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PREFACE 

The sequence of yearly Benelux Symposia on Information Theory, 

of which the seventh one is held this year, has started in 1980. It 

is the purpose of the symposia to offer an opportunity to research~ 

ers in the field of information theory within the Benelux to present 

recent results of their work. The steadily increasing number of pre~ 

sentations and attendees clearly demonstrates the strong interest 

within the Benelux in information theory and its applications. In 

this respect I mention an increasing number of presentations and 

attendees from industrial research centers, emphasizing the growing 

mutual research interests of universities, institutes and industries 

in the Benelux. 

Much research in our field is presently related to image proces

sing. It is therefore a privilege to us that Prof. J .W. Woods accep

ted an invitation to be the 1986 guest lecturer at the symposium. 

Prof. Woods is a well-known expert in the field of two-dimensional 

signal processing, in particular image restoration and image coding . 

The organizing committee of this symposium was forrned by 

Profs . E.W. Gröneyeld, E.C. van der Meulen, J.P.M. Schalkwijk and 

D.E. BQekee. 

Finally, 1 would like to express rny thanks and appreciation to 

Mrs. Y. Smits, who skillfully assisted in the organization of the 

symposium and to Mrs. M. van Velzen and Mrs. A. Bosch for the:Lr 

typing and secretarial support. 

Dick E. Boekee 

May, 1986. 
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PREDICTlVE VECTOR QUANTIZATION OF IMAGES* 

John W. Woods and Hsueh-Hing Hang 

This pape!' p:r>esents tuJo teahniques fox> the unifiaat;ion of 
px>ediative tI'ee enaoding and veatox> quant;ization. We x>efex> 
to such appI'oaohes as px>ediative veatox> quanmzation (PVQ). 
The unifiaamon is aahieved by imposing a tI'ee stI'uatuI'e on 
the VQ table with the bx>anah symbols px>ogI'essively speaify
ing the quanmzex> outputs. A modifiaation of the LEG dEsign 
algoI'ithm aan then be made~ inaorpommng an (M~L) tI'ee 
searoh~ to opt;imize the PVQ enaoding. Expex>imental x>esults 
show a 77rlx>ked impx>overrr:mt ovex> tx>ee enaoding alone. 

INTRODUCTION 

By px>ediative veatox> quantizamon (PVQ) we mean a predictive tree 

encoding in which the ordinary scalar quantizer is replaced by a vec

tor quantizer (VQ). Because typical images have high correlation over 

neighboring pixels, they can be compressed by employing a predictive 

model such as DPCM and tree codes [1], [2). However, since a rea I 

image is locally nonstationary, a scalar quantizer together with a 

fixed structure coding filter can only condense pictures to a certain 

extent. Vector quantizers help improve the coding perfonnance because 

they quantize a whole block of data and, thus, can match local image 

statistics better • The purpose of this paper is to review new image 

coding schemes based on the PVQ concept [3). 

Rate distortion theory indicates that a well-defined signal source 

can be compressed closely to the rate distortion bound, provided that 

the coding block length is large enough [4). From this viewpoint, 

conventional DPCM has the drawback that its predictor only uses the 

past information to remove redundancy and its quantizer only operates 

* This is a shortened vers ion of a paperbased on the doctoral 
thesis of H.-H. Hang and published in the IEEE Tr>ansaamons on 
Communiaat;ions in November 1985, 

J.W. woods is with ECSE Department, ·R.P.I., Troy, NY 12181, on 
sabbatical leave at Delft University of Technology. 
H.-M. Hang is with AT and T Bell Laboratories, Holmdel, NJ 07733. 



12 

on a single pixel. A predictive tree code is thus introduced by ad

ding a delayeddecision feature which makes use of the nearby future 

data [5]. [6]. The tree code is then further improved by replacing 

the scalar quantizer with a vector quantizer, resulting in a predic

tive vector quantizer. 

Image encoding using PVQ [7] is not a straightforward extension of 

the ordinary vector quantization. A special implementation of 1-D 

PVQ has appeared for speech coding in Stewart et al. [8]. But the 

full potentialof the general PVQ approach, especially its applica

tion to images, had not been explored. In order to construct a code 

tree on a compact 2-D region, we devised a 2-D decision order which 

provides an appropriate encoding sequence for 2-D tree codes. The de

tails of this ordering can be found in 19J, [10J. 

pREDICTIVE VECTOR QUANTIZATION 

The basic idea of predictive vector quantization (PVQl is to use 

a predictive filter to remoye the predictable redundancy in the data 

and then use a VQ to encode the prediction error. We willreview two 

implementations .of PVQ namely, sliding bloek PVQ andbloek treePVQ. 

Sliding Bloek ,PVQ 

Fig. 1 represents an ordinary sliding block decoder in which the 

ui's are the inputs to the shift register, the qi's are the outputs 

of the decode.r, arid F is a time-invariant mapping which specifies 

the output value q .• Suppose the shift register is binary with length 
1 . 

J; then the total number of possible states of this machine is 2J , 

i.e. the mapping F has 2J entries. This mapping F can thus be viewed 

as a lookup tabIe, with the shift register acting as an address se

lector which picks entries in the table to form the outputs. In this 

way, the current output qi is determined by the vector Ui =(ui ,ui _1 , • 

••• ,u. 1) which is the state of the shift register, where u. is 1-J+ 1 
the current input and u

i
_1 ,ui _2 ' ••• ,U

i
-

J
+1 are' the J-l previous in-

puts. Hence, the information contained in the previous data can be 

utilized to select the best current output value qi. 



13 

We can view Ui as an index te the vector quantizer. At the time 

J, this index corresponds to the representation vector QJ=(qJ,qJ-l" 

.• ,ql)' For i > J, we simply slide the block to the right; hence the 

name "sliding blaak" for this type of VQ. To quantize a sampled wave

form, the source sigr~l is compared against all the quantization le

vels specified by the shift register of which the latest input has 

two possible values; the one with least distertion is then selected. 

The ordinary scalar quantizer can be viewed as the special case of 

this machine which only contains one element in the shift register. 

Therefore, if we choose the mapping F properly, the performance of 

VQ will always be better than that of a scalar quantizer. 

We can also adopt a sliding block structure to implement PVQ, 

which we call s l iding bloak PVQ (SBPVQ). The block diagram of a 2-D 

SBPVQ decoder is shown in Fig. 2. The encoding filter in this deco

der is a recursive difference equation, 

s(m,n) s(m-i,n-j) + q(m,n) 

- c * sold + q(m,n), 

i.e. the reproduced signals {;(.,.)} are filter outputs driven by the 

selected PVQ levels. One of the problems in applying this scheme to 

a 2-D image is the selection of a register support for the mapping F. 

Since an image pixel is highly correlated with its neighbors, natural

ly we would choose a compact region around the current point to be 

our register support. For example, the causal region of Fig. 3 could 

be the support of th.e register in Fig. 2. As we slide the region of 

Fig. 3 horizonta,lly across the image, the current quantization level 

(input to the filter) is determined by the contents of the register, 

i.e. the previous and current path map symbols. The encoding filter 

then uses this quantization level to generate a reproducing pixel, 

S(ru,n). Essentially, an SBPVQ requires about the same amount of com

putation as a tree code but needs an extra register and a VQ table. 
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Fig. I. A sliding block channel decoder. 
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Fig. 2. A 2-0 SBPVQ decoder. 

In order to describe our design algorithm, we need to define two 

more terms. In the encoding process, releasing a data pixel is equi

valent to selecting an entry in the VQ table for that pixel. The in

dex of the selected entry will be called the partition index assoeia

ted with this pixel. Also the unquantized prediction error (i.e., 

e(m,n) = s(m,n) - c * SOld) will be called the predietion error asso

eiated with the released pixel. The SBPVQ design algorithm can then 

be described. 

SBPVQ Design Algorithm: 

Step 1. Initialization: Start with some initial value for f. For 

example, use the scalar quantization levels derived from a predic

tive tree code (so-called product VQ codes in [11]). 

step 2 _ Coding: Apply the above encoding procedure to the training 

data, i.e., introduce a minimum distortion partition {p1 , .•• ,PN} on 

the test image. Store the prediction error e(m,n) and the partition 

index of each pixel. The partition index associated with a data point 

is, equivalently, the contents of the register used to encode that 

pixel. 

Step 3. Updating F: Since the squared-error is used, the new quanti

zation level of index j is the average of all the prediction errors 

of partition index j, i.e_, 
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1 ~ q =~ .., e(m,n) 
j IP~J.I E (m,n) P. 

) 

where Ipjl denotes the number of training ~ectors in partition Pj' 

Step 4. Compute the distortion and compare it to theprevious dis

tortion. Stop if the distortion decrement is less than a prespeci

fied value. Otherwise, go to Step 2. 

Bloak Tr>ee PVQ 

The block tree implementation of PVQ is easy to appreciate in con

cept. A test image is first partitioned intosmall blocks, and then 

predictive tree coding is performed on each bloek. The differenee 

between block tree PVQ and a tree code is that the quantization le

vels in the former are vectors. 

Initially, we considered ideal block PVQ (full .. searched PVQl which 

has a full size YQ table and requires an exhélllstive sEarch. Due to 

computational consideration, this sdieme was deemed impractical. Then 

we imposed a tree structure on th.e YQ tabie, calling the new algo

rithm bloak treePYQ. The idea of tree-structured 'vector quantizers 

was first proposed by Buzo et al. for linear predictive coding (LPC) 

of speech [12]. However, the tree search technique used here is dif

ferent. The tree-searched VQ table in [12] is a list of vectors 

organized by a tree-like framework, and the search is basically an 

address locating procedure. A node in that tree is the representative 

for all the nodes (or branches) extending from that node. Only the 

ultimate leaves (nodes or branches without successors) of the tree 

are used as code vectors. On the other hand, we follow the traditional 

sequential tree co ding approach to construct the VQ tabie. Every tree 

branch is a part of a code vector. A complete code vector is formed 

by concatenating the branch symbols along any path in the tree. 

The structure of an ideal block PVQ decoder is shown in Fig. 4. 

The path map u from the channel is a vector containing an address in 

the VQ look up tabie. An entry in the VQ lookup table is another vec

tor which is a sequence of quantization levels used to drive the en-



coding filter. 

Fig. 3. A causal reg ion for the register in SBPVQ. 
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FROM 
CHANNEL 

!!. 

va LOOKUP TABLE 

Fig. 4 An ideal block PVQ decoder. 

As a simple decoding example, consider the test image of Fig. 5. 

At the receiver, the quantization vector q = {ql,q2' ••• '~} of a 3x3 

block is selected by the path map symbol u. Then, each element qi pas

ses through the encoding filter and yields the reconstructed signals 

si sequentially. 

Since the block of this PVQ is a compact 2-D region, the search or

der of elements inside a block should follow the 2-D search ordering 

defined in [9] and [10], there called decision ordering . Indeed, the 

1-D like search yields a less satisfactory result [3]. The importance 

of search order becomes apparent when a full-searched PVQ is replaced 

by a tree-searched PVQ. The 2-D search region also limits the geome

tric shape of the encoding filter so that the decoder is causally rea

lizable. For instance, a nonsymmetric half-plane filter cannot beused 

with a rectangular block search reg ion. 

The computational problem of an ideal block PVQ can be greatly 

eased by imposing a tree structure on the VQ table, as mentioned above, 

and applying the (M,L) search algorithm to the code tree. We call this 

new scheme bZaak tree PVQ (BTPVQ). As illustrated by Fig . 6, the VQ 

lookup table now has a tree structure and a path in the tree is the 

quantization vector identified by the path map symbol u. If we apply 

an (M,L) search with M=8 on the test image of Fig. 5, the encoder on

ly conducts 2x8 or fewer decoder operations per pixel, which is much 

smaller than the 512 operations of the ideal block PVQ. 

Additionally, the encoder does not have to make a decision immedia-
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tely at the end of a bloek. Instead, it ean delay its deeision-making 

and thus take advantage of the dependenee between sueeessive bloeks. 

For example, the code tree in the first bloek of Fig. 5 ean be exten

ded to the seeond bloek, and the eneoder would then release the first 

bloek af ter reaehing the end of the seeond bloek. In other words, the 

tree strueture inside one bloek would act as a substitute for a full-

searehed table, and the delayed deeision feature ean be brought in by 

allowing the tree togrow eontinuously over several bloeks. 

1 2 3 10 11 12 

4 5 6 13 14 15 

7 8 9 16 17 18 

Fig. 5 A test image for BTPVQ. 

EXPERIMENTAL RESULTS 

FROM 
CHANNEL 

Fig. 6 The structure of BTPVQ. 

We present results on a man's face image of size 256x256 with 8 

bits/pixel grey level. A zero-mean version of this image was eoded in 

the image density domain. The SNR results quoted are defined in terms 

of peak-to-peak signal (255) to rms noise, as is standard in the image 

processing field. The bit rate is 1 bit/pel. 

The man's face image was eoded withDPCM, tree eoding using the 

(M,L) algorithm, and with BTPVQ. A eloseup of the results is shown in 

Fig. 7. Image A is the original. Image B is the DPCM result with 

SNR=26.9 dB. Image C is the result of tree eoding with M=8 and L=20. 

The SNR is 30.4 dB whieh is 3.5 dB more than DPCM. Image D is the re

sult of BTPVQ with M=8 and L=2x3x3, i.e. two 3x3 bloeks. The SNR is 

32.5 dB whieh is 2.1 dB more than tree eoding. Subjeetively we see a 

marked improvement in the eoded result with respect to tree eoding. 

The above is perhaps an unfair eomparison beeause the DPCM and tree 

eoding parameters were determined from the man's face image while the 

BTPVQ parameters were obtained from another image (Lady). Within the 
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training set the BTPVQ resulting SNR was 33.7 dB which is a bit more 

than a doubling in performance with respect to tree coding at the rate 

of 1 bit/peL 

Figure 7 
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DOUBLY STOCHASTIC GAUSSIAN RANDOM FIELD MODELS FOR IMAGE ESTIMATION 

John W. Woods 

ABSTRACT 

The two-dimensional (2-D) doubly stoahastia Gaussian (DSG) 
model was intr>oduced by one of the authors to provide a aom
plete model forspatial filters whiah adapt to the loaal 
struature in animage signal. Here we present the optimal 
estimator and 2-D fixed-lag smoother for this DSG model ex
tending earl ier work of Aakerson and Fu . As the optimal es
timator has an exponentiaUy growing state svaae~ we inves
tigate a subopti mal estimator using an M-algorithm tr>ee 
searahing approaah. 

INTRODUCTION 

For some time it has: been apparent that linear shift-invariant 

(LSI) filtering is of limited utility in many image processing pro

blems. The main difficulty is that the constraint of shift-invariance 

leads to blurring of the edges in images. This effect has motivated 

the introduction of many adaptive procedures, e.g. [1,2,3] which at

tempt to track the apparent spatial inhomogeneity (nonstationarity) 

in images. Some of these filters have obtained better mean square er

ror (MSE) and most have offered better subjective improvement than the 

LSI filters designed with a linear minimum MSE (LMMSE) criterion. 

In this paper we regard the image random field as globally homogene

ous but possesing a local st~ ; ture created by a hidden 2- D Markov 

chain. The coefficients of a conditionally Gaussian, autoregressive 

model are switched by the Markov chain to genera te the required local 

structure. The resulting non-Gaussian random field , termed doubly sto

chastic Gaussian (DSG), has apparent inhomogeneity on alocal scale as 

weIl as homogeneity on agiobal scale. The estimators designed from 

this model have shown both good subjective and MSE improvement [4,ll] 

unlike the LSI case where only good numerical improvement is obtained . 

J.W. Woods is with ECSE Department, R.P.I. Troy, NY 12181, on sabbatic
alleave at Delft University of Technology. Research supported by the 
U.S. National Science Foundation under Grant ECS-8313889 and the Nether
lands Organization for the Advancement of pure Research (ZWO). 
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The MSE error criterion is believed to be more subjectively relevant 

for the new model because of the DSG model's incorporated local struc

ture. 

DSG RANDOM FIEI.pS 

We generalize the conventional nonsymmetric half-plane (NSHP) auto

regressive Gaussian model [6] by allowing the model parameters to be 

a function of a discrete valued structure field t(n1,n2), 

where w(n1,n2) is a white Gaussian noise field with zero mean and 

unit variance and at is the rms value of the prediction error in model 

state t. If we take the structure field t to be a 2-D Markov Chain, 

we get an overall Markov model for the joint field" {s(n1,n
2
),t(n

1
,n

2
)} 

only the first component of which is observable. The idea of a 2-D 

Markov chain was used in [5] to model facsimile images and was genera

lized in [7] to model image structure; The composite field manifested 

in (1) is termed DSG in analogy to the doubly stochastic poisson ter

minology for the compound poisson process. The DSG model has been em

ployed in [7] to perform image estimation and in [8] to improve adap

tive prediction DPCM image coding. 

We assume that the 2-D Markov chain is chosen tobe homogeneous. 

This then implies the DSG field would also be asymptotically homogene

ous given the BIBO stability of the elemental NSHP models 

for t 1, .•• ,L. (2) 

If we choose these causal models to approximate predominant correla

tion directions, thenweintroduce a structure which appears locally 

to be inhomogeneous thus mà:tching this observed quality in images. On 

the other hand, we have a global homogeneity which permits the estima

tion of the DSG model parameters and estimation errors in the ergodic 

case. This combination is potentially very advantageous for image pro-
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cessing applications. Typically we choose 4 correlation directions 

as an appropriate compromise for alocal prediction model which is 

predicting just one pixel ahead. 

OPTIMAL ESTlMATOR 

This signal is observed in white Gaussian noise according to the 

observation equation, 

(n
1

,n
2

) E [O,N
1
-l]x[O,N

2
-1], 

(3) 

where the observation noise v(n
1

,n
2

) is independent of w(n
1
,n

2
). The 

object is to find for fixed k 1 ~ ° and k 2 ~ 0, the MMSE estimate of 

s(n1-k 1,n2-k2) given the causal set of observations up to pixel (n 1 ,n2) 

denoted: 

~ . 
~(nl,n2) {r(O,O),r(1,O), ••• ,r(N1-1,O)ir(O,1), ••• ,r(NC 1,1)i .•• i 

Introducing the vector notation: 

for a Markov chain path from pixel (0,0) up to and including (n1,n2) 

and using Bayes' rule and the preceding definitions, the optimal fixed

lag estimate is given for each pixel (D 1,n2) by 

(4) 

The following recursive expression may then be derived for the cortdi-
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tional path probability, analogously to the 1-0 case [9], 

p[r(n1,n2) 1~(n1-1,n2)'~j(n1,n2)] . p[~j(n("1,n2) 1~(nCl,n2)]. 
(5) 

Since the set of random variables . ~(n1,n2) is conditionally jointly 

Gaussian distributed we maywrite, 

(6) 

where o~(nl,n2) is the a priori error varianee of the 2-0 Kalman fil

ter with model sequence ~j(nl,n2) . The a posteriori probabilities are 

calculated using (5) and (6). The MMSE optimal estimate of 5 (n1-k1 , 

n 2-k2) is then calculated from (4). 

Unfortunately, the number of paths which must be considered in eva

luating(4) is generally exponential in nl and n 2 and hence .this opti

mal estimator is non-implementable. 

SUBOPTIW\L ESTIlo1ATOR 

We attempt to oyercome this problem of exponential grow·th in the 

required rtumber of filters by extending th.e approach bf Tugnai t and 

Haddad [10]. Our objective is to restrict the number of filters to a 

reasonable number. Instead of propagating filters 1lI2ltched to all pos

sible sequences ~j(n1,n2} for all j, we discard some of the unlikely 

~del sequences . 

~ Algorithm 

In this suboptimal estimator, we limit thenumber of filters to a 

Jllaximum allowable number ~ • . Instead of carryipg along the á posteriori 

p,robabilities pI~j (nl ,n21~(nl ,n2)] for all · j, we now keep only the M 

~st prabable sequences and discard th.e rest. SUpPoS€ at pixel (nl ",1,n2) 
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there are M sequences o Each of the M sequences is extended by L mo

deIs at (n
1

,ni) 0 Therefore there will be ML extensions at pixel (n1,n
2
). 

The a posteriori probabilities for these ML extensions are formed ac

cording to (5) where now jRl, ••. ,ML. These à posteriori probabilities 

are then arranged in descending order and the model sequences ~j(nl,n2) 

corresponding to the first M probabilities are chosen as the M se

quences to be carried forward to the next pixel. '!'he approximate esti

mator equation is then given by 

M 
sJnl-kl,n2--:k2Inl,n2) '" l: ;j(nl-kl,n2-k2Inl,n2) • 

j;=l 

where the a posteriori probability is given by (5) with areordered 

index j now satisfying 1 < j <Mo 

(7) 

- (n2-1 )Nl-n l Clearly, as M app;roach L . , the suboptimal estimator per-

fo~ance will approach that of theoptimal estiwator (4) . In a prac

tical case we would of course hope to use a much smaller~alue of M. 

Yor a giyen v alue ofM, (7) will require running M 2-D Kalman filters 

with correspondingly M separate global states [6]. 

Merging of ·Sequences 

It is possible that two model sequences ~j (ni ,n2)and ~ (ni ,n2) may 

have the same recent models and differ only in early models and because 

of this thepredictionSSj(nl,n2Inl-1,n2) and ~k(nl,n2Inl-1,n2) are very 

'close'. In this si.tuation it is useful to 'merge ' the two sequences, 

i.e., to absorb the probability of onesequence into the other and dis

card the first Il0].Our decision to merge the sequences is based on 

the Bhqttacharya distance between the two conditional probability den

s:i.ties, 
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The 'B-distance measure is given by 

d[r.. ,L . ] 
=k -J + ~ R-n 

2 
where mi' 0i are the respective mean and variances of the above con-

ditional Gaussian densities. If this di stance is less thari a threshold, 

say E, then the twosequences are merged into one. Typical useful va

lues of E range from 10-
2 to 10-

5• Apart from eliminating the need to 

carry two sequences which are very close, this procedure permits car

rying forward asequence that would otherwise have been discarded. 

FUrther 'Approximations 

Following the approach of [6], ,we approximate the 2~D Kal~an fil

ter by a ,reduced update Kalman filter (RUKF). This cons'trained filter 

optimizes its update over a local update region U@+ at each observation 

pixel (nI ,n2). This is illustrated in Fig. 1 below which also shows 

the global state support Sffi+' 

~ global state region ~®+ (n1 ,n2) 

Fig. 1. 
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For each of the. M space-variant RUKF's, error cova r:!.ances 

must be stored and computed at each pixel. In order to avoid such com

plexity we calculate steady-state gains for each of the models and 

use these gains whenever the nodel appears in a particular~odel se

quence L.(nl,n2). The resulting cOmposite filter is still space-va~ 
-J 

riant because the gains switch from the steady state value of one mo-

del to that of the next as the scan progresses. Such an approximation 

is justifiable if nodel transitions occur far apart. In the case of 

edge JIIOdels this basically means that the ' edge regions are long since 

the appropriate edge model will predictalong the edge. In that case 

the gains reach theix steady-state -values before the model switches 

and increased error then occurs only in the transient portion. 

EX?E~NTAL RESULTS 

We processed a noisy 256x256 pixel image with a relatively high 

S~i=12 dB. The original image is shown in Fig. 2a and is called LadY. 

It has been pre-smoothed to minimize the effects of scanner noise. The 

noisy image, shown in Fig. 2b, was processed by an RUKF and by the M

algo,rithm with M=5. 

Our OOG nodel included 4 directional edge predictors and one 'iso

tropie' predictor as in the DSG random field model. Four prediction 

directions were judged adequate for predicting just one pixel ahead 

with low (lx1)-order models . The DSG model parameters were identified 

from the orig;inal noise-free image. The AR model for RUKF was also iden

tified from the noise-free original. Closeups of the resulting output 

images are shoWn in Fig. 2c (RUKF) and 2d (M-algorithm) . We note that 

the M-algo,rithm has produced a subjectively~ch better result. The mid

frequency background noise in the RUKFoutput has been suppressed and 

the edges are sha,rper in the M-algorithlll estimate . The SNR ilDprovement 

is 4.6 dB for the RUKF and 5.8 dB for the M-algori thm. 

A detailed analysis .reyeals that the M-algorithm suppress.ed the noise 

in the 'isotropiel regions by 3 dB more than RUKF but th.at there was in

creased signal disto,rtion. The net processing gain balanced out to 1.4 

dB, In the edge regions the noise suppression. and signal distortion are 
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Fig. 2. 

approximately comparable with a slight 0.3 dB advantage for the M-algo

)::ithm in total error . Since most of the image is in the non-edge or 

'isotropic' category, the overall net processing gain 1.2 dB is closer 

to 1. 4 dB than to 0.3 dB. 
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A CLASS OF BURST CORRECTING CODES 

* ** *** Mario Blaum , Patrick G. Farrell and Henk C.A. van Tilborg 

Abstract: The binary, Zinear code C, consisting of aZZ 
(kl + 1) x (k2 + 1) binary matrices with even row and coZwrm 
swns, has Zength (kl + 1) (k2 + 1), dimension k1k2 and minimwn 
distance 4. So the code C is onZy one-error correcting. How
ever if the bits are read out diagonaZZy, the code can correct 
Zonger bursts. More preciseZy, asswne (without loss of gener
alityJ that k1 ~ k2. Then C can not correct all bursts of 
length k2 + 1. The code C can correct all bursts of length up 
to k2 iff k1 ~ 2 (k2 - 1). An efficient decoding algorithm is 
presented for the k 2-burst correcting codes. 

1. INTRODUCTION 

Figure 1 shows a simple "array code". It consists of all binary, 

(kl + 1) x (k
2 

+ 1) rectangles, with the property th at every row sum and 

every column sum has even parity. 

This code C is a binary, linear code of length (kl + 1) (k
2 

+ 1) and 

dimension k
1
k

2
• The last row and column can be considered as the 

places where the parity check bits are located. 

The code C is capabIe of correcting a single random error, but can 

not correct two errors in the same row (or column). So the minimum 

di stance of C is 4. 

Figure 1: 

A (kl + 1) x (k2 + 1) 

two-dimensional code. 

* 

k
1 

row checks 

check on checks 

k
2 

column checks 

** IBM Almaden Research Center, San Jose, CA 95120-6099, USA. 
***University of Manchester, Manchester, England. 

Eindhoven University of Technology, Eindhoven, The Netherlands. 
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Without 1055 of generality we may assume that k
1 
~ k

2
• It is 

known that array codes can correct bursts, if the digits are read out 

diagonally (see Figure 2). 

0 17 14 11 

4 1 18 15 

8 5 2 19 

12 9 6 3 

16 13 10 7 

Figure 2: Diagonal re ad-out 0,1,2,3,4, ... ,19. 

On the other hand it is easy to see that an array code can not 

correct all burst patterns of length k
2 

+ 1. Indeed the burst 

10 ... 01 of total length k
2 

+ 1 starting at the position 1 has the 

same syndrome as the same burst starting at position 1 + (k
2 

+ 1) or 

at position 1 + 2 (2k
2 

+ 1), etc .. 

It was conjectured [1] that an array code can correct any burst of 

length up to k
2

, if and only if k
1 
~ 2 (k

2 
- 1). We shall prove this 

conjecture, by means of a very efficient decoding algorithm. 

2. RESULTS 

First we have to say a little bit more about our notation. There 

are two ways of denoting a codeword in C. One is the array notation 

(C . ' )O~.~" 0~ · ~1 .. The second way is the vector notation 
1,) ~1~1' ~)~2 

(cO'C 1 '· .• ,cn _1), n = (kl + 1) (k
2 

+ 1). It reflects the diagonal read 

out. In the sequel i mod n denotes the unique integer j, 0 ~ j < n, 

satisfying i :; j mod n. 

Lemma 1: Ci,j cf(i,j)' 0 ~ i ~ k 1 , 0 ~ j ~ k2 , where 

f(i,j) (i-j)(k
2

+1) + jmodn. 
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Proof: Working module n with the subscripts, the lemma easily fol

lows from the following observations 

Co,o cO' 

c. Ct ~ C. 1 . C 
1.,j 1.+ ,J t+k2+1 

C. Ct ~ c .. 1 c 
1.,j 1.,J- t+k2 

o 

The code C with the diagonal readout will be able to correct cy

clic bursts. So we shall regard coordinates 0 and n- 1 as neighbours. 

Of ten we need to know, how many coordinate positions C(' ' ) and 
1.,J 

C are apart in the corresponding codeword c. The answer will 
(i' ,j') 

be denoted by 11 (i, j) - (i' , j , ) 11 and will be cal led the distance be-

tween coordinates (i,j) and (i',j') . 

Corollary 2: Let 0 ~ i, i' ~ k
1 

+ 1 and 0 ~ j, j' ~ k
2 

+ 1. Then 

11 (i, j) - (i' , j , ) 11 = 

min { (f (i, j) - f ( i ' , j , ) ) mod n , (f (i ' , j ') - f (i, j )) mod n} 

Proof: This is a direct consequence of Lemma 1. o 

Lemma 3: A burst of length k
2 

will never contain two pos itions in the 

same row or solumn. 

Proof: Eiernents in the same column have a distance divisible by k
2 

+ 1. 

Elements in the same row have a di stance rnin{jk
2
,n- j k

2
} for sorne j, 

~ j ~ k
2

. Since k
1 

;;, k
2

, it follows that n - jk
2 

;;, n - k~ = 
2 

(kl + 1) (k
2 

+ 1) - k
2 

= (kl - k
2

) k
2 

+ k
1 

+ k
2 

+ 1 > k
2

. 0 

Let h
i

, 0 ~ i ~ k
l

, be the syndrorne of the i-th row. So h
i 

is the 

modulo-2 suro of the elements in row i. It follows from Lemma 3 that 

we can replace the modulo-2 suro in the computation of the syndrome of 

a burst of length ~ k
2

, by a summation over the integers. Por the 

syndromes v
j

' 0 ~ j ~ k2 , the same holds. In other words "cancelation" 

of ones does not occur in these computations. 
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Theorem 4: If a (kl + 1) x (k
2 

+ 1) array code C, k
1 
~ k

2
, can correct 

all possible bursts of length up to k
2

, then k
1 
~ 2 (k

2 
- 1) • 

Proof: Assume that k
1 
~ 2 (k

2 
+ 1). Consider the following two arrays 

of weight 2: 

o i o i 

o o 

i i 

where 1 ~ i ~ k
2 

- 1. Clearly both arrays have the same syndrome. Also 

the first array is a burst of length i + 1 ~ k
2

• \üth Corollary 2 one 

can deduce from the assumption k
1 

< 2 (k
2 

- 1), that for some value of 

i, 1 ~ i ~ k
2 

- 1, also the second array will be a burst of length 

~ k2 (see [2]). 0 

Theorem 5: Let k
1 
~ 2 (k

2 
- 1). Then C can correct all bursts of length 

up to k
2

. 

We refer the reader to [2] for the proof and for a complete descrip

tion of the decoding algorithm. Here we shall only demonstrate the 

algorithm for a "typical" example. 

