
DELFT UNIVERSITY OF TECHNOLOGY

MASTER THESIS

Semi-Controllable Compression Schemes
for Ultrasound Imaging

Author:
Xuyang LI

Supervisor:
Prof. Geert LEUS

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Circuits and System
Electrical Engineering, Mathematics and Computer Science

November 27, 2017

http://www.university.com
http://www.johnsmith.com
http://www.jamessmith.com
http://researchgroup.university.com
http://department.university.com




Abstract

The application of Compressive Sampling (CS) in medical ultrasound has been
widely studied in recent years with the growing requirement of reconstructing high
quality images with smaller data size. Most of the current studies with successful
CS reconstruction are mainly focusing on the mathematical applications of CS the-
ory in ultrasound imaging. However, the randomized mechanisms in these studies
are hard to be fully fulfilled in hardware. In addition, some studies try to discover
the sparse representation of signals by ignoring a part of information rather than
compressing all data. We propose a new compression scheme for fast image acqui-
sition in ultrasound imaging using a method, which is similar in style to CS. Our
scheme is based on the formulation of an inverse scattering problem (ISP), where the
Born approximation has been used during its derivation. In our system, the ultra-
sound image is represented by a collection of hypothetical points, what can be called
pixels. These points are identified by their unique spatial impulse responses relative
to the elements in the transducer. The randomized linear combinations of the spatial
impulse responses received by the transducer elements can maintain the unique-
nesses of these points, similar to coding techniques in data compression. Hence, our
compression scheme is more controllable than conventional CS, which can achieve a
real-time compression of data during the acquisition stage in hardware. We employ
L2-regularization to solve the ill-posed ISP rather than the L1-regularization used
in CS since there is no any assumption of signal sparsity. In our work, we finally
achieve acceptable reconstructions by compressing the raw data to 12.5% of its orig-
inal size. The results are better than 12.5% with multiplexing the received signals
from 12.5% elements in the array and almost as good as 25% with multiplexing the
received signals from 25% elements in the array.
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Chapter 1

Introduction

1.1 Motivation

Ultrasound Imaging, also known as medical ultrasound, is a mature research area
where multiple imaging modes have been researched. Nowadays, Brightness-mode
(B mode) is used extensively to inspect internal body structure in clinical diagnose.
In B-mode imaging, conventional delay and sum beamforming (CBF) is used. For recent
decades, adaptive beamforming, which has been widely applied in SONAR and
Rader signal processing, was designed for medical ultrasound. In general, the image
quality can be improved by using more elements for any imaging method. With the
emerging requirement to achieve a higher image quality, the increase of element
numbers will result in extremely large rates of data processed by the preprocessing
unit. Moreover, the fabrication complexity is high if electronic devices are dense in a
limited area. Traditionally, this issue is solved by digitally down-sampling the data
at the front-end. It is explained by the fact that the spectrum of a modulated signal
equals only a portion of its baseband bandwidth [2]. Furthermore, the Shannon-
Nyquist theorem [6] shows that the sampling frequency should be larger than twice
the bandwidth to avoid aliasing of signals. All these factors constrain the application
of high-resolution imaging in Ultrasound Imaging.

As one of the fundamental theorems in information theory, the Shannon-Nyquist
sampling frequency is usually the minimal frequency for sampling and reconstruct-
ing an analog band-limited signal perfectly [1]. However, this theorem is questioned
by a more recent signal processing technique called compressive sensing (CS) when
signals are sparse. The theory of CS shows that signals can be efficiently acquired
and reconstructed, which can be used to find a solution of the under-determined
linear inverse system. The framework of CS [7] states that sparse signals can be re-
constructed perfectly with a small amount of raw data. The research in [8][9] has
shown that additional structure of compressive sensing can reduce the number of
measurements without loss of accuracy. These papers have also provided an inter-
esting feature that a randomized sensing mechanism can achieve a perfect result
with high probability. However, there are two problems for a CS implementation in
our imaging algorithm. Firstly, we did not assume that our object has the sparse rep-
resentation in a particular domain like the other studies. Secondly, since our goal is
to achieve the compression scheme in hardware design, the random sensing mecha-
nism should be easily implemented. Hence, we prefer to find an easier design over
translating conventional CS into hardware design directly.

When we consider the image reconstruction problem as a linear inverse problem
y = Ax, the principle of it is equivalent to the regression problem to find out the
coefficient vector x such that Ax is the closest point in the column space of A to
the observation vector b. The linear problem can be solved by Regularized Least
Squares. In [10], a sketching scheme has been applied to solve the problem of heavy
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computation complexity when the sizes of y and A are massive. In this thesis, a
compression scheme is designed by the same strategy for any type of linear inverse
ultrasound imaging algorithm aimed at reducing the output data size to speed up
the acquisition rate. We compress all data from the entire array spatially, both the
output channels and data size are compressed simultaneously which causes that less
Analog-to-Digital Converters are required in hardware design.

1.2 Research Objectives

The thesis will focus on designing a compressive sampling method during the ac-
quisition stage of an ultrasound imaging system, which can be realized in hardware
design easily. The primary objectives of the work are to:

• Verify the feasibility of the chosen ultrasound imaging algorithm in the pres-
ence of noise and modeling errors due to discretization of space pixelization.

• Evaluate the performance of the imaging system in the same environment after
our compression scheme has been added

• Find out how the design parameters may influence the reconstruction quality

• Figure out the potential troubles of the design and find improvements or alter-
native methods for the initial designs

• Evaluate the performance of enhanced designs by comparing them with the
imaging with the uncompressed signals and analyze the feasibility of hard-
ware implementation with these new designs

1.3 Relative Research and Novelty of our Research

When researching the compression of data during the acquisition stage, the ap-
plication of CS is inevitable in existing studies. The foundation of CS is based on
two properties: sparsity and incoherence. Sparsity reflects the ability of a signal
to be compressed. A signal that has a sparse representation in a given basis will
have only a few non-zero values in this representation. Hence, the signal can be
compressed and well reconstructed from relatively few samples by suppressing the
other zero values in the signals. Incoherence in CS expresses the idea that signals
that are sparse in a given basis cannot be sampled in this basis but in another ba-
sis where the signal is dense. This property guarantees that the samples acquired
contain the same amount of information.

The major concern in CS is that the data should have a sparse expansion such
that the number of non-zero coefficients of the image or signal in this representa-
tion basis is as small as possible. Therefore, the existing studies of CS in ultrasound
imaging can be divided into three categories: the sparse distribution of scatterers,
the sparse raw RF signals and the sparse RF images in the Frequency domain. In
[15][16], the reconstruction is solving the direct inverse scattering problem. They
plan to produce an image with only one single plane wave transmission. The first
difference between their design and ours is that they apply the CS technique under
the constraint that the scatterer distribution is sparse. But in our design, we didn’t
use the property of sparsity as in conventional CS. The other difference is their data
are in the frequency domain, where our design only processes the time-domain sig-
nal. The main problem of their design is that extra memory is required to store the
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data before compression, and thus the price is too high in hardware implementa-
tion. In [17][18], the authors assume the raw RF data have sparse expansion in some
basis. Their objective is to reduce the quantity of pre-beamformed data by selecting
the best representation basis where the number of non-zero coefficients of the sparse
representation is small. At first, they only under-sample the RF data by hardware
and acquire the sparse representation of compressed data by l1-minimization. Then,
the compressed data can be computed with its sparse representation and an approxi-
mate basis. The entire compression process cannot be done in hardware individually
and the compression is done temporally rather than spatially which is different from
our design. In [19][20], the authors propose a reconstruction of post-beamforming
images via the CS technique. The assumption is that the 2D Fourier transform of
ultrasound images is sparse. In ultrasound imaging, the acquisition consists of tak-
ing samples of the image. This sampling scheme is similar to a basis of Dirac. It
is equivalent to applying a sampling mask, which is a uniform random pattern in
the two spatial directions. Based on the definition of CS, the Fourier basis is chosen
because it is incoherent with the Dirac basis and ultrasound images are sparse in the
Fourier domain. A similar strategy has been studied in the optical-imaging research
field. The paper [31] assumes that the optical image is sparse in a known basis. A
mask is applied in front of the transducer to construct a transmission matrix, which
is incoherent with the known basis. Then, the complex optical field at discrete po-
sitions can be efficiently multiplexed to less sensors. Once the transmission matrix
is known, the reconstruction can be done with less sensors than before. The spatial
compression of all data into less output channels is similar to our scheme, but we
construct the transmission matrix or compression matrix without using the sparsity
of signals.

One of the main features of the existing studies we have displayed above is the
type of signals to be reconstructed and the choice of the representation where the
ultrasound data are assumed to be sparse. However, our compression scheme does
not consider and exploit the property that there is existence of sparsity in any do-
main. The compression algorithm in our design is fully done by hardware in time
domain during the data acquisition stage, where most conventional CS studies re-
quire the assistance of software. Furthermore, the reconstruction is also not done
by l1-minimization, but with much simpler methods like Regularized Least Squares
and Matched Filter. But, in our design, we have kept a feature of CS. The sampling
strategy is an pseudo-random linear combination of signals, where each measure-
ment contains the information of the raw signals. Since the total randomization of
signals is impossible if the compression is real-time in the hardware without the as-
sistance of temporary memory, only the parameters in processing methods are ran-
domly generated in our design. One main objective of our compression scheme is
to approximate the pseudo-random combination to the totally random combination.
The second main objective is to ensure the low hardware-complexity in our design
such that all procedures in the compression can be implemented with an easy struc-
ture.

1.4 Thesis Organization

In the thesis, we have researched two different compression schemes. In the first
design, we compressed the data from the entire array fully into 1 output channel
each time. Based on the performance and results of this initial scheme, the alter-
native compression schemes with less compression in the spatial dimension will be
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studied as the second case. The thesis is organized as the following chapters:
Chapter 2 contains a brief introduction of the methodology of ultrasound imag-

ing, the basic theories of reconstruction methods and the principle of our compres-
sion model.

Chapter 3 is about the first case study. The declaration of the initial parameter
setting of our simulation environment is given firstly. Then, it shows reconstruction
results in two cases where the raw data are uncompressed or compressed. The per-
formance analysis section examines the influences of different design parameters on
the reconstruction quality. Finally, a discussion of our compression scheme is given.
The advantages and disadvantages of different preprocessing methods are analyzed
based on their principles. Potential solutions of improvement or alternative solu-
tions are proposed based on the analysis.

Chapter 4 describes the details of our second case study and examines the per-
formances of these alternative designs. The evaluation of them can be divided into
two parts: 1. The differences between various new designs of compression are tested
and stated; 2. The results of the best designs and the uncompressed case are com-
pared to determine the feasibility of the new compression schemes. The difficulties
of hardware implementation are also discussed in the end.

Chapter 5 concludes the contributions and progress of the work, and provides
some suggestions for the future direction of this research.
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Chapter 2

Compression and Imaging
Methodology

2.1 Introduction

Our ultrasound imaging is based on the formulation of an inverse scattering prob-
lem (ISP). For its derivation, we utilize the Born approximation [23] and assume the
emission of a single broadband plane sound wave. The formula is

y = Ax + n; (2.1)

where x is the object image, y is a single pulse-echo measurement, the matrix A
describes the pulse-echo signals of all hypothetical points and n is measurement
noise. Each element in x is the brightness of a pixel in the image region. The detail
of this imaging algorithm will be discussed in later sections.

In conventional CS, this linear model is usually solved by l1-minimization. But
in this thesis, we only concentrate on two more common methods, Regularized Least
Squares and Matched Filter rather than optimization. The performances of them in
different environments will be evaluated with their reconstruction results in later
chapters.

The organization of this chapter is as follows. The details of the imaging algo-
rithm will be presented in section 2.2. Then the methodology we will use to solve
our linear model will be introduced in section 2.3. In section 2.4, the principles and
details of the compression scheme will be introduced.

