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Summary

Freight transportation, currently dominated by fossil fuelled vehicles, contributes largely to
sustainability problems, including noise and air pollution, global warming and oil dependency.
The adoption of electric vehicles (EVs) could solve these problems by enabling much cleaner
and efficient transport [1]. However, substituting conventional internal combustion engine
(ICE) vehicles with EVs within the transportation and logistics sector is not straightforward.
In contrast to ICE vehicles, EVs have to refuel frequently due to the relatively low energy
content of their batteries. Moreover, the recharging process of an EV is a lot more time
consuming than refuelling a conventional ICE vehicle. In order to successfully adopt EVs
in last-mile distribution processes, the range and recharging limitations should be addressed
adequately.

In this contribution, the range and recharging limitations of EVs are addressed during the
depot charge scheduling of a fleet of EVs. The use of EVs is considered in the context of a
last-mile delivery process while operating a multi-shift schedule, which means that vehicles
can be used to execute multiple trips per day. It is assumed that individual trips, which span a
number of customer orders, do not exceed vehicle range. Consequently, charging outside of the
home depot is not needed. Many last-mile distribution service providers operate a large fleet
of vehicles from one depot location. Due to the high investment cost that is associated with
installing charging infrastructure, there are typically less chargers than vehicles. Moreover,
grid capacity constraints limit the peak power that can be drawn from the grid on a specific
depot location. Both factors should be taken into account during the construction of a charge
schedule.

The aim of this work is threefold: (1) to develop a model to optimise the charge schedule for
a fleet of EVs while considering labour, battery degradation and energy cost and taking into
account constraints related to the vehicle, charging infrastructure and grid, (2) to investigate
the impact of the three different shift schedules on charging cost and (3) to study the impact
of adapting the configuration of both the vehicle and charging infrastructure on charging cost.
The impact of charge scheduling optimisation on charging cost is investigated in a real-life
case study for Dutch e-grocer Picnic, that currently operates a last-mile delivery process with
over 700 EVs [2].

A MIP model for the charge scheduling problem is proposed. Two important conditions
related to the problem are that (1) the assignment of vehicles to trips is determined preceding
to the charge schedule optimisation and (2) the energy requirements of all trips are known. In
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iv Summary

a real-life context, this would mean that the energy requirement of trips should be predicted
using certain trip characteristics. A step wise approach is used to introduce the problem.
First, the problem formulation for the charge scheduling problem without the incorporation
of battery degradation cost is given. Subsequently, the model is extended to be able to
account for battery degradation cost, using a discrete battery wear model from Han et al
(2014) [3]. Model adjustments that enable coordinated charging, which resembles the use of
smart chargers are introduced last. The implementation of the proposed model is verified in
order check whether the problem is formulated and implemented correctly.

Three different aspects of the case study of e-grocer Picnic are analysed. This outlines the
necessary information to set up the experimental study. The following subjects are discussed
in consecutive order: the energy demand of the fleet, the current charge scheduling process of
Picnic and characteristics of the vehicle charging characteristics and charging infrastructure

The model is implemented in Gurobi and solved using an exact solver. In order to asses its
performance, the proposed model is compared to the benchmark, which is determined using
operational data. The proposed model outperforms the benchmark by 25.2% in total cost
and all cost components are reduced individually. This confirms that the implementation
of charge schedule optimisation provides high economical benefits in last-mile services using
EVs. An immediate consequence of reduced battery wear cost is that expected lifetime of
the vehicles batteries is extended (19.0%). Furthermore, the impact of three different shift
schedule types, the increase in vehicle battery size, the addition of coordinated charging and
the implementation of fast chargers is investigated. It turns out that more energy demanding
shift schedules result in higher average charging cost per charged amount of energy. This can
be explained by the decrease in charging flexibility in these shift schedules. The introduc-
tion of a larger battery size, shows potential for decreasing cost related to charging (10%).
Moreover, coordinated charging yields a large reduction of charging cost (7%). The best
tested configuration combines larger battery size with coordinated charging and this yields a
decrease in charging cost of 6.6%, 12.7% and 15.1% for the CS, MS and FS schedule when
compared to current configuration.
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Chapter 1

Introduction

1-1 Electric Vehicles in Transportation

Freight transportation, currently dominated by fossil fuelled vehicles, contributes largely to
sustainability problems, including noise and air pollution, global warming and oil dependency
[4]. The adoption of electric vehicles (EVs) could solve these problems by enabling much
cleaner and efficient transport [1]. Local and national governments try to discourage the
use of diesel trucks by introducing more stringent regulations which limit the allowed COq
and NOy emissions for internal combustion engine (ICE) vehicles. Additional diesel bans in
congested, urban areas will further contribute to an accelerated adoption of electric trucks.
Recently, some of the major Dutch cities including Amsterdam, Rotterdam and Utrecht
introduced measures that restrict the use of ICE vehicles in environmental zones. On top of
that, Utrecht has announced a full ban of all ICE vehicles from its inner city in 2025 [5]. Aside
from environmental aspects, other drivers contributing to the attractiveness of adopting EVs
in transportation are technology readiness and total cost of ownership (TCO) [6]. Technology
readiness comprises the ability of the EV manufacturers to develop a variety of EV models and
to achieve sufficient production capacity. In the coming years, it is likely that these factors
will lag behind the demand [6]. A few drivers can be associated with the TCO difference
between traditional diesel trucks and EVs which include battery size and cost, daily driving
distances, electricity consumption and the fuel price differential. Cost competitiveness of EVs
is achieved when the reduced operational costs outweigh the high initial investment costs.
Especially in the light commercial vehicle (LCV) segment, cost parity with diesel fuelled
trucks seems near, due to relatively low battery investment costs.

However, substituting conventional ICE vehicles with EVs within the transportation and lo-
gistics sector is not straightforward. In contrast to ICE vehicles, EVs have to refuel frequently
due to the relatively low energy content of their batteries. Moreover, the recharging process
of an EV with the current battery and recharging technologies is a lot more time consuming
than refuelling a conventional ICE vehicle. Both the lower range and long recharging times
are characteristics that reduce the availability and flexibility of EVs. This poses some addi-
tional challenges when using EVs from strategic, planning, and operational perspectives [7].
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2 Introduction

From the perspective of the fleet owner, the influence of the reduced availability and flexibility
of EVs can be problematic as these factors might ultimately lead to larger required fleets to
perform operations. Larger fleets are associated with higher investment and operational costs
and will result in an increase of TCO of the electric fleet.

1-2 Incorporating EVs in Logistics Operations

To optimise the use of EVs in the transportation sector, the EV limitations regarding charging
and range should be taken into account during at least one of the following processes:

e Routing of vehicles: this relates to the assignment of a sequence of destinations to
vehicles, while also determining where and how long to charge [8].

e Scheduling of vehicles: in contrast to routing, the scheduling of vehicles comprises the
assignment of vehicles to a set of trips with fixed time constraints instead of destinations

[9].

e Charge scheduling: decisions regarding charge scheduling are related to where and when
to charge a specific vehicle. Note that during this process it is not decided on the
assignment of vehicles to trips.

This thesis focuses on the charge scheduling for a fleet of EVs. Much research has been devoted
to the routing of EVs, especially in the context of en-route recharging of vehicles. The issues
related to limited range of alternative fuelled vehicles were first considered by Erdougan et al.
(2012) [10] who proposed the Green Vehicle Routing Problem (GVRP). More recent studies
have been dedicated to analysing the effect of charging station location and capacity, non-
linear charging curves, time windows, variable electricity pricing and partial charging [11].
An interesting problem in the context of scheduling EVs is the Electric Vehicle Scheduling
Problem (EVSP) (e.g. [9],[12],][13],[12]). This problem is mainly used in order to evaluate
the financial feasibility of electrifying a fixed schedule of trips, such as in a bus network, by
comparing the TCO of different technical concepts at the system level. In its most general
form, the EVSP has the goal to find an optimal vehicle schedule by minimising the number
of vehicles and operational cost related to driving distance. In contrast to both the routing
and scheduling of EVs, the charge scheduling for EVs is covered less in literature.

This thesis will use online grocer Picnic as a case study to optimise the charge schedule in
the context of a last-mile distribution system. Currently, the company has a fully electric
fleet of LCVs that is responsible for the final delivery trip to customers. This provides the
opportunity to analyse the current use of EVs in a last-mile delivery context. In the next
section, an introduction of the company is given and the use of EVs in their last-mile is
analysed.

1-3 EVs in Last-mile Distribution at Picnic

Picnic is an e-grocer that started operation in September 2015 after two years of research
and development behind the scenes. Picnic’s stores can be accessed exclusively online using
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1-3 EVs in Last-mile Distribution at Picnic 3

a mobile application, which means that there are no physical stores that can be visited. An
order can be placed until 10:00PM on the day before delivery, and has a minimum billing
amount of €25. The assortment of Picnic contains over 10.000 different products ranging
from ambient, chilled and frozen products. In contrast to competitors, Picnic offers a lowest
price guarantee on their products and charges no delivery costs, which reduces the margin
that remains for the distribution of the goods. This puts pressure on the cost effectiveness of
the supply chain of Picnic. An overview and description of the entire supply chain of Picnic
is given in Figure 1-1. The next section will elaborate on how the EVs are currently used to
cover the final trip to the customers.
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Figure 1-1: The Supply Chain of Picnic: a schematic overview from left to right. Different
suppliers deliver products at one of the fulfilment centres. Here, individual customer orders are
collected and combined in frames. Subsequently, the frames are transported to the regional
hubs using trucks where they are cross docked to the electric delivery vehicles. These EVs are
responsible for the last-mile delivery trip to the customers’ homes.

Picnic has an electric fleet of roughly 700 Goupil G4 LCVs that is responsible for the last-mile
distribution of the groceries [2]. These vehicles combine a small footprint (outer dimensions:
1.4 x 2.96m) with a high payload capacity (6m®) and a relatively low top speed (50km/h).
As indicated before, the use of EVs in the transporting sector goes hand in hand with several
strategic and operational challenges. Nevertheless, there are some characteristics of the last-
mile distribution model of Picnic that are favourable for the adoption of EVs:

e Urban hubs: the location of the hubs are an important aspect of the last-mile delivery
distribution model that was selected at Picnic. The hubs are all located relatively close
and centred with respect to the delivery areas that they serve. As a result, they reduce
the distance travelled in last-mile delivery trips. Another consequence is that the last-
mile delivery routes are driven at a low average speed; only the urban road network is
used.

e Payload characteristics: grocery delivery can be characterised by a relatively high weight
and volume per customer order. The amount of customers that can be served in one
delivery trip is constrained by the vehicle payload capacity. Consequently, a relatively
low number of customers can be served in one delivery trip when comparing grocery
deliver with for example parcel delivery.

Master of Science Thesis M. Dalmijn



4 Introduction

The urban hub model and payload characteristics both limit the amount of distance that
is driven in Picnic’s last-mile delivery trips. An analysis that is presented in Section 4-1-2
shows that individual last-mile delivery trips at Picnic are never constrained by the vehicle
range. Consequently, charging outside of the depot is not needed. Many fleet owners prefer
depot charging over charging at public locations due to a combination of factors including
the scarcity of available charging infrastructure, cargo security concerns during charging and
inefficient use of the drivers’ time [14]. Furthermore, financial benefits could be obtained
by charging in off-peak hours at the depot. For these reasons, only depot charging will be
considered in this work.

The schedule of trips for every vehicle, or vehicle rotations, determine the energy demand of
the vehicles over time, as well as the available time for charging. Therefore, the entire trip
schedule should be taken into account in order to properly address the range constraints of
each vehicle when a charge schedule is made. At Picnic, the last-mile distribution trips are
scheduled in a multi-shift context. A shift contains a set of trips that is driven in the same
time interval, and therefore impose time constraints on the maximum duration of trips. A
shift schedule is built up by multiple shifts that are strictly separated in time. From a planning
perspective, this means that when ignoring energy constraints, trips from consecutive shifts
can always be executed by the same vehicle. The shift schedule that is performed during
the week at most hubs comprises three shifts which are all scheduled in the afternoon. In
practise, the battery capacity of the vehicles is often sufficient to perform three consecutive
trips without recharging. At the moment, there are no supporting systems in place that help
to make a charge schedule in any way because energy related issues rarely occur.

A recent expansion of Picnic’s services has added two morning shifts next to the three existing
afternoon shifts, summing up to a total of five shifts per day. As a consequence of this,
individual vehicle use should be intensified to prevent an unacceptable growth of the fleet.
This means that vehicles cover more distance on a daily basis, require more energy and are
away from the home depot longer, which leaves less time for charging. It can be said that
the increase in energy requirement and the decrease in available time for charging leads to
a decrease in charging flexibility, which is defined as the idle time spent not charging [15].
Higher daily energy demands and the decrease in charging flexibility could lead to a higher
peak energy consumption at the depot. Grid capacity constraints limit the peak power that
can be drawn from the grid on a specific depot location. These grid capacity constraints are
imposed by grid operators and are meant to counteract overloading of the grid. However,
they pose a threat for achieving charge feasibility for all vehicle rotations during the day.
Therefore, the capacity of the grid should be taken into account during the construction of
the charge schedule.

1-4 Charge Scheduling

High daily energy demands and limited charging infrastructure availability may lead to en-
ergy infeasibility of the vehicle schedule or impractical charging schemes, consisting of many
charge events. Since the execution of a charge schedule requires manual labour, for example
when driving EVs to charger locations and (un)plugging vehicles from the charger, there is a
motive to minimise the number of charge events and thereby to reduce the labour cost that is
associated with the execution of the charge schedule. Another component that influences the
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cost to execute a charge schedule is energy cost. For businesses operating on a larger scale and
consequently consuming a lot of energy, the option of having a time variable energy pricing
contract becomes an attractive alternative. These variable energy contracts can be leveraged
in order to decrease energy cost, by charging during times of low energy prices. One last, and
less covered, aspect that contributes to the cost of a charge schedule are battery wear costs,
which are inherently related to the use of an EV battery. EV batteries constitute a large part
of vehicles costs. Lithium-ion batteries are subject to deterioration of the electro-chemical
properties over time, ultimately leading to a reduction of the available power and battery
capacity, resulting in a performance and range deterioration of the vehicle [16]. In order to
preserve the long term flexibility of EVs, it is necessary to prevent battery degradation as
much as possible [17]. This can be done by taking into account the factors that have a known
negative effect on battery deterioration in charging problems. One of these known effects is
the state of charge (SOC) range in which the battery is cycled. Therefore, adapting a charge
schedule of a vehicle in such a way that it is cycled in less harmful SOC ranges, contributes
to the cost effectiveness of a charge schedule. All these factors emphasise the necessity to
investigate the cost related to the charging schedule.

1-5 Aim of the Thesis

The aim of this work is threefold: (1) to develop a model to optimise the charge schedule for
a fleet of EVs while considering labour, battery degradation and energy cost and taking into
account constraints related to the vehicle, charging infrastructure and grid, (2) to investigate
the impact of the three different shift schedules on charging cost and (3) to study the impact
of adapting the configuration of both the vehicle and charging infrastructure on charging cost.
The impact of charge scheduling optimisation on charging cost is investigated in a real-life
case study for Dutch e-grocer Picnic, that currently operates a last-mile delivery process with
over 700 EVs [2]. The charging cost of optimised charge schedules are compared with cost
of the current charging process obtained with operational data. Moreover, the impact of
the three different shift schedules on charging cost is investigated, which are based on two
actual shift schedules and one fictive schedule for Picnic. Lastly, we study the impact of
adapting the configuration of both the vehicle and charging infrastructure referring to the
vehicle battery size, charge rate and charge type. The latter refers to the amount of possible
coordination during the charging process in which we consider two types: uncoordinated
and coordinated charging. Uncoordinated charging resembles the use of basic chargers, and
coordinated charging corresponds to the use of smart chargers.

1-6 Research Questions

Based on the previously stated research aim, the main research question can be defined:

How can the charge schedule for a fleet of electric vehicles be optimised during
day-to-day operations?

In order to answer this question, several sub-questions need to be answered:
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6 Introduction

1. What charge scheduling optimisation models and algorithms have been proposed in
literature?

2. How can the charge schedule optimisation problem be formulated in a mathematical
model?

There are several sub-questions that are answered in the context of the case study at Picnic.

3. What is the energy demand of the electric fleet of Picnic?
4. What charge scheduling process is currently used at Picnic?

5. What are the characteristics of Picnic’s current vehicle and surrounding charging in-
frastructure?

6. How can an experimental study be set up that uses the proposed model to study the
impact of charge schedule optimisation on charging cost?

7. What is the impact of charge schedule optimisation on charging cost?

8. What is the impact of vehicle and charging infrastructure configurations on charging
cost?

1-7 Research Approach

In order to answer the main and sub research questions the following research approach is used.
A review considering the most recent literature in the area of charge scheduling optimisation
is performed to assess the state of art, to learn how existing models are defined in literature
and to derive what contributions can be done to the field. Based on this literature review, a
new model will be formulated for the charge scheduling problem, which is specifically designed
for the case of Picnic. Several aspects of case study are analysed in order to (1) asses the
performance of the current charging process of Picnic with quantitative operational data and
(2) to derive the necessary information for the design of experiments. These experiments are
performed to compare the performance of the charge scheduling model to the performance of
the current charging process. Furthermore, additional experiments are proposed to investigate
the impact of vehicle and charging infrastructure configurations. The used research approach
is schematically visualised in Figure 1-2.

Case Study

Problem

Literature Description & Design of
Review Problem Experiments

Fomulation

Results > Conclusion

Figure 1-2: The research approach
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1-8 Structure 7

1-8 Structure

This thesis is organised as follows. First, an overview of the relevant literature with respect
to charge scheduling optimisation is presented in Chapter 2. Subsequently, the problem will
be defined in Chapter 3. Moreover, a mathematical formulation for the charge schedule
optimisation is formulated. Sub-questions 3-5 are all discussed in Chapter 4. The aim of
these questions is to analyse the specific characteristics of the charge scheduling problem at
Picnic. Subsequently, in Chapter 5, the experimental study is set up. The results of the
experimental study are given in Chapter 6. Having stated the answers to all sub questions,
the answer to the main research question is given in the concluding Chapter 7.
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Chapter 2

Charge Scheduling Optimisation

This chapter will review relevant literature with respect to charge scheduling optimisation
and thereby provides an answer to the first research question:

e What charge scheduling optimisation models and algorithms have been proposed in
literature?

First, in Section 2-1 the subject of charge scheduling optimisation is classified into two main
groups: vehicle to grid charge scheduling and unidirectional charge scheduling. Subsequently,
the relevant literature within these groups is discussed in Section 2-2 and 2-3. Section 2-
4 elaborates on the unidirectional charge scheduling for fleet owners. Section 2-5 covers
literature with respect to battery degradation models that can be incorporated in the charge
scheduling problem. Finally, Section 2-6 discusses the contributions of this work in the view
of the existing literature.

2-1 Types of Charge Optimisation Problems

Within the general topic of charge scheduling optimisation problems, two main groups are
subdivided:

e Vehicle to Grid (V2G) charge scheduling: V2G systems use EV batteries to temporar-
ily store energy which can be provided back to the grid. V2G systems,- "could help
carbonise transportation, support load balancing, integrate renewable energy into the
grid, increase revenues for electricity companies, and create new revenue streams for au-
tomobile owners" [18]. The main goal of V2G charge scheduling optimisation problems
is to determine when EV batteries should be charged, discharged or used for frequency
regulation [19].

e Unidirectional charge scheduling (UCS): these types of problems consider only the uni-
directional flow of energy from the grid to the vehicle.
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10 Charge Scheduling Optimisation

The two different types of charging optimisation problems that were identified will be dis-
cussed more elaborately in the next two sections.