Example 6: Let k
1 

= 10 and k
2 

= 6 (50 n = 77). Then k
1 
~ 2 (k

2 
- 1). So 

this array code can correct bursts of length up to 6. Consider the 

syndrome depicted below. 



column 0 

row 0 

2 

3 

4 

5 

6 

7 

8 

9 

10 

vertical 
syndrome: 

0 

7 

14 

21 

28 

35 

42 

49 

56 

63 

70 

2 3 

71 65 59 

1 72 66 

8 2 73 

15 9 3 

22 16 10 

29 23 17 

36 30 24 

43 37 31 

50 44 38 

57 51 45 

64 58 52 

o 

35 

4 5 

53 47 

60 54 

67 61 

74 68 

4 75 

11 5 

18 12 

25 19 

32 26 

39 33 

46 40 

o o 

6 

41 

48 

55 

62 

69 

76 

6 

13 

20 

27 

34 

r-- horizontal 
.j. syndrome 
o 

o 

o 

o 

o 

o 

o 

1 

1 

five 
consecutive 
zeros 

If we re gard the horizontal syndrome cyclically, we see a non

extendable sequence (called gap) of at least k
1 

- k
2 

+ 1 ~ 5 consecutive 

zeros. This gap is unique because of inequality k
1 
~ 2 (k

2 
- 1). Since 

there is no cancelation of ones, all the ones in the burst lie in rows 

2-7. Row 2 is the first of these rows (if the gap were in the rows 

3-9, then row 10 would have been the first). The left most column with 

syndrome 1, is column O. We now claim that the burst with the syndrome 

above has a one in position (2,0), i.e. in coordinate 14. If this were 

not the case, row 2 would have a one in exactly one of the other co

lumns and similarly column 0 would have a one in exactly one of the 

rows 3-7. But all these positions have di stance at least 6, as can be 

easily seen from the figure above (this can of course also be proved 

formally). 50 no two of these positions lie in a burst of length 6. 

Hence we have proved that the burst has a one in position (2,0). In 

exactly the same way one finds the three other places, where the burst 



has a one: (3,2), (4,3) and (7,6). The corresponding coordinate 

places are 14, 9, 10 and 13. So the burst starts at position 9 and 

has pattern 110011. 
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AN ERROR-CONTROL CODING SYSTEM FOR STORAGE OF 16-BIT WORDS 

IN MEMORY ARRAYS COMPOSED OF THREE 9-BIT WIDE UNITS 

* Wil J. van Gils 

ABSTRACT: Errcr-correcting codes are widely used to improve the 
reliability of computer memories. The shift of VLSI technology 
towards higher levels of integration has resulted in multiple
bit-per-card and multiple-bit-per-chip memory structures. This 
paper describes codes for storing 16-bit words in a memory 
array consisting of three 9-bit wide memory units, a unit being 
a single card or a single chip. These codes are able to correct 
single bit errors, to detect up to four bit errors and to 
detect the failure of a complete memory unit. The codes have an 
elegant structure which makes fast decoding possible by simple 
means. 

1. INTRODUCTION 

Single-error-correcting, double-error-detecting (SEC-DED) binary 

codes are widely used to increase the reliability of computer 

memories having a one-bit-per-chip or one-bit-per-card structure. 

However, the shift of VLSI technology towards higher levels of 

integration has resulted in multiple-bit-per-card and multiple-bit

per-chip memory structures. Frequently occurring error events in 

such memory arrays are single cell failures due to impingement of 

atomie alpha partieles. These cause transient single bit errors. 

Less frequent are permanent errors due to single cell, row, column, 

row-column or complete chip failures. These can produce single bit 

errors, but mayalso cause multiple bit errors in a single chip 

output. Codes are therefore needed which correct/detect not only bit 

errors, but also errors caused by the failure of a complete chip or 

card. 

* Philips Research Laboratories, P.O. Box 80.000, 

5600 JA Eindhoven, The Netherlands. 
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This paper is concerned with the use of 9-bit wide memory chips 

in large memory arrays. Usually, such a chip is used to store bytes 

together with their corresponding parity bits. We describe the 

construct ion and use of a class of [27,16] binary linear codes that 

encode 16 data bits into 27 code bits, which are stored in three 

9-bit wide memory units. In [3], a similar code is described. It can 

correct single bit errors, detect double bit errors, and detect the 

failure of a complete chip. However, this code is not optimal and 

its lack of structure requires a rather complex decoder. 

We have constructed a class of [27,16] codes which can correct 

single bit errors, detect up to four bit errors and detect single 

memory chip failures. The codes constructed are optimal in the sense 

that th ere does not exist any [27,16] code having better correction

/detection properties. Our coding schemes also include simpler 

decoders using less hardware than the one described in [3]. 

In Section 11 we describe the construction and the properties of 

the codes. The decoders are described in Section 111 • 

. 11 CONSTRUCT ION AND PROPERTIES OF THE CODES 

8 4 3 2 
Let 0< be a root of the primitive po lynomi al x +x +x +x +1. 

8 
Hence, ex is a primitive element of the Galois field GF(2 ). Define 

(3 to be equal to 0(85, (3:= d 5 • The finite field GF(28 ) has 

sixteen normal bases, namely 

i 
Nb := { Oc

b2 I i=O,1, ••• ,7 } 

for b € B:={5,9,11,15,21,29,39,43,47,53,55,61,63,87,91,95}. For each 

of these normal bases 
(b) 7 7 

mij } i=O j=O by 

Nb' we define the 8 by 8 binary matrix ~ = 

i 

(!; d 2 
= ~j=~ i=O,1, ••• ,7. 

2 



This feans that the 
/l. b2 
{JO( wi th respect 

element of the field 

39 

i th row of ~ is the binary representation of 

to the basis Nb' The matrix ~ is a primitive 
3 2 

GF(4), so that Mb = land I+Mb+Mb = 0, where I 

denotes the identity matrix and 0 denotes the all-zero matrix. 
2 

Furthermore, it can be readily se en that the row (Hl) mod 7 of Mb 
is equa1 to the i

th 
row of ~ (i=O,l, • • • ,7). In [2] these matrices 

Mb were used to construct codes for the genera1ized Triple Modular 

Redundancy scheme. Here we shall use them to construct [3*9,16] 

codes. 
T 

Let R (A) for a binary matrix A denote the column vector of row 

parities of A, i.e. p(A)i = 2:=. a ..• Define Cb , b E B to be the 
J 1J 

binary linear [3*9,16) code with generator matrix 

I [ : o 

We consider all codewords ~ in such a code to be composed of three 

symbols of nine bits: ~ = (~l'~2,S3)' where ~1' S2 and ~3 all have 

length nine. 

In terms of [1,4), the constructed codes have minimum (compound) 

distance profile (6,2,0). This guarantees correction of single bit 

errors, detection of single (9-bit) symbol errors and detection of 

up to four bit errors [2). 

111 ENCODER AND DECODER IMPLEMENTATION 

The elegant structure of the codes makes fast decoding possible 

by simple means. A hardware realization of the encoder and the 

decoder will be presented [2). 

3 
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ON POWERS OF THE DEFECT CHANNEL AND THEIR 

EQUIVALENCE TO NOISY CHANNELS WITH FEEDBACK 

* J.P.M.Schalkwijk 

U-ó-ing Shannon I -ó ltv..uW on c.hatmel-6 will! -ó.we -i~OJtl1la.t.iOll a.,t 
;the .t'!.all-6mifteJt, we w.(il -óhow ;tha.,t -if.. ;the c.ltanne..f dued-6 alLe 
kl10lUIl to the -óelldeJt il M pO-M-ib.te to .'!.ep{ac.e ;the defred 
c.hatmd ba all equ-ivalwt tWMY c.halmd wilh freedbac.k. F eedbac.k 
-ótJta.,teg-iv.. .,}o .~ the-óe 110MY challlle.t6 c.at! »ow be tlLatlû:a.,ted 
blto opümaf. c.adv.. {\.0Jt ;the oJt.ig-inaR. c.halll1d wilh de~ec.t.~. 
Fait ;the b.ttlaILLf deüd cltatmd we cal! thM Itruab.f.t, tlLaMmd 
-i1l.zOltmUÛOIl at Ita.,tv.. up to the chalmd c.apacily C = I-p. wheJte 
P .u., the ex.peded -6Jtac.tiotl 0-6 de.,5.ed-6. '" 

INTRODUCTION 

Consider a process that yields integrated circuit (IC) memory chips. 

This process is not perfect, i.e. individual memory cells have proba-

bility P of being defective. Fig. gives a schematic representation 

of the gener ic memory cell, i.e. of the binary defect channel (BDC). 

,~ 

{O,l} ~ BDC f2-. {O,l} 

070 0,,-

1 1~1 
a-DEFECT 1-DEFECT 

Fig. 1. Cell with unknown defect 

J.P.M.Schalkwijk is with the Eindhoven University of Technology, 

Department of Electrical Engineering, P.O. Box 513, 5600 MB Eindhoven, 

The Netherlands. 
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A binary random variab1e X is stored into the ce11 during the writing 

cyc1e. In the reading cyc1e we obtain the binary random variab1e Y, 

which in the idea1 (p=O) situation a1ways equa1s X. We distinguish, 

see Fig. I, between O-defects and 1-defects, i.e. between defective 

ce11s that a1ways produce a "0" or a "1". respective1y, when being 

read. 

If the binary random variab1e X takes on the va lues 0 and 1 with 

equa1 probabi1ity, then the probabi1ity of a re ad error equa1s p/2, 

i.e. the memory behaves as a binary symmetric channe1 (BSC) with 

transition probabi1ity p/2. From Shannon's channe1 coding theorem we 

know that there exist codes that a110w essentia11y error free trans

mission at rates up to the channe1 capacity 

Cl = 1-h(I) bits per memory ce11, (1) 

where h(x)=-x log x-(I-x)10g2(1-x) is the binary entropy function. 

Note that for p=! we can store at most 

I-h(!) .18872 bits per memory ce11. 

The remaining fraction. !-.18872 = .31128, of expected nondefective 

memory space is necessary to inform the reader about the location of 

the defects. 

Up to now there was no 1055 in just treating the memory as a BSC 

with crossover probabi1ity p/2. The situation, however, becomes 

entire1y different if we assume the 10cations and the va1ues of tte 

defects to be known to the (writer) sender. Instead of existance 

resu1ts concerning good codes, one can now use constructive feedback 

strategies [1], [2] to obtain re1iab1e storage at efficiences up to 

Cl bits per memory ce11. For examp1e. if p=(3-/S)/2. one can use the 

optima1 triple repetitiçn code of [2]. However. there is more. In 

1974 Kutznetsov and Tsybakov [3] obtained the remarkab1e resu1t that 

now, with the sender knowing the defects, we can re1iab1y store up 

to 

C 
00 

I-p bits per memory ce11. (2) 
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That is, asymptotically for large memory chips no good memory space 

has to be wasted in order to inform the reader about the defect loca

tions! However, the Kutznetsov and Tsybakov result is, just like 

Shannon's channel coding theorem, an existance proof. In the present 

paper we will actually construct codes that yield reliable storage 

up to C
oo 

bits per memory cello Note that the feedback strategies [1], 

[2] mentioned above are constructive, but they only achieve storage 

efficiencies up to Cl . This is because these feedback strategies are 

non-anticipatory! They take into account what happens to the digit 

just being stored, but they do not take into account what will happen 

to the digits yet to be stored up to N=2,3, ... time units into the 

future. To achieve C
oo 

we have to anticipate into the future! For · this 

we need Shannon's results (4] on channels with side information at 

the transmitter. These results of Shannon's will be described in the 

next section. 

SHANNON STRATEGIES 

Consider a finite collection {Kt = (A,[Pti(j)],B)It = 1,2 , ... ,h} 

of channels. The generic Kt has inputs iEA = {I,2, ..• ,a}. outputs 

JEB = {l,2 •..•• b}. and transit ion probabilities Pti(j), t=l,2, ...• h. 

On each successive transmission nature chooses one of these channels 

Kt independently at random with probability gt ' t=l,2, ...• h. One can 

distinguish three cases. In the first case neither the sender nor the 

receiver are aware of nature's choice Kt' t=l.2 • ... ,h. This amounts 

to having an equivalent channel K = (A.[p.(j)l.B), with 
- 1 

h 
t~l gtPti(j), 

connecting sender and receiver. In the second case both the sender 

and the receiver are aware of nature's choice Kt' t=l,2, ... , h. One is 

now able to reliably send information from sender to receiver at rates 

up to 

C 
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where Ct is the capacity of channel Kt' t=1.2 ••.•• h. We are interested 

in the third case. where the sender is aware of nature's choice Kt' 

t=1.2 •...• h. but the receiver is not. This intermediate case is refered 

to as a channel K 
the transmitter. 

{(Kt .gt )lt=I.Z •• • •• h} with side information at 

K' 

Shannon [4] now proves the existence of a derived channel 
h 

(A .[rX(y)).B). 

(3) 

that has the following two properties. First. the capacity C' of K' 

gives the highest ra te at which one can reliably transmit information 

over the original channel K with side information at the transmitter. 

Second. an optimum code for the derived channel K' can be translated 

into an optimum coding ·strategy for K. in that each input 

X = (x1.xZ •..•• xh ) of K' defines a function (strategy) from t to i 

for K. Further note that K' has ah inputs and b outputs. but that only 

b inputs of K' are needed to achieve capacity. In the next section we 

apply the results of Shannon's to the BDC with known (to the writer) 

defects. 

KNOWN DEFECTS 

Consider the BDC with defects known at the (writer) sender as the 

channel K with side information of the previous section. see Fig. Z. 

The equiv~lent channel K' has ah=23=8 inputs and b=2 outputs. Only 

O· .0 

:7° :~, 1. • 1 

gl=q g =2 
2 2 

g =2 
3 2 

two inputs. for example X
1

=OOO and XZ=III. of K' are required to 

achieve capacity. According to (3) we obtain for the crossover probabi

lity 
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Likewise rX (O)=rlll(O)=~ and, hence, for K=BDC the derived channel 

K' is a BSC2with crossover probability p/2. As the BDC is determinis

tic K' can be considered a BSC with noiseless feedback. Thus, the 

feedback strategies of [2J can be used to achieve capacity. In parti

cular, if the probability of a defect equals p=(3-/S)/2 one can use 

triple repetition coding. 
o Note that with K=BDC one obtains a maximum rate C1=1-h(ï) that 

could also be attained in the case of unknown defects. Now let us 

take advantage of the fact that we can anticipate on future defects, 

i.e. let K=BDC 2. As far as the defect locations are concerned we have 

four possibilities, to wit cc, cd, dc and dd, where c stands for 

"correct" and d for "defect". As each defect can be either 0 or 1, we 

have a total of h=9 component channels Kt' t=l,2, .•. ,9, whose proba

bilities gt are listed in the following Tabie. The equivalent channel 

Tabie: component channel probabilities. 

index defects probability 

t=l cc g =q2 
1 

t=2 ca g2=~qp 

t=3 cl g3=~qp 

t=4 Oc g =4pq 4 
t=S Ic gS=~pq 

t=6 00 g =~p2 
6 

t=7 01 g =~p2 
2 

t=8 10 g =~p2 
8 

t=9 11 g9=t p2 

K' has thus a h=49=262144. inputs and b=4 outputs. However, only four 

inputs are required to achieve capacity and it is not that difficult 

to find a capacity achieving set {X1 ,X2 ,X3 ,X4 } of inputs for K'. 

Fig. 3 gives an input Xl that mainly projects onto the output y=OO. 
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--- correct --- defect 

Fig. 3. The input XI=xII,xI2" " ,xI9 of K' that mainly 

projects onto y=OO. 

For each component channel Kt' i.e. for each defect pattern of the 

BDC 2• the input xlt ' t=I.2, • ..• 9. that corresponds to Xl is given by 

the fat leave of the corresponding t-tree, where upward branches 

correspond to a 0, downward branches to a 1. and solid branches to 

a defect. Note tlBt Xl minimizes H(yIX
I

). and thus for a symmetrical 

channel K' with a uniform input distribution the input Xl maximizes 

I(XI;y) as it should at capacity. As the derived channel K' is, in 

fact, symmetrical one does not have to find X2,X3 , and X4 in order to 

compute the capacity Cz of BDC 2 • The transition probabilities Ieading 

away from input Xl of K' are (from inspection of Fig. 3): 

r (00) 
xl 

q2+qpHp2 

r (Ol) 
xl 

tp2 . (4) 

rx (Ia) !p2. 
1 

r (11) 
xl 

pq+!p2 . 

Using (4) we find for the capacity C2 of BDC 2 in bit per transmission 

[( I-~) 2 ] . 2 2 
O-f) h --2-

I-~ 

(5) 

2 

Fig. 4 is a plot of C
I

,C
2

, and C
oo 

versus the defect probability p. 
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Fig. 4. Capacity versus defect probability. 

For p=! we find 

Cl .18872 C(O) 
1 .32193 

C2 
.25434 

C(OJ 
C3 

.27042 2 .34150 

C .50000. 
00 

Surprisingly, it is not hard to show that the capacity C
n 

in bit per 

transmission of BDCn approaches C as n~. Also indicated in Fig. 4 

is the capacity ciO
)= .3'4150 for ;=~ of BDC

2 
in the case where we have 

only O-defects. The capacity C(O) for O-defects only approaches 
n 

C
oo
=l-p somewhat faster as does the capacity Cn for equiprobable 0- and 
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I-defects. The capacitv C(Q), n=2,3, .•• , is somewhat harder to cal-. n 

culate as the resulting derived channel K' is not symmetric. In all 

cases the equivalent channel K' can be considered a discrete memory

less channel with noiseless feedback, where a multiple repetition 

feedback strategy as discussed in (5] can be used to achieve capacity. 

It is thus possible to find easily decodable optimal codes for the 

defect channel with know defects in a systematic manner! 

CONCLUSIONS 

Using Shannon strategies [4] we found easily decodable optimal 

codes for the discrete memoryless defect channel with known defects. 

In a similar way we can find codes for the bursty defect channel 

with known defects. The only effect of the bursty character of the 

defects is a change in the probabilities gt' t=I,2, ••. , h, of the com

ponent channels Kt of the channel K with side information at the 

transmitter. 
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REPEATED RECORDING FOR AN OPTICAL DISC 

F.M.J. Willems* and A.J. Vinck* 

We describe the repeated r ecording model for optical discs and 

design three codes that can be used in order to store 

information in a reUable way.The third code has a rate of 

0.517 bit per spot. 

1. INTRODUCTION 

On an optical di sc we can record information if we use a laser 

and an electromagnet. The laser heats up a spot on the disc and on 

this spot either a 0 or a 1 is stored, depending on the orientation of 

the magnetic field generated by the electromagnet. We can record binary 

information on such a disc if we properly reverse the current through 

the coil of the magnet. An optical effect makes it possible to read 

the O-'s and 1-'s on the disc, and in this way the recorded informa

tion can be reproduced. 

If we want to store on the disc in a short time a huge amount of 

information, the inductivity of the coil of the electromagnet will 

prevent us from reversing the current. Therefore we propose the 

following strategy : A "new" disc contains only O-'s. If we store in

format ion on the disc for the first time, we write only 1-'s and thus 

it is not necessary to reverse the current direction. Before storing 

information on the disc for the second time we reverse the current 

and now we write only O-'s. The third time we write only 1-'s etc. For 

reasons of simplicity we assume that each time that we record, we 

rewrite the entire disco 

The interesting feature of the above strategy is that the states 

of the spots of (a part of) the disc are known to the writer, before 

* F.M.J. Willems and A.J. Vinck are with the Department of Electrical 

Engineering, Eindhoven University of Technology, P.O. Box 513, 

5600 MB Eindhoven. 
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he records new information on this (part of the) disco This state in

format ion can be used by the writer. The reader has no information 

about previous states of the spots on the disco 

Our problem now is to find "good" codes for the above model. With 

good codes much information can be stored reliably on the disco Remem

ber that during odd cycles only I-'s may be written and during even 

cycles only O-'s. 

II. SOME CODES 

In this section we describe some simple codes. These codes all 

have the property that with probability I the reproduced information 

is equal to the stored information. 

A. The blocklength of the first code is 2 spots. During the odd cycles 

01, 10, or 11 is written, during the even cycles 00, 01, or 10. The 

information to be stored can take on 2 values, A and B. The tables 

below contain what is written, as a function of the previous states of 

the 2 spots and the information to be stored. 

A 

B 

00 

01 

11 

01 

01 

11 

odd cycles 

10 

10 

11 

A 

B 

Ol 

01 

00 

10 

10 

00 

even cycles 

11 

01 

00 

If during an odd cycle an A has to be stored, Ol is written if the 

previous states were 00 or 01, and 10 is written if the previous 

states were 10. During an odd cycle we always write 11 if a B has to be 

stored. Reproducing the information contained in the 2 spots is simple, 

Ol and 10 corresponds to an A, 11 to a B. Note that during an odd cycle 

it is impossible to write a 0 if the previous state was I, during an 

even cycle it is not possible to change a 0 into a I. We remark that 

what we write during the odd cycles are the previous states for the ' 

even cycles etc. 
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Per 2 spots we can store 1 bit of information with the code des

cribed above. Therefore the rate of this code is 0.5 bit per spot. 

B. The code described under A reads the previous states and writes an 

odd-weight codeword if an A has to be stored and an even-weight code

word if a B has to be stored. Note that the number of 10 combinations 

on the disc can never increase. Because we have assumed that a new 

disc contains only O-'s, the combination 10 will never occur. There

fore we obtain the more simple tables below. 

A 

B 

00 

Ol 

11 

odd cycles 

Ol 

Ol 

11 

A 

B 

Ol 

Ol 

00 

11 

Ol 

00 

even cycles 

It will be clear that this code does not need to read the previous 

states anymore. This makes the implementation a lot simpier. In fact 

this code writes during the odd cycles a 0 or (depending on A or B) 

on spot 1 and always a 1 on spot 2, and during the even cycles always 

a 0 on spot 1 and a 0 or 1 (depending on A or B) on spot 2. From in

specting this code we see that it does not only write information but 

it also prepares spots for the next cycle. We therefore can cal 1 this 

code a time-share code. One can easily determine the spots that con

tain information and the spots that are prepared. 

The rate of the code above is again 0.5 bit per spot, it is still 

the same code as described under A. 

The question now arises whether or not such time-share codes are 

optimal. Under C we will describe a code that demonstrates that time

share codes are not optimal. In this code storage and preparation are 

present in a diffuse form. 

C. The blocklength of the third code is 5 spots. During the odd cycles 

we write codewords with weight 3, 4, or 5, during the even cycles we 

write codewords with weight 0, 1, or 2. We describe only the code for 
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the odd cycles. Note that the codewords on the disc before writing, 

the previous states of the spots, have weight 0, 1, or 2. 

01111 

10011 

11100 

A set of codewords 

(a basic set). 

Consider the above set of 3 codewords. All 3 codewords have weight not 

less than 3. We now want to know whether or not it is possible to 

write at least one of these 3 codewords when the previous codeword has 

weight not more than 2. More precisely, can we always choose one of 

these 3 codewords such that we do not have to change a 1 into a 0 

(this is impossible during odd cycles)? The answer to this question is 

yes. 

If the previous codeword contains a 1 on spot 1 the first word in 

the (basic) set '(01111) can not be written since it has a 0 on spot 1. 

If the previous codeword contains a 1 on spot 2 or spot 3 we can not 

write the second word in the basic set. A previous codeword with a 1 

on spot 4 or 5 eliminates the third codeword. Since a previous code

word has weight 'not more than 2, at most 2 códewords from the basic 

set are eliminated. The set contains 3 codewords and therefore at 

least of these codewords can be written without changing a 1 into a 

o. 
We can say that the above set of three codewords "covers" all 

possible (weight not more than 2) previous codewords. If we now parti

tion all words of weight not less than 3 :Ln sets that cover all weight 

not more than 2 codewords, we obtain a code. As first set we take the 

basic set (01111,10011,11100). By permuting the columns of this basic 

set, we find 4 more se'ts of codewords . that cover all previous code

words. Then only the word 11111 remains. This codeword however covers, 

on its own, all previous words and therefore forms a sixth set. With 

these 6 sets we can now store one out of six information symbols (A, 

B, C, D, E, and F) using 5 spots (see table on next page). 

Therate of this code clearly is ~log26 = 0.517 bit per spot. 
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A-set: B-set: C-set: 

01111 (I ) 10111 (2) 11011 (3) 

10011 (23) 01101 (14) 01110 ( 15) 

11100 (45) 11010 (35) 10101 (24) 

D-set: E-set: F-set: 

11101 (4) 11110 (5) 11111 (x) 

01011 (13) 00111 (J 2) 

10110 (25) 11001 (34) odd cycles 

By inverting the code for the odd cycles we obtain the code for 

the even cycles. Note that the above code is rather good in the sense 

that the basic set aod its 4 permutations exactly partition the set 

of words with weight 3 or 4. It is unknown whether or not there exist 

basic sets for higher blocklengths with the same property. Presently 

Erik Kwast is investigating this. 

IIl. REMARKS 

Using Shannon-theoretic arguments it is possible to show that 

rates higher than 10g2«1+15)/2) = 0.694 bits per spot can not be 

realized with reliable codes. 

Furthermore it can be shown that rates arbitrarily close to 

0.694 can be achieved with codes that have an arbitrily small but po

sitive error probability. Recently John van Breemen has designed some 

codes of this type. 

It should be noted that there is a close relationship between 

the configuration studied here and the Blackwell broadcast channel 

studied by mul ti -u'ser information theorists. 
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THE UNCERTAINTY PRODUCT VERSOO THE SUM OF ENTROPIES UNCERTAINTY 
PRINCIPLE 

C. Kamminga 

The well-knoum form Of the .uncertainty relation as introduced 
by Gabor states that if time duration M of a signal and the 
frequency width of its Fourier t1'ansform are defined by their 
variances in the time and in frequency dorrains~ then /::,t.b.! > \J. 
An extension of this uncertainty principle was obtained by -
Le1:pnik where the sum of entropies of wo distributions are re
Zated as the absoZute squares of a Fourier transform pair. In 
this presentation a few computationaZ exampZes iZZustrating 
the relationship beween the wo uncertainty principZes are 
given for different types of reaZ signaZs. 

1. INTRODUCTION 

Perusing the amount of literature that nowadays exists on the clas

sical Heisenberg/Weyl uncertainty relations and its extensions, we are 

faced with detailed mathematical insights, but surprisingly few appli

cations in the field of signal processing, other than measurement un

certainties. 

In this paper, two forms of the uncertainty principle and their re

lationship will be given for the case of a practical situation, the so

called echolocating signalof dolphins. The dolphin sonar signal turns 

out to be a natural optimal signal, i.e. it approaches the theoretical 

lower bound of the uncertainty in both the time and frequency domains. 

The resul t is further enhanced by the suggestion that the receiver -

in this case the cochlea - is not primarily designed to handle sinus

oids optimally, but rather processes them non-optimally . From the point 

of view of the cochlea, following BARRET (1978), the optimum rêle is 

filled by an elementary signal that is bounded by the relation b.t.b.f 

is minimal, where b.t represents the signal duration and b.f the signal 

bandwidth. The concepts of duration in time and frequency need to be 

C. Kamminga is with the Delft University of Technology, Department of 
Electrical Engineering, Information Theory Group, P.O. Box 5031, 
2600 GA Delft, the Netherlands 
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specified, but at present the quantification is done empirically. 

The equation of Heisenberg and Weyl introduces the variance as a mea

sure of the uncertai nty. This approach was also followed by GABOR 

(1946), who introduced the uncertainty relation in communication the

ory, using the fonnalism of quantum mechanics. ZAKAI. (1960) intro

duced a generalisation of the definition of 'duration ' which includes 

the Shannon infonnation measure o Although this approach extends over 

several definitions of durations, the uncertainty relationship that 

follows from it has limited physical application and clarityo 

A more complete result for an uncertainty relation based on Shan

non's information measure was given by Leipnik (1959l. In particular, 

we note here an uncertainty relation comprising of a summation of in

formation quantities, linked to the pair of Fourier transforms of the 

original function. This is in contrast to Zakai's product relationship 

for time and frequency duration. It is not surprising that the optimal 

function minimising both re1ations is the same: the Gaussian function. 

2. GABOR' S UNCERTAINTY RELATION 

Although the frequency-time uncertainty principle has been known 

since the early thirties, it was GABOR (1946) who gave it a general 

interpretation. We characterized the frequency-time uncertainty pro

duct in the context of structural information theory. The following 

definition of the duration of a time-limited function 5 (t) is used: 

J (t-tol2 s2(tldt J ts 2 (tl dt 

llt2 T 
with 

T 
E to E 

J (f-f
O

) 2 S (f) 2df J fs(fl
2
df 

llf2 n 
with fO 

n 
E E 

Without 1055 of generality normalisation is done by setting E=l. From 

these quantities it is possible to obtain the GABOR uncertainty rela

tion in the rigorous fonn 

A prOblem that arises quite naturally is concerned with what shape of 
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s (tl the inequali ty turns into an equali ty . '!'he smallest possible un

certainty p r oduct is obtained for a Gaussian function 

s (tl = e 

2 2 
-a (t-t l 

o 

which is a harmonie function, modulated by a prdbability envelope. 

If we set 

then 

Llt ~ t.f = 1 
In 

t = - . a 

'!'he function that satisfies the equality is called an elementary sig

nal, and it covers the minimum effective area in the time-frequency 

plane. 

3 . LEIPNIK' S UNCERTAINTY RELATION 

With regard to the formulation by Zakai, a more complete result 

using Shannon's in forma ti on measure in an uncertainty relationship was 

given by Leipnik . From the definition 

Ht - f s2(tl ~n s2(tl dt 
T 

and its analogous form Hf' it can be shown that Ht and Hf are related 

by the following summation: 

'!'he interested reader is referred to the original artiele for the com

plete mathematical treatment . 

As expected, the minimising waveform is again a Gaussian, as in 

Gabor's version of the uncertainty principle: 

4:; _ t 2 
s(tl = 2 e 

A closer examination of the ' information' uncertainty relation leaves 

us with a question regarding a relationship between Gabor's product 

and the sum of information quantities from Leipnik. 

Not unexpectedly, the latter equation reveals the additive nature of 
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information. 

AD interesting point arises if we calculate both uncertainties and 

look at the corresponding behaviour of time functions which approach 

the lower bound of the inequality. 

40 EXAMPLES 

We refer to figure 1 which shows the relationship between 6t.6f 

and Ht +Hf for three different types of signals: 

I A sinusoid increasing in time duration, starting with a one

period signal ti. 

A certain compression with increasing number of cycles is no

ticed in the Ht+Hf values. 

11 A frequency modulated sinusoid with increasing number of cycles 

starting with the one-period signal flo 

111 Gaussian signals 

gl - Gaussian pulse 

g2 - a sinusoid with Gaussian envelope 

g3 - a frequency-modulated sinusoid with Gaussian envelope. 

Note the difference between the points gl and g2; they posses 

the same 6t.6f value but show a different behaviour when the 

information sum is used. 

Af ter examining these test signals and their responses, an interes

ting point arises if we input near-optimal signals such as the echolo

cation sonar signals of the dolphin. We refer to figure 2 for a com

parison of several dolphin signals 1 to 6 0 The cluster of data points 

2, 3, 4 and 6 does suggest an investigation of the behaviour of the 

lower values of the uncertainty relationo At first sight the difference 

between gl and g2 could be used. A Gaussian modulated sine wave does 

fit more adequately into the description then the sole Gaussian pulse. 

Therefore, there might be a slight preference for the Leipnik measure 

of uncertainty on the basis of intuitiono If we consider the original 

formulae of Gabor and Leipnik, we note that Leipniks measure uses the 

complete ti1!le function, while the Gabor uncertainty is based on the 
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second moments description of duration. Despite the quite complete 

description of a dolphin signal in terms of structural information, 

we are still left with the following interesting question: how close 

is this signal to the lower bound, as for example in the case of the 

Irrawadi dolphin, who's signal is characterised by a ~t.~f = 1.09? 

