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Abstract: It is shown that the ultimate resolution is not limited by the bandwidth of the microscope but by the
bandwidth ~i.e., the scattering power! of the object. In the case of a crystal oriented along a zone axis, the
scattering is enhanced by the channeling of the electrons. However, if the object is aperiodic along the beam
direction, the bandwidth is much more reduced. A particular challenge are the amorphous objects. For
amorphous materials, the natural bandwidth is that of the single atom and of the order of 1 Å21, which can be
reached with the present generation of medium voltage microscopes without aberration correctors. A clear
distinction is made between resolving a structure and refining, that is, between resolution and precision. In the
case of an amorphous structure, the natural bandwidth also puts a limit on the number of atom coordinates
that can be refined quantitatively. As a consequence, amorphous structures cannot be determined from one
projection, but only by using atomic resolution tomography. Finally a theory of experiment design is presented
that can be used to predict the optimal experimental setting or the best instrumental improvement. Using this
approach it is suggested that the study of amorphous objects should be done at low accelerating voltage with
correction of both spherical and chromatic aberration.
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INTRODUCTION

Recently there have been exciting new developments in the
correction of electron microscopic aberrations that will give
a boost to the high-resolution electron microscopy ~HREM!
field but that may also generate unrealistic expectations.
One could, for instance, believe that if the microscope
becomes perfect one can resolve amorphous structures.
This is a wrong conception. Indeed, in the image formation
process in the electron microscope, several band-limiting
factors cause a loss in resolution, some of which can be
eliminated by instrumental improvements, such as the co-
herent and incoherent aberrations of the microscope, the
modulation transfer junction ~MTF! of the camera, and so
forth. The ultimate limit on the resolution, however, cannot
be eliminated by physical means. Because the electron inter-
acts with the electrostatic potential of the atom, the “width”
of the atom potential itself, even blurred by thermal vibra-
tions, poses the ultimate limit on the resolution. For in-
stance, the “width” of a Si atom is of the order of 1 Å. In the
case of a crystal viewed along a zone axis, the situation is
different. In that case, the atoms along the column act
as lenses so as to focus the electron beam at regular depths.

Hence, at an appropriate thickness, the exit wave is more
sharply peaked than the atom potential itself and the reso-
lution is increased. In that situation the ultimate resolution
is given by the width of the 1s state of the column.

In the case of an amorphous object, however, the atom
cores do not superimpose along the beam direction and the
bandwidth is determined by the scattering factor of the
single atom. It is known, for instance, that it is impossible to
determine the resolution of a modern EM using amorphous
Si because the amount of scattered information beyond 1 Å
is insufficient.

The study of amorphous objects can thus be consid-
ered as the ultimate challenge for HREM. In this work, we
focus on the problem of the quantitative determination of
an amorphous structure and the physical limits.

First, we have to make a distinction between resolving a
structure and quantitative refining, or between resolution
and precision.

CLASSICAL RESOLUTION

The classical definition of resolution, which goes back to
Lord Rayleigh, is related to the point-spread function of the
imaging instrument irrespective of the noise due to the
counting statistics. We will introduce counting statistics
later on. For simplicity, we will assume this point-spread
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function to be a two-dimensional Gaussian function of the
following form:

p~r! 5
1

2pr2 expS2
r 2

2r2D, ~1!

where r is the absolute value of the two-dimensional vector
r and r is the “width” of the Gaussian function. According
to Rayleigh, the point resolution rp, that is, the smallest
distance at which two points can be resolved, is given by the
requirement that the value of the cross section of the
composite intensity distribution halfway between these two
points is about 0.8 times the value at the maxima. Thus,

2 expS2rp
2

8r2 D 5 0.8, ~2!

from which it follows that

rp ' 2!2r. ~3!

It corresponds in a sense to the “width” of the point-spread
function of the imaging instrument. In electron micros-
copy, this includes the point spread due to the lens aberra-
tions, the incoherent effects, the vibrations and stray fields,
and the detector. Moreover, it has to be taken into account
that the atoms, including their thermal vibrations, are no
point scatterers and, hence, have their own bandwidth. Each
effect contributing to the imaging process can be repre-
sented by a transfer function, which acts as a low-pass filter.
The transfer function of the electron microscope consists of
a damping function, which is mainly due to chromatic
aberration, and a phase shift, which causes the oscillations.
Because there are different ways to get rid of the oscilla-
tions, such as focal series reconstruction and correction
of the spherical aberration, the Rayleigh resolution of
the electron microscope can be assumed to be given by the
so-called information limit, which is proportional to the
inverse of the highest spatial frequency that is still trans-
ferred with appreciable intensity. For simplicity, it will be
assumed that the imaging process is linear. This requires
that the interaction between the electron and the object is
linear. If the object is a crystal, viewed along a zone axis, the
electrostatic potential of all the atoms along the atom col-
umn superimpose, which makes the interaction very strong
and highly nonlinear, so that this approximation does not
apply. In that particular case, due to the focusing effect of
the successive atoms, the scattering is increased to much
higher angles. This effect is explained by the channeling
theory ~Van Dyck & Op De Beeck, 1996!. However, for
amorphous objects, the atoms are stacked in a disordered
fashion, so that, in projection, their cores do not overlap,
except by coincidence. As a result, the interaction remains
linear for much larger object thicknesses. If the imaging is

