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S U M M A R Y
Full waveform inversion (FWI) has the potential to recover detailed quantitative property
models of the subsurface, but the process is computationally expensive. Currently available
computer systems do not allow to use the full bandwidth of the acquired seismic data, which
effectively reduces the resolution that can be obtained. In this paper, we propose a novel ap-
proach to obtain high resolution subsurface models from broad-band FWI. The method is based
on localization of the inversion, while subsequently the interaction between local domains is
estimated. A global field update is calculated which honours the non-linear relationship be-
tween the subsurface properties and the measured seismic data. By using this non-linearity, the
spectral gap between the a priori background model and the seismic bandwidth will be closed
and spatially broad-band properties can be estimated from a band-limited seismic signal.
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1 I N T RO D U C T I O N

In principle, full waveform inversion (FWI) is a suitable tool to
obtain information about the properties of the subsurface on a very
detailed scale and the process was described for seismic applica-
tion already more than three decades ago (Bamberger et al. 1977;
Symes, 1981; Bamberger et al. 1982; Lailly, 1983; Tarantola, 1984,
1987). The initial work on waveform inversion has been developed
further over the years and today Gauss–Newton (Pratt et al. 1998;
Epanomeritakis et al. 2008; Fichtner, 2011; Métivier et al. 2012) or
gradient based methods (Mora, 1987; Crase et al. 1990) are most
commonly used to recover subsurface models from seismic data. A
bottleneck of these approaches is the large memory requirement and
the necessity to solve several full forward problems during the pro-
cess. Even currently available huge computer clusters cannot pro-
vide the capacity that would be required for FWI while using the full
bandwidth of the measured data. By full bandwidth the authors refer
to a spectrum with maximum frequencies between 50 and 100 Hz.
To overcome this limitation, recent approaches have been made
by encoding sources and receivers (Krebs et al. 2009; Abubakar
et al. 2011; Routh et al. 2011), or by using compressive sensing,
if the system to be solved is sparse in some sense (Moghaddam &
Herrmann, 2010). Also multi-scale approaches could be deployed
to decrease the problem size while at the same time incorporating
higher frequencies (Bunks, 1995; Brossier et al. 2009).

Interestingly, the seismic community seems to focus on reduc-
tion of the data space while reduction of the model space is not
really investigated yet. Despite all efforts in reducing the amount
of data that is simultaneously needed, maximum frequencies used
for inversion (∼20 Hz in 2-D and several Hz in 3-D) are still far

away from the maximum frequencies measured in the seismic sur-
face data. Consequently, the role of FWI is still limited to providing
background velocity models that can be used as input to a migration
scheme (Plessix et al. 2010; Prieux et al. 2010; Vigh et al. 2011).
This means that the final output of the seismic processing chain
remains a structural image that will be used for interpretation.

In this paper, we describe a gradient based FWI scheme with the
potential to notably increase the upper frequency limit that can be
taken into account for FWI. We discuss mainly two new aspects:
reduction of the memory requirements by localizing the inversion
and iterative calculation of the wave fields in the inversion domain
to avoid solving the full forward problem several times. The purpose
of our work is not to speed-up waveform inversion but to reduce
it’s computational complexity, especially in terms of simultaneous
memory requirements. As a result, broad-band FWI of seismic
surface data should become feasible with a very fine subsurface
discretization (≈5 m) while inverting frequencies of 50 Hz and
beyond. Consequently, FWI could become feasible to provide a
resolution that is competitive to structural imaging by migration.

In the described approach we split up the large-scale inversion
problem into many small, and highly parallelizable, local inversions.
In a first step seismic data is back-propagated into the subsurface
(Wapenaar 1989) which allows us to invert for the medium prop-
erties of a local domain only, while the rest of the subsurface can
be disregarded for the moment. The method combines redatuming
(Berryhill 1984; Shtivelman & Canning 1988; Mulder 2005) and
target-oriented inversion approaches (Valenciano et al. 2006; Staal
et al. 2010). For back-propagation a background medium is needed
that sufficiently describes the kinematics and we assume that such
a model, derived from existing methods, exist. We fully realize that
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obtaining such a background model is a non-trivial task and we re-
fer the reader to an excellent overview on existing FWI work given
by Virieux & Operto (2009) because a discussion of all challenges
is out of scope of this paper. Since the local back-propagated data
set is much smaller than the entire surface data set and a local do-
main is only a subdomain of the global subsurface, the problem
size gets reduced significantly and broad-band FWI on a finely dis-
cretized grid becomes possible. It should be realized that domain
decomposition methods are generally used to speed-up the forward
problem (Bamberger et al. 1997). This is different to our approach
where we use a similar concept to split up the inverse problem into
many local domains. Subsequently, these local inversion results are
combined into a global high-resolution property model of the sub-
surface. This procedure has been successfully demonstrated under
the assumption that seismic data is fully linear in the model proper-
ties (Haffinger et al. 2011). If this assumption holds and the medium
is supposed to generate primary reflections only, the described lo-
calized inversion might lead to a satisfactory result, because field
interaction between the local domains, for example, multiple scat-
tering and transmission, can be neglected. However, in real life the
relationship between the subsurface properties and the measured
data is mostly significantly non-linear and this fact has to be taken
into account. This means that a total field update has to be applied
that takes intra domain and inter domain interaction into account
to make the wave propagation in the subsurface consistent with the
latest obtained subsurface model. This procedure effectively esti-
mates the field interaction between the local domains and hence
inter domain multiples as well as propagation through the overbur-
den above the local domains is accounted for. Our total field update
incorporates all propagation effects, including internal multiples,
transmission and the true traveltimes in the inverted medium.