2-2 V2G Charge Scheduling

Although V2G capability is not considered to be a part of this thesis, elements of V2G
charge scheduling models could be useful input for UCS models. Especially within the topic
of battery degradation, many recent contributions have focused on incorporating wear cost
during the optimisation of a V2G charge schedule (i.e. [20], [21], [22]). Since battery cost
constitute a large part of EV cost, determining the contribution of battery degradation is an
important aspect when assessing the financial feasibility of EVs in V2G systems [22]. Farzin
et al (2016) [20] propose a practical battery wear model that can be incorporated in V2G
charge scheduling problems. Other aspects of work related to V2G charge scheduling focuses
on addressing the uncertainties regarding future energy prices, vehicles use and grid load
to optimise the integration of EVs into power systems. Moving time window optimisation
is a much used approach to determine the charge schedule for vehicles in these uncertain
environments.

2-3 Unidirectional Charge Scheduling

The perspective from which the charging problem is addressed determines the objectives of
the optimisation. Three perspectives are identified:

e Power system level

e Owner of charging infrastructure

e Vehicle/fleet owner

Power System Owner and EV Aggregators

The first group is the one of the power system level. Examples of actors that operate on
this level are EV aggregators and grid operators. The benefits that EVs can offer to power
systems are voltage support, frequency regulation, reserve and demand response capabilities
[23]. EV aggragation comprises the joint operation of the charging process of a large number
of EVs to ensure system impact (i.e. [24], [25],[26]). This can be achieved by regulating the
charge rate of individual vehicles [27].

Owner of Charging Infrastructure

The owner of charging infrastructure offers charging services to fleet or vehicle owners. The
main objective for charge scheduling from the perspective of the charging infrastructure owner
is to maximise profit while ensuring the mobility objectives of the customers [28]. Sometimes
the objective is to minimise waiting time (i.e. [29], [30]). Zhang et al. (2017) [31] propose
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2-4 Unidirectional Charge Scheduling for Fleet Owners 11

a charging optimisation method for EVs at commercial parking lots with extended charging
times. Arrival and departure behaviour of vehicles is modelled as a Poisson process. A two
stage dynamic programming optimisation framework is used that includes a short and long
term prediction of electricity prices. Also the operators of battery swapping stations can be
assigned to this group. Some recent contributions focus on the profit maximisation of battery
swapping station under uncertain demand and energy prices by scheduling the charging of
batteries (i.e. [23], [32]).

Vehicle/fleet Owner

The last class covers the subject of charge scheduling optimisation from the perspective of the
fleet owner. For the fleet owner the most important goal is to minimise the cost related to
charging. As was mentioned in the introduction, many fleet owners prefer depot charging over
charging at public locations due to a combination of factors. Therefore, in this work, charge
scheduling for fleet owners is limited to depot charging. All relevant literature that was found
covers charge scheduling from a single location. In the next section, a more elaborate survey
of the literature in this subject is given.

2-4 Unidirectional Charge Scheduling for Fleet Owners

This section covers the literature within the subject of UCS from the perspective of the fleet
owner. Up to our knowledge, only three contributions cover the subject from this perspective.
Firstly, Pelletier et al. (2018) [14] introduce the Electric Freight Vehicle Charge Scheduling
Problem (EFV-CSP). This contribution focuses on optimising the depot charge planning over
the course of multiple days for a given set of routes for electric freight vehicles. The objective
function is build up of multiple components including time-dependent energy costs, battery
degradation and facility-related demand charges. A realistic non-linear charging process is
modelled. A mixed integer programming (MIP) formulation is proposed and solved using an
exact solver. Small scale test instances are generated that have fleet sizes of 3 to 9 vehicles,
each performing two trips a day with a time horizon of three days. Secondly, Sundstrom et
al. (2010) [33] propose a charge scheduling optimisation model with the goal of minimising
charging costs, achieving satisfactory state-of-energy levels and optimal power balancing.
The problem includes variable electricity prices over time and also variable available wind
power over time. Both a linear and quadratic approximation of battery behaviour is used
to take into account the relationship between applied, external, charging power and the rate
of change of the battery SOC. The optimisation model is based on a MIP formulation and
solved using an exact CPLEX algorithm. The test instances contain a mix of 50 commuter
and taxi vehicles performing a series of trips over the course of one day. A different type of
problem that covers the subject of unidirectional depot charge scheduling for fleet owners is
the Simultaneous Electric Vehicle Scheduling and Optimal Charging Problem, which considers
a joint optimisation of vehicle scheduling and charge scheduling. This problem is discussed
by Sassi et al. in three contributions (2014a) [34], (2014b) [35], and (2017) [19]). In these
studies it is the goal to optimise both the allocation of a fleet of ICE vehicles and EVs to trips
and the charge schedule while satisfying constraints related to the grid, chargers and EVs
battery capacities. Optimisation objectives consists of both maximising the use of EVs and
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to minimise the costs related to charging. Only depot charging with time dependent charging
costs is considered. In Sassi et al (2014a) [34] a mixed integer formulation is given and real
test small and medium sized instances are solved using CPLEX. In Sassi et al. (2014b) [35], a
two phase sequential heuristic is developed to solve large instances. In Sassi et al (2017) [19],
it is proven that the Electric Vehicle Scheduling and Charging Problem is NP-hard in the
ordinary sense. Furthermore, two heuristics, a Sequential Heuristic and a Global Heuristic,
are proposed to solve large instances.

2-4-1 Deterministic nature of UCS for Fleet Owners

When analysing the characteristics of the discussed unidirectional optimisation problems for
fleet owners, it should be noted that the problem characteristics are of deterministic nature.
Namely, the vehicle arrival and departure times as well as the energy demands are assumed to
be known beforehand. This makes the problem solution method suitable for linear program-
ming, which means that a global optimum can be found. In the contribution of Pelletier et al
(2018) [14], non-linear charge curves are discretised in linear segments in order to incorporate
this behaviour in the linear model. The energy demand of the EVs can either be modelled to
be deterministic or stochastic. Deterministic models can be used whenever the arrival times
at charging stations and energy requirements of trips are known, while stochastic models are
used to represent these factors when these are uncertain.

2-4-2 Objectives of UCS for Fleet Owners

A couple of objectives are identified with respect to UCS for fleet owners, which are reducing
energy cost, battery wear, facility related demand charges and labour cost. First, the goal
of balancing power generation and consumption can become financially beneficial from the
perspective of the fleet operator, due to price incentives in the form of variable energy prices.
By charging the vehicles during periods of low energy prices, the variable energy prices can
be leveraged to reduce overall costs related to energy. A second objective, as was introduced
by Pelletier et al. (2018) [14], is the minimisation of facility related demand (FRD) charges,
which depend on the maximum power demand during an entire billing period. This means
there is a incentive for spreading out the energy demand to keep FRD charges low. It should
be noted that not all energy contracts involve FRD charges. As mentioned in the introduction
of this thesis, another objective of charge schedule optimisation for a fleet owner might be
to reduce the costs related to performing the charge events. Up to our knowledge, there
have not been any contributions that take this cost component into account. A last objective
comes in the form of preventing battery degradation. EV batteries constitute a large part of
vehicles costs. The cost of lithium-ion battery packs are expected to remain above €300/kWh
for the next 10 years [36]. Lithium-ion batteries are subject to deterioration of the electro-
chemical properties over time, with degradation occurring during charging and discharging
corresponding to cyclic ageing, and the degradation during storage corresponding to calendar
ageing [36]. The involved chemical and mechanical processes ultimately lead to a reduction of
the available power and battery capacity, resulting in a performance and range deterioration
of the vehicle. The decreased battery capacity, or state of health (SOH), can be measured as
a percentage of the original battery capacity. Equation 2-1 is used to determine the battery
SOH in percent.
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2-5 Battery Degradation Models 13

SOH = COm_ 100 (2-1)
Crated

Cy, represents the current maximum releasable capacity in Ah and Cjqeq represents the
original capacity rated by the manufacturer. Battery degradation effects origin from multiple
and complex mechanisms, which depend on the specific cell type and operating conditions [16].
Due to the correlation and cross-dependency of these mechanisms, it is rather challenging to
quantify the contribution of the different mechanisms to battery ageing [37]. However, some
factors can still be related to an accelerated ageing of batteries, -" such as overcharging,
overdischarging, high and low temperatures, high SOC during storage, large DOD, and high
charging or discharging rates." [36]. In order to preserve the long term flexibility of EVs, it
is necessary to prevent battery degradation as much as possible. This can be done by taking
into account the factors that have a known negative effect on battery deterioration in charging
problems. Therefore, some practical battery wear models have been proposed to address these
issues. Han et al. (2014) [3] and Farzin et al. (2016) [20] propose a battery wear model that
is based on experimental cycle life data and directly indicates wear cost, which makes it very
suitable for charging optimisation. These models will be more elaborately discussed in the
next section.

2-5 Battery Degradation Models

In this section, two practical battery degradation models will be discussed. Typically, battery
manufacturers specify the cycle lifetime of batteries with the achievable cycle count (ACC)
for different depth of discharge (DOD) points, which indicates how many times a battery can
be charged or discharged before it reaches the end of its lifetime. This relation can then be
visualised in a ACC-DOD curve, of which an example is given in Figure 2-1. For clarity, for
the ACC-DOD curves it is assumed that the battery is always discharged from a 100% SOC,
which represents the situation in which a battery is always cycled from full charge. However,
in reality batteries are cycled in different SOC ranges, which limits the usability of the ACC-
DOD curve. To overcome these issues, some steps are required to transform the ACC-DOD
characteristics into a practical battery wear model. The models of Han et al. (2014) [3] and
Farzin et al. (2016) [20] do exactly this and will be discussed in the Subsections 2-5-1 and
2-5-2.

2-5-1 Practical Wear Model of Han et al.

Han et al. (2014) [3] propose a new index called the wear density function (WDF). This
function represents the unit wear costs at a specific DOD value. A continuous and discrete
time battery wear function are derived using both the battery price and ACC-DOD data.
Since this work models in discrete timesteps, the discrete model will be presented. The Wy(s)
represents the battery degradation cost as a function of cycled energy within a certain SOC
interval (s + As) and satisfies the following equation:

1-As
BatteryPrice =2 - ACC(DOD) - Z (Wa(s) - Aq) (2-2)
s=1-D
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Figure 2-1: ACC-DOD curve. Each marker represents a sample point where the achievable cycle
life is known. The continuous line shows the best fit curve of the ACC data. [38]

Agq is the quantity of energy that corresponds to a SOC interval (s + As). This function can
be used to derive the degradation cost for different SOC intervals. For example, using a step
size of 10% yields ten different equations:

BatteryPrice

W4(0.9 = 2-3
4(0-9) ACC(0.1)-2-0.1- BatterySize - 2 (2-3)
BatteryPrice
W4(0.8+0.9 = 2-4
a(0-8+0.9) ACC(0.2) - 2-0.2 - BatterySize - pu? (2-4)
BatteryPri
Wa(0 + ... + 0.9) ariery” e (2-5)

- ACC(1.0) - 2-1.0 - BatterySize - pu?

The resulting values of the wear density function can be used to incorporate wear cost in
a discrete manner. Figure 2-2 shows both an example of a continuous wear cost function
derived from the best curve fit of ACC data, and a discrete wear cost function corresponding
to the original data measured at ten DOD points. These functions are derived by using the
data from Figure 2-1.

2-5-2 Practical Wear Model of Farzin et al.

Farzin et al. (2016) [20] propose a model that is derived using a similar approach as Han
et al. (2014) [3]. The discharge coefficient K, is derived from the ACC-DOD characteristics
and describes the lost capacity in terms of total processed energy. When calculating the lost
capacity between two arbitrary DOD values, the following formula can be used:
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Figure 2-2: Discrete and continuous wear costs functions derived by using the ACC-DOD data
from Figure 2-1

AE = E|DiniKpini — DyinKp fin| (2-6)

With AF representing the battery wear in kW h corresponding to one charge/discharge action.
E denotes the battery capacity before the charge/discharge action. Dj,; and Dy;, are the
initial and final DOD and Kp;,; and Kp fp,

2-6 Contributions

In this contribution, the original EFV-CSP that was proposed by Pelletier et al (2018) [14] is
extended in several ways. Firstly, the labour cost related to the manual handling of charging
events will be taken into account. A fixed penalty for each charging event that has to be
performed is implemented. The charged energy is presumed to be a linear function of time,
which decreases the problem complexity and makes it more suitable for the optimisation of
large scale problems. Related to the charged energy, a corresponding SOC dependent battery
degradation model that was proposed by Han et al. (2014) [3] is implemented. Secondly, two
slightly different models are presented in order to study the effect of coordinated charging
versus uncoordinated charging, which compares traditional ’dumb’ charging versus the use of
smart chargers. In contrast to the model of Pelletier et al (2018) [14], peak charge costs are
eliminated as cost component since they are not a part of the energy pricing model. The goal
of the EFV-CSP is to optimise the depot-charging costs for a given set of vehicle rotations,
where the charging cost consists of energy costs, labour costs and battery degradation costs.
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2-7 Summary

What charge scheduling optimisation models and algorithms have been proposed in literature?

Charge scheduling optimisation problems can be roughly divided into two different classes: Ve-
hicle to Grid problems and unidirectional charging problems. Unidirectional charge scheduling
problems consider only the unidirectional flow of energy from the grid to the vehicle and can be
addressed from different perspectives including the power system level, charge infrastructure
owner and the vehicle/fleet owner. This thesis focuses on charge scheduling from the perspec-
tive of the fleet owner and in this area three relevant contributions were found. Pelletier et al
[14] introduce the Electric Freight Vehicle Charge Scheduling Problem. This contribution fo-
cuses on optimising the depot charge planning over the course of multiple days for a given set
of routes for electric freight vehicles. Sundstrom et al. (2010) [33] propose a charge scheduling
optimisation model with the goal of minimising charging costs, while ensuring satisfactory
state-of-energy levels for the vehicles and not exceeding the amount of available wind power.
A different type of problem discussed by Sassi et al (2014a) [34], (2014b) [35], and (2017) [19])
that covers the subject of unidirectional depot charge scheduling for fleet owners is the Simul-
taneous Electric Vehicle Scheduling and Optimal Charging Problem, which considers a joint
optimisation of vehicle scheduling and charge scheduling. The objectives of charge scheduling
optimisation for fleet owners include the reduction of energy cost, facility related demand
charges, labour cost and battery degradation. In order to preserve the long term flexibility
of EVs, it is necessary to prevent battery degradation as much as possible. This can be done
by taking into account the factors that have a known negative effect on battery deterioration
in charging problems. Therefore, some practical battery wear models have been proposed to
address these issues. Han et al. (2014) [3] and Farzin et al. (2016) [20] propose a battery
wear model that is based on experimental cycle life data and directly indicates wear cost,
which makes it very suitable for charging optimisation. Both models use ACC-DOD battery
data to incorporate SOC dependency of battery degradation. Lastly, the contributions of this
work are discussed in Section 2-6.
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Chapter 3

Modelling

In this chapter the model is presented that is used to optimise the charging costs during day-
to-day operations. By fulfilling this task, the following research question can be answered:

e How can the charge schedule optimisation problem be formulated in a mathematical
model?

In this chapter, an extension of the EFV-CSP is proposed that takes into account time
dependent energy costs, battery degradation costs and labour costs. First, a mathematical
formulation for the charge schedule optimisation problem without the consideration of battery
degradation is formulated in Section 3-1. This model is extended in Section 3-2 to incorporate
the effects of battery degradation. In Section 3-3, model adjustments are presented that enable
the use of coordinated charging. Finally, in Section 3-4 the implementation and formulation
of the model is verified.

3-1 Basic Model Formulation

This section presents a charge scheduling model without considering battery degradation
cost. The assignment of vehicles to trips is determined preceding to the charge schedule
optimisation. This significantly reduces the problem complexity compared to the case where
the vehicle trip allocation and charge scheduling are determined in a joint process. Moreover,
the energy requirements of all trips are known. In a real-life context, this would mean that the
energy requirement of trips should be predicted using certain trip characteristics. The focus
of the EFV-CSP is on the depot charging of EVs, which means that the only opportunity to
charge the EVs is when they are located at the depot. The entire time horizon is discretised
into a number of fixed time periods p € P. The hub opening and closing periods are defined
as Op and C),. The set of uniform vehicles k € K is characterised by maximum and minimum
allowable battery SOC: so¢pq: and soc,, and battery energy capacity E (kWh). Moreover,
the SOC at the beginning of an operational day is specified as socstqr+. Every vehicle has to
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Table 3-1: Variables and parameters that are used in the charge scheduling problem formulation.

P The set of periods

K The set of vehicles

S The set of charger types

D The set of discretised SOC intervals

R The set of trips

Aj The set of arrival periods that belong to vehicle k
Qp Arrival period of trip r

o Departure period of trip r

Op, C, Hub opening and closing periods

p The energy cost per period in €

cec Fixed cost per charge event in €

t The duration of one period in hours

E Battery energy capacity in kWh

Asoc,  Energy requirement of trip r» as SOC differential
vy vehicle that executes trip r

s Trip preceding trip r

Ks Amount of available chargers of type s

Ys The charged SOC per period for a charger of type s in %
Py The charge rate for a charger of type s in kWh

G Grid peak capacity in kWh

$0Cmin  Minimum SOC

80Cmaz Maximum SOC

socstart  SOC at the start of a operational day

SOCp & Continuous variable indicating the SOC of vehicle k at period p

soc;rr Continuous variable indicating SOC differential in charge interval d for route r

Ugr Binary variable that equals one if charge interval d is used before trip r

N Integer variable indicating the number of charge events during uncoordinated charging

Ns, s Binary variable that equals 1 if a charge event is used before trip r during coordinated charging
Xp.k,s Binary variable that equals one if vehicle k at period p uses charger of type s

y Continuous variable indicating the maximum power drawn from the grid

Zp ks Binary variable that equals one if vehicle k is plugged in a charger of type s at period p

execute a known sequence of trips from the set r € R. Trips can be further defined by their
departure period 3, arrival period a, and energy requirement Asoc, (%). The vehicle that
executes a certain trip r, is denoted by V,. and the preceding trip is defined as p,.. Moreover, let
the set A contain the arrival periods of all trips that belong to vehicle k. The charger types
from the set s € S can be characterised by their charge rate Ps (kW), the SOC differential
that can be charged in one period As (%) and amount of available chargers per type Ks. Let
the binary decision variable x, s be 1, if a charger of type s is charging vehicle k during
period p, and 0 otherwise. A continuous variable soc, j, denotes the SOC of vehicle k at the
start of period p. y keeps track of the peak charging power that is drawn from the grid during
the entire time horizon. Binary variable z, equals 1 if a charge event starts for vehicle k in
period p, and 0 otherwise. To count the number of charge events, an integer variable N is
introduced. The peak power demand is constrained by the grid capacity G.
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Objective Function

The objective for the charge scheduling model is to minimise costs related to charging and is
given as follows:

Z Z Z Zp ks Pstep + Ncec (3-1)

peP keK seS

The first term represents the energy costs of charging, which is calculated by multiplying the
total charged energy during a charging period by the time-dependent energy costs ¢, (€/kWh)
to derive the cost of the charged energy. The second term accounts for the labour costs related
to performing charge events through multiplication of the number of charge events by a fixed
cost per charge event cec.

Charge Scheduling Constraints

i > apv,s =0 VreR (3-2)

p:ﬁ'r seS

> wpps < Ks Vpe Psc S\ {1} (3-3)
keK

> apps <1 Vpe P keK (3-4)
seS

S>> Papps<y VkeKpeP (3-5)
keK seS

0<y<G (3-6)
Zp,k > Tpk,s — Lp—1k,s Vke K,pe P \ {1}7 s€S (3_7)
21k > Tl ks Vke K,se S (3-8)
Tp ks € 10,1} Vpe Pke K,seS (3-9)
Zpk € 10,1} Vpe Pke K (3-10)

Constraints 3-2 prevent a vehicle from being charged during trips. Constraints 3-3 limit the
amount of chargers of type s that can be used during every period to Kg, while constraints
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3-4 enforce that each vehicle can be charged by only one charger at the same time. Con-
straints 3-5 keep track of the peak charging power that is drawn from the grid during the
entire time horizon and constraint 3-6 limits this peak charging power to the grid capacity.
Lastly, constraints 3-7 and 3-8 are used to identify the period that corresponds to the start
of a charging event.

