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Summary
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Hospitals are inherently complex systems, characterized by two distinct dimensions
of complexity. First, from a functional perspective, medical procedures inside a
hospital are complex. Second, from a spatial and organizational standpoint, hospitals
resemble small urban environments, where corridors function as streets and spatial
units operate similarly to distinct land uses within a city. This dual-layered complexity
underscores the profound impact of hospital layout on users’ visibility and walkability
within the hospital. Consequently, hospital design extends beyond mere architectural
considerations; it entails the creation of a system where inefficiencies and risks can
arise if not planned carefully. To enhance the design of the hospital system, we
propose the integration of early operational insights into the design process through
the development of a decision support system, referred to as the Hospital Design
Support System (HDSS). The HDSS aims to establish a robust and transparent
evaluation framework for systematically assessing hospital layout performance in
terms of functionality and operational efficiency.

This dissertation begins with an introduction chapter (chapter 1), which explains the
rationales for developing an HDSS. It provides an overview of the research
background, objectives, and research questions, while also defining relevant
terminology, research scope, and the proposed methodology. Chapter 2 presents a
comprehensive literature review, summarizing the key design challenges associated
with hospital layout designs in China. These challenges include overcrowding, long
patient waiting times, long patient walking distances, and difficulty in wayfinding. The
proposed HDSS aims to address these issues through simulation modelling and
exploratory network analysis. Since both approaches require a well-structured
foundational dataset to function effectively, the development of such a dataset is a
prerequisite for the HDSS. To meet this requirement, we introduce the Hospital
Configuration Model (HCM), which serves as the foundational dataset for the HDSS.
The HCM comprises four types of critical information: geometric, topological,
semantic, and operational. Chapter 3 provides a detailed description of the HCM and
outlines the methodology for systematically constructing it. Once the HCM is
established, we can develop the HDSS to assess hospital layout configurations in
relation to the four key design challenges. Chapter 4 describes the developed HDSS,
which consists of three core models: a Four-Step Transportation Model which
simulates the city-like characteristics of hospitals and evaluates hospital layout
performance concerning overcrowding, patient walking distances, and difficulty in
wayfinding; a Discrete-Event Simulation Model which captures the factory-like nature
of hospitals and assesses hospital layout performance in terms of patient waiting

Summary
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times; and an Exploratory Network Analysis Model — unlike the previous two models,
which focus on functional efficiency, this model evaluates the inherent logic of
hospital spatial structures without considering the specific functions or attributes of
hospitals’ spatial units. In other words, the Four-Step Transportation Model and the
Discrete-Event Simulation Model assess the rational aspects of hospital layouts,
while the Exploratory Network Analysis Model examines the irrational aspects of
hospital layouts. Additionally, the HDSS includes an evaluation mechanism that
translates simulation results into actionable insights to support informed
decision-making. Specifically, disaggregated outputs from the simulation models are
aggregated, normalized, and interpreted using a functional unit, ensuring fair
comparisons across hospitals of varying scales. The HDSS serves as a robust
decision-support tool for architects, hospital administrators, and head nurses during
the early design stages, enabling the identification of optimal hospital layout
alternatives. Finally, Chapter 5 presents the conclusion of this dissertation,
addressing the research questions, summarizing key contributions, discussing
research limitations, and suggesting potential directions for future studies.

A Hospital Design Support System
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Introduction

1.1

Background

19

The life cycle of a hospital project includes the planning stage, designing stage,
construction stage, operation stage and maintenance stage. Identifying the problems
with the hospital project in the early design stage and improving them is much easier
and more cost-effective than identifying and improving the problems during/after the
construction stage. The expenditures of a hospital project can be divided into capital
expenditures (prepaid costs such as buildings, construction and equipment, etc.) and
operational expenditures (day-to-day costs such as staff salaries and utilities, etc.)
[1]. Operational expenditures account for approximately 96% of the total costs in
hospitals, which is much higher than the capital expenditures (approximately 4%)
[2]. This is due to the complexity of the hospital architecture, the complexities of a
hospital building are twofold, which include spatial complexity (i.e., hospitals have
large scales, multiple functional units connected by public and/or access-limited
corridors) and procedure complexity (i.e., different actors accomplishing different
types of procedures such as diagnosis, treatment, clinical test, surgeries and
cleaning, etc.). These complexities make hospitals eligible to be compared to cities.
Hence, when we design a hospital, we are not just making a building, but a system
that can have many risks and problems if not treated carefully. There are two ways of
making such systems. The conventional way is to make it by intuition, architects
design hospitals based on experience or expectation. The other way is to introduce
an early operational insight into the design process through simulation. Simulations
can form the base of a decision support system by predicting the performance of the
system and making evaluations according to the simulation results. Decision support
systems are concerned with the field of Operations Research, which has been
separated from the field of Architecture for a long time. This research aims to
combine the fields of Architecture and Operations Research to develop a Spatial
Decision Support System to address the problems with Chinese hospital layout
design and reduce hospital expenditures.

Introduction



1.2

Problem Statement

1.2.1

Problems with hospital design in China

1.2.2

Inappropriate hospital layout design leads to problems such as overcrowding,
patients/visitors’ difficulty in wayfinding, nurse/patients’ long travel distance, and
patient long waiting time [3, 4, 5, 6, 7, 8,9, 10]. These problems/challenges cause
not only patient and staff dissatisfaction but also a negative impact on medical
outcomes and operational inefficiency, which further lead to high expenditure [11,
12].

High Operational Expenditure in hospitals

1.2.3

A recent study investigating 3501 hospitals’ cost structures in the USA shows that
the operational expenditures of hospitals (96% of total cost) are much higher than
the capital expenditures (4% of total cost) [2]. The high operational expenditures
can be caused by operational inefficiency. For instance, a study conducted in a
large-scale hospital in the U.S. shows that due to the unsuitable layout design, the
annual expenditure caused by the wayfinding system is $220,000 per year or $448
per bed per year in 1990 [13]. The main reason behind this is that doctors/nurses
are interrupted by visitors and have to pause their current work and give directions,
according to the study results, more than 4,500 staff hours (i.e., two full-time staff
positions) were occupied [13].

The complexity of hospitals

20

As mentioned in section 1.1, it is much easier and more cost-effective to identify the
problems and make changes during the design stage and before the
construction/operation stage. Specifically, the hospital architectural design stage
includes the schematic design phase, the layout design phase and the design
development phase. This study aims at identifying problems and make improvements
during the layout design phase. Spatial layout design, as one of the most significant
phases of the architectural design stage [14], is concerned with identifying
appropriate locations and geometries for a set of interrelated functional units to
achieve design goals and maximize design performance in line with design
preferences [14]. The complexities of hospitals are twofold. Firstly, the building

A Hospital Design Support System
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environment itself is complex, the hospital can be compared to a city due to its scale
as well as the traffic system (e.g., there are main public corridors and access-limited
corridors, which can be regarded as major roads and minor roads in a city).
Secondly, different medical and non-medical procedures indicate that the
interactions between the actors and the environment are complex. Hence, when we
design a hospital, we are not merely designing a building, instead, we are making a
system that is prone to have problems mentioned in section 1.2.1. Conventionally,
architects design hospital systems by intuition or based on experience and
expectation, which can cause dissonance between the envisioned and the actual
building performance in terms of the user’s behaviour [15, 16]. Alternatively, we can
introduce an operational insight during the layout design stage through simulation.
Simulation can predict the system performance and make evaluations based on
simulation results, which form the basis of a Spatial Decision Support System. A
Spatial Decision Support System is concerned with the field of Operations Research,
and its interrelated fields such as Facility Layout Planning and Transport Modelling
etc. These fields have long been separated from the field of Architecture.