2.2 Linear Measurement Model

The diagram of the imaging algorithm is shown is Figure 2.1. The Image region is
subdivided into a grid formed by a group of hypothetical point scatterers. Each hy-
pothetical point scatterer is a pixel in the ultrasound image. There are Npix = Nx Nz
hypothetical point scatterers in the image region. At the beginning, all elements send
out plane waves forward simultaneously in transmitter mode, and turn into receiver
mode after transmission. Then, an ultrasound field is created by these emitted plane
waves. We suppose that our image region is a homogeneous region. During the
transmission, the amplitude or energy of the plane waves will decrease gradually.
For a specific point in space, the ultrasound field there is a function of time which is
the impulse response. Since the impulse response will vary as a function of position
relative to the transducer, it is a spatial-temporal impulse response. The pressure at
a point of interest j can be modeled as the convolution of the transmit spatial im-
pulse response htx,j[n], the transmit aperture’s electrical impulse response ht[n] and
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the excitation u[n]
pj[n] = u[n] ∗ htx,j[n] ∗ ht[n] (2.2)

where * denotes temporal convolution. The spatial impulse response of the point j
received by the element i in the array is the convolution of the pressure pj[n], the re-
ceive spatial impulse response hrx,i[n] and the backward electrical impulse response
hr[n],

fi,j[n] = pj[n] ∗ hrx,i[n] ∗ hr[n] (2.3)

= u[n] ∗ htx,j[n] ∗ ht[n] ∗ hrx,i[n] ∗ hr[n] i ∈ {1, 2, ..., N} (2.4)

The spatial impulse response can be regarded as the received response emitted by a
point which is equivalent to a signal source [24][25]. Finally, our system model can
be simplified as in Figure 2.1. We have used the toolbox Field II [21][22] for the later
simulations.

FIGURE 2.1: Schematic Diagram of the Imaging Algorithm with Lin-
ear Element Array

For each element the system of linear equations

yi = Aix (2.5)

can be established. For N elements in the array, i ∈ {1, 2, ..., N}, the equation 2.5 can
be augmented to

yF =


y1
y2
...

yN

 =


A1
A2
...

AN

 x =


f1,1, f1,2, ..., f1,Npix

f2,1, f2,2, ..., f2,Npix
...

fN,1, fN,2, ..., fN,Npix




x1
x2
x3
...

xNpix

 = AFx (2.6)

For the element i, the matrix Ai is built column by column. The column fi,j re-
flects the received signals from 1 hypothetical point j received by element i. The pro-
cess should be reiterated until all pixels in the image have been measured. Finally,
matrix Ai contains the spatial impulse responses of all pixels in the image region:

Ai = [fi,1, fi,2, ..., fi,Npix ] (2.7)
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fj =


f1,j
f2,j
...

fN,j

 (2.8)

The quality of AF will highly influence the reconstruction because it is the only prior
knowledge of the image region before practical implementation.

The signal y, which is a real ultrasound measurement, is constructed by using
the same procedure as one column of matrix A. The difference is that y is a single
snapshot of the entire image region when there are multiple point objects instead of
1. It means that echoes from several point objects will be received by the elements
of the array. In the ideal case, the single snapshot y should equal the summation of
corresponding columns in matrix A of all selected pixels. It should be noted that the
length of yi should be aligning with the row number of Ai.

The similar imaging algorithms have been used in ultrasound imaging in paper
[5][13][14][15][16]. However, in all these papers, all data received by the entire array
are stored in the acquisition stage. The large amount of Analog-to-Digital Convert-
ers(ADC) and data sizes are two problems which restrict the hardware implemen-
tation of this algorithm. Therefore, a compression scheme should be designed for
it.

2.3 Reconstruction Methods

The reconstruction of ultrasound signals is done by solving the linear problem
y = Ax + n. The first method we will use is Regularized Least Squares. Least
Squares is an approach to approximate the solution of an overdetermined system of
equations by minimizing the sum of squares of the residual.

min
x
||Ax− y||22 (2.9)

However, the matrix A is always ill-conditioned in practical applications. The ill-
posed matrix A is one of the main problems that cause the complexity of signal re-
construction and an unstable solution. The system will be very sensitive to changes
at the input side or noise/modeling errors, which can cause a noisy and unstable so-
lution. Tikhonov Regularization[26] is the most popular regularization that has been
used to solve this problem. It transforms the problem into minimizing the quantity

min
x
||Ax− y||22 + λ2||Lx||22 (2.10)

where λ is the regularization parameter to balance the weight between the mini-
mization of the side constraint ||Lx||22 and the minimization of the residual ||Ax−
y||22. Throughout this paper, || · || denotes the Euclidean vector norm or the associ-
ated induced matrix norm. Therefore, the outcome of Tikhonov regularization can
be considered as a trade-off between least squares and matched filtering. In our ex-
periment, L = I. The desired value of λ can be computed inexpensively by using
L-curves [27] when the singular value decomposition(SVD) of A is known. However,
when the size of A is extremely large, the price of SVD is too high. Then LSQR [28] is
a promising alternative regularization method. This is an algorithm similar in style
to the famous conjugate gradient(CG) algorithm. It’s based on the bi-diagonalization
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procedure of Golub and Kahan [29]. It generates a sequence of estimates xi where
the residual norm ||y − Axi||22 decreases monotonously. However, LSQR exhibits
semi-convergence at some iteration. The estimation becomes a better approximation
to the true solution with more iterations, and the noise will dominate the estimation
after a specific iteration. It means LSQR with limited iterations has the regulariza-
tion effect [30], where the iteration number k plays the role of the regularization
parameter.

The second method is Matched Filter, which is commonly used in the case when a
known signal is sent out, and the reflected signal is examined for common elements
of the outgoing signal. A matched filter is equivalent to correlating the measurement
vector y with the sensing matrix A to detect the known signal that is embedded in
the noise. The vector y can be regarded as a kind of combination of corresponding
columns from A, then the multiplication of the conjugate transpose of A and y is
equal to finding the correlations:

x̂ = AHy (2.11)

Since vector y can be regarded as a kind of combination of corresponding columns
of selected point objects in the matrix A, the structure of this equation shows that the
performance of the matched filter will be highly related to the Energy Distribution of
the matrix A. The Energy Distribution is defined as the root of the 2-norm of every
column in A, which shows the signal strength of every pixel received by the element
array. The strength will be transformed into the brightness of points, which mean
that points with higher energy will also be brighter in the image.

2.4 The Principle of the Compression Scheme

Both, the Least Squares ATAx̂ = ATy and the Matched Filter x̂ = AHy indicate that
the quality of reconstruction is related to the differences between columns (pixels) in
A. Unlike the traditional compressive sensing theory, the initial idea of our design is
to compress the signal in a much simpler way by summing up received signals from
all sensors.

yC = ∑
i

ei i ∈ {1, 2, ..., N} (2.12)

aj = ∑
i

ei,j i ∈ {1, 2, ..., N} (2.13)

where y is the input vector in our linear model and aj is one column of matrix A if
only one point object is measured, N is the number of elements in the array and ei is
the received signal fi from element i after preprocessing. Then signals from all chan-
nels can be integrated into 1 output channel by summation. Once the summation of
the preprocessed signals is linear, the compression system can be described as:

yC = CyF = CAFx = ACx (2.14)

where yC and AC = [a1, a2, ..., aNpix ], j ∈ {1, 2, ..., Npix} are compressed data, yF
and AF are the raw data from all elements in the array, and C is the compression
matrix. For simplicity sake, we use A to represent the compressed matrix AC if no
further statement has been made.

In Figure 2.2, a diagram of the simplified equivalence model is shown. The raw
data from N elements have been compressed into 1 output. The raw signals re-
ceived by all elements are preprocessed before summation. If we did not apply any
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FIGURE 2.2: Schematic Diagram of the 40 elements array, the dis-
tortion function includes the Sample Shift (τ is the number of sam-
ples, ei = ei,Sample Shi f t), the Phase Shift(τ is the change of signal’s
phase, ei = ei,Phase Shi f t) and the Amplitude Weight(τ is the gain,
ei = ei,Amplitude Weight). y is also equal to a column of A when only

one pixel is measured

preprocessing method to the received signals, compression is done by linear sum-
mation. We name it Naive Compression for convenience of description. In Figure 2.1,
for the pixels which are symmetric relative to the transducer, the received signals of
all elements for them should be also symmetric. Therefore, the summations of these
pairs of pixels are the same. In addition the adjacent pixels of these pairs of pixels
are also highly similar with them. As a consequence, the collection of pixels, which
are symmetric with respect to axial, are concentrated in a narrow area in lateral di-
mension. Then pixels, which have the same distance to the element array, will have
compressed signals in the same time interval after the summation. The reconstruc-
tion can only provide us with the depths of the point objects that are represented
by curves that contain the pixels with the same distances to the array. Hence, the
preprocessing method is needed to differentiate pixels.

Three preprocessing methods are applied in the following simulation. Since the
intention of preprocessing is to differentiate the received signals from all pixels, we
may also call them differentiation methods in the report later. Three types of meth-
ods can be classified into two categories, delay and amplitude gain. We plan to try
both phase shift and sample shift to delay our received signals. Sample shift can be
easily regarded as a time delay of the discrete signal (or sampled signal). For ele-
ment i, when the original received signal is fi[n], the sample shift processing can be
represented by

ei,Sample Shi f t[n] = fi[n− τi], i ∈ {1, 2, ..., N} (2.15)

where the delay τi is a uniformly distributed random number in a specific interval.
Unlike sample shift that delays the signal in the time domain directly, a phase

shift should be applied in frequency domain firstly. For element i, when original re-
ceived signal is fi(n), the procedure of the phase shift contains several steps. Firstly,
we should transform the signal into the frequency domain fi(ξ). Then, the phase
shift can be represented by

ei,Phase Shi f t[n] = F−1(fi(ξ)e−2jπξτi), i ∈ {1, 2, ..., N} (2.16)
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where F−1 is the inverse Fourier transform operator and ξτi is a random number
uniformly distributed from 0 to 1, which can restrict 2πξτi in the range from 0 to 2π.

Besides using a delay to differentiate signals from different elements, we can
also let the received signal of each element be multiplied with a random amplitude
weight τi,

ei,weighted[n] = τifi[n], i ∈ {1, 2, ..., N} (2.17)

where τi is a a uniformly distributed random number in interval -1 to 1.
All three methods are able to change the initial property of the received signals

from different elements. As a result, the summation of the spatial impulse responses
from different pixels should be diverse. As aforementioned, the pixels at the same
depth are the interference introduced by our linear summation model. However,
the time-of-arrival of received signals from elements are distributed differently for
the symmetric point objects in fact. All these preprocessing is able to distort the
initial signals well, where the summations of preprocessed signals of them are hard
to be the same. Finally, the pixels at the same depth which are highly similar to each
other initially can be represented differently in the compressed data. In the following
sections, all three preprocessing methods will be applied under the same condition
in each experiment in order to compare their performances.
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Chapter 3

Case 1: Entire Array Compression
for a 3MHz Ultrasound System

In our first design, the received signals from the entire array will be compressed
into 1 output signal in 1 round of compression. The data size of the compressed
data will be 1

40 of the raw data, and only 1 ADC is required instead of 40 ADCs for
1 output channel. The complexity and price of hardware implementation will be
reduced significantly.

We should notice that our imaging algorithm highly relies on the preset grid in
the image region. In reality, with the restriction of computational resources and con-
sideration of efficiency, the number of pixels cannot be infinite to cover the entire
region, which also causes other problems. It does means that many point objects
are off-axis (or off-grid) in reality. Therefore, it is a big challenge to accurately re-
construct point-like objects if they are off-axis. In order to test the worst off-axis
case, all selected point objects are located at the center of the mesh when we mea-
sure vector y. Additionally, the noise is inevitable for any kind of measurement. To
simplify the problem, we only consider a simulation environment in Gaussian white
noise and the SNR is 20dB. The combination of these two interferences is the worst
environment for the compression-imaging system in our current assumption. All
simulations will be done in this environment.