The total inversion scheme involves an iterative procedure of lo-
calized inversions and global field updates, which converges when
the obtained subsurface model and the fields at each gridpoint in the
subsurface do not change any more. The method is supposed not
only to recover the structure, but also quantitative property informa-
tion of the subsurface with a resolution well beyond the structural
images that are obtained from current migration schemes. This im-
plies that results from our FWI approach could be directly used for
structural interpretation but also for reservoir characterization. Fur-
thermore it should be understood that we do not aim at replacing
current FWI schemes but the described approach has to be seen
as another step, building on current results by direct inversion of
surface data. The subsurface models coming from direct FWI of
surface data then become new background models for the scheme
as outlined in this paper. A sketch of the full scheme is shown in
Fig. 1.

In this paper, we limit ourselves to the acoustic case in which
the density is assumed to be constant and known and the method
will be illustrated using a synthetic data set. Future research will
be devoted to extending the scheme to a multiparameter FWI in-
verting for the full elastic set of subsurface properties. Gisolf &
van den Berg (2012) discussed the elastic implementation of our
approach in a reservoir oriented 1.5-D setting but implementa-
tion of the elastic 2-D and finally 3-D schemes still needs to be
investigated.

2 M E T H O D O L O G Y

Although the method will be exemplified on a 2-D data set, deriva-
tion of the scheme will be for the general 3-D case. Before we

Figure 1. Schematic view of our novel FWI approach. By back-propagation
the inversion can be localized and global high resolution property images
can be obtained by combining the local results. While the inversion is
initialized assuming fields propagating in a smooth background model only
(background fields), subsequently the true field at each gridpoint in the
subsurface is updated based on the currently best known subsurface model.
In this way the non-linear relationship between the subsurface properties
and the measured data can be fully honoured.

Table 1. Most important variables used throughout the paper.

ω = temporal angular frequency,
D = scattering domain (subsurface),
S = surface domain,
xs = source location along S,
xr = receiver location along S,

x, x′ = scattering locations in D,
c0(x) = acoustic wave velocity of the background medium,
c(x) = acoustic wave velocity of the true medium,
ρ0 = constant mass density of the background medium,

χ (x) = contrast function,
G = Green’s function in background medium,

psct = measured seismic data,
p0 = background field at each point in the subsurface,
ptot = total field at each point in the subsurface.

describe the methodology we present a summary of the variables
that will be used throughout this paper in Table 1.

In the acoustic approximation with constant density we have to
solve a system of two coupled equations, the data equation and the
domain equation. The data equation describes the seismic data set,
measured along the Earth’s surface, in terms of a total field at each
gridpoint in the subsurface, the contrast function and the Green’s
functions in a non-scattering background medium:

psct(xr , xs, ω) =
∫

x′∈D
G(xr , x′, ω) χ (x′) ptot(x

′, xs, ω) dx′. (1)

The contrast function that is supposed to be determined by FWI is
defined as

χ (x) = 1 −
[

c0(x)

c(x)

]2

, (2)

and depends on the difference between a known background
medium and the true but unknown subsurface model. From eq.
(1) it can be seen that the total field is non-linear in the contrast
χ . If the dependency of the total field on the contrast function is
neglected, the data equation can be linearized and approximate sub-
surface properties can be obtained by a simple linear inversion. On
the other hand, if the exact total field would be known, the exact
contrast function could be obtained by again a simple linear inver-
sion.

In practice the total field is usually approximated by a background
field that propagates in a smooth medium only, while multiple scat-
tering and transmission in the subsurface is neglected. Note that
this assumption is made by all current migration algorithms, which
implies that the obtained structural images assume a linear rela-
tionship between the data and the subsurface properties. It should
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be clear that in many situations the true field propagation in the
subsurface is far more complex than could be described by a linear
data model. To overcome this limitation and to obtain a non-linear
inversion scheme we make use of the domain equation which de-
scribes the total field at each gridpoint in the subsurface in terms of
a field propagating in the background, the contrast and the Green’s
functions in a background medium:

ptot(x, xs, ω) = p0(x, xs, ω)

+
∫

x′∈D
G(x, x′, ω) χ (x′) ptot(x

′, xs, ω) dx′. (3)

The inverse scattering problem consists of determining χ (x′) from
the best estimate of the total fields ptot and the measured seismic
data psct. We recast the inverse problem as an optimization problem
of finding χ to minimize the error in eq. (1), subject to the constraint
that eq. (3) is satisfied in some sense.