Energy Constraints

50Cq,. v, = socg, v, — Asoc, Vr e R (3-11)

50Cp |, = SOCp_1 ) + Z AsZTp—1ks VkeK,pe P\{l,},p¢& Ay (3-12)
ses

50Cmin < S0Cp ) < S0Cmaz Vke K,pe P (3-13)

50C1 ) = SO0Cstart Vk e K (3-14)

Constraints 3-11 relate the SOC of the vehicle at trip departure to the SOC at trip arrival by
reducing it with the trip energy requirement Asoc,. During charging, constraints 3-12 enforce
the increase of the SOC of a vehicle with the SOC differential that corresponds to a certain
charge rate A\s. Constraints 3-13 ensure that the SOC of a vehicle always stays between the
minimum and maximum allowable SOC. Constraints 3-14 set the SOC of the vehicle at the
start of the time horizon.

Charge Event Constraints

YD mr=N (3-15)

peEP keK

Cp
> zr=0 VkeK (3-16)
p=Op

These constraints are required to count the number of charge events that are used in a charge
schedule. Constraints 3-15 count the number of charge events. Constraints 3-16 prevent
charging events from starting during night hours when there is no one present at the hub.
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3-2 Model Extension |: Battery Degradation

The practical battery wear model proposed by Han et al. (2014) [3] that is discussed in
Section 2-5-1 is implemented in order to incorporate the costs related to battery degradation
during charging and discharging. The next subsection describes the formulation that extends
the original MIP formulation proposed in Section 3-1 with a discrete wear cost function.

3-2-1 Problem Formulation

The following problem formulation is applicable for the case when the wear cost function is
increasing with respect to SOC, which resembles the situation in which more battery degra-
dation occurs during cycling at higher SOC values. The SOC of the batteries is split into
a number of intervals d € D of equal size L (%), with the upper SOC value of an interval
corresponding to Sy. The battery wear cost is represented by Wy in €/kWh for every SOC
interval d. A new continuous variable is introduced soc;rr that keeps track of the quantity of
every SOC interval that is used to charge vehicle k between arrival of trip p, and departure
of trip r. To clarify this variable, an example is visualised in Figure 3-1. In this example the
entire SOC range is divided into ten equal intervals of 10% SOC. The example visualises a
charging event between trip u, and r from 10% to 25% SOC. The corresponding used SOC
intervals will become socir = 10% and soc;ﬂ, = 5% respectively. Lastly, let a binary decision
variable ug, equal 1, if the corresponding SOC interval is used during charging before trip r
and after u,, and 0 otherwise

[
Period

P
(%]
B
en —]

E-"'“"Il.r- = 10%

fiy Py

6
Period

Figure 3-1: An example to clarify the soc;rr variable. A charge event charges a vehicle between

10% and 25% SOC, which results that the associated SOC interval become soci . = 10% and

1,r
socy, = 5%. All other SOC charge intervals are equal to zero.
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Objective Function

Z Z Z Tp ks Pstcy + Neec + Z Z 2stocj{7rE (3-17)

peEP kKEK seS reRdeD

The objective function now comprises three terms, of which the first two represent the energy
costs and labour costs and are identical to equation 3-1. In addition, the third term is used
to take into account the costs related to battery degradation. The total charged amount of
energy per interval is derived by multiplying the SOC variation in every interval SOCL with the
battery energy capacity £ (kWh), and then the corresponding degradation cost is determined
by multiplying those factors with the interval dependent degradation cost Wy. Because cyclic
ageing affects the battery health during charging and discharging, a final multiplication by a
factor of two is required to calculate the total battery degradation.

Battery Degradation Constraints

Z socj’r = 50CB, v, — S0Ca,, V, VreR (3-18)
deD

0< socir < Lug, Yde D,r € R (3-19)
socj’r < Sq — socq,, v, +100 —uq,100 Vd € D,r € R (3-20)

Constraints 3-2-3-16 are still valid for this model extension. In addition, constraints 3-18 limit
the sum of all soci{r intervals to the difference in energy of vehicle & between the departure
time of trip r and the arrival period the preceding trip. Constraints 3-19 limit the SOC
differential that can charged in a SOC interval between zero and the maximum amount that
can be charged in one interval. Constraints 3-20 limit the amount that can be charged in
interval socjr based on the upper SOC value of that interval and the SOC of the vehicle after
the last trip.’ Note that this constraint is only valid in the case of non-decreasing wear cost
with respect to SOC.

3-3 Coordinated Charging

In this section additional constraints are introduced to model a coordinated charging process.
When considering the coordination during the charging process of a fleet of EV two different
types of charging can be distinguished: uncoordinated and coordinated charging. This section
first discusses the difference between these concepts after which the problem definition for
coordinated charging is presented.
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3-3-1 Coordinated vs Uncoordinated Charging

Uncoordinated charging is when the vehicle charging starts immediately after plugging in a
vehicle or after a fixed start delay and continues until the vehicle battery is fully charged
or disconnected [39]. Uncoordinated charging of EV fleets may lead to high peak demands
and thereby to overloading of the grid [40]. Coordinated smart charging optimises time
and power demand with the objectives of minimising charging cost, valley filling and peak
shaving [39]. However, these objectives may never interfere with the mobility objectives of
the EVs [41]. To be able to leverage on the possible benefits of coordinated charging, a smart
charging infrastructure is required. This comprises smart chargers, connected vehicles and a
energy management systems that controls the charging of the vehicles. When comparing the
behaviour of coordinated charging with uncoordinated charging, two major differences can be
identified:

1. Charge events can stop and start at any moment in time, including the hub closing
times.

2. The interruption of a charge event is possible without imposing additional cost.

3-3-2 Problem Definition

During uncoordinated charging, every interruption of a charge event corresponds to opera-
tional cost. Coordinated charging events may be frequently interrupted by the smart charger
without imposing additional cost. To take into account the charging event cost in coordinated
charging, not the number of charge events should be counted, but the number of used charge
opportunity intervals. A charge opportunity interval is defined as time between the arrival of
the preceding trip o, and departure of a trip 8,. Note that the number of charge opportunity
intervals is equal to the number of trips. The binary decision variable Ns, ; equals 1 if the
charge opportunity interval corresponding to trip r is used, and 0 otherwise.

Objective Function

Z Z Z Tp ks Pstep + Z Nsy scec+ Z Z ZWdSOCZZTE (3-21)

peEP keK seS reER reRdeD

In order to take into account the impact of operating with smart chargers, the second term
of the objective function now calculates labour cost by multiplying Ns, ; with cec.
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Charge Event Constraints

Br
3 2p0, 20— M1~ Ns,,) ¥reR (3-22)
p=pr
Br
0> Y 2pw, — MNsps VreR (3-23)
p=pr
Ns,s € {0,1} Vr e R (3-24)

Constraints 3-22 and 3-23 ensure that the binary decision variable Ns, ; equals 1 if the term
Zg;w Zpw, is larger than 0. Both constraint 3-15 and 3-16 can be discarded in the case of
coordinated charging, all other constraints remain valid (3-2-3-14, 3-18-3-20).

3-4 Model Verification

A small experimental study is set up in order to check whether the problem has been formu-
lated and implemented correctly. This comprises some sanity checks that are performed with
a simple instance that is solved using the MIP model. The problem is formulated using the
Gurobi package in Python and solved on a machine with a Intel Core i7-4700MQ 2,4 GHZ
processor with 8.0GB of RAM running on Windows 10. Three experiments are performed
to verify whether the charge scheduling constraints are implemented correctly using a simple
instance.

3-4-1 Instance and Cost Component Description

The time horizon is equal to 12 periods of one hour. Two vehicles are considered that both
drive two trips during the day. The trip details for the simple instance are summarised in
Table 3-2. The energy cost during the time horizon is visualised in Figure 3-2a. Labour cost
is set at €2 for every charge event. The discrete wear cost function, considered for ten SOC
intervals, is given in Figure 3-2b.

Table 3-2: A simple instance.

Trip Vehicle 5 o ASOC

1 1 3 4 10
2 2 8§ 9 30
3 2 6 7 20
4 2 11 12 20
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Figure 3-2: Energy cost and wear cost function.

3-4-2 Experiment 1

The SOC range of the vehicle is restricted to 10-100% SOC and the SOC at the start of the
operational day is set at the lower bound of 10%. The battery capacity E of both vehicles
is equal to 10kWh. One charger type is considered with a charge rate of 1kW. The number
of chargers of this type k1 is equal to two. The peak power that can be drawn from the grid
G is set at 2kW. Only uncoordinated charging is considered in this experiment. The charge
scheduling model is used to solve the simple instance with these model settings. The optimal
results are summarised in Table 3-7 and visualised in Figure 3-3 which shows the SOC of both
vehicles during all periods. Table 3-4 shows the results for the SOC charge intervals that are
used to determine the degradation cost. A red line indicates that the vehicle is being charged,
while energy consumption represented by a step wise decrease of the SOC at the trip arrival
period.

Table 3-3: Results for experiment 1.

Period 1 2 3 4 5 6 7 8 9 10 11 12 13
Vehicle 1

Xp,1,1 i1 o0 o o0 1T 1 O O 0 0 0 O
Zp,1 i1 0o o0 o o 1 o O O o0 0 o0 O
SOCp,1 10 20 30 30 20 20 30 40 40 10 10 10 10
Vehicle 2

Xp,2,1 i1 1 1 1 O O O O 0O O o0 O
Zp.2 i1 0 o0 o o O o O O o0 0 o0 O
SOCp 2 10 20 30 40 50 60 40 40 40 40 40 40 10

Power 2 2 1 1 1 0 1 1 0 0 0 0 0

As seen from Table 3-7, the variables x,, 1. s, 21 and socp ;, work as intended. Binary variable
Zp ks equals 1 if a vehicle is charged during a period. Corresponding to x, s, 2 becomes
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Figure 3-3: Visualised vehicle SOC for experiment 1: red lines indicate the periods in which the
vehicle is being charged.

Table 3-4: Results for SOC charge intervals.

Trip socir soc;r soc{{r SOCIT soc;T socérm soc;fr socg’r socg’ - socfoﬂﬂ
1 0 10 10 0 0 0 0 0 0 0
2 0 0 10 10 0 0 0 0 0 0
3 0 10 10 10 10 10 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0

one at the starting period of every charge event. The variable soc,j, increases with the
right amount of energy in every charged period. It is seen that both vehicles executes two
trips during the operational day as was planned, and that the SOC differential for every trip
corresponds to the energy requirement of the trips. Furthermore, it is seen that the starting
SOC is equal to 10% and that during the entire time horizon it stays between the imposed
bound of 10-100%. In Table 3-4 it is seen that the SOC intervals that are used in every
charge opportunity interval corresponding to a trip are equal to the charged SOC in that
interval. Table 3-5 gives the results for every cost component. Since three charge events with
a corresponding cost of €2 are used, the total labour cost are equal to €6. The energy costs
can be checked by counting the number of charging periods for the two energy prices. There

Table 3-5: Cost components.

Component  Cost [€]

Degradation 3.85

Labour 6
Energy 12
Total 21.85
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are six charged periods where ¢, = 1 and three periods where ¢, = 2, which sums up to a
total of cost of €12. The degradation cost can be checked by multiplying every SOC interval
that is larger than zero with the corresponding wear cost 2W,FE.

3-4-3 Experiment 2

This experiment considers the same model settings, but now the grid capacity constraint is
set at the value of 1kW, which means that only one charger can be used at the same time. The
optimal results are summarised in Table 3-6 and visualised in Figure 3-4. It is clearly visible
that, as intended, only one charger is used at the same time. This is enforced by variable y
that is equal to the grid capacity constraint of 10kWh. This leads to higher energy cost since
one vehicle is forced to charge during periods of higher energy prices.

Table 3-6: Results for experiment 2.

Period 1 2 3 4 5 6 7 8 9 10 11 12 13
Vehicle 1

Xp,1,1 11 0 O o0 1 1 O 0 0 0 0 o0
Zp.1 i1 0o o0 O o0 1 0 O O O 0 o0 o
SOCp,1 10 20 30 30 20 20 30 40 40 10 10 10 10
Vehicle 2

Xp,2,1 o o o 1 1 O O O 1 1 1 o0 O
Zp,2 o o o0 1 o O O O 1 0o o0 O

SOCp 2 10 10 10 10 20 30 30 10 10 20 30 40 10

Power 11 o0 1 1 1 1 o0 1 1 1 0 O
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Figure 3-4: Visualised vehicle SOC for experiment 2.
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3-4-4 Experiment 3

One last experiment is performed to check whether coordinated charging functionality was
implemented correctly. The same instance is solved, now with the ability to use coordinated
charging. The grid capacity constraint is again set at 2kW, just as in experiment 1. The SOC
of both vehicles during all periods are visualised in Figure 3-5. Table 3-8 shows which charge
opportunity intervals Ns, s are used. It is seen that the charge event belonging to the first
vehicle is shortly interrupted in order to benefit from lower energy prices.

Table 3-7: Results for experiment 3.

Period 1 2 3 4 5 6 7 8 9 10 11 12 13
Vehicle 1

Xp,1,1 i1 o0 o o0 1 1 O O 0 0 0 O
Zp,1 i1 0 o0 o o0 1T 0o O O 0 0 o0 O
SOCp,1 10 20 30 30 20 20 30 40 40 10 10 10 10
Vehicle 2

Xp.2,1 i1 o0 1 1 1 0O O O 0O O 0 O
Zp,2 i1 0o o0 o O O o O O o 0 o0 o
SOCp 2 10 20 30 30 40 50 60 40 40 40 40 40 10

Power 2 2 0 1 1 1 1 1 0 0 0 0 0
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Figure 3-5: Visualised vehicle SOC for experiment 3
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Table 3-8: The used charge opportunity intervals

NSl’l NSQ’l NS3’1 NS4’1
1 1 1 0

3-4-5 Conclusion

It can be concluded that the model works as intended. As shown in the tables, the variables
Tpk,ss Zpk, SOCp ks soc:{T and Ns,, all behave as expected. In experiment 2, the correct
implementation of the é;rid capacity constraint G was checked. Experiment 3 showed that
model adjustments enabling coordinated charging work as intended.

3-5 Summary

How can the charge schedule optimisation problem be formulated in a mathematical model?

In this chapter a MIP model for the charge scheduling problem was proposed. Two important
conditions related to the problem are that (1) the assignment of vehicles to trips is determined
preceding to the charge schedule optimisation and (2) the energy requirements of all trips are
known. A step wise approach was used to introduce the model. First, the problem formulation
for the charge scheduling problem without the incorporation of battery degradation cost is
given in Section 3-1. Subsequently, the model is extended in Section to be able to account
for battery degradation cost in Section 3-2, using a discrete battery wear model from Han et
al (2014) [3]. Model adjustments that enable coordinated charging, which resembles the use
of smart chargers, are presented in Section 3-3. Lastly, the implementation of the proposed
model is verified in Section 3-4.
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Chapter 4

Case Study

This chapter consists of three parts, in which different aspects of the case study of e-grocer
Picnic are analysed. This will outline the necessary information to set up the experimental
study in Chapter 5. The following questions are answered in consecutive order:

e What is the energy demand of the electric fleet of Picnic?
e What charge scheduling process is currently used at Picnic?

e What are the characteristics of Picnic’s current vehicle battery and surrounding charging
infrastructure?

In Section 4-1 the energy demand of the fleet is analysed. Subsequently, the current charge
scheduling process of Picnic is discussed in Section 4-2. Finally, the vehicle and charging
infrastructure characteristics are discussed in Section 4-3.

4-1 The Energy Demand of the Fleet

The energy requirement of Picnic’s EVs over time is important input for the charge scheduling
problem and sets the basis for the experimental study. The input of the charge scheduling
problem, as proposed in Chapter 3, consists of three important parts of information: the trip
departure and arrival times (3,, a;,.) and the energy requirement of trips (Asoc,). This input
can be derived by analysing the trip planning of Picnic and the characteristics of typical
Picnic trips, which is done in this section. It thereby gives an answer to the first sub-question
of this chapter:

e What is the energy demand of the electric fleet of Picnic?
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4-1-1 Shift Schedule Analysis

Trip departure and arrival times determine when the assigned vehicle should contain a certain
amount of energy and what time remains for charging. At Picnic, departure and arrival times
of trips are planned on the basis of the shift schedule. A shift sets the ultimate departure and
arrival time for trips that are driven in that shift. The combination of all shifts during the
day is called the shift schedule. The current shift schedule of Picnic is build up in such a way
that different shifts do not overlap in time, which means that trips from different shifts are
also strictly separated. This has multiple advantages: the same delivery driver, also known as
Runner, can execute multiple trips in sequence. Furthermore, the same vehicle can be used
in succeeding shifts. Figure 4-1a shows the current shift (CS) schedule that is performed at
most hubs. Figure 4-1b shows the morning shift (MS) schedule that was first performed in
august 2018 in Leiden. Compared to the traditional schedule, this MS schedule contains two
additional shifts in the morning. These shift are 15 minutes shorter than the afternoon shifts
to ensure that the second morning shift ends at noon. The number of trips that are driven in
every shift is determined by demand and capacity. The demand is determined by the number
and size of customer orders throughout the day. The capacity of Picnic is constrained by
the component in the supply chain with the lowest capacity, such as production capacity at
fulfilment centres, the number of EVs, the available runners, etc. The demand and available
capacity can differ largely for specific days of the week and hub locations over the country.
An analysis was performed to get an idea of the scale of operations in the last-mile process
of Picnic. This is done using a data set containing the number of trips for every shift for
different hubs over a period of 37 weeks. The average shift sizes for two hubs is given in
Figure 4-2.

[ shift A1 A2 A3 \
‘ 14:30-16:45 17:15-19:30 ‘ ‘ 20:00-22:15 ‘
I I I
6:00 9:00 12:00 15:00 18:00 21:00 24:00
(a)
| shift M1 M2 A1 A2 A3 |
‘ 7:45 - 9:45 ‘ ‘ 10:15-12:15 14:30 - 16:45 17:15-19:30 ‘ ‘ 20:00 - 22:15 ‘
I T T T
6:00 9:00 12:00 15:00 18:00 21:00 24:00
(b)

Figure 4-1: (a) CS schedule: composed of three shifts (A1-A3) in the afternoon that are all of
equal length. Note that all shifts are strictly separated in time. (b) MS schedule: in addition
to the three afternoon shifts, two morning shifts are performed (M1-M2), which are 15 minutes
shorter than the afternoon shifts.

4-1-2 Trip Energy Analysis

In addition the departure and arrival times of trips, the quantity of energy that is required
for the trips is needed as input for the charge scheduling problem. This is dependent on
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Monday Tuesday Wednesday Thursday Friday Saturday Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sunday

(a) Average shift sizes for hub Amersfoort (b) Average shift sizes for hub Ypenburg

Figure 4-2: Average shift sizes for two hubs

certain trip characteristics that influence power consumption. To be able to understand what
drives the energy demand of trips it is important to know the breakdown of a typical trip
at Picnic, which is given in the next subsection. Subsequently, Picnic’s last-mile delivery
trips are characterised using operational trip data. Since the trip energy requirements are
required preceding the construction of the charge schedule, it is necessary to get high quality
predictions of trip energy requirements. At Picnic, there are no such trip energy predictions
yet. Therefore, it is interesting to investigate the usability of different trip characteristics for
the prediction of trip energy requirements. A predictive trip energy requirement model is
presented in the final part of this section.

Breakdown of a Trip

Every trip consists of five main parts: loading, stem time (start), delivery drive time, stem
time (end) and unloading time. Two schematic overviews of a trip are depicted in Figure
4-3 and 4-4. Figure 4-3 shows a trip from a geographical perspective, while Figure 4-4 shows
the different parts of a trip in a block diagram. Every trips starts with the loading of the
frames with groceries into a delivery vehicle for which a certain amount of loading time is
reserved. Next, the actual driving of the trip can commence. This starts with the stem time,
which is the time that is required to drive to the delivery area. After reaching the delivery
area, the actual delivery of groceries is performed during the delivery drive time. In this part
of the trip, a sequence of activities is repeated for the number of customers that are served
within the trip. This sequence consists of delivery drive time, parking time and drop time.
After the final delivery, the stem time from the delivery area towards the hub has to be taken
into account. Finally, after each trip some time is allocated for the unloading of frames and
sorting of deposit items.