(KAMMINGA et al o 1983) 0 

~t.~f 
5 

4 

3 

2 

1.0 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

-0----0---- - ---
911 92 

0.3 1.0 1.5 

o 
93 

2.0 

--(> 

Figure 1. The re1ationship between ~ t.~f and Ht+Hf for the 
diff.erent types of test signa1s l , II and IIl together 
with the Gaussian signais. 
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Figure 2. The relationship between lIt .lIf and Ht+Hf for different 
dolphin signaIs. Dotted lines indicate lower bounds for 
the uncertainty product as weIl as the sum of entropies. 
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INVERSE SYNTHETIC APERTURE RADAR (ISAR) 

Gerard A. van der Spek* 

A radar system which observes a moving air target will provide the 
us er with limited information. Normally this information concerns 
position versus time and echo strength, which offer little to charac
terize the target. The resolution of the radar system is determined 
by the bandwidth of the transmitted signal (range) and by the beam
width of the antenna combined with the radial distance to the target 
(cross-range). If the resolution can be reduced, in one or more dimen
sions, to a fraction of the size of the observed object it will be 
possible to obtain an "image". 

A one dimensional image can be obtained by the ISAR-technique. An air
craft is tracked by a coherent radar with a pencil beam and echoes are 
obtained during several seconds at a sufficiently high r epetition 
rate. 
The radial speed of different aircraft parts will depend on path and 
speed of the aircraft. Corresponding doppler shifts will be observed 
in the Fourier spectrum of the echo series, which can be interpreted 
as a projection of the reflectivity of the aircraft on an axis which is 
perpendicular to the line of sight and to the (apparent) rotation axis 
of the aircraft. 

The ISAR technique will be discussed and results will be presented 
which are obtained for several civil aircraft. 

*FEL-TNO, P.O. Box 96864, 2509 JG The Hague, The Netherlands 
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ERROR SENSITIVITY OF COMPRESSED IMAGE DATA ON 

SATELLITE COMMUNICATION LINKS* 

H.J. Simons** 

This paper desaribes the effeat of transmission errors 
present on satellite aommuniaation links, on aompressed 
faasimile data and on unaompressed and aompressed earth ob
servation image data. The error statistias of the ECS/SMS 
ahannel are determined and the effeat of these errors on the 
users data is evaluated. 

1. INTRODUCTION 

With the availability of wideband satellite links. it becomes 

possible to transmit high volumes of data to remote users very 

fast. The satellite transmission system of APOLLO [IJ is an example 

of a high speed digital transmission system. specially designed to 

handle long data messages such as: page facsimile and earth obser

vation image data. 

The APOLLO system is a switched digital network based on the ECS 

part of the Satellite Multiservice System (ECS/SMS) of EUTELSAT. 

Although the ECS/SMS system is designed for continuous mode of ope

ration, the APOLLO system operates in burst transmission mode, 

where different earth stations share the same carrier in time divi-

sion, using a demand-assigned sequential satellite access technique. 

Each earth station can be shared by different data stations. 

The earth stations assemble incoming data into blocks, according 

to the High-level Data Link Control (HDLC) framing structure, as 

shown in figure 1, with a maximum length of 32 kbits. 

* This investigation was carried out under ESTEC Contract no. 
6235/85/NL/JS 

** NATIQNAL AEROSPACE LABORATORY (NLR) Informaties Division, 
Anthony Fokkerweg 2, 1059 CM Amsterdam, The Netherlands 
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EOF LINK READER NETWORK READER USER DATA FRAME CRECK I EOF 

Fig. 1 APOLLO data frame structure 

The beginning and end of each data frame are indicated by the 

unique sequence 01111110 cal led the End-of-Frame (EOF) sequence. To 

prevent that this sequence occurs somewhere in the data, the HDLC 

transmit controller inserts a 0 every time 5 consecutive l's appear 

in the data. The HDLC receive controller removes allO' 5 ·after 5 

consecutive l's. To several data frames a synchronization preamble 

and a proper postambie are added, to form a transmit data burst. 

To a data burst, framing and signalling bytes are added, according 

to the ECS/SMS frame/multiframe structure [2J. Then all data except 

the framing bytes are scrambled and the total data stream is pro

tected by a forward error correcting (FEC) rate ~, constraint 

leng th 7, convolutional code, with the input differentially enco

ded. The encoded data stream is QPSK modulated. The receiver has to 

perform QPSK demodulation, carrier recovery, bit timing, soft de

cision Viterbi decoding and code synchronization. Af ter frame and 

multiframe synchronization have been achieved, the message bytes 

can be descrambled and the framing bytes can be removed. 

Two modes of operation are foreseen. The one is a connection orien

ted mode in which erroneously received data frames can be retrans

mitted, resulting in a virtually error free data transmission. The 

other is a connection less mode in which the user receives data in

cluding errors. In this paper the effect of transmission errors in 

connection less mode, on the users data will be identified. For 

this purpose the data types chosen are compressed facsimile data 

and uncompressed and compressed Thematic Mapper (TM) image data. 
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2. LINK ERROR CHARACTERISTICS 

At the output of the receiver, several types of error may be 

present. The most relevant are errors due to loss of 'carrier and 

bit timing synchronization, loss of Viterbi decoder node synchroni

zation, FEC decoder decoding errors and loss of frame or multiframe 

synchronization. 

The ECS/SMS performance requirements specify a bit error rate 

(BER) of less than 10-6 for 99 % of the time, at an Eb/NO of 6.1 dB 

at the input of the demodulator. Under these normal conditions the 

loss of bit timing, decoder or frame synchronization are negligibly 

small. Therefore only the effects due to FEC decoder decoding er

rors will be considered. 

It is weIl known that af ter Viterbi and differential decoding, 

the error sequence consists of error bursts separated by error-free 

guard-spaces. In this context a guard-space is defined as a sequen

ce of at least 6 consecutive correct bits. This leng th is chosen 

because an ideal constraint length 7 Viterbi decoder is known to be 

on a correct path again af ter 6 consecutive correct bits. A burst 

is a sequence of consecutive bits not containing a guard-space and 

preceded and succeeded by a guard- space. 

From simulations and measurements with the Viterbi decoder, bit 

error probabilities are known as function of Eb/NO [3J and also 

average burst statistics are known as function of Eb/NO [4J, [SJ . 

Here ~/NO is the baseband signal energy to noise ratio at the in

put of the Viterbi decoder. 

Because the data also is differentially decoded, the error statis

tics changes again. A differential decoder introduces one extra 

error for each isolated error at its input. However, to an error 

burst only one error is added at the end and the distribution of 

errors inside a burst will be changed. 

Table 1 gives the error burst statistics af ter Viterbi and differ

ential decoding for different bit error rates at the output of the 

differential decoder. For more details refer to [6J . 
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TABLE 1 

Error burst statistics af ter Viterbi and differential decoding 

Bit error rate P 

average burst length 1 

Burst error probability PB 

7.7 

2.1*10-6 
6.9 

2.3*10-7 
6.6 

2.3*10-8 

With these statistics the ave rage number of error bursts in a se

quence of M bits, with M very large, can be approximated by M.P
B 

and the probability that a sequence of À bits, with À small (À.P
B 

« 1), is hit by an error burst can be approximated by (1+À-l)PB• 

When an error burst corrupts part of the transmitted data, such 

a burst can have different effects on the users data, dependent on 

the position where it occurs and the sequence that results. Four 

different error types can be distinguished which are: 

Substitution errors, when transmitted bits are incorrectly re

ceived. 

Bit insertion errors, when a pattern of five consecutive bits is 

corrupted, such that the HDLC receive controller does not remove 

the inserted bit. 

Bit deletion errors, when any data pattern is corrupted in such 

a way that five consecutive Is preceded and followed by a 0 re

sult, such that the HDLC receive controller wrongly will delete 

the finalO. 

End-of-Frame (EOF) simulation errors, when any data pattern is 

corrupted in such a way that six or seven consecutive Is result, 

such that the current HDLC frame will be terminated. 

It can be shown [7J that, assuming random user data, the HDCL 

transmit controller inserts a 0 on average af ter 62 user bits. A 

bit insertion error occurs if either one of the preceding Is is hit 

by an error burst. Therefore Pr{bit insertion error} = (I+4)P
B

/62. 

For any error burst, there are (I+4) different 7 bit sequences 

which can be corrupted into 0111110 and for each of these possible 
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eandidates there is only one out of the 128 7 bit sequenees whieh 

realy ean generate this sequenee. Therefore Pr{bit deletionerror} = 
0:+4) P B/128. 

For any error burst, there are (1+5) different 8 bit sequenees 

whieh ean be eorrupted into 6 or 7 eonseeutive 15, and only 4 of 

the 256 possible 8 bit sequenees realy result in the mentioned se

quenee. Therefore Pr{EOF simulation error} = (1+5)P
B

/64. 

Table 2 shows the different error type probabilities at a BER of 

10-6• 

TABLE 2 

Statistic of different error types 

Pb PB Pr(insertion) Pr(deletion) Pr(EOF simulation) 

2.0*10-8 4.3*10-8 

3. ERROR SENSITIVITY OF COMPRESSED FACSIMILE DATA 

For the eompression of ISO A4 pages eontaining only' blaek and 

white information, the CCITT has reeommended a one-dimensional 

(l-D) modified Huffman eoding seheme and a two-dimensional (2-D) 

modified READ eoding seheme [8J. 

An uneompressed high resolution (HR) A4 page (7.7 lines/mm x 8 

pels/mm) consists of 2376 lines x 1728 pels/line or approximately 

4 M bits. From measurements on several referenee doeuments [9J it 

was shown that the average eompression factor for 1-D eompressed 

pages was 7.7, resulting in a datacontent of 5.3*10 5 bits for a HR 

page. The ave rage eompression factor for 2-D eompressed pages was 

11.5 resulting in a datacontent of 3.6*105 bits. 

When an error burst eorrupts a part of the transmitted data this 

ean have different effects on the users data, dependent on whether 

the HDLC frame header or us er data is corrupted. When the eompres

sed user data is eorrupted by a substitution, bit insertion or de-
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let ion error, codeword synchronization will be lost. Each codeline 

is terminated by a unique End-of-Line (EOL) codeword, which is con

structed in such a way that it also can be recovered af ter loss of 

codeword synchronization. Therefore in a 1-D compressed page only 

one line will be incorrect due to an error burst. In a 2-D compres

sed page also all following lines will be decompressed incorrectly, 

until a 1-D compressed line is recovered. To prevent error propa

gation, the CCITT has recommended to insert a 1-D compressed line 

once every 4 lines. 

The average number of error burst per page, at a BER of 10-6, is 

once every 8 pages for a 1-D compressed page and only once every 12 

pages for a 2-D compressed page. 

Most of the error bursts only lead to the loss of up to a few 

lines, which in genera 1 is not very catastrophic. However, when an 

EOF simulation error occurs, an average half a 32 kbits frame will 

be lost, which corresponds to approximately 75 lines in a 1-D 

compressed page and to 110 lines in a 2-D compressed page. Syn

chronization will again be recovered, but the loss in general is 

unacceptable. At a BER pf 10-6, EOF simulation errors occur, an 

average, once every 44 respectively 65 pages for 1-D respectively 

2-D compressed pages. 

When an error burst hits the HDLC frame header, which has a 

length up to 300 bits, the total frame will be rejected, which also 

is catastrophic to the page. At a BER of 10-6 this occurs only once 

every 1000 pages on average and thus is negligible compared with 

EOF simulation errors. 

4. ERROR SENSITIVITY OF UNCOMPRESSED AND COMPRESSED IMAGE DATA 

An uncompressed Thematic Mapper (TM) 1/4 scene consists of 2880 

x 3460 8 bits pels, or approximately 80 Mbits. The data is arranged 

in lines, starting with a lineheader for identification and syn

chronization. 

At a BER of 10-6 , on average 18 error bursts corrupt the image 

data. Of these, on average 4 or 5 are bit insertions or deletions 
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resulting in the loss of codeword synchronization. When the line

header contains a robust synchronization pattern, line sunchroniza

tion will be recovered and only one line will be lost. On average 3 

or 4 of the errors in a 1/4 scene are EOF simulation errors result

ing in a loss of on average half a frame, or approximately 2000 

pixels, which lead to the loss of 1 or 2 lines. It may be obvious 

that an exhaustive synchronization procedure is required to recover 

af ter such errors. The remaining 10 substitution errors only lead 

to several incorrect pixel values. 

When the data is compressed with a DPCM compression scheme, in 

genera 1 only moderate compression factors of 1.5 will be achieved 

on average. At a BER of 10-6 , there will be 12 error bursts in such 

an image. The data is arranged in lines, starting with a line

header, analogous to the uncompressed data format. Of the error

bursts, 10 are substitution, bit insertion or deletion errors, all 

resulting in the loss of codeword and line synchronization, which 

can be recovered from the lineheader again . In 1-D DPCM only 1 line 

is decompressed incorrectly, but in 2-D DPCM, the errors propagate 

to the following lines until a 1-D compressed line is recovered. 

Approximately 2 of the error bursts are EOF simulation errors, 

leading to the loss of 1 or 2 lines in a 1-D compressed image. In a 

2-D compressed image the errors again propagate to the following 

lines. To limit this propagation, it is recommended to insert a 1-D 

compressed line once every 10 lines. 

It can be seen that, although less errors do occur in a DPCM coded 

image, more of these errors are visible than in an uncompressed 

image. 

When larger compression factors are required, and when small re

construction errors can be tolerated, a transform co ding algorithm 

like the Chaturvedi algorithm [10J can be used. The data is ar

ranged in compressed 8 x 8 blocks, where each block is assigned a 

header which contains a block number and a block length indicator. 

Furthermore, 256 (or less) blocks form a segment, which is indicat

ed by a segment header, containing a synchronization sequence and 

segment identifications. 

The obtainable compression factor depends very much on the image 
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entropy and on the tolerabie reeonstruetion error. In the following 

a eompression factor of 4 will be assumed. 

At a BER of 10-6 the transmitted data for one image eontains 5 

error bursts on average, of whieh 4 fall in the eompressed data and 

1 hits a bloek header. Of the error bursts in the data, 2 are sub

stitution errors, resulting in an ineorreetly deeompressed 8 x 8 

bloek. However, from the bloek header, bloek boundaries are known, 

sueh that there is no error propagation over bloek boundaries. 1 of 

the error bursts is either a bit insertion or a deletion error, re

sulting in an ineorreetly deeompressed bloek and a loss of bloek 

boundaries sinee the next bloek is 1 bit out of position. This re

sults in ineorreetly deeompressed bloeks until the end of the 

eurrent segment, where synehronization will be reeovered again. The 

error burst whieh hits the bloek header has the same effect of 

loosing bloek boundaries until the end of the segment, whieh is 

visible as a beam in the image of 8 pixels wide and on average 1000 

pixels long. The remaining error burst in the data is an EOF simu

lation error, whieh leads to the non-aeeeptanee of approximately 

100 bloeks on average. Blocks will be decoded incorreetly until the 

first segment header is recovered. Up to 2 segments may be affect

ed, whieh is visible as a beam in the image of 8 pixels wide and up 

to 4000 pixels long, whieh is only a limited area eonsidering the 

'size of the image. 

5. CONCLUSIONS 

In this paper the effect of transmission errors on eompressed 

facsimile data and on uneompressed and eompressed image data have 

been evaluated. The caleulated error statistics show that the 

burstyness of the errors is an advantage, sinee it reduees the num

ber of error events. 

For the transmission of facsimile pages it was shown that eata

strophie errors oeeur only onee every 44 or 65 pages for 1-D res

peetively 2-D eompression, at a BER of 10-6 • 

For the transmission of image data it was shown that the number of 
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errors in each image can be largely reduced by introducing compres

sion, however, the effect of errors is larger in a compressed im

age. Furthermore it was shown that certain errors lead to the loss 

of synchronization, which can only be recovered if the data has its 

own synchronization structure. 

At a BER of 10-6 an uncompressed image contains 8 line errors, a 

l-D DPCM compressed image contains 12 line errors and a transform 

coded image (CF = 4) contains 2 incorrect 8 x 8 blocks and 3 beams 

of 8 pixels wide of incorrect blocks, all on average. 

It is believed that for transmission of relatively short data 

messages, such as in facsimile, a BER as high as 10-6 can be ac

ceptable. For longer data messages the images may be acceptable, 

dependent on the requirements of the user, but in genera 1 a smaller 

BER will be required. 

It should be noted that the calculations at a BER of 10-6 are 

worst case situations, which occur only in bad weather conditions. 

For most of the time the BER will be 10-7 or even 10-a, resulting 

in a reduction of the number of errors by a factor of 10 respecti

vely 100 and decompression errors than occur only very infrequent-

ly. 
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(4) 

where the enteger k is arbitrarily. The expectation in (4) is evalu

ated using the statistics of the source being compressed. 

In section IV we describe and analyse an encoder-decoder pair and 

we are able to prove that for each binary stationary source 

(5) 

All logarithms in this manuscript unless stated otherwise are assumed 

to have base 2. For the size of the buffers we find that it suffices 

to take 

M 

Note that essentially our coding strategy is of the fixed-to

variabie type. 

(6) 

It is weIl known (see Gallager [11. par. 3.3) that in our situation 

when the source is stationary 

(7) 

Also it is clear that (see again Gallager (1]. par. 3 . 5), because of 

(5) and (7), 

(8) 

where Hoo(U) is the entropy of the (stationary) source. It is (8) that 

makes our universal method optimal. 

A crucial point in our argumentation is a result on repetition 

times. The next section is devoted to this subject. 
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111. REPETITION TIMES 
1 Z A source generates ... ,x_Z,x_1,xO'x ,x , ••. with XtE Ax' a finite 

alphabet. We assurne that this source is stationary. 

Let A+ be 
x 

Now for m 

the subset of A that contains all x with P(XO=x» O. 
x + 

1 , Z, 3, . •. and x E Ax we def ine 

Q (x) ~ P(X =x,X1 ;x,XZ *x, ..• ,X l*xIXO=x). m -m -m -m -

and 

T(x) 

where it is understood that 

r a ~ lim r 
n=1,00 n N~ n=1,N 

a . 
n 

In this section we state the following theorem. 

THEOREM: For a discrete stationary source, for x E A+ x 

r 
m=l,oo 

Q (x) 
m 

1, and 

PROOF: The proof of this theorem is not given here. 

(9) 

(10) 

(11) 

(a) 

(b) 
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IV . THE ALGORITHM 

We start the description of our algorithrn by introducing the 

following concept. 

The L-th ordered derived souree of the souree {Ut}~=_oo is defined 

as the souree that generates {Vt}~=_oo with vt ~ (Ut-L.Ut-L+l, ... ,Ut-l)· 

Without proof we give the following lemma . 

LEMMA: The L-th order derived souree of a stationary souree is 

stationary. (end) 

It is important to note that this lemma implies that the theorem in 

section 111 holds for the L-th order derived source. We will now des-

cribe the encoding process of our universal algorithrn. 
L 

Let t=kL, hence vt = uk 

The buffer now con ta ins $k 

Note that using $k and u~ 

(ut-L'Ut-L+l"" ,ut - 1 ) is being encoded. 

(Ut-L-M'Ut-L-M+1' ...• Ut-L-1) with M = ZL-1. 
the encoder can form (has access to) 

v
t

-m with 1 ~ m ~ M. With these L-vectors the encoder determines the 

integer m
k

• This m
k 

is set equal to the smallest m, 1 ~ m ~ ZL-l. for which 

vt -m 
(12) 

If such an mk can not be found set mk = M+l = ZL. From the above it 

follows that m
k 

E S ~ {1,Z, .•. ,ZL}. 

We now assume that S is partitioned in L+l subsets. These subsets 

S , p=O.1,Z, ..•• L, are defined as follows 
p 

S 
P 

ê ,P ~ p.l {~ ,Z .1, ... ,Z -I}. for p=O,I.Z, ... ,L-1 and 

S ~ 
L 

Note that S for p=O,1,2, ... ,L-1 contains zP elements. 

(13 ) 

p 
Next suppose that m

k 
* 2L. Then, using the subsets of S, it is possible 

to assign to each m
k 

a subset number p which indicates that mk ESp' 

and a member index q which is defined as 
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q ~ m - Zp. 

Af ter having determined mk' the encoder constructs a codeword 

* ck(mk)· 

(14) 

L * If mk * Z the codeword ck is obtained by concatenating the subset 

number pand the member index q of mk' both in radix-Z notation. For 

the subset number ceil(log(L+1» binary digits are needed, for the 

member index p binary digits. Hence if mk * 2L (this means that u~ 
appears somewhere in the buffer), 

* 19(ck ) = bot(log(mk» + ceil(log(L+l». (15) 

If mk = ZL (this corresponds to the situation where no match for 
L * uk is found in the buffer), the codeword ck is obtained by concatenating 

L the subset number Land the source word uk' the subset number in 

radix-2 notation. Now for the subset number again ceil(log(L+l» 

binary digits are needed and for the source word L digits. Hence for 
L mk = 2 , 

L + ceil(log(L+l» . (16) 

* One easily verifies that the decoder af ter having received ck can 
L reconstruct uk' Also note that the codewords emitted by the encoder 

satisfy the prefix condition. 
L We will now analyse the described algorithm. Suppose that vt(=uk)=v 

is the codeword being encoded at t=kL. Now what is the average length 

L(v) of the codeword assigned to it? We extrapolate the notation of 

(9) somewhat and obtain 

L(v) ~ L 
m=1,2 -1 

Q (v)[bot(log(m» + ceil(log(L+l»] m . 

+ ~ L 
m=2 ,00 

Q (v)[L + ceil(log(L+1») 
m 

~ ~ 

m=1,oo 
Q (v)[log(m) + ceil(log(L+l») 

m 
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(a) 

E Q (v)log (m) + ceil(log(L+l» 
m=I,= m 

(b) 

~ loge E mQ (v)] + ceil(log(L+l» 
m=lt~ m 

= log(T(v» + ceil(log(L+l» 

(c) 

~ -log(P(vt=v» + ceil(log(L+l». (17) 

Here (b) follows from the (a)-part of the theorem in section 111, (b) 

from the convexity of the log function and (c) from the (b)-part of 

this theorem. Note that throughout the derivation (17) we have used 

the fact that P(v
t

) > O. Fortunately only those v appear in the source 
L output stream as vt (=uk). 

Using (17) we can now upperbound the efficiency of our system: 

< E P(vt=v)[-log(P(vt=v) + ceil(log(L+l»] 
= v:P(vt=v»O 

= H(V) + ceil(log(L+l» 

(18) 

where we have obeyed the convent ion that Olog(O) 

the proof of the result announced in section 11. 

O. This concludes 



80 

v. CONCLUSION AND REMARKS 

We conclude that our algorithm is easy to implement and that its 

minimax redundancy with respect to H(UO.U1 •...• UL_1) instead of 

LH~(U) is acceptable for stationary sourees. 

The algorithm can be generalized to arbitrary source andcode 

alphabet sizes. 

The author was motivated by a number of very interesting papers 

in the field of universal source coding. These papers are weIl known 

and need not be referred to here. 
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CONSTRUCTING ARITHMETIC SOURCE CODES 

* Tjalling J. Tjalkens 

r» ~hb., papeJt we rU6C.UM ~he mOlle pllac.tic.a.l IL6pec.:t6 0-6 
alt..i.~hmetiC. MWtc.e c.odu. We duc..ube two ~!:IPu 0-6 c.odu 
aoo .r,01l bo~h we give a.lgo~furv., .r,01l C.OMuuc.ti»g ~he c.ode 
/JMamaeMl and ".date ~he c.ode .ine.66ic.ie~tc.q ~o ~he c.ompie
my (~pac.e I . 
HeJteaf,teJt we cJ.b.,C.UM tlte dec.ocüng 0-6 thue c.odu, ~ltoU1.ing 
anotheJt uadeoM betwee~t .ltedurtdanc.y and comp.f.eU:ty (rune I . 

INTRODUCTION 

Last year (1] we described a class of arithmetic codes based on the 

Elias source coding algorithm [2]. We will briefly summarize the 

results. 

Let X be a finite alphabet source with alphabet AX ~ {O.I •..• c-l} 

and probabilities p(~n). ~n ~ x
1

.x
2

, .. x
n

. The finite code alphabet 

AY consist of the integers O.I •..• d-l. We will assume d=2. An arith

metic code converts a source string ~n into a number B(~n)E[O.I). 

The code string ~m is the binary representation of B(~n). or B(~n) 
-i 

Ei~i Yi2 . 
The rate R(n) of the code is defined as: 

where L(~n) = m is the length of the representation ym of B(~n). 

(1) 

An arithmetic code uses an exponential table A[i]. This table is 

defined by two positive integers k and N and is given as: (i and j 

are integersJ 

i=O. O~j<N 

A(iN+j] (2) 

i#O. O~j <N 

* Tj. Tjalkens is with the Eindhoven University of Technology . 
Department of Electrical Engineering. P.O. Box 513, 
5600 MB Eindhoven. The Netherlands. 
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By ralk we denote the smallest real number not less than a and express

abie in at most k significant digits. Observe that the multiplication 

by 2- i is a simple shift over i places. 

The storage ~ for this table is N(k-I) bits. As said in (1] the 

design of the code consists of selecting the integer stepsizes 
n-l n-l 

s(xnl~ ). A good design results in stepsizes such that A(s(xnl~ )] 

~p(x Ixn- l ). The ~ive computation of B(~n) is done by: n-

B(xO) ~ ° 
S(~O) ~ 0 

B(~n+l) 

Here xO is the empty string. For the meaning of S(.) see below. 

DECODABILITY 

(3a) 

(3b) 

(3c) 

(3d) 

* * The code is decodable if the stepsizes are such that for all ~ ~AX 

(the set of all finite strings over AX) [1]: 

(4) 

Remark: Now we see the function of S(~n). A[S(~n)] gives the maximum 

aug end to B(~n) due to the extra source symbols x +lx 2 .... For a 
* * * n n+ given x ~AX (4) is called the local test at S(~ ). 

* We may remove the dependency on S(~ ) and obtain a weaker, global 

test which is a sufficient condition for decodability. The global test 

is: 

(5) 

with 

(6) 
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CODE DESIGN AND PERFORMANCE 

First we give a global design (i.e~ a fixed select ion of the step

* sizes independent of SC! ) ). 

* * * 1~ E~X , xEAX : s(xl~ ) (7) 

This selection satisfies (5) so the code is decodable. 

It can be shown that L(!n) :> S(~n) + K, for some small constant K. So 

(8) 

and from (7): 

(9) 

we obtain with (8): 

(10) 

l-k 
With logd À = llN and logd ~ :> ~n d we immediately see the dependencv 

of the redundancy on the table size N(k-l). 

The rate Rl can be improved up on by a local design. In this method we 

first select the stepsizes according to (7) and then when encoding 

xi +l ' we are at position S(~i) in the tabie, we decrease the stepsizes 

as much as possible under the restrietion of the local test (4) at 

5(~i). Now we can show: 

(11) 

Together with (9) we obtain 

R
2
(n) :> H (X) + __ 1 __ À(S_lIÀS-l ) + o(l/n) 

n ln2 c 
(12) 
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A MODIFIED ALGORITHM 

For a high cardinality source alphabet the encoding by (3) and the 

corresponding decoding takes many additions and comparisons. In this 

case the following adaption might be useful. 
'I< 

Let Q(xl~ ) be the conditional cumulative syrnbol probability: 

'I< 'I< 
Q(xlx ) = L p{ylx) - y<x -

* 'I< 'I< Now we approximate Q(xl~ ) by A(T(xl~ )] where T(xl~ ) is an integer 

The encoding formulas, cf. (3), become: 

(l3a) 

(l3b) 

To ensure decodability we need the following local test: 

* 'I< A(S(~ ) + T(x+ll~ )] ~ 

* 'I< * * A[S{~ ) + T{xl~ )] + A[S(~ ) + s(xl~ )] (14) 

* * This test must of course hold for all XEAX and x EAX . From this we 

may obtain the following global test: 

* \>'x*EAX.*: r
AX 

(>,a)M-x .l.-s(xl~ ) ~ 1 
XE 

(15) 

If this is satisfied then the local condition is also satisfied and 

* so the T(x I~ ) 's can be found. 

We now give agIobal and a local procedure for designing these codes. 

First the global procedure. Choose 

* * 'I< \>'~ EAX XEAX s(xl~) (16a) 

)~ 

Since this satisfies (15) we can find the corresponding T(xl~ ) by the 

following formula: 



. * T(x!x ) 

With (8) and 

* .l .. (À~)cÀ -s(xl~ ) ii: P(x!~*) 

we obtain 
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(16b) 

(17) 

(18) 

A local design * * emerges if af ter finding s(xl~ ) and T(x!~ ) by the 

global method, we minimize each stepsize locally, i.e. for a given 

* S(~ ), so that (14) still holds. Now it follows that 

(19 ) 

resulting together with (17) and (8) in 

c 
R (n) ~H (X) + Mlêl..::. (À~2-1) + o(1/n) 4 n In d (20) 

CARRY BLOCKING 

Ob serve that the addition of A(. 1 to B(.) is done with k bits pre

cision. The with n increasing offset S(~n) shifts the augend 

A(S(~n)+s(x!~n)] further to the right. This is equivalent and techni

cally more easy to implement by shifting B(~n) to the left bv the 

same amount. We would like to be able to transmit the symbols from 

B(~n) already shifted out of the last k positions, but this implies 

that these digits may not change. However, it is not hard to see that 

carrys can occur during the additions, at most one per source symbol, 

and these might change an arbitrary long string of code symbols. To 

prevent this Langdon and Rissanen [3] describe a blocking technigue. 

However their technique as described is incorrect. While it can be 

repaired we propose a somewhat different method, that is more in line 
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with the whole algorithm. Just like Langdon and Rissanen we save the 

last q symbols shifted out of the adder in a special register that 

can perform shift and increment operations. If this register does not 

contain only ~ tiEn an occuring carry will be stopped within the 

register. Otherwise the carry will propagate out of it and this we 

want to prevent. 

We suggest that whenever the register contains only ones af ter a 

source symbol is encoded the B(.) string is shifted to the left until 

the blocking register contains a zero. Assuming the symbol probability 

in the tail of B(.) to be (!.!). since the binary string is the out

put of a good source encoder. we need two shifts on the average when

ever the "allones" condition occurs. Experiments indicate that this 

is a slightly conservative estimate. The probability of the "allones" 

condition is about one per zq source symbols. 

DECüDING 

Decoding is done by simulating the encoder. that is the decoder 
An 

tries to build its own number B(~ ) in correspondence with the recei-

ved codestring ym. For this purpose it uses the same equations. tab les 

and carryblocking mechanism as the encoder. 

We will give a recursive description of the decoding. We write 

V(y~) for the value E~_l y.Z-j represented by yt. Let yt be the recei-
J- J A· 

ved prefix of ym. the final codestring. Let ~~ be decoded correctly 

( Ai i) f ~ 
~ =~ rom y . So 

(
Ai . 2-

B ~ ) ~ V(y ) and (21) 

(22) 

tI t 
Let y (tl ~ t) be the shortest extension of y such that there exists 

an XEAX with 

(23) 

(24) 
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It is not hard to see that due to (4) or (14) this x is unique and 

equal to xi +I . So we set ~i+I=X' and the string ym will be decoded 

correctly into xn Af ter decoding a symbol we perform the carry 

blocking shifts if needed. In this way decoding is a search opera

tion through all possible c augends. For the algorithm (3) this can 

only be implemented as a linear search through AX, resulting in c 

tests at most and x=E{y.} tests on the average. 