Eqs (1) and (3) are the Lippmann–Schwinger equation
(Lippmann & Schwinger 1950) for acoustic scattering problems
with constant density. If the contrast function is known, the true
total field, including all complex propagation in the true subsurface,
can be obtained by solving eq. (3) numerically. The problem in seis-
mic inversion is that the contrast function is supposed to be found
from the seismic data and is generally unknown. The challenge in
FWI is to find the total field at each point in the subsurface as well
as the unknown contrast function. In the following we explain an
iterative approach in which we solve eqs (1) and (3) in an alternating
manner. We estimate the contrast function from the data equation
assuming that the total field does not change, followed by updating
the total field based on the domain equation, but assuming that the
contrast function is known. In this way we obtain a non-linear in-
version result and we stop the iterative procedure when the contrast
function and the total field do not change any more.

The scheme could in principle be directly applied to the mea-
sured surface data, but it was mentioned earlier that current com-
puter systems do not allow for high-resolution full bandwidth FWI.
To overcome this limitation we localize the inversion process and
combine the local results to a global property model.

3 L O C A L I Z E D L I N E A R I N V E R S I O N S

In the previous section the data equation and its role in FWI was
discussed. If the total field during the inversion is fixed, a linear
inversion scheme can be used to retrieve a subsurface model from
the measured seismic data. Note that this statement even holds if
the total field in eq. (1) is not just the background field in a smooth
medium, but becomes a total field that contains non-linear wave
phenomena, estimated in a more complex subsurface model. The
only restriction is that during inversion of eq. (1) the total field
remains fixed.

The main problem that remains is that the numerical costs of
this linear inversion grow exponentially with the amount of data,
as well as with the extension and the discretization of the unknown
subsurface model. With large seismic data sets, and the huge amount
of unknowns in a finely discretized subsurface model that is required
for full bandwidth FWI, the process cannot be performed on today’s
computer systems.

If a high resolution property model needs to be recovered by
full bandwidth inversion, the problem size has to be decreased sig-
nificantly. Current efforts are made by the seismic community to
reduce the amount of data that is simultaneously involved in the
inversion. Although reducing the data size is a powerful tool, all

current schemes invert for the properties of the entire subsurface
at once. In our scheme we back-propagate seismic sources and re-
ceivers into the subsurface to localize the inversion process. This
means that the full surface acquisition is smartly combined into a
back-propagated local data set and by subsequent time-windowing
we can invert for the properties of a limited local domain while
neglecting the rest of the subsurface for the moment. The scheme
involves also back-propagation of the total fields which makes the
localization effectively a pre-conditioning operation since it is ap-
plied to both sides of eq. (1).

Defining the back-propagation operators in the frequency
domain as

[Fr psct](xbr, ω) = 2
∫

xr ∈S

∂

∂zr
G∗(xbr, xr , ω)psct(xr , ω) dxr ,

[Fs psct](xbs, ω) = 2
∫

xs∈S

∂

∂zs
G∗(xbs, xs, ω)psct(xs, ω) dxs , (4)

where xr and xs stand for the actual source and receiver positions,
while xbr and xbs denote the back-propagated source–receiver posi-
tions, we apply a dual back-propagation to eq. (1)

[Fr (Fs psct)] (xbr, xbs, ω)

=
∫

x′∈D
[FrG](xbr, x′, ω)χ (x′)[Fs ptot](x

′, xbs, ω) dx′ . (5)

Back-propagation as described in eq. (4) is dependent on the an-
ticausal Green’s function, G∗, between the locations of the back-
propagated sources/receivers in the subsurface and the locations
of the actual sources/receivers located along the surface. Because
back-propagation is applied to the left- and right-hand side (RHS)
of the data equation, the process becomes a pre-conditioning oper-
ation and no model error is made. A similar reasoning tells us that
the integral in eq. (4) may be replaced by a finite summation over
the actual sources/receivers, without introducing a model error.
This allows us to replace the exact Green’s functions in eq. (4) by
ones that are parametrized in terms of traveltimes and approximate
amplitudes only. It is crucial to understand that back-propagation
is solely supposed to increase the sensitivity of the inversion with
respect to a certain local domain of the subsurface. Handling of the
complex overburden will be part of the global non-linear field up-
date as will be described later in this paper. Nevertheless, since after
back-propagation a certain time-window of the data will be chosen,
the Green’s functions have to describe the kinematic propagation
reasonably well and we assume that for this purpose a background
model, derived from standard velocity analysis or current FWI tech-
niques, exists. Interestingly, pre-conditioning by back-propagation
could be incorporated in any other FWI scheme to increase the
sensitivity of the error functional with respect to an arbitrary target.

Although in this paper we describe the method for surface seismic
data, the same concept can in principle also be applied to other
acquisition geometries, for example, seismic well data. Still, a local
back-propagated data set has to be generated above the domain of
interest and such a technique was recently proposed for VSP data
by Soni et al. (2012).