In this chapter, the results of our compression system with different preprocess-
ing methods, reconstruction methods and parameters will be displayed and ex-
plained separately. The organization of this chapter is as follows. The initial pa-
rameters of the simulation are declared in section 3.1. Sections 3.2 and 3.3 display all
ultrasound images with or without our compression system in an off-axis and noisy
environment. The potential improvement methods are proposed in section 3.4. The
performance of our compression design is analyzed in section 3.5. The advantages
and disadvantages of different preprocessing methods and compression designs will
be discussed in section 3.5. Section 3.6 is a brief summary of this chapter.

3.1 Initial Parameters

The setting of parameters is significant for the simulation that can reflect the
performances of the system in diverse environments. The initial parameters that
will be used in this chapter for all experiments are declared in this section. They will
not be changed unless otherwise stated.

In the human body, the attenuation of the sound wave is increased at higher
frequencies. Hence, in order to have a better penetration of deeper tissue, the center
frequency of excitation is 3MHz. The excitation of our transducer is a broadband
Gaussian pulse with 70 percent bandwidth, sampled at a rate of 9MHz which is
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of Point Objects

above the Nyquist sampling frequency, which is shown in Figure 3.1. Then, the
wavelength is equal to 0.5mm.

The width of the transducer (the element array) is 1.2cm (contains 40 elements
whose width is 0.3mm). The distances between elements are very small and the
Image Region is 1cm away from the transducer.

Considering the computational ability of our PC and MATLAB, the Image Re-
gion is a square of -0.25cm to 0.25cm on x-axis (width) and 1cm to 1.5cm on z-axis
(depth) and the pixel size is 0.1mm (5 pixels per wavelength). It means that we will
have 2601 pixels in the final image.

The positions of six chosen point objects, top-down from top left corner of the
image, are Point 1 (-0.21cm, 1.05cm), Point 2 (-0.14cm, 1.38cm), Point 3 (-0.06cm,
1.3cm), Point 4 (-0.01cm, 1.05cm), Point 5 (0.06cm, 1.38cm), and Point 6 (0.14cm,
1.1cm).

The initial Sample Shift delay τi,Sample Shi f t is selected from the interval [0, 20] be-
cause of hardware restrictions. The Phase Shift delay value 2πωτi,phaseshi f t is selected
from the interval [0, 2π]. The Amplitude Weight τi,Amplitude Weight is a value selected
from the interval [−1, 1].

3.2 Non-Compressed Ultrasound Imaging

Before examining the impact of our compression designs on the ultrasound imag-
ing, it is better to consider the cases where no compression has been implemented.
There are numerous traditional methods that can be applied to the reconstruction of
an ultrasound image. Here, we present two of them, our imaging algorithm with
full data from the elements in the array and the Synthetic Aperture Delay and Sum
imaging (SADS), as comparisons of our compression-imaging system. The principle
of the full data case has been introduced in Chapter 2. So we only briefly explain
the concept of SADS here. The core of SADS is to determine the time delays on each
element. The delays are caused by relative positions of point objects and elements in
the array that is the actual time of flights. The procedure of our method is to locate
the positions of objects by measuring the real distance from a specific transmitter
element to objects and from objects to the receiver elements. Then all time of flights
can be calculated by using these distances and a known speed of the ultrasound
wave. Since our received signals are discrete, all time of flights can be transformed
into an equivalent number of samples. The corresponding samples of point objects
can be tracked separately. The application of Synthetic Aperture technique means
40 elements in an array transmit waves sequentially while all elements are in receive
mode after transmission. Then we will obtain 40 sets of data in each experiment.
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After that 40 elements will reconstruct images separately. The final image will be the
average of these 40 reconstructed images.

Delay and Sum Imaging
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(B) Regularized LS(Raw 40)
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(C) Matched Filter(Raw 40)

FIGURE 3.3: Non-Compression Ultrasound Imaging(dB mode). Raw
40= Raw data from all 40 elements

In Figure 3.3, the results of SADS and full raw data case with Regularized LS
and Matched Filtering are displayed separately. In order to display the details of
the solution x, we display all images in dB where the brightnesses of all pixels are
amplified.

For the SADS case, all point objects have been reconstructed into lightness spots.
At first, the fluctuations of waves are a gradual change, the small surrounding areas
of points should be brighter than the background. Secondly, the final image is the
mean of 40 low-quality images and the resolution of a single low-quality image is
not good. So, the overlapping areas will be remained. The SADS Method does not
rely on the prior knowledge of all hypothetical point scatterers (pixels), it tracks the
location of point objects by its corresponding sample in the received signal which
is hard to be influenced by measurement noise and off-axis of point objects. Hence,
we can conclude that SADS is a stable imaging method for point objects. However,
the problems of this method are also distinct. Since there is no data compression in
the method, 40 channels are required to transmit all data to the post-processing unit
in 40 rounds of measurements. The final data size is much larger than the full data
case of our imaging algorithm. In addition, the locations of point objects are shifted
because the peaks are not always at the beginning of signals. Then more samples
have been considered as a part of time-of-arrivals. Then, the whole image is shifted
a little bit far away from the expected location.

As for the full data case of our imaging algorithm, six off-axis point objects can
be distinguished from the correct locations in both images reconstructed by Regular-
ized Least Squares and Matched Filtering. We can find that the off-axis position of
point objects has a huge impact on the quality of reconstruction. The reconstructions
are bothered by the background ’noise’ in the image. In the condition that point ob-
jects are located at the center of the mesh, the solutions of the least squares are no
longer accurate. All four vertices of the square mesh have the same distance to the
real point object, so any vertex is the probable estimate of the point object. In ad-
dition, because of the presence of measurement noise n, the actual input vector is
ŷ = y + n, where y denotes the noise-free input.

According to the images in Figure 3.3, we can conclude that the matched filter-
ing method is unable to reconstruct the ultrasound images accurately compared to
the Regularized Least Squares. The point objects are represented by lightness spots
rather than a few pixels. We have to notice that pixels are pretty close to each other in
our image region. Hence, the received signals from them are highly similar. Because
the Matched Filtering method is highly dependent on the cross-correlation between
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the filter AH and the observation y, the similarities between columns in A affect the
quality of the solution hugely. Even when we use the full data from the entire array,
the result of Matched filtering is always formed by lightness spots. Therefore, the
performance of Matched filtering is limited in our system. In addition, we find that
the brightness of selected point objects is different. It means that the variations of
signal strengths in a plane wave transmission also affects the quality of reconstruc-
tion.

3.3 Compressed Ultrasound Imaging

In our simulation, only 1 pulse-echo measurement was taken for the specific im-
age region. The reconstructions of full data case have already been discussed in last
section. Usually the price of the compression is the loss of information, so the image
quality should be lower in our expectation. In the initial compression model, the
data can be highly compressed into 1

40 of the raw data in 1 measurement. In our
system, the loss is the reduction of differences between pixels because the summa-
tion will remove the temporal properties and amplitude properties of the received
signals from different elements. Even though, we have introduced preprocessing
methods to make up the loss, the decrease of image quality is inevitable when the
raw data are highly compressed. Generally, this kind of negative influence can be
improved by increasing the measurement amount. However, in our single measure-
ment imaging algorithm, we can only apply an equivalent alternative by increasing
the rounds of compression. The reasons is that whether the initial signals in multiple
measurements of our specific image region are similar or not, the 10 rounds of com-
pressions for 10 measurements and for 1 measurement are approximately equivalent
when the set of variables τ in preprocessing methods is randomly generated for each
round of compression. Then, we can realize the same effect as 10 measurements with
10 rounds of compression of a single measurement.

The iteration of compression can be archived by using a structure of multiple
parallel compression units or adding temporary storage space. The negative impact
is that the data size of the compressed data will be also enlarged with the increase of
iteration amount. Hence, we decide to apply 10 rounds of compression as a trade-
off of the image quality and the degree of compression. The relation between the
compression rounds and the quality of results will be further analyzed in the perfor-
mance analysis section.

Then, the compressed measurement vector yC and the compressed matrix AC
can be described as ten sets of yC,1 yC,2... yC,10 and AC,1 AC,2... AC,10 that are stored
in a vector and matrix vertically, which are

yC =


yC,1
yC,2

...
yC,10

 AC =


AC,1
AC,2

...
AC,10

 (3.1)

Let us take the first set yC,1 and AC,1 as an example to show the procedure of our
data acquisition. Matrix AC,1 is constructed column by column, where each column
represents a pixel in the image region. By setting a point object in different positions
on a preset grid that covers the whole image region, we will repeat the process as
shown in Figure 2.2. The output of the system each time is a compressed signal
represent a specific pixel in the image region, which will be stored in 1 column of
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AC,1. After the matrix AC,1 has been constructed, we should measure the vector
yC,1 with the same process. The difference is that the process in Figure 2.2 will only
be implemented once for 6 point objects rather than 1. Then, the first set yC,1 and
AC,1 is obtained. If we want to implement 10 rounds of compression, it means that
the same above procedure should be repeated 10 times during the building of AC
and the set of preprocessing variables τ is different in each compression round. In
practical observation, the acquisition of yC is done by the same process, where the
row dimension of each yC,r need to be aligned with the corresponding AC,r, r ∈
{1, 10}.

The ultrasound images reconstructed with Regularized Least Squares and Matched
Filtering with 10 rounds of compression are shown in this section. The results of
three preprocessing methods are placed side by side for comparison.
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Regularized Least Squares(Phase Shift/Noisy/off-grid)
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Regularized Least Squares(Amplitude Weight/Noisy/off-grid)
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(C) Amplitude Weight

FIGURE 3.4: Regularized Least Squares (Off-axis Point Ob-
jects/Noisy/dB mode)

Figure 3.4 shows that the image quality is decreased a lot after data have been
compressed. More background ’noise’ has been introduced and the shape of esti-
mated point objects are irregular. The singular value decompositions of all three
matrices A show that they are not full rank. It means our least squares problem
turns out to be ill-posed or under-determined. Hence, the effect of regularization
is significant here. We try both Tikhonov Regularization and LSQR methods, their
results are pretty similar if regularization parameters have been chosen carefully.
From these images, all three preprocessing methods have their own advantages and
disadvantages. By contrast, the phase shift method seems better than the other two
methods. In general, all results are still acceptable, because the lightness spots are
still in the correct locations of the point objects.

Matched Filter(Sample Shift/Noisy/Off-grid)
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Matched Filter(Phase Shift/Noisy/off-grid)
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Matched Filter(Amplitude Weight/Noisy/off-grid)
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FIGURE 3.5: Matched Filter (Off-axis Point Objects/Noisy/dB mode)

Images reconstructed by the matched filter in Figure 3.5 are also worse than the
reconstruction of full data from the entire array. As aforementioned, the Matched
Filtering is unable to distinguish adjacent pixels, so the lightness spots are larger.
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Hence, the background noise has been zoomed in because of it. Among all three
methods, the phase shift method is the closest one to the full data case.

In the Matched Filter result, we find that the point objects have been recon-
structed into lightness spots. The spread of these lightness spot is called the Point
Spread Function (PSF). PSF has shown the fact that a mathematical point reflector in
the object plane is spread out to form a finite area in an image plane, which occurs
when imaging objects are point-like. The degree of spreading (blurring) of the point
object is a measure for the quality of an imaging system. Said differently, PSF is the
correlation between a specific pixel and the whole image region. It is the matched
filter for a single point object in the ideal case, where the observation y equals the
corresponding column of a specific pixel in A. For an on-axis point i, the PSF can be
described by the formula

PSF(i) = A(:, i)HA (3.2)

The intention is to use it as a kind of evaluation of A here.
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FIGURE 3.6: Point Spread Functions of All Point Objects (Sample Shift
(dB mode))
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FIGURE 3.7: Point Spread Functions of All Point Objects (Phase Shift
(dB mode))

In all three figures (Figures 3.6, 3.7 and 3.8), it shows that all point objects are also
reconstructed into lightness spots as the matched filtering. As we have explained,
all results are displaying the ideal matched filtering images of a single on-axis point
that we can obtained from the compressed data. We found that all point scatterers
are also surrounded by interference in adjacent depths. Depending on these figures,
the performances of three preprocessing methods are too close to call. The influence
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FIGURE 3.8: Point Spread Functions of All Point Objects (Amplitude
Wight (dB mode))

of the inaccurate estimation is distinct. We found that all points are distinguishable
because they have the highest brightness in their own image because the point object
has the highest correlation with itself.