The modified algorithm might be decoded using binary search resul

ting in about log c tests per decoded symbol. If the source symbols 

are ordered such that p(o)~ .•. ~P(c-l), or vice versa, then in stead 

of the binary search tree we might use a Huffman search tree mini

mizing the average number of tests to at most H(X)+l tests. A trivial 

upperbound to the longest path (and search) in this tree is c. Huff

man decoding will be awkward to implement for sources with memory 

but is quite useful for memoryless sources. 

COMPLEXITY 

First consider the storage reguirements. As said before the table 

A[.] needs N(k-I) bits of storage. If the stepsizes are precomputed 

by the global method then we need one, or more in the Markov case, 

tab les to store these. Assuming either that these tab les are. small 

compared to A[.] or that we cannot or will not precompute the step

sizes we might solve for the minimum rate RI .. R4 with a constraint 

on N(k-I). 

Now we turn to the amount of work needed to en- and dec ode a source 

symbol. The code (3) has an en- and decoding time proportional to 

x(or c), while the code (13) has an allmost constant encoding time 

and a decoding time proportional to log c or H(X). Now compare the 

local methods with the corresponding global ones. Notice that the 

local methods start with the global parameters and then optimize for 

the current symbol. This implies searching in A[.] which can be done 

in OtlogN) tries per point searched. The global stepsizes must be 

computed or stored in a table. With code (3) all global stepsizes are 

needed for the local method, so having to compute them every time is 

expensive. The optimization itself is also comparatively complex 
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since it involves x searches. The local method in code (13) is not much 

more complex than the global method. We need to compute two T(.)'s 

in stead of oneand we need one search. 

CONCLUSIONS 

We described two codes and two design methods for each. If we com

pare the bounds on the rate (and the coding times), then we conclude 

that 

- the local methods are substantially bet ter than the global ones 

with respect to the redundancy. 

- code (3) has a lower redundancy than code (13) for the same 

table Ar.]. For the global methods they differ a factor c, but 

the local methods can be optimized so that they differ only by 

a factor of about 2. 

- for high cardinality alphabets the local method for code (3) 

becomes very time consuming and even the global code (3) is 

more expensive than code (13). 

- for code (13) the global and local methods do not differ much 

in time, while the redundancy bound in the local method is 

much lower. 

- the availability of precomputed stepsizes reduces the en- and 

decoding times considerably. 
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THREE-OIMENSIONAL OBJECT RECOGNITION BY USING STEREO VIS ION 

E.F.P. van Mieghem, JoJo Gerbrands, E. Backer 

The recognition of three-di~nsional soUd objects is a well
known problem from the field of robot vision for industrial 
appUcations. In the stereo vision approach wo wo-di~nsion
al irrnges are obtained from caUbrated camera positions . In 
the ~thod discussed here, a graph is constructed for each of 
the wo irrnges with the nodes corresponding to the object ver
tices. Both graphs are matched with a branch-and-bound algo·· 
rithm. Three-di~nsional object featu.x>es are computed and used 
as attributes in the inexact graph matching recognition stage. 
The discussion is restricted to trihed:Pal objects. 

STEREO VIS ION 

It is weil understood that machine vis ion wil 1 play an important 

role in flexibie automation and computer-aided manufacturing. Most 

robot vision systems functioning to date are essentially two-dimen

sional (2-0) in nature. In the emerging field of robot vision and sen

sory control, much research is devoted to the problem of actually ob

taining three-dimensional (3-0) informq tion about the robot' s environ

ment. This includes the recognition of 3-0 objects as weil as the de

termination of object position and orientation in 3-0 world coordi

nates. '!here are a number of ways in which this problem can be attacked. 

One distinguishes active and passive imaging techniques o In the active 

techniques same sort of active source (ultrasound, laser) is used, 

while the passive techniques employ overall scene illumination. A se

cond dichotomy is to distinguish methods which use triangulation and 

methods which use the perspective transform. 

The stereo vision approach to be discussed here is a passive trian

gulation methode In stereo vision two 2-0 images of the 3-0 scene are 

acquired from two distinct camera positions, as shown in Fig. 1. 

Delft University of Technology,. Oepartment of Electrical Engineering, 
P.O Box 5031, NL-2600 GA DELFT 
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v 

Fig. 1. The principle of triangulation. 

The point V in 3-0 space is projected on the 2-0 coordinates vi and 

vi in the 2-0 images I 1 and I2' respectively. The 3-0 coordinates of 

the point V can now be computed from the 2-0 coordinates vi and v2 if 

the posi tions and orientations of the cameras are known [1] . 

THE CORRESPONOENCE PROBLEM 

In order to apply the method of triangulation, one has to find 

pairs of corresponding points vi and v2 in the two images. This cor

respondenee problem is greatly facilitated if we restriet the complex

ity of the scene . In a first attempt we consider isolated trih~dral 

objects. A trihedral object is an object from the blocks world with 

not more than three edges at every vertex [2]. Some examples are gi

ven in Fig. 2. As trihedral objects are completely described in terms 

of vertices and edges, it is most natural to consider the vertices, 

as observed in the 2-0 images, as characteristic points in the corres

pondenee problem. 
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In order to detect the vertices in the 2-D grayvalue images we con

struct a line drawing of the object [3,4]. First the grayvalue image 

is convolved with linear discrete difference operators to obtain the 

components of the Sobel-gradient. Second, a spatial clustering scheme 

is applied to find clusters of pixels with high gradient 'values and 

similar gradient directions. Finally, the projected object edges are 

found by fitting a straight line through the pixels of each cluster. 
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The projected vertices are detected at the intersection points of the 

fitted lines. 

Obviously, the same procedure is applied to the second image. Ncw, 

we have to find pairs of corresponding vertices in the two images of 

the stereo pairo From Fig. 1 it is obvious that a point in one of the 

2-D images, say point vi, may be the projection of any point on the 

projecting ray r 1 . The projection of r 1 onto the second image 1 2 is 

called the matchline of vi, and all points on the matchline are can

didates to be the corresponding point of vi. So, if we consider a pro

jected object vertex in 1 1, we search on or close to its matchline in 

12 for its corresponding projection. Frequently, this is done by com

puting the cross cor~elation between greyvalue subimages. This is ex

tremely time consuming. Instead, we use a minimum cost graph matching 

technique. 

In the graph matching approach the line drawings of the projected 

objects are used as graphs, the nodes of the graphs being the projec

ted object vertices. Consider two nodes: node N1 of graph G1 represen

ting vertex N1 in image 1 1, and node N2 of graph G2 representing ver

tex N2 in image 12 • Let L1 denote the matchline of N1 in 12 and L2 the 

matchline of N2 in 11 0 The euclidean distance between a vertex N and 

a matchline L is denoted as d(N,L). Now we define the costs of mat

ching N1 and N2 as 

and compute these cost coefficients for all pairs of nodes of the 

graphs G1 and G2• We th.en apply the well-known branch-and-bound algo

rithm to find the minimum cost match between G1 and G2 , where the 

costs of matching two graphs is defined as the sum of the cost coeffi

cients of all pairs of nodes in the match. The pairs of nodes in the 

optimal match define the corresponding projected object vertices. 

OBJECT RECOGNITION 

Having solved the correspondence problem, the 3-D coordinates of 

the object vertices can be computed. It is then possible to compute 
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the lengths of the object edges in 3-D space as well as the angles 

between edges at the vertices. These values are used as attributes in 

a 3-D graph representation of the object. Each object class is repre

sented by a prototype graph. Againthe inexact graph matching techni

que is applied to find the optimal match between the vertices in the 

observed object and those in the prototype . In principle, this is re

peated for all prototypes and the observed object is assigned the la

bel of the model with the minimum matching costs. The matching costs 

are defined as the absolute difference of edge lengths and the abso

lute difference of angles between the observed object and the model. 

The speed of the recognition stage is greatly iroproved by perfor

ming a preselection with respect to the prototypes to be considered 

in detail. This preselection implies that for each node pair the cost 

of the best match of edges is computed. This is repeated for all node 

pairs independently and summed. If these costs exceed a certain thres

hold, the prototype model is discarded. 

CONCLUDING REMARKS 

The methods described above have been implemented on a low cost 

vision system (Motorola 68000). Preliminary experiments using the ob

jects given in Fig. 2 indicate that all objects can be recognized cor

rectly if they are presented one by one to the system. Further experi

ments are needed to investigate the problems of partly occluding ob

jects, i . e., scenes with a higher complexity [5]. 
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WLTIRESOLUTIONAL CLUS'Ilm/RErAXATION IN SEX;MENTATION 

J.J.Gerbrands*, E.Backer*, X.S.Cheng* 

A multiresolutional segmentation algorithm is descri

bed. A quadtree based split-rrerge procedure generates 

variable-sized quadtree- blocks (multiresolutional data 

units) heing the data units used in a cluster proce

dure te extract regional features. A nonlinear proba

bilistic relaxation procedure, then, cx:mducts the 

final quadtree-block labeling. It is shc:Mn that a 

large reduction in data processing is attained by pro

cessing blocks rather than pixels and still the result 

reasonably approximates the true segmentation. Also, 

sane experimental results are included here. 

1. Introduction 

The use of clustering and relaxation in image segmentation has 

appeared in literature over the past decade [ 1 ,2] • HONever, the 

majority of those approaches are pixel-based and therefore bear 

inevitabie drawbacks and lirnitations. Firstly, only a lirnited number 

of pixels may attend the clustering and relaxation processes to keep 

canputational complexity and merrory requirement within limits. 

Secondly, the representativity of individual pixels may he regarded 

as quite poer because of inevitabie noise influence. As aresuit, 

these approaches are vulnerable te yield inconsistent segmentations 

even if a suitable context-based relaxation process was involved. 

Werk reported here is an attempt to break the above lirnitations. 

The concept which will he implemented is as follCMs: 

1.Generate a number of image prirnitives (sets of connected pixels) 

*The authors are with the Delft University of Tecnology, 

Department of Electrical Engineering, P.O.Box 5031, 

2600 GA Delft, The Nether lands 



sa that the local oonsistency within each primitive is satisfac

tory. Note that primitives are not necessarily equally sized. 

2. Select 'dCxninant' primi ti yeS and appl y a clustering process on 

them for extracting class infonnation (i.e. characteristics of 

existing regions ) • 

3.Based on the clustering result, assign initia I class nenberships 

to all primitives. For those primitives which have little dani

nancie, the initial distribution may he unifonn. 

4.Conduct a relaxation process on the primitives using locally 

dependent canpatibility coefficients. Note that primitives with a 

relatively large daninancy maY he excluded fran this process. 

Clearly, the above concept offers two obvious nerits: 

a.Replacing single pixels by larger primitives reduces the number 

of operational data units drastically, 

b.By allCMing only Irost-dcxninant primitives to attend the cluster

ing process, the clusters will he llUch Irore reliable while at the 

same time the clustering process will involve less data units. 

Certainly the fundarrental asstnnption is that step 1 can he rea

lized satisfactorily with feasible complexity and implementation. 

Here, a quadtree l::ased split-nerge procedure meets our requirerents 

to generate the desired primitives. The resulting quadtree blocks 

(QI'-blocks) are oonsidered as the (multiresalutional, variable

sized) primitives. Typically, in a quadtree-l::ased procedure a QI'

block's daninancy can he related to its size. 

In the follCMing section, we will discuss the iterative split

nerge scheme, the clustering scheme àncl the relaxation scheme in 

greater detail. 

2. Design of the Multiresolutional SecJtentation Awroach 

A. The iterative split-marge scheme. 

Contrary to the general split-and-nerge approach introouced by 

Horowitz and Pavlidis [3] the procedure here is only to yield a 

suitable set of QI'-blocks with one understanding that an overrrerged 

output quadtree will do Irore hann than an oversplitted one. In our 
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exarrq;>le we have adopted the variance criterion for this presegrnenta

tion. 

Below are two 'goodness' -rneasures of aresul ting quadtree , which 

we have introduced te provide SOIre sort of a feedback facility let

ting the process itself iteratively improve its output: 

a . AP: Area Preserve 

this rneasure is defined as the total area of bleeks which are 

larger than a size threshold. 

b. RP: Region Preserve 

this rneasure is defined as the ratio of the sample variance anong 

the weighted means of all individual bleeks larger than a size 

threshold te the sample variance in the input image. 

The si ze threshold above is a priori chosen based on the smallest 

expected region(s) and the smallest si ze of a bleek whose sample 

variance may still give a oonfident estimate for the enclosing 

region. If AP is toa small, it will either indicate the unsuitabi

lity of the criterion or reflect the impropriety of the chosen 

threshold toward the input. On the other ham, an excessively large 

value of AP will in most practical circumstances suggest that the 

chosen threshold is toa large as in real-world imagery a region will 

generally bring about many small ar-bleeks along its border. In oon

clusion, if we do acknowledge the suitability of the criterion, a 

proper value of AP should be within scme limited range [AL,AH]. 

The behaviour of RP is characteristic for preserving the original 

region structure within the output quadtree. fure precisely, each 

existing region must oontain at least one large bleek and any large 

bleek IlUlst not oover rrore than one region. The higher RP the rrore 

representative the set of large ar-bleeks is for this structure. To 

ensure such a representativity RP should exceed scme lowerbound RL. 

B. The clustering process. 

As pointed out before, the clustering process is carried out on 

ar-bleeks exceeding SOIre size-threshold. The bleeks participating in 

the clustering process are marked 'acti ve'. Normall y for processing 

images of size 256x256, we may fix this threshold at, say 4x4 . How-



98 

ever, to handle possible ext:reIre situations it may be necessary to 

adjust this threshold. The following criteria may detect such cases 

and initiate appropriate emergency neasures: 

a. The ratio of the sample variance anong active blocks to the 

sample variance anong all blocks should IlOt be toa small, 

b. the total area of active blocks must exceed sane threshold, and 

c. the number of active blocks must IlOt be toa large. 

Relying on the representativity of relatively large QI'-blocks, we 

may expect IlO outliers in the clustering process. Together wi th a 

fact that only a few handreds of blocks are generally chosen active 

we can therefore apply more sophisticated clustering procedures for 

this purpose. 

In our example we have adopted a clustering procedure scmahow 

similar to MacQueen 's k-means method for variable number of clusters 

[ 4] • The central issue here is how to properl y assign I coarsening I 

and I refining I parameters . We have settled this by utilizing sare a 

posteriori knowledge, e.g. the within-variances of active QI'-blocks. 

C. The relaxation process. 

Arnong many recent methods, the so-called nonlinear probabilistic 

relaxation approach appears to be particularly suitable for many 

purposes. LettingP!kl {a} be the probability about block i belonging 
;L 

to region {a} in kth iteration, the modificating operation in such 

an approach is directed as follows: 

where A!kl is a normalization factor to ensure the distributional 
;r. 

nature of P andQ!kl {a} is sane sort of support to labeling {a} at i 
;L 

fran its spatial neighborhood. Clearly, Q is the only way for excer-

ting contextual influences under this modificating rule. Typically, 

it takes the following form: 

. (kl \' \' . (kl 
Q. {a}= L.wi · L-.. r i · (a,blP

j 
{b} 

1. jE-N . J bE-V J 
1. 
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where N. is the neighlx>rhood of i, V is the label set, w is the 
J. \"""' ij 

neighlx>rhood weighing factor (~Wij=1) and rij(a,b) is the sa-

called oompatibility coefficientJwithin [-1,1], which expresses to 

what extent labeling {b} at j is canpatible with labeling {a} for i. 

'!'he very rneaning of r .. (a,b) can be seen as sone context-
J.) 

deperrlent and intuitive (in the sense of a priori knowledge and 

interrled goal) neasure al::x:>ut to what extent labeling {a} at i is 

canpatible with labeling {b} at a neighlx>ring j when the labeling 

for i is facing reconsideration, or rrore naturally as sone support 

to labeling {a} at i from labeling {b} at j. In Rosenfeld, et al. 

[5], the oompatibility coefficients for a similar process were 

determined based on a finite mmlber of physical evidences while in 

Zucker et al. [ 6] , they were selected under a clear understanding 

that neighlx>ring pixels should in rrost cases have very similar edge 

properties. However in our case, instead of a general object set we 

encounter a set of variable-sized QI'-blocks. It is hardly possible 

or reasonable to a:xment on the (in)consistences arrong neighlx>ring 

blocks without same knowledge of existing regions or regional 

properties of relevant blocks. Assuming that the regions to be 

searched are somehow convex or at least locally convex, rij (a,b) can 

however be reasoned to behave in the following way. 

If j is smaller than i, it is then very reasonable that less or 

even na action should be taken to adjust the labeling at i in order 

to improve the canpatibility with that at j due te the following: 

a. j may lie between two larger and unaligned blocks (i is ene of 

them) from two adjacent regions and therefore the current label

ing at j is nat yet stable en its own, 

b. j is certainly rrore likely to be a border element of a region 

than i. If they both belong to a ccmron region, then there is 

obviously a necessity for j to be canpatibly labeled with i and 

nat the other way round. otherwise, any current labeling at i is 

clearly not incanpatible with that at j. 

Out of these considerations, it is quite natural to choose a 

relatively small magnitude for r . . (a,b) based on same non-negative 
J.) 

function F(SIDEj ,SIDEi ) with F sonehow proportional to SIDEj and 
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inversely proportional to SIDEi • UOOer a similar idea, we tend to 

let rij (a,b) also vary according to F(SIDEj ,SIDEi ) when SIDEi ~SIDEj • 

So, an obvious choice will he: 

where &ab is the Kronecker delta, and ci is a positive sealing 

factor which also ensures rij (a,b) within [-1,1]. Clearly, c;. should 

never exceed 1 /F(L,SIDE1.) with L heing the largest existing block 

size. Thus, 

where c~(O, 1] is OCM independent of any specific i. 

An obvious and simple choice for F is F(X,y)=(x/y)p with p>O and 

as a result, we obtain: 

3. Experinental Results 

In the present experinents two test images of size 256x256 were 

used (Fig. 1). Based on scxre a priori judgements we have fixed 

[AL,AH] at (50,85) and RL at 30 respectively. All blocks exceeding 

4x4 are accepted for taking part in the ealculation of AF and RP. 

'!'he smallest size of clustering-active QI'-blocks is always ini

tially set to 8x8. However, to ensure regional representativity of 

active blocks attempts were made to check such a representativity. 

The lowerbounds for the area and variance percentages were fixed at 

60 and 45 respectively while the upperbound for a tolarable cluster 

data size was set to 600. If this checking operation fails to 

approve the selected blocks, subsequent steps will appropriately he 

taken to adjust the active-block threshold to either 16x16 or 4x4. 

For the final relaxation purpose we have adopted the following 
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Figure 1. Input test images. 

initialization mechanism: 

p~O) {a}=[1-d. {al/Ld. {b} ]/(N-1) 
~ ~ b.V ~ 

where di {a} is the feature distance hetween block i and cluster {a} 

and N is the number of clusters. To all QI'-blocks of a single pixel 

we have applied the uniform initialization. Furthennore, all blocks 

larger than 32x32 were excluded frc:rn the relaxation process. To 

reduce llIrlesired artifacts we have set p=1 and c=1 for the cc:rnpati

bility coefficients. The final results are shown in Fig. 2. 

Although we stillobserve same artifacts on the final outputs, 

the overall quality of the results does exhibit same significance of 

the proposed approach. Especially, the detected bollIrlaries of the 

actual regions are quite satisfactory. 

4. Ccnclusions 

Frc:rn the experi.nental results sa far, we may ccme to the follCM

ing conclusions : 

a.The iterative split-merge scheme is a workabie approach and may 

he fully autanated llIrler neasures AP and RP proposed here. 

b.By clustering and relaxing QI'-blocks instead of single pixels the 

final result can approach the true segmentation quite reasanably. 
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Figure 2. Contours detected on the original inputs. 

Fran the above, we may expect the proposed approach to be further 

developed into a well-behaved method to tackle segmentation problems 

for a wide range of purposes and especially for images where 

regional properties play a daninant role. 
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REGULA..1UZED ITERATIVE IMAGE RESTORATION 

R.L. Lagendijk*, J. Biemond* 

In this paper a reguZarized iterative aZgorithm is desaribed 
whiah soZves the iZZ-posed image restoration probZem in a 
numeriaaZZy stabZe way by inaorporating a priori knowZedge 
about the originaZ image. Three kinds of a priori know Zedge 
are used: the first type imposes an upperbound on the resi
dual signal, and the seaond type resrnats the high-frequenay 
aontent of the (restored) signal. We show that by the use of 
weighted norms in defining the above-mentioned types of a 
priori knowZedge the aZgorithm aonaentrates on restoration in 
the viainity of edges, and on noise suppression in flat re
gions. In this way the aZgorithm is aapabZe of handZing spa
tiaZZy varying image statistias in a pZeasing manner for the 
human observer. The third kind of a priori knowledge is a de
terminis tic aonstraint representing a alosed aonvex set in 
the solution spaae. In order to show the significanae of our 
iterative algorithm we present some restoration results on a 
reaZ photographically blurred image. 

1. INTRODUCTION 

In image restoration the ultimate goal is the recovery of the ori

ginal scene from a distorted version. The distortion may be due to mo

tion of the camera with respect to the original scene, defocusing of 

the lens system, etc. In addition, the distorted image is nearly al

ways corrupted by random noise. We model our noisy blurred images as 

follows: 

g = Df + n, ( 1) 

where the linear distortion operator D is known or can be satisfactory 

identified. The original and noisy blurred images are denoted by the 

(lexicographically ordered) vectors f and g, respectively. The signal

uncorrelated random noise is represented by an additive term n, of which 

the charactet.istics are only partially known in practice. Hence, the 

* Delft University of Technology, Department of Electrical Engineering, 
Information Theory Group, P.O. Box 5031, 2600 GA Delft, the Nether
lands. 
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exact original image cannot be computed from the distorted version. 

Image restoration concentrates on how to filter the distorted data 

to achieve an improved image, which is an acceptabIe approximation of 

the original image. 

In recent years iterative signal restoration, and iterative image 

restoration in particular, has received considerabIe attention [1]

[5]. Among the advantages of iterative solution methods we mention: 

- the possibility of including nonlinear constraints which reflect 

certain deterministic a priori information about the original image, 

- the truncation of the iterative process af ter a fini te number of 

iterations in order to obtain an optimal result for the human visual 

system, 

the possibility of avoiding the determination of the inverse dis

tortion operator . 

However, most of the existing iterative algorithms are derived without 

explicitly taking into account the presence of noise in the distorted 

images. As aresuIt excessive noise amplification will occur when the 

number of iterations increases. It can be shown that this effect re

sults from ·the ill-posedness of the restoration problem [4], [6], [7]. 

In order to solve the ill-posed image restoration problem, a priori 

information about the original image has to be included in the deriva

tion of the restoration algorithm. Such an approach is known as "regu

larization" [6], [7]. 

In section 2 we describe three kinds of a priori knowledge which are 

used in regularizing the image restoration problem . Furthermore, the 

concept of weighted norms is introduced in order to incorporate funda

mentally spatially varying image statistics. In section 3 we present 

the derivation of our regularized iterative algorithm. First we follow 

the MilIer regularization approach [11], and next compute iteratively 

a solution of the obtained regularized equation, simultaneously apply

ing a deterministic constraint in each iteration step. Some experimen

tal results on a real photographically blurred image are given in sec

tion 4. 

We remark that the iterative restoration algorithm presented in this 

paper is an extension of the algorithms proposed by Katsaggelos and 
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Biemond [2], [5]. 

2. A PRIORI KNOWLEDGE 

In this section we introduce three types of a priori knowledge 

about the original image to be used in the derivation of our algo

rithm. In the first two we make use of weight matrices to enable the 

handling of spatially varyi ng image statistics such as the local sig

nal activ ity (edges, flat regions) in a pleasing manner for the human 

visual system. The third type of knowledge consists of a (possibly 

non linear) deterministic constraint, well-known from the theory of 

the convex projections [10], [12]. 

Since in image restoration the receiver of a restored image is 

usually the human observer, we should like to incorporate some charac

teristics of the visual system into our restoration methods . However, 

the structure and responses of this system are very complex , and can

not easily be represented by mathematical equations . Therefore, we me

rely make use of the following two global results from psychophysical 

experiments [8]: 

- noise in flat regions of an image gives rise to extraordinary fea

tures to the observer, while the presence of sharp intensity transi

tions considerably reduces the visibility of noise (masking effect) , 

- sharp edges contribute strongly to the appraised qual i ty of (resto-

red) images. 

From these experimental results we conclude that restoration must pre

vail over noise suppressi,on in the regions where sharp intensi ty tran

sitions are found, while on the other hand regions containing only slow 

intensity variations must be as smooth as possible . We use these expe

rimental results in defining our a priori knowIedge . 

In the first place we demand the estimate of the original solution to 

be an element of the set of admissible solutions, defined by: 

Ilg-Dfl1
2 

:= (g-Df) tR(g_Df) 
R 

2 
< E • (2) 

Here R is a diagonal weight matrix , so the norm is taken in a weighted 
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Hilbert space. The global bound E
2 on the weighted length of the re-

sidual signal g-Df is assumed a priori known, and is obviously rela

ted to the amount of noise present in the distorted image . If we as

sume this image noiseless (E=O) , equation (2) directly leads to the 

(pseudo-)inverse filtèr estimate [9]. 

The weight matrix R may incorporate certain aspects of the human 

visual system. For example, in the vicinity of edges the weight coef

ficients should be assigned large values in order to enforce inverse 

filtering due to the fixed upperbound E
2 • Consequently, the resolu

tion gain will be large, but inherently related to this, considerable 

noise amplification may be expected as well. This is, however, not 

disturbing to the observer due to the masking effect . 

The second kind of a priori knowledge about the original image is de-

fined by: 

(3) 

Here S is again a diagonal weight matrix and E2 a known upperbound on 

the weighted norm. L is a physically realistic, invertible regulari

zing operator which reflects some desired properties of the restored 

image. In fact, we restrict with eq. (3) the set of admissible solu

tions (eq. (2)) to a smaller subset. 

A common assumption made in image restoration is that the noise is 

broad-banded and that the distortion has a low-pass filtering effect . 

In consequence of this, particularly high-frequency noise will be mag

nified enormously. Therefore, the regularizing operator L is generally 

a low-pass filter, imposing a smoothness requirement on the restored 

image. 

The weight matrix S locally regulates this requirement, depending 

on the characteristics of the visual system. The coefficients in the 

matrix S are choosen in such a way that in flat regions high-frequen

cies (which can merely be noise) are penalized strongly, and in the vi

cinity of edges high-frequencies are hardly penalized. By doing so, we 

obtain both sharp edges and smooth flat areas. 
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Lastly, the third type of a priori knowledge suitable for our itera

tive algorithm is a (possibly non linear) deterministic constraint C, 

representing a closed convex set in the solution space [10], [12]. 

Some well-known constraints in image processing are nonnegativity, 

maximal energy and (locally) bounding the image intensities. The or

thogonal nonexpansive projection P onto the closed convex set C is 

defined by: 

Pf f, if f satisfies C 

(4) 
h, otherwise, where h E C and 

Ilh-fll ~ IIx-fll, Vx E c. 

3. FORMULATION OF THE REGULARIZED lTERATlVE ALGORITHM 

MillerRegularization 

Following the MilIer regularization approach [11], we combine both 

sets described by eq. (2) and (3) into a single quadrature formula: 

(5) 

where the regularization parameter a has the fixed value a=(E/E)2. A 

solution satisfying both eq. (2) and (3) is obtained by minimizing the 

functional ~(f), yielding 

t o Rg. (6) 

Here f
m 

is the unique MilIer solution to the restoration problem. Ob

serve that if we assume the images of size NxM, the actual computation 

of f would require the inversion of the matrix DtRD + aLtSL, which has 
m 

the size N2xM2 • Since this matrix represents a space-variant operator, 

we cannot reduce the computational complexity by applying the standard 

diagonalization procedure for block-circulant matrices (i.e. Fourier 

domain filtering) [9] . Furthermore, we cannot guarantee that the solu

tion f m will satisfy the constraint C as weIl, nor can we modify eq. 

(6) so that f always meets the desired deterministic condition. For 
m ~ 

these reasons the solution f
m 

is approximated by using an iterative 



108 

method, which simultaneously offers the possibility of imposing the 

constraint C on the solution. 

Iterative solution method 

We rewrite eq. (6) as 

G(f ), 
m 

(7) 

where a is called the relaxation parameter. The unique fixed point of 

this mapping coincides with the solution of eq.(6), and can be compu

ted by using the contraction mapping theorem [12]: 

(8) 

A sufficient condition for the convergence of these iterations is the 

contractiveness of the mapping G, which ~esults in the following con

dition: 

o < a < 2 
IIDtRD + aLtsLl1 

(9) 

We now introduce the constraint C in the iterative algorithm: 

(10) 

The iterations f k converge to the unique fixed point ft of the composed 

mapping P G in the convex set C, provided that a satisfies the bound 

in eq. (9). It can be shown that the iterative algorithm in eq. (10) 

minimizes the functional ~(f) subject to the constraint C [13]. 

Substituting the definition of G into eq. (10) yields our regula~ 

rized iterative algorithm: 

(11) 

The algorithm is considered to be converged if an estimate f k satisfies 

eq. (2), (3) and the constraint C. Observe that we do not require the 

theoretical limiting solution ft to be computed, but are satisfiedwith 



109 

an estimate in the close neighborhood of f~. Sufficient convergence 

condi tions are: 

(i.) a solution described by eq. (2), (3) and the constraint C exists. 

(ii) the relaxation parameter S satisfies the bound in eq. (9). 

Interpretation of the algorithm 

The irttroduced algorithm is composed of arestoring and stabilizing 

part. The restoration term SD~(g-Dfk) estimates the correction for 

the next iteration by comparing the data g with the distorted k-th es

timate. The size of the applied correction depends on the value of S, 

thus regulating the restoration speed. For a finite number of itera

tions the weighted norm introduced in eq. (2) may now be interpreted 

as a locally varying relaxation parameter. For example, near edges the 

large corresponding weight coefficients in the matrix R must enforce 

a higher restoration speed than in flat regions of the image. Conse

quently, a trade-off between noise suppression and resolution enhance

ment is achieved by the matrix R. 

In general the regularizing operator L imposes a smoothness condi

tion on the restoration result, hence the stabilizing term (I-aSLtSL)f
k 

acts like a low-pass filter. The regularization parameter a incorpora

tes the global amount of noise into the algorithm. For example, if the 

data g is noiseless, a=O and the regularizing operator L is disabled o 

The weighted norm introduced in eqo (3) locally controls the value of 

a, and hence the strength of the low-pass filtering effect. For exam

ple, near edges the coefficients in the weight matrix S take small va

lues te prevent blurring of the edges. 

Computation of the weight matrices 

To compute the weight matrices Rand S we need te know the position 

of the edges in the original undistorted image. However, only the dis

torted vers ion is available in which the edges are of ten very smooth 

and may even be shifted to a wrong positiono The best way out of this 

dilemma is to compute a non-weighted non-regularized iteration result 

in advance (using eqo (11) with a=O and R=S=P=Identity), which is an 

iterative approximation of the inverse filter estimate . This result has 
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sharp edges, but is very noisy as well. Using the noise suppressing 

local variance measure from [2], the edges can be estimated quite well 

from this provisional result . Finally, the weight matrices are calcu

la ted from the local variance cr~ (i, j) as. follows: 

R(i,j) 

S(i,j) 

2 (' ' ) v crf~,J · . 