Criticality of procedures

21

Importance of procedures in the overall functioning of hospitals. People are
supposed to follow procedures in hospitals, which means when they walk, they do not
walk for fun, and they do not wander. Most movements are purposeful in a hospital,
although this is not a full justification for using deterministic models of movement of
individuals based on a geodesic, it is a very good reason for simplifying several
assessment models, which are supposed to work on aggregate levels. Discrete-Event
Simulation models are therefore very well suited to the assessment of hospitals for
this clear reason. Therefore, it is clear that for any assessment we shall need some
representations related to these procedures, e.g., schedules, designated routes,
restricted zones, and most importantly, the expected frequencies of transition
between spaces, which are typically summarized in Activity Relations Charts (a.k.a.,
ARC models or REL charts). For a detailed explanation of a REL chart, please refer to
section 3.1.2.2 and figure 3.4 in Chapter 3. A clear-cut data model or mathematical
representation of a layout configuration is necessary for any kind of assessment. For
the definition of the layout configuration, please see section 1.4.1.9. In short, the
layout configuration can be referred to as the ‘form’ and the procedures can be
referred to as the ‘function’ of a hospital, referring to the architectural jargon. We will
need both of these in exact shapes (data models) to be able to perform any
systematic assessment.

This research aims to combine the two fields of Operations Research and Architecture
to develop a Spatial Decision Support System for improving operational efficiency
and reducing operational expenditures in Chinese hospitals.

Introduction
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Use Cases of the Hospital Design Support System

1.3

This research aims to develop a Spatial Decision Support System as a Python
workflow. To demonstrate the function of the proposed Spatial Decision Support
System, four use cases are described by answering the following questions: who
would be the user of this system? What questions can this system answer? And at
what stage of a project can these questions be answered?

Use Case 1: The hospital director can use this system to check the crowdedness of a
hospital project during the layout design stage.

Use case 2: The architect can use this system to check how difficult it will be for the
first-time visitor to find their way in a hospital project during the layout design stage.

Use Case 3: The head nurse can use this system to check if their walking distance will
be too long in a new hospital project during the layout design stage.

Use Case 4: The hospital director can use this system to check if the patient waiting
time or walking distance will be too long in a new hospital project during the layout
design stage.

In short, the proposed Hospital Design Support System is envisaged to be a
Multi-Criteria Decision Analysis toolkit for the integral evaluation of design
alternatives.

Research Objectives & Questions

22

This research aims to combine the knowledge from the disciplines of Operations
Research and Architecture to develop a Spatial Decision Support System for
addressing the problems and challenges (i.e., overcrowding, long patient/nurse
travel distance, long patient waiting time and patient/visitor’s difficulty in wayfinding)
faced by hospital layout designs in China. The objectives of this research are:

To develop a tool for Spatial Network Analysis for assessing hospital layout design in
terms of visibility and accessibility.

To develop a tool for simulation modelling for assessing hospital layout design in
terms of overcrowding.

To develop a tool for simulation modelling for assessing hospital layout design in
terms of patient and/or nurse walking distance.
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To develop a tool for simulation modelling for assessing hospital layout and
procedures (program of requirements) design in terms of patients/visitors’ difficulty
in wayfinding.

To develop a tool for simulation modelling for assessing hospital layout design in
terms of patient waiting time.

The above-mentioned research aim and objectives can be reached by answering the
following research questions:

How to measure the accessibility and visibility of a spatial unit concerning all other
spatial units in a hospital layout?

How to measure the crowdedness in a hospital layout design?

How to measure the patient’s and/or nurse’s walking distance in a hospital layout
design?

How to measure patient/visitor’s difficulty in wayfinding in a hospital layout +
procedures (program of requirements) design?

How to measure patient waiting time in a hospital layout design?

The main research objectives would then divide this research into three separate, yet
interrelated Work Packages to answer the research questions above.

Research Terminologies & Scopes

1.4.1

Terminologies

23

This section introduces the relevant terminologies of this study. The terminologies
include hospital types, hospital building types, Geographical Information Systems,
Building Information modelling, Operations Research and its interrelated disciplines
(i.e., Industrial Engineering and Facility Planning), Graph Theory and Network
Analysis, transportation planning, definition of a layout configuration model,
simulation modelling, and from analysis to evaluation and decision support.
Specifically, this section is structured as follows:

Hospitals are indoor cities/villages, the scale is big, much bigger than many
buildings. (Section 1.4.1.1)
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This makes them hard to navigate, hard to manage logistics, etc. (section 1.4.1.2)

This means that analyzing their spatial model’s integration of BIM and GIS (building
scale and geographical scale) is most likely to be necessary. (sections 1.4.1.3 &
1.4.1.4)

The importance of the layout of a hospital is related to “facilities planning” and
facility management in terms of the efficiency and effectiveness (efficacy) of
“operations”, as in Operations Research. (section 1.4.1.5)

Why graphs/networks? Navigation and studying operations involving human
movement in a complex (non-Euclidean) environment make the use of
graphs/networks inevitable. Network models (or hyper-graph/Mesh models) are
necessary for modelling walkable 2D manifolds. (section 1.4.1.6)

Spatial network analysis is particularly challenging because one needs to first model
the structure (Geometry and Topology) of space adequately to be able to analyze it
as a network. (section 1.4.1.7)

Transport patterns inside a hospital can be complex, and they need to be planned
properly. (section 1.4.1.8).

What is a layout configuration model? A layout representation of a hospital is
necessary for any kind of assessment, e.g., spatial network analysis and simulation
modelling. (section 1.4.1.9)

The Simulation Models include the deterministic model and the stochastic model.
This research is aimed at developing deterministic pedestrian simulation models, It is
to be noticed that this research is not making a “crystal ball”; it is about Ex-ante
assessment based on aggregate patterns, not individual trajectories. Additionally,
this research is not about Pedestrian simulations egress, fire egress/fire safety,
stampede, etc. (section 1.4.1.10)

In short, this research is mostly focused on what to do with simulation results, and
how to analyze a decision based on simulation results (section 1.4.1.11)

Hospital Types

24

Based on their functionalities, Hospitals can be differentiated into different types
such as general hospitals, children’s hospitals, university hospitals, specialized
hospitals, community health centers, and rehabilitation and support clinics [17].
Hospitals can also be categorized based on ownership, such as private hospitals and
public hospitals (including state hospitals, city hospitals, district hospitals, and
village hospitals). These types of hospitals are all common in China, and there is
another special type of hospital in China, which is the Traditional Chinese Medicine
(TCM) hospital [18]. Most hospitals have large scales, their scales are so large that
one can compare them to small cities. The large scale makes the hospital hard to
navigate and manage the logistics, etc.
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Hospital Building Types

1.4.1.3

The current hospital building types can be classified into two main groups — high-rise
hospitals and low-rise hospitals. High-rise hospitals are suitable for limited site
areas, where all the major departments and functions can be compacted into one
single large building complex. A variation of the high-rise hospital type, namely the
Breitfuss Model, is popular in Europe; it is also known as the “Wide Foot Model”,
“Matchbox on a Muffin”, or “Tower with Technical Blocks”. In comparison, the
low-rise hospital has a higher requirement on the size of the site, and it is more
flexible and easier to expand due to a clear division of different functions (e.g.,
inpatient and outpatient) into different building wings so that the construction of one
function will not influence the operation of another. The popular forms of low-rise
hospitals in Europe include T-type, K-type, and H-type [17]. In China, both types of
high-rise hospitals and low-rise hospitals are popular. Both scales of these types of
hospitals are large, which makes it difficult to navigate both types of hospitals. Hence,
it is appropriate to introduce Geographical Information Analysis (GIS) and Building
Information Modelling (BIM )as means of analyzing the spatial models of hospitals.