After carrying out the back-propagation we obtain the data
equation with back-propagated sources located at xbs and back-
propagated receivers located at xbr

p̂sct(xbr, xbs, ω) =
∫

x′∈D
Ĝ(xbr, x′, ω)χ (x′) p̂tot(x

′, xbs, ω) dx′, (6)

where p̂sct = [Fr [Fs psct]], Ĝ = [FrG] and p̂tot = [Fs ptot]. Eq. (6)
is equivalent to eq. (1) with the difference that the back-propagated
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Figure 2. By back-propagating the surface acquisition, a local data set is
generated at an arbitrary depth level. If only a limited time-window of this
back-propagated data set is used the medium properties of a local domain
can be obtained from FWI while neglecting the rest of the subsurface.

sources and receivers are located within the subsurface domain
D instead along the surface domain S. The situation after back-
propagation is shown in Fig. 2.

The back-propagated data consists of a causal and an anticausal
part. The causal part contains reflections from points in the sub-
surface below the new acquisition level, while the reflections from
above show up in the anticausal part. If we use the causal part
only and also apply a time-window, we can invert for the subsur-
face properties of a limited local domain located just below the
back-propagated sources and receivers. This can be justified by the
fact that wave fields can propagate only a limited distance from the
source into the medium and back to the receivers within a limited
time (i.e. causality). The time-window is calculated based on the
source–receiver distance and the maximum depth of the local do-
main. The traveltime in the background model from each source
to the midpoint of a source–receiver pair at the maximum depth of
the local domain and back to the receiver, becomes the maximum
window length for a particular trace. We choose the midpoint to
calculate the maximum time, to ensure that the reflection point of
the inverted data lies within the local domain. One could also decide
to use the maximum traveltime to any point in the local domain and
back to the receiver. Choosing the time-window is a trade off be-
tween maximum illumination of the local domain and possibly gen-
erating artefacts because the time-window contains data that cannot
be explained by the properties of the local domain. Nevertheless,
time-windowing is in only necessary for the very first iterations and
we show later how this procedure becomes in principle oblique by
combining the local results and taking their interaction into account.

The whole scheme reduces the amount of data and the size of
the inversion domain significantly. This reduction of the problem
size allows us to perform the inversion on a very fine grid and we
can use the full seismic bandwidth to obtain high resolution prop-
erty images of the subsurface. For inversion of eq. (6) we use a
multiplicative regularized conjugate gradient (MR-CG) scheme. In
principle any suitable inversion scheme can be used and we refer the
interested reader to Abubakar et al. (2004) for more detailed infor-
mation on multiplicative regularization. Although we believe that
multiplicative regularization is superior to additive regularization,
for example, hands-off estimation of the regularization parameter
and a regularization factor that goes to one with increasing iter-
ations, a comparison of both methods is not the objective of this
paper.

To obtain a global high resolution property model of the subsur-
face, we repeat the described FWI approach for many overlapping
local domains and finally the results are combined to form a global
model. In complex geologies, neglecting inter domain effects during

Figure 3. A number of local domains can be combined to obtain a global
property model of the subsurface.

the first iteration, can potentially prevent the CG-scheme from mini-
mizing the error functional, effectively leading to zero or very small
contrast values in these local domains. By choosing for overlapping
local domains, every subsurface gridpoint is covered multiple times
and the probability is increased that every gridpoint gets assigned
a reasonable contrast value. This is of interest especially early in
the iterative scheme, while later inter domain effects are estimated
and properly taken into account. Since all local domains are inde-
pendent we can run the inversions in parallel, allowing very fast
computation of a high resolution property model. Combining the
local domains to obtain a global model is sketched in Fig. 3.

4 G L O B A L N O N - L I N E A R F I E L D
U P DAT E

In the previous section it was described how, by localizing FWI, a
high resolution property model of the subsurface can be obtained.
Although in our approach always a linear inversion is applied to ob-
tain the contrasts from the data, the non-linear relationship between
the subsurface properties and the measured wave fields will be in-
corporated in updating the total fields. Note that if the exact total
field can be found, a linear inversion of the data equation is sup-
posed to yield the exact property model of the subsurface. Updating
the total fields in the subsurface represents a forward modelling
problem that could be performed by several numerical methods.
The best known and also most widely used modelling techniques
are based on finite-differences. This method can provide a good
approximation of the total field for a given contrast function with
the drawbacks of being computationally rather expensive and being
subject to numerical dispersion. Since, especially during the very
first iterations, the contrast is known not to be correct yet, we argue
that it is unnecessary and undesirable to calculate an exact solution
based on inexact properties. Still, finite-difference methods could
potentially be used for updating the fields in the medium under con-
sideration but during development of the scheme it turned out that
an iterative approach shows better convergence behaviour. To fully
prove this observation further research is needed and a comparison
between both forward modelling methods would certainly be of in-
terest. In the following we describe a more effective and intrinsically
stable method for updating the total fields in the subsurface. To this
purpose we write the total field as a sum of the background field
and a number of basis functions:

p(N )
tot (x, xs, ω) = p0(x, xs, ω) +

(N )∑
n=1

α(N )
n (ω)φn(x, xs, ω), (7)

where α(N )
n are frequency dependent weighting factors and depend

on the number N of basis functions taken into account. If the
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weighting factors are equal to one, eq. (7) becomes the Neumann
series which is known to be unstable for large contrast, high fre-
quencies or large scattering domains. Note that N is equivalent to
the iteration number and for each iteration one basis function is
added. The basis functions are defined as