In order to examine the performance of our system, we have to find a good com-
parison of it. Since we do 10 rounds of compression, the data size of output is only
1
4 of the raw data from 40 elements. So, we should consider a case that the recon-
struction is done with the raw data from only 10 elements, which has same com-
pression degree as our system. The 10 elements are distributed in the range of the
entire array, they are element 1, 5, 10, 14, 18, 23, 27, 31, 36, 40. In Figure 3.9, the
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Matched Filter(Off-grid/Noisy)

Width of Image Region(m) ×10-3

-2 -1 0 1 2

D
ep

th
 o

f I
m

ag
e 

R
eg

io
n(

m
)

0.01

0.0105

0.011

0.0115

0.012

0.0125

0.013

0.0135

0.014

0.0145

0.015 -30

-25

-20

-15

-10

-5

0

(B) Matched Filter

FIGURE 3.9: Raw data from 10 elements(Off-axis Point Ob-
jects/Noisy/dB mode)

Regularized Least Squares and Matched Filtering result with the raw data from 10
elements have been shown. We can find they are pretty close to or better than the
results we have obtained with our compression-imaging system. It means that our
compression scheme needs further improvement from the consideration of practical
implementation. It is true that many factors may influence the image quality, but
the role of the preprocessing methods should be the most important among all fac-
tors. Therefore, we have to investigate them more carefully in order to find out the
improvement methods.

3.4 The Potential Improvement Methods

As we have shown in the last section that the idea of our compression scheme is
applicable, but improvements are required if we want to implement it. There are two
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possible solutions. The first one is to narrow down the grid spacing size as small as
possible to weaken the impact of the off-axis error. This is a solution which can im-
prove the image quality of any kind of method. The second one is an improvement
of the Sample Shift method by enlarging the maximal delay in samples.

3.4.1 Smaller Pixel Size

Since we always consider the worst case, the off-axis point objects should be
in the center of the mesh where they are farthest away from the axis. Then, the
pixel size (the distance between pixels) may be a potential factor that influences the
performance of reconstruction, because the off-axis point objects will be closer to the
axis when pixel size is smaller. Our assumption is that the preset sensing matrix A
only contains the information of all on-axis pixels. The error caused by a point offset
should be weaker when the point objects are closer to the axis.

Considering the computational ability of our PC, we decide to cut out a small
area of the original image to illustrate the effect of pixel size reduction. This small
area includes the two left-bottom points (Points 2 and 3) in the original image as
shown in Figure 3.10. The image region is fixed during the simulations, while the
pixel size is decreased from 0.1mm to 0.025mm. The columns of the matrix A corre-
spond to pixels of the image. Hence, the matrix A will be wider with an increase of
the pixel number. When the pixel size is 0.025mm, our largest pixel number is 961.
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FIGURE 3.10: Regularized Least Squares (Sample Shift/Off-axis Point
Objects/Smaller Pixel Size)

As shown in Figure 3.10, the improvement of the image quality is obvious. The
lightness spots become more concentrated with a decrease of the pixel size. In other
words, the regularized least squares estimates can be more accurate. We can con-
clude that a smaller pixel size is a useful method to overcome the off-axis prob-
lem. However, for a fixed image region, a smaller pixel size means more pixels in
this region which requires a pretty high consumption of resources. The data size
will increase rapidly with growing pixel numbers. Another disadvantage of the
this method is that it cannot be used when point objects are pretty close to each
other. When pixels are too close to each other in space, they will be highly similar
to each other, which means they are hard to be imaged. It’s why we do not dis-
play the matched filtering results because they are always large PSFs. Consequently,
the 0.1mm is a wise choice for image region of 5mm ∗ 5mm with consideration of
performance of our PC.

3.4.2 Larger Delay Range

Narrowing down the pixel size is a strategy that we can apply to overcome the im-
pact of off-axis point objects. However, the improvement of our compression scheme
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is more critical in our research. The time delay is a factor we can consider carefully.
When this maximal delay is large enough, the received signals from elements can
be shifted into their unique interval in time space. The summation of these delayed
signals is the same as the storage of the full data. Hence, we can enlarge the max-
imal time delay to observe the change of image quality. But, there should be an
upper bound of the maximal delay. However, it is impossible to enlarge differences
between phase shift delays as sample shifts. The received ultrasound signals are
wide-band signals where the corresponding time delays of the same phase shift for
varied frequencies are different. In addition, the phase shift is limited to the range
[0, 2π] because of the periodicity. As a result, the phase shift only changes the en-
velope of the wide-band signal rather than shift the signal in the time domain. The
details will be discussed later. Therefore, we will only consider the influence of the
size of the maximal sample shift. Furthermore, the pixel size is 0.1mm, which is the
same as the initial setting.

In order to illustrate the influence of the Maximal Delay on the Sample Shift
method, we display the reconstructions of the cases that the Maximum delays are
50, 100, 150 and 200 samples. Furthermore, the pixel size is 0.1mm, which is the
same as the initial setting.
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(B) Sample Shift Range 0 to 100
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(C) Sample Shift Range 0 to 150
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(D) Sample Shift Range 0 to 200

FIGURE 3.11: Regularized Least Squares (Off-axis Point Ob-
jects/Noisy/Larger Maximum Delay)

From a subjective point of view, all images in Figure 3.11 are better than when the
maximal delay is 20 samples, where lightness spots of point objects are concentrated
gradually and the background ’noise’ is also smaller. The results are also better than
the reconstruction results with the raw data from 10 elements. When the maximal
delay can be 200 samples, the SVD of A indicates that A is full rank. Hence, we can
conclude that the enlargement of the maximal delay is able to improve the quality
of reconstruction. However, when the maximal delay is too large, the complexity
of hardware implementation is hard. In addition, if we consider when the delay
is extremely large, signals can be stored in different time spaces, which means that
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equal the full data case. Therefore, a proper value of the maximal delay should be
chosen. It will be discussed later in the performance analysis section.

Matched Filter(Sample Shift/Noisy/Off-grid)
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(A) Sample Shift Range 0 to 60
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(B) Sample Shift Range 0 to 100
Matched Filter(Sample Shift/Noisy/Off-grid)
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(C) Sample Shift Range 0 to 150

Matched Filter(Sample Shift/Noisy/Off-grid)
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(D) Sample Shift Range 0 to 200

FIGURE 3.12: Matched Filter (Off-axis Point Objects/Noisy/Larger
Maximum Delay)

From Figure 3.12, we found that the matched filtering results are also becoming
better with the enlargement of the delay range. But the improvement is limited due
to the bad performance of the matched filter. Hence, we can find that the three
matched filtering results are too close to call when the maximal delay is above 100
samples.

3.5 Performance Analysis

In practical implementations, many factors may affect the performance of recon-
struction, the efficiency and cost of the system. During the evaluation, more infor-
mation about these factors are acquired, some of them can be helpful to the further
design. In our compression imaging system, the role of the matrix A is significant
because it’s the prior knowledge of the target image region we have before the mea-
surement. Therefore, the condition of it is an important index when we evaluate our
system.

The evaluation of our system can be done by calculating the condition number of
A, which can reflect the sensitivity of a function to the errors and changes in input.
The order of the condition number magnitude indicates how much noise and errors
are amplified.

The effects of three impact factors will be assessed in this section: the maximum
delay, the number of measurements (or compression rounds) and the number of
elements per wavelength. All other parameters are kept as the same as their initial
setting in section 3.1. The parameters we have changed in the evaluations are that
15 sets of measurements (or compression rounds) are obtained to construct y and
A. The pixel size will be 0.2mm and the size of the image region is 5mm by 5mm.
Hence, less pixels are in the image region, which can reduce the time consumption.
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There is only 1 variable that will be changed in each evaluation, which will be the
only impact factor of the condition number variation.

The first fact we want to illustrate is the relation between the magnitude of max-
imum random delay and the condition of the sensing matrix A. Since we have al-
ready found that image quality can be improved with the increase of the maximum
delay, we can assume that there will be improvement of the condition number as we
increase the maximum delay. The best case is that condition number equals 1. In this
part, we will only consider the Sample Shift as we have explained before.
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FIGURE 3.13: Condition Number variation with the Maximum Delay
(Sample Shift/Linear Scale)

In Figure 3.13, as the average of 6 simulations, the condition number is mono-
tonically decreasing with the growing of the maximal delay. However, the variation
becomes slower when the maximum delay is large enough. It fits our previous ob-
servations of the image quality improvement. Then the value of the corner point will
be chosen as the trade-off between quality and efficiency. The condition number is
small enough here to ensure that the sensing matrix A is in good condition while the
data size of the compressed signals are acceptable.

The table of averages and standard deviations of different condition numbers are
shown below:

Maximum Delay Average Standard Deviation
20 404.32 33.00
50 192.60 6.45

100 171.09 4.87
150 130.15 3.17
200 123.75 3.96

TABLE 3.1: Averge and Standard Deviation of Condition Number
(Sample Shift/Linear scale)

According to table 3.1, the standard deviations of the condition numbers are also
decreasing like the average. It shows that the condition of A is not only more reli-
able, but also more stable with larger differences in delays between sensors. Based
on these condition numbers, a delay range from 50 to 100 is a better choice than
others on account of quality and cost. However, if we consider the compression de-
gree of the signals, 50 samples would be a better choice according to the condition
numbers. It is true that this maximal delay interval may be not a wise choice from a
hardware’s view. However, it is an optimal value for this compression according to
the simulation, so it will be applied in further evaluation.

As aforementioned, the number of measurements (or compression rounds) can
affect the quality of reconstruction. Pixels can be differentiated well when more
measurements have been obtained. However, the number of measurements is also
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related to the data size of the compressed signals. If we have 40 measurements in
our simulation, the size of compressed signals should be equivalent to the full data
from 40 elements, where the compression is meaningless. At the same time, the size
of the data can also influence the time consumption and computational complexity.
Therefore, the number of measurements should be constrained by an upper bound
when a matrix A is in a good condition. Six simulations have been done for precise
outcomes like before. All three differentiation methods: Sample shift, Phase shift
and Amplitude Weight will be applied separately to be the comparison of each other.
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FIGURE 3.14: Condition Number Variation with Number of Measure-
ments (Three preprocessing methods/dB Mode)

Figure 3.14 shows that the condition numbers of A are varying with the number
of measurements, where three differentiation methods have been applied to the re-
ceived signals separately. Firstly, we can conclude that the improved sample shift
case is the best among all three methods because the condition number of it con-
verges to 1 faster than the other 2 methods. But this difference between them will
be reduced with the increase of the measurements number. In general, the growing
amount of measurements can effectively improve the condition number.

The table of averages and standard deviations of different condition numbers are
shown below:

Number of Measurements Average Condition Number Standard Deviation
5 2.6 ∗ 1016 3.8 ∗ 1014

10 453.3 39.5
15 192.6 6.5
20 159.6 5.5
30 131.1 3.8
40 118.7 4.9

TABLE 3.2: Averge and Standard Deviation (Sample Shift/Linear
scale)

Number of Measurements Average Condition Number Standard Deviation
5 2.3 ∗ 1016 3.5 ∗ 1015

10 1.2 ∗ 105 3 ∗ 104

15 676.5 92.5
20 272.3 21.2
30 162.8 10.9
40 137.1 13.3

TABLE 3.3: Averge and Standard Deviation (Phase Shift/Linear scale)
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Number of Measurements Average Condition Number Standard Deviation
5 1.5 ∗ 1017 3.4 ∗ 1016

10 1.1 ∗ 105 2.8 ∗ 104

15 712.3 61.3
20 267.2 17.3
30 164.3 12.1
40 134.6 11.7

TABLE 3.4: Averge and Standard Deviation (Amplitude
Weight/Linear scale)

Tables 3.2, 3.3 and 3.4 give us the relations between condition numbers and the
amount of measurements with three different pre-processing methods. For all Sam-
ple Shift delay, Phase Shift delay and Amplitude Weight methods, reliable results are
also more stable according to the simulation results. The conclusion is that 15 mea-
surements are enough to construct matrix A in good condition in the consideration
of a smaller data size.