linear, all transfer functions have to be multiplied, or, equiv-
alently, the point-spread functions have to be convolved. If
it is assumed that all constituent point spread functions are
Gaussian, the resulting function is a Gaussian as well, with a
Rayleigh resolution rp determined by

rp
2 5 rA

2 1 rT
2 1 rEM

2 1 rv
2 1 rD

2 , ~4!

with rA the “width” of the electrostatic potential of the
atom, representing the scattering of the atom, rT the Ray-
leigh resolution limited by thermal vibrations of the atom,
rEM the Rayleigh resolution of the electron microscope, rv
the Rayleigh resolution limited by the environment ~vibra-
tions and stray fields!, and rD the Rayleigh resolution lim-
ited by the detector. Today, for the best electron microscopes,
rEM is somewhat below 1 Å. By future instrumental devel-
opments one can improve this resolution by improving the
resolutions of all different subchannels. However, a factor
that one cannot improve is the resolution limit of the atom
itself, rA. At this point it is already difficult to find suitable
objects that can be used to demonstrate the true resolution
rEM of an electron microscope. For amorphous silicon, rA is
about 1 Å. Therefore, if amorphous silicon is observed
with an ideal electron microscope, the total resolution is
rp ' 1 Å.

For quantitative structure determination, this classical
concept is not appropriate and we will have to follow a
model-based approach.

RESOLUTION FOR COUNTING STATISTICS

Another resolution criterion was proposed by Rose ~1948!.
It is based on the following arguments. Suppose the image
detector system is able to detect the individual particles
~electrons! from the image. Let us call D the dose, that is,
the number of electrons per unit area. Consider now a
square of size r 3 r. The total number of particles in the
square is then

N 5 Dr2.

From Poisson statistics, the standard deviation ~error bar! is
!N and the signal-to-noise ~SNR! ratio is then

SNR 5
N

!N
5!N 5 r!D.

The result can be interpreted as follows. r is the smallest
meaningful unit of resolution given an imaging dose D and
a desired SNR.
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DETER MINISTIC MODEL-BASED
RESOLUTION

The concepts of classical resolution and resolution from
counting statistics are both special cases of a more general
concept.

The classical definition of point resolution according to
Rayleigh expresses the fact that if one has no prior knowl-
edge about the object and if the image is interpreted visually
~qualitatively!, the smallest observable detail is determined
by the size of the “blurring” of the instrument. However, the
situation changes completely if one has a model for the
object and if the image contrast can be measured quantita-
tively ~den Dekker & van den Bos, 1997!, because the atoms
constitute the “alphabet” of matter. We dispose of a unique
opportunity for a model-based approach to interpret the
images, provided the microscope would have sufficient reso-
lution to visualize the individual atoms.

Because all the imaging steps in the electron micro-
scope are known, one can compute the image of an atom.
Thus, there is no interest in the detailed form of this image,
but only in the position of the atom. The only objective of
the experiment is to determine this position. Obviously, in
the absence of noise, numerically fitting the known one-
peak model to the image with respect to the position
parameter would result in a perfect fit. The resulting
solution for this location would be exact, and despite
blurring, no limit to location resolution would exist.

This line of reasoning can be extended to position mea-
surements of atoms in amorphous structures from noise-free
electron microscopic observations. In a sense, one is looking
for the optimum value of a criterion in a parameter space
whose dimension is equal to the number of parameters to be
measured, which is equal to 2n, if n is the total number of
atoms. The factor 2 accounts for the x- and y-coordinates of
the projected position. Each possible combination of the 2n
parameters can be represented by a point in a 2n-dimensional
space. The search for the global optimum of the criterion of
goodness of fit in this space is an iterative numerical optimi-
zation procedure. However, the problem with which one can
be faced is of computational kind. The existing optimization
methods fail if the dimension of the parameter space is so
high that one cannot avoid ending up at a local optimum
instead of at the global optimum of the criterion of good-
ness of fit, so that the wrong structure is suggested. To solve
this dimensionality problem, that is, to find a pathway to the
global optimum, a good starting structure is required, that
is, initial conditions should be available for the parameters.
In other words, the structure has to be resolved.