φn(x, xs, ω) =
∫

x′∈D
G(xr , x′, ω)∂Wn dx′, (8)

and the incremental contrast sources ∂Wn are given by

∂W1 = χ1 p(0)
tot , ∂Wn = χn p(n−1)

tot − χn−1 p(n−2)
tot , n > 1. (9)

Substituting eq. (7) into eq. (3) and including the dependency of χ

on the iteration number n leads to

(N )∑
n=1

α(N )
n (ω)φn(x, xs, ω) =

∫
x′∈D

G(x, x′, ω)χn(x′)p0(x′, xs, ω) dx′

+
∫

x′∈D
G(x, x′, ω)χn(x′)

(N )∑
n=1

α(N )
n (ω)φn(x′, xs, ω) dx′. (10)

Eq. (10) is a linear system of equations including the unknown
weighting factors α(N )

n . Let we assume that the number of points x
in D is a finite number J. For each frequency ω and each source
position xs we define a J by N matrix (J ≥ N) as

M = φn(x, xs, ω) −
∫

x′∈D
G(x, x′, ω)χn(x′)φn(x′, xs, ω) dx′ (11)

and a known vector b as

b =
∫

x′∈D
G(x, x′, ω)χn(x′)p0(x′, xs, ω) dx′. (12)

We now can re-write eq. (10) in matrix vector form to

M α = b. (13)

Note that the weighting factors α(N )
n have been combined to the

vector α and that the summation over the basis functions is now
represented as a vector matrix multiplication. Inverting eq. (13) in
the least-squares sense leads to optimal weighting factors α(N )

n :

α = (
MH M

)−1
MH b, (14)

where H denotes the Hermitian of a matrix. Least-squares estima-
tion of α ensures that the total field update as described in eq. (7)
cannot diverge. This is beneficial compared to the straightforward
Neumann series or finite-difference methods, which can suffer from
instability issues, especially at higher frequencies. It is important
to realize that each time a new basis function is added to the total
field, N is increased by one and a complete new set of optimized
α(N )

n is calculated. Note that if the contrast is not changing, that is,
χ (x) = χn(x), the scheme becomes equivalent to the Krylov sub-
space method. A detailed description of the Krylov method can be
found in Kleinman & van den Berg (1991).

5 OV E R B U R D E N A N D I N T E R D O M A I N
M U LT I P L E S

We described earlier how by back-propagating sources and receivers
into the subsurface a localized inversion can be performed. The
concept is based on the fact that back-propagation, followed by
time-windowing, can separate the reflection responses associated
with the local domain, from the data that is generated from the
surroundings of the local domain. However, back-propagation is a
linear concept that cannot separate multiples that were generated in

a shallower local domain, but appear in the time-window that is used
for the current local domain. Although in the first iteration we have
no other option than ignoring this fact, we subsequently will build
up knowledge of the contrasts and the total field at every gridpoint
in the subsurface. This allows us to predict overburden multiples
and inter domain wave phenomena which means we can subtract
them from the surface data before localization of the inversion.
Mathematically the process can be described by splitting up the
data equation:

psct(xr , xs, ω) =
∫

x′∈D∪
G(xr , x′, ω)χ (x′)ptot(x

′, xs, ω) dx′

+
∫

x′∈D∩
G(xr , x′, ω)χ (x′)ptot(x

′, xs, ω) dx′. (15)

where the first term on the RHS is the contribution from the current
local domain, indicated by D∪ and the second term is the contribu-
tion from the complement of the local domain, indicated by D∩. It
should be noted that in the equation above sources and receivers are
still located along the surface. Although initially not possible, after
every following iteration the complementary part of the data can be
calculated and subtracted from the surface data in order to back-
propagate only the part of the seismic data that is related to the local
domain under consideration. If we define the surface data related to
a specific local domain L, after subtracting the complementary part
and at iteration n as

pL
n (xr , xs, ω) = psct(xr , xs, ω)

−
∫

x′∈D∩
G(xr , x′, ω)χn−1(x′)pn−1

tot (x′, xs, ω) dx′ (16)

we can write the data equation for a specific local domain as

pL
n (xr , xs, ω) =

∫
x′∈D∪

G(xr , x′, ω)χn−1(x′)pn−1
tot (x′, xs, ω) dx′.

(17)

This means that after the first iteration, eq. (17) will be used and
back-propagated to localize the inversion process. In this way over-
burden multiples and inter domain effects are effectively removed
in an iterative procedure. Furthermore, time-windowing can finally
be abandoned and multiples that are generated within the local do-
main but arrive outside the primary time-window can be used and
can therefore contribute to the inversion as well.