Trip Data

In order to characterise the last-mile delivery trips of Picnic, a data set containing several
features of 16980 Picnic delivery trips is used, all originating from the CS schedule. An
overview of the data is given in Table 4-1. The data is obtained from multiple sources. The
SOC differential and trip distance data were collected by performing a survey with delivery
drivers in which they were asked to specify the SOC and mileage before and after every trip.
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" Delivery area

Figure 4-3: Overview of a trip: the red lines indicate the drive time to the delivery area, also
known as stem time. When arrived in the delivery area, a set of customers is served after which
the vehicle returns to the hub

Table 4-1: Trip data: overview of trip characteristics from 16980 trips

Feature ‘ ‘ Min Max Average
ASoC % 6 60 24,0
Date - 03/07/17 19/05/18 -
Trip start time min | - - -
Trip end time min | - - -
Payload weight kg 10,1 552,7 190,6
Number of deliveries | # 1 19 11,15
Trip distance km | 6 42 17,7
Trip duration min | 23,9 165,0 114,7
Total stem time min | 6,3 61,7 27,5
Delivery drive time min | 5,3 112,6 87,3
Total drop time min | 5,3 99,6 68,3
Ambient temperature | C -8,3 28,1 11,9

The SOC differential is used to get a measure of the energy requirement for a trip. However,
it should be noted this is not a pure measure for the trip energy consumption. The vehicle
SOC is defined as a fraction of the energy content divided by the current maximum energy
capacity of the battery. As the battery capacity is subject to degradation over time, equal
trip energy requirements will not lead to equal SOC requirements for batteries with different
SOH. However, it is assumed that all batteries have a 100% SOH and therefore, that all SOC
differentials are comparable. This is a reasonable assumption since all vehicles from the data
set are relatively new (average mileage = 3414km). The outside temperature was extracted
from the database of the KNMI and merged with the other data. This data is added since it
is expected that it plays a role in the energy efficiency of EVs. The remaining features were
extracted from the planning software of Picnic.
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Trip schedule

Loading  Stem time Delivery drive time Stem time  Unloading

\:#d rops
» FIE o

O ® O (2) Parking time
@ Drop time

Time

Figure 4-4: Schematic breakdown of a trip: the white parts indicate the (un)loading time of
the frames, orange parts are the stem time to and from the delivery area, and the red part is the
delivery drive time. The delivery drive time consists of a repetitive sequence for every customer
with: drive time, parking time and drop time.

Trip Data Analysis

Using the trip data that was presented in the previous section, histograms are made of some
of the main characteristics of trips like the SOC requirement, trip distance and trip duration.
These histograms are visualised in Figure 4-5. Figure 4-5a shows the distribution of the SOC
differential trips. It is seen the last-mile trips at Picnic require a small part of the battery
capacity. Just 3% of all trips requires more than 40% SOC, which indicates that vehicles
can be used to drive multiple trips on one battery charge per day in most cases. Figure 4-5b
visualises the distribution of trip distance. The resemblance of this distribution with the SOC
differential distribution is clear, indicating that trip distance is an important factor for the
determination of the energy requirements of trips. Lastly, Figure 4-5c depicts the distribution
of the duration of trips.

Trip Energy Requirement Prediction Model

A crucial part of information for setting up the charge scheduling problem is the energy
requirement of trips, which should be based on trip energy predictions. The availability
of this information is an important precondition to be able to set up the problem, while the
quality of the information determines the quality of the output schedule. Therefore, the ability
to predict the energy requirements of trips with certain trip characteristics is investigated in
this section. It should be noted that development of this model is not considered to be a main
objective of this Thesis, but rather a side step to check whether this important information
for the charge scheduling model can be adequately predicted. Therefore, this part will not
contain an elaborate discussion and comparison of multiple energy prediction models, but the
development and discussion of a single model. There are multiple types of models that can
be built:

e Data driven model: historic data consisting of trip characteristics and corresponding
energy related output can be used to model the energy requirement of a trip.
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Figure 4-5: (a) Trip delta SoC histogram. (b) Trip distance histogram (c) Trip duration histogram
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e Physical prediction model: an understanding of underlying physical principals behind
the power consumption and regeneration of the vehicle can be modelled. Factors re-
lated to energy consumption, such as acceleration, aerodynamic and rolling resistance,
grading,etc and energy regeneration should be incorporated.

In the case of Picnic, a physical model would be unnecessary complex and most likely add
computational time when compared to a data driven model. Moreover, sufficient trip data
is available. Therefore, the most logical choice is to develop a data driven model. Within
this category, there is a large amount of different models that can be used, such as regression
models, genetic algorithms, support vector machines and artificial neural networks (ANN).
An ANN was selected, because it is easy to implement and it automatically weighs the fea-
tures that are important for the model. An ANN is a nature inspired model based on the
central nervous systems of animals. An elaborate description of the development of this model
is presented in Appendix 7-2-2. The model is built in Matlab and has goal to predict the
SOC differential target value using the features from the dataset presented in Table 4-1. The
performance of the model is measured as the average mean square (MSE) error and correla-
tion coefficient, which are equal to 12,4 and 0,89 respectively. These outcomes show a high
correlation between the used features and the target value, and therefore model can be used
to accurately predict the energy requirement of trips. It should be noted that there would al-
ways exist a certain uncertainty in the trip energy prediction model with the current available
data. This is due to several influences that can not be determined such as mechanical factors,
driving behaviour and environmental factors. Examples of mechanical factors are drivetrain
and powertrain efficiency and tire pressure. Driving behaviour is mainly relevant due to
driving speed and accelerations. Driving at high speeds is more energy demanding. More-
over, high accelerations are usually associated with higher energy requirements. Also hard
braking can have a negative influence on energy efficiency due to lower energy regeneration.
Environmental factors include wind speed and slopes.

4-2 Current Charge Scheduling Process

The current charge scheduling process is relevant in order to get an insight how much time is
available for making the generation of the charge schedule and to understand what considera-
tions currently play a role in this process. This can be used to derive the current operational
performance of the charge scheduling process. The charge scheduling process was analysed
by conducting several interviews with the involved schedulers and performing data analysis.
By doing this, the following sub-question can be answered:

e What charging planning process is currently used at Picnic?

First, an analysis of the current charging scheduling process is presented in Section 4-2-1, and
secondly, an overview of the entire planning timeline is discussed in Section 4-2-2.

4-2-1 Rules During Scheduling

At the moment, no charge schedule is made at the hubs. Instead, some general rules are
followed which are designed to minimise the risk of having less than fully charged vehicles
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Figure 4-6: SOC cycling ranges and SOC at trip departure

at the start of the an operational day. In order to reduce this risk, runners are asked to
plug in their vehicle after arriving at the hub from the final trip of their working day. This
ensures that vehicles are always charged after they have been used. Unless a vehicle is used
for another trip later on the same day, the vehicle is fully charged to 100%. Furthermore,
a vehicle is charged when the energy content of its battery is presumed to be too low to
cover a new trip. This is done to prevent vehicles from running out of energy while they
are on the road. A replacement vehicle is then used to drive the trip. Since there are no
energy requirement predictions for trips, the SOC value at which vehicles are withheld from
operation is prescribed by the hub management. SOC values between 30-50% are used for
different hubs. In some cases, the hub management assesses if the energy level of a vehicle
is sufficient to cover a specific trip on the basis of some trip characteristics, such as delivery
area and number of orders. It should be noted that these general rules related to charging on
one hand minimise the risk of having not fully charged vehicles but on the other hand tend
to result in driving in higher than required SOC ranges. As explained in Section 3-2, this
can be harmful for vehicle batteries. In order to get a detailed understanding of the effects
of the rules that are followed during the charging process, an analysis is done with the data
presented in Table 4-1 in the previous section. First of all, Figure 4-6a shows a discrete PDF
of the SOC during driving. Secondly, a histogram of the SOC values at the beginning of trips
is shown in Figure 4-6b. What is seen from these figures, is that the vehicles are currently
predominantly cycled in the higher SOC ranges of the battery. Furthermore, it is seen that
vehicles are frequently recharged to 100% SOC, which causes the vehicles to be fully charged
at trip departure in 47.4% of all cases.

4-2-2 Picnic’s Planning Timeline

In Figure 4-7, an overview of the planning timeline is given. This figure indicates the impor-
tant events during the planning, such as order slot closings, completion of routing and the
shift start time.

From this planning timeline can be derived how much time is available for charging between
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Morning slot closing 2200
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Morning routing Afternoon routing Departure first Departure first
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Figure 4-7: Planning timeline: this figure indicates the most important events in the planning.

the arrival of the last shift on one operational day and the departure of the first shift on the
next operational day. Furthermore, the time that is reserved for the generation of the charge
schedule can be determined using this timeline. It can be seen that the complete set of routes
for the next operational day is known at 23:00. This leaves not much time for the calculation
of the charge schedule, since the hub closing time at 23:30 restricts the start of new charge
events, in the case of uncoordinated charging. This constraint should be taken into account
for the operational implementation of a charge scheduling algorithm.

4-3 Vehicle and Charging Infrastructure Characteristics

There are a number of factors related to the EV and charging infrastructure that need to be
identified so that the charging optimisation problem can be set up. First, there is the vehicle
charging curve. This curve gives the relation to the amount of energy that can be charged into
the battery over time. Secondly, other battery characteristics like battery capacity, topology
and cell chemistry type are important. These battery characteristics determine in large part
what battery wear behaviour can be expected [16]. In order to cover this subject, first some
general information about charge curves and charge currents is given. Subsequently, the
charging characteristics of the vehicle under consideration, the Goupil G4, are given. By
discussing these subjects, the answer to the following sub-question is given:

e What are the characteristics of Picnic’s current vehicle battery and surrounding charging
infrastructure?

4-3-1 Vehicle Charging Characteristics
The vehicle that is used by Picnic is the Goupil G4. The charging characteristics of this

vehicle need to be characterised in order to set up the charging problem. This relates to the
vehicle charging curve and general battery specifications.

General characteristics Goupil G4

The Goupil G4 is classified in the so called light commercial vehicle (LCV) segment. The
narrow width of the vehicle of 1.4 meters provides benefits when navigating through congested
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inner cities. The energy consumption of the vehicle is relatively low because of its low top
speed of 50km /hr. Due to this, a respectable operational range of 70km can still be achieved
with this vehicle considering its limited battery capacity of 12kWh. The Goupil G4 contains a
Li-ion battery pack with LiFePO4 chemistry cells. This cell chemistry offers a higher security
and longer cycle lifetime compared to other Li-ion cell chemistries, at higher cell costs [42].
An on-board AC charger is installed that transforms 230V AC source, to the 48V DC battery
level. Table 4-3 and 4-4 show the characteristics of the cell type and battery pack that is used
in the Goupil G4.

Table 4-2: Vehicle characteristics

Vehicle Characteristics Unit Value

Length m 2.96
Width m 1.40
Weight kg 921
Top speed km/hr 50
Range km 70

Table 4-3: Battery characteristics

Battery Characteristics Unit Value

Pack nominal voltage A% 48

Pack capacity kWh 12
Modules in parallel # 5

Cells in series # 15
Operating temperature C -20 to 45

Table 4-4: Cell characteristics

Cell Characteristic Unit Value

Cell chemistry LiFePO4
Cell type Prismatic
Nominal voltage A% 3.3
Nominal capacity Ah 50

C-rate C 5

Charge Curve

The charging process of the Goupil G4 needs to be analysed in order to derive the rate of
change of the battery SOC. The charging process of an EV is typically associated with a
constant current constant voltage (CC-CV) technique to enable a quick, safe and efficient
charging of a EV battery [43]. In this scheme, visualised in Figure 4-8a, the constant current
is applied until the maximum cell voltage is reached. During this CC phase the SOC will
increase linear with time. Subsequently, in the CV phase the battery voltage is held constant
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(a) Constant current - constant voltage charging [44]

(b) Charge curve for the Goupil G4

Figure 4-8: Charging curves

and the current is reduced exponentially with time until the battery is fully charged. This
phase is associated with a continuously decreasing SOC rate. The charge curve of the Goupil
G4 was measured by Picnic Germany and the result is depicted in Figure 4-8b. It is apparent
from Figure 4-8b that the charged energy can be seen as a linear function of time for the
largest part of the charge curve. Only in the final part of the charge curve, the charge rate
is reduced. This means that the proposed linear charging model in the charge scheduling
model is a good approximation of the actual charging behaviour. The linear charge rate of
the vehicle is equal to 2.0kW. This means that with an average trip energy requirement of
2.9kWh, the amount of trips that can be driven on one full hour of charging is equal to 0,70.

4-3-2 Charging Infrastructure Characteristics

The second part of this section relates to the characteristics of the surrounding charging
infrastructure at Picnic. For the charge scheduling problem there are several aspects that
need to considered consisting of the charger type, grid capacity, and energy contracts and
markets.
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Chargers

The amount and type of chargers is important information for the charge scheduling problem.
The electrical grid supplies alternating-current (AC) and vehicle batteries work on direct
current (DC). In order to allow vehicle batteries to charge, the charger has the function
to transform the AC source in the required DC charging profile. There are two options
regarding the placement of the vehicle charger: on-board and off-board. While the function
of the charger remains the same, on-board chargers are generally designed for lower power
ranges while off-board chargers are used for supplying the higher power ranges. It is beneficial
to place high power chargers outside of the vehicle, since the charger volume and weight size
with increasing charging power. The charging type that is associated with the use of off-
board chargers is also called DC charging, because the power supply to the vehicle is already
in DC. When an on-board charger is used, the charging type is called AC charging, since
the AC is converted to DC inside the vehicle. Every Goupil G4 is fitted with a small on-
board charger that can be connected to the grid through a regular 230V socket. The chargers
do not communicate with the outside network and are not able to interrupt charging or to
decrease/increase the charge rate. Since the amount of wall sockets can be easily extended
without high capital investments, the amount of vehicles that can be charged at the same
time is mainly constrained by the grid capacity.

Grid

In the context of the charge scheduling problem, the grid is mainly important because the
grid capacity constraint sets the maximum power that can be drawn from the grid. On a local
level, the peak power load that can be drawn from the grid is constrained by the local grid
infrastructure capacity. The installed fuses determine the maximum load that can be drawn
from the grid. This capacity is included in the energy contract and can be upgraded (in most
cases) against additional cost. At most Picnic hubs, there is a three phase connection of 80
Ampere, which equals a maximum power of 55.2kWh. Note that total energy consumption
at hubs does not only consist of chargers, but there should also be sufficient capacity for a
cool cell, machinery and other tools that are used in the operation. The large scale adoption
of EV vehicles will bring challenges for the electrical distribution network as it will result in a
significant increase in electricity consumption in residential areas. Uncoordinated charging of
EVs may have negative effects on the electrical distribution network including increased peak
load, transmission loss, and stress on distribution transformer [45]. Especially large load peaks
are harmful since these would require adequate backup of expensive fast generators, increase
power losses of transmission/distribution lines, and frequently overload grid components [46].

Energy Contracts and Markets

One other important aspect of the charge scheduling problem is the price of energy. This is
determined by the energy contracts that are made with energy suppliers. At the moment a
fixed energy price over time is obtained. However, this may change in the future. Energy
markets have been created to promote a better balance between power generation and con-
sumption. Different energy markets have been identified in which the flexibility of EVs could
be leveraged for the purpose of grid balancing including the day ahead market, intra-day
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market and imbalance market [47]. By means of price incentives the end user may adapt its
energy consumption to times of low energy prices. Figure 4-9 shows sorted hourly sampled
day ahead, intra-day and imbalance prices for the time span of a year. It can be seen that the
energy prices are much more volatile in the imbalance market with respect to the day ahead
markets. This means that theoretically, more revenue could be generated by trading on this
market. However, it should be noted that trading on this market is more complex [47]. The
features of the different energy markets will be discussed below:

200
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o

+ Day-ahead

Figure 4-9: Volatility on different energy markets. The red, orange and blue line show sorted
prices for the imbalance, intra-day and day-ahead market.

The day-ahead energy prices are traded on the APX. The principle of demand and supply
determines an hourly variable energy price for the next day. A bidding process between large
consumers and suppliers that is open until 12:00 AM on the day before delivery determines
the hourly variable prices, which are published at 13:00 on the day before delivery. Access
to the APX market could be obtained by participating in the bidding process. However, for
smaller energy consumers, it would make more sense to get access through a APX energy
contract. This requires no participation in the bidding process and still ensures access to the
hourly variable energy price. Figure 4-10 depicts an example of hourly day ahead prices. In
a research performed by Movares (2016) [47] it was concluded that a possible energy cost
reduction of roughly 35% can be achieved by adjusting the charge profile to the day ahead
prices.

MWh €/MWh

@ Price

Figure 4-10: Sampled hourly energy prices APX [48]
On the intra-day market, energy is traded on until five minutes before delivery. Energy
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trading on the intra-day market is also done on the APX market. Given the low short time
resolution, both the day ahead and intra-day markets are called spot markets. In contrast to
the day ahead and intra-day market, the imbalance market is not a tool for a better planning
of energy generation and demand, but it is used for balancing disturbances that have occurred
between supply and demand and last longer than 15 minutes. The research of Movaris (2016)
[47] reports that a cost reduction of 60% can be achieved when the smart charging is adjusted
to both the day-ahead and imbalance market. This can be done by stopping the charging
process whenever the price differential between the day ahead and imbalance prices crosses
a certain threshold. Although this energy market shows huge potential for the decrease in
charging cost, the energy prices on the imbalance market are very hard to predict on a day
ahead basis as required for the charge scheduling problem. Therefore, only the day ahead
energy prices are used in this work.

4-4 Summary

Three different aspects of the case study of e-grocer Picnic are analysed. This will outline the
necessary information to set up the experimental study in Chapter 5. The following subjects
were be discussed in consecutive order: the energy demand of the fleet, the current charge
scheduling process of Picnic and characteristics of the vehicle charging characteristics and
charging infrastructure

What is the current energy demand of the electric fleet of Picnic?

The total energy consumption of the fleet over time is composed of the energy requirements of
all individual trips, which can be characterised by the time of use and the quantity of energy
that is required. By considering both factors for all trips, the entire energy requirement of
the fleet over time can be derived. Trips at Picnic are scheduled on the basis of to different
shift schedules. These schedules sets the ultimate departure and arrival time for trips that
are driven different shifts. Demand and capacity determine the number of trips in every shift.
The energy requirement of trips is determined. The predictive value of these trip charac-
teristics was investigated by building a artificial neural network. This model proved to be
capable of predicting trip energy requirements on the basis of some known trip characteristics.

What charging planning process is currently used at Picnic?

The current charge scheduling process was analysed by conducting several interviews with
the involved schedulers and by performing data analysis. This is relevant in order to get an
insight how much time is available for making the charge planning and to understand what
considerations currently play a role in this process. It turns out that a main objective during
the current charging process is ensuring that vehicles are at a 100% SOC at the start of an
operation day. This reduces the risk of not achieving the mobility objectives of the vehicles,
but on the other hand results in cycling in high SOC ranges which can be harmful for vehicle
batteries.

What are the characteristics of Picnic’s current vehicle battery and surrounding charging
infrastructure and how can these change in the future?
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Following the analysis of the current charging process, the characteristics of the vehicle and
the charging infrastructure were presented.

e The charge energy can be represented by a linear function of time

e The charge rate is equal to 2.0kW

e An on board charger is responsible for the charging and is plugged into a regular wall
socket

e The amount of vehicles that can be charged at the same time is predominantly con-
strained by the grid capacity of 55.2kW

e At the moment, no time variable energy prices are obtained

e Hourly variable energy prices from the day ahead energy can be incorporated into the
charge scheduling problem
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Chapter 5

Design of Experiments

An experimental study is performed to investigate the impact of charge schedule optimisation
on charging cost. This chapter will discuss the required steps to set up the experimental study
and thereby gives an answer to the following sub-question:

e How can an experimental study be set up that uses the proposed model to study the
impact of charge schedule optimisation on charging cost?