( 2 (' ') v) , max crf ~,J 

4. EXPERIMENTAL RESULTS 

Photo 1 shows a real photographically blurred image of size 

(12a) 

(12b) 

128x256 pixels. We identified that the train in the image was distor

ted by horizontal linear motion blur over 8 pixels and by noise with 

SNR 20 dB. Photo 2 shows the sharp, but also very noisy non-weighted 

non-regularized iteration result (S=1 . 0, 100 iterations), which was 

used to compute the weight matrices Rand S. The restoration without 

making use of these matrices is shown in photo 3 (S=1.0, a=2.0, 100 

iterations). No magnified -noise can be seen in this result, but the 

edges are very smooth as well. Finally, the restoration in photo 4 is 

computed by using the weight matrices and a deterministic constraint C 

(S=1.0,v=0.5, a=2.0, ~=2.0, 100 iterations). Because we knew a priori 

that the image intensities were in the interval [55,125] we used the 

following projection: 

Max [55,Min(125,f(i,j»]. (13) 
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CLUSAN1: A KNOWLEDGE BASE FOR CLUSTER ANALYSIS 

E. Backer, E.J. Eijlers 

Cluster analysis as a scientific tool to unravel data is cha
racterized by multiple statistical testing~ validation and 
complex reasoning. Today~ it is felt natural to associate 
such a reasoning process directly with expert systems. This 
paper is a result of an attempt to develop a knowledge base 
(CLUSANl) for the expert system Delfi2 to facilitate the 
user to obtain validated results of an explorative data-ana
lysis. As a result~ the expert system appears to be particu
larly suitable for potential users which are non-experts but 
familiarized with the subject matter. Both~ ' the art of know
ledge engineering and the resulting structure of the knowledge 
based are reviewed. A consultation sample will be given in 
support of the usefulness claimed. 

INTRODUCTION 

Cluster analysis is known to be one of the major tools in explora

tive data analysis applicable in many sciences. The analysis of data 

is characterized by multiple testing, validation and complex reason

ing. Usually, quite a number of procedures and routines has to be ap

plied in order to understand the pecularities of the data at hand. 

The expert-user of a statistical package for explorative data analysis 

is known by a keen feeling of determining the order in which proce

dures, routines and validation have to take place. Therefore, it is 

said that the results of any kind of data analysis is very much deter

mined by a complex reasoning process which may differ from one analy

sis to another. Nevertheless, a mmmer of COIIlIIlOn subgoals can be iden-

tified, like: 

- the validity of the substitution of missing data, 

- the validity of a priori labels, 

- the detection of outliers, 

- the statistical influence of outliers, 

- the detection of hinge (or bridging) points, 

The authors are wi th the Delft Uni versi ty of Technology, Department of 

Electrical Engineering, Information Theory Group, P.O. Box 5031, 

2600 GA Delft, the Netherlands 
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- the statistical influence of hinge (or bridging) points, 

to name just a few of them. 

These sub-goals are crucial - for example - for estimation the in

trinsic dimensionality from a clustering point of view being a next

level goal. To obtain this goal the following statistical procedures 

(in some order) then have to be used: 

- standardization (if necessary), 

- correlation analysis, 

- eigenvalue analysis, 

discriminant analysis/either on the basis of a priori labelling or 

on preclustering labelling, 

- hierarchical clustering (both on objects and variables), 

- hierarchical validation, 

feature analysis. 

As mentioned, the above process can be identified as a complex .rea

soning process. Expert systems have shown their potential usefulness 

for all kinds of complex reasoning problems. Such a system cannot for

get, can combine results and will lead to a guided interpretation of 

a large set of testing resultsjproperties. Moreover, an appropriate 

expert system is able to explain the underlying reasoning process ex

plicitly. As such, it provides a valuable tool for less-experienced 

analysts who can learn from the system itself. 

When one is planning to use an expert system for cluster analysis 

two main requirements show up: 

- the expert system should be able to handle numerical problems (most 

of the existing empty shell expert systems do not fulfill this re

quirement) , 

- the expert system should be able to execute external procedures of 

statistical packages. 

In spite of the fact that Delfi2 is not able to handle numerical 

problems we have chosen for Delfi2 mainly because of the fact that: 

- it is developed at Dèlft University (Computer Science department) , so 

software support is guaranteed, 

- it is very easy to link Delfi2 with external procedures which may 

weaken the requirement for numeri cal operations within the system. 
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This paper is the result of an attempt to develop the knowledge 

base CLUSANl for Delfi2. The knowledge base does not have the preten

tion of being perfect. More important, it was feIt valuable to iden

tify and to report on the various aspects of constructing purposive 

knowledge bases. 

In Section 2, the aspect of knowledge engineering is reviewed. 

Section 3 describes the resulting structure of CLUSAN1. 

2. SOME ASPECTS OF KNOWLEDGE ENGINEERING 

Evidently, knowledge engineering preceeds the ultimate implementa

tion of the knowledge base. In that, the knowledge engineer plays an 

important role. His task can be seen as a sequence of five stages. 

1 . discussion with the expert 

Moreoften, the knowledge engineer is no expert in the field; he may 

have some knowledge of the subject matter, but in general he is unfa

miliar with the subject matter. So, a first round of discussions with 

the expert is needed aiming at a global view upon the subject matter; 

straight forward recipies', single testing. The expert can advise what 

to read. 

2. literature study 

Through literature study the knowledge engineer can familiarize with 

the jargon characteristic for the subject matter. Various cases may 

also give rise te common structure and reasoning. Generally, books are 

very suitable. Journal papers tend to be too detailed and may distract 

the knowledge engineer from simplification, 

3. discussion with the expert about the structure 

A first attempt to formulate a - possibly still naive - structure of 

the reasoning process should be discussed now with the expert. These 

discussions may iterate towards a final structure. 

4. discussion with the expert about drawing conclusions (heuristics) 

Once the structure has been fixed the knowledge engineer will focus on 

the process of drawing conclusions: 
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- what is being concluded, 

- under what conditions can be concluded, 

- how certain are conclusions. 

Because of the complexity of the reasoning process and used heuris

tics underlying the drawing of conclusions, initially it is necessary 

to simplify and generalize. At this stage the expert should be asked 

to write down some samples of reasoning. Meanwhile the expert becomes 

aware of the genera 1 format of production rules. These discussions 

do result in the generation of production rules. 

5. validation of the knowledge base 

Af ter that the production rules have been formulated and implemented 

the knowledge base should be tested and validated in practice . Again 

known sample consultations have to be taken as test samples. In this 

stage the expert should be asked to tune the knowledge base. Special 

attention to completeness should be given. 

The above learning phase may converge if only one expert is invol

ved. If more experts are involved, one may expect conflicting strate

gies and heuristics. Additional sessions may be needed to resolve con

flicting issues. 

3. '!'HE STRUCTURE OF CLUSAN1 

An example of a context structure is shown in Fig. 1. The context 

a-priori knowledge checks the possibility of analyzing the set of data. 

The left path is followed by the analysis of pattern matrices. The 

right path leads to the analysis of object-object relation matrices. 

The context pattern-matrix is responsibie for some initial data proces

sing (e.g. elimination of constant and redundant variables) • The con-. 

text object-object-matrix is responsible for the initial processing of 

relation matrices. The path which then has to be followed depends on 

the scale(s) of the variables . The context hier-clus-var is responsible 

for the hierarchical clustering of objects . Note that a final context 

is also linked by production rules of earlier applied contexts (e.g. 

the context hier-clus-var is connected by production rules with the con

text ratio-pat) • 
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The contexts for hierarchical-clustering fixes almost the sequence 

of tests to be done. This is caused by the fact that write-commands 

can only be implemented in the conclusion part of the production 

rules. However, the questions about the testresults can only be acti

vated in the premisses of production rules. Therefore, there are two 

rules necessary to give a write-command and to ask for the testresult. 

Tb give the consultation a logical sequence, that means that the test

results are asked directly af ter the activation of the test, it is 

necessary to fix the sequence of tests. 

Four aspects of the structure of CLUSANl are now to be discussed: 

1. subconclusions 

For large knowledge bases it is good to work towards sub-conclusions. 

For example, in CLUSANl the conclusion about the existence of outliers 

must be drawn before a conclusion can be drawn about the statistical 

influence of outliers. Introducing sub-conclusions has at least three 

advantages: 

- more easy to keep an overview of the knowledge base, 

- more easy to test the completeness of the knowledge base, 

- more easy to debug. 

2. representation of conclusions 

Two types of conclusions can be distinguished: 

- conclusions which can be drawn as a result of one parametervalue, 

- conclusions which can be drawn as a result of more than one parame-

tervalue. 

The first type can be represented by a scale like: nihil, small, signi

ficant, large, very large, where the certainty factor is always 1.00. 

The second type comes with one parametervalue to which a variable cer

tainty factor [-1.00, 1 . 001 is attached. 

3. interaction of certainty factors 

Two types of rules must be distinguished: 

- strategy rules, 

- concluding rules. 

The strategical rules form the skeleton of the reasoning process and 
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have constant certainty factors of 1.00. The concluding rules are re

sponsible for the drawing of (sub-)conclusions. The certainty factors 

for these rules are variabIe. The conclusions of the concluding rules 

never occur as clauses in the strategical rules. By this distinction 

it is possible to keep the certainty factors free from distortion. 

4. the certainty factors and the user-interface 

The implementation is made less complex by prohibiting the answering 

with certainty factors. Therefore, the user can select a parameterva

lue out of a detailed set of legal values. At the same time this me

thod has the advantage that the user does not need to answer with hard 

numeri cal values. 

5. CONCLUSIONS 

The knowledge base which has been developed for cluster analysis 

has proven to be applicable in the training consultations, however, 

further testing and tuning is necessary to validate its usefulness. 

The expert system approach may serve weIl as a training system for the 

unexperienced cluster analyst because of the extensive explanation fa

cility. 

LITERATURE 

[1] Romesburg, H.C.: Cluster Analysis for Researchers, Belmont, 1984. 

[2] Swaan Arons, H. de, Lith, P. van: Expert systemen, Den Haag, 1984. 

legenda : 
1. a-priori knowl 
2. pattern-matrix 
3 . obj-obj-matrix 
4 . mixed-pat 
5. ratio-pat 
6 • nominal-pa t 
7. ordinal-pat 
8. interval-pat 
9. ratio 
10 . binary 
11. par-clus 
12. hier-clus-var 
13 . hier-clus-Obj 

Figure 1. An example of a context-structure in CLUSANl 



Appendix: A sample consultation. 

DELFI-2 CONSULTATION SYSTEM 

Does an a-priori labeling exist? 
» <RETURN> 
Legal parameter values: 
Present 
» n 
= not present (1.00) 
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not present 

Please give an estimate of the number of populations? 
» 2 

What kind of matrix is the data-matrix? 
» <RETURN> 
Legal parameter values: 
object-Object-matrix 
» p 
= pattern matrix (1.00) 

What kind of scale have the variables? 
» <RETURN> 
Legal parameter values: 
mixed nominal 
» r 
= ratio 0.00) 

11 

What is the nwnber of Objects? 
» 100 

What is the number of variables? 
» 15 

WARNING: 

ordinal 

pattern-matrix 

interval 

'1lle ratio [N objectsl/[N variables) * [N populations) 
is toe small to analyse this problem. 

Although I advise you to stop, what do you want? 
» <RETURN> 
Legal parameter values: 
1. the-user-follows-up-the-advise 
2. the-user-wants-to-ignore-the-advise 
» 2 
= the-user-wants-to-ignore-the-advise 

What kind of analysis is being wanted? 
» <RETURN> 
Legal parameter values : 
1. variabie analysis 
3. both 
»1 
R 1. variable analysis 

11 

2. object analysis 

What do you kncw about the existence of missing data? 
» <RETURN> 
Legal parameter values: 

ratio 

no-missing-data-present missing-data-present 
»m 
= missing data present (1.00) 
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action : the substitution of missing data 

II 

context 

action 

hierarchical clustering variables 

normalize results to total scatter 
discriminant analysis 
discriminant analysis with 
eliminated outliers 

What is the resul t of discriminant analysis with/without outliers? 
» <RETURN> 
Legal parameter values: 
decrease-between-scatter: 
1. no 2. small 3. significant 
increase-between-scatter: 
6 . no 7. small 8. significant 
decrease-within-scatter: 
11. no 12. small 13. significant 
» 9 la 

4. large 

9 . large 

14. large 

= 9. large-increase-af-the-between-scatter (1.00) 

II 
II 

"ltIe intrinsic dimensionality is: 3 with certainty: 0.90 
"ltIe intrinsic dimensionality is: 2 with certainty: 0.76 

II 
DELFI-2 ACHIEVEMENT S!lMMAR:t 

5. very large 

10 . very large 

15. very large 

concluded: the intrinsic dimensionality of the hierarehical clustering 
in variable-analysis is: 

1: is-OKAY with certainty 1.00 
concluded: the existence of clusters which behave irregular of the hier

archical clustering in variable-analysis is: 
1: UNKNOWN with certainty 1.00 

concluded: the influence of outliers of the hierarchical-clustering in 
variable-analysis is: 

1: LARGE with certainty 1.00 
cancluded: outliers of the hierarchical-clustering in variable-analysis 

is: 
1: DO-EXIST with certainty 1.00 

cancluded: the validity of the labels of the hierarchical-clustering in 
variable-analysis is: 

1: OKAY with certainty -0.90 
concluded: the validity of the correction of missing data of the hierar

chical-clustering in variable-analysis is: 
1: OKAY with certainty -0 . 90. 

II 
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SELF SIMILAR HIERARCHICAL TRANSFORMS: 
a bridge between Block-Transform coding and 

coding with a model of the Human Visual System 

G.H.L.M. Heideman*, H.E.P. Tattje*, 
E.A.R. van der Linden**, D. Rijks*** 

HierarchicaZ Transforms for time (or spatiaZJ discrete 
signaZs are presented. Such Transforms incZude some famiZiar 
orthogonaZ BZock-Transforms, but aZso non-orthogonaZ and non
Block Transforms. 
Therefore, the degree of freedom of choosing basisfunctions 
is much larger. Within this family a subclass exists that 
approximates closely the operations that are performed by the 
Human Visual System. 

INTRODUCTION 

At the moment the main concern in Transform Coding is clustering the 
coefficients in classes (zones, scanning rules, etc.) and quantization 
schemes. The Transform itself is only a minor point in the discussion. 
Within the family of Block Transforms the K.L. Transform is mentioned 
as the best under some specific constraints. 
At this place we don't want to critisize the relevance of these 
constraints in coding applications at length, but it is certain that 
such an optimum is only an optimum on the average. 
Subjectively we do not judge a coded image on the average, but we want 
that each coded realisation is a natural image with a distortion as 
low as possible. One of the main drawbacks of Block Transform is in 
our opinion that each basisfunction has the same spatial support. Why 
should we base, for instance the measurement of the presence of a low 
"frequency" component on only one period and the highest "frequency" 
component on several periods? 
If we for instance enlarge or diminish an image, then with a Block 
Transform, the coefficient of a specific "frequency" is changed 
because it is measured over more respectively less periods. It is more 
desirable to have a Transform, that measures spatial "frequency" on a 
support that increases inversely proportional with "frequency". 

* Technische Hogeschool Twente, Afd. Elektrotechniek 
Postbus 217, 7500 AE Enschede 

** Now with Océ-Nederland B.V. 
Postbus 101,5900 MA Venlo 

*** Now with Philips B.V. 
Postbus 80000, 5600 JA Eindhoven 
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Such a Transform gives coefficients that are independent of the scale 
of the image. Hierarchical Transforms can meet these requirements. At 
this place we want to ment ion the strong relat ionship between a 
hierarchical description of images and the theory of Fractals'. In a 
realistic image model we have to use the same basisfeatures at 
different spatial scales. 

Such a description leads to a separation of an image in different 
acuity classes. The basis features (the basisfunctions of the 
Transform) that are needed in this description can be related to the 
characteristic operations of neurons in the Human Visual System. 

HIERARCHICAL TRANSFORMS 

In this paragraph we shall introduce Self Similar Hierarchical 
Transforms. Before doing so, we relate Block-Transforms to multi
channel sampling modeIs, because it gives more insight to look at 
Transforms as sampling modeIs, especially in the case of Hierarchical 
Transforms, then to describe them by matrix formulations. 
In what follows we describe only 1-D-Transforms, but it is quite 
straightforward to define n-D-Transforms in a similar way. 
Let the signal x be defined as a sequence 

(x(n») ; n=O,l,2, •... M-l 

obtained by observing a fini te segment of a sampled continuous wave 
form. 
The coefficients of a Nth order linear Block-Transform T of this 
sequence (with M=L.N; L is an integer) are: 

(i+ 1 )N-1 
C(k,i) = L x(n)f(k,n) 

iN 
i=O,l, ••• L-l 
k=1, ••••• N 

The functions f(k,n) are the basisfunctions of the Transform Tand 
form an orthonormal set if T is orthogonal. 
From the coefficients C(k,i) we can reconstruct the original signal x 

x(n) 
N 
L C(k,R.)r(k,n) 

k=1 
for iN~n~ (i+1)N-1 i=O,1, ••• L-1 

k=1, ••••• N 

The functions r(k,n) are the basisfunctions of the inverse Transform 
T-1. The same coefficients can be extracted from the signal x by the 
following multi-channel sampling model. 

DnWI)1""IUl!f 
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C(2,O 

x(n) y(2,n) N: I 

C(N,.Q.) 
r-----~N·~----~~~~ 

L...C'-----' y (N , n) . 

with bi(n) = fr(i,n) = f(i,-n) 
gi(n) = rr(i,n) = r(i,-n) 

the subscript r means: time-reversed. 

Figure 1 

The right part of the scheme represents the reconstruction of x. 
E[xpand] means: filling in N-1 zeros between two adjacent coefficients 
C(k,i) and C(k,i+1) for each i. 

This scheme shows that we have a multi-channel sampling model with N 
filters with the functions bk(n) as finite impulse responses. 
Sampling the outputs y(k,n) at points n=i.N-l, gives the coefficients 
C(k,O. 
Remark that the length of the fini te impulse responses is equal to the 
order of the Transform and equal to the sampling period. 

The scheme above is a special case of the general multi-channel 
sampling model for time contineous band limited signals with equal and 
synchroneous sampling for all channels. 
In such a genera I sampling model the choice of the filters, 
bl, ••• bN, is free within a constraint 2

• Orthogonality of the 
impulse responses is not necessary. The reconstruction filters, 
gl, •.. ,gN can always be calculated fr om the filters, 
bl,··· ,bN· 
In such a general sampling model the filters gi(n) can be found from 
the filters bi(n) from the following re l ations. 

N-l 
Ejwnb. (n) Let Bi (w) L Iw l :;; 11 

n=O 
1 

N-l jwn and Ci (w) L E g. (n) Iwl :;; 11 

n=O 
1 
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Define Bi(W+k.Ol) as a periodie extension of a shifted (k.Ol) 
version of Bi(w) with 01 = 2~/N and the matrix B(w) 

Bi(W) 

B(w) Bi (w+ 1 • ° 1 ) 

Define the vector Q(w) 

The solution of 

describes the filters Gi(w). 
A solution G(w) exists iff 

DET B(w) '" 0 

BN(W) 

B
N

(W+l.0
1

) 

w E (-~,~) 

1 
o 
o 
o 
o 

In the case of Block-Transform this condition reduces to 

DET B(w) = Constant • Det T 

A multi-channel sampling model can be easily extended to Hierarchical 
Sampling models . The following scheme gives the simplest one, with two 
channels at each of the two levels in the Hierarchy . 

Figure 2 

What we actually have done is putting again a two-ehannel sampling at 
the output of one (typicaly the low-pass-channel) of the first 
channels. The multi-channel sampling model ensures that we can 
reconstruct precisely z(2,n). 
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At the reconstruction side we have to reconstruct first z(2,n) by 
means of two filters gl(n) en g2(n) and put the sum of their 

.outputs af ter another expansion at the input of the g2(n)-filter of 
the first level. 
The length N of the impulse responses bl(n) en b2(n) is equal to 
2, and so is the sampling period . 

The number of levels in the hierarchy is two, but can be extended 
maximally to Klevels if Mz 2K, by repeating the system S af ter each 
b2(n)-output. Such a scheme with K levels is equivalent with: 

\ ,-I ~ 

""--4: \:"----00 

\, \ ,-I ,-I ""-- 0 

x(n) 4: \ 

\,\,\,\;- \,- \,- ).,- \ ""-- 0 

8: \ 

x(n) 

""--2: \0------00 

\,\ ... \,\ ~ M: \ 

Figure 3 Figure 4 

The impulse responses b'1,b'2, • •• ,b'K+l in this scheme are 
defined as follows: 

and 

with 

and 

bl,j(2j-l.1+i) 

b2,j(2 j - 1.1+i) 

bl,l(n) = bl(n) 
b2 , 1 (n) = b2 ( n ) 

bl (0 
0 

b2(0 
0 

j=l, ... ,K 

if i=O 
if i=l j=2,3, ... 

if i=O 
if i=l j=2 ,3, ••. 

In fact we have extended the multi-channel sampling for time-discrete 
signals with equal sampling periods to a sampling model with unequal 
sampling periods. 

If we choose bl=(l,-l) and b2=(1,1) then this system is known as 
the Haar-Transform of rank M (fig. 4). Members of the same family of 
Transforms (Ter- and Her-Transform for instanee) are easily obtained 
if we put the systems S also one or two times af ter the bl(n)-output 
It is straightforward to formulate schemes with more than two, say P, 
channels at each level of the hierarchy, if M = pq; q=1,2, •••. 
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So far we have used orthogonal basisfunctions at each level of the 
hierarchy, but it is no problem at all to define non-orthogonal 
Hierarchical Systems as weIl. 
The following scheme gives an example with non-orthogonal 
basisfunctions of length 3. 

x(n) 

Figure 5 

Until here we have used impulse responses with length equal to the 
sampling rate, so in fact all such Transforms can be seen as 
hierarchical Block-Transforms, both orthogonal and non-orthogonal. But 
our aim was not only to get rid of the de mand for orthogonality but 
also to get rid of the relation: length of the impulse response is 
equal to the sampling period. 
The question is: can we define Hierarchical Transforms (with an 
inverse) with basisfunctions unequal to the sampling period. 
The answer is yes, we can. There exists always a specific way of 
sampling the output of the filters, delivering M coefficients, 
necessary and sufficient for the reconstruction of x(n), but such a 
sampling scheme is not necessarily synchroneous (or equal) for all the 
channels and some times also not homogeneous. Usually there exists 
more than one possible sampling scheme. These possible schemes split 
up in the two classes. 

A member of the second class is the following scheme, known as the 
Pyramid Transform3 

x(n) 

Figure 6a 
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x(n) 

Figure 6b 

A me mb er of class 1 can be found by a slight modif1cation of the class 
2-scheme. Th1s modif1cation 1s sk1pping the b2-filter and 1ncreas1ng 
the sampling rate of the bl-channel to (2:1)A. 

With this notation is ment, that the sampling rate is (2:1) ~ 
average, but that the sampling period is not homogeneous. 
Two possibilit1es for such inhomogeneous sampling schemes are: 

1) x x 
2) x x x 

x x x x 
x x x 

if M is multiple of 4 
if M is multiple of 6 

x and • are points on the original raster 
x are the sampling points of the b,-channel . 

Such schemes have the disadvantage that the reconstruction scheme is 
more complex, not always local and always 1n-homogeneous. In
homogeneity means that the number of samples that are needed for the 
reconstruction of a specific point x(n) is dependent on n. Experiments 
show that this in-homogeneity makes the transform more sensitive for 
quantization of the coefficients. 
Especially if we use these Transforms in coding for low bi trates, this 
disadvantage is great, because low bitrates can only be achieved by 
coarse quantizing. Thus we like to have Transforms with a homogeneous 
reconstruction scheme. This can be achieved only by increasing the 
sampling rate of the bl-channel (class l-scheme) to the possible 
maximum (1:1). The price we pay is that we need twice as much samples, 
but the gain is a simpier reconstruction scheme and the possibility of 
a coarser quantization. We call such Transforms redundant. 

SELF SIMILARITY 

In all the schemes presented before we use at each level of the 
hierarchy the same systems bi af ter each sampled low-pass output 
from the previous level. In this sense the Transform is Self-Similar. 
This Self-Similarity has the effect that the impulse responses of a 
chain of repetitions of low-pass filters and decimations, followed at 
the end by a band-pass system, are approximately of the same form, 
though on a different scale. This approximation is bet ter if the 
impulse response of the low-pass filters is such that the fixed 
sampling rate is close to the allowed sampling rate for that 
particular filter. Ultimately there is no difference between a system 
that uses sampling at each level in the hierarchy and a system with 
the same overall impulseresponse that uses sampling only at the end of 
a chain. 
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A VISION MODEL 

Measurements of the characteristics of neurons in the early visual 
pathway show that there are neurons with receptive fields that are of 
a circular form and show an excitation (positive) center and an 
inhibition (negative) surround or vica versa. Such fields are found 
with a variety of spatial dimensions. 
Apart from non-linearities in the neuronal systems, we can model such 
neurons as 2-D-bandpass filters with circular symmetrie impulse 
responses of the same form but with a variety of scales. 
Marr'and others suggested that these impulse responses can be 
modelled as 2D-Difference of Gaussian functions or as a Laplacian of a 
Gaussian function. Such a processing can be put in the following 
scheme 

} 

bandpass 
output 

lowpass 
output 

Figure 7: Hierarchical model with a Difference of Gaussian-filter. 

or in the following scheme 

x(n) 

} 

bandpass 
output 

lowpass 
output 

Figure 8: Hierarchical model with a Laplacian of a Gaussian-filter. 

In these schemes the Gaussian filters Gi have a 0i with 
0'<02<03 •.•• The Li-filters are Laplacians. It is easy to see 
that this part of a vision model can be interpreted as a Self Similar 
Hierarchical Transform. 

It follows from the foregoing that it is allowed to sample the outputs 
of the Li-outputs or the DOG-outputs at a (with i-)decreasing rate. 



129 

As we have in image processing usually a spatial orthogonal or 
quincunx sampling raster, the decimation has to be 2k:1 with 
k=1,2, ... If we want to decimate the rate of the outputs with a 4:1 
scheme than the 0i-parameters of the 2-dimensional gaussian filters 
have to fullfil the following relation: 

i=2 ,3, ... 

We already mentioned that sampling at the end of the chain can be 
replaced by sampling af ter each level in the hierarchy, if 01=~/12, 
with ~ = distance between successive samples of x. In that case we get 
the following system (with a decimation of 4:1 at each level) 

LI 0-0 
x(n) L ~ 

1 4: 1 

G1 ~ 

Figure 9 

In this system all the Gi-systems are the same, and so are the Li
systems. Thus finally the structure of this vision model is precisely 
the same as the redundant Self-Similar non-orthogonal Hierarchical 
Transform. 

But, if we use only the L1 system, then there is no exact 
reconstruction scheme. However, the approximation is so good, that it 
1s hard to see any difference between the original and the 
reconstruction. Recently we found that a perfect reconstruction exist 
if we use three different L-filters instead of one L1-filter. The 
sampling rates of these L-filters are 4:1,4:1 and 2:1, so (1 : 1) on 
the average. The nu mb er of samples of the bandpass outputs is in that 
system not increased. So we state: the vision model with only one L
operator, the Anthropomorfic Transforms , is a close approximation to a 
Self Similar Hierarchical Transform with a true inverse. 

DISCUSSION 

Self Similar Hierarchical Transforms, especially the ones that 
approximate the vis ion model have nice properties that Block
Transforms don't have. With Block-Transforms, for instance, if we 
arrange the coefficients with the same index in an array, such an 
array doesn't look like a real image. Only the array of the (0,0)
coefficients of each block looks like a low-pass version of the 
original image. In contrast, the outputs of Hierarchical Transforms 
are more like meaningfull images. 
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The connection between local structures in the image is bet ter 
preserved. 

ORIGINAL OUTPUT 

This property can be used for further cOding, for instance with vector 
quantization or, as we call it, local equivalent representation. 
Block-Transforms and also some of the Hierarchical Transforms are not 
suitable for such procedures. 
Another advantage of the Antropomorfic Transform is, that the low-pass 
output at each (k-th) level of the hierarchy is a spatially "factor 
4k-scaled down" copy of the original image with precisely the same 
resolution that we reach if we scale down the original image with the 
same factor 4k or look at the image at a distance 2k as large as 
the original viewing distance. 

Thus we separate the image in a number of images, each of them 
representing a different acuity. Experiments show that the sensitivity 
of the vision system is different for this acuity classes, thresholds 
are higher and quantization regions larger for the higher acuity 
classes. 
Another advantage is the freedom in the choice of the basis functions. 
This gives the opportunity to construct Transforms with the use of 
additions and subtractions only, without the disadvantage of the 
Hadamard Transform family, that all values of the basis functions are 
equal to +1 or -1. 

A disadvantage of the, for coding most suitable Hierarchical 
Transforms is their redundancy. For a (N*N)-image the number of 
possible sample values or coefficients is equal to 4/3 N2

• 

All together, Self Similar Hierarchical Transforms are very promising 
for image modeling, coding and maybe the wider field of general image 
processing. 
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CONCLUSIONS 

In the fore-going we have defined Self-Similar Hierarchical Transforms 
These are a subclass of genera I Hierarchical Transforms in the sen se 
that at each level in the hierarchy the same filter operations are 
used. This has the effect that the equivalent basisfunctions for each 
level are resampled versions of one standardform. 
The use of such Transforms in coding for low bit rates does not give 
the familiar blocking impairments. Besides this advantage, it is also 
possible to choose the basisfunctions of the transform in such a way, 
that they are similar to the sensitivity-profils of receptive fields 
of neurons in the primary visual cortex (the early pathway in the 
image processing of human observers). 
These basisfunctions can be modelled easily by a multiple convolution 
of (1,1) and (1,-1) functions [Binomium of Newton), resulting in a 
close approximations of a Difference of Gaussian function. 
The use of the only (1,1) and (1,-1) functions has the advantage that 
only additions are needed in the calculations of the output of the 
filters. This confirms our opinion that also the human visual system 
uses additions (excitation) and subtractions (inhibition) only. 

So the final conclusiuon is that Self-Similar Hierarchical Transforms 
cover on the one side some familiar Block-Transforms and on the ot her 
side a nice model for the human visual system. Using a self-similar 
transform as a model for the visual system makes it much easier to 
design classification and quantization rules that are close to the 
sensitivity rules of the visual system. 
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PROPERTIES OF MOT ION ESTIMATION IN THE TRANSFORM DOMAIN 

R.H.J.M. Plompen*, J.G.P. Groenveld*, D.E. Boekee** and F. Booman* 

In this paper we extend the transform domain oriented esti
mation aZgorithm introduaed in [1] in whiah the aaZauZation 
of the dispZaaement veator was obtained from the transform 
domain aoeffiaients. The performanae of the aZgorithm is 
verified within a hybrid aoding aonfiguration. In this paper 
onZy transform domain bZoak matching aZgorithms are aonsi
dered. The bZoak-rnatah proaeduremakes use of the dispZaaement 
matrix H defined in [1]. A matrix deaomposition method is 
desaribed in order to show that a praatiaaZ irrrpZementation 
is very weZZ possibZe. The properties of the transZation in
variant matrices are expZained by using the ordered WaZsh Ha
damard transfoT'm as an exampZe. The proaedure~however~ en
abZes the use of any other orthogonaZ transform. An important 
issue with respeat to the hardware aompZexity of this motion 
aompensated hybrid aoder is the use of onZy one transform. 
The performanae of the proposed new aZgorithm is shown and a 
video tape aontaining a very aritiaaZ videoaonferenaing saene 
(i.e. spZit sareen and a hard switah to fuZZ sareen with 
heavy motion) wiZZ be presented. 

1. INTRODUCTION 

For very low-bitrate codecs used for interpersonal videocommunica

tion including videoconferencing, it is necessary to remove redundan-

cy and to allow the introduction of some degradation. 