Geographical Information Systems

1.4.1.4

A Geographical Information System (GIS) mainly consists of a geospatial database
management system that is used for systematically storing and retrieving geospatial
data, a data processing workbench that can manipulate data for higher-level analysis
and decision support, and a data visualization system that can communicate to users
by presenting the result of data analysis [19]. The information stored in the
geospatial database management system is threefold, namely, geometric information
such as room sizes and shapes, topological information such as connectivity and
adjacency, and semantic information such as pedestrian density and room functions,
etc. [20]. Hospitals can be considered as an analogy of a small city, it is reasonable
to use a geographical approach (i.e., the GIS approach) to analyse hospitals. Our
research is mainly concerned with the spatial database management system part of
GIS. For example, we propose a spatial database management system where a
hospital’s geometric information, topological information and semantic information
can be stored and retrieved.

Building Information Modelling

25

Building Information Modelling (BIM) consists of a 3D model, a database that
contains all the relevant data, and the interoperable software used for building the 3D
model [21]. Architects can use BIM software to design buildings and build their
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virtual models in 3D [21]. The information contained in BIM's database includes
geometric information, topological information, attribute information, and
geographical information. Our research uses BIM models of hospitals as input and
extracts the relevant data (i.e., geometrical, topological, and semantic data) from
them and stores the data in the spatial database management system mentioned in
section 1.4.1.3 for further analysis.

Terminology of Operations Research

26

The spatial decisions made when designing a hospital layout are related to objectives
of higher efficiency and effectiveness of “operations”, as in Operations Research
(OR). OR is a discipline that can support decision-making by developing and applying
advanced analytical methods [22]. When dealing with complicated decision-making
problems, Operations Research can find an optimal solution (or optimal solutions) by
employing methods and techniques such as mathematical modelling, mathematical
optimization, simulation, queuing theory, Markov Decision Process, statistical
analysis, decision analysis, etc. The optimal solution identified by an OR process is
often a maximized result (e.g., maximized performance or interest) or a minimized
result (e.g., minimized cost or distance) [22]. In this study, two interrelated
disciplines of OR are discussed, including Industrial Engineering (IE) and Facilities
Layout Planning (FLP).

Industrial Engineering (IE). OR lies in the area of IE. According to IISE [23], IE is
“concerned with the design, improvement and installation of integrated systems of
people, materials, information, equipment and energy. It draws upon specialized
knowledge and skill in the mathematical, physical, and social sciences together with
the principles and methods of engineering analysis and design, to specify, predict,
and evaluate the results to be obtained from such systems.” Industrial engineering
approaches such as Lean Thinking and Six Sigma concepts have been applied in
healthcare to reduce patient waiting time and reduce overcrowding [24].

Facility Layout Planning (FLP). Facility layout planning is one of the most important
problems in the field of Operations Research and Industrial Engineering [25]. FLP is
defined as locating different facilities in a plant area, to achieve the most efficient
layout according to certain criteria or objectives while taking into account different
constraints such as size and form, etc. [26]. The most common and significant
objective related to the efficiency of a layout is the minimization of material handling
cost because such cost is proportional to the distance, which depends on the layout
[27]. Figure 1.1 presents a hospital-related example of the FLP, wherein eight
distinct departments or functional areas are assigned to eight different locations
within a hospital building, to minimize walking distances for both patients and staff.
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FIG. 1.1 A hospital-related example of the Facility Layout Planning, image source: author

Graph Theory & Network Analysis

27

Graph Theory is a term used in the field of mathematics; it is also known as Network
Analysis in the fields of engineering and applied science. these terms can be used
interchangeably[59, p. 4]. The terms graph, weighted graph, directed graph, dual
graph and coloured graph are introduced respectively in the following:

Graph/network: A graph/network G is composed of two sets of objects, namely, the
set of nodes/vertices V = {v1, v2, vs, ... } and the set of links/edges

E = {e1,ez,es3,...} [28]. The spatial configuration of a hospital can be represented
by a graph. Specifically, nodes can represent rooms/corridors in a hospital, and if
two rooms/corridors are directly connected, a link can represent the connection
between these rooms/corridors. Figure 1.2(a) shows a small portion of the Panyu
Central Hospital in Guangzhou, China. It includes eight rooms and one corridor.
Figure 1.2(b) is a graph representation drawn from Figure 1.2(a) and shows the
connection relationships between rooms or rooms and corridors. For example, rooms
v1 and vy are directly connected, while rooms v; and vg are not directly connected
(connected through room v2). The degree of a vertex is defined as the number of
edges incident to it (e.g., the degree of vy is 4 and the degree of v, is 2) [28].
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(b)

FIG. 1.2 A small portion of the ground floor plan of Panyu Central Hospital (a) and a graph representation
showing adjacent relationships among rooms/corridors (b), image source: author.

Weighted graph: A weighted graph/network means that the edges and/or the
vertices are attached with weights [28]. In a network representation of hospital
spatial configuration, the links can be assigned weights representing travel distance
or travel time, etc. For example, in figure 1.3(a), each edge is assigned a weight
related to distance. A path in a graph/network from v; to v; is denoted as p(z, 7) [28].
For example, in Figure 1.3(a), path p(1,6) is a sequence of vertices and edges

{1)1, €1, V2, €5, '()6}.
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FIG. 1.3 An example of a weighted graph/network, image source: author

Directed graph: The graphs shown in Figure 1.2 and Figure 1.3(a) are undirected
graphs, which means that the edges in these graphs do not have directions. By
contrast, the graph in Figure 1.3(b) is a directed graph; each edge in this graph has
one or two directions, and the two directions of one edge can have different weights
[29]. The shortest path in a weighted graph/network is the path between two nodes
such that the sum of the weights of its elemental edges is minimal when weights
represent travel distance [29]. For example, in Figure 1.4, the shortest path between
v1 and vy is the path highlighted in red.

FIG. 1.4 The shortest path in the graph is highlighted in red, image source: author
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— Dual graph: Another important concept of Graph theory is the Dual Graph. In a 2D

space, the dual graph of its primal graph G is a graph that has a vertex for each face
of G and an edge between vertices for each pair of adjacent faces (see Table 1.1)
[30], a face in a graph is defined as a region surrounded by a group of vertices and
edges [31]. An example of a dual graph can be seen in Figure 7, where the blue
graph is the dual of the black graph and vice versa.