6 N U M E R I C A L R E S U LT S

We illustrate the feasibility of the approach discussed on a small part
of the Marmousi2 model. We utilize Marmousi2 instead of its orig-
inal version because of the much finer spatial discretization. Since
current implementation of our scheme can only use a homogeneous
background model we reduce the low wavenumber content of the
true Marmousi2 model. In a homogeneous background the Green’s
functions G can be calculated analytically which significantly sim-
plifies the computation. Nonetheless, for real data applications the
use of smooth inhomogeneous background media is inevitable. This
means that exact Green’s functions in a smooth background medium
have to be calculated. Since this can be a rather expensive task, an
effective modelling of Green’s functions in inhomogeneous media
is necessary. An interesting effort was made by Fokkema & van den
Berg (2012) for medium stretching to effectively make it homoge-
neous. Application of this method to a smooth background medium
would then allow direct use of our current implementation. Another
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Figure 4. Exact contrast function that was used to generate synthetic data
with sources and receivers located along the surface.

promising method to incorporate a smooth background medium is
given by Abubakar et al. (2009). Storing these Green’s functions is
not an option, so they have to be either recalculated for each itera-
tion, or written to disk and loaded whenever needed. Since storage
is usually extensively available, we currently use the latter option in
2-D. However, for a realistically sized 3-D inversion object, storing
the Green’s functions will not be feasible and another smart solution
needs to be thought of. Again, we are not so much concerned about
efficiency yet, but about making FWI possible on a much finer dis-
cretization as currently possible. It has to be realized that although
the subsurface model is updated for each iteration, the background
model is kept the same. Updating the background is optional but re-
quires calculation of the Green’s functions in the new background
medium. The contrast function with respect to the homogeneous
background model with c0 = 2000 m s−1 is displayed in Fig. 4. The
total width of the modelling and the inversion domain was 150 m
wider on each side but in the following we only display the part
where coverage was well enough to get a reliable inversion result.
For modelling we use a constant density of ρ = 2000 kg m−3 and
for inversion this density is assumed to be known. As mentioned
earlier, extension to elastic FWI in 2-D and finally 3-D will be the
subject of future research.

By solving the full acoustic wave equation for the shown part
of the Marmousi2 model, we generate an acoustic data set with 51
sources and 51 receivers located along the surface, while source
and receiver separation is 30 m each. A selection of shot records
is displayed in Fig. 5. Since we remove the water layer from the
Marmousi2 model, surface multiples will have a minimal influence.
Demonstration of the method on different subsurface models, in-
cluding ones generating strong free-surface multiples, will be part
of a follow-up publication. Still, all types of multiples, surface as
well as internal, are properly modelled and present in the surface
data. The wavelet that was used to compute synthetic data is dis-

Figure 5. Some shot records from the synthetic data that was generated
with sources and receivers located along the surface of the model shown in
Fig. 4. The complete data set consists of 51 sources and 51 receivers with
30 m sampling each.

Figure 6. The wavelet used to generate synthetic data is displayed in the
time- (a) and frequency-domain (b). Our inversion scheme utilizes the full
bandwidth of the seismic data to obtain high resolution property images of
the subsurface.

played in Fig. 6. The maximum frequency in the data is as high as
55 Hz and the full bandwidth will be used for inversion.

6.1 Localized linear inversions

The very first step in our inversion approach is to perform local
broad-band inversions by assuming the total field to be equivalent
to the background field in the background medium. Hence, we ini-
tialize the scheme with localized linear inversions, where the local
domains overlap by a factor of two in depth and in the lateral direc-
tion. Finally, the results can be combined by weighted averaging to a
global model. In this example we split up the entire subsurface into
21 local domains. The fact that the local inversions are independent
of each other allows us to obtain many local results in a rather short
time, by parallelization. The total number of local domains consists
of seven lateral domains and three different depth levels starting
at 0, 150 and 300 m, respectively. The overlap ensures that, espe-
cially during the first iterations, where the linear approximation is
used and inter domain effects are neglected, still a reliable property
model can be obtained. For inversion the full seismic bandwidth is
used and the inversion domains are sampled on a 5 m grid in both
dimensions.

Localization of the inversion involves back-propagation of the
entire data set to the respective depth level, choosing a subset of
the data to achieve a lateral localization and time-windowing to
get a limitation of the inversion domain with regard to depth. It
should be realized that the first layer starting at z = 0 m can be
inverted locally without back-propagation, but by simply choosing
a laterally limited subset of the entire surface data and subsequent
time-windowing. In Fig. 7, we show two single shots belonging to
a local domain starting from the surface and the third depth level.
Although only a single shot for two independent local inversion
domains is shown, every local inversion uses 11 shots measured by
21 receivers. In Fig. 8, local inversion results for two independent
domains are shown as well as the global model that was obtained
by combining all 21 local domains by weighted averaging.

It becomes obvious that the obtained contrast function is quite
different from the true model that was shown in Fig. 4. Although the
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Figure 7. Shots corresponding to local inversion domains starting at z =
0 m (a) and z = 300 m (b) depth. Note that for local domains which don’t
start at the surface the data has to be back-propagated. For inversion, only
the data within the red time window is used. This primary time window is
dependent on the extension of the local domain.