This procedure is comparable to X-ray crystallography
where first one tries to “resolve” the atomic structure of a
crystal using so-called “direct methods” and afterward one
tries to “refine” the structure iteratively.

If the atoms are resolvable from the image, or, in other
words, if the individual atoms can be visualized, one can use

the positions of the observed maxima in the image as
starting positions for the atoms.

A big problem arises if the interatomic distances are
smaller than the resolution. Then, the images of most
neighboring atoms overlap so that the individual atoms are
not resolved. In that case, one cannot find a reasonable trial
structure to start the refinement. Due to the strong overlap
of the neighboring atoms, the influence of all the coordi-
nates is, in a sense, coupled in the image. One cannot alter
one coordinate without affecting the others. Finding the
optimal fit then becomes an optimization problem with
many strongly correlated parameters. This introduces severe
problems of the computational kind. Computational prob-
lems can only be overcome if the individual atoms in
projection are resolved, which puts a severe restriction on
the maximal thickness of amorphous objects.

For the amorphous object, the number of parameters
increases with thickness. Therefore, from a certain thickness
on, it will be difficult to resolve the structure. To resolve the
structure, it will be assumed that the distances between
neighboring projected atom positions should be larger than
or equal to the Sparrow resolution rs.

Compared to Rayleigh resolution, which is based on
presumed capabilities of the human visual system, the Spar-
row resolution is based on a less subjective criterion, which
is valid for a hypothetical perfect imaging instrument. It
states that the smallest resolvable distance between two
points is that for which the minimum in the composite
image intensity distribution just disappears ~den Dekker &
van den Bos, 1997!. The Sparrow resolution is given in
terms of the Raleigh resolution by

rs '
!2rp

2
. ~5!

The reason for choosing this criterion is that the computer
will then be able to distinguish the individual atoms, be-
cause the observations are assumed to be noise free. How-
ever, it should be noticed that this criterion is not exact,
and, therefore, it will only give rough guidelines. Suppose
that the mean concentration of atoms per cubic angstrom is
equal to V. Then, the mean concentration A of projected
atoms per square angstrom is given by

A 5 Vz, ~6!

where z is the thickness of the amorphous foil. On the other
hand, if it is assumed that each projected atom occupies a
circle with a diameter equal to the average distance d,
averaged over distances between nearest neighbor projected
atoms, then,

A '
1

pS d

2
D2

. ~7!
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From this it follows that the thickness of the amorphous foil
is approximately given by

z '
4

pd 2V
. ~8!

To resolve the structure and therefore to avoid dimensional-
ity problems, it will be assumed that the following condi-
tion is met:

d $ 2rs . ~9!

Then, it follows from equations ~7! and ~8!, that

z #
1

prs
2 V

. ~10!

For amorphous silicon, it follows from equation ~5!
that rs is approximately equal to 0.7 Å. Furthermore, for
amorphous silicon, V is approximately equal to 0.05 atoms
per cubic angstrom. Hence, it follows from equation ~10!
that the amorphous silicon foil should not exceed thick-
nesses of the order of 13 Å so as to avoid dimensionality
problems. This thickness is rather small, which means that
it is unrealistic to expect that atomic resolution TEM is able
to resolve amorphous silicon samples with realistic foil
thicknesses from only one projection.

TOMOGRAPHY

To resolve and refine amorphous objects one has to use
electron tomography. In this technique, the object is tilted
in incremental angles and for each orientation a projection
is taken.

The Fourier transform of a projection yields a section
through the origin of the three-dimensional Fourier space.
By combining many different projections, one can then
reconstruct the whole Fourier space. The number of images
~data planes! is much larger, whereas the number of atom
coordinates increases only from 2 to 3. In that case, it can be
shown that a microscope resolution of 0.2 nm is sufficient
to resolve and refine amorphous structures.

PRECISION

Thus far it has been assumed that the observations are noise
free. However, in any real-life experiment, the observations
are prone to noise.

Suppose that one has a CCD camera that is able to
count the individual photons forming the image of a single
atom. The noise on these images stems from the counting
statistics. The position parameters can be estimated by

numerically fitting the known parameterized mathematical
model to the images with respect to the component positions.