The number of sensors in the transducer array is another influential factor sim-
ilar to the number of measurements. Both of them can affect the data size of the
compressed signals. If we consider our imaging algorithm with full data from the
entire array, more unique details of a specific pixel can be acquired and stored if we
put more elements in the array. The qualities of reconstructions should be improved
by the extra information. In our compression imaging system, it means that more in-
formation can be contained in the compressed signals. We assume that the condition
of A can be also improved as the reconstruction with full data. Since the element ar-
ray size should be fixed to 1.2cm, the sensor size is inversely proportional to sensor
quantity. The size of each element will be smaller if we put more elements in the
array. We decide to show the variation of the condition number with the increase
of the number of sensors. Finally, the scale of the x-axis is shown in the number of
sensors per wavelength.
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FIGURE 3.15: Condition Number Variation with Number of Sensors
(dB Mode)

Since some values are much larger than the others, we transfer all values into
dB mode for plotting where the differences can be easily shown in Figure 3.15. The
decreasing curves of all three differentiation methods are really close. It means that
the impacts of the sensors amount on the three methods is the same meaning that
more sensors are helpful to improve the condition of matrix A.

The table of averages and standard deviations of different condition numbers are
shown below:
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Number of Sensors Average Condition Number Standard Deviation
2 9.7 ∗ 1016 5.1 ∗ 1015

5 5.2 ∗ 1016 1.2 ∗ 1015

10 6.5 ∗ 105 4.1 ∗ 104

20 770.7 30.6
30 784.1 30.8
40 192.6 6.5
50 138.1 7.1
60 105.7 7.0

TABLE 3.5: Averge and Standard Deviation (Sample Shift/Linear
scale)

Number of Sensors Average Condition Number Standard Deviation
2 5.5 ∗ 1016 5.1 ∗ 1015

5 3.7 ∗ 1016 2.5 ∗ 1015

10 7.9 ∗ 105 8.9 ∗ 104

20 2.2 ∗ 103 214.1
30 2.1 ∗ 103 364.3
40 676.5 92.5
50 555.1 97.2
60 477.8 66.5

TABLE 3.6: Averge and Standard Deviation (Phase Shift/Linear scale)

Number of Sensors Average Condition Number Standard Deviation
2 1.4 ∗ 1017 9.2 ∗ 1015

5 6.6 ∗ 1016 6.4 ∗ 1015

10 7.4 ∗ 105 1.5 ∗ 105

20 2.4 ∗ 103 331.3
30 2.4 ∗ 103 238.8
40 712.3 61.3
50 523.6 76.3
60 406.1 52.9

TABLE 3.7: Averge and Standard Deviation (Amplitude
Weight/Linear scale)

The variations of the condition number in tables 3.5, 3.6 and 3.7 also show that
condition number can be smaller while there are enough elements. However, we
have to consider the manufacturing complexity of hardware. So, the elements num-
ber of a single transducer cannot be infinity. Here we would like to use 40 elements,
which is enough to reconstruct acceptable ultrasound images in our system.

Combining those simulation results, we can conclude that an element array with
40 sensors, 15 measurements and delays up to 50 samples is an optimal set of pa-
rameters for our current design and simulation environment. Except for the Larger
Maximum Delay in the Sample Shift case, two other factors can be used to promote
the performance of the entire system implement of the preprocessing method.
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3.6 Discussion of Three Preprocessing Methods

In previous simulations, we have implemented three types of preprocessing meth-
ods to differentiate the received signals. These preprocessing methods have a direct
impact on the performance of our compression scheme. However, we have found
that they have their own advantages and disadvantages. So, it would be helpful to
research the potential cause of this if we plan to perfecting our system.

3.6.1 The Defective of Phase Shift

Since our ultrasound signal is a broadband signal, it is important to note that phase
shift is not a reliable method to delay a broadband signal. Since phase shift should
be applied in the frequency domain, then we should study this problem from the
Fourier Transform function

f̂ (ω) =
∫ ∞

−∞
f (t)e−j2πωtdt (3.3)

where ω is frequency and f(t) is denoted by f̂ (ω) in the frequency domain.
For element i, applying any real number delay τ to it in the time domain, ei(t) =

f (t− τ), then it turns out to be êi(ω) = e−j2πωτ f̂ (ω) in the frequency domain. The
phase angle is θ = 2πξτ, which should be restricted in the interval [0 2π]. It shows
that signals at different frequencies will have diverse time delays for one specific
phase shift. Theoretically, for a broadband signal which consists of a large group of
frequency components, the waveform can be retained when its frequency compo-
nent is in proper phase alignment with each other. Instead of delaying the signal in
the time domain, a fixed phase shift for all frequencies will break down this kind
of alignment and cause delay distortion. As a result, phase delay is also known as
envelope delay, which is the rate of change of the phase versus frequency curve.

We can illustrate this conclusion by shifting our excitation signal, which is a
broadband signal.
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FIGURE 3.16: Effect of Phase Shift

Figure 3.16 shows that the pulse was not actually shifted in time domain. Due
to different time delays of varied frequency signals, the original waveform becomes
distorted, where side lobes are generated as a kind of noise. However, when we ex-
amine the envelop of the shifted signal, it shows that signals are remained in a fixed
interval. It means that the Phase Shift is similar to the Amplitude Weight to some
extent, which change the waveform the initial signals. Although, its performance
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is acceptable as we have seen previously, it is still not an appropriate preprocessing
method for a broadband signal since not further improvement can be achieved.

3.6.2 The Advantages and Disadvantages of Sample Shift

Compared to the Phase Shift, the Sample Shift can achieve a time delay for both
narrowband and broadband signals. We have already mentioned that, when the
Sample Shift is large enough where the signals from all elements can be shifted to
their unique intervals, the compressed data is equivalent to storing the full data
from all elements. So, it is valuable for research. Let us use 2 points in the image
region, which are symmetric relative to the transducer, as the example to explain the
difference between the Sample Shift and the other two methods. The details can be
illustrated by Figure 3.17.

(A) Sample Shift Scheme of Point 1

(B) Sample Shift Scheme of Point 2

FIGURE 3.17: Sample Shift Scheme of Two Symmetric Points

In Figure 3.17, we assume the difference of time-of-arrivals between 2 adjacent
elements is 1 sample and the pulse shapes of signals are the same for the convenience
of illustration. This assumption is only partially true in reality.

We mark these two points as Point 1 and Point 2. Since the construction of ma-
trix A is done separately for each pixel, we will also investigate these 2 points 1
by 1. When the element array receives the spatial impulse responses of Point 1
(fi,1 i ∈ {1, 2, ..., N}), the received signals of all elements will be delayed differently
in time domain. The delayed signals (ei,1 i ∈ {1, 2, ..., N}) will be summed up into 1
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output. As for Point 2, the received signals (fi,2 i ∈ {1, 2, ..., N}) of the elements ar-
ray are a mirror of Point 1 (fi,1 i ∈ {1, 2, ..., N}). For instance, a signal is received by
the 1st element in the array when measuring Point 1 will also be obtained by the 40th
element in the array when measuring Point 2, which is shown in Figure 3.17. There-
fore, the Naive Compression is unable to distinguish them because these 2 points
have the same compressed signal after summation. However, if we apply the same
set of delays to these two measurements, the symmetric pattern between 2 points
is destroyed. The summation of the delayed signals in 2 cases cannot be the same
unless the delay set of the entire array is also totally symmetric. However, when we
consider the Amplitude Weight and Phase Shift methods, both these methods will
only distort the signals in their original time intervals. Since the distances between
elements are small, the time intervals of all received signals are highly overlapping
with each other. In addition, the summation of 40 highly overlapping signal pulses
is hard to be controlled. Hence, Points 1 and 2 are probably represented by similar
signal pulses even if the set of amplitude weights or phase shifts is not symmetric.
As a consequence, the Sample Shift is a more hopeful method to distinguish a pair
of mirrored points which is the main interference caused by linear summation.

However, every coin has two sides. The differences between highly similar pix-
els have been enlarged, but the similarities between previously uncorrelated pixels
become higher simultaneously. When the maximum sample shift is not large, the
probability that the summations of delayed signals share the same time interval is
pretty high. In this case, the Sample Shift is worse than the other two differentiation
methods because it did not distort the waveform of signals. From Figures 3.4 and
3.5, we can find more background ’noise’ in the image when the maximal delay is
up to 20 samples. Another problem of the Sample Shift is the trade-off between the
high compression degree and high image quality. Based on the above displays and
analysis, we can conclude that the Sample Shift can perform better than the other
two methods when the maximal delay has been chosen appropriately.

3.7 Summary

Our compression scheme for ultrasound imaging is applicable for off-axis point
objects in a noisy environment. Compared to the imaging with the received data
from all elements, the image quality has decreased a lot due to the loss of informa-
tion in compression. But the quality of the reconstructions cannot meet our expec-
tation except for the Sample Shift case with a larger maximum delay because they
cannot beat the case where we use raw data from 10 elements. Among the three pre-
processing methods, the Phase Shift is unable to be promoted due to the restriction
of periodicity if it has been used to delay broadband signals , so we will not consider
it in the later designs. The advantage of the Sample Shift method is its simplicity
and room for promotion. Meanwhile, unlike the Phase Shift, the Amplitude Weight
does not have the critical effect, the only problem is how to use it properly. Hence,
we will implement it differently in the following research.

In addition, another potential hidden trouble of our design can be found from
this fact that the compressed signals of symmetric pixels or pixels at the same depth
are the same if no preprocessing has been done. During the discussion, we have
mentioned that all three preprocessing methods can eliminate the similarities be-
tween pixels. We did ten rounds of compression to suppress the impact of the highly
compressed raw signals. The final result is the combination of them. However, if the
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outcomes of ten rounds of compression share the same errors, then the errors will be
amplified 10 times if the result is a combination of them.
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Chapter 4

Case 2: An Improved Design for a
18.5MHz Ultrasound System

4.1 Introduction

As we have discussed in the last chapter, our initial design cannot meet our expec-
tation. A new design is required based on a part of information we have obtained.
In this chapter, we will focus on the changes in 2 factors. The first one is the architec-
ture of the system. In Chapter 3, all received signals will be processed and summed
up into 1 output signal, the size of the output signals is only 1

40 of the raw data
from 40 channels in each round of compression. Even if we need 10 to 20 rounds
to achieve high-quality reconstruction, the final compressed data are 1

4 to 1
2 of the

raw data from 40 channels in data size. The intention of multiple rounds of com-
pression is to enlarge the differences between the corresponding compressed signals
of pixels. The realization of multiple rounds of compression in hardware can be
parallel compression units or more memories for the temporary storage of data. In
hardware design, parallel compression units should be a better strategy than mem-
ory. However, the number of elements connected to each compression unit is worth
studying. Therefore, a new compression architecture can be designed to reduce the
connections and ensure the quality of the reconstruction result simultaneously. The
new compression architecture that will be discussed in this chapter is a potential
solution where the spatial property of data can be also exploited. The idea is that
data from 64 channels can be compressed by groups rather than an entirety. Our
design is to divide 64 elements into 8 sub-arrays, where each sub-array contains 8
different elements physically. The data from 8 elements in different sub-arrays are
compressed separately with the same model as in Chapter 2. Then, the data size
of the compressed signals should be 1

8 of the raw data from 64 channels in 1 round
of compression. If we only consider the data size of the compressed signals, the
reconstruction results of the new architecture should be similar to 8 rounds of the
previous compression design, where the connection between compression units and
elements is only 1

8 compared to before. The structure of the new architecture will be
introduced in detail in the following section of this chapter, and the feasibility of the
new architecture will be analyzed. Except for a new architecture, some changes will
be also made in preprocessing methods. According to the previous simulation re-
sults, we believe that all three preprocessing methods are not perfect for our system.
In this chapter, we will try to research improved or alternative solutions for them.
We hope these improvements can help us obtain a better result.