The exploitation of motion compensation techniques is useful for 

efficient coding but the hardware complexity should be kept in mind. 

The success of motion compensation schemes that have been introduced 

depends to a large extent on the accuracy that they obtain in the 

motion estimation. A practical criterion for their applicability is 

that they must be rather insensitive to the preprocessing that is 

usually applied to image sequences. For areas of the image which are 

detected as changed, the method must be able to determine a displace-

* 
** 

PTT, Dr. Neher Laboratories, Transmission Section, P.O. Box 426, 
Leidschendam 
Delft University of Technology, Information Theory Group, 
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ment vector o The performance of the displacement estimation algorithm 

highly depends on the ability to determine the best match. In a hy~rid 

coding scheme (i.e. transform coding in combination with an interframe 

prediction) the estimation is usually calculated in the pixel domain, 

whereas the actual compensation takes place either in the transform 

or pixel domain. In order to achieve a better performance and a less 

complex hardware realization the complete coding should be performed 

in the transform domain. 

The different operations and techniques like. the change detector, 

quantization and the estimation used in the configuration can now be 

optimized while the methods are calculated in the same domaino 

This paper will demonstrate that the matching in the transform do

main will yield a better image quality. To realize motion estimation 

based on matching in the transform domain displacement matrices H need 

to be used. The sensitivity of the estimation is influenced by a fre

quency weighting function. 

In literature several displacement estimation algorithms have been 

proposed [3]0 Except the full search algorithm all the algorithms 

based on block matching are suboptimal. It is not guaranteed that the 

suboptimal ones will find the global minimum. These algorithms will 

minimize the prediction error, known as the displaced frame' difference 

(DFD) onlyo They can all be characterized as best-match methods. The 

displacement vector is obtained as follows: 

DFD 

k,i = -(N-1), ••• ,O,1,2, ••• ,N-1 

where DFD is the displaced frame difference and SW is search window 

in the previous frame. 

e d(qk.) = If{q,t}-f{q,t-1,D}l
a 

pre ,~ 

N N 
E E If{q(i,j),t}-f{qk,i(i,j),t-1}l

a 

i=1 j=l 

(1) 

(2) 

(3) 
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where f{qk,i(.),t} is the actual subblock and f{qk,i(.),t-l} is the 

subblock in the previous frame. 

Because of the suboptimal solution the algorithms already mentioned 

do not guarantee that a displacement vector is to be found with suffi-

cient accuracy. NOise, rotation, zooming and occlusion can possibly 

cause considerable inaccuracy. If the aim of the coding procedure is 

only to decrease the prediction error it will not be necessary to cal

culate the real displacement vector . Pairs of displacement matrices 

[1], [5] have cyclic properties. 

II. INTRODUCTION DISPLACEMENT MATRIX 

Let transform T be an orthogonal transform and let h be a nilpotent 

operator of index N. Then h has a block diagonal matrix representation 

of the form: 

o 

o o 

The major properties of hare: 

e.g. hl (2) = h~ 

0, 

h:_
tl 

' denote t as transpose 

f(q) hx => horizontal shift x > 0 to the right 

x < 0 to the left 

h f(q) => vertical shift 
y 

y > 0 up 

y < 0 down. 

(4) 

(Sa) 

(Sb) 

(Sc) 

(Sd) 

(Se) 

In order to prevent discontinuities (e.g. no gaps between shifted 

blocks) the nilpotent operators are always used in pairs with indices 

tl and tl-Ne Let f(q-l,t-l), f(q,t-l) and f(q+l,t-l) be three subblocks 

of size NxN in the previous frame, and assume translation only with 
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D (x,O) and x > O. Then: 

f(q,t-l,D) f(q,t-l) hx + f(q-l,t-l) hX_N (6) 

where f(q,t-l,D) is the compensated translated sUbblock q. 

The sum of the pairs of displacement matrices hó and hÓ-N are taken 

to get cyclic matrices described by using subscript c. Using the newly 
cl defined operator h the sUbblock q and q-l become a cylinder. The ope-

rator hcl rotates the cylinder along its axis. To obtain the displaced 

subblock another matrix e(trunc) is introduced: 

(7) 

A combination of both the matrices h~Ó and e~ will result in the same 

displacement matrix hó 

(8) 

Given the properties of the unitary transformation matrix T, the me~ 

thod described can also be used in the transform domain 

T(f h) = F H, (9) 

where capital characters are used for the calculation in the transform 

domain i.e . h,f and e becomes H, F and E. Due to the separability of 

the transform uSed the displacement matrix becomes: 

T 
c 

(10) 

where Tc and Tr are operators on columns and rows resp. The trans la

tion invariant matrix becomes: 

(11) 
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and because of (9) and (10), 

(12) 

The displacement matrix h (and Hl is non-singular. The reversable ope

ration does not exist; data is shifted out of the considered subblock 

q o The displacement matrix in the pixel domain contains a lot of ze

roes, on the other hand the transform domain displacement matrices 

can be decomposed with a shift-in-place algorithm. 

The properties are a valuable tool for theblock-matching techni

queso Block-matching can be formulated as the search for a reference 

image , (the actual subbloek) within a larger image, (the search area). 

Substituting (12) in (6) and applying (9) and (5) then yields 

F(q,t-l,D) = F(q,t-1) H~ + F(q-1,t-1) H~_N' 

and 

F(q,t-1,D) E~ HC~ HC~ N-~ F(q,t-1) N N + F(q-1,t-1l N EN • 

111. DECOMPOSITION IN SPARSE MATRICES USING THE ORDERED HADAMARD 

TRANSFORM 

(13) 

(14) 

The key in developing the desired fast algorithm is the ability to 

use Kronecker produets in the matrices Hand E in order to decompose 

the matrices into sparse matrices. In order to explain this the or

dered Hadamard transform is used for simplicity. 

(15) 

with ~ = 1,2, ••• ,N-1. 

The smallest cyclic matrix is H~l and can be formulated as: 

cl [1 0] 
H2 = ° -1 

(16) 

Odd and even shifts are explained separately: 
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I ~ = 1,3, ••• ,N-1 
+ . 

~ = 2,4, ••• ,N-2 

In order to expand the matrices, for example from order N to 2N, all 

the matrices of order N can be used to genera te newly expanded matri

ces of order 2N. 

So for the generation of H~2~ using H~~2 the following matrix struc

ture results: 

o 

_0 ]0 
c~ 

I - HN/ 2 

Because of the symmetry properties: 

In the case of blocksizes N > 2, previously generated matrices 

used for the expansion in the case of an even displacement. 

~ + 

N 16 2 4 6 8 N 

N 8 1 2 3 4 

N 4 1 2 + 
N 2 

For odd displacements the indices become: 

N 

N 

N 

N 

16 

8 

4 

2 

1 357 

135 

1 

1 

IV. BLOC!< MA'lCHING USING FREQUENCY WEIGHTING 

( 17) 

can be 

Because manipulations in the frequency domain are more easily cal

culated, a more effective frequency weighting function is used. In 
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order to obtain a search algorithm sensitive to predominated struc

tures a weighting function in the transform domain Tw is introduced. 

Each coefficient is compared with a weight Tw(u,v) : 

E[(u,v),D) = laF[q(u,v) ,D)I - Tw(u,v), (18) 

with aF[q(u,v),D) = F[q(u,v),t) - F[q(u,v),t-l,D»). 

This weighting function is such that all the components have an equal 

contribution to a decision criterion. Only positive differences are 

taken into account, i.e. IF{q(u,v)}1 > Tw(u,v). The displaced block 

difference DBD is the minimum over the search area. In the case of the 

brute force search method the global minimum is defined by: 

DBD 
N 

min { I: 
N 

I: 
SW u=l v=l 

E[ (u,v) ,D)}. 

In the case IF{q(u,v)}1 < Tw(u,v) the weighting function does not in

fluence the error. Then the results ·we obtain in the pixel domain and 

the transform domain are the same. Using this method, manipulations 

in the transform domain are more easily calculated. 

V. . SIMULATION RESULTS 

In order to compare the performance of the proposed estimation two 

sequences are used i.e. a splitscreen scene with a hard switch (1) 

and a sequence containing a girl behaving naturally in front of a ca

mera. The blocksize of the transform and the motion compensation is 

8x8 pixels. The bitrate for video only is 300 kbit/s. First a compa

rison of the estimation is given by using the mean square error as op

timization criterion, which of course is visually not the optima 1 one. 

Figure 1 gives the results using the coding configuration with the 

calculation of the estimation in the pixel domain against the estima

tion in the transform domain. Four curves are shown: for each method 

two. The odd numbered ones show the result using the estimation in 

the pixel domain, the even ones show the result using the new trans

form domain oriented estimation. Curves 1 and 2 are based on the frame 
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difference, 3 and 4 are based on the quantized displaced frame dif-

ference. 

· · ~ •. ------------------------'N--. -----------------------.. --. 
TRACKS 

Fig. 1. 
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SUB-BAND CODING OF IMAGES USING VECTOR QUANTIZATION 

P.H. Westerink*, J . W. Woods** and D.E. Boekee* 

In this paper we present a new 2-dimensionaZ sub- band aoding 
teahrrique with partiauZar appZiaation to images. We empZoy a 
16 band dBaomposition where the 16 pamUeZ sub-bands are 
regardBd as a veator, by taking one sampZe from eaah sub-band. 
These 16-dimensionaZ veators are aodBd using Veator Quantiza
tion (VQ). A aompanson wiU be made beween aoding eaah sepe
rare sub-band with DPCM and the new teahrrique proposed here. 
Some p1'eZiminary resuZts show the importanae of OUl' approaah. 

1 0 INTRODUCTION 

Sub-band coding of speech was introduced by Crochiere et al [3] in 

1976. Since that time this technique has become quite popular for the 

medium bandwidth coding of speech [6]. The basic idea of sub-band co

ding is to split up the frequency band of the signal and then to code 

each sub-band with either PCM or DPCM using a coder and bit rate accu

rately matched to the statistics of that particular band. Later contri

butions on sub-band coding of speech introduce Vector Quantization (VQ), 

either by taking the parallel sub-bands as a vector [1] or by coding 

each sub-band seperately with VQ [5]. 

The extension to multidimensional sub-band filte;l:"ing was made by Vet

terli [11] by considering the case of splitting a multidimensional sig

nal up into sub-bands . However, no coding r esults were presented in 

that paper. Results on sub-band coding of images were reported recent

ly by Woods [12], who used adaptive DPCM, and v. Brandt [2], who com

bined temporal DPCM and conditional replenishment for sub-band coding 

of videoconference signais. 

In this paper we present a form of sub-band coding that makes use 

of VQ where the vectors consist of samples coming from each sub-band. 

This can be seen as an extension to 2-D signals from the 1-D case des

cribed in [1] . For that purpose 16 equally sized sub-bands will be 

* Delft University of Technology, Department of Electrical Engineering, 
Information Theory Group, P.O. Box 5031, 2600 GA Delft, the Nether
lands 

** Visiting professor from Rensselaer Polytechnic Institute, Electrical, 
Computer, and Systems Engineering Department, Troy, New York, 
NY 12180-3590. 
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split off from the image, using the Quadrature Mirror Filter (QMF) 

technique. Af ter this the vectors are formed and coded using VQ. 

Some preliminary coding results will be presented by comparing this 

new coding technique for images to coding each seperate sub-band with 

OPCM. As will be shown VQ gives better resul ts at lower bi.t rates. 

2. SUB-BAND FILTERING 

Figure 1 shows the initial four-band partitioning stage that is the 

basis for the 16-band filter system to be used in our sub-band coding. 

1 , 
l.l.1 Ol. I l.l. 

--+-----.1. __ 
1 1 

-Ir 

1 -+: 1 1 1 
l.0 1 00 Il.O 

1 1 
+Ir 

--+------+--
l.l. : Ol. : l.l. 

-Ir 

Figure 1. Initial four band partitioning 

Af ter each sub-band has been split off, it is demodulated to baseband 

by a (2x2) downsampling, which will make each sub-band full band at a 

lower sampling rate (figure 2). For the 16 band system this process is 

repeated to further split each sub-band into four more sub-bands. The 

resulting 16 sub-bands will be full band at a sampling rate which is 

reduced by a factor four in each dimension. 

When FIR filters are used to approximate the sub-band characteris

tics of figure 1, either gaps or aliasing errors will occur due to the 

effect of downsampling in the transition band of the filter. Tb compen

sate for this effect the QMF approach was introduced, first in 1-0 sub

band filtering [4] and later for the multidimensional case by Vetterli 

[11] • 

Reconstruction by means of 2-0 QMF's of the four sub-band system of 



x(m,n) 

Figure 2 . 4 sub-band splitting scheme 

figure 2 consists of upsampling each sub-band a factor two in each di

mens ion and filtering using the reconstruction filters 

o ~ i,j ~ 1, (1) 

where Hij (w
1

'W2 ) are the QMF's that were used to split off the sub

bands. Finally the upsampled and filtered sub-bands are added to obtain 

the reconstructedimage (figure .3) • 

!t(m,n) 

'''0 (m,n) 

Figure 3. 4 sub-band reconstruction scheme 

As Vetterli [11] has shown, the 2-D QMF 1 s can be constructed as a 

separable product of identical l-D QMF 1 s 

o < i,j < 1. (2) 
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In our coding simulations we used the l -D 32 point QMF designated as 

32D in [7]. 

3 . VECTOR QUANTIZATION 

A vector quantizer is a vector generalization of a scalar quanti

zer (PCM) , where a k-dimensional vector consisting of k samples or 

other parameters of a waveform is quantized as a single entity. The 

vector is encoded by finding the best matching codevector in a code

book containing 2m k-dimensional codevectors . A binary word of m bits 

is transmitted to the receiver, identifying the address of the code

vector selected to represent the input vector. The receiver has a 

copy of the same codebook and generates the output vector by table 

lookup . The codebook size (number of codevectors) is a critical para

meter which determines the encoding complexity needed for searching 

through the codebook, the memory required to store the codebook in both 

transmitter and receiver, and the bit rate of the ceder. 

In this paper , the k-dimensional vectors are formed by taking one 

sample from each of the sub-bands that were split off from the image 

as described in the previous paragraph . Because we have 16 sub-bands 

our vector will be ·16-dimensional . The block diagram of the coder sys

tem is shown in figure 4. 

oplit rull 
r econstrueted 

image 
image Sea.rch image lmaqe 

into 16 Vector frolll 16 

s ub-bando Quantizer . ub-bands 

Figure ·4 . Sub-band co ding scheme. 



By designing the sub-band coding scheme this way, we attempt to ex

ploit the linear and non-linear correlations among the samples coming 

from the 16 different frequency bands of the image. This property of 

VQ is, ·among others, described in great detail by Makhoul et al [9]. 

The codebook design, also known as training the codebook, is done 

using the LBG-algorithm, which is called af ter Linde, Buzo and Gray 

[8] . To obtain the initial guess for the LBG-algorithm the splitting

technique is employed, which is usefull when one wishes to design 

quantizers of successively higher rates until achieving an acceptable 

level of distortion. For our coding simulations we generated codebooks 

of sizes 1,2,4,8' 0 . 0,2048 0 This enabled us to evaluate the coder be

haviour for different codebooksizes and therefore different bitrates o 

4 0 CODING SIMULATION RESULTS 

A coding simulation was carried out on a monochrome image of size 

256x256 with 8 bit gray levels. Photo 1 shows the coding result when 

applying DPCM on each seperate sub-band, at a bit rate of 1. 0 bits per 

sample. Photo 2 shows the image that was coded with our sub-band co

ding method. For the VQ a codebook containing 2
10

=1024 codevectors was 

·used, yielding a bit rate of 10/16 = 0.625 bits per sample . 

In figure 5 coding simulation results are shown for various values 

of the bit rate. The dashed line represents the DPCM coding results, 

the drawn line represents results of the new sub-band coding technique 

using VQ. The dotted line is taken from Woods [12]; (the exact numbers 

are from [10]), to compare our results to adaptive DPCM on the seperate 

sub-bands 0 

5 0 CONCLUSION 

In this paper we proposed a new 2-D sub-band coding technique for 

images. Taking one sample from each sub-band a 16-dimensional vector 

is formed, which is coded with Vector Quantization. As preliminary re

sults point out, our new approach allows lower bit rat es for the same 

SNR when compared to DPCM and adaptive DPCM. In contrast to the method 

where VQ is applied directly to images our method does not introduce 
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Photo 1: DPCM on each sub-band; 1.0 bits/sample 

Photo 2: VQ on sub-bands; 0.625 bits/sample 



35.0 

SNR (dB) 

30.0 

25.0 

20.0 

0.5 1.0 

(a) VQ 

(b) DPCM 
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1.5 2.0 

bit rate (bits/sample) 

Figure 5. SNR vers us bit rate for three nethods of sub-band =ding. 

any blocking effects and errors are therefore less visible for the 

human observer. 
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An ARMA model identification algorithm 

R. Moddemeijer* 

To identify from e"LeetroeneephaZogram (EEG) signals the 
mechanism, whieh eauses the spreading of epileptie seizures 
in the brain we use a model identifieation algorithm. We 
have ehoosen fo!' autoregressive moving average (ARMA) model
Zing. We present an off-Zine maximum Zikelihood (ML) 01' least 
squares algorithm, based on iterative Gauss-Newton minimiza
tion. A systematie parameter seareh is integrated in the 
inversiOn of the Hessian-matrix. The optimal model is se lee
ted with the Akaike criterion. We are able to identifY a 
model in a large parameter spaee using only a few aetive 
parameters. Finally we present some promising results. 

1. lNTRODUCTION 

An autoregressive moving average (ARMA) model identification and 

parameter estimation algorithm is presented, which is designed to 

reveal some aspects of the mechanism which leads to the spreading of 

epileptic seizures in the brain. Analysing electroencephalogram (EEG) 

signals we are confronted with a multi-channel and time-dependent 

system with a tremendous number of parameters. 

There is a contradiction between the great flexibility which 

requires many parameters versus the low varianee of estimates which 

requires a small number of parameters. To deal with this problem we 

use a large parameter space with only a few active parameters. 

lt is common practice to select an optimal configuration of para

meters and their estimates by minimizing a cost function. Some 

examples of these functions are final predicting error (FPE) [1], 

autoregressive transfer function criterion (CAT) [2] and the Akaike 

information theoretic criterion (AlC) [3]; we only use the latter. 

*Technische Hogeschool Twente, Afd. Elektrotechniek 

Postbus 217, 7500 AE Enschede 
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All criteria evaluate the goodness of the fit versus the number of 

parameters. To overcome the problem of having to evaluate all possible 

parameters configurations, a systematic non exhaustive parameter 

search is introduced. 

2. THEORY 

As an example we restrict ourselves to a one channel stationary ARMA 

model. We assume the observed discrete time signal xn (1 ~n$N) can be 

modelled by 

(2.1) 
J 

En + L (biEn_i-aixn_i+ciÓn_i) 
i=1 

J sup(I,n) 

The paramaters ai,b i and c i stand for autoregressive (AR), moving 

average (MA) and initial condition parameters respectively. 

The signal En is assumed to be normally distributed stationary white 

noise with variance 0 2 and the impulse-function is defined by ón=O 

if n*O and óO=1. The maximum model order is given by I. 

We estimate the parameters ai,bi,ci and 0 2 by the maximum 

likelihood (ML) method. This is equivalent to minimization of the sum 

of squares V as function of the parameters [4J 

(2.2) V l. 
2 

Independent of the other parameters the ML-estimate of 0 2 equals 

(2.3) g V 
N 

For our model the criterion AIC equals 

(2.4 ) AIC 
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wlth P the number of actlve parameters. It Is a sensible extension to 

the ML-algorithm to minimize AIC instead of V. The essential problem 

is how to incorporate changes of the parameter configuration into a 

min i mization algorithm. 

We define a parameter vector 

(2.5) 

and construct an iterative Gauss-Newton algorithm [5] by approximation 

of V near 6=60 

(2.6) 

In this formula V6 (60) means the gradient of V with respect to the 

parameter vector 6 in 6=60: 

N 
(2.1a) L En(6).17 En(6)1 

n=1 6=60 

and V66 (60) is the Hessian matrix, which we approximate by 

(2.1b) 
N 
L (17 E (6)).(17 E (6))T

I n=1 n n 6=6 o 

It is convenient to follow Aaström [4] and ca lculate the der i vatives 

of En with respect to 6 recursively. As example we differenti ate 

(2.1) with respect to aj and replace n by n+k and j by j+k 

This recursive relation for the derivatives is invariant for different 

k, so 

(2.8) 
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We rewrite (2.6) as a function of e instead of e-eo 

(2 .9 ) 

The constants V(O), Ve(O) and Vee(O) are calculated by rearranging the 

righthand part of (2.6) We emphasize that these constants are extra

polations for e=O and NOT calculated directly. Using (2.9) we estimate 

the parameter vector e at the extreme (minimum) of Vee) and than 

calculate the sum of squares Vee) for e=e 

-
(2.10) Ve(e) = Ve(O) + Vee(O).e o 

(2.11) vee) 

Putting e=o in (2.11) leads to the same result as putting e=O in 

(2.9). It was necessary to transform (2.6) into (2.9) to obtain this 

particular property. We will make use of this property to incorporate 

the selection of active parameters into the inversion of the Hessian

matrix, which is the essential step in solving (2.10). It is 

convenient to combine (2.10) and (2.11) into a matrix equation Wy=z 

(2.12) 

We omit the ordering of the elements of e and split this vector 

into eT=(w,~). We only want to minimize V with respect to the active 

parameters Wand keep the inactive parameters ~ equal to zero. This is 

possible by application of Gauss-Jordan pivots [5,6J. Pivoting the 

equation W y=z using wii as pivot element results in an equivalent 

equation W y=z in which the elements Yi and zi are interchanged. 

Wkl wkl - wki wil/wii if k"i 1,0 i 

wki wki /w .. if k"i 
(2.13) 11 

Wil - Wil /w .. if l"i 
11 

w .. /W
ii 11 
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and 

(2.14 ) 

Pivoting W uSing in succession all diagonal elements as pivot element 

is equivalent to matrix inversion. We only pivot the diagonal elements 

related to ~ and find 

(2.15 ) 

How to interpret these results? The lefthand side 1s known, because 

for active parameters V~(~,~)=O and for inactive parameters ~=O. The 

righthand side provides us with estimates of the active parameters ~ 

and the sum of squares V(~,~). Of course the state of the parameters 

(active of inactive) can be changed by pivoting. 

We make the algorithm recursive by improving the estimate 9 using 

the former estimate of 9 as 90 in equation (2.6). If the minimization 

of the sum of squares, without modification of the parameters configu

ration, is close to convergence, we allow one of these modifications: 

a) introduction of one new active parameter 

b) reduction of the number of active parameters by one 

c) exchange of an active and an inactive parameter 

Which modification is optimal? For every modification (one or two 

subsequent pivots) we predict the sum of squares V(~,~). Substitution 

of these results in (2.4) provides us with predictions of AIC. The 

most promising modification with respect to AIC is accepted. 

Due to the approximations it is necessary to check convergence 

af ter every minimalisation step. If an iteration step fails in the 

original Gauss-Newton algorithm, a parameter estimate 9' on a straight 

line between 90 and 9, closer to 90 is tried until V(9')<V(9 0 ) [5J. 

Due to complications caused by changes of the parameter configuration 

we can not apply this method. Instead we search for an estimate 9' on 
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a shrinking set of spheres until AIC(S')<AIC(SO). This leads to 

minimization subject to the constraint 

(2.16) 2 T R = (e-e ) (e-s ) o 0 

We do this using the principle of Lagrangian multipliers, which leads 

to a slightly modified equation (2.6), where À is a constant and I the 

unity matrix: 

(2.17 ) 

This means that in all equations VSS<SO) must be replaced by 

VSS<SO)+ÀI. For shrinking spheres the constant À runs from 0 to ~. 

This solution resembles the Levenberg-Marquardt procedure [7J. 

We have given an outline of an algorithm, which is certainly not 

the final version. We have problems caused by convergence to local 

minima. The exact formulation is still a point of dicussion. 

3. RESULTS 

We have investigated the performance of the algorithm by three 

tests: estimation of the parameters a) of wellknown signals, b) of a 

simple model and c) of a more complicated model. 

We have estimated the parameters of the time-series A, D, E and F 

of Box & Jenkins [8J. The variance of these time-series is normalized 
A2 

and made equal to one, so 0 becomes a measure of fit. The results are 

given in table 1. In all cases, independent of the criterion we use: 

minimum variance (~2) or minimum AIC, our approach gives slightly 

better estimates. These improvements are due to the systematic 

parameters search (E, F) or to a bet ter initialisation (A, D). 

We estimated the parameters of a first order AR model using an ARMA 

model with 1=2. Interesting is the number of mistakes (nm) made by the 

system identification of 10 sequences of N=100 samples. According to 
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table 2 the parameter a, is underestimated. The statistics are too 

poor to say anything about the occurence of misidentifications. 

Interesting is the cause of those mistakes. In table 3 the identified 

model (I) is compared with the estimate for a First-order AR-model 

(11). In all cases the identified model is an improvement compared to 

the AR-model in the sense of the AIC criterion. Thls means that the 

algorithm chooses a correct model. Further improvements can only be 

made by modifying the cost-function. 

For the last test we have generated 4th order AR filtered noise 

(a1--2.7607, a2=3.8106, a3=-2.6535. a4=0.9238 [9], N=500). We 

have estimated the parameters for the correct AR model and for an ARMA 

model 1=5. The resultlng parameter configurations are given in table 

4. In half of the cases the algorithm provides us with a correct model 

with respect to AIC. On the other hand in five cases an acceptable 

model was not found at all. This is mainly caused by local minima to 

which the algorithm can converge. This indicates a goal for further 

investigations. 

4. DISCUSSION 

We have presented our first result, using an other approach to the 

problem of order determination of ARMA processes. Although our 

algorithm does not solve problems caused by multiple local minima of 

the cost-function, it gives mostly bet ter results compared to 

conventlonal ARMA estimation methods. The optimum found is dependent 

of the starting values of the parameters 90; this is a known problem 

in ARMA estimation [10]. 

The AIC-criterion is in some cases the cause of wrong model 

selection. We may be able to overcome this problem by choosing another 

criterion. But in many cases the estimated model and the actual model 

are indistinguishable within the statistical accuracy, so the 

criterion is not to be blamed. The algorithm can be shown to be exact 

for AR-models only, so in this case an iterative solution is not 

necessary. For these models the estlmates are reliable. 
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We conclude that the idea of ARMA-model estimation using active and 

inactive parameters seems to be fruitful. The problem of local minima 

and the initial parameter estimates has to be solved. The performance 

of the algorithm is slightly better compared to conventional ARMA 

algorithms. At this moment the algorithm is for our pur pose not 

reliable enough to be used for ARMA model identification. 
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TABLE 1 