Figure 8. Local inversion results for two separate local domains (a) as well
as the global result obtained by combining 27 local domains (b). Since
the first inversion assumes the total field in the subsurface to be the back-
ground field in the background medium and because interaction between
local domains was neglected an unsatisfactory result is obtained.

structure of the subsurface was recovered reasonably well, the actual
properties of the subsurface could not be estimated accurately. There
are two main reasons for this observation. First, the initial inversion
of the iterative scheme, as it was sketched in Fig. 1, assumes that
ptot = p0 in eq. (6). This is clearly an approximation of reality
and this obviously shows up in the inversion result. Since the data
was modelled by solving the full wave equation it contains the

non-linear relationship between the subsurface properties and the
measured fields and an inversion that assumes a linear relationship
does not lead to a satisfactory result. Second, the first iteration does
not take any interaction between the local domains into account. By
inter domain interaction we refer to the propagation of the fields
through the overburden and to multiple scattering between different
local domains. In real life field propagation always takes place in the
global medium and we have to account for that fact if an accurate
inversion result is to be obtained. We can do this by performing a
global field update based on eq. (3).

6.2 Global non-linear field update

Previously we have seen that a linear inversion, which is based on
the Born approximation, was able to recover structural informa-
tion of the subsurface while quantitative information, the actual
property values, were inaccurate. In this section we show that this
objective can be achieved by FWI. Non-linear inversion honours
the non-linear relationship between the subsurface properties and
the measured seismic data. Non-linearity in seismic data can show
up as different wave phenomena, where the most well known one is
multiple scattering. Additionally, transmission effects and true trav-
eltimes as opposed to background traveltimes can be interpreted as
non-linear effects. Because in the first iteration the subsurface was
unknown there was no other choice than using the background field
as the best approximation of the exact total field. However, since
with this approximation we obtained a first estimate of the subsur-
face properties we can subsequently update the total field, based
on the latest obtained subsurface model. This can in principle be
performed by substituting the obtained contrast function χ into eq.
(3) and solving with any suitable numerical method for ptot. Since
this would be a computationally rather expensive task, we build up
the total field as a sum of basis function and after every iteration
only a single basis function, containing only one order of scattering
each, is added. It is most important to realize that the field update is
always a global process, which uses the global model coming from
the combination of the latest local inversion results. Only in this way
the field propagation as it occurs in the real medium, can accurately
be estimated. The initial and updated total field after 35 iterations
and for a single depth level are displayed in Fig. 9. The field update
is always performed for the original source geometry, which is in
most cases along the surface and for subsequent localized inversion
the updated fields have to be back-propagated into the subsurface
again. The total field as it is shown in Fig. 9 was obtained after 35
iterations. This means that it is a sum of 35 basis functions of which
each contains information of the property model that was obtained
during the respective iteration. In Fig. 10 we plot the final property
model that was obtained by combining 27 local inversions but now
based on the total field after the last iteration.

It is interesting to realize that the local results still come from
a linear inversion of eq. (6). The improvement with respect to the
linear inversion result that was shown in Fig. 8 comes solely from
the fact that the total field honours the non-linear relationship with
the subsurface properties. The same reasoning also explains that
although the homogeneous background is not changed during the
procedure, still a very good result can be obtained. Using the full
non-linearity in the seismic data allows us to reconstruct spatial
wave numbers that are outside the equivalent temporal frequencies
in the seismic data, consequently closing the spectral gap (Haffinger
et al. 2011).
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Figure 9. The background field at z = 400 m (a) is very simple since it
propagated in the homogeneous background medium only. After 35 itera-
tions of alternating local inversions followed by a global field update (b),
the total field becomes much more complex since it describes the true field
propagation in the best-known medium. Updating the total field estimates
multiple scattering as well as the correct traveltimes and amplitudes in the
inverted subsurface model. This becomes clear by plotting the difference
in (c).

Figure 10. Final contrast function coming from our non-linear inversion
scheme. Note how well the structure is reconstructed but also how the
quantitative information of the subsurface is nicely estimated. The fault in the
model is clearly visible, which demonstrates that the resolution of non-linear
inversion is far beyond what can be obtained by linear imaging/inversion
techniques.

6.3 Overburden and inter domain multiples

Finally we illustrate how overburden multiples and inter-domain
scattering were estimated and subtracted from the surface data be-
fore localization. The data we show in Fig. 11 belongs to a local
domain that starts at z = 300 m depth and with the centre being
located at x = 150 m. For the first iteration the entire measured
surface data was back-propagated to localize the inversion, because
initially the contrast function is unknown and we are not able to
subtract contributions from the complement of the local domain.
After the first iteration we can use the obtained contrast function
and the initial total field ptot = p0 to estimate the part of the data
that does not belong to the local domain, but comes from the over-
burden or the surrounding of the local domain. This can be done

Figure 11. Surface data for a single shot at the surface, located just above
a local domain starting at z = 300 m and with the centre being located at
x = 150 m (a). The complementary data (b) obtained by integrating over
gridpoints after the first iteration, but over the domain D∩ only. Difference
between (a) and (b) which is the current best estimate of the data associated
with the local domain D∪, is shown in (c). Only the difference will be
used for the next local inversion of this specific domain. Note that for other
domains the complementary data will differ but the concept will be equally
valid.