This chapter will be organized as follows. In section 4.2 the backgrounds of the
new architecture will be explained. The update of preprocessing methods is intro-
duced in section 4.3. Section 4.4 is mainly focused on the evaluation and analysis of
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our new designs. Section 4.5 contains the discussion of advantages and disadvan-
tages of all kinds of methods. A short summary is given in section 4.6

4.2 New Compression Architecture

As aforementioned, our system will be transformed into an array with 8 sub-arrays
and 64 elements in total. In the performance analysis section in chapter 2, we have
already discussed that more elements in the array allows improve the condition of
our system. So, the system model should provide us with better results when the
element number is increased from 40 to 64. Another significant effect of this new
8 sub-array architecture design is related to the basis of our compression scheme.
The essence of our compression is to represent pixels uniquely with fewer data as
well as with full data from the entire array. The uniqueness is mainly created by the
relative temporal information and the pulse shape of a pixel to the elements in the
array. However, the linear summation model of our compression scheme damages
these properties. The design of 8 sub-arrays can partially preserve the temporal
information in the received signals.

A problem of this new architecture is how to group elements, which is related
to the exploitation of the spatial property. There are 3 schemes we would like to
propose. The easiest way is to group elements in sequence, where 8 mutual adjacent
elements will be drawn in the same group. Then 8 element groups will contain
elements 1 to 8, 9 to 16,..., 57 to 64 separately. It can be regarded as if 8 larger size
elements have been used in the array rather than 64 smaller elements.

Since there does not exist a compulsive rule of grouping, random grouping is a
good choice when a specific scheme of grouping is hard to be determined. Hence,
the second scheme is to group 64 elements randomly into 8 groups, resulting in no
regular format of element arrangement in this form. The main problem of this archi-
tecture is its uncontrollability, and finding the upper and lower bound of its perfor-
mance. However, it can be a good reference if we aim at studying the robustness of
a system.

The last scheme is choosing an element from each group in the first architecture
to form a new group. For example, the first group of elements consists of element
1, 9, 17, 25, 33, 41, 49, 57. Finally, 8 groups of elements will be identical copies of
each other with different offsets on the x-axis which is a kind of interleaving model.
Then, the array has been transformed into 8 sub-arrays in a linear sequence.

We call the three types of grouping as Architecture 1, 2 and 3 separately. To illu-
minate the details of the three new architectures of compression intuitively, we use
three figures to display them. I have also simplified our system into signal sources
plus receivers. The principle is same as we have discussed in chapter 2.

As shown in Figures 4.1, 4.2 and 4.3, the received signals will be processed firstly
and summed by groups later. Then our observation vector y or specific columns of
matrix A will become equation 13, where the storage of the compressed signals from
sub-arrays is the same as the multiple rounds of compression in chapter 3

y =


y1
y2
...

y8

 A =


A1
A2
...

A8

 (4.1)
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FIGURE 4.1: Schematic Diagram of Architecture 1. The distortion
functions include the Sample Shift (τ is the number of delayed sam-
ples), the Amplitude Weight (τ is a sequence of gains for all sam-
ples) and the Random Subsampling (τ is the multiple of sampling
frequency). Observation vector yi equals a column of A when only

one pixel is measured

FIGURE 4.2: Schematic Diagram of Architecture 2. The distortion
functions include the Sample Shift (τ is the number of delayed sam-
ples), the Amplitude Weight (τ is a sequence of gains for all sam-
ples) and the Random Subsampling (τ is the multiple of sampling
frequency). Observation vector yi equals a column of A when only

one pixel is measured

where yi is the compressed signal of observations from sub-array i, Ai = [ai,1, ai,2, ...,
ai,j, ..., ai,2601] is the measurement matrix constructed by the compressed signals from
sub-array i.

Before we apply any other preprocessing methods to differentiate the received
signals from different elements, we can also consider the Naive Compression with
the new architecture. The received signals from 8 elements in each sub-array are
summed up directly without preprocessing. In Chapter 2, when we sum up the raw
data from the entire array, extra rounds are meaningless for our single measurement
imaging system if we do not implement any preprocessing methods. But the com-
pression system in the new architectures would provide us with different results
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FIGURE 4.3: Schematic Diagram of Architecture 3, the distortion
functions include the Sample Shift (τ is the number of delayed sam-
ples), the Amplitude Weight (τ is a sequence of gains for all sam-
ples) and the Random Subsampling (τ is the multiple of sampling
frequency). Observation yi equals a column of A when only one pixel

is measured

from images of curves. The actual effects of the 3 architectures will be discussed in
the later section with their corresponding reconstructions. This Naive Compression
method is a good reference to examine the effects of preprocessing methods and the
architecture of the compression system.

4.3 Updated Preprocessing Methods

Four preprocessing methods will be used to improve the performance of compres-
sion, which are the Sample Shift, the Amplitude Weight, the Random Subsampling
and the Random Grouping sample by sample (RandgrpSbyS). Among them, the
Sample Shift method is kept the same as before meaning that the received signals
from elements will be delayed in the time domain differently. Due to the restriction
of hardware implementation, the maximal delay has been constrained less than 20
samples.

In the last chapter, when we apply the Amplitude Weight, it is a fixed value
τ for each signal. Even if the value is randomly generated for each element, the
performance of this method is not so good. However, there is room for improvement
if τ can be a sequence rather than a fixed value for each element. It is certain that the
differences between randomly generated sequences are much larger than randomly
generated single values. If we multiply the received signals with these sequences,
both the envelopes and the waveforms will be changed. In this view, the effect of
sequences is better than values. In a practical implementation, a pseudo-random
sequence τ, which has the same length as the sampled signal and contains eight-
level weights in a range from [−1, 1], will be generated for each element separately
and multiplied with the sampled signals.

ei[n] = τi[n] ◦ fi[n], i ∈ {1, 2, ..., N}, (4.2)

Then each sample has its corresponding gain, which means that samples are am-
plified differently. Furthermore, the pseudo-random sequence is generated for each
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element independently, so the differences between elements should be much larger.
Except for these two previously used methods, a new method has been proposed

that can differentiate between the received signals by controlling the sampling pro-
cess, what we call "Random Subsampling". The term "Random Subsampling" does
not mean that a lower sampling frequency will be used to sample the received sig-
nals. On the contrary, the received signals should be over-sampled firstly, where the
sampling frequency will be 4 times larger than the initial setting in our case. The
scheme of the method is shown in Figure 4.4.

FIGURE 4.4: Random Subsampling Diagram

From the Figure 4.4, we understand that the sampled signals will be sub-sampled
after oversampling. In order to display the principle of this new method clearly,
we didn’t use the practical pulse shapes of signals in the diagram. In reality, the
magnitudes of samples are not varying so rapidly as the signals in the scheme due
to the oversampling. The procedure of the method is that the sampled signal will
be divided into several segments of four samples firstly. Then one sample will be
sampled from each segment randomly and inserted into the new signal in sequence.
Different sub-sampling formats will be generated and applied to different elements
separately. So the final sub-sampled signals should be hardly identical or similar to
each other in our assumption.

Another preprocessing method is derived from Architecture 2 which randomly
divides 64 elements into 8 physical groups. However, from the view of signals, there
is more freedom to manipulate the grouping. The idea we will use is to randomly
group signals sample by sample (RandgrpSbyS). The principle is that all connections
between elements and output channels in Architecture 2 are virtual or temporary
connections, which will change temporally. For each time slot, the samples from 64
elements are grouped with the same scheme as Architecture 2. Then, Architecture 2
would be totally randomized in the temporal dimension. Compared to the original
architecture 2, the freedom of signals in the spatial dimension has been exploited.
The benefit is that the problems introduced by randomization can be alleviated with
a large amount of temporal samples. Meanwhile, it can be combined with other
preprocessing methods because it owes the property of grouping and preprocessing.
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4.4 Performance Analysis

Due to the change of system architecture and differentiation methods, the perfor-
mance of the system should be analyzed in order to find out the best combination of
them. The reconstructed images by Regularized Least Squares and Matched Filter-
ing are shown in Appendix. We only focus on the environment that all point objects
are off-axis with the noisy background. The SNR is still 20dB as before.

The setting of parameters has been changed a lot in the following simulation.
The center frequency rises from 3MHz to 18.5MHz, then the sampling frequency
should be also increased above the Nyquist Sampling Frequency, which is 55.5MHz.
Then the image region should be closer to the transducer because the high-frequency
waves cannot transmit far away. Meanwhile, the pixel size should be smaller in
order to match the shorter wavelength of ultrasound waves, which is 0.06mm in the
simulation. Furthermore, 15 point objects will be put into the image region. They are
distributed in a 5 by 3 rectangular form, 5 rows with the same depths in the lateral
dimension and 3 columns with the same ranges in the axial dimension. The location
of point objects is shown in Figure 4.5
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FIGURE 4.5: True Location of the Point Objects

During the analysis, we also take the raw data case into account. Our compressed
data will be 1

8 of the raw data from the entire array in one round of compression.
Then, we will also examine the reconstruction results with raw data from 8 elements
(element 1, 9, 17, 25, 33, 41, 49, 57), 16 elements (element 1, 5, 9, 13, 17, 21, 25, 29, 33,
37, 41, 45, 49, 53, 57, 61) and 64 elements in the array to be the comparisons of our
compression imaging system designs because their data sizes are equivalent to the
1x, 2x, and 8x of our compressed signals. At least, our system should let us obtain
better results than raw data from 8 sensors. Otherwise, the compression designs are
excessive.

Firstly, we prefer to evaluate the system from an objective view. Instead of eval-
uating the quality of the measurement matrix A by condition numbers, we choose
to examine the matrix A by checking its cross-correlation between columns. Each
column in the matrix A represents a pixel in the image region. We can calculate the
auto-correlation of A by

R = ATA (4.3)

where matrix A is normalized column by column and R is the auto-correlation ma-
trix of A. All elements in the diagonal of R are autocorrelations of columns in A and
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the elements in the other places are cross-correlations between columns in A. In the
best case, columns in the matrix A (pixels) should be orthogonal to each other, so all
cross-correlation elements should be zero. It is true that we cannot reach the ideal
case in reality that all cross-correlation elements are zero. However, we can deduce
that they should approximate zero on average. Only in this way, the ultrasound sig-
nal can be well reconstructed. In the following, we will use tables and histograms to
illustrate the distribution.

Compression Method Architecture 1 Architecture 2 Architecture 3
Amplitude Weight 0.0014 0.0013 0.0013

Random Subsampling 0.0071 0.0058 0.0056
Sample Shift 0.0020 0.0019 0.0021

Naive Compression 0.0081 0.0075 0.0070
Raw data from 8 elements 0.0011
Raw data from 16 elements 0.0015
Raw data from 64 elements 0.0008

RandgrpSbyS 0.0072
RandgrpSbyS+AW 0.0012
RandgrpSbyS+SS 0.0023

RandgrpSbyS+AW+SS 0.0013

TABLE 4.1: Averge of Cross-correlation between Pixels (Linear scale).
AW=Amplitude Weight, SS=Sample Shift, RandgrpSbyS=Random

Grouping Sample by Sample, ′+′=Combination of methods

From table 4.1, the averages of cross-correlations are close to zero for all kinds
of designs and raw data cases. Usually the averages are smaller when the condi-
tions of matrix A are better. Therefore, we can conclude that pixels have orthogonal
representations on average in all cases.