The proposed experimental study comprises of two parts. First, the charge scheduling model
is used to optimise the charge schedule for three different shift schedules. In a later exper-
iment, some of the vehicle and charging characteristics are altered in order to investigate
their influence on charging cost. Section 5-1 explains which shift schedules are considered
and how corresponding instances are generated. Subsequently, in Section 5-2 the vehicle and
charging infrastructure configurations that are investigated are presented. Next, in Section
5-3, the relevant model settings are discussed. Finally, the establishment of the different cost
components is discussed in Section 5-4.

5-1 Instances

The EFV-CSP is solved for different instances that are based on a three shift schedule types.
These schedules are presented in the Subsection 5-1-1. Subsequently, the methodology for
generating the instances is explained in Subsection 5-1-2.

5-1-1 Shift Schedules

Three different shift schedules form the basis of the instances that are used to perform the
experimental study. A shift schedule can be characterised by its shift time windows, which
set the ultimate scheduled departure and arrival times for trips. The shift schedules under
consideration are explained below and visualised in Figure 5-1.
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Figure 5-1: (a) Current shift schedule. (b) Morning shift schedule. (c) Fictive shift schedule.

e Current shift (CS) schedule: the shift schedule that is currently performed at the ma-
jority of the hubs. This schedule contains three shifts of equal duration that are driven
in the afternoon. The average trip duration of 115 minutes is based on current trip data
that was presented in 4-1-2.

e Current morning (CM) schedule: this is the current morning schedule that was first
performed in august 2018 in Leiden (LID). In addition to the current afternoon shifts,
this schedule is extended with two morning shifts which are slightly shorter (15 minutes)
than the afternoon shifts. The average duration of the afternoon and morning trips are
115 minutes and 100 minutes respectively.

e Fictive shift (F'S) schedule: this schedule was generated in order to determine the influ-
ence of performing longer and more energy demanding trips, which may be used after
the introduction of a new vehicle. This shift schedule contains four shifts of equal du-
ration with a longer break between shift two and three. The average duration of the
trips is 180 minutes.

5-1-2 Generating Instances
An instance for the EFV-CSP is composed of a fixed set of vehicle rotations consisting of
trips with corresponding energy requirements. For every shift schedule, seven instances are

generated, resembling one entire operational week. The following steps should be performed
in order to generate a usable instance for the EFV-CSP:

1. Shift size determination
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2. Trip sampling process

3. Vehicle-trip allocation

Shift Size Determination

The first step of the instance generation process is to decide on the used shift sizes, which
comprises the number of trips that are performed in each shift for every shift schedule and
operational day. For the CS and CM schedule, the afternoon shift sizes originate from an
actual operational week in hub Amersfoort. In addition, the additional morning shifts of the
CM schedule are assigned a random shift size which is comparable to the day average. This is
done because the current morning shift sizes at hub LID are still growing due to a scale-up of
operations. The entire FS schedule will be filled with random shift sizes that are comparable
to current average shift sizes.

Trip Sampling Process

The next step is the trip sampling process, which comprises the assignment of the required
trip characteristics consisting of the trip distance, departure time, arrival time and energy
requirement. In case of the CS and CM schedule, these features are sampled from a set of
actual trips. For the FS schedule, the data from the set of actual trips is extrapolated to
resemble the fictive trips, which are longer than current trips in terms of time and distance.
Note that also the energy requirement is sampled using the SOC differential data and that
the trip energy requirement prediction model was not used for this. The result of the trip
sampling process is a trip schedule for an entire operational day. The trips in this trip schedule
should be allocated to vehicles in order to generate a usable instance that can be solved by
the EFV-CSP. One option is to manually assign vehicles to trips as in the current planning
process. However, in this work a vehicle-trip allocation algorithm is used.

Vehicle-Trip Allocation

This vehicle-trip allocation is generated by solving a charge scheduling problem, which is
explained in Appendix 7-2-2. Solving the problem generates a feasible vehicle-trip allocation,
taking into account the battery range constraints, charge rate and grid capacity. The objective
of the model is to minimise the number of vehicles that is required to perform a certain trip
schedule. This can be especially useful when the fleet size is small compared to the maximum
shift size in an instance. A safety margin is taken into account for the set values of the charge
rate and minimum SOC. This is done to prevent the generation of very tightly constrained or
even infeasible models during the dicretisation step of the EFV-CSP. Moreover, tightly energy
constrained solutions are not preferable due to uncertainties related to energy consumption
that occur during planning and operation. The characteristics of the resulting instances for
the three shift schedules are given in Table 5-1. It is seen that the number of trips size
with the amount of shifts in each schedule. Furthermore, the total energy requirement is a
function of both number of trips and trip energy requirement, which in its turn is dependent
on the trip duration. Even though the CM schedule contains more trips, the total energy
requirement of the FS schedule is still higher due to the increase in trip energy requirement.
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One interesting aspect of the FS schedule instances is that they are quite demanding in
terms of energy, when compared to the vehicle battery capacity. The average daily energy
consumption is approximately equal to the battery capacity of the current vehicles (12kWh).
This means that, when taking into account a safety margin, multiple charge events for every
vehicle rotation are required to ensure energy feasibility.

Table 5-1: The characteristics of the set of instances for the three shift schedules. The second
column shows the summed amount of trips for the seven instances for every shift schedule. The
third column indicates the summed amount of vehicle days that is required to perform each
instance set, in which the use of one vehicle during one operational day counts for one vehicle
day. The next column shows the total energy requirement of all trips. E; represents the average
energy requirement per trip, while E, is the average energy requirement per vehicle day. Lastly,
T, indicates the average number of trips per vehicle day

Schedule Trips Vehicle days Energy E; E, T,

4 ! kWh  kWh kWh #
CC 415 164 1235.5 2,98 7,54 2,53
CM 615 164 1737.6 2,83 10,61 3,75
FS 481 164 1937.9 4,08 11,97 2,93

5-2 Vehicle and Charging Infrastructure Configurations

The second part of the experimental study comprises of the adaptation of some of the vehicle
and charging infrastructure configurations. These configurations are generated by varying the
following factors:

o Battery size
e Charge type

e Charge rate

The following subsections will discuss the different configurations and the expected implica-
tions for each factor. In Section 5-2-4 an overview of all configurations is given.

5-2-1 Battery Size

Battery degradation costs are dependent on the SOC range in which the batteries are cycled.
In this work, we consider a battery subject to increased battery degradation effects at higher
SOC. Therefore, the cost attributed to battery degradation can be influenced by changing the
battery size. Over-sizing of the battery with respect to the required daily capacity can allow
cycling in lower average SOC ranges and thereby reduce the effects of battery degradation.
Moreover, larger batteries could reduce the operational cost related to charging, because the
increased range could result in a reduction of the required charge events. These effects are
investigated by solving the instances for a vehicle with two different battery capacities, which
are:
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1. A battery capacity that is equal to the current battery capacity of 12kWh.
2. A battery that has a capacity of 20 kWh.

5-2-2 Charging Type

The increased flexibility during the charging process that is enabled by smart chargers may
help to reduce overall charging cost. The on and off switching during smart charging may help
to achieve the desired SOC levels at the right moments in time without using many charge
events, and thereby reduce degradation and labour cost. Moreover, the increased charging
flexibility can be leveraged to charge during times of low energy prices. Two different types
of charging are considered:

1. Uncoordinated charging: the characteristics of uncoordinated charging are described
as follows. Firstly, the charging start and ending times are restricted to hub opening
times. These opening times vary for the different shift schedules under consideration.
Hub closing hours are between 23:10 - 10:10 for the CS schedule and between 23:10
and 7:10 for the MS and FS schedules. Secondly, interruptions of charge events are
associated with additional operational costs.

2. Coordinated charging: coordinated charging does not have charge activity restrictions
and related operational costs, because smart chargers are able to interrupt and continue
charge events without human intervention. Coordinated charging is expected to provide
more flexibility to charge during times of low energy cost, because there is no manual
handling involved in switching.

5-2-3 Charge Rate

The charging cost could be influenced by the ability of fast chargers to quickly recharge
between trips resulting in a lower average cycling SOC and thereby reduce battery degradation
cost. Two charger configurations are considered:

1. Charger configuration 1: in this configuration the chargers will exclusively consist of
the current slow chargers with a charge rate of 2 kW.

2. Charger configuration 2: in the second configuration, a limited number of additional
chargers will be available that will have a charge rate of 5 kW. The number of fast
chargers that is available is restricted to 8, which is related to the grid capacity constraint
of 40 kWh.

5-2-4 Overview of Configurations

For each factor two different configurations are considered. Varying and combining all factors
yields a total of eight different configurations that can be made. An overview of the different
configurations is given in Figure 5-2 and the numbering of the different configurations can
be seen in Table 5-2. The influence of all eight configurations are investigated separately for
every shift schedule.
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Figure 5-2: Overview of the different configurations

Table 5-2: Overview of configurations

Configuration ‘ Charge config. Charge type Bat. size [kWh]

1. C.Config. 1 Uncoordinated 12
2. C.Config. 2 Uncoordinated 12
3. C.Config. 1 Coordinated 12
4. C.Config. 2 Coordinated 12
5. C.Config. 1 Uncoordinated 20
6. C.Config. 2 Uncoordinated 20
7. C.Config. 1 Coordinated 20
8. C.Config. 2 Coordinated 20

5-3 Model Settings

The problem was formulated using the Gurobi package in Python and solved on a machine
with a Intel Core i7-4700MQ 2,4 GHZ processor with 8.0GB of RAM running on Windows
10. The maximum computational time is set at 3600 seconds, with a gap tolerance of 1.0%.
The time horizon runs from 23:00 of the previous operational day until 23:00 of the current
operational day and is discretised in steps of 10 minutes. Hub closing hours are between 23:10
- 10:10 for the CA schedules and between 23:10 and 7:10 for the CM and FS schedule. A
uniform fleet of vehicles of the type Goupil G4 are considered. The battery size of this vehicle
is equal to 12kWh and the charging curve is represented by a linear charge rate of 2kW, which
sets the A to 2.78%. The SOC range of the vehicles is restricted to 10-100% SOC. This bound
is introduced in order to have an extra safety margin to take into account the uncertainties in
the predicted energy requirement of trips. The SOC at the start of an operational day is set
at the lower bound of 10%. This ensures that the resulting battery degradation and energy
costs for different battery size scenarios will be comparable. Most current hubs have a 3x80A
grid connection, which sets the peak power consumption at 55.2kWh. A margin is held for
the power requirement of other tools and machinery by limiting the power consumption to
40kWh.
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5-4 Cost Components

This section discusses the determination of the different cost components that are used during
the charging optimisation, which comprise energy cost, battery degradation cost and labour
cost.

5-4-1 Energy Cost

The time variable energy cost is based on a sampled day of hourly APX prices. Because the
planning horizon runs from 23:00 on the previous day until 23:00 on the next day, 24 hourly
energy prices are considered. A graph with the used hourly prices is given in 5-3. The hourly
energy prices are denoted as c,.
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Figure 5-3: Hourly energy prices

5-4-2 Degradation Costs

The discrete wear density function for the battery under consideration is determined using
the ACC-DOD curve from Han et al. (2014) [3]. This is a comparable battery to the Goupil
G4, since it has the same battery chemistry LiFePO4 and the battery sizes are in the same
range (12kWh vs 16kWh). The entire SOC range is divided into ten intervals of 10% SOC.
Using equations 2-3 - 2-5 the wear cost for every interval can be determined. The battery
capacity equals 12 kWh at a price of €10000. The wear costs Wy(s) are defined as cost/Agq.
By dividing the wear cost by ¢ (the quantity of energy of one SOC interval), the average wear
cost per unit of energy (€/kWh) can be derived, which is more convenient since the battery
intervals are not of consistent for different battery capacities. The resulting discrete wear cost
per SOC interval are given in Table 5-3
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Table 5-3: Discrete wear cost per SOC interval

SoC interval [%] | 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100
Wa(s) [€/kWh] | 0.32 033 034 036 037 038 04 0425 0485 0.65

5-4-3 Charge Event Cost

Charging cost are based on operational cost related to the amount of time that is required
to perform the activities associated with a certain charging event, which include the driving
to the charger location, plugging and unplugging the vehicle and finally driving back to the
loading dock where the operation can resume. It is estimated that each charge event requires
four minutes of labour. At a wage of €20/hr, this comes down to €1,3 per charge event.
These costs are denoted as cec in the objective function.

5-5 Summary

How can an experimental study be set up that uses the proposed model to study the impact of
charge schedule optimisation on charging cost?

Three different shift schedules form the basis of the instances that are used to perform the
computational study. Two schedules are actual schedules that are currently performed by
Picnic, the third schedule is a fictive schedule. The fictive shift (FS) schedule was gener-
ated in order to determine the influence of performing longer and more energy demanding
trips. For every shift schedule, seven instances are generated resembling the execution of
one operational week. Each shift is filled with a number of real life trips that are randomly
selected from a database of Picnic. The second part of the experimental study comprises of
the adaptation of some of the vehicle and charging infrastructure configurations. These con-
figurations are generated by varying the battery size, charge type and charge rate. For every
factor one additional configuration with respect to the current situation will be considered. A
larger battery size, the implementation of coordinated charging and fast chargers. The model
settings that were used to perform the experiments are discussed in Section 5-3. Finally, this
chapter closes off with a discussion of the cost components. An hourly variable energy price
is used that is sampled from APX market data. The discrete wear density function for the
battery under consideration is determined using the ACC-DOD curve from Han et al. (2014)
[3]. The entire SOC range is divided into ten intervals of 10% SOC, yielding ten different
wear cost intervals. For labour cost, a fixed cost for every performed charge event of €1.3
taken into account.
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Results

In this chapter the results from the experimental study are presented. The different experi-
ments provide insights on the impact of charge schedule optimisation and vehicle and charging
infrastructure configurations on charging cost. Thereby, this chapter will give an answer to
the following research question:

e What is the impact of charge schedule optimisation on charging cost?

e What is the impact of vehicle and charging infrastructure configurations on charging
cost?

In Section 6-1 the used metrics for the comparison of results are discussed. The performance
of the current charging process is discussed in Section 6-2. The base case performance is
compared to the results that are obtained by implementing charge schedule optimisation in
Section 6-3. Subsequently, the impact of the shift schedule type, increasing the battery size,
coordinated charging, fast charging and the variation of configurations is discussed in 6-3 -
6-8.

6-1 Metrics

The instance sets for different shift schedules yield a different number of trips and total energy
requirement, as can be seen in Table 5-1. Logically, these differences will have a large effect
on the total charging cost for every shift schedule. To enable a fair comparison between the
results of the three shift schedules the results for all cost components are expressed as cost
per consumed amount of energy, in €/kWh.

6-2 Base Case

The base case represents the charging process that is used at Picnic in which no charge
schedule optimisation is used. The performance of the current charging process is considered
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in order to compare it to the results obtained when the proposed model is used to optimise the
charge schedules. The charging cost for the base case is build up of the same cost components
as the charge schedule optimisation and contains energy costs, battery degradation and labour
costs. The values for the battery degradation and labour cost are derived using operational
data and given in Table 6-1. The remainder of this section is used to explain how these values
were derived.

Table 6-1: Cost components for the base case

Component Unit Value

Energy €/kWh 0.063
Battery degradation €/kWh 0.507
Charge events (CE) €/kWh 0.30

Energy Cost

In the current situation, the price of energy is not variable over time. Therefore, a fixed
energy price is considered for the base case. This fixed price is equal to the average of the
variable hourly energy price that is used in the experiments. This is equal to 0.063 €/kWh.

Degradation Cost

In order to determine a realistic contribution of battery degradation in the base case, it is
required to know in which typical SOC ranges the vehicles are currently cycled. A discrete
probability density function (PDF) of the SOC during driving is made using the trip data
originating from 16980 that was presented in Section 4-1-2. The result can be seen in Figure
4-6a, showing the probability of driving in a certain SOC interval of 1%. Using this PDF, the
average wear cost during driving can be determined with the following equation:

dmaz
AWC(dnar) = [ W(@)- 1) -ds (6-1)
Multiplying the discrete wear cost function W(d), with the discrete PDF, denoted as f(d),
for all SOC intervals d € D yields the average wear cost contributed to driving in each SOC
interval. Integrating this over all SOC intervals (dpin < d < dinaz) gives the average wear
cost (AWC) during driving, which is equal to 0.507 €/kWh for the current case at Picnic.

Labour Cost

The average cost per charged amount of energy is the metric that is used for comparing the
results related to the labour cost. The following equation is used to calculate the average
charge event cost per charged amount of energy C,, in €/kWh:

_ CC - BatterySize
N cec

Cch (6'2)
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Where C'C represents the average charge cycle in %, BatterySize is the battery size in kWh
and cec is the cost for one charge event in €. Again, the trip data from Section 4-1-2 is used
to derive the required data for the calculation of this metric in the base case. First, to derive
a realistic value for the average charge cycle the average of the trip arrival SOC, which is
equal to 64%, is used. The assumption is made that all vehicles are fully charged from this
SOC. Subtracting the median of the arrival SOC from a 100% SOC yields the average charge
cycle. Subsequently multiplying this with the battery capacity gives the quantity of charged
energy that corresponds to this charge cycle. Lastly, this is divided by the cost related to one
charge event to derive the cost per charged unit of energy, which results in a charge event
cost of 0.30 €/kWh.

6-3 Impact of Charge Schedule Optimisation

The impact of charge schedule optimisation is determined by comparing the base case per-
formance to the results of the experimental study. Since the base case performance is only
determined for the CS schedule, the results are only directly compared for this schedule. The
results are depicted in Figure 6-1. The results obtained for charge schedule optimisation con-
sist of the average charging cost in €/kWh for the execution of seven operational days. It can
be seen that a large overall reduction of charging cost of 25.2% is obtained. This reduction
can be attributed to a reduction of degradation, labour and energy cost of 15.9%, 41.9% and
19.9% respectively. The potential benefits of charge schedule optimisation are high. For an
average Picnic depot, performing 400 average trips per week, the overall cost reduction is
roughly €260 per week. The reduction in battery wear, will lead to a extended lifetime of the
batteries of 19.0% .

1Energy

m Labour

Cost [€/k\h)
o
7

0,4 —— M Degradation

0,3 —

Base case Charge optimisation

Figure 6-1: The benefit of charge schedule optimisation

6-4 Impact of Shift Schedule Type

The results for charge schedule optimisation for the different shift schedules are depicted in
Figure 6-2. Again the results are based on the average results of all instances for the seven
operational days. It can be seen that the charging costs for the MS and F'S schedule are higher
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than for the CS schedule. For the MS schedule, an increase of charging cost of 7% is obtained,
where the FS schedule yields an increase of 10%. This can be explained by the increase in
energy demand for the MS and FS schedule. The intensified use of vehicles throughout
the day results in an increase in energy requirement and the decrease in available time for
charging. Higher daily vehicle energy demands result in a increase in the SOC cycling ranges
and consequently increase battery degradation cost for the CM and FS schedule. Moreover,
labour cost increase due to the increase in energy demand and the reduction in charging
flexibility.
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01 +——

0,0
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Figure 6-2: The charging cost under CS, MS and FS schedules

6-5 Impact of Increasing the Battery Size

The increase in battery size enables the possibility to cycle the battery in lower SOC ranges,
because trip energy requirements are a lower fraction of the larger battery capacity. Since the
battery degradation model is dependent on the cycled SOC ranges, a difference in charging
cost can be expected. Therefore, the impact of increasing the battery size on charging cost
is investigated. It should be noted that larger batteries are associated with higher initial
investment costs. Nevertheless, this study could derive insights regarding the decrease in
operational cost when using a larger battery. All instances for the CC, CM and FS schedule
are solved for two different battery types:

1. A small battery capacity of 12kWh equal to the battery of the Goupil G4

2. A larger battery with a capacity of 20kWh.

The average of results for all shift schedules are depicted in Figure 6-3. It is seen that a
large decrease of overall charging cost of 10% is obtained, due to the reduction in battery
degradation cost (6%) and labour cost (23%).