In practice, one starts from a trial structure for the
atom positions and one simulates the image. From the
mismatch between experimental and simulated images, one
can correct for the atom positions. This is an iterative
procedure. At each iteration, the fit improves until finally
convergence is reached. If the atoms are resolvable from the
beginning, the iteration only alters the atom positions slightly
so that convergence to the optimal solution is guaranteed.
The precision, that is, the standard deviation, on the atom
positions that can thus be reached can be adequately quan-
tified in the form of a lower bound sLB on the standard
deviation ~van den Bos & den Dekker, 2001!.

Applying statistical parameter estimation theory, the
attainable precision can be adequately quantified in the
form of the so-called Cramér–Rao lower bound ~CRLB; den
Dekker & van den Bos, 1997!. This is a lower bound on the
variance of any unbiased estimator of a parameter. It means
that the variance of different estimators, such as the least
squares or the maximum likelihood estimator, can never be
lower than the theoretical CRLB on the variance.

First, the position measurement of one isolated point
object will be investigated. Let us demonstrate this for the
simple case where the point-spread function is assumed to
be Gaussian and if the total number of imaging particles is
N, the lower bound on the standard deviation sLB of the
coordinates estimates of the position, that is, the square
root of the CRLB, is given by

sLB '
r

!N
, ~11!

or, from equation ~3!

sLB '
rp

2!2N
. ~12!

Thus, the precision with which the position can be
determined is a function of both the Rayleigh resolution rp

and the number of imaging photons N. If N is large, the
precision can be orders of magnitude higher than the point
resolution rp.

It is an interesting exercise to see what effect aberration
correctors and monochromators might have on the preci-
sion. In Figure 1, the lower bound s on the standard
deviation of the position of a single projected atom is
evaluated as a function of Cs for a 300-keV electron micro-
scope. This is done for three possible cases: The first case is
a microscope without monochromator and without Cc cor-
rector ~energy spread, expressed as full width at half maxi-
mum height, of 1.7 eV and Cc of 1.3 mm!, the second case
is a microscope with monochromator ~energy spread of
0.2 eV and Cc of 1.3 mm!, and the third case is a microscope
with Cc corrector ~energy spread of 1.7 eV and Cc of 0 mm!.
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At each setting, the recording time is kept constant, assum-
ing that specimen drift puts a practical limit to the experi-
ment. As a consequence, the electron dose is higher without
monochromator than with monochromator. Therefore, the
precision is higher in the absence of a monochromator.

ACCELERATING VOLTAGE

Another important problem is that at the high accelerating
voltages used for HREM ~200–300 keV!, the amorphous
structure is continuously damaged by the electron beam. It
is believed that much lower voltages are needed for reliable
quantitative studies. However, lowering the voltage also
deteriorates the instrumental resolution. To keep the resolu-
tion at that voltage close to the intrinsic object resolution of
0.1 nm, one will need to correct both spherical and chro-
matic aberration by using a Cs corrector and either a mono-
chromator or a Cc corrector. As shown in Figure 2, these
corrections improve the precision as well. The lower bound
s on the standard deviation of the position of a single
projected atom is evaluated as a function of Cs for a 50-keV
electron microscope. As in Figure 1, this has been done for
the three cases discussed before. At each setting, the record-
ing time is kept constant. From Figure 2, it is clear that the
precision is highest, that is, the standard deviation is lowest,
when using both a Cs corrector and a Cc corrector. The Cc

corrector obtains better results than the monochromator
because of the higher electron dose. Moreover, this figure
shows that, in the absence of a monochromator or a Cc

corrector, the precision decreases if Cs is corrected. More
results of this research are published in Van Dyck et al.
~2003!.

CONCLUSIONS

• A fundamental limit of resolution is given by the intrinsic
“width” of the atoms. For amorphous objects, this limit is
reached at 300 keV, without Cs corrector.

• Quantitative structure determination of realistic amor-
phous objects is impossible from one orientation, but
requires electron tomography.

• The study of amorphous objects should be done at low
accelerating voltage and requires correction of both spher-
ical and chromatic aberration. A Cc corrector is preferred
rather than a monochromator for the correction of chro-
matic aberration.

• The precision with which atom positions can be deter-
mined is a function of both resolution and dose.
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Figure 1. Lower bound s on standard deviation of a single Si atom
position as a function of Cs for a microscope with an accelerating
voltage of 300 keV. Three possible cases are distinguished: without
monochromator and without Cc corrector, with monochromator,
and with Cc corrector. At each setting, the recording time is kept
constant.

Figure 2. Lower bound s on standard deviation of a single Si atom
position as a function of Cs for a microscope with an accelerating
voltage of 50 keV. Three possible cases are distinguished: without
monochromator and without Cc corrector, with monochromator,
and with Cc corrector. At each setting, the recording time is kept
constant.
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