TABLE 1.1 Duality of features in 2D space [30]

Primal

Vertex (node) Face
Edge (link) Edge
Face (e.g., a triangle or a polygon) Vertex

FIG. 1.5 The dual graph, image source: [32]

Spatial Network Analysis

30

Spatial Networks Analysis lies in the field of Graph Theory and is inspired by the
study of Social Network Analysis [30]. Spatial Networks are graphs whose
vertices/edges are spatial elements (such as rooms, corridors, streets, etc.), the
vertices in a spatial network are embedded in a space provided with a metric (e.g.,
distance) [33]. Figure 1.2(b) is an example of a spatial network, where vertices
represent rooms and edges represent direct connections between rooms. Spatial
Network Analysis adopted the concept of Centrality metrics from Social Network
Analysis, which measures the influences of the vertices in a graph [34]. Four
common centrality measures are discussed in this study:

Degree Centrality: It measures how many other nodes a node is directly connected to
(i.e., the degree of a node) [35].

Closeness Centrality: It measures how close a node is to every other node in the
network [35].

Betweenness Centrality: It measures the frequency of a node serving as a bridge
along the shortest path between two other nodes in a network [35].
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- Eigenvector Centrality: It measures the influence of both a node and its neighbours in
a network. If the node is connected to other nodes with high quality, then its
Eigenvector Centrality will also be high [35].

Based on the theory of Spatial Network Analysis, one can calculate the centrality
values mentioned above to evaluate the layout design of complex buildings such as
hospitals and predict their “potential performances”. Specifically, the centrality
values can indicate how visible and accessible a spatial unit (e.g., a room or corridor)
is concerning all other spatial units in a layout.

1.4.1.8 Transport Planning

Transport planning is concerned with evaluating, assessing, designing and planning
transport facilities such as streets, highways, public transport lines, etc., with the
objectives of moving people and goods to destinations efficiently and cost-effectively
[36]. Since hospitals have similar transport systems to cities (public main corridors
and access-limited corridors in a hospital can be compared to major and minor roads
in a city), the knowledge from the area of transport planning can be used for
designing and evaluating the pedestrian flows and logistics in hospitals. The
transport planning process has four steps (i.e., Four-Step Transportation Model):

— Trip generation: this step predicts the number of people starting from and arriving at
each zone in the studied area [37]. For example, the trip generation step in a hospital
design project can be predicting the number of pedestrians travelling from and
arriving at each functional unit in the hospital. Table 4.2 presents an example of trip
generation in a virtual hospital with five spatial units, i.e., reception hall, emergency
room, diagnosis room, imaging room, and pharmacy.

TABLE 1.2 Trip generation in a virtual hospital project with five spatial units

Functional units Production (number of pa- | Attraction (number of patients)
tients)

Reception hall 50 28

Emergency room 30 26

Diagnosis room 10 20

Imaging room 20 17

Pharmacy 5 24

Total 115 115

— Trip distribution: this step predicts the number of people from each origin to each
destination by producing an origin-destination matrix/table [37]. For example, in the
case of the hospital design, this step predicts the distribution of the total number of
people going from each origin to each destination. Table 1.3 presents a trip
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distribution matrix/table for the virtual hospital project, serving as an illustrative
example.

TABLE 1.3 Trip distribution in a virtual hospital project with five spatial units

Reception Emergency Diagnosis Imaging Pharmacy 30
hall room room room
Reception N/A 20 10 10 10 50
hall
Emergency 10 N/A 5 5 10 30
room
Diagnosis 5 2 N/A 2 1 10
room
Imaging 10 3 4 N/A 3 20
room
Pharmacy 3 1 1 0 N/A 5
D 28 26 20 17 24 115

Mode choice: this step predicts the travel modes of the pedestrians [37]. For
example, in the case of the hospital, travel modes for patients may include walking,
wheelchair use, or transportation on a hospital bed.

Route assignment: the last step selects the paths between all origins and
destinations and hence the total amount of pedestrians on each path will be known
[37]. In the case of a hospital, path selection can be based on the shortest path (the
path with the shortest travel time).

In this research, the Four-Step Transportation Model will be used for simulating the
city-like character of hospitals and evaluating the hospital performance in terms of
crowdedness and patient walking distance.

Definition of Configuration Model

32

The configuration model serves as a comprehensive framework for representing the
layout of a building system, integrating four critical types of information: geometric,
topological, semantic, and operational. Specifically, within the context of a Hospital
Configuration Model (HCM), these four types of information are defined as follows:

Geometric Information

The geometric data in the HCM captures the physical structure of the hospital,
including the boundaries and 3D spaces of rooms and corridors [38].

Topological Information

Topological information represents the spatial relationships among the functional
units of the hospital, structured as a network graph [38].
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-~ Semantic Information

Semantic information assigns meaning to spatial units by connecting them to their
functional roles [38]. Examples of semantic information include Room Names and
room areas.

Operational Information

Operational information encapsulates patient journeys within the hospital, detailing
the sequential movement of patients through various rooms during medical
procedures [38].

Table 1.4 presents detailed explanations and examples for each type of information
inan HCM.

TABLE 1.4 Exemplified descriptions of four types of information in a Hospital Configuration Model

Information Type Explanation Example
Geometric Information Room boundary defined by a se- | {‘RECEPTION’:[‘-20, 34, 4, *-20,
quence of 3D points. 29,4''-19, 29,4, '-19,39,4' -
20,34, 4']}
Topological Information A network graph composed of | {‘Graph1’:[{“node1™
nodes and edges. {“id":“room1"},“node2":
{“id":“room2"},“edge1™:{"id":“e1"}}1}
Semantic Information Room name {‘Department$Imaging’:[‘Radiology’]}
Operational Information A patient’s journey through the | {‘patient journey 1':[‘Entrance’,
hospital, represented as a se- ‘Registration’,'Diagnosis’, ‘Phar-
quence of rooms the patient macy’,‘Exit']}
must visit.

Simulation Modelling

33

The Transport Planning and Four-Step Transportation Model predicts the static
transportation systems inside a hospital. In this research, it will serve as a base for
the dynamic simulation (Simulation Modelling) of hospital transportation. Methods of
Simulation Modelling will be applied to achieve the goal of evaluating the hospital
layout design at the layout design stage by simulating the dynamics of the hospital
and making an assessment based on the simulation results.

To understand simulation modelling, the concepts of system and model need to be
explained. A system is defined as a set of related components (e.g., individuals,
elements, spaces, etc.) interacting with each other to achieve a certain objective
[27]. A model is a representation of a system [39]. Specifically, system models are
developed to design, assess, explain, verify and validate a system [28]. Any activity
of imagining or speculating how a social dynamic would develop is running a model
(e.g., imagining how the hospital-acquired infection would spread inside a hospital)
[40]. However, this is an implicit model; our study focuses on explicit models in which
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assumptions are described elaborately for simulation and thus making informed
predictions [40]. One should notice that modelling is not equal to prediction; it has
many functions other than prediction. According to Epstein [40], the explicit model’s
functions include “explain”, “guide data collection”, “illuminate core dynamics”,
“demonstrate trade-offs/suggest efficiencies”, and “reveal the simple (complex) to

be complex (simple)” among others.