6-6 Impact of Coordinated Charging

The increased flexibility during the charging process that is enabled by smart chargers may
help to reduce overall charging cost. The on and off switching during smart charging may help
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Figure 6-3: The impact of an increased battery size

to achieve the desired SOC levels at the right moments in time without using many charge
event, and thereby reduce degradation and labour cost. Moreover, the increased charging
flexibility can be leveraged to charge during times of low energy prices. All instances for the
CC, CM and FS schedule are solved for two different battery types:

1. Uncoordinated charging: resembling the use of traditional ’dumb’ chargers.
2. Coordinated charging: resembling the use of smart chargers.
The results are depicted in Figure 6-4. It can be seen that a large reduction of charging cost

of 7% is achieved, due to a decrease of all battery degradation 4%, labour 15% and energy
cost 11%.

0,7

mEnergy
m Labour

Cost [€/k¥h]

m Degradation

Uncooordinated charging Smartcharging

Figure 6-4: The impact of coordinated charging

6-7 Impact of Fast Charging

One last change in the charging infrastructure that is investigated is the addition of fast
chargers. The charging cost could be influenced by the ability of fast chargers to quickly
recharge between trips resulting in a lower average cycling SOC and thereby reduce battery
degradation cost. All instances for the CC, CM and FS schedule are solved for two different
charger configurations:
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1. Charger configuration 1: an unlimited amount of slow chargers of 2kW is available.

2. Charger configuration 2: aside from the slow chargers, 8 additional chargers of 5kW are
available.

It is seen from Figure 6-5 that the impact of the introduction of fast chargers is marginal.
This can be explained by the small amount of fast chargers that is available in comparison
with the number of vehicles in operation and grid capacity constraint. This limits the use of
fast chargers, since the grid capacity has to be spread over more than 8 vehicles.

0,7

Energy
m Labour

m Degradation

Cost [€/KWh]

Charger configuration 1 Charger configuration 2

Figure 6-5: The impact of the introduction of fast chargers

6-8 Variation of Configurations

The best of all tested configurations is determined by varying and combining all possible
vehicle and charger configurations. This yields 8 different configurations that can be tested
for the CC, CM and FS schedule. An overview of the possible combinations of configurations
is given in Table 6-2.

Table 6-2: Overview of configurations

Configuration ‘ Charger config. Charge type Bat. size [kWh]

1. C.Config. 1 Uncoordinated 12
2. C.Config. 2 Uncoordinated 12
3. C.Config. 1 Coordinated 12
4. C.Config. 2 Coordinated 12
9. C.Config. 1 Uncoordinated 20
6. C.Config. 2 Uncoordinated 20
7. C.Config. 1 Coordinated 20
8. C.Config. 2 Coordinated 20

The results for all tested configurations and shift schedules are given in Figure 6-6. From
these figures it is seen that the best tested configuration in all shift schedules combine coor-
dinated charging and a larger battery size of 20kWh (configuration 7). When comparing this
configuration to the basic configuration 1, a decrease of 6.6%, 12.7% and 15.1% is obtained
for the CS, MS and FS schedule.
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Figure 6-6: Results for all shift schedules and configurations
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6-9 Summary

What is the impact of charge schedule optimisation on charging cost?

To enable a fair comparison between the results all cost components are expressed as cost per
consumed amount of energy, in €/kWh. The base case represents the charging process that
is used at Picnic in which no charge schedule optimisation is used. The performance of the
current charging process is considered in order to compare it to the results obtained when
the proposed model is used to optimise the charge schedules. The impact of charge schedule
optimisation is determined by comparing the base case performance to the results of the
experimental study. Since the base case performance is only determined for the CS schedule,
the results are only directly compared for this schedule. A large overall reduction of charging
cost of 25.2% is obtained, which can be attributed to a reduction of degradation, labour and
energy cost. Furthermore, the impact of three different shift schedule types is investigated.
It turns out that more energy demanding shift schedules result in higher average charging
cost per charged amount of energy. Compared to the CS schedule, the charging cost of the
MS and FS schedule increase by 7% and 10%. This can be explained by the increase in daily
vehicle energy requirements and the decrease in charging flexibility in these shift schedules.

What is the impact of vehicle and charging infrastructure configurations on charging cost?

The impact of the increase in vehicle battery size, the addition of coordinated charging and
the implementation of fast chargers is investigated. The introduction of a larger battery
size, shows potential for decreasing cost related to charging (10%). Moreover, coordinated
charging yields a large reduction of charging cost (7%), while the influence of fast chargers
turns out to be marginal (1%). The best possible configuration combines larger battery size
with coordinated charging and this yields a decrease in charging cost of 6.6%, 12.7% and
15.1% for the CS, MS and FS schedule.
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Chapter 7

Conclusion and Future Work

This chapter presents the conclusions of this research and provides recommendations for
Picnic and future work directions.

7-1 Conclusion

The main research question is: How can the charge schedule for a fleet of electric
vehicles be optimised during day-to-day operations? The answer to this question can
be given by answering all sub-questions.

What charge scheduling optimisation models and algorithms have been proposed
in literature?

Charge scheduling problems for fleet owners is a relatively new field of research. Only three
relevant contribution that cover this subject have been found. Pelletier et al (2018) [14] intro-
duce the EFV-CSP. This contribution focuses on optimising the depot charge planning over
the course of multiple days for a given set of routes for electric freight vehicles. Sundstrom et
al. (2010) [33] propose a charge scheduling optimisation model with the goal of minimising
charging costs, while ensuring satisfactory state-of-energy levels for the vehicles and not ex-
ceeding the amount of available wind power. A different type of problem discussed by Sassi
et al (2014a) [34], (2014b) [35], and (2017) [19]) that covers the subject of unidirectional
depot charge scheduling for fleet owners is the Simultaneous Electric Vehicle Scheduling and
Optimal Charging Problem, which considers a joint optimisation of vehicle scheduling and
charge scheduling. In this contribution, the original EFV-CSP that was proposed by Pelletier
et al (2018) [14] is extended in several ways. Firstly, the labour cost related to the manual
handling of charging events will be taken into account. A fixed penalty for each charging
event that has to be performed is implemented. The charged energy is presumed to be a
linear function of time, which decreases the problem complexity and makes it more suitable
for the optimisation of large scale problems. Related to the charged energy, a corresponding
SOC dependent battery degradation model that was proposed by Han et al. (2014) [3] is im-
plemented. Secondly, two slightly different models are presented in order to study the effect
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of coordinated charging versus uncoordinated charging. In contrast to the model of Pelletier
et al (2018) [14], peak charge costs are eliminated as cost component since they are not a
part of the energy pricing model.

How can the charge schedule optimisation problem be formulated in a mathemat-
ical model?

A MIP model for the charge scheduling problem was proposed. Two important conditions
related to the problem are that (1) the assignment of vehicles to trips is determined preceding
to the charge schedule optimisation and (2) the energy requirements of all trips are known. In
a real-life context, this would mean that the energy requirement of trips should be predicted
using certain trip characteristics. A step wise approach is used to introduce the problem.
First, the problem formulation for the charge scheduling problem without the incorporation
of battery degradation cost is given. Subsequently, the model is extended to be able to ac-
count for battery degradation cost, using a discrete battery wear model from Han et al (2014)
[3]. Model adjustments that enable coordinated charging, which resembles the use of smart
chargers are introduced last. The implementation of the proposed model is verified in order
check whether the problem is formulated and implemented correctly.

The charge scheduling problem is considered for the case of Picnic, a Dutch e-grocer which
already has a last-mile delivery process in place that uses EVs. The remaining sub-questions
are all related to the case study that was performed at Picnic.

What is the energy demand of the electric fleet of Picnic?

The total energy consumption of the fleet over time is composed of the energy requirements of
all individual trips, which can be characterised by the time of use and the quantity of energy
that is required. By considering both factors for all trips, the entire energy requirement of
the fleet over time can be derived. Trips at Picnic are scheduled on the basis of to different
shift schedules. These schedules sets the ultimate departure and arrival time for trips that
are driven different shifts. Demand and capacity determine the number of trips in every shift.
The energy requirement of trips is determined. The predictive value of these trip charac-
teristics was investigated by building a artificial neural network. This model proved to be
capable of predicting trip energy requirements on the basis of some known trip characteristics.

What charge scheduling process is currently used at Picnic?

The current charge scheduling process was analysed by conducting several interviews with
the involved schedulers and performing data analysis. This is relevant in order to get an
insight how much time is available for making the charge planning and to understand what
considerations currently play a role in this process. It turns out that a main objective during
the current charging process is ensuring that vehicles are at a 100% SOC at the start of an
operation day. This reduces the risk of not achieving the mobility objectives, but on the other
hand results in cycling in high SOC ranges which can be harmful for vehicle batteries.

What are the characteristics of Picnic’s current vehicle and surrounding charging
infrastructure?

There are a number of factors related to the EV and charging infrastructure that need to be
identified so that the charge scheduling problem for Picnic can be set up. The most important
characteristics are listed below:
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e The charge energy can be represented by a linear function of time
e The charge rate is equal to 2.0kW

e An on board charger is responsible for the charging and is plugged into a regular wall
socket

e The amount of vehicles that can be charged at the same time is predominantly con-
strained by the grid capacity of 55.2kW

e At the moment, no time variable energy prices are obtained

e Hourly variable energy prices from the day ahead energy can be incorporated into the
charge scheduling problem

How can an experimental study be set up that uses the proposed model to study
the impact of charge schedule optimisation on charging cost?

In order to set up the experimental study a number of tasks need to be performed: instances
need to be generated, the considered vehicle and charging infrastructure configurations need
to be determined, the general model settings have to be set and the value for each cost com-
ponent needs to be established. Three different shift schedules form the basis of the instances
that are used to perform the computational study. Two schedules are actual schedules that are
currently performed by Picnic, the third schedule is a fictive schedule. The fictive shift (F'S)
schedule was generated in order to determine the influence of performing longer and more
energy demanding trips. For every shift schedule, seven instances are generated resembling
the execution of one operational week. Fach shift is filled with a number of real life trips that
are randomly selected from a database of Picnic. The second part of the experimental study
comprises of the adaptation of some of the vehicle and charging infrastructure configurations.
These configurations are generated by varying the battery size, charge type and charge rate.
For every factor one additional configuration with respect to the current situation will be con-
sidered. A larger battery size, the implementation of coordinated charging and fast chargers.
The model settings that were used to perform the experiments are discussed in Section 5-3.
Finally, this chapter closes off with a discussion of the cost components. An hourly variable
energy price is used that is sampled from APX market data. The discrete wear density func-
tion for the battery under consideration is determined using the ACC-DOD curve from Han
et al. (2014) [3]. The entire SOC range is divided into ten intervals of 10% SOC, yielding ten
different wear cost intervals. For labour cost, a fixed cost for every performed charge event
of €1.3 taken into account.

What is the impact of charge schedule optimisation on charging cost?

The base case represents the charging process that is used at Picnic in which no charge
schedule optimisation is used. The performance of the current charging process is considered
in order to compare it to the results obtained when the proposed model is used to optimise the
charge schedules. The impact of charge schedule optimisation is determined by comparing
the base case performance to the results of the experimental study. Since the base case
performance is only determined for the CS schedule, the results are only directly compared
for this schedule. A large overall reduction of charging cost of 25.2% is obtained, which can be
attributed to a reduction of degradation, labour and energy cost. Furthermore, the impact of
three different shift schedule types is investigated. It turns out that more energy demanding
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shift schedules result in higher average charging cost per charged amount of energy. Compared
to the CS schedule, the charging cost of the MS and FS schedule increase by 7% and 10%.
This can be explained by the decrease in charging flexibility in these shift schedules.

What is the impact of vehicle and charging infrastructure configurations on
charging cost?

The impact of the increase in vehicle battery size, the addition of coordinated charging and
the implementation of fast chargers is investigated. The introduction of a larger battery size,
shows potential for decreasing cost related to charging (10%). Moreover, coordinated charg-
ing yields a large reduction of charging cost (7%), while the influence of fast chargers turns
out to be marginal (1%). The best tested configuration combines larger battery size with
coordinated charging and this yields a decrease in charging cost of 6.6%, 12.7% and 15.1%
for the CS, MS and FS schedule.

Finally, having stated the answer to all sub-questions, the answer to the main research ques-
tion can be given:

How can the charge schedule for a fleet of electric vehicles be optimised during
day-to-day operations?

A model is developed to minimise the cost related to the charge schedule for a fleet of EVs while
considering labour, battery degradation and energy cost and taking into account constraints
related to the vehicle, charging infrastructure and grid. This model is formulated as a MIP
and implemented and solved by an exact solver in Gurobi. In order to assess the benefits of
charge scheduling optimisation on charging cost, a real-life case study is performed for Dutch
e-grocer Picnic, that currently operates a last-mile delivery process with over 700 EVs. In
order to asses its performance, the proposed model was compared to the benchmark, which
was determined using operational data. The proposed model outperforms the benchmark
by 25.2% in total cost and all cost components are reduced individually. This confirms that
the implementation of charge schedule optimisation provides high economical benefits in last-
mile services using EVs. An immediate consequence of reduced battery wear cost is that
expected lifetime of the vehicles batteries is extended (19.0%). Furthermore, the impact
of three different shift schedule types, the increase in vehicle battery size, the addition of
coordinated charging and the implementation of fast chargers is investigated. It turns out
that more energy demanding shift schedules result in higher average charging cost per charged
amount of energy. This can be explained by the decrease in charging flexibility in these shift
schedules. The introduction of a larger battery size, shows potential for decreasing cost related
to charging (10%). Moreover, coordinated charging yields a large reduction of charging cost
(7%). The best tested configuration combines larger battery size with coordinated charging
and this yields a decrease in charging cost of 6.6%, 12.7% and 15.1% for the CS, MS and FS
schedule when compared to current configuration.

7-2 Recommendations and Future Research Directions

7-2-1 Recommendations to Picnic
Based on this research, some recommendations can be given to Picnic:
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1. Picnic should evaluate whether the implementation of charge schedule optimisation is
worth the additional investment costs. The algorithms and models should be imple-
mented to predict energy requirements of trips and to optimise the charge schedule for
the fleet.

2. Picnic should evaluate whether the additional investments to implement coordinated
charging are worthwhile. More coordination during charging could be enabled by re-
motely controlled in-vehicle chargers that are capable of interrupting an ongoing charge
event. Furthermore, vehicle monitoring devices are required since they facilitate real-
time knowledge of the battery SOC, which are required to determine the charge com-
mands. Implementing both systems could enable a centrally managed charging plat-
form.

3. Picnic should consider the purchase of vehicles with a larger battery size in order to
benefit from lower battery degradation effects and ensuring a longer lifetime of the
batteries. A trade-off between initial investment costs and the increased operational
lifetime of the batteries should be made. Note that the purchase of larger batteries
would only have effect if it is done simultaneously with the implementation of charge
schedule optimisation.

7-2-2 Recommendations for Future Research Directions

This work addresses the range and charging limitations of EVs during the charge scheduling
of a fleet of EVs. An interesting new area of research would be to consider the scheduling of
vehicles to trips and the scheduling of charge events in a joint process. This could generate
improved results, due to the increased flexibility of the vehicle schemes. On the other hand,
these types of problems are much more complex and therefore require efficient formulations
and/or heuristics in order to derive high quality results efficiently. Another area of interest
may lie in the implementation of more advanced battery degradation models, which take into
account other operational factors other than cycling SOC or that incorporate degradation
during storage.
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Charge Scheduling of Electric Vehicles in Last-mile
Distribution

Menno Dalmijn, Bilge Atasoy, Rudy Negenborn and Peter Bijl

Abstract—This paper proposes a model for charge scheduling
of electric vehicles in last-mile distribution to investigate the
impact of charge schedule optimisation on charging cost. A mixed
integer problem formulation is proposed that considers labour,
battery degradation and time-variable energy cost. The benefit
of implementing charge schedule optimisation is assessed in a
computational study for a real-life case at e-grocer Picnic. It turns
out that the implementation of charging optimisation yields an
overall reduction of charging costs by 25.2% when compared
to the current operational charging performance. Furthermore,
the impact of three different shift schedule types, the increase in
vehicle battery size, the addition of coordinated charging and the
implementation of fast chargers is investigated. It turns out that
more energy demanding shift schedules result in higher average
charging cost per charged amount of energy. The introduction of
a larger battery size, shows potential for decreasing cost related to
charging. Moreover, coordinated charging yields a large reduction
of charging cost, while the influence of fast chargers turns out to
be marginal.

Keywords—Charge scheduling, Electric Vehicle, Last-mile Dis-
tribution

I. INTRODUCTION

Freight transportation, currently dominated by fossil fuelled
vehicles, contributes largely to sustainability problems, includ-
ing noise and air pollution, global warming and oil dependency
[1]. The adoption of electric vehicles (EVs) could solve these
problems by enabling much cleaner and efficient transport [2].
Three main drivers contribute to the attractiveness of EVs [3]:
total cost of ownership (TCO), technology readiness and local
and national regulations. However, substituting conventional
internal combustion engine (ICE) vehicles with EVs within
the transportation and logistics sector is not straightforward.
In contrast to ICE vehicles, EVs have to refuel frequently
due to the relatively low energy content of their batteries.
Moreover, the recharging process of an EV is a lot more time
consuming than refuelling a conventional ICE vehicle. Both the
lower range and long recharging times are characteristics that
reduce the availability and flexibility of EVs. This raises some
additional challenges when using EVs from strategic, planning,
and operational perspectives [4]. In order to successfully
adopt EVs in last-mile distribution processes, the range and
recharging limitations should be addressed adequately.

In this contribution, the range and recharging limitations of
EVs are addressed during the depot charge scheduling of a
fleet of EVs. The use of EVs is considered in the context
of a last-mile delivery process while operating a multi-shift
schedule, which means that vehicles can be used to execute
multiple trips per day. It is assumed that individual trips, which
span a number of customer orders, do not exceed vehicle
range. Consequently, charging outside of the home depot is not
needed. Many fleet owners prefer depot charging over charging
at public locations due to a combination of factors including
the scarcity of available charging infrastructure, cargo security
concerns during charging and inefficient use of the drivers’

M. Dalmijn, B.Atasoy, R.R.Negenborn are with the Department of Trans-
portation Engineering and Logistics, TU Delft, Netherlands.

time [5]. Many last-mile distribution service providers operate
a large fleet of vehicles from one depot location. Due to the
high investment cost that is associated with installing charging
infrastructure, there are typically less chargers than vehicles.
Moreover, grid capacity constraints limit the peak power that
can be drawn from the grid on a specific depot location. These
grid capacity constraints are imposed by grid operators and
are meant to counteract overloading of the grid. Both factors
should be taken into account during the construction of a
charge schedule.

High daily energy demands and limited charging infras-
tructure availability may lead to energy infeasibility of the
vehicle schedule or impractical charging schemes, consisting
of many charge events. Since the execution of a charge
schedule requires manual labour, for example when driving
EVs to charger locations and (un)plugging vehicles from
the charger, there is a motive to minimise the number of
charge events and thereby to reduce the labour cost that is
associated with the execution of the charge schedule. Another
component that influences the cost to execute a charge schedule
is energy cost. For businesses operating on a larger scale
and consequently consuming a lot of energy, the option of
having a time variable energy pricing contract becomes an
attractive alternative. These variable energy contracts can be
leveraged in order to decrease charging cost, by charging
during times of low energy prices. One last, and less covered,
aspect that contributes to the cost of a charge schedule is
related to battery wear costs that depends on the use of an
EV battery. EV batteries constitute a large part of vehicles
costs. Lithium-ion batteries are subject to deterioration of the
electro-chemical properties over time, ultimately leading to a
reduction of the available power and battery capacity, resulting
in a performance and range deterioration of the vehicle [6].
In order to preserve the long term flexibility of EVs, it is
necessary to prevent battery degradation as much as possible.
This can be done by taking into account the factors that have
a known negative effect on battery deterioration in charging
problems. One of these known effects is the state of charge
(SOC) range in which the battery is cycled. To what extent the
use of a battery contributes to battery wear is dependent on the
SOC ranges in which the battery is cycled. Therefore, adapting
a charge schedule of a vehicle in such a way that it is cycled in
less harmful SOC ranges, contributes to the cost effectiveness
of a charge schedule. All these factors emphasise the necessity
to investigate the cost related to the charging schedule.