--~2"; --- A A A A A 
-::;:---, 

cr AIC N al a2 a b1 _=L_ 
-=g--

__ 3 __ 
A B&J êi~6ï8 468 197 :êi~87 :êi~48 

0.605 466 197 -0.90 -0.57 1.36 
B B&J 0.257 460 310 -0.86 

0.242 446 310 -0.85 1.88 
E B&J 0.209 131 100 -1.32 0.63 

B&J 0.208 132 100 -1.37 0.74 
0.140 97 100 -0.83 0.30 0.81 -1.54 

F B&J 0.823 189 70 0.32 0.18 
0.750 185 70 0.66 0.37 

The estimates of Box & Jenkins versus ours for 1=4 

A A 

c __ 3 __ c4 

1.28 

0.50 
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TABLE 2 

Parameter estimates for a first order AR model 

TABLE 3 

-------
~ ~ ~ --;:;2---

al al a2 __ ~L_ __ ~f __ cr AlC 
:Ö~8- -:Ö~62- -------

I 0.535 225 
II -0.68 0.16 0.548 226 

-0.6 I -0.45 0. 586 234 
II -0.62 0.30 0.604 235 

-0.6 I -0.50 0.650 247 
II -0 . 56 0.21 0.694 249 

-0.6 I -0.52 0.596 238 
II -0.59 0.24 0.655 244 

-0.4 I -0.39 0.18 0.865 273 
II ~0.36 0.840 270 

Details of 5 misidentifications 

TABLE 4 

~~~I::::::I::~:::::I~;~;~~~~~;~I~;~;~;~~~;~I~;~;~~~~~;~ 
1 -1795 -1800 x x x x x x x x x 
2 -1930 -1935 x x x x x x x x x x 
3 -1740 -1745 x x x x x x x x x 
4 -1965 -1730 x x x x x x x x x x x x 
5 -1895 -1780 x x x x x x x x x x x x x 
6 -1975 -1770 x x x x x x x x x x x x 
7 -1745 -1745 x x x x x x x x 
8 -1645 -1475 x x x x x x x x x x x 
9 -1970 -1970 x x x x x x x x 

10 -2050 -1785 x x x x x x x x x x x 
----------------------------------- - -----------------~-

Parameter configurations for a 4th order model 
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CORRELATIVE LEVEL DECISION FEEDBACK EQUALIZATION 

* J.W.M. Bergmans 

ABSTRACT - 1his paper studies the properties of the 

decision feedback equalizer (DFE) when applied to equa

lize the residual channel which originates by secluding 

an a priori selected partial response fram a noisy 

dispersive communications channel. Vhlike the convent i
onal linear equalizer, both the optimum filtering which 

takes place in the forward path of the DFE and the 

optimally attainable perfonnance are found to be essen

tially independent of the partial response used. 

1. INTRODUCTION 

Correlative level transmission techniques (also known as Partial 

Response techniques) have traditionally been used in conjunction with 

the linear equalizer [1,2]. They involve the introduction of a 

controlled amount of intersymbol interference and the detection of a 

correlated data sequence with an increased number of amplitude 

levels, from which the original transmitted data sequence can be 

recovered by means of a deterministic transformation. This approach 

generally increases the complexity of the system relative to full 

response signalling, in which all intersymbol interference is elimi

nated prior to detection, but in return potentially enhances the 

performance. A good survey of the application area is provided in 

[3]. In the present paper we extend the correlative level 

technique to the inherently more powerful decision feedback equalizer 

* Philips Research Laboratories, P.O. Box 80.000, 

5600 JA Eindhoven, The Netherlands. 
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[4]. We will study the situation that the DFE attempts to estimate a 

(usually virtual) data sequence which arises at the output of an a 

priori selected partial response, which is considered to form a part 

of the overall channel. The optimum DFE for a given channel 

subdivision will be found to achieve a performance which is essenti

ally independent of the selected partial response, thereby designa

ting the additional complexity incurred by the introduction of 

correlative level techniques in the DFE as an unremunerative invest

ment. 

2. CHANNEL FACTORIZATION 

We set out by considering a discrete-time reception of the form 

(1) 

in which ~E{-1,1} is an uncorrelated binary data sequence, f k is the 

overall sampled impulse response of the channel, "*" denotes linear 

convolution, and ~ is a zero mean white Gaussian noise sequence 

having variance NO. By performing astrong factorization of the 

sampled channel autocorrelation function the optimum recept ion prob

lem for any continuous-time PAM system operating over a linear noisy 

channel can be reformulated in this canonic form ([5], chapter 6). To 

prevent equalization problems due to spectral zeros fr om occurring f k 
may be factored into a predefined partial response gk of length L, 

which contains the "problematic" part of fk (such as spectral zeros 

at DC or the Nyquist frequency), and a residual response ~ which can 

be equalized without severe noise enhancement. This factorization can 

be denoted as 

(2) 

With the aid of (2), (1) can be written as 

2 
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r = k 
(3) 

where 

(4) 

is a correlated data sequence taking on one out of at most 2L (and 

gene rally less) values. Figure 

(1)-(4). 

depicts the model described by 

~ ' - ' - ' - ' - ' -'- '- ' - '- ' -'- ' -'- ' -': 

System Impulse Response ~ 

Partlal ~ Residual 
Response I---~~ Response 

9k hk I 
I 

I_._._ ._._._ ._ ._ ._ ._ ._ ._._ ._ ._ .j 

Fig. 1. Distributed discrete-time channel model. 

For ease of reference we will in the remainder of this text 

specify any concrete function gk in terms of its D-transform g(D), 

defined as 

00 

g(D) - L (5) 

i=-oo 

In this notation, the most commonly used partial responses have the 

form 

g(D) (6) 

The factorization of the overall system impulse response f k into a 

partial response gk and a residual response hk can be governed by 

3 
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both performance considerations and engineering convenience (e.g . by 

the allowable number of data levels in bk ). The choice for gk is 

implicitly reflected in the receiver, which produces estimates 5k of 

the (virtual) data sequence ~. Whenever gk represents an invertible 

operation, an estimate ~ of the original data sequence ak can be 

uniquely determined from 5
k

• 

3 . MMSE DECISION FEEDBACK EQUALIZATION 

Apart from a forward filter that suppresses noise and conditions 

(pre-cursive) intersymbol interference the decision feedback equali

zer (see fig. 2) also contains a feedback filter which allows 

previous decisions to assist in the detection of subsequent digits. 

The presence of a feedback filter makes the DFE intrinsically more 

powerful than the linear equalizer. 

~ · -- · --·-- · -- · -- · -- · --·-- · --·--·-- · l 

! Forward Filter i I . 
. I 

rk! Matched Preegua i 
Filter -lizer 

I h_ k ck I 
~ __ ._._ ._ . __ ._ ._ . __ ._ ._ ._._J 

Bit-b~
Bit 

Detector 

Feedback 
Filter 

Pk 

Fig. 2. Decision Feedback Equalizer (DFE). 

In order to adhere to common practice we will decompose the 

forward filter into a filter matched to ~ (having an impulse 

response and a preequalizer having an impulse response ck • 

Defining the autocorrelation function zk by 

4 
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(7) 

denoting the feedback filter impulse response by Pk' k>=1, and making 

the assumption that all relevant previous decisions are correct, we 

see that the DFE produces a sequence of decision variables ok given 

by 

(8) 

By invoking (4), recalling the assumptions about ~, and taking 

signal and noise to be statistically independent, it is easily 

verified that the mean-square error E of ok' defined as 

(9) 

can be expressed as 

E =( (z*c-p-O) - *y*( z*c-p-O» 0 +N
O

( c - *z*c) 0' (10) 

~ II-U where uk represents the Kronecker delta function, the superscript 

again denotes time reversal, and Yk is the autocorrelation function 

of the partial response gk' i.e. 

( ll) 

In order to find the global minimum of E as a function of co, 
J 

-oo<j<oo, and Pj' l<=j<oo, we first focus upon the optimum setting of 

the feedback filter coefficients. Differentiating (10) with respect 

to po and requiring all partial derivates to be zero, we see that 
J 

-2(y*(z*c-p-O» 0 

J 
0, l<=j<oo. (12) 

We next differentiate (10) with respect to the forward filter 

coefficients c
j

' -oo<j<oo. This yields: 

5 
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2(z*[y*(Z*C-P-O)+NOC])j' all j. (13) 

Whenever Zj has no spectral zeros, (13) can only be zero for all j if 

the term within square brackets equals zero at all instants, i.e. 

(y*(Z*c-p- O»j + NOCj = 0, all j. (14) 

By using (12) we see at once that 

0, l(=j(oo, (15) 

so that the optimum preequalizer is anticausal. Rearranging terms in 

(14) and realizing that (IS) must hold, we arrive at a set of 

equations in the variables cj ' -oo<j<=O, and Pj' 1<=j<oo, 

in principle be solved: 

which can 

(16) 

In this expression , ~ denotes the autocorrelation function of the 

channel impulse response fk' i.e. 

(17) 

It remains to find a simple expression for the mi nimal mean-square 

error Emin. Combining (14) and (10), 

j)=I, we find that 

E = min 

and realiz i ng that 

(18) 

For mathematical convenience we now make the assumption that the 

partial response ~ is causal and has 

convolutional inverse -1 is both gk 

minimum-phase, so that its 

stabIe and causal. (Responses 

within this category that have zeros on the unit circle are 

6 
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accomodated by moving the zeros a small distance from the unit circle 

and performing a limiting operation at the end of the derivation.) 

Moreover we factor the sequence (x+NOO)k as the convolution of a 

causal minimum-phase sequence ~k and its anticausal image 1~, i.e. 

(19) 

According to Doob ([61,pp. 159- 161) this factorization is unique, and 

exists under mild regularity conditions (the most stringent whereof 

is that the Fourier transform X(f)+NO of (X+NOO)k be strictly larger 

than zero, which is implied by NO)O). The sequence ~k can be 

expressed recursively in its k=O value, which equals 

~O 
0.5 

exp {0.5 f In [X(f)+N01 df } 
-0.5 

The recursion relation is [71 

k-l 
~ L (k-i)vk_i~i' k)=I, 
k i=O 

where the coefficients vk ' k)=I, are defined as 

0.5 
vk - J ln[ x( f)+N01 cos( 27lkf)df. 

o 

(20) 

(21) 

(22) 

-1 --1 
Convolving both sides of (16) by (~ *g' )k (where the super-

script "-1,, indicates the convolutional inverse operator) we find 

that 

( 23) 

The left and right hand sides of this expres sion are (by constructi

on) causal and anticausal, respectively. Since (23) requires them to 

be equal, they can only for k=O be nonzero, and then assume the 

(right hand side) value gO/~O. (The latter fact can be easily deduced 

7 
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-1 
by expressing 1 k in Z-transform notation and making use of the fact 

that r(z) has no zeros outside the unit circle.) We therefore 

conclude that 

go 
(g -*1-,-1)k' c

k 10 
all k, (24) 

and 

go 
-1 0 

Pk 
10 

(g *1)k - k' all k. (25) 

An immediate consequence of (24) and (25) is that every spectral 

zero of gk induces an (identically located) zero and pole of and 

Pk' respectively. This implies in particular that Pk will generally 

have an infinite extent, so that one decision error degrades the 

quality of subsequent decisions ad infinitum, which is clearly highly 

undesirable. Although it is feasible without loss of mean-square 

performance to reduce these error propagation problems considerably, 

we shall for the sake of brevity not concern ourselves with this 

topic here. Using (24), we see that the optimum forward filter 

impulse response (h-*c)k is completely determined by (h-*g-)k=f-
k 

and 

1 k , neither of which depend upon the partial response gk' The 

tailoring of the decision variabie ~k required to match a prescribed 

correlation structure (i.e., partial response) is therefore the 

exclusive responsibility of the feedback filter. Combining (18), (20) 

and (24) we finally arrive at the desired closed-form expression for 

Emin : 

0.5 NO 
g2exp{ ( ln[-------] df }. 
o -015 X(f)+NO 

(26) 

For partial responses g(D) of the (causal and minimum-phase) form 

(I-D)m(l+D)n it is easily verified that gO=l, so that (26) reduces to 

the expression describing the optimum "mean-square error in the non 

partial response situation [4]. 

8 
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4. CONCLUSION 

This paper has studied the consequences of applying the decision 

feedback equalizer to cope with the intersymbol interference arising 

in a given ("residual") part of the channel rather than in the entire 

channel. Unlike the non partial response case, it was found that the 

optimum feedback filter coefficients are not a replica of the overall 

system impulse response, but rather cause a weIl defined amount of 

trailing intersymbol interference to arise which allows previous 

decisions to contribute constructively in the detection of subsequent 

digits. The optimum DFE performance was shown to be independent of 

the applied partial response whenever the D-transform of the response 

is the usual product of (I+D) and (I-D) terms. Thus the significant 

additional complexity incurred by the application of a partial 

response of this type is never rewarded in terms of a (mean-square) 

performance gain. Going by the significant improvements that are in 

specific cases feasible for the linear equalizer [1] one would a 

priori not have anticipated such a stingent statement to hold. 
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EVENT SERIES PROCESSING: A SIGNAL ANALYSIS APPROACH 

O. Rompelman 

Event series with a smaLL aoeffiaient of variation may be 
treated as a time signaL aonsisting of ö-funations. This 
approach yieldS simpLe aLgorithms for filteringJspeatraL 
anaLysis and aorreLationaL anaLysis. 

INTRODUCTION 

Many processes in nature can be described in terms of a series of 

repetitively occurring and identical events. The relevant information 

is contained in the way these events occur in time. A point process 

is a mathematical model for this kind of processes. A detectionjesti

mation procedure transforms physical or physiological events into time 

instants. If the process behaves in an unpredictable way it may be 

described as a stochastic point process, the random variable being 

e.g. the number of events within a time bin. When the event intervals 

have a low coefficient of variation and exhibit relatively slow var~a

tions a simpler approach is to be favoured. An example of such a pro

cess is the cardiac event series (he art beats) . 

Let n(t) be the number of events in (O,t]. We may write n(t) as a 

function of time 

n(t) (1) 

Differentiating n(t) with respect to time yields x(t), a signal des

cription of the event process: 

x(t) E ö (t-t.) • 
1. 

Vi 
(2) 

O. Rompelman is with the Delft University of Technology, Department 

of Electrical Engineering, Information Theory Group, P.O. Box 5031, 
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This is in fact the differential counting .process as discussed in [1] . 

In practice when dealing with digital signal processing we have to 

convert the cont.inuous time series into a discrete time series. This 

conversion is cal led regularization [2] and is equivalent to the sam

pling procedure in conventional signal processing. The discrete time 

event series can be written as 

x (k9) = 1: ö[(k-k
i
).9]. 

v. 
~ 

(3) 

Note that in fact the ö in (2) is a Dirac ö whereas in (3) the Kro

necker ö is meant . 

On the basis of (2) and (3) it is possible to carry out linear opera

tions on the signal in a much simplified way since integral operations 

on a series of ö functions wil! become simp!e summations. 

FILTERING 

Assume that the impulse response of a linear filter is h (t). The 

filtered continuous time event process as defined in (2) is then 

found from 

co 

y(t) f X(t-T) h(T)dT 

1: h(t-t.). 
v. ~ 

(4) 

~ 

Similarly the filtered discrete time event process is found from 

1: h[ (k9 -n.9)] 
v. 0 ~ 

(5) 

~ 

with9
0 

the discretisation interval of the output signal. Introducing 

the output/input sampling rate ratio 

n 
9 

o 
9 

(6) 
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(6) can be rewritten as 

y(nke) E h[ (nk-n.) .e] . 
V ~ 

i 

(7) 

Though it seems obvious to make n=l this will not be a good choice 

in practice . As an example we discuss a low pass filter. Assume that 

9=1 ms and the cut off frequency of the filter is 0.5 Hz , these va

lues being realistic for HRV* . The out off frequency of the filter 

leads to a minimal necessary value for the output sampling frequency 

l/eo = 1 Hz . Since the filter in practice is non-ideal, an output 

sampling frequency of 2 Hz is chosen. This implies that 9
0 

= 0.5 s 

yielding n=500 . It can be concluded that a significant data reduction 

can be obtained by this procedure which motivates a hard ware imple

mentation [3] . 

SPECTRAL ANALYSIS 

The Fourier transform of the continuous time event process x(t) 

(again as defined in (2» yields the complex spectrum X(f): 

E 
V. 
~ 

-j27Tfti e • 

The complex spectrum of the discrete time process is given by 

X (mllf) 

For a finite segment of duration T a preferabie value of 6f is 

(8) 

(9) 

M = .!. 
T 

(10) 

* Heart Rate Variability 
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-j 
21\'mn. 

~ 
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(11) 

An implementation of an HRV spectrum analyser on a personal computer, 

based on the principles discussed above has been reported before [2]. 

An attempt has been made to apply AR-spectral analysis techniques 

to the event series. According to the Burg method (viz. the extrapo

lation of the data) this has been achieved by extrapolating the se

ries of intervals. The extrapolated intervals were reconverted to an 

event series, whereafter the spectrum is calculated as discussed 

above [4]. The results seem promising for certain applications where 

low frequency components in relatively short data segments have to 

be detected. As an example we may refer to the assessment of the so

called 10 sec rhythm in patients suffering from autonomie neuropathy 

[5]. 
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OPTIMAL DETECTION OF THE RAPID-EYE-MOVEMENT BRAIN STATE 

B. Kemp* 

Abstract. A model has been proposed for the stochastic 
occurrence of bursts of rapid eye movements (REMs) during 
sleep. REM-bursts are simulated by a Poisson counting pro
cess with a ra te that depends on a binary Markov 'sleep 
state'. The corresponding maximum likelihood detector, 
that continuously monitors the current sleep state based 
on the observed REM-bursts, has been derived. 

INTRODUCTION 

The various stages of human sleep can be recognized by (a.o.) 

different eye or body movements, muscle tension and several com

ponents of the electroencephalogram. One of the former are the 

rapid eye movements (REMs): fast rotations of the eyes which 

occur irregularly, but almost exclusively during wakefulness and 

during one of the sleep stages that is consequently cal led REM

sleep. Most systems for automatic sleep stage monitoring are, 

therefore, partly based on monitoring the 'REM-state' of the 

brain; that is the state (either wakefulness or REM-sleep) during 

which REMs do occur. 

Because both the brain state and the REMs during the REM state 

seem to be stochastic processes, an appropriate smoother should 

take into account their statistical properties. In this paper, 

such a smoother has been developed by modeling those processes 

and deriving the likelihood ratio for the problem 'state REM or 

not' 

* Academie Hospital, Department of Clinical Neurophysiology, 
Rijnsburgerweg 10, NL 2333AA Leiden, The Netherlands. 
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2 PROBLEM FORMULATION: A MODEL 

We assume sleep stages to be generated by a continuous time 

Markov chain process. This process has a1ready been proposed as a 

sleep stage generator model by Zung et al. (1965). lts simula

tions show a good' resemb1ance to rea1 sleep stage patterns (Kemp 

and Kamphuisen, 1986). 

In the present paper we are interested on1y in the tran

sitions between REM states (many REMs) and NREM states (fewor no 

REMs). We have therefore simp1ified the Markov chain to a binary 

one, p(t)({0,11, and REMs are generated predominant1y when 

p(t)=1. The sleep state generating mechanism shows c1ear periodi

cities and trends that are different for different individuals 

(Kemp and Kamphuisen, 1986). Since one generally does not avai1 

of sufficiently reliable a priori information about these indivi

dual dynamics, we have further simplified the binary Markov chain 

to one with constant transition rates, i.e. a homogeneous one. 

The corresponding homogeneous brain state generating differentia1 

equation reads (Kemp et al., 1985): 

dp(6)=[1-p(6»)dQO(6)-p(6)dq1(6) 

={[1-p(6»)/TO-p(6)/T1)d6 

+[1-p(6») [dqO(6)-d6/TO)-p(6) [dq1-d6/T1) 

={[1-p(6))/To-p(6)/Tl Id9+dml (6) 

p(0)({0,11 

(1) 

where Q1(6) and QO(6) are mutually independent Poisson counting 

processes. These processes are constant (i.e. dQi(9)=0) except 

for positive unit counts (i.e. dQi(9)=1) that occur with rates 

l/Tl and l/TO, respectively. Consequent1y, ml(6) according to (1) 

is a martingale. The average sojourn times in the REM state 

(p(9)=1) and the NREM state (p(9)=0) are Tl and TO (about 20 min. 

and 60 min.), respectively. 
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d~lt_' ______ -'nL _____ ~nL _________ _.C__-
t-

figure 1: Eye movement recording during REM-sleep. Note the 
two bursts, dn(t)=1, of rapid eye movements (+). 

Because the rather long times between REM-bursts within the 

REM state (fig.1) are critical for REM state monitoring, they 

will form the basis for our model. The inter-burst times are 

approximately exponentially distributed. Therefore we have 

adopted the Poisson counting process, n(O), that is suggested by 

these distributions, as a reasonable first approximation of the 

REM-burst statistics. Each count, dn(O)=1, generates a REM-burst 

(fig.1) and the intercount intervals are exponentially distri

buted. As in (1) we can write the REM-burst counting process in 

the form of a martingale-driven differential equation: 

dn(O)=r(O)dO+dn(O)-r(O)dO 

=r(O)dO+dm2(O) 

n(O)=O 

(2) 

where r(O) is the rate of the Poisson process, n(O), i.e. the 

density of the REM-bursts. Consequently, m2(O)is a martingale. 

During REM states (p(O)=1) this rate equals r1 (about 

1/min). During NREM states (p(O)=O), the ra te is partly deter

mined by false positive REM detections and equals rO (about 

.02/min). Or equivalently: 

r(O)=rO+(r1- r O)p(O) (3) 

Equation (1) describes the generation of the brain state, 
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while (3) and (2) describe the related generation of the observed 

REM-bursts, dn(6). Fig.2 shows a simulation by this model. Based 

on this description, the problem can be reformulated as follows: 

find the monitor which provides at all times, t, during the 

recording interval (t,O~t<T), the optimal decision, ~(t) ,. on the 

current value of p(t), based on the whole night observation, 

N(O,T)={dn(6),O~6<T}, of REM bursts, dn(6). As an optimization 

rule, we have adopted a Bayes criterion: the monitor should mini

mize the expected false-decision rate. 

11I11I1 

' .11' I 

I millil l ll II IIflll 1111111111 I Illnli 1 I n 11 1 

III.IEI I IHI II I . I IiI 

hOl.lra 

figure 2: Simulating the model during 2 'nights' of 8 
hours. I II are REM-bursts. -: 'brain state' is 'REM', 
when interrupted 'NREM'. Parameters: Tl=20 min., TO=60 
min., rl=l/min., rO=.02/min. 

3 OERIVATION OF THE REM STATE MONITOR 

The optimal decision, ~(t), on pet) can be obtained from the set 

of observations, N(O,T), by comparing the likelihood ratio: 

.L(t)=f(N(O,T)lp(t)=1}/f(N(O,T)lp(t)=O} (4) 

where f(.I.} are conditional probability densities, to a ·constant 

threshold, K. K depends on the optimality criterion. We adopted 

the Bayes' threshold for minimizing the expected false-decision 

rate, which reads: 

When L(t»K theoptimal decision is 'brain state REM', i.e. 

~(t)=1. When L(t)<K it is 'brain state NREM', i.e. ~(t)=O. 

(5) 

Using the Markov property of pee) and the mutual independency of 

the Poisson counts, dn(6), we may split L(t) into a 'future 

observations' part and a 'past observations' part as follows: 
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where (from Bayes' rule applied to (4» : 

id-,+) 

where the expectations, based on 'past' and 'future' 

observations are: 

P_(t)=E{p(t)ldn(9),O~9<t} 

P+(t)=E{p(t)ldn(9),t~9<T} 

(6) 

(7) 

(8) 

In this paper we will concentrate on the 'past observations' 

likelihood ratio, L_(t), that is a function of P_(t) according to 

(7). A differential equation to obtain P_(t) has been derived by 

Van Schuppen (1977, theorem 4.2). It reads: 

dP_(9)={[1-P_(9)]/To-P_(9)/T1}d9 

+ (r1-ro)P_(9)[1-P-(9)]{dn(8)-[ro+(r1- r o)P_(8)]d8) 
rO+(r1- rO)p-(8) 

(9) 

Driving (9) from 9=0 to 9=t yields P_(t). The initial condition, 

P(O), depends on experimental conditions . For instance, if we are 

rather sure that the monitor is started during wakefulness, 

P(0)~1. Equations (9) and (7) are sufficient for the recursive 

computation of L_(t). However, the number of required multiplica

tions can be reduced and the algorithm can be interpreted more 

clearly by the application of a logarithmic transformation. The 

transformed variable equals: 

(10) 

where, according to (7): 
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(11) 

The differential equation for the computation of À_(t) can be 

obtained from (11) and (9). Because (9) is driven by discon

tinuous counts, the ItO/Doléans-Dade/Meyer differentiation rule 

(Van Schuppen, 1977) must be applied as follows: 

where 6./6. denotes a partial derivative, w{dP_(9)} denotes the 

continuous part (i.e. dn(9)=O) of dP_(9) in (9) and ~(À_(9)} 

denotes the discontinuous jump in À_(9) that is caused by a 

count, dn(9)=1. According to (11), this jump equals: 

~{À_(9)}=ln{(TO/T1)[P_(9)+à{P_(9)}]/[1-P_(9)-~{P_(9)}]} 

-ln[(TO/T1)P_(9)/{1-P_(9)}] (13) 

where~{p_(9)} denotes the jump in P_(9) that is caused by a 

count, dn(9)=1. According to (9), this jump equals: 

Substitution of (14) in (13) shows that: 

(15) 

The partial derivative in (12) can be obtained from (11): 

(16) 

Substitution of (15), (16) and the continuous part, w{dP_(9)}, of 

(9) in (12) yields the differential equation for À_(t): 
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dÀ_(9)={[e-À_(9)-1]/Tl-[eÀ_(9)-1]/TO)d9 

.ln(rl/rO)·dn(9)~(rl-rO)d9 (17 ) 

Driving (17) from 9=0 to 9=t yields À_(t). The initial condition , 

À_(O) is 8 function (") of ~_(O), which depends on the state of 

the subject when the monitor is started. 

dn(t) ln(r1/ro)dn dc(t) 
-(r1-ro)dt 

LU) 

figure 3: Block diagram of the exponential feedback 
integrator that generates the test statistic, À_(t), if 
driven by the observed REM-bursts, dn(t). 

Figure 3 shows a block diagram of the algorithm. It appears 

to be an integrator with exponential feedback that is driven by: 

dC(6)=ln(rl/rO)·dn(6)-(r1- r O)d6 (18 ) 

The interpretation of this driving term is simple. Assume r,>rO. 

Between REM-bursts, i.e. dn(6)=0, the integrator will be driven 

to negative values while REM-bursts kick it to more positive 

values. According to (2) and (3), the conditional expectation: 

E{dn(6)lp(6»={ro+(rl- r O)p(6»d6 ( 19) 

which implies that the conditional expectation of the driving 

term equals : 

E{dc(6)lp(6»={(rO+(rl- ro)p(6»ln(r,/rO)-(r,-ro»d6 

=ro{(rl/ro)P(6)ln(r,/ro)-rl/ro.1)d6 (20) 

Apparently, the integrator is, on average, driven to positive 

values during REM-states (i.e. p(6)=1) and to negative values 

during NREM-states (i . e. p(6)=0). The saturation effect that is 
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caused by the exponential feedback limits the time needed to 

react to a transition of p(B). Quite satisfactory, this effect 

increases with increasing transition rates. 

4 DISCUSSION 

For practical sleep stage scoring we conclude that using 

mathematical models original and attractive solutions may be 

created for the processing of discontinuous observations. In par

ticular, the exponential feedback integrator might prove to be a 

simple and effective alternative to the usually applied integra

tion over segements of sleep recordings . 
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CODING FOR THE BINARY SWITCHING MULTIPLE ACCESS CHANNEL 

P. Vanroose:: and E.C. van der Meulen:::: 

Within the alass of all deterministia binary two-user 
multiple-aaaess ahannels we aonsider a reaently introduaed 
ahannel [1], nameZy the binary switahing ~C. The probZem of 
aonstruating uniquely deaodabZe aode pairs is aonsidered. 
Three aZasses of' i nteresting aodes are deveZoped, based 
on the use of an MDS aode. The highest rate sum fouOO is 
1.JJJJJ, whiah is welZ above the time sharing line. 

I. INTRODUCTION 

Consider all deterministic binary 2-user multiple-access channels 

(MAC's). The only non-trivia I ones are those with 2 or 3 channel 

output symbols. In the first case there are essentially two non

equivalent channels, namely the EOR channel [2,3] and the OR channel 
2 [2,4]. Both have as capacity region {(RI ,R2) E [0,1] IRI + R2 ~ I}. 

In the second case there are also two channels, the well-studied 

binary adder channel (e.g. [5]) with capacity region 

{(R I ,R2) E [0,1]2 IRI + R2 ~ 1.5}, and an asymmetrie channel, shown in 

Fig. I, introduced by J. Vinck [I], which we will call the binary 

switahing ahannel (BS-MAC) because "user X switches the connection 
2 

between XI and Y on and off" [I]. For this channel we give coding 

strategies, leading to some good code rate pairs above time sharing, 

such as (2/3, 2/3), (0.5, 0.7925) and (1/3, 0.9358). 

Fig. I : The binary 
X

I
X

2 
Y 

o 0 ----., 0 
IO~ 
o 1 

1 0 ) 2 

switching channel 

0ËBjX

I 

~ 
X2 

1 1 2 

: y = (xI + I) . x2 
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z. THE CAPACITY REGION OF A DETERMINISTIC MAC WITH TWO INPUT USERS 

Suppose the input alphabets are XI = {O, ••• ,MI} and Xz = {O, •.• ,MZ} 

and the output alphabet is ~ = {O, ••• ,N}. If the (deterministic) 

channel is defined by y = f(xl,xZ)' call 

Ijk := {i E XI If(i,j) = kJ, J ik := {j E Xzlf(i,j) = k} and 

~ := {(i,j) EXI x Xzlf(i,j) = k} = Cl (k) • 

For each product input distribution ({PO,···,PM },{qo, • .. ,qM }) on 
I Z 

I P. 
i E Ijk ~ 

I q. 
j E J

ik 
J 

R.:= L p.q. L 
-1t (i,j) E ~ ~ J i E XI 

Then the capacity region of this channel is [6.7] 

the union over all input distributions of 

and 

the convex huIl of 

(Z.I ) 

(z.Z) 

(2.3) 

where ~j := (PjO,···,P jN), ~i := (QiO,···,QiN)' $l:= (RO'···'~) and 

H(.) is the N+I-ary entropy function. 

Theorem I If for every k E ~ there exist A çXI and B çXZ such 

that ~ = A x B th en condition (2.3) vanishes. 

Theorem Z If for every k E ~ the set J ik does not depend on i 

th en condition (Z.2) becomes 0 ~ RZ ~ H(Qi)' 

Consider now the binary switching channel, where XI = Xz {O,I}, 

~= '{ O,I,Z} and y= (xI + 1).xZ• This channel satisfies Theorems land Z. 

Consequently its capacity region is the convex union over all p,q E 

[0,1] of {(RI,RZ) 10 ~ RI ~ q.h(p), 0 ~ RZ ~ h(q)}. Because RZ does 

not depend on p, we can take p = 0.5, which gives the explicit form 

This region is sketched in Fig. 2. Notice that the total cooperation 

line Rl + RZ = logz3 touches this region in (2/3 ,h(l /3». Thus in this 

respect this channel can do bet ter than the binary adder channel. 
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Fig. 2 : 

The capac1ty region of the BS-~~C 

with some achievable rate points. 
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3. CODING FOR THE BINARY SwrTCHING CHANNEL 

The code pair (C I ,C
2

) with CI ,C
2 

ç {O,lln is uniqueZy deaodabZe 

(UD) for the binary switching channel if for every cl ,cjE Cl ,C
2

E C
2 

the following implication holds : 

(3.1 ) 

where ~ denotes componentwise minimum (or product). 

Remark that the code pairs ({O,ll,{ll) and ({Ol,{O,ll) are UD, 

attaining the rate points (1,0) and (0,1) respectively in the 

capacity region, so only codes above time sharing are interesting. 

Note also that the points (r,l) with 0<r';;;0.5 are not achievable 

with UD code pairs, because then C
2 

would contain the all 0 vector, 

which always gives the all o vector as channel output. 

A first class of codes for this channel, of block length n, are 

obtained by taking Cl := {OO .•• 0,11. •• J} and C
2 

:= {O,J}n\{OO ••• ol. 

This pair is UD since, if Cl ~ c2 = ci ~ c2 ' th en at least one bit of 

Cl equals one bit of ci, so Cl = ci. With these codes we obtain 

rate pairs 

R =.!. 
I n 

(3.2) 

A second class of interesting codes consists of the code pairs 

(C I ,C
2

) of block length n with Cl := {cl E {O,I}n!w(cl ) is evenl and 

Cz := {c
Z 

E {O,lln!w(cz) ~ n-Il, where w(.) is the Hamming weight. 

This pair is UD since, if Cl ~ Cz = ci ~ cz' then Cl = ci because Cz 
has at most one 0 and the erasure of an arbitrary bit of Cl does not 

affect its information content. This fact is typical for an MDS 

(m::lximum distanae separabZe) code with minimum distance d = z. The 

other code Cz may then contain every vector of weight ~ n-I. Using 

these codes we obtain rate pairs 

R =I-.!. 
I n 

(3.3) 

For several values of n the rate pairs (3.Z) and (3.3) are given in 

Table I. They are also shown in Fig. Z, lying on the solid and the 

dashed lines respectively. The code pair with highest ra te· sum is 

({OOO,OII,IOI,IIOl,{OII,IOI,IIO,llll), with RI =RZ= Z/3. Table Z is 

the decoding table of this code. 
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Table 1 : 
First class of uniquely Second class of uniquely 
decodable code pairs. decodable code pairs. ---+-------+-------+-------++-------+-------+-------+ 
nl Rl R2 I RI+R2 11 Rl R2 I Rl+R2 I 

---+-------+-------+---- - --++-------+-------+-------+ 
1 1.0000010.0000011.00000 10.0000011.0000011.000001 
2 0.5000010.7924811.29248 10.5000010 . 7924811.292481 
3 0.3333310.9357811.26912 10.6666710.6666711.333331 
4 0.2500010.9767211.22672 10.7500010.5804811.330481 
5 0.2000010.9908411.19084 10.8000010.5169911.316991 
6 0.1666710.9962111.16288 10.8333310.4678911.301231 
7 0.1428610.9983811.14124 10.8571410.4285711.285711 
8 0.1250010.9992911.12429 10.8750010.3962411.271241 
9 0 . 1111110.9996911.11080 10.8888910.3691011.257991 

10 0.1000010.9998611.09986 10.9000010.3459411.245941 
15 0.0666711.0000011.06666 10.9333310.26667 11.200001 
20 0.0500011.0000011.05000 10.9500010.2196211.16962! 
2510.0400011.0000011.04000 10.9600010.1880211.148021 
5010.0200011.0000011.02000 10.9800010.1134511.093451 

- --+-------+-------+-------++-------+-------+-------+ 

Table 2 : Decoding table of a 
uniquely decodable code pair. 

+----+---------------+ 
1 \C I I 
IC \21011 101 110 1111 
I 1 .\ I 1 
+----+- - -------------+ 
1000 1011 101 110 1111 
1011 1022 102 120 1221 
1101 1012 202 210 2121 
1110 1021201 22 0 2211 
+----+ - ------ - -------+ 

Table 3 : Some ra te pairs for the third 
class of uniquely decodable code pairs. 

+---+---+---+---+-------+-------+----- - -+ 
I f I m I bin I 
I I I I I 

R 
1 

RIf< +R I 
2 I 1 2 I 

+- --+---+---+---+-------+-------+-------i 
1 2 21 1010.6000010.6727911.272791 

I 1 2 31 1010.4000010.8554611.255461 
1 1 3 41 2710.5555610.6794811.235031 
I 0 3 51 2410.3750010.8378211.212821 
I 1 4 81 6810.5294110.6750411.204451 
1-1 4 71 60/0.5333310.66793/1.20126/ 
1 1 4 111 6810.3529410.8342211.18716/ 
I 1 5 21116510.36364/0.80314/1.166771 
1-1 5 20115510.3548410.8096 7 11.164511 
I 0 5 21116010.3437510.81915/1.162901 
+---+---+---+---+-------+-------+-------+ 
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Let us now generalize this idea of Cl as MOS code. Let q := Zm. 

Take Cl a [q-I,q-b-I,b+I] Reed-SoZomon code over GF(q), in some 

binary representation; or a [q,q-b,b+I] extended RS code over ~F(q); 

or a [q+l,q-b+l,b+l] MOS code ([B], Ch. 11). Summarizing, we take 

Cl a [q+E,q-b+E,b+I] MOS code over GF(q) in binary representation, 

where EE{-I,O,I} and bE{I,Z, ••• ,q+E-I}. Take Cz the set of all 

vectors in (GF(q»q+€ at a distance ~ b from the all 1 vector. This 

is a nonlinear (q+€,V (o+€,b)) code over GF(q) in binary representa-
q 'r . 

tion, where V (n,r) := L (~)(q_I)1 is the volume of a sphere of 
q i-O 1 

radius b ([9], p. 55). - With these codes we attain rate pairs 

R = I - ~ I q+€ 
I 

RZ = ~ 10gZV (q+€,b) m\q+€) q (3.4) 

The binary block length is n = m(q+E) = m(Zm + €). 

The only MOS codes known with other parameters are [q+Z,q-I,4] and 

[q+2,3,q] codes over GF(q), so we can also take E=2 and bE O,q-I}. 

Table 3 gives rate pairs of this class of codes for some values of 

E,m and b. The code pair with highest rate sum is attained for E = Z, 

m = Z, b = 3, namely Rl + R2 = I. 2B66. Several good code rate pairs 

achievable with this procedure are shown in Fig. 2. They are all 

subobtimal with respect to the codes of class 1 and class 2, which 

can be explained by the fact that these codes are not really binary 

while the channel is binary. Although, the code pairs of Table 3 

are optimal in the sense that they can only be improved by time

sharing some codes of classes 1 and 2. 

4. CONCLUSION 

In this article we described good achievable code pairs for the 

binary switching channel, based on MOS codes which combat arbitrary 

erasures. So far no codes had been constructed for this channel, 

which forms an interesting counterpart to the extensively studied 

binary adder channel within the class of binary deterministic MAC's. 

It is quite possible that based on other methods still bet ter code 

pairs then given here can be derived. 

Generalisations of th is channel such as the noisy BS-MAC yet 

have to be investigated, as weIl as the problem of finding good 
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ö-decodable code pairs for this channel. 

The feedback capacity region of this channel is known, since it 

belongs to the class introduced by F. Willems [10] . However J. Vinck 

showed that in this case the feedback capacity region coincides with 

the non feedback region given in Fig. 2. 
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ON MINIMUM BREAKDOWN DEGRADATION IN 

BINARY MULTIPLE DESCRIPTIONS 

In this paper we give more evidence for the fact that problems 
in source coding for multiple descriptions in the no excess 
rate case are easier to solve than in the case when excess 
rate occurs . A converse is proved for the binary 2-descriptions 
problem. Determining the minimum breakdown degradation is shown 
to be reducible to solving the corresponding zero-error pro
blem. It is demonstrated that this does not work for problems 
with excess rate. 

INTRODUCTION 

The problem of souree coding for multiple descriptions, formulated 

in 1980, appears to be a problem for which the known methods in souree 

coding are not strong enough. Therefore many authors have studied 

special cases, in order to get a better understanding of the problem. 

We will restriet ourselves to the binary case and start with a formu

lation of the problem. When the output of a binary symmetrie informa

tion souree is of great importance, it is advisable t o spread the in

format ion over more than one channel, in order to protect the decoder 

against a complete 1055 of information. We assume that the channels 

are noiseless, but sometimes a few channels break down completely. The 

encoder does not know anything about the state of the channels. When 

two channels are used the communication system is depicted in Figure 

1. The encoder sends its messages at rates Rl resp. R2 over channels 

1 resp. 2. If both channels are working, the decoder reproduces the 

souree output within an ave rage distortion (error frequency) dO; if 

channel t breaks down the decoder reproduces the souree output within 

average distortion d
t

, for t = 1 or 2. The problem is to determine the 

quintuple (Rl,R2,dO,dl,d2) of achievable (in the u s ual Shannon sense) 

* Eindhoven University of Technology, 
Department of Mathematics and Computing Science, 
P.O. Box 513, 5600 MB Eindhoven, The Netherlands. 
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rates and distortions, of ten referred to as the achievable (rate

distortion) regiorr. When we impose the restriction Rl + R
2 

= 1 - h (dO) 

(where h(x) = -xlogx - (l-x)log(1-x», i.e. the sumrate equals the 

Shannon rate-distortion function, we speak of a coding system without 

excess rate. If Rl + R2 > 1 - h (dO)' excess rate is present. 

channel 1 

encoder decoder x 

channel 2 

Figure 1. The 2-descriptions communication system. 

In the no excess rate case the problem is completely solved for 

general sources and distortion measures [1]. Despite this result, it 

remains worthwhile to study the binary case, in order to obtain more 

knowledge of the excess rate problem. Zhang and Berger [2] used the 

binary case as example in showing that the achievable reg ion of Cover 

and El Gamal [3] is not the complete region in the excess rate case. 

We simplify the k-descriptions problem by letting the distortions di 

only dep end on the number i of channels that are received. So the pro

blem is now to determine the achievable 2k-tuples (R
1

, ••. ,R
k

; 

d1' .•• '~). Furthermore we define, for all i = 1,2, ..• ,k-1, the ml.nl.

mum breakdown degradation dik) := inf{di I (~, ... , ~; dl' •.. ,di' ... ,0) 

is achievable},. i. e. the minimum achievable distortion, if only i of 

the k channels are working. 

In [4] and [5] H. Witsenhausen determined lower bounds for dik) and 

c1(k_)l' d h h -K un er te st rong restriction t at the decoder reproduces the 

source without error i ·f all channels are working. These distortions 

are in general not achievable. We will show that in the Shannon set-up 

these zero-error lower bounds in fact are achievable. Furthermore, the 

lower bounding technique also works in this case. We illustrate this 
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b "d(2) Y determ~n~ng 1 

and Berger [2], who 

in this way, obtaining an easier proof than Zhang 

used properties of Hamming spheres. Finally we 

show that this method does not work in the excess rate case. 

THEOREMS AND PROOFS 

The first rather standard result gives an inner bound for the 

achievable reg ion for the k-descriptions problem in the case d
k 

= O. 

THEOREM l: (Rl"" ,R
k 

; dl"" ,d
k

_
l 

,0) is achievable if there exist 

mutually independent random variables Y
l

'Y 2""'Y
k

' jointly distri

buted with source variable X, such that: 

k 

I 
i=l 

5 

I 
j=l 

R, 
~ 

1 , 

R, ;;'I(X;Y , , ... ,Y,) 
~j ~1 ~s 

for all 5 E: {1, 2 , ... , k - 1} 

and for every s-subset 

{i
1

, .. ·,i
s
}of{1,2, ... ,k} , 

and there exist decoding functions ~s for all 5 E: {1,2, ... ,k}, such 

that E d(X,~ (Y, , ... ,Y , » ~ d, for every s-subset {i
1

, ... ,is} of 
5 ~1 ~s s 

{l,2, ... ,k}. 

The proof, which we omit, can be given using properties of typical 

sequences [6]. We remark that the distortions, determined by Witsen-
(k) (k) , 

hausen in the zero-error case for dl and d
k

_
1 

are ach~evable. In 

particular we state the following corollary, which we will prove as a 

preparation for our converse result: 

COROLLARY: d(2) ~ 
1 

Theorem 1. 
12 - '2' this is the smallest possible distortion in 

Proof: Without 1055 of generality the best thing a decoder can do in 

case of a breakdown is to "trust" the received symbol. If we look at 

the joint distribution of Y
1 

and Y
2 

in Figure 2 and recall that the 



marginal distributions of Yl and Y
2 

are the same, since our problem 

is symmetric, we readily see that we have to avoid the cases that 

x = 0 while Yl = Y
2 

= 1, and X = 1 while Y1 = Y
2 

= O. The distortion 
2 1 

is maximal, i.e. if a = 2". We con-
1 
"2. 

dl = a( 1 - a) is minimized if a 

1 d ' h' d(2) / 1 cue ~n t ~s case: 1 ~ --
12 

o 

In the same way we can prove the following 

(2) 1 1 
LEMMA: In the zero-error case we have dl ;;;. -- - "2. 

12 
Proof: Without loss of generality we can assume that the source bits 

are taken in blocks of length 2n . We write all possible binary 2n

tuples in an 2
n 

x 2
n 

array. For every row (resp. column) a codeword is 

made (see Figure 3). If the source has produced 2n bits the corre

sponding codewords, say c, and d" are transmitted over channels 1 
~ J 

and 2. Note that indeed the decoder achieves errorfree reconstruction 
2n-l 

if both channels are working. In every coordinate there are 2 ones 
2n-l 

and 2 zeros. Analogous to the proof of the above corollary we con-

clude that 
1 1 

-- - - per 
12 2 

in case of a breakdown the error frequency is at least 

coordinate. o 

a 
Or------.-----, 

X ? 

al------.4f-----j 

? X o 

pr(Y
1 

= 1) = Pr(Y
2 

= 1) = a 

Figure 2. The joint distribution 

of Y
1 

and Y
2

. 

THEOREM 2: d (2) 
1 

channel 2 

d, •.. d n 
J 2 

. . ' 

c
i 

= :: ::: :·. ·. ·.·: :D: :: ·.:·,· 

. ' 
channel 1 

Figure 3. The array containing all 
2n 

2 -tupIes. 
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The proof is in essence the same as the proof of the above lemma . 
1 1 (2) (2) 

Given the achievable quintuple (2' 2 ' O,d1 ,dl ), we can for some 

wordlength N construct again an array, in which almost all binary 

N-tuples are written. Due to the Shannon formulation there are a 

little more rows and columns . An important feature is that we may 

assume that the "empty" entries are randomly distributed over the 

array. If we analyze this carefully, we conclude that again we find 

that d(2) ;;;. .l... - 1 . We leave the technical details. 
112 2 

The reason that this method works in the no excess rate case is 

that we can assume that only a very small fraction of the entries in 

the array is empty, and that those entries are equally distributed . 
1 

Suppose we have Rl = R2 = 2 + r (r> 0, fixed) and the decoder repro-

duces the source without error if both channels are working . By 

2 (! +r)N 2 (!+r)N writing all binary N-tuples in an x array, we can 

arrange the empty entries in such a way that the error frequency tends 

to zero as N becomes larger. So wewill not find useful lower bounds 

in this way for the excess rate case. 

CONCLUSION 

We have outlined a converse proof for the determination of the mi

nimum breakdown degradation for the binary 2-descriptions problem 

without excess rate, parallelling the proof 

The minimum breakdown degradations d~k) and 

using Witsenhausens results ([4], [5]). The 

of the zero-error case. 