System models can be categorized into deterministic models and stochastic models,
between which a distinction must be made. When we try to model a system, the
values of parameters/variables (e.g., each patient’s time spent in the doctor’s
consulting room) need to be appraised [27]. These parameters/variables can change
over time, i.e., they are random variables or their changes are predictable [27].
Deterministic simulation ignores the randomness of the variables and assumes that
the variable is constant (e.g., when simulating the situation in a hospital, the
deterministic simulation assumes that each patient’s time spent in the consulting
room is always 15 min) [27]. By contrast, stochastic simulation recognizes the
randomness of the variables (e.g., each patient’s time spent in the consulting room is
a random variable with a mean of 15 min) [27].

A system model can also be static or dynamic [41]. A static system model represents
a system at a certain point in time, while a dynamic system model shows how a
system’s state variables change with time (e.g., a patient’s walking distance in a
hospital can increase with time) [42]. A dynamic system model can be further divided
into continuous or discrete system models [41]. In a continuous system model, the
state variables of the system change continuously over time (e.g., the position of the
Earth relative to the sun) [43]. Conversely, in a discrete system model, the state
variables of the system only change at discrete points in time [43]. For example,
patients arrive at the hospital at 8:01, 8:15, 9:20, etc.

Figure 1.6 illustrates the categories of the system model. Three types of system
models (i.e., Agent-Based Modelling, Discrete-Event Simulation and Random Walk
Simulation) are introduced in the following. These three types of models are
classified as stochastic, dynamic, and discrete system models [41].
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FIG. 1.6 System model categories, image source: [41].

An agent-based model is defined as a computer program composed of autonomous,
heterogeneous, and active agents, and the interactions between agents and between
agents and the environment [44]. Agents are small computer programs and can
represent any type of entity [44, 45]. In the case of a hospital agent-based model,
agents can be people (i.e., patients, visitors, nurses, doctors, etc.). The agent
environment is the space where agents interact [45], it can be a graph/network as
introduced in section 1.4.1.6 [44]. The characteristics of agents are introduced in
the following:

Autonomy: agents are autonomous entities and their behaviours are not directed by
central controllers; they are able to make independent decisions [45].

Heterogeneity: agents can have different attributes such as roles, ages, jobs, etc.
[45]. For example, in an agent-based model of a hospital, agents can include
different roles such as patients, nurses, doctors and visitors.

Active: patients are active entities in terms of:Goal-directed: agents can be assigned
to different goals [45]. For example, in the agent-based model of a hospital, a
patient-agent can be assigned goals of finding their doctors, getting healed and
being discharged. Perceptive: agents can be enabled to perceive their surroundings,
other agents as well as the whole structure of the environment (i.e., a mental map) so
that agents know the locations of obstacles and their destinations [45]. Bounded
Rationality: agents have a finite ability to make adaptive and inductive decisions to
achieve their goals [45].

Interactive: agents can interact with other agents and/or the environment
[45].Mobility: agents can move in the environment [45]. For example, in the hospital
agent-based model, agents can move in order to achieve their goals, such as
wayfinding.
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- Adaptation/Learning: agents can be adaptive; they can be enabled to change their

state according to previous states, to memorize/learn [45]. For example,
patient-agent can be enabled to memorize their path during wayfinding so that they
will not repeat the wrong path.

Agent-based modelling (ABM) can be applied for hospital design/evaluation with the
aim of simulating the flow in the hospital space or examining the crowd congestion in
public corridors or waiting areas, to name but a few.

A Discrete-Event Simulation (DES) is the model of a system where events occur at
different instants in time, which leads to changes in the system state [46]. A DES
model is composed of:

Discrete-event: the state variables of a DES model do not change continuously, they
only change at discrete time instances due to events occurring at different time
instances [41]. For example, the number of patients in a hospital only changes if a
new patient comes in or a current patient is discharged.

Clock: a clock tracks the simulation time, the DES model is dynamic because time is a
significant variable, i.e., the state variables of the system are different at different
points in time [41]. For example, the number of patients in a hospital can vary at
different points in time.

Random number generators: a DES contains randomized variables (e.g., patient
inter-arrival rate can be randomised) [41].

Statistics: it tracks the system’s statistics [41], e.g., patient mean waiting time, the
total number of people inside the hospital, etc.

Ending Condition: the simulation will end when the ending condition is met, e.g., the
simulation is set to end at a certain simulation time [41].

In this research, DES will be applied to simulate the factory-like character of hospitals
and evaluate hospital performance in terms of patient waiting time.

A Markov chain is a stochastic system model whose state transitions from one to
another, the system changes its current state to the next state at each point in time,
and it is changed based on a transition probability [27]. A Markov chain has three
attributes: the number of possible states is finite [27]; the probability of transitioning
from one state to another is only dependent on the current state, not on any earlier
history (it is memoryless) [27]; the transition probability from one state to another is
constant [27]. Here we present an illustrative example of an RWS model using the
hypothetical hospital consisting of five spatial units, as introduced in Section 1.4.1.8.
Figure 4.2 represents this hospital environment as an undirected graph, where each
node corresponds to a spatial unit within the facility. The agent’s origin is the
“Reception Hall", and the destination is the “Pharmacy". The simulation assumes that
the agent begins at the origin node and moves to a randomly selected connected
node at each step until reaching the destination. At each step, the agent chooses one
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Reception
Hall

Emergency
Room

Imaging
Room

Diagnosis
Room

Pharmacy

FIG. 1.7 An example of a Markov Chain/RWS model, image source: author.

of its neighboring nodes with equal probability. For example, a possible random walk
path could be as follows:

Start at “Reception Hall", move to “Emergency Room" (only available choice).
Move to “Diagnosis Room" (choices: “Imaging Room", “Diagnosis Room").

Move to “Imaging Room" (choices: “Emergency Room", “Diagnosis Room",
“Pharmacy").

Move to “Pharmacy" (choices: “Emergency Room", “Diagnosis Room", “Pharmacy"),
reaching the destination.

Thus, the random walk path, expressed as a Python list, is: [“Reception Hall",
“Emergency room", “Diagnosis Room", “Imaging Room", “Pharmacy"]. This example
demonstrates the stochastic nature of the random walk process, where agents
navigate the hospital environment without prior knowledge of the optimal path. In
this research, RWS will be used to evaluate the hospital’s performance in terms of
difficulty in wayfinding by simulating situations where patients become disoriented,
visiting multiple incorrect locations before reaching their intended destination.
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Disaggregated Aggreate Quality
Simulation Results Criteria

Functional units

DEFINE
FUNCTIONAL
UNITS

SIMULATION

OUTPUTS

number of agents
each patient/nurse
walking time

each patient waiting
time

each patient/visitor
extra waiting time

average patient waiting over one week
time

average patient/visitor
extra waiting time

FIG. 1.8 The necessary steps between analysis, evaluation and decision support, image source: author.

From Analysis to Evaluation and Decision-Support

38

Generative [simulation] models such as Discrete-Event Simulation (DES) and
Random Walk Simulation (RWS) produce spatially disaggregate results. However, a
decision-maker concerned with making better decisions about the whole building
would be required to take at least four important steps to be able to use such
information (see also Figure 1.8):

Spatial Aggregation and Temporal Aggregation: the simulation results are
disaggregate, e.g., it might contain the number of pedestrians in each spatial unit in
the hospital, or each pedestrian’s time spent on walking and waiting. These
disaggregate results need to be aggregated for ease of comparison, e.g., the
aggregate forms of the results can be the average pedestrian density over time,
average pedestrian walking time and waiting time, etc.

