Stock discretised structural timber elements

A structural evaluation on a computational optimised timber structural system, discretised by available stockpile

Daan Weerdesteijn | 5699061

<u>Overview</u>

- 1. Problem introduction & Research outline
- 2. Structural design & Algorithmic development
- 3. Algorithmic performance
- 4. Design implementation
- 5. Conclusion & recommendations

Problem introduction & Research outline

Current practice in construction

Timber is becoming a more popular material

Positive ecological footprint

(EOC City of freemen's school swimming pool, 2018)

Problems

Large material extraction

Forest are not infinite

Waste problem

Annually 1.740.000.000 kg waste

(Bruggen & Zwaag, 2017)

___ — —

Equivalent of 500 fully loaded barges

Recycling process

Recycling = down-cycling = refusing

Waste stream

Equivalent of 128 fully loaded barges

Bottlenecks for reuse

Discrete design

"By combining a set of parts, a bigger building block can be created which can evolve into any type of structure."

(Adapted from, Sánchez, 2017)

Flexibility | Geometric freedom | Great complexity

Pizza Robot Gilles Retsin, 2018

Plexus Studio Symbiosis, India, 2021

The Tallinn pavilion Gilles Retsin, London, 2017

The Sequential Roof Gramazio Kohler Research, Switzerland, 2016

Reversible timber beam SDU Create group, Denmark, 2021

Styx AA Visiting School, Switzerland, 2018

Skilled-in Office Studio RAP, Netherlands, 2017

Coeda House Kengo Kuma, Japan, 2017

Recon timber slab SDU Create group, Denmark, 2023

Diamonds House Gilles Retsin, 2015

Highly architectural

Circular Experience

Circular Experience Studio Rap, The Netherlands, 2019

Reconfigurable modular timber grid (RMTG) Hao Hua et al, China, 2022

Topology optimized bridge SDU Create group, Denmark, 2019

Highly Structural

Conceptual systems

Design assignment

Design and build a portal frame generator

Analyzation of both horizontal and vertical elements subjected to bending moments in joints

Research aim

"Creating a tool that is able to generate a structural system using reclaimed timber that can support a more **efficient**, **circular and transformable** form of architecture."

Proof of concept for construction industry:

Circular life-cycle

Better structural understanding

Spark new ideas

Reduce virgin material consumption

What is a structural efficient structure?

Structural efficiency

Efficient = minimizing cutting losses and material consumption

"Efficiently matching parts manually is a nearly impossible task that can take days or even weeks and requires an algorithmic design approach" How can programming be utilised to create a discrete structural system using reclaimed timber parts that **maximizes efficiency and adaptability** but **minimizes the need for virgin materials** in construction?

Variable stock of reclaimed timber

Matching of pieces

Discrete structural design

Structural optimisation

Research scope

"The graduation project will start with the assumption that timber is collected, scanned sorted and inputted in a database. The database can be linked to a computational tool which generates a structure from waste wood."

Reclaimed timber database

Waste wood in Netherlands

Structural design

Design Criteria

Strength grade matching

Efficient, safe, stiff and strong

Ductile system

Design alternatives

Local connection

Cross-sectional view

Local connection

3D exploded view

Circular vision

Circular vision

Default dowel spacing

 $\longleftrightarrow \longleftrightarrow \longleftrightarrow \longleftrightarrow \longleftrightarrow \longleftrightarrow \longleftrightarrow \longleftrightarrow \longleftrightarrow \longleftrightarrow$

Length multiple of 50mm

The modular part

Top view

Dowel pattern Top view of layers

Algorithmic development

Overview of the workflow

9. Send used pieces to new database for future rematching

10. Detailed structural and geometry analysis

Overview of the workflow

Iterative matching of pieces in design domain
One dimensional combinatorial problem solving

Cross-sections (1 and 2) and side view (3)

1. Y-direction

3. X-direction

Dynamic matching performance

Effect of stock sizes

- Abundant stock
- Lengths 300 1000mm
- Limited stock
- Lengths 500 1000mm
- Limited stock
- Lengths 800 1000mm
- Limited stock
- Lengths 900 1000mm

■ used parts ■ cut for waste ■ cut for reuse

Strength optimisation by reconfiguration of pieces

Placement of pieces without optimisation

Front view of horizontal member

Strength classes of timber

Placement of pieces with optimisation

Front view of horizontal member

Placement of pieces with optimisation

Front view of horizontal member

Principal stress-lines

21% gain in strength 34% gain in stiffness

Aggregated elements

Element A

Element B

Element C

Moment connection in structural model

Connection alternatives

Final moment connection

620

3 M4

Algorithmic performance

Test set-up Front view

Varying composition

Strength grade	Used parts						
	Eement A	Eement B	Element C	total	percentage		
C14	41	59	27	127	31%		
C18	36	36	26	98	24%		
C24	54	61	43	158	38%		
C30	17	9	5	31	7%		
total	148	165	101	414	100%		

Global optimum: mass reduction of +/- 20%

Strength grade influence

Global optimum: mass reduction of +/- 30%

Final aggregated portal frame

Front view

Utilisation improvement

Stock dimensions initial influence

Effect of short, small, long and large pieces

Stock dimensions influence on optimisation

Front view

Design implementation

Design implementation

Remanufacturing facility

Generated portals

Optimisation results

Integration structural design and algorithmic results

Detailed views

2D front view of portal frame (tested composition)

Mass of a glulam structure with similar utilisation: 437kg

Potential extension of usage for the links

Potential extension of usage for the links

Vertical local connection

Secondary structure

Self-supporting elements

<u>3D view of secondary structure</u>

Potential building process Processing facility Collected wood 3D scanning Tagging Dimensions رواری رواری Weight measurement Storage in database and warehouse Hard wood Density Soft wood

(Adapted from, HvA Urban Technology, 2024)

Potential building process

Design and order pieces

Connect database to computational tool and match pieces in a design domain

Buy selected pieces and transport to remanufacturing facility

Potential building process

Remanufacturing facility

Potential building process

Lift parts in place

Potential building process

Tighten moment connection

Potential building process

Add secondary structure

Potential building process

Add cladding and roofing

Conclusion

How can programming be utilised to create a discrete structural system using **reclaimed timber** parts that **maximizes efficiency and adaptability** but **minimizes** the need for **virgin materials** in construction?

Limitations

1. Fire resistance

Recommendation

1. Stability of the programs output

2. Mechanical testing

Thank you

Appendix 1: Support connections

Cross-section

Appendix 2: Crown connection

Front view

Appendix 3: Optimisation approach

Front view

Appendix 4: Optimisation constraints

Appendix 5: Connectivity issues due to little overlap

Top views

Appendix 6: Vertical attachments of links