by modelling surface data while integrating over gridpoints in the
domain D∩ (the complement of the local domain) only. Note that
this is equivalent to the second term on the RHS of eq. (17). The
corresponding data is shown in Fig. 11. It is clear that the first es-
timate of the complementary data explains the surface data partly,
but that quite some residual energy remains. Therefore, we run the
inversion for 35 iterations, in which we update the contrast function
and the total fields in the subsurface alternatingly. In Fig. 12, we
show the same panels as in Fig. 11 but after 35 iterations. It is ob-
vious that after 35 iterations, the complementary data matches the
surface data much better. Wave fields reflected in the overburden
are nearly perfectly estimated and subtracted. Please note the event
going obliquely through the data, being generated by the fault. After
35 iterations it is nicely predicted and subtracted because it is not
generated within the local domain we want to invert.

It is worthwhile mentioning that by performing a global field up-
date and subsequently subtracting the complementary data, an exact
inversion scheme is obtained, in which the localization takes only
the role of pre-conditioning. It also becomes clear that if the com-
plementary data can be estimated very accurately, time windowing
the back-propagated data is not necessary any more and even the

Figure 12. Same data as shown in Fig. 11 but now after 35 iterations. Note
how well the complementary data (b) matches the measured data (a) in the
parts that do not belong to the local domain. The difference (c) that is used
for subsequent inversions of the particular local domain only contains events
that are related to the local domain. Note how the linear event, associated
with the fault in the subsurface, was nicely predicted and removed after 35
iterations. This is a desired result since the fault lies outside the local domain
under consideration and reflections from this part of the subsurface should
not be taken into account by local inversion.
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coda that arrives outside the primary time window can be used for
inversion. This is possible because the interference of the coda from
a local domain with reflections from the subsurface below the local
domain will be subtracted as well.

7 C O M P U TAT I O NA L C O M P L E X I T Y

Before getting to the conclusions, we compare the computa-
tional complexity of direct inversion of surface data to the
proposed localized scheme. Using the variables given in Ta-
ble 2 the number of computations for direct inversion of sur-
face data becomes Computationssurface ≈ O(NsNrNfgNχgNCG) +
O(NsNfmNlog N NFU(NFU + 1)/2). The first term on the RHS ac-
counts for the inversion of the data equation with the help of a
CG-scheme and the second term is related to the field updates.
The complexity of the localized scheme described in this pa-
per then becomes Computationslocal ≈ O(NbsNbrNflNχ lNCGNl) +
O(NsNfmNlog N NFU(NFU + 1)/2). In both cases, the second term is
the same because the field update is always applied to the global
domain and no localization is involved. Computationally efficiency
of the second term could be improved by conventional domain de-
composition methods, which usually aim at speeding-up the forward
problem. Nonetheless, this is not within the scope of this paper.

Instead, the proposed localization acts on the inverse problem,
described by the first term on the RHS. While the first four fac-
tors are significantly decreased by our scheme, a new factor based
on the number of local domains gets introduced. If the number of
calculations is decreased by the described scheme depends on the
number of local domains and hence the chosen overlap. Again, lo-
calized inversion does not aim at making FWI more efficient but at
making it feasible on a much finer grid while taking the full seismic
bandwidth into account. That requires a closer investigation of the
memory requirements. Memory is mainly needed for the inversion
because computation of the field updates can be heavily parallelized.
For direct inversion of surface data, simultaneous memory required
is in the order of Memorysurface ≈ O(NsNrNfgNχg) while for lo-
calized inversion it can be significantly reduced to Memorylocal ≈
O(NbsNbrNflNχ l). The strength of localized inversion comes from
the fact that all numbers in Memorylocal are smaller than their equiv-
alents in Memorysurface and that the factor Nl drops out because
all local domains are independent and can therefore be inverted
sequentially or in parallel.

8 C O N C LU S I O N S

In this paper a novel FWI approach was proposed and successfully
illustrated on synthetic data modelled above a small subset of the
Marmousi2 model. It was shown that by localizing the inversion

Table 2. Variables used for complexity analysis.

Ns = number of sources along surface,
Nr = number of receivers along surface,
Nbs = number of back-propagated sources above local domain,
Nbr = number of back-propagated receivers above local domain,
Nfm = number of frequencies of measured surface data,
Nfg = number of frequencies used for global inversion,
Nfl = number of frequencies used for local inversion,
Nχg = number of unknowns in global domain,
Nχ l = number of unknowns in local domain,
Nl = number of local domains,

NCG = number of CG-iterations,
NFU = number of total field updates.

process, global property models of the subsurface can be obtained
with a resolution far beyond current standards. The non-linear re-
lationship between the subsurface properties and the wave fields
was successfully accounted for by a total field update. The scheme
was able to estimate internal multiples, transmission and the true
traveltimes in the obtained model in an iterative manner. By using
the updated fields a non-linear inversion result was obtained with
structural and quantitative property information much more accu-
rate than it could be recovered by a linear scheme, for example,
linear inversion or migration.
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