@q tð Þ
@t
¼
�
1� 1� bð Þhkiq tð Þ�

1� q tð Þð Þ � d2q tð Þ; (4)

when ct< t� ctþ cd.

It is found that the simulation results on ER networks

can be well matched by the theoretical analysis obtained

from Eqs. (3) and (4). However, we found that the classical

mean-field rate equation can generate different results com-

pared with our simulations. Through the analysis of each

part of two equations, we found that the problem mainly

comes from the infection process of classical mean-field the-

ory, which is not consistent with that of governing equation

in this work. Because, in the process of infection, we assume

that a node being infected by each of its infectious neighbors

is not independent. And the further explanation is that item

bhkiq tð Þ in the classical mean-field theory of SIS model has

different probability consideration from item 1� 1� bð Þhkiq tð Þ

in Eqs. (3) and (4).

In order to find the critical condition for the emergence

of the above-mentioned resilient behaviors, we perform the

theoretical and simulation analysis for the probability of epi-

demics returning to the steady state in ER networks, P, as a

function of infection rate k2 in the controlled stage. For theo-

retical analysis, the probability of recovery for epidemics P
can be calculated by the mean-field equation written as

P ¼
0; q ctþ cdð Þ � 1

N

1; q ctþ cdð Þ > 1

N
:

8>><
>>:

(5)

In Fig. 3(a), the probability of epidemic restoration, P,

grows to 1.0 eventually with increasing k2 for a given cd.

There exists a critical infection rate kc
2 in control stage for epi-

demic resilience. Meanwhile, even for k2< kc, where kc is the

epidemic threshold (kc ¼ 1=hki) shown by dash line, the epi-

demic may still bounce back, which is due to the fact that the

infected density did not drop below the necessary threshold

during the time cd. When the equation satisfies q ctþ cdð Þ � 1
N

in theory, the epidemic is considered to lose the resilience. The

theoretical results, based on the above-mentioned calculation

method, can predict the critical kc
2, verified by the simulation

results. It illustrates that the epidemics will bounce back with

k2 � kc
2 (k2< kc) for a given control duration cd. This thresh-

old for epidemic resilience depends on the combined effect of

epidemic spread and control processes.

To explore the effect of the control duration cd on the prob-

ability for epidemics to return to the steady state, we perform

the theoretical and simulation analysis for P as a function of cd
in ER networks. As shown in Fig. 3(b), the probability P is

decreased with the increasing cd for a given infection rate k2

(< kc¼ 0.1). When the control duration (cd) is small, the proba-

bility maintains 1.0. As cd increases, the recovery probability is

decreased and finally reaches to zero. It is shown that there

exists a threshold (i.e., cdmax) that makes the epidemic lose the

resilience completely. And cdmax can also be regarded as the

FIG. 3. The probability of epidemics returning to the steady state P as a function of the infection rate k2¼b/d2 in control stage shown in (a) and as a function

of control duration (cd) shown in (b). Simulation results (splashes) for ER networks with size of N¼ 104, compared with the theory (solid line). (a) ER net-

works with hki ¼ 10. The control duration is set to cd¼ 100. The infection rate is k1¼ k3¼ 0.2 in the uncontrolled stage. The dashed line represents the value

of epidemic threshold, i.e., kc¼ 1/10. (b) ER networks with hki ¼ 10. The infection rates are k1¼ k3¼ 0.2 for the uncontrolled period and k2¼ 0.08< kc¼ 0.1

for the controlled period, respectively. Initially, 10% of nodes, which are randomly selected, are infected. The starting time of the control is ct¼ 10. The results

above have been averaged over 300 realizations.
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critical recovery time of resilience. The theoretical results (solid

line) are obtained based on the Eq. (5). Our theoretical analysis

can also predict the critical control duration, cdmax, above which

the epidemic will lose its resilience. It further illustrates that

even for k2< kc, the epidemic is still possible to bounce back,

when the control duration, cd, is not long enough.

As the resilience for the epidemic propagation is

affected by the infection rate k2 in the second stage of trans-

mission and the control duration (cd), we study the resilience

output with the steady-state density in the third stage, qr, as a

function of cd. As shown in Fig. 4(a), for a fixed k2, the

infection density qr is decreased as cd is increased for an ER

network. When cd is increased to a certain value, qr is almost

reduced to zero. This confirms our finding for cdmax in Fig.