The aim of this work is threefold: (1) to develop a model
to optimise the charge schedule for a fleet of EVs while
considering labour, battery degradation and energy cost and
taking into account constraints related to the vehicle, charging
infrastructure and grid, (2) to investigate the impact of the three
different shift schedules on charging cost and (3) to study the
impact of adapting the configuration of both the vehicle and
charging infrastructure on charging cost. The impact of charge
scheduling optimisation on charging cost is investigated in a
real-life case study for Dutch e-grocer Picnic, that currently op-
erates a last-mile delivery process with over 700 EVs [7]]. The
charging cost of optimised charge schedules are compared with



FIRST VERSION, 1 MARCH 2019

cost of the current charging process obtained with operational
data. Moreover, the impact of the three different shift schedules
on charging cost is investigated, which are based on two actual
shift schedules and one fictive schedule for Picnic. Lastly,
we study the impact of adapting the configuration of both
the vehicle and charging infrastructure referring to the vehicle
battery size, charge rate and charge type. The latter refers to the
amount of possible coordination during the charging process in
which we consider two types: uncoordinated and coordinated
charging. Uncoordinated charging resembles the use of basic
chargers, and coordinated charging corresponds to the use of
smart chargers.

This paper is organised as follows. An overview of the rele-
vant literature with respect to charge scheduling optimisation is
presented in Section [[Il Subsequently, a mathematical formula-
tion for the charge schedule optimisation problem without the
consideration of battery degradation is formulated in Section
This model is extended in Section to incorporate the
effects of battery degradation. In Section V] model adjustments
are presented that enable the use of coordinated charging.
Subsequently, in Section the details of the experimental
study are given. The results of the experimental study are
presented in Section This paper ends with the conclusion
in Section [VIII

II. CHARGE SCHEDULING LITERATURE

Charge scheduling optimisation problems can be roughly
divided into two different classes: Vehicle to Grid problems
and unidirectional charging problems. Unidirectional charge
scheduling problems consider only the unidirectional flow of
energy from the grid to the vehicle and can be addressed from
different perspectives including the power system level, charge
infrastructure owner and the vehicle/fleet owner. This work
focuses on the depot charge scheduling from the perspective
of the fleet owner and in this area three relevant contributions
were found. Pelletier et al (2018) [3]] introduce the Electric
Freight Vehicle Charge Scheduling Problem (EFV-CSP). This
contribution focuses on optimising the depot charge planning
over the course of multiple days for a given set of routes for a
small fleet of electric freight vehicles. Sundstrom et al. (2010)
[8]] propose a charge scheduling optimisation model with the
goal of minimising charging costs, while ensuring satisfactory
state-of-energy levels for the vehicles and not exceeding
the amount of available wind power. A different type of
problem discussed by Sassi et al. in (2014a) [9], (2014b)
[LO] and (2017) [11]] that covers the subject of unidirectional
depot charge scheduling for fleet owners is the Simultaneous
Electric Vehicle Scheduling and Optimal Charging Problem,
which considers a joint optimisation of vehicle scheduling
and charge scheduling. The objectives of charge scheduling
optimisation for fleet owners include the reduction of energy
cost, facility related demand charges, labour cost and battery
degradation.

In this contribution, the original EFV-CSP that was proposed
by Pelletier et al (2018) [5] is extended in several ways. Firstly,
the labour cost related to the manual handling of charging
events will be taken into account. A fixed penalty for each
charging event that has to be performed is implemented. The
charged energy is presumed to be a linear function of time,
which decreases the problem complexity and makes it more
suitable for the optimisation of large scale problems. Related
to the charged energy, a corresponding SOC dependent battery
degradation model that was proposed by Han et al. (2014) [12]
is implemented. Secondly, two slightly different models are
presented in order to study the effect of coordinated charging

versus uncoordinated charging. In contrast to the model of
Pelletier et al (2018) [3)], peak charge costs are eliminated
as cost component since they are not a part of the energy
pricing model. The goal of the EFV-CSP is to optimise the
depot-charging costs for a given set of vehicle rotations, where
the charging cost consists of energy costs, labour costs and
battery degradation costs. In the following sections a step wise
approach is used to define the charge scheduling problem.

III. BASIC MODEL FORMULATION

This section presents the basic charge scheduling model
without considering battery degradation cost. The assignment
of vehicles to trips is determined preceding to the charge
schedule optimisation. Moreover, the energy requirements of
all trips are known. In a real-life context, this would mean
that the energy requirement of trips should be predicted
using certain trip characteristics. The entire time horizon
is discretised into a number of fixed time periods p € P.
The hub opening and closing periods are defined as O, and
Cp. The set of uniform vehicles k¥ € K is characterised by
maximum and minimum allowable battery SOC: soc,,q, and
socmin and battery energy capacity £ (kWh). Moreover, the
SOC at the beginning of an operational day is specified as
Ssocstqrt- Every vehicle has to execute a known sequence
of trips from the set » € R. Trips can be further defined
by their departure period f,, arrival period «, and energy
requirement Asoc, (%). The vehicle that executes a certain
trip r, is denoted by V, and the preceding trip is defined as
. Moreover, let the set Ay contain the arrival periods of
all trips that belong to vehicle k. The charger types from
the set s € S can be characterised by their charge rate P,
(kW), the SOC differential that can be charged in one period
As (%) and amount of available chargers per type KCs. Let
the binary decision variable x, s be 1, if a charger of type
s is charging vehicle k during period p, and 0 otherwise.
A continuous variable soc , denotes the SOC of vehicle k
at the start of period p. y keeps track of the peak charging
power that is drawn from the grid during the entire time
horizon. Binary variable z, ;, equals 1 if a charge event starts
for vehicle k£ in period p, and O otherwise. To count the
number of charge events, an integer variable NV is introduced.
The peak power demand is constrained by the grid capacity G.

1) Objective Function: The objective for the charge schedul-
ing model is to minimise costs related to charging and is given
as follows:

Z Z Z xp.,k,sPstt + Ncec )

pEP kEK s€S

The first term represents the energy costs of charging, which
is calculated by multiplying the total charged energy during
a charging period by the time-dependent energy costs ¢,
(€/kWh) to derive the cost of the charged energy. The second
term accounts for the labour costs related to performing
charge events through multiplication of the number of charge
events by a fixed cost per charge event cec.

2) Charge Scheduling Constraints:

i pr,vr,s =0 VreR 2)

p=pB s€S

Z Tprs <Ks VpePseS\ {1} 3
keK



FIRST VERSION, 1 MARCH 2019

Z»’Cp,k,s <1 VpePkeK )
seS

Zzpsxp,k,sgy VkEK,pGP 5)
keK seS

0<y<@G (6)

Zp.k > Tp,k,s — Tp—1k,s Vk € K,p eP \ {1},5 es 7

216> Tiks VEEK,s€ S ®)
Tpks €{0,1} VpePkeK,seS )
2k €{0,1} Vpe Pke K (10)

Constraints [2| prevent a vehicle from being charged during
trips. Constraints [3] limit the amount of chargers of type s
that can be used during every period to g, while constraints
M| enforce that each vehicle can be charged by only one
charger at the same time. Constraints [5] keep track of the peak
charging power that is drawn from the grid during the entire
time horizon and constraint [] limits this peak charging power
to the grid capacity. Lastly, constraints [7] and [§] are used to
identify the period that corresponds to the start of a charging
event.

3) Energy Constraints:

50Cq, v, = socg, v, — Asoc, Vr € R an

80Cp. | = S0Cp_1 % + E AsTp—1,ks Vk€EK,

sES
pGP\{l,},p¢Ak (12)
50Cmin < S0Cp | < 80Cmar Vk € K,pc P (13)
s0c1 ) = 80Cstqrt Vk € K (14)

Constraints relate the SOC of the vehicle at trip
departure to the SOC at trip arrival by reducing it with the
trip energy requirement Asoc,.. During charging, constraints
[[2] enforce the increase of the SOC of a vehicle with the
SOC differential that corresponds to a certain charge rate
As. Constraints ensure that the SOC of a vehicle always
stays between the minimum and maximum allowable SOC.
Constraints [14] set the SOC of the vehicle at the start of the
time horizon.

4) Charge Event Constraints:

>N =N (15)

peEP kEK

Cp
> zr=0 VkeK (16)
p=0p
These constraints are required to count the number of
charge events that are used in a charge schedule. Constraint

counts the number of charge events. Constraints [T6] prevent
charging events from starting during night hours when there
is no one present at the hub.

IV. MODEL EXTENSION [: BATTERY DEGRADATION

This section introduces battery degradation and proposes a
formulation to incorporate it in the charge scheduling model.

5000
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Cycled DOD (%)

90 100

Fig. 1: ACC-DOD curve. Each marker represents a sample
point where the achievable cycle life is known. The continuous
line shows the best fit curve of the ACC data. [13]]

Typically, battery manufacturers specify the cycle lifetime of
batteries with the achievable cycle count (ACC) for different
depth of discharge (DOD) points, which indicates how many
times a battery can be charged or discharged before it reaches
the end of its lifetime. This relation can then be visualised in
a ACC-DOD curve, as given in Figure [T} For clarity, in ACC-
DOD curves it is assumed that the battery is always discharged
from 100% SOC, which represents the situation in which a
battery is always cycled from full charge. However, in reality
batteries are cycled in different SOC ranges, which limits the
use of the ACC-DOD curve. To overcome these issues, some
steps are required to transform the ACC-DOD characteristics
into a practical battery wear model. The battery wear model
that was proposed by Han et al. (2014) [12] does exactly this
and we use this model to incorporate battery wear behaviour
in the charge scheduling model. The model will be introduced
in the next subsection.

A. Considered Wear Model

Han et al. (2014) [12] propose a new index called the wear
density function (WDF). This function represents the unit wear
costs at a specific DOD value. A continuous and discrete
time battery wear function are derived using both the battery
price and ACC-DOD data. Since this work models in discrete
timesteps, the discrete model will be presented. The Wy(s)
represents the battery degradation cost as a function of cycled
energy within a certain SOC interval (s + As) and satisfies
the following equation:

1-As
BatteryPrice = 2ACC(DOD) Z (Wa(s)Aq) (17)
s=1-D
Agq is the quantity of energy that corresponds to a SOC
interval (s + As). This function can be used to derive the
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degradation cost for different SOC intervals. For example,
using a step size of 10% yields ten different equations:

BatteryPrice
W4(0.9 =
a(0-9) ACC(0.1) -2+ 0.1 - BatterySize - u?
(18)
BatteryPrice
W4(0.8+0.9 =
a(0-8+0.9) ACC(0.2) -2 0.2 - BatterySize - u?
(19)
BatteryPrice
Wa(0+..4+09) =
a0+ .- +09) ACC(1.0) -2+ 1.0 - BatterySize - u?
(20)

The resulting values of the wear density function can be used
to incorporate wear cost in a discrete manner. Figure 2] shows
both an example of a continuous wear cost function derived
from the best curve fit of ACC data, and a discrete wear cost
function corresponding to the original data measured at ten
DOD points. These functions are derived by using the data
from Figure [I]

0.8
0.7
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0.5
0.4
0.3
0.2
0.1

0

Wear Cost (USD/ kWh)

0 0.2 04 0.6 0.8 1
state-of-charge (%)

Fig. 2: Discrete and continuous wear costs functions derived
by using the ACC-DOD data from Figure [1] [12]

The practical battery wear model proposed by Han et al.
(2014) [12] is implemented in order to incorporate the costs
related to battery degradation during charging and discharging.
The next subsection describes the formulation that extends
the original MIP formulation proposed in Section with a
discrete wear cost function.

B. Problem Formulation

The following problem formulation is applicable for the
case when the wear cost function is increasing with respect
to SOC, which resembles the situation in which more battery
degradation occurs during cycling at higher SOC values.
The SOC of the batteries is split into a number of intervals
d € D of equal size L (%), with the upper SOC value of
an interval corresponding to Sy. The battery wear cost is
represented by W, in €/kWh for every SOC interval d. A
new continuous variable is introduced socIT that keeps track
of the quantity of every SOC interval that is used to charge
vehicle k between arrival of trip u, and departure of trip
r. For example, if a vehicle is charged from 40% to 55%
SOC between trip r = pu, and r = z, the corresponding
used SOC intervals become socy,, = 10% and socy, = 5%
respectively. Lastly, let a binary decision variable 14, equal
1, if the corresponding SOC interval is used during charging
before trip  and after i, and O otherwise.

4
1) Objective Function:
Z Z Z ZTp. ks Pscpt + Ncec + Z Z QWdSOCITE
pEP kEK s€S reRdeD
2D

The objective function now comprises three terms, of which
the first two represent the energy costs and labour costs and
are identical to equation |1} In addition, the third term is used
to take into account the costs related to battery degradation.
The total charged amount of energy per interval is derived
by multiplying the SOC variation in every interval soc;lL
with the battery energy capacny E (kWh), and then the
corresponding degradation cost is determined by multiplying
those factors with the interval dependent degradation cost
Wy. Because cyclic ageing affects the battery health during
charging and discharging, a final multiplication by a factor of
two is required to calculate the total battery degradation.

2) Battery Degradation Constraints:

Z socjl'm = socg, v, — 80Cqa, v, Yre€R (22)
deD
0< soch < Lugq, Vde D,re€R (23)

SOCIT < 84— soca,, v, +100 —ug,100 Vde D
VreR (24)

Constraints [2] - [T6) are still valid for this model extension. In
addition, constraints [22{limit the sum of all soc;; 4, intervals to
the difference in energy of vehicle k between the departure
time of trip = and the arrival period the preceding trip.
Constraints 23| limit the SOC differential that can charged in a
SOC interval between zero and the maximum amount that can
be charged in one interval. Constralnts [24] limit the amount
that can be charged in interval soc based on the upper SOC
value of that interval and the SOC of the vehicle after the
last trip. Note that this constraint is only valid in the case of
non-decreasing wear cost with respect to SOC.

V. MODEL EXTENSION II: COORDINATED CHARGING

When considering the coordination during the charging
process of a fleet of EV two different types of charging can be
distinguished: uncoordinated and coordinated charging. This
section first discusses the difference between these concepts
after which the problem definition for coordinated charging is
presented.

A. Uncoordinated vs Coordinated Charging

Uncoordinated charging is when the vehicle charging starts
immediately after plugging in a vehicle or after a fixed start
delay and continues until the vehicle battery is fully charged
or disconnected [14]. Uncoordinated charging of EV fleets
may lead to high peak demands and thereby to overloading of
the grid [15]. Coordinated smart charging optimises time and
power demand with the objectives of minimising charging cost,
valley filling and peak shaving [[14]. However, these objectives
may never interfere with the scheduled vehicle use during
the day [[16]]. To be able to leverage on the possible benefits
of coordinated charging, a smart charging infrastructure is
required. This comprises smart chargers, connected vehicles
and a energy management systems that controls the charging
of the vehicles. When comparing the behaviour of coordinated
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charging with uncoordinated charging, two major differences
can be identified:

1) Charge events can stop and start at any moment in time,
including the hub closing times.

2) The interruption of a charge event is possible without
imposing additional cost.

B. Problem Definition

In order to consider the charging event cost in coordinated
charging, not the number of charge events should be counted,
but the number of used charge opportunity intervals. A charge
opportunity interval is defined as the time between the arrival
of the preceding trip «,, and departure of a trip 3,. Note
that the number of charge opportunity intervals is equal to the
number of trips. The binary decision variable Ns,. ; equals 1
if the charge opportunity interval corresponding to trip 7 is
used, and O otherwise.

1) Objective Function:

Z Z Z Tp,k,s PsCpl + Z Ns, scec

peP keK seS réER

+3 0 2Wysoc], E (25)

reRdeD
In order to take into account the impact of operating with

smart chargers, the second term of the objective function now
calculates labour cost by multiplying s, with cec.

2) Charge Event Constraints:

8.
3 20, 20-M(1-Ns,,) YreR (26
=0y,
8.
0= Z Zpw, = MN sy s vreR  (27)
P=Qy,.
Nsps €{0,1} VreR  (28)

Constraints and [27] ensure that the binary decision
variable Ns,. s equals 1 if the term Zﬁ Zpv, 18 larger
than 0. Constraints [[4] and [T3] can be dlscarded in the case
of coordinated charging, all other constraints remain valid (2]

-[[4 22 - 9.

VI. EXPERIMENTAL SETUP

The goal of this computational study is to evaluate the
impact of charge schedule optimisation on charging cost. An
exact solver will be used to solve a set of real-life instances
that are derived from the operation of Dutch e-grocer Picnic.
In the first part of this section an explanation of the used
set of instances is given. Comparison of the base case cost
with the results of the optimisation model provides insight in
the performance of the optimisation model that was proposed
in this paper. The impact of some minor adaptations in the
vehicle and charging infrastructure are be investigated in a
later experiment.

[ shift Al A2 A3
[ | \
‘ 14:30 - 16:45 ‘ 17:15 - 19:30 ‘ 20:00 - 22:15 ‘
T T T
6:00 9:00 12:00 15:00 18:00 21:00 24:00
(a) CS
[ shift M M2 Al A2 A3 |
| | \ l l
‘ 7:45 - 9:45 10:15 - 12:15 ‘ 14:30 - 16:45 ‘ ‘ 17:15 - 19:30 ‘ ‘ 20:00 - 22:15
I T T T
6:00 9:00 12:00 15:00 18:00 21:00 24:00
(b) MS
Shift s1 s2 s3 S4 |
\ \ [ |
‘ 7:45 - 10:45 ‘ ‘ 11:15- 14:15 ‘ ‘ 15:45 - 18:45 ‘ o R ] ‘
T T T T
6:00 9:00 12:00 15:00 18:00 21:00 24:00
(c) FS

Fig. 3: (a) Current shift schedule, (b) Morning shift schedule,
(c) Fictive shift schedule.