Differentiation Method Architecture 1 Architecture 2 Architecture 3
Amplitude Weight 0.0360 0.0349 0.0349
Random Sub-sampling 0.0602 0.0429 0.0494
Sample Shift 0.0428 0.0413 0.0415
Naive Compression 0.0660 0.0479 0.0573
Raw data from 8 elements 0.0406
Raw data from 16 elements 0.0307
Raw data from 64 elements 0.0230
RandgrpSbyS 0.0420
RandgrpSbyS+AW 0.0347
RandgrpSbyS+SS 0.0343
RandgrpSbyS+AW+SS 0.0337

TABLE 4.2: Standard Deviation of Cross-correlation between Pix-
els (Linear scale). AW=Amplitude Weight, SS=Sample Shift, Rand-
grpSbyS=Random Grouping Sample by Sample, ′+′=Combination of

methods

The standard deviation is being used to quantify the amount of variation of a set
of values. Compared to the average, the standard deviation is commonly used to
measure confidence in statistical conclusions. A small standard deviation indicates
that values tend to be close to the average of the set. From table 4.2, we can find that
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the Amplitude Weight and Random grouping sample by sample plus other prepro-
cessing methods have the standard deviations than raw data from 8 elements. It is a
more accurate method than the average. It reflects the values of cross-correlation are
more concentrated around average or close to zero, so the conditions of the matrix
A are better with these methods. As aforementioned, the matched filtering results
highly rely on the incoherence between pixels. Then, we can obtain the same con-
clusions from the reconstructed images of matched filtering in Figures A.7 to A.12
as from above tables.

The cross-correlation of columns in matrix A analyzes the system by evaluat-
ing the quality of A. We should note that the Matched Filter is unreliable when the
matrix A is ill-posed. Then, the Regularized Least Least Squares is a more suitable
algorithm we can count on because its performance does not totally rely on the con-
dition of A. In Chapter 3, we have already examined both LSQR and Tikhonov Reg-
ularization methods, when the regularization parameters have been appropriately
chosen, their performances are close. We apply LSQR in this chapter uniformly in
consideration of computational complexity. The selection of regularization parame-
ters (or iteration numbers) has a huge impact on the final result. Even though there
are many scientific ways to calculate them, but we can also determine them subjec-
tively or objectively. The subjective way is to observe the reconstructions. As for the
objective, we decide to use the mean squared error (MSE) to measure the quality of the
reconstruction results of Regularized Least Squares.

MSE = E[(x̂− x)2] (4.4)

The initial image x is a matrix where only the corresponding elements of the point
objects are 1 and other elements are zero. The x̂ is the normalized matrix of the
reconstructed images, which are shown in the Appendix. The simulation is done
in a noisy (SNR=20 dB) environment where all point objects are off-axis. This is the
worst case we will face in Point-Object Imaging. But, we have to note that the results
with the lowest MSEs are not always the best because the quality of images is finally
determined by our subjective views.

Differentiation Method Architecture 1 Architecture 2 Architecture 3
Amplitude Weight 0.0142 0.0159 0.0180

Random Sub-sampling 0.0261 0.0229 0.0192
Sample Shift 0.0250 0.0190 0.0209

Naive Compression 0.0341 0.0224 0.0235
Raw data from 8 elements 0.0308
Raw data from 16 elements 0.0151
Raw data from 64 elements 0.0117

RandgrpSbyS 0.0146
RandgrpSbyS+AW 0.0131
RandgrpSbyS+SS 0.0164

RandgrpSbyS+AW+SS 0.0140

TABLE 4.3: Mean Squared Error between x and estimated
x(Regularized Least Squares/Linear scale). AW=Amplitude, Weight
SS=Sample Shift, RandgrpSbyS=Random Grouping Sample by Sam-

ple, ′+′=Combination of methods

In table 4.3, a lower MSE means that the reconstructed image is more approx-
imate to the ideal image where the points should be more concentrated and less
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background ’noise’. We can find that the Amplitude Weight and the Random Group-
ing Sample by Sample (or plus other methods) can achieve lower MSEs than other
differentiation methods. According to the Figures A.1, A.4 and A.6, it is true that
the images reconstructed with them are better than the reconstruction with the raw
data from 8 sensors at least, but it is hard to judge whether they are better than
the reconstruction with the raw data from 16 sensors. From Figures A.1 to A.5, we
can find that the effect of the architecture is not significant when preprocessing has
been applied except the Random Sampling methods where the quality of the images
corresponds to their MSEs. In a subjective view, the Naive Compression and the
Random Sampling methods are almost the same. The reasons will be discussed in
the following section.

In order to illustrate the Matching Filtering results more intuitively, we also mea-
sure their MSEs.

Differentiation Method Architecture 1 Architecture 2 Architecture 3
Amplitude Weight 0.0145 0.0171 0.0148

Random Sub-sampling 0.0545 0.0292 0.0295
Sample Shift 0.0285 0.0190 0.0182

Naive Compression 0.0364 0.0261 0.0172
Raw data from 8 elements 0.0202
Raw data from 16 elements 0.0139
Raw data from 64 elements 0.0089

RandgrpSbyS 0.0258
RandgrpSbyS+AW 0.0127
RandgrpSbyS+SS 0.0120

RandgrpSbyS+AW+SS 0.0155

TABLE 4.4: Mean Squared Error between x and estimated x(Matched
Filtering/Linear scale). AW=Amplitude, Weight SS=Sample
Shift, RandgrpSbyS=Random Grouping Sample by Sample,

′+′=Combination of methods

Previously, we have already evaluated the Matched Filtering results indirectly with
the cross-correlations between columns in A. The relative differences of results in
table 4.4 are not totally the same as in table 4.2. But we can still get the same con-
clusion that the Amplitude Weight and Random Grouping Sample by Sample plus
other preprocessing methods are the best among all methods. But, we cannot totally
trust the MSE. For instance, the combination of Naive Compression and Architec-
ture 3 provide us with an incorrect result (Figure A.11(c)), but it has a pretty low
MSE.

Combined with the figures in Appendix and above evaluation results, we plan
to have a further study of the corresponding designs of better reconstructions. The
chosen designs are the Amplitude Weight plus Architecture 1, the Sample Shift plus
Architecture 2, the Random Grouping Sample by Sample (or plus the Amplitude
Weight). In order to understand 2-D images intuitively, we transform the images
into 2 slices in axial dimension and lateral dimension separately. Since all point
objects are distributed in rows (lines in axial dimension) and columns (lines in lateral
dimension), we plan to cut them out with their adjacent rows (4 rows) and columns
(8 columns) because the PSFs are shorter in lateral dimension than axial dimension.
Then, we take the average of them to represent one dimension of images in a single
slice.

In Figure 4.6, the peaks of main-lobes in curves are the locations of point objects,
the side-lobes are ’noise’ on the background of images. For a single curve, the larger
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(A) Cross-section slices of rows of point scatters

(B) Cross-section slices of rows of point scatters

FIGURE 4.6: Axial and Lateral image profile of the reconstructed im-
ages with Regularized Least Squares

relative difference between the peaks of the main-lobes and the side-lobes indicates
that point objects are much brighter than the background area. If we compare all
curves together, the disparities between each compression design is obvious. Ac-
cording to the Figure 4.6, the Amplitude Weight and Random Grouping Sample by
Sample perform better than others, especially in axial dimension.

The same conclusion can be obtained from the results with smaller pixel sizes
in a smaller image region. The reconstructions are shown in Appendix B (Figure
B.1-B.12)

4.5 Discussion of the Advantages and Disadvantages of pre-
processing methods and three architectures

4.5.1 The Impact of Architectures

If we do not apply any preprocessing methods, the compression achieved by pure
summation of the received signals (Naive Compression) is impossible to reconstruct
images successfully. This is what we have learned from Chapter 2. But the new
design of 8 sub-arrays in the architecture totally changes this consequence. And
each type of grouping scheme provides us with a unique result (Figures A.5 and
A.11). Let us analyze the reasons in sequence.
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In Architecture 1, the received signals from 8 adjacent elements, which are in the
same sub-array, are summed up. It is the Naive Compression of a sub-array. For a
single sub-array, the reconstruction is the image contains curves at the same depth
of the points of interest that have the same distances to the sub-array as the point
objects. In Chapter 2, we have already explained that these curves are formed by
a collection of pixels, which are symmetric relative to the array, and the surround-
ing areas of them. For each pair of symmetric pixels and adjacent pixels, the Naive
Compression is hard to distinguish them. The difference is that the final result is
the combination of 8 sub-arrays rather than the duplicates from a single larger array.
But the matched filtering image of Architecture 1 in Figure A.11(A) may be confus-
ing. So, Figure A.11(A) is the superposition of 3 columns point objects, the image is
formed by five ’curves’ because the PSFs are too wide.

As for the Architecture 2, for a single sub-array, the received signals in it are
similar to delaying signals in the corresponding sub-array in Architecture 1. The
time-of-arrival differences in the sub-array are fixed initially. After, the application
of the random sample shift, the time-of-arrivals of received signals of elements in
the sub-array are randomized. Compared to the Architecture 1, the randomized
grouping also has a similar impact on the same sub-array since the time-of-arrivals
of signals are also randomized. However, this assumption is based on ignoring the
influence of pulse shapes. If we consider that the pulse shapes of the received signals
are not the same, then the sample shift which has already randomized the time-of-
arrivals of the entire array is different from the Architecture 2 which is just a similar
model in the sub-array. Therefore, the individually application of Architecture 2 is
able to give us an acceptable result (Figure A.5 (B) and Figure A.11 (B)).

The reconstruction result of Architecture 3 is ’remarkable’. For each sub-array
of this architecture, the pixels have the same Naive Compression results if they are
symmetric relative to the sub-array. A specific point object has 8 symmetric pixels
from the views of 8 sub-arrays, where these pixels also have their own symmetric
pixels for 8 sub-arrays. This is the truth in all kind of architectures. But in Archi-
tecture 1, these pixels are concentrated in the surrounding area, which cause huge
PSFs. In Architecture 2, the randomized pattern suppresses the impact, where these
symmetric pixels are distributed randomly. The superposition of them cannot influ-
ence the images significantly. In Architecture 3, the sub-arrays are distributed in the
interleaving style, where the symmetric pixels are also distributed spatially in se-
quence. And their locations are highly overlapping due to the regular distributions
of them. As a result, point objects have many duplicates in A, where the matched
filtering results in Figure A.11(A) have shown that columns of point objects have
many duplicates in the axial dimension.

4.5.2 The Impact of Preprocessing Methods

According to the above evaluations and analysis, we found that Random Sub-
sampling is the worst performer among all preprocessing methods. It’s really inter-
esting to research the potential problems of this method. We have an assumption
that there is a problem of this preprocessing methods. Firstly, we know that the sim-
ilarities between adjacent pixels are high from all results we have obtained which is
the same in all experiments. The procedure of the Random Sub-sampling was real-
ized by dividing the oversampled signals into segments and sampling one sample
from each segment. The intention is to differentiate the received signals since this
process is done randomly. However, we have to sum them up. We can imagine that
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one sample will represent a small interval initially. Here we will represent this in-
terval with four samples if we oversample the original signal. Since our sampling
frequency is already above Nyquist Sampling Frequency, we can conclude that this
interval should be small enough. Hence, all samples in the random sub-sampled
signals of the oversampling received signals should be also in the corresponding in-
tervals that was represented by the mid-point of this interval. This will be a problem
if we sum them up. The summation result should be similar to the pure summation
case, even if all samples in sub-sampled signals are located at the edges of the inter-
vals. So, in the current stage, the Random Subsampling is not a good choice for the
preprocessing method.

Before we discuss the Random Grouping Sample by Sample method, we have to
consider the full data case carefully. In the full data case, we only store the signals
from all elements in sequence. For any pair of two pixels, they are diverse because
the time-of-arrivals and waveforms between elements are different. This kind of
differences are more distinct when more measurements have been stored. In our de-
sign, the number of different sets of measurements is 64 (64 elements in the array).
Previously, the three architectures preserve both properties partially. The sample
shift and amplitude weight methods enhance the impact of temporal information
and magnitude information separately. Hence, they have improved the results dif-
ferently.