Relativization: the aggregate results need to be further relativized/normalized. For
instance, it is unfair to compare the average pedestrian walking distance in a large
hospital with a relatively small hospital, because the walking distance in a large
hospital will be naturally longer. Hence, the aggregated results need to be relativized
for accurate comparison.

Functional Unit Equalization: the functional unit is defined as ‘a reference unit of
study normally used for comparative purpose’ [47]. It is a necessary parameter in a
comparative assessment [47]. For example, when comparing two hospitals’
performances in terms of reducing overcrowding, a fair comparison can be ‘people
density per square metre of the waiting area’; this is in contrast to the comparison of
‘people density in the hospital’, where area and functional unit are excluded for
comparison. Only when all the factors are considered can a better design be
identified.
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Research scope

1.5

As shown in Figure 1.9, this research includes multiple interrelated disciplines. The
core of this research is focused on the hospital layout design, which is supported by
other main disciplines, i.e., Industrial Engineering, simulation modelling, transport
planning, Indoor Navigation and Architectural/Spatial Morphology. Each main
discipline has its sub-disciplines that are concerned with this research. The field of
Graph Theory serves as a supporting theory which is related to most of the other
disciplines. It is to be noticed that developing a Graphical User Interface (GUI) for
the proposed Hospital Design Support System falls out of the scope of this research.

Research Design

39

This research aims to develop a Hospital Design Support System (HDSS) for
assessing hospital layout performance in terms of crowdedness, patient waiting time,
patient walking distance, and difficulty in wayfinding. The HDSS take inputs and
provides outputs for supporting stakeholders to make informed decisions on
identifying better hospital layout designs according to certain quality criteria. As
illustrated in Figure 1.10, the inputs of the SDSS include hospital BIM models
(representing hospital design solutions). The outputs of the HDSS include four
quality criteria, namely, pedestrian density, walking distance, extra walking distance,
and waiting time, which enable architects and hospital directors to make
well-informed decisions in selecting the optimal hospital layout design. The
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development of the HDSS is staged into two separate but interrelated work packages.
Work Package 1 focuses on developing a Hospital Configuration Model, which is a
prerequisite for the operation of the HDSS, and Work Package 2 focuses on
developing the HDSS. Each work package will be introduced in the following sections.

WPO - A Systematic Literature Review

152

Before developing the HDSS, an initial Work Package including a systematic literature
review on Spatial Decision Support Systems in hospital layout design was conducted
to discover the existing related research and publications. The results of Work
Package O lead to chapter 2.

WP1 - Hospital Configuration Model

40

The HDSS is designed to provide robust and transparent assessment mechanisms for
evaluating the performance of various hospital layout designs through simulation
modelling and exploratory network analysis approaches. Both approaches require a
foundational dataset or structure to function properly. To fulfil this requirement, a
Hospital Configuration Model (HCM) is needed. The HCM is a layout representation
model of the hospital system that incorporates four key types of information:
geometric, topological, semantic, and operational. The results of Work Package 1
lead to Chapter 3, which is divided into two sub-chapters. Sub-chapter 3.1 provides a
comprehensive discussion of the theoretical framework underlying the HCM. It
addresses the necessity of HCMs, provides a detailed technical exposition of the four
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types of data an HCM incorporates, the sources from which relevant information can
be extracted, and a systematic approach to the HCM’s development. Sub-chapter 3.2
introduces the developed software designed to facilitate the semi-automated
generation of HCMs from Building Information Modelling (BIM) data.

WP2 - Hospital Design Support System

41

Work Package 2 focuses on developing the HDSS, which consists of a Four-Step
Transportation Model, a Discrete-Event Simulation model, and an exploratory
network analysis model for simulating hospital operations and assessing hospital
layout performances. The Four-Step Transportation Model will be applied to simulate
the city-like character of hospitals and model the patient movement patterns in
hospitals. These outputs of patient movement patterns can facilitate achieving the
HDSS functionalities of assessing hospital spatial crowdedness, patient walking
distance, and difficulty in wayfinding. However, the Four-Step Transportation Model
is not suitable for evaluating patient waiting times, as it does not incorporate
temporal considerations or time-related measurements. To address this limitation, an
alternative approach is required. Discrete-Event Simulation (DES) emerges as an
optimal solution, as it explicitly models time-dependent processes and can effectively
capture patient waiting times. Hence, the HDSS framework will have a DES model for
simulating the factory-like character of the hospital and address the limitation of the
Four-Step Transportation Model, particularly in assessing patient waiting times.

For the Four-Step Transportation Model and Discrete Event Simulation to function
effectively, they require specific spatial attributes, such as room names and
functions. However, to gain a broader understanding of the inherent logic of hospital
space independent of these specific attributes, an alternative approach is needed.
Exploratory Network Analysis serves as an ideal method for this purpose. In other
words, the Four-Step Transportation Model and the DES model provide the apparatus
for the science of engineering in dealing with the rational and predictable aspects of
the building operations, while the exploratory network analysis model provides the
mechanisms in support of the art of engineering in dealing with the irrational and the
unpredictable aspects of building operations. Accordingly, our Hospital Design
Support System (HDSS) integrates three primary models: the Four-Step
Transportation Model, the Discrete Event Simulation model, and the Exploratory
Network Analysis model.

In addition to these models, the HDSS incorporates evaluation mechanisms to
interpret its outputs and support informed decision-making. Specifically, for the
simulation results from the Four-Step Transportation Model and the Discrete Event
Simulation model, we first aggregate the disaggregated results, then normalize them,
and finally assign functional units to ensure fair comparisons across different hospital
cases. For the outputs generated by the exploratory network analysis model, we
visualize the centrality measures of the hospital graph and analyze their implications.
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We identify functions that are best suited for spatial units with high centrality values
and suggest appropriate uses for rooms with low centrality measurements.

The results of Work Package 2 lead to chapter 4, which presents a detailed technical

exposition of the HDSS’s Four-Step Transportation model, Discrete-Event Simulation

model, Exploratory Network Analysis model, as well as the evaluation mechanisms for
the simulation results.
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2 Literature Review

This chapter has been published by Jia, Z., Nourian, P., Luscuere, P., & Wagenaar, C.
(2023). Spatial decision support systems for hospital layout design: A review.
Journal of Building Engineering, 67, 106042. [48]. The layout and content have been
adjusted to fit the structure of this thesis.

ABSTRACT

This study presents a systematic review of the literature on decision support for
designing hospital layouts using spatial network analysis and/or simulation
modelling. The review includes 102 articles, which are classified into five different
categories concerning their layout-related challenges. Specifically, the categories
include overcrowding, patient waiting times, visibility & staff interaction, wayfinding &
walkability, and other issues such as hospital-acquired infections. The main finding is
the cross-referenced table of different performance issues related to the hospital
layout to different assessment methods, indicators, and quality criteria. The review
suggests prospects for associating hospital design problems/challenges with spatial
layout, as well as a framework for developing methods for layout representation,
aggregation and relativization borrowing from the fields of transport planning and
operations research. The main focus of this study lies in the spatial layout. Viewing
the spatial complexity of a hospital as an indoor spatial environment is at least as
complex as an urban environment, thus justifying a geographical approach; hence,
we expand the scope of the literature review to papers that may not directly address
hospital design but have relations to spatial decision support systems.