~~~ can now be determined 

problem of finding d~k) 
~ 

for all i E {1,2, • • • , k - 1} is reduced to the corresponding zero-error 

optimization problem. 
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KEY SIGNATURE SCHEMES 

ABSTRACT: For the purpose of automatic key selection 
or key identification a bitstring of certain length 
is of ten derived from the secret key at hand. This 
bitstring which we call key signature, is usually 
derived from the key by .~~ans of a weIl known one
way function like the DES . In this paper we have 
considered simple functions for obtaining key 
signatures and their security. As a figure of merit 
for the security of key signature schemes we have 
introduced the notion of given-away information of 
the key. For random permutat i ons on the key the 
given-away information per keybit decreases 
monotonicaly with increasing keylength. A random 
selection of keybits gives away very little 
information on the average. 

1. INTRODUCTION 

In order to identify a secret key, which is assumed to 

be a randomly chosen bitstring of certain length, one of ten 

derives another bitstring from this secret key by means of 

a one-way function . As an example thi s bitstring, cal led 

key signature, may be the result of encrypting a fixed 

message with a cryptographic algorithm that uses this key, 

like the Data Encryption Standard [1]. 

However for practical reasons it may be undesirable to 

use a complex cryptographic algorithm. Therefore simple key 

signature schemes need to be considered, e.g . a pseudo 

random selection of keybits. 

The interesting knowledge about key signature schemes is 
of course the amount of information the signature reveals 

about the key itself. 

* Philips Usfa B.V., P.O. Box 218 
5600 MD Eindhoven, The Netherlands 
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As the key itself is secret but its signature is not, this 
amount of information should be as small as possible. In 
the sequel this amount of information revealed about the 

key is cal led given-away information E. It is obvious 

that a linear deterministic scheme such as a parity check 

scheme is unsuitable as in principle it reveals as much 

bits as there are parity check bits. 

How many bits the key signature should comprise is the 

subject of section 2. Section 3 establishes the amount of 
given-away information if a random permutation of the key 
bits is taken as a signature. Moreover an upper- and a 
lowerbound to the given-away information are derived. In 
sections 4 and 5 the given-away information is determined 

for a random extraction and a random selection respectively. 

Finally in section 6 a practical pseudo-random key 

signature scheme is shown. 

2. KEY SIGNATURE LENG TH 

In order to determine the length of a key signature, 
assume that signatures are bitstrings with every bit drawn 
independantly at random and the probabilities of a 1 and a 

o are equal. Suppose there are N signatures each of m bits 

length. We are interested in the probability that they are 

all different. This is the well known birthday problem. 

The probability of unique signatures can be determined 

as follows: 

P 
M M-1 M-2 M-(N-1) 

unique - M 11 11 M 

with M = 2m 

p - 1 
1 (12 ) (1 (N-1) ) 

unique (l-M) M ... M 

If N-1 « 1 then: 

M 
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(0 ) P ä 1 - ~ N(N-1) 2-m 
unique ~ 

If for example Nz100 and m-16, there is a probability of 

7.6 % that one or more signatures will not be unique, and 
if for example we de mand a probability of non-uniqueness of 
10-6 for Nm 100, the signature length will be 34 bits. 

3. RANDOM PERMUTATIONS 

In the sequel let K denote the secret key, Sits 

signature, W(K) the Hamming weight of K, and L(K) the 

length of K. Suppose that S is a random permutation of K, 
then one only has to try all permutations of S in order to 
guess K. 

This number of permutations equals: (~)< 2n , with n - L(K) 

and k = W(K). 

Therefore the amount of given away information of Kis: 

(1 ) en,k := n - l09(~) bits 

In order to determine the ave rage given away information 

per key, no te that the distribution of the weight of a key 

is binomial as in (2), so that the ave rage given away info 
is given by (3). 

( 2) Pr{W(K)=k} = (~) 2-n 

(3 ) bits 

As can easily be verified expression (3) shows that the 

ave rage given away info is equal to the entropy of a 

binomial source with an alphabet of n letters and 

probability given by (2). 
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One can readily obtain upper and lower bounds for 

expression (3). A lower bound is obtained by replacing 

the rightmost binomial coefficient in (3) 

An upperbound follows immediately from the fact that the 
entropy of a memoryless souree with any probability 

distribution over the output alphabet is always less than 

that of a souree with a homogeneous probability 

distribution. 50 we have: 

(4) . n - log (~~) 

( 5) log(n+l) 

Figure 1 shows the ave rage given away information per 

keybit as a function of the length of the key. It also 
shows the normalized upper- and lowerbounds. It is clearly 
demonstrated that for a random permutation the amount of 
given away info per keybit goes to zero with increasing 

keylength. For example a randomly permuted DES key 

(56 bits) gives away 3.95 bits about the key itself or 

either 0.07 bits per kevbit. 

FiG. 1 

• 11 
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4. RANDOM EXTRACTIONS 

In this section we consider a random extraction of a 
number of keybits as a signature, so if a keybit has been 

selected, it cannot be selected. again. This means that 
all signature bits represent distinct keybits. The 

signature length can therefore be at most equal to the 

keylength and if this is the case, we have a random 

permutation and are back at section 3. However a random 

extraction is more realistic than a random permutation, 
because most keysignatures used, have less bits than the 
key itself. In order to guess the key K one now has to 

try all bitstrings of length L(K) that have weight at 

least W(S) and contain at least L(S)-W(S) zeroes. Let N 

denote this number of trials, n=L(K), l-L(S) and w-W(S), 
then we have: 

(6 ) 
n-(l-w) (n) 

N - L i 
i:zw 

with 1 ~ n 

The given away info about the key K amounts to: 

(7 ) € 1 - n - log N n, ,w bits 

For random keys the weight distribution of S will also be 

binomial, analogous to (2). Therefore the ave rage given 
away information of K is given by expression (8). 

(8 ) 
-1 

€ 1" n - 2 n, 

Substituting l-n in (8) yields expression (3), as can 
easily be verified. Figure 2 shows the behaviour of (8) 

for n-56. It a1so shows how 1itt1e information is given 

away if the signature 1ength is only a few bits shorter 

than the key1ength. For instance a random extraction of 

48 bits out of the 56, gives away on1y 0.7646 bits of 

info about the key on the average. 

...Uhl'U ........ UH ...... iJliU .. WU. 
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5. RANDOM SELECTIONS 
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A random selection of keybits is taken as a key 
signature in this section. 50 in fact we throw 1 times 

with an n-sided dice and collect the 1 addressed bits to 

form the keysignature . In this case there is only a 

certain probability that all the signature bits represent 

different keybits, and obviously one or more keybits may 

be selected more than once. Observe that as the signature 

becomes longer an increasingly more acurate estimate of 

the weight of K can be made. If the signature comprises 

infinitely many bits, W(K) is known and we are back at 

section 3 with regard to the amount of given away info 

about key K. For a finite length signature suppose there 

are m different keybits. If one knows the weight of 

these m bits, we are back at section 4, where expression 

(6) gives the number ofguesses to make for the key. As 

one only knows W(S), more guesses will be necessary with 

strings that have minimum weight W(S) - (L(S)-m) and 

maximum weight L(K) - (m-W(S). It therefore makes sense 

to define as an upperbound to the given away info for a 

random selection : 
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1 

(9 ) E' ~L 
n,l m=l 

Pr(m differentll,n) 

Where e: is given by (8) with l=m and n,m 

e: n,m 

Pr(m differentll,n) is the probability of obtaining 

exactly m different outcomes when throwing 1 times with a 

n-sided (unbiased) dice. With the aid of a good textbook 

on combinatorial analysis, e.g. [2], one can find the 

following expression for this probability distribution 

(10 ) pr(m diff. Il,n) = mI n- l (~) sim) 

Where Sim)iS a Sterling number of the second kind, 

which satisfies the following recursion relation 

(11) 

Expression (9) is evaluated for n=16 and depicted in 

figure 3. Also for n=56 and 1=100 the average given away 

information is less than 0.6523 bits 
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6. A PRACTICAL KEY SIGNATURE SCHEME 

In the previous sections random permutations, 
extractions and selections were considered for deriving 
a signature of a secret key. However in order to be 
reproducible a signature should not be determined by a 

random operation. In such cases it is a good practice to 

use some kind of pseudo- random mechanism to imitate real 

randomness. In the key signature scheme presented here a 
linear feedback shift register is used to produce a pseudo 
random sequence of addresses. These addresses in turn are 

used to select a number of keybits, which form the 

signature. The key itself determines the actual shift 

register sequence. Figure 4 depicts this scheme. 

We argue that this scheme is probably as good as a 

random selection, because the selection sequence is 

determined by the random, secret key and therefor 
unpredictable a priori. But also because of the random

ness of the selected keybits, the linearity of the shift 

register will be hidden. 

K --> ,n'··j······iD 
V V V 

select 

K --> 

Fig. 4 
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7. CONCLUSIONS 

In this paper it was shown that simple random 

operations on a secret key in order to obtain its 

signature reveal very little about this key. For the 

case of random permutations and random extractions 

expressions were found for the amount of given away 

information about the key, and for random selections 

a usefull upperbound was derived. It was clearly 

demonstrated that very little information is given away 

in the case of a random selection of keybits. Moreover 

a practical pseudo-random selection key signature scheme 

was shown which can be implemented very easily. The 

theory presented here also provides an insight into the 

information theoretic aspects of shift register devices 

used for encryption of messages. 
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THE Pe-SECURITY DISTANCE AS A GENERALIZED UNICITY DISTANCE 

Johan van Tilburgf Dick E. Boekee** 

1. INTRODUCTION 

The user of cipher systems makes it possible to send secret messa

ges via public insecure channels. However, the secrecy of the message 

depends highlyon the cryptographic performance of the cipher system 

used. When evaluating the theoretical strength of cipher systems with 

a probabilistic model, it is assumed that the cryptanalyst behaves 

rationally, that he or she at least knows the set of transformations, 

the statistics of the message and the key source. 

In Shannon's paper [1] it is pointed out that if the cryptanalyst 

intercepts a cryptogram, that he or she is able to calculate the a-pos

teriori probabilities of the various possible messages and keys which 

might have produced this cryptogram. This set of a-posteriori probabi

lities describes how the cryptanalyst's knowledge of the message and 

the key gradually becomes more precise as more enciphered text is in

tercepted. Shannon used as a measure of theoretical strength the equi

vocation, which deals with a simplified description of the set of a

posteriori probabilities. Shannon's approach has led to the so-called 

(classical) unicity distance and will be described in section 2. 

Although Shannon's information measure leads to easy manipulation 

in a natural and intuitive way between different probability distri

butions, still the underly ing relevant parameter is the error probabi

lity (or probability of incorrect identification) Pe faced by the crypt

analyst. 

In cases where determining the error probability in a direct manner 

is quite involved, bounds on Pe can be considered. By bounding pe with 

information measures and/or distance measures, a region is determined 

* 
** 
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in which the actual Pe can be found. 'ihe uncertainty in the value of 

Pe is resolved only in limiting cases where the bounds are tight. In 

this context it seems to be a natural way to make use of the concept 

of distance measures since the error probability is actually a distan

ce measure itself. This approach, which can be found in Van Tilburg 

=="O ...... u-.-II" .... 

and Boekee [2], has led to the introduction of the Pe-security dis

tance and will be described in section 3. Finally, in section 4 conclu

sions are drawn. 

2. THE CLASSICAL UNI CITY DISTANCE 

As it appears from the literature, the Unicity Distance (UD) is 

of ten linked to the random cipher model and/or the key equivocation. 

As a result of this several authoDs have given definitions of the 

unicity distance which are incomplete, biased and more restrictive 

than necessary. As a consequence of this the UD is easily given a 

wrong interpretation. To clarify this confusion let us first consider 

the UD as derived by· Shannon [1, p. 693]. Shannon defined the (clas

sical) UD for the message based on a ciphertext-only-attack, 

UDRC (lf /Er.), by evaluating the key equivocation and the key appearance 

characteristic in a Random Cipher (RC). As a result he obtained 

(1) 

where D uI') = log I MI - H (lf) /L is the average redundancy per message 

source symbol in a sequence J:f of L message 'source synilols, H (K) = 

log IKI is the entropy of the key source and EL is the enciphered mes

sage of length L. 

Unfortunately this UD is sometimes confused with the UD for the key 

based on a ciphertext-only-attack. It trivially holds that 

(2) 

so that (1) and (2) yields 

(3) 
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Hellman [3] has proved that the Re-model actually defines a lower bound 

on the existence of goed cipher systems. For this reason (1) and (3) 

give a worst case indication of the strength of a cipher system. How

ever, these results are not precise and the interpretation depends 

highlyon the size of the key space used and the message source used. 

A general relation between the key equivocation and the mess.age 

equivocation is given by 

(4) 

in which H(K/MLE
L

) is the key appearance equivocation. The left hand 

side of the equality is based on a ciphertext-only-attack, while the 

right hand side is based on a known-plaintext-attack. Hence Dunham [4] 

concludes that there is a fundamental trade-off between protecting the 

key under a known-plaintext-attack and protecting the message under a 

ciphertext-only-attack when the size of the key space is fixed. And 

also, when designing a cipher system which is to be strong under a 

ciphertext-only-attack on the nessage , (4) suggests that i t consequent

ly will be weak under a known-plaintext-attack. 

From (4) it also follows that 

(5) 

and thus 

(6) 

wi th equali ty if the key appearance equi vllrcation is zero, which is in 

agreement with (2). In general, the key equivocation is given by 

If the message source and the key source are stochastically indepen

dent, then the key equivocation becones 

(7) 

(8) 
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Using the inequality H,{EL) ::. log IELI = L.log I EI and the fáct that 

IEl IMI, we easily find that H{K/EL) in (8) can be lower bounded 

by 

H(K/EL) > H(K) + H(ML) - L.log IEl 

= H (K) - L.D(ML) • 

If we define the unicity di stance UD(K/EL) for the key based on a 

ciphertext-only-attack as the distance where H(K/EL) is zero, then 

from (9) it follows that 

It is tempting to say that the RC reaches this lower bound, i.e. 

(9) 

(10) 

UD (K/~l ~ UDRC (K/EL). The next Lemma may help te make this statement 

clear. 

'Lemma 1. The average probability of error (or probability of incor

rect key identification) in a 'random cipher model at classical unicity 

distance is given by 

(11) 

'Proof. Suppose there are IKI different and independent keys in the Ra 

so that peRC(K/E
L

) = ~/IKI in which ~ is the average number of spu

rious key decipherments. According to Hellman [3, Theorem 1] we have 

~ = (IKI _1).2-L•D(ML). Substitution yields 

peRC{K/EL) = (1-IKI- 1) .2-L.D{~) • (12) 

At classical UD it holds that L = H(K)/D(ML). In addition, the keys 

are equiprobable so that .H(K) = log IKI. Substitution yields the Lemma. 

c 

This .Lemma tells us that the cryptanalyst is faced with an error proba

bility (unequal to zero) at the classical UD. For this reason H(K/E
UD

) 

can not be zero and the lower bound (10) does not hold in general. This 
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also shows that Blom's general derivation [5, p. 9] of Hellman's re

sult is not as general as suggested. Actually (10) is restricted to the 

limiting case where H(K/EL) = 0 can be obtained. 

Finally, te illustrate the difference between UD(K/E
L

) and UD(ML/E
L

) 

with an extreme example we mention that for a simple substitution 

cipher using the English language we may Obtain UD(K/E
L

) = 1500 and 

UD(~/EL) = 25 respectively. 

3. '!'HE Pe-SECURITY DISTANCE 

To understand the introduction and the interpretation of the Pe-se

curity distance (Pe-SD) as a generalized unicity distance it is neces

sary to formalize the UD. 

Definition 1. The unicity distance of a cipher model (including the 

message source) is the minimal expected length of ciphertext, generated 

by this model, af ter which the enciphered text (cryptogram) can be 

braken on the average. 

c 

This definition of the UD covers at least five important aspects. 

'!he first one is that the UD is a mirtimal expected length. For an accu

rate in terpre ta ti on of the UD it might be important to consider higher 

order statistics tOOg '!he second aspect follows from the fact that the 

cipher model includes the message source also. It is evident that the 

message source greatly influences the UD . Generally speaking, it is im

POrtant to know theproces which has generated the enciphered text. The 

third aspect is inherently related to the plaintext, i.e. the text gene

rated by the message source. If the plaintext is known, then we speak of 

a UD based on a known-plaintext-attack. If the plaintext is unknown, 

then we speak of a UD based on a ciphertext-only-attack. The fourth as

pect has astrong affinity with the previous one. What is our Object: 

the key or the message? As illustrated in section 2 they might be quite 

different. Finally, the fifth aspect and this might be the most important 

one: what is the meaning of "can .be broken on the average" • 

Most of the definitionsin the open literature approach this prOb-

lem by introducing the key equivocation and adverbs like almost and near-
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ly. Jnrgensen and Matthews [6] addressed this prablem by defining the 

8-UD as MIN{L I H (KIEL)' ~ 8}. However, the key equi vocation defines an 

upper bound on the error probability and is usually only tight for 

large L. Consequentiy, this contradicts the "minimal expected length" 

in definition 1 and the worst case approach in general. Moreover, the 

interpretation of the 8-UD is not uniqueand depends highlyon the 

size of the key space used. Tb avoid these problems one can link a 

probability function to "can be broken on the average" • 

For example, if the error probability (or probability of incorrect 

identi fication) faced by the cryptanalyst is used, then the cryptogram 

space is divided into equivalence classes, one of which has an unique 

average error probability Pe for a given cipher model. If we do this, 

then it follows from Ol} that the classical UD is directly related 

to an ave rage error probability which is inversely proportional to the 

catdinality of the key space used. As aresult, the meaning of the 

UD for different sizes of the key space is also different, in the 

sense of Pe. Actually, that is not what one prefers. For this reason 

a constant average error probability is taken as a starting point and 

definition 1 can be restated as a security distance. 

Definition2 . · The Pe-security distance of a cipher model (including 

the message souree) is the minimal expected length of the ciphertext, 

generated by this model, necessary in order to be able to break the 

enciphered text (cryptogram) with an ave rage error probability (or 

probability of incorrect identification) of at most Pe . 

IJ 

This definition provides a theoretically attractive measure of cryp

tographic performance of a cipher system. In order to give a mathematic

ally suitable de fini ti on it is necessary to restriet ourselves to a spe~ 

cific attack , for example as is done in the next definition [2, Defini

tion 4 . 2] • 

. Definition · 3 . The Pe-security distanee for the key based on a cipher

text-only-attack is defined by 
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where 

m is the actual cipher model, and 

y is a value of the error prababili ty Pe. 

Remark. Depending on what ones object is. i.e. the key or the message, 

the Pe-SD can be based on Pe (KIEL) or on Pe (~/EL). If a known

plaintext-attack is used onemmay use pe (K/~EL). From the definition m 
it also follows that the Pe-SD depends on the cipher model m used and 

the desirable value y of PeG 

The next corollary [2, Corollary 4.2] shows that the Pe-security 

distance can be considered as a generalized unicity distance. 

Corollary 1. The Pe-security distance includes the classical unicity 

distance as a special case. 

Proof. For an RC-model we have (12): 

peRC{K/EL) = (1-IKI':'1) • 2-L.D{~). 

If we choose y = {IKI-1)/IKI 2
, one easily obtains 

which is the classical unicity distance. 

c 

c 

Whereas determining the error probabili ty (and thus. the Pe-SD) in a 

direct manner is quite involved, one can make use of lower bounds only. 

This is in agreement with the worst case approach. A natural way to 

obtain lower bounds is to make use of the concept of distance measures, 

as shown in Van Tilburg and Boekee [2], since the error probability is 

actually a distance measure itself. However, if the key equivocation 

is used one must realize that this measure defines an upper bound on 

the error probability. For this reason, Fano's inequality 
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H(K/Ff'} < H(Pel + Pe . log( IKI~1) has to be used to obtain the lower 

bound. 

4. CONCLUSION 

Shannon obtained a unicity distance for the message based on a ci

phertext-only-attack in a random cipher model, which is referred to as 

the classical unicity distance. Hellman has shown that Shannon's ran

dom cipher result actually defines a lower bound on the existence of 

good ciphers. Later on, Blom generalized this result in terms of key 

equivocation. However, Blom's result is not as general as suggested. 

Af ter formalizing the unicity distance a potential ambiguity can 

be found in most definitions in the literature. This ambiguity can be 

resolved by introducing a probability function. 

A natural probability function is one based on the expected error 

probability (or probability of incorrect identificationl faced by the 

cryptanalyst. As a direct result the Pe-security distance is introduced 

as the minimal expected amount of enciphered text necessary to make 

an average probability of incorrect identification of at most Pe. 

Finally, if the expected error probability Pe is set equal to 

(IKI-1l/IKI2, then the classical unicity distance is obtained, which 

shows that the Pe-security distance can be considered as a generalized 

unicity distance. 
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