3. It can also be seen that qr falls to zero earlier with a

smaller infection rate k2 than that with a large k2. To study

the effect of network size on the resilience of epidemics, we

perform simulations to obtain qr as a function of cd in ER

networks with different sizes. As shown in Fig. 4(b), in the

case of ER networks, qr is reduced to zero gradually with

increasing cd time steps for various N. Infection density after

control stage, qr, is decreased more quickly with a relatively

small N. It is considered that cdmax is larger for a large N.

It is meaningful to understand the relation between epi-

demic resilience and network structure, which can help to

design the resilience strategy. Therefore, we perform simula-

tions for cdmax as a function of diameters (d),1–3,39,40 which is

calculated by averaging the number of hops between each pair

of nodes in ER networks and SF networks, respectively. In

Fig. 5(a), for a given k2, the cdmax seems to be found to scale

with network diameters in ER networks, cdmax � da. In the

case of SF networks with c ¼ 3.5, as shown in Fig. 5(b), there

exits the critical recovery time of resilience (cdmax), which has

a different quantitative relation with diameters (d) from that of

ER networks. The findings on ER and SF networks illustrate

that the time (distance) that epidemics take to spread over the

entire network is critical to estimate the resilience of this pro-

cess. In addition, a is increasing with increasing k2.

IV. CONCLUSIONS

By adding a “control” stage in the original SIS model, we

model the resilience of epidemic propagation under perturbations.

When the network is in the controlled state, the epidemic trans-

mits with a smaller infection rate k2 than that in the uncon-

trolled state. When the control is removed, the epidemic may

restore to a steady state exhibiting resilient behaviors.

FIG. 4. The infection density after control stage, qr, obtained in the steady state, as a function of control duration (cd). (a) ER networks with hki ¼ 6 and

N¼ 104. The infection rate in a controlled state is k2¼ 0.12/0.9, 0.12/0.95, and 0.12/1. (b) ER networks with hki ¼ 6 by setting N¼ 103, 104, and 105, given

k2¼ 0.12/0.9. Initially, 10% of nodes, which are randomly selected, are infected. The starting time of the control is ct¼ 10. The infection rates are

k1¼ k3¼ 0.3 in the uncontrolled stage. The results above have been averaged over 300 realizations.

FIG. 5. The threshold cdmax as a function of diameters (d) of networks. (a) ER

networks with hki ¼ 10. The infection rate is given as k2¼ 0.08/0.9, 0.08/

0.95, and 0.08/1 in control stage. The infection rates are k1¼ k3¼ 0.2 in the

uncontrolled stage. (b) SF networks with hki � 4:5 (m¼ 3 and c ¼ 3.5). The

infection rate is given as k2¼ 0.12/0.9, 0.12/0.95, and 0.12/1 in control stage.

The infection rates are k1¼ k3¼ 0.3 in the uncontrolled stage. Initially, 10%

of nodes, which are randomly selected, are infected. The starting time of the

control is ct¼ 10. The results are averaged over 100 realizations.
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Based on the above-mentioned model, we performed

numerical simulations on three types of real networks

(Facebook network, Internet, and social networks) and two

types of network models (ER and SF networks). The simula-

tion results indicate that under certain condition, the epi-

demic can restore to the original steady state in the finite

network size. Through the simulations and theoretical analy-

sis on ER networks, it is shown that even for k2< kc, the epi-

demic may eventually bounce back when the control

duration, cd, is smaller than a threshold cdmax. It can be veri-

fied by the theoretical results of the recovery probability for

epidemics, P, computed by the equation, q ctþ cdð Þ ! 1
N.

The critical value cdmax is strongly related to the network

structure, where cdmax appears to be predicted by the diame-

ter d of networks with the quantitative relation, written as

cdmax � da. Note that the maximum time of control for epi-

demics extinction is increasing with system size and will

diverge for an infinite system. The resilience is an intrinsic

property for epidemics to adapt to the external perturbations

and the changes of internal conditions. It can also issue sig-

nals for systems to mitigate the epidemic rapidly and accu-

rately when they have been infected. The discovery of cdmax

may provide advanced indicator for the resilience of the epi-

demic, which can help to design protection strategy keeping

systems from a secondary epidemic outbreaks.
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