2.1 Introduciton

Hospitals have multiple functions, including clinical, nursing, administration, services
etc. These functions have various kinds of aspects, such as crowdedness, wayfinding,
the efficiency of service, etc. Studies have shown that these aspects are determined
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by the layout of the hospital. According to the literature, over 67% of employees are
unable to perform their jobs efficiently due to inappropriate layouts of the working
environment [49]. Moreover, in hospitals, nurses were found to spend more time
walking than on their caregiving activities because of the problems related to hospital
layouts [50]. One study found that 28.9% of nurses’ time was wasted on walking
[51]. In another study, Peponis et al. [13]found that the extra expenditure caused by
difficulty in wayfinding is $ 220,000 per year in 1990 in the USA. The reason is that
staff are interrupted by patients to give them directions.

The reasons why the layout of a hospital has a great impact on various aspects of
functions are twofold. Firstly, from a functional point of view, hospitals are complex
as a ‘healing factory’ in which services are produced. The patient enters the hospital
with a condition, a series of services are provided around the patient, and the patient
leaves the hospital (ideally) healed. Secondly, from a formal/configurational point of
view, hospitals are complex as small indoor cities, where corridors in hospitals can be
compared to streets in a city, and different spatial units that serve different functions
in hospitals can be compared to land uses in a city. Hospitals are complex from both
points of view, and when we combine these two perspectives, it indicates that the
layout of a hospital affects the visibility and walkability of two types of users in the
hospital, namely, the people being served and the people serving others. Spatial
Network Analysis is a popular method for assessing the visibility and accessibility of a
layout design, and Simulation Modelling can provide quantitative measurements
related to aspects of hospital functions, such as the number of patients and distance
etc. This paper aims to review studies applying Spatial Network Analysis and
Simulation Modelling for decision support in hospital layout design.

The importance of layout problems in hospitals can be understood by investigating
inefficiencies as mentioned above, however, there are also critical issues related to
the main function of a hospital, such as increased chances of transmission of
Hospital-Acquired Infections (e.g. for airborne diseases such as COVID-19) with
overcrowding ([52, 53, 54, 55, 56]) or long patient waiting time issues that pertain to
layout problems ([57, 58, 59, 60]).

The contribution and novelty of this paper are the following:

We propose a comprehensive engineering approach for the formulation of problems
related to human movements in hospitals, spatial representation of hospital layouts,
and quantification of issues such as over crowdedness. This approach borrows from
Operations Research and builds on analogies between hospital layout design with
Transport Planning, particularly utilizing the 4-Step Transport Modelling approach,
with an explicit link made to Spatial Network Analysis.

We demonstrate gaps in the literature for adequately quantifying several
performance issues of hospitals that can be traced back to their layouts and argue
for the use of simulation modelling such as ABM and DES for ex-ante assessment of
hospital layouts and propose the outline of envisaged Hospital Design Support
Systems (HDSS) as information systems featuring such assessment models in
conjunction with Multi-Criteria Decision Analysis (MCDA) tools.
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-~ We articulate the main components and procedural steps for making such ex-ante

assessment models to operate on Building Information Models (BIM) of hospitals,
namely, a spatial network representation of hospital layouts, alternative simulation
modelling methods, spatial aggregation methods, and relativization methods based
on standardized functional units.

Objectives of the review

2.1.2

The main focus of this review lies in the spatial layout of hospitals. A clear-cut data
model or mathematical representation of a layout configuration is necessary for any
kind of assessment. Spatial layout is relevant to identifying feasible locations and
dimensions for a group of interrelated elements that satisfy design goals and
maximize design performance according to certain preferences [14]. This study aims
to review publications that apply the assessment approach of Spatial Network
Analysis (SNA) and Simulation Modelling, such as Agent-Based Modelling (ABM),
Discrete-Event Simulation (DES) and Random Walk Simulation (RWS) for assessing
hospital layouts.

Questions of the review

45

The following thematic questions have formed the rationale of the review and
underpinned the search methods and search criteria:

What would be the desired/required features of a hospital design support system
(a spatial decision support system for informing the design of a hospital)?

The kind of aspects of the function include crowdedness, wayfinding, the efficiency of
the service, etc., we have a strong intuition that these aspects are determined by the
layout of the building, not the materiality/systems inside the building.

What are the effects of the layout of a hospital on its functionality?

As mentioned in section 2.1, Hospitals are complex as a ‘healing machine’ from a
functional point of view and as small indoor cities from a formal point of view. The
layout of a hospital has a great impact on the visibility and walkability for the users in
the hospital. Hence, we are looking at the walkable space as a 2-manifold space and
the visible space as a 3-manifold space.

How is Spatial Network Analysis applied in the field of Hospital Layout Design?

We are missing two things in Spatial Network Analysis, even though it is intuitive and
useful; Spatial Network Analysis cannot give us quantities of a physical dimension
(e.g., the number of people, distance, etc.). The other issue is that time is usually not
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in the picture of Spatial Analysis, and yet time is very important in the way a hospital
functions. Hence, another concept of Simulation Modelling needs to be considered.

How is Simulation Modelling (e.g., Agent-Based Modelling, Discrete-Event
Simulation, Random Walk Simulation, Transport Models, etc.) applied in the field
of Hospital Layout Design?

Previous reviews

46

Some other reviews share similar topics to this review. However, they do not include
studies in recent years and/or their focus is on other factors such as management
policies instead of spatial layout. In a recent study, Halawa et al. [61] presented a
review of hospital designs that apply methodologies from Operations Research and
healthcare engineering to enhance design performance. The methodologies include
mathematical models, simulation modelling, statistical analysis, Space Syntax
Analysis (SSA), Heuristics, Lean Six Sigma, reviews, machine learning, fuzzy logic,
Markov chain, as well as observation and surveys. This review illustrates the
application of Operations Research methods in healthcare facility design and its
potential for further investigation. However, it does not include a cross-reference
between hospital design challenges and those methodologies. Rashid [62] reviewed
studies on nursing unit layout design using simulation modelling and Spatial Network
Analysis (SNA) until 2014. The author only focused on one type of spatial unit of the
hospital, namely the nursing unit, and did not include studies on other spatial units.
Other reviews have focused only on either the methods of SNA or the methods of
simulation modelling. Concerning the spatial network analysis, Hag and Luo [63]
explained a methodology of SNA, namely Space Syntax Analysis (SSA), and an
overview of its application in healthcare facility design until 201 1. Sadek and Shepley
[64] reviewed basic and newly developed SSA tools used in the field of healthcare
design until 2014. Reviews on simulation modelling in healthcare research mainly
focus on operational and management perspectives instead of spatial layout
perspectives. For example, in an early study in 1988, Smith-Daniels et al. [65]
reviewed literature applying methods such as simulation, queueing theory, Markov
chains and heuristics for management decision support such as facility sizing and
patient admission scheduling. Jun et al. [66] surveyed literature applying discrete
event simulation in hospitals, outpatient clinics and emergency departments until
1997. Fone et al. [67] reviewed studies applying simulation modelling in population
health and health care delivery. Sobolev et al. [68] overviewed studies using
simulation modelling in surgical care until 2007. Brailsford et al. [69] reviewed
studies applying simulation and modelling in healthcare until 2007. In a recent study,
Al-Kaf [70] reviewed studies applying Discrete-Event Simulation (DES) for improving
resource utilization and patient experience in outpatient clinics.
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Paper structure