A. Instances

Three different shift schedules form the basis of the in-
stances that are used to perform the computational study.
A shift schedule is characterised by its shift time windows,
which set the ultimate scheduled departure and arrival times
for trips. The shift schedules that are used in this computational
study are depicted in Figure [3] Note that all shifts in these
schedules are strictly separated in time, which means trips
from consecutive shifts can be executed by the same vehicle.
The first two schedules are actual schedules that are currently
performed by Picnic, the third schedule is a fictive schedule.
The current shift (CS) schedule consists of three shifts of equal
length that are all scheduled in the afternoon. Compared to the
CC schedule, the morning shift (MS) schedule contains two
additional shifts in the morning, which are both slightly shorter
in duration. The fictive shift (FS) schedule was generated in
order to determine the influence of performing longer and
more energy demanding trips and contains four shifts of equal
duration with a longer break between shift two and three. For
every shift schedule, seven instances are generated resembling
the execution of one operational week. Each shift is filled with
a number of real-life trips that are randomly selected from a
database of Picnic. A summary of the characteristics of all
instances for every shift schedule is given in Table [I]

TABLE I: Instance characteristics: the second column shows
the total number of trips. The third column indicates the total
of vehicle days that is required to perform each instance set, in
which the use of one vehicle during one operational day counts
for one vehicle day. The next column shows the total energy
requirement. F; represents the average energy requirement per
trip, while F,, is the average energy requirement per vehicle
day. Lastly, 7, indicates the average number of trips per
vehicle day

Schedule  Trips  Vehicle days  Energy  E. E, Ty
# # kWh kWh  kWh #
CcC 415 164 12355 2,98 7,54 2,53
CM 615 164 17376 2,83 10,61 3,75
FS 481 164 19379 4,08 11,97 2,93
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B. Experiments

The problem was formulated using the Gurobi package in
Python and solved on a machine with a Intel Core i7-4700MQ
2,4 GHZ processor with 8.0GB of RAM running on Windows
10. The maximum computational time is set at 3600 seconds,
with a gap tolerance of 1.0%. The time horizon runs from
23:00 of the previous operational day until 23:00 of the current
operational day and is discretised in steps of 10 minutes. Hub
closing hours are between 23:10 - 10:10 for the CS schedule
and between 23:10 and 7:10 for the MS and FS schedule. A
uniform fleet of vehicles of the type Goupil G4 is considered.
The battery size of this vehicle is equal to 12kWh and the
charging curve is represented by a linear charge rate of 2kW,
which sets As to 2.78%. The SOC range of the vehicles
is restricted to 10-100% SOC. This bound is introduced in
order to have an extra safety margin to take into account the
uncertainties in the predicted energy requirement of trips. The
SOC at the start of an operational day is set at the lower
bound of 10%. This ensures that the all energy that is required
has to be charged and therefore generates comparable results
for battery degradation and energy costs. The peak power that
can be drawn from the grid G is set at 40kW h. The hourly
variable energy prices c,, are based on a sampled day of hourly
prices from the Dutch day-ahead energy market (APX), for
the entire 24h period as seen in Figure [d For every performed
charge event a fixed cost of €1.3 is considered. The discrete
wear density function for the battery under consideration is
determined using the ACC-DOD curve from Zhou et al. (2011)
[L3]. The entire SOC range is divided into ten intervals of 10%
SOC. Using equations [T8] - 20| the wear cost for every interval
is determined. The battery capacity equals 12kWh at a price
of €10000. The wear costs Wy(s) are defined as cost/Agq. By
dividing the wear cost by ¢ (the quantity of energy of one SOC
interval), the average wear cost per unit of energy (€/kWh)
can be derived, which is more convenient since the battery
intervals are not of consistent for different battery capacities.
The resulting discrete wear cost per SOC interval can be seen
in Table [
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Fig. 4: Sampled hourly energy prices for the entire time
horizon

TABLE II: The discrete wear cost per SOC interval.

SOC interval [%] 0-10 10-20  20-30  30-40  40-50  50-60  60-70  70-80  80-90  90-100
Wa(s) [€/kWh] 032 033 0.34 0.36 0.37 0.38 04 0.425 0.485 0.65

The instance sets for different shift schedules yield a dif-
ferent number of trips and total energy requirement, as seen
in Table [Il Logically, these differences will have a large effect
on the total charging cost for every shift schedule. To enable a

fair comparison between the results of the three shift schedules,
the results for all cost components are expressed as cost per
consumed amount of energy, in €/kWh.

C. Base case performance

The base case represents the charging process that is used
at Picnic in which no charge schedule optimisation is used.
This is used as a benchmark to evaluate the proposed charge
scheduling optimisation model. The charging cost for the base
case consists of the same cost components as the charge
schedule optimisation and contains energy costs, battery degra-
dation and labour costs. The values for the battery degradation
and labour cost are derived using operational data. Since the
SOC dependency is taken into account in the battery wear
cost model in this study, it is required to know in which
SOC ranges the batteries are cycled during the current use
of the vehicle to derive the current battery degradation cost. A
discrete probability density function (PDF) of the SOC during
driving is made using data originating from 16980 trips. The
result can be seen in Figure [5} showing the probability of
driving in a certain SOC interval of 1%. Using this PDF, and
the battery wear cost function, the average wear cost during
driving can be determined with the following formula:

dmazx
AWC (dyas) = / W) f(dds (29

dmin
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Fig. 5: The probability density function of driving in a certain
SOC

For the determination of the current labour cost incurred
with the performance of the charge events, we want to get an
understanding of the typical charge cycle currently performed
at Picnic. Using the average charge cycle, the labour cost
corresponding to every charged kWh C,;, can be calculated
using the following formula:

CC' - BatterySize
cec

Copn = (30)

Where C'C represents the average charge cycle in %,
BatterySize is the battery size in kWh and cec is the cost
for one charge event in €. Again, the operational trip data
is used to derive the required data for the calculation of this
metric in the base case. First, to derive a realistic value for
the average charge cycle the average of the trip arrival SOC,
which is equal to 64%, is used. All vehicles are assumed to
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be fully charged from this SOC. Subtracting the average of
the arrival SOC from a 100% SOC yields the average charge
cycle. Subsequently multiplying this with the battery capacity
gives the quantity of charged energy that corresponds to this
charge cycle. Lastly, this is divided by the cost related to one
charge event to derive the cost per charged unit of energy,
which results in a charge event cost of 0.30 €/kWh.

It is assumed that for the base case, the average energy cost
per charged amount of energy is equal to the average of the
time dependent energy prices that are used in this study. The
results for all cost components of the base case are listed in
Table [[II

TABLE III: The charging cost components for the base case

Component Unit Value
Energy €/kWh  0.063
Battery degradation ~ €/kWh  0.507
Labour €/kWh  0.30

VII. EXPERIMENTAL RESULTS

This section presents the results of the experimental study
and evaluates the impact of different phenomena on the charg-
ing cost.

A. Impact of Charge Schedule Optimisation

The impact of charge schedule optimisation is compared
to the benchmark presented in Section [VI-C] Since the base
case performance is only determined for the CS schedule, the
analysis is only carried out for this schedule. The results are
depicted in Figure [6] where the presented cost corresponds to
average charging cost in €/kWh for seven operational days.
It is seen that an overall charging cost reduction of 25.2%
is obtained. This reduction can be attributed to a decrease
of degradation, labour and energy cost of 15.9%, 41.9% and
19.9% respectively. The potential benefits of charge schedule
optimisation are high. For an average Picnic depot, performing
400 average trips per week, the overall cost reduction is
roughly €260 per week. The reduction in battery wear, leads
to an extended lifetime of the batteries of 19.0% .
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Fig. 6: The benefit of charge schedule optimisation

B. Impact of Shift Schedule Type

The results for charge schedule optimisation for the different
shift schedules are depicted in Figure [7] Again the results are
based on the average results of all instances for the seven
operational days. It is seen that the charging costs for the MS
and FS schedules are higher than the CS schedule. For the
MS schedule, an increase of charging cost of 7% is obtained,
whereas the FS schedule yields an increase of 10%. This is
due to the increase in energy demand for both of the schedules.
The intensified use of vehicles throughout the day results in an
increase in energy requirement and the decrease in available
time for charging. Consequently, there is a reduction of the
charging flexibility, which is defined as the idle time spent not
charging [[17]. This results in higher SOC cycling ranges and
a higher number of required charge events.
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Fig. 7: The charging cost under CS, MS and FS schedules

C. Impact of Increasing the Battery Size

The increase in battery size enables the possibility to cycle
the battery in lower SOC ranges because trip energy require-
ments become a lower fraction of the battery capacity. Since
the battery degradation model is dependent on the cycled SOC
ranges, a difference in charging cost is expected. Therefore,
the impact of increasing the battery size on charging cost
is investigated. It should be noted that larger batteries are
associated with higher initial investment costs. Nevertheless,
this study could derive insights regarding the decrease in
operational cost when using a larger battery. In addition to
the current battery of 12kWh, the experiments for all shift
schedules are repeated for a battery of 20kWh. The average
of results for all shift schedules are depicted in Figure [§] It
is seen that a large decrease of overall charging cost of 10%
is obtained. This decrease is a result of both the reduction in
battery degradation cost (6%) and labour cost (23%).

D. Impact of Coordinated Charging

The increased flexibility during the charging process that is
enabled by smart chargers may help to reduce overall charging
cost. On and off switching during coordinated charging may
help to achieve the desired SOC levels at the right moments
in time without using many charge events, and thereby reduce
degradation and labour costs. Moreover, the increased charging
flexibility can be leveraged to charge during times of low
energy prices. The results are depicted in Figure [9] It is seen
that a large reduction of charging cost of 7% is achieved, due
to a decrease of all battery degradation 4%, labour 15% and
energy costs 11%.
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In addition, one last dimension in the charging infrastructure
that is investigated is the introduction of fast chargers, whose
impact turn out to be marginal.

VIII. CONCLUSION AND FUTURE RESEARCH

DIRECTIONS

This study aims to investigate the impact of charge schedule
optimisation on overall charging cost, consisting of energy,
labour and battery degradation. A model was introduced for
this problem which was solved by an exact solver. The
proposed model was tested with a set of instances derived from
the real-life last-mile distribution system of Picnic. In order to
asses its performance, the proposed model was compared to
the benchmark, which was determined using operational data.
The proposed model outperforms the benchmark by 25.2% in
total cost and all cost components are reduced individually.
This confirms that the implementation of charge schedule
optimisation provides high economical benefits in last-mile
services using EVs. An immediate consequence of reduced
battery wear cost is that expected lifetime of the vehicles
batteries is extended (19.0%). Furthermore, the impact of
three different shift schedule types, the increase in vehicle
battery size, the addition of coordinated charging and the
implementation of fast chargers is investigated. It turns out
that more energy demanding shift schedules result in higher
average charging cost per charged amount of energy. This
can be explained by the decrease in charging flexibility in
these shift schedules. The introduction of a larger battery size,
shows potential for decreasing cost related to charging (10%).
Moreover, coordinated charging yields a large reduction of
charging cost (7%).

This work addresses the range and charging limitations
of EVs during the charge scheduling of a fleet of EVs. An
interesting new area of research would be to consider the
scheduling of vehicles to trips and the scheduling of charge
events in a joint optimisation problem. This could generate
improved results, due to the increased flexibility of the vehicle
schemes. On the other hand, these types of problems are much
more complex and therefore require efficient formulations
and/or heuristics in order to derive high quality results effi-
ciently. Another area of interest may lie in the implementation
of more advanced battery degradation models, which take into
account other operational factors other than cycling SOC or
that incorporate degradation during storage.
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Trip Energy Prediction Model

A neural network is built in Matlab to predict the energy requirements of trips based on a set
of trip characteristics. An elaborate description of the development of this model is presented
this Appendix.

Architecture

ANNSs are build up out of neurons and synapses:

e Neurons: have the function to sum the input synapses and then apply an activation
function to this value. There are many activation functions that one could choose.
Examples are the binary step, sigmoid and softmax function. Each activation function
will process the input differently and therefore also give a different output of a neuron.

e Synapses: synapses interconnect individual neurons. They take an input value, multiply
this by a weight and output the result to the next neuron. The synapses hold the weights
that modify the output of one neuron to the input of another neuron. These weights
are updated during the learning process of the neural network.

Three layers can be distinguished in neural networks: the input layer, the hidden layer(s) and
the output layer. In the input layer the values of the used attributes are inserted. Synapses
convert the models inputs to one or more hidden layers. More complex models tend to have
more hidden layers. However, most problems can be sufficiently solved with a single hidden
layer. Adding multiple hidden layers has the risk of over fitting the data.

Learning

In supervised learning the neural network is trained by minimising a selected cost function
that compares the models predictions and targets. In case all the SoC differentials would be
predicted correctly, the cost function would be equal to zero. Different learning algorithms
can be used to search the solution space for the optimal solution. During the learning pro-
cess the ANN’s weights are iteratively updated to minimise the models cost function. Most
learning algorithms look at what parameters have the highest influence in the results of the
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cost function. The derivative of the cost function over the models parameters will give the
parameters that have the biggest influence on its result. Changing these parameters will
decrease the cost function most. The algorithm will perform this procedure multiple times,
until no further improvement is achieved.

A neural network was designed in Matlab. The next part shows the properties of the designed
neural network.

e Input: the number of input neurons is dependent on the attributes of the data set. In
our case 11, so the neural network has 11 input neurons.

e Output: the output of the model is dependent on the number of classes in the target
data (the SOC differential).

e Hidden layers: the design of the hidden layers is a little less straight forward. First of
all there is the question whether it would be smart to add a second hidden layer to the
neural network. The choice here is made to stay in a one hidden layer configuration
as this design is able to so . A rule of thumb concerning the number of neurons in
the hidden layer is presented by Jeff Heaton: ’'the optimal size of the hidden layer is
usually between the size of the input and size of the output layers’ A small analysis
was performed to check the influence of the number of hidden neurons (HN) on the
performance of the model. The performance indicator is the mean absolute error of
the targets vs predicted values in the test set. Each test was performed ten times. It
can be seen that the initial decrease in MAE is small but significant. After HN = 3
the performance varies and does not improve significantly. Therefore, a hidden layer of
three neurons is selected.

Activity Rule

The standard activation function in Matlab feedforward networks is the Tansig function.

Learning Rule

Supervised learning will be used to train the neural network. Because we have a vast amount
of labeled observations this is the most logical choice. In supervised learning the neural net-
work is trained by minimizing a selected cost function that compares the models predictions
and targets. Scaled conjugate gradient back propagation is used as a training rule. Conju-
gate gradient propagation does not look directly in the steepest decent direction of the cost
function. It turns out that this will not generally lead to the quickest convergence. Instead
the algorithm will find and decent in the conjugate directions.

Error measures

A neural network is built in Matlab to predict the energy requirements of trips based on a
set of trip characteristics. The features presented in table 4-1 are used as input of the model.
70% of the samples are used for training, 15% for validation and the remaining 15% is used
for testing.
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Table 1: Correlation coefficients for target features

Feature Trip energy requirement [R?] Trip efficiency [R?]
Distance [km] 0.72 0.041

Ambient temperature | 0.036 0.24

Duration 0.31 0.0055

Total stem time 0.35 0.0093

Number of drops 0.046 0.015

Payload 0.034 0.011

Mileage 0.0012 0.0013

Model Performance

The average MSE and correlation coefficient of the final model are equal to 12,4 and 0,89
respectively. It should be noted that there would always exist a certain uncertainty in the trip
energy prediction model with the current data set. This is due to several influences that can
not be determined such as mechanical factors, driving behaviour and environmental factors.
Mechanical factors can include drivetrain and powertrain efficiency but also tire pressure.
Driving behaviour is mainly relevant due to driving speed and accelerations. Driving at
high speeds is more energy demanding. Moreover, high accelerations are usually associated
with higher energy requirements. Also hard braking can have a negative influence on energy
efficiency due to lower energy regeneration. Environmental factors include wind speed and
slopes.

Attribute Sensitivity

To provide insight in the features that are important for the prediction of the energy require-
ment of trips, a sensitivity analysis is performed. The correlation coefficient of individual
features are determined using linear regression. Two different target features are being used:
the trip energy requirement and the trip efficiency. The latter is defined as the trip distance
divided by the trip energy requirement. Table 1 shows the correlation coefficients for both
target features. It can be seen that the distance as well as the duration and the total stem
time have a significant effect on the trip energy requirement. However, it should be noted
that there is a high correlation between the trip distance and both the duration (R? = 0.294)
and the total stem time (R? = 0.439). When looking at the trip efficiency, the ambient tem-
perature seems to be a relevant feature. The number of drops, payload and mileage seem to
have an insignificant effect on both the trip energy requirement and trip efficiency.

Figure 1a and 1b show the influence of the trip distance on the trip energy requirement and
the influence of the ambient temperature on the energy efficiency. From la it can be seen
that there is a strong correlation between trip distance and energy requirement (R? = 0, 72).
Figure 1b shows the trip efficiency defined as the amount of distance that can be driven on one
percent SOC for the trip samples versus the ambient temperature. A trend can towards more
efficient trips at higher ambient temperatures can be observed. However, this correlation is
not that strong (R? = 0, 24)
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Figure 1: Important energy related features

It can be concluded that a model can be made that has adequate predictive performance.
Additional modelling efforts will most likely yield a model with increased performance.
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Vehicle Trip Allocation

The vehicle trip allocation model is used to generate a set of feasible vehicle rotations that
form the input of the charging optimisation model in Chapter 5. The analysis of the operation
of Picnic has revealed some factors that should be taken into account during the scheduling
of vehicles. The most important requirement is that the set of vehicle rotations should be
charge feasible with respect to vehicle range and grid capacity. In this appendix a special
type of EVSP will be proposed to solve the fleet minimisation problem.

Secondly, the amount of vehicles that is used during the operational day will be minimised,
because a limited number of vehicles is available at every hub.

-0-3 Overview of the EVSP

The EVSP can be described as a multi-depot vehicle scheduling problem with EV charging
and range constraints. In the EVSP, each trip has a specific start and end location and energy
requirement. A vehicle can be charged fully or partially at one of the charging locations. The
charged energy is a linear function of time. By focusing on logistical service provider operating
from one depot, the traditional EVSP is simplified in several ways. Firstly, there is only a
single depot from where the vehicles depart. Secondly, the start and end locations of service
trips are fixed at the depot. This is in contrast to the majority of other EVSP problems,
where start and end location of service trips are dispersed regionally. Lastly, the problem is
simplified by restricting charging to only depot-charging. This means that charging can only
occur at the single home-depot and not en-route. The goal is to minimise the size of the fleet
that is required to perform a certain day schedule.

-0-4 Model Formulation

Let G(V,A) be a directed graph, where V represents a set of nodes and A a set of feasible
arcs. The set of nodes V' contains a node for each service trip ¢« C T. Each trip has a certain
starting time a;, end time b;, duration d; and energy requirement e;. Charging event nodes
are represented by a set R C V. For each trip node ¢ € I a corresponding charging node
r; € R is created that can be visited right after trip ¢. Each charge event node ¢ has a earliest
start time a; which is equal to the end time of the preceding trip node: b;. Also the set
V contains a vehicle source node and sink node (0,,w,). Let 67 (i) and 6~ (i) be the set of
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Figure 2: Graph of the EVSP

arcs that originate in node i and end in node i. Trip node i is connected to trip node j if
the trip times do not overlap; b; < a; or a; > b;. For the charge nodes i € R holds that
they are connected to the corresponding preceding trip nodes j € T and all trip nodes after
i for which: a; > a;. The charge node corresponding to node i is denoted as r(i). Let the
binary decision variable z;; be equal to one if the service trip or charging event at node j is
performed directly after node i. The variables y; and z; track the charge at arrival of node i
and the time of arrival at node i. The variable h; tracks the amount of charge that is added
to a vehicle in the charge nodes. The battery capacity of a vehicle @ is given in kW h. The
minimum battery capacity that should be available at all times is denoted as Qi Let ve be
the costs of a vehicle.

Objective Function

The objective for the charge scheduling model is to minimise the number of vehicles that is
required to perform the trip schedule and is given as follows:

2(07(0y)) * ve (1)

Constraints

2(67 (1)) —2(6% () =0 Vie IUR 2)
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> w(6t(i) =1 Viel (3)

(4,5)€0%(2)

> w(st(i) <1 Vie R (4)
(4,5)€07%(2)
yi — e + Mi(1—x;5) > yj Viel,jeV (5)
Yirhi + Mi(1 —z35) >y VieR,jeV (6)
zi+di — Ma(1 —245) < 25 VieT,jeV (7)
zi+gxhi—My(1—uz45) <z YieR,jeV (8)
0<h <Q -y Vie R 9)
0<yi <Q— Qmin VieV (10)
zi = a; VieT (11)
Yo, = @ (12)
xi; € {0,1} V(i,j) € A (13)
M =Q (14)
My = max(b) (15)

Constraints 2 represent the flow conservation constraints. Constraints 3 ensure that every
trip node will be visited exactly once and constraints 4 make sure that every charge event is
performed maximally once. Constraints 5 and 6 keep track of the energy level before each
node. Constraints 7 make sure that every node succeeding a trip node will start at a later
time than the end time of the trip node. Constraints 8 keep time constraints for charge
event nodes. Constraints 9 ensure that a battery can not be charged more than its maximum
capacity. Constraints 10 impose the battery capacity limit. Constraints 11 set the arrival
time at a trip node to the trip starting time. Constraints 12 set the battery SOC to its
maximum capacity when leaving the vehicle source node. Constraint 12 defines the binary
decision variable x;;, meaning that node j is visited after 4.
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