Then, let us consider the Random Grouping Sample by Sample. It can be re-
garded as an extension of Architecture 2 in the time domain. But, the effects of them
are totally different. Due to the random grouping, every element is the potential
source for one output channel. The temporal information caused by relative various
time-of-arrivals has been totally eliminated. The summations in all sub-arrays are
in the same time interval with high probability. For pixels in the same depth, the
time interval of outputs are highly similar, even if we have randomly grouped the
received signals sample by sample and summed them up in 8 groups. But in the
magnitude dimension, for a single sub-array (or output), the waveforms of signals
are totally randomized, which is the same as the application of amplitude weight.
The Architecture 2 and Random Grouping Sample by Sample can be treated as two
types of grouping, which exploit the temporal and magnitude property individually.
We can name them pseudo-processing of the raw signals. Hence, we can find some
similarities between their reconstruction result.

4.6 Summary

We have introduced and examined new architectures and preprocessing methods in
this chapter. The simulation results show that the new designs of compression sys-
tem are effective when appropriate preprocessing methods have been chosen. The
improvement of the Amplitude Weight methods is significant. And we find the ran-
dom grouping sample by sample is a good enhancement of the grouping scheme
design. Among all preprocessing methods, the performance of Random Subsam-
pling is much lower than our initial expectation. So we believe the combination of
these two methods is the most stable method to achieve a high quality ultrasound
reconstruction. We can compress the raw data to 12.5% of its data size, where the
outcome is better than multiplexing the received data from 8 elements and almost
as well as the received data from 16 sensors.
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Chapter 5

Conclusion

5.1 Summary

It was determined from the background research that existing studies of com-
pressive sampling are highly reliant on searching the sparse expansion of the ob-
jects. However, the hardware implementations are less concerned in these studies.
The Semi-controllable Compression Scheme was started with the intent to develop a
compression scheme containing the features of compressive sampling theory to re-
duce the output signals of an ultrasound transducer. With this objective, a compres-
sion scheme based on the pseudo-random linear combination of the received signals
from transducer elements has been designed for a pulse-echo ultrasound imaging.
The compression degree can be easily manipulated by determining the summation
format. The preprocessing unit before linear summation increases the probability
that the pixels have their unique representations, which is able to promote the qual-
ity of reconstructions. In Chapter 3, in the design of Entire Array Compression, the
uniqueness of a specific pixel in temporal dimension and magnitude dimension is
highly compressed. The application of preprocessing methods can improve the re-
constructions to some degree. But the reconstruction is still insufficient to meet our
expectation. As a consequence, alternative compression architectures and new pre-
processing methods have been proposed in Chapter 4. According to the simulation
results, we can conclude that our compression-imaging system is able to reconstruct
the ultrasound signals well when the appropriate architectures and preprocessing
methods have been chosen. Both reconstruction and evaluation results demonstrate
that the improved 8-level Amplitude Weight method or its combination with the
Random Grouping Sample by Sample are the most suitable preprocessing methods
in current stage. Acceptable ultrasound images can be reconstructed with only 1

8 of
the original data and output channels. Compared to the conventional compressive
sampling, our compression scheme is much simpler and flexible. Whether or not the
ultrasound signals are potentially sparse in any domain, our compression scheme is
applicable. Furthermore, our original intention is to apply the easiest method dur-
ing the design, such as the linear summation, the reconstruction methods etc. We
believe there is room for promotion to achieve a much better result and make our
system more stable as described below.

5.2 Future Work

There are still a lot of works that can be done in this following research, we can
divide them into 3 parts: At first, all values of variables or formats in our preprocess-
ing methods are randomly generated with some restrictions that is why we call our
system a semi-controllable compression scheme. We use the same idea as the con-
ventional CS that the randomized mechanism can give us a good result with high
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probability. But we did not apply any kind of optimization during the reconstruc-
tion. Hence, the instability of random numbers is a potential trouble in any practical
implementation. A possible solution is to transform our problem into an optimiza-
tion problem. The object of optimization is the set of variables in our preprocessing
methods, which is directly related to the differentiation of the pixels. We hope a
high-quality reconstruction can be achieved by a stable system.

Secondly, the combination of differentiation methods is another choice for the
improvement of our system. However, at the current stage, the impact of a combi-
nation such as amplitude weight and sample shift is not significant. Hence, a more
suitable strategy of combination can be studied.

Finally, the prototype of our compression scheme is based on linear summation
of preprocessed signals. It is an easy and controllable method to compress data.
However, during the discussion, we have explained that the linear summation may
also introduce some problems. A possible idea is that a non-linear combination of
signals may be a better choice if our goal is to differentiate the pixels with high
similarity. However, an appropriate mathematical model and acceptable price of
implementation may be the hardest part of this idea.
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Appendix A

Reconstruction Results with New
Architectures and Updated
Preprocessing Methods(Pixel Size:
0.06mm)

Regularized Least Squares(Amplitude Weight/Off-grid/Noisy)

Width of Image Region(m) ×10-3

-1.5 -1 -0.5 0 0.5 1 1.5

D
ep

th
 o

f I
m

ag
e 

R
eg

io
n(

m
)

×10-3

6

6.5

7

7.5

8

8.5

9 -30

-25

-20

-15

-10

-5

0

(A) Architecture 1
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(B) Architecture 2

Regularized Least Squares(Amplitude Weight/Off-grid/Noisy)
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(C) Architecture 3

FIGURE A.1: Regularized Least Squares(Amplitude Weight/Off-axis
Point Objects/Noisy/dB mode)

Regularized Least Squares(Sample Shift/Off-grid/Noisy)

Width of Image Region(m) ×10-3

-1.5 -1 -0.5 0 0.5 1 1.5

D
ep

th
 o

f I
m

ag
e 

R
eg

io
n(

m
)

×10-3

6

6.5

7

7.5

8

8.5

9 -30

-25

-20

-15

-10

-5

0

(A) Architecture 1

Regularized Least Squares(Sample Shift/Off-grid/Noisy)
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(B) Architecture 2

Regularized Least Squares(Sample Shift/Off-grid/Noisy)
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(C) Architecture 3

FIGURE A.2: Regularized Least Squares(Sample Shift up to 20
samples/Off-axis Point Objects/Noisy/dB mode)
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Appendix A. Reconstruction Results with New Architectures and Updated

Preprocessing Methods(Pixel Size: 0.06mm)
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(A) Architecture 1

Regularized Least Squares(Off-grid/Noisy)
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(B) Architecture 2

Regularized Least Squares(Off-grid/Noisy)
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(C) Architecture 3

FIGURE A.3: Regularized Least Squares(Random Subsampling/Off-
axis Point Objects/Noisy/dB mode)
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(A) Pure RandgrpSbyS

Iterative Regularization(Off-grid/Noisy)
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(B) RandgrpSbyS+Sample Shift
up to 20 samples
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(C) RandgrpSbyS+Amplitude
Weight

Regularized Least Squares(Off-grid/Noisy)
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(D) RandgrpSbyS+Amplitude
Weight+Sample Shift up to 20

samples

FIGURE A.4: Regularized Least Squares(Random Grouping Sam-
ple by Sample+Amplitude Weight+ Sample Shift/Offgrid/Noisy/dB

mode)
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(A) Architecture 1

Regularized Least Squares(Subsampling/Off-grid/Noisy)
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(B) Architecture 2

Regularized Least Squares(Subsampling/Off-grid/Noisy)
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(C) Architecture 3

FIGURE A.5: Regularized Least Squares(Naive Compression/Off-
axis Point Objects/Noisy/dB mode)
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Regularized Least Squares(Off-grid/Noisy)
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(A) 8 sensors

Regularized Least Squares(Off-grid/Noisy)
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(B) 16 sensors

Regularized Least Squares(Off-grid/Noisy)
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(C) 64 sensors

FIGURE A.6: Regularized Least Squares(Off-axis Point Ob-
jects/Noisy/dB mode). Raw data from sensors without compression.

Matched Filter(Amplitude Weight/Off-grid/Noisy)
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(A) Architecture 1

Matched Filter(Amplitude Weight/Off-grid/Noisy)
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(B) Architecture 2

Matched Filter(Amplitude Weight/Off-grid/Noisy)
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(C) Architecture 3

FIGURE A.7: Matched Filtering(Amplitude Weight/Off-axis Point
Objects/Noisy/dB mode)

Matched Filter(Sample Shift/Off-grid/Noisy)
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(A) Architecture 1

Matched Filter(Sample Shift/Off-grid/Noisy)
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(B) Architecture 2

Matched Filter(Sample Shift/Off-grid/Noisy)
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(C) Architecture 3

FIGURE A.8: Matched Filtering(Sample Shift up to 20 samples/Off-
axis Point Objects/Noisy/dB mode)

Matched Filter(Off-grid/Noisy)
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(A) Architecture 1

Matched Filter(Off-grid/Noisy)
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FIGURE A.9: Matched Filtering(Random Subsampling/Off-axis
Point Objects/Noisy/dB mode)
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Preprocessing Methods(Pixel Size: 0.06mm)
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FIGURE A.10: Matched Filtering(Random Grouping Sample
by Sample+Amplitude Weight+Sample Shift/Off-axis Point Ob-

jects/Noisy/dB mode)
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FIGURE A.11: Matched Filtering(Naive Compression/Off-axis Point
Objects/Noisy/dB mode)
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FIGURE A.12: Matched Filtering(Off-axis Point Objects/Noisy/dB
mode). Raw data from sensors without compression.
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Appendix B

Reconstruction Results with New
Architectures and Updated
Preprocessing Methods(Pixel Size:
0.02mm)
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FIGURE B.1: Regularized Least Squares(Amplitude Weight/Off-axis
Point Objects/Noisy/dB mode)
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FIGURE B.2: Regularized Least Squares(Sample Shift up to 20
samples/Off-axis Point Objects/Noisy/dB mode)
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Preprocessing Methods(Pixel Size: 0.02mm)
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FIGURE B.3: Regularized Least Squares(Random Subsampling/Off-
axis Point Objects/Noisy/dB mode)
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up to 20 samples
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FIGURE B.4: Regularized Least Squares(Random Grouping Sam-
ple by Sample+Amplitude Weight+ Sample Shift/Offgrid/Noisy/dB

mode)
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FIGURE B.5: Regularized Least Squares(Naive Compression/Off-axis
Point Objects/Noisy/dB mode)
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(C) 64 sensors

FIGURE B.6: Regularized Least Squares(Off-axis Point Ob-
jects/Noisy/dB mode). Raw data from sensors without compression.
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FIGURE B.7: Matched Filtering(Amplitude Weight/Off-axis Point
Objects/Noisy/dB mode)
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FIGURE B.8: Matched Filtering(Sample Shift up to 20 samples/Off-
axis Point Objects/Noisy/dB mode)

Matched Filter(Off-grid/Noisy)

Width of Image Region(m) ×10-4

-5 0 5

D
ep

th
 o

f I
m

ag
e 

R
eg

io
n(

m
)

×10-3

6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

7 -30

-25

-20

-15

-10

-5

0

(A) Architecture 1

Matched Filter(Off-grid/Noisy)

Width of Image Region(m) ×10-4

-5 0 5

D
ep

th
 o

f I
m

ag
e 

R
eg

io
n(

m
)

×10-3

6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

7 -30

-25

-20

-15

-10

-5

0

(B) Architecture 2

Matched Filter(Off-grid/Noisy)

Width of Image Region(m) ×10-4

-5 0 5

D
ep

th
 o

f I
m

ag
e 

R
eg

io
n(

m
)

×10-3

6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

7 -30

-25

-20

-15

-10

-5

0

(C) Architecture 3

FIGURE B.9: Matched Filtering(Random Subsampling/Off-axis Point
Objects/Noisy/dB mode)
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up to 20 samples
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FIGURE B.10: Matched Filtering(Random Grouping Sample by
Sample+Amplitude Weight+Sample Shift/Off-axis Point Ob-

jects/Noisy/dB mode)
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(B) Architecture 2
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(C) Architecture 3

FIGURE B.11: Matched Filtering(Naive Compression/Off-axis Point
Objects/Noisy/dB mode)
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(B) 16 sensors
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(C) 64 sensors

FIGURE B.12: Matched Filtering(Off-axis Point Objects/Noisy/dB
mode). Raw data from sensors without compression.
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