2.2

The computational assessment of layouts requires specific data structures and
algorithms. The data structures, as explained further, must be compatible or related
to BIM and GIS structures due to the scale and complexity of hospitals. The
algorithms required for the assessment of hospitals must be capable of analysing
their network models and also running simulations on top of such network-space
models. Thus, the paper has sections dedicated to discussing the specifics of such
algorithms and their application for layout assessment in hospital design. The paper
is structured as follows: Section 2.1, an introduction including the focus of this
review and relevant previous reviews. Section 2.2, the methodology used in this
review. Section 2.3, brief introductions of the terminologies pertained to this study.
Section 2.4, reviews taxonomies that categorize the reviewed papers into five groups.
Section 2.5, review results and Section 2.6, conclusion.

Research methodology

47

This review follows PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analysis) guidelines. It considers conference papers, peer-reviewed articles
and PhD theses published between 1965 and 2022. The databases used in this
review include Scopus and Google Scholar. The keywords used for literature
searching include “hospital design”, “healthcare facility design”, “healthcare
architecture”, “healthcare design”, “hospital setting”, “outpatient clinic” and
“inpatient ward” in combination with “spatial network”, “space syntax”, “spatial
analysis”, “layout analysis”, “decision support system”, “random walk”, “Markov
chain”, “Markov model”, “queueing theory”, “simulation model”, “agent-based”,
“discrete event simulation”, “simulation model”, “multiagent”, and “pre-occupancy”.
A search filter was used for identifying literatures that contain these keywords in the
title, abstract and keywords of the paper and was written in English. Figure 2.1
illustrates the search strategy and the number of identified literatures. The total
number of identified studies includes 315 from Scopus and 109 from Google Scholar.
After duplicate removal, the results are 421 unique literatures. A detailed title and
abstracted review according to specific inclusion criteria left 71 studies. The

inclusion criteria are as follows:

Inclusion criteria 1: publications explicitly mentioned what design challenges they
attempted to address or what useful facts they discovered.

Inclusion criteria 2: studies that are explainable and reproducible, i.e., a clear
description of the methodology in terms of mathematical formulation and/or suede
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FIG. 2.1 Search strategy diagram based on PRISMA, image source [71]

codes

After a full-text review according to the inclusion criteria, there were 51 publications
left. Reference chasing from the included literature was then conducted to find more
related studies. Lastly, there were 102 studies included in this review.

Terminology

48

This section introduces the relevant terminologies of this study. The terminologies
include hospital types, hospital building types, Geographical Information Systems,
Building Information modelling, Operations Research and its interrelated disciplines
(i.e., Industrial Engineering and Facility Planning), Graph Theory and Network
Analysis, transportation planning, definition of a layout configuration model,
simulation modelling, and from analysis to evaluation and decision support. Figure
2.2 shows the interrelationships between these terminologies. For specific
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introduction of each of the terminology, please refer to section 1.4.1 in chapter 1.

Review taxonomy

49

This section presents the five categories of the reviewed studies. The categories
include overcrowding, patient waiting times, visibility and staff interaction, wayfinding
and walkability, and other issues (i.e., patient/visitor interruption on staff and
hospital-acquired infections). Specifically, the section is structured as follows:

Inappropriate layout designs can lead to overcrowding, and Simulation Modelling can
be used to assess the overcrowding potential.

Overcrowding relates to another problem of long patient waiting times, which can be
evaluated by simulating patient flows using ABM or DES.

Another layout-related issue that causes multiple sub-problems in hospitals is
visibility, e.g., low visibility hinders staff interactions. SNA can be utilized for
assessing visibility

Low visibility is also related to patients/visitors’ difficulty in wayfinding, and difficulty
in wayfinding is one of the reasons causing long patient/nurse walking distances,
which can be measured using SNA or Simulation Modelling

Other layout-related problems include patient/visitor interruption of staff and
hospital-acquired infections.
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Overcrowding

50

It is not easy to put a number into this intuitive notion of over crowdedness in
hospitals because we do not have a very clear notion of two types of spaces (i.e.,
spaces to go to such as examination rooms and spaces to go through such as
corridors), however, there have been attempts to measure, predict and curb/mitigate
overcrowding in hospital design. For example, Schaumann et al. [72] reduced
corridor overcrowding and patient interruption on staff in an internal medicine ward
using the ABM approach, and the mean patient and visitor density was reduced from
0.16 patient/m? to 0.09 patient/m? after improving the layout of the ward (i.e.,
introducing a dayroom in the ward). In another study [57], the authors applied the
ABM method for comparing two layout design alternatives for an ophthalmology
outpatient clinic in terms of people density and achieved a graphical result of
aggregate people density. Tang and Chen [55] reduced the overcrowding in the
corridors of a hospital by improving the hospital layout design and gained
quantitative measurements of the improvement by applying the ABM method. The
ABM result shows that the overall patient density in the corridor has decreased from
0.719 patients/m? to 0.431 patients/m? [55]. Iskander and Carter [73] proposed a
DES model to evaluate the overcrowding in a hospital care unit. The authors
discovered that at least 160% more waiting spaces are needed to resolve the
overcrowding in the care unit [73]. Jones and Evans [74] utilized the ABM method
for reducing overcrowding in the emergency department of a hospital. Taboada et al.
[75] used the ABM approach to assess the patient length of stay and overcrowding
potential in a hospital emergency department. In this study, the overcrowding issue
in the emergency department was mitigated by the derivation of non-urgent patients
to other departments. As a result, the patient’s throughput has increased by
20%-100%, and the patient’s length of stay has decreased by 5%-14% [75]. In
another two studies [76, 77], the authors developed an Agent-Based Model for
reducing overcrowding and patient waiting times in the emergency department of a
hospital. Overcrowding in the emergency department was reduced by increasing the
number of staff. As a result of reduced overcrowding, the number of treated patients
has increased by 100% and the average time of stay was reduced by 51% [77].
Valipoor et al. [78] utilized the DES method for reducing overcrowding in the
emergency department of a hospital. In this study, overcrowding was reduced by
providing care services in the hallway and introducing a dedicated triage space to
improve patient flow. The resulting statistics show a significant reduction in patient
length of stay (10%-16% reduction) and patient times spent in the exam room
(10% reduction) [78]. In another study, Hancock and Walter [79] used the DES
method to model the patient flow for assessing overcrowding potential in outpatient
and inpatient departments. Badri and Hollingsworth [80] implemented a DES model
intending to assess the number of patients, overcrowding potential and patient
waiting time in the emergency department. The author decreased overcrowding in
the emergency department of a hospital by not serving patients with less urgent
conditions. Statistically, the patient mean length of stay was decreased by 8% [80].
Lopez-Valcarcel and Perez [81] utilized the DES method for assessing crowdedness
and patient waiting times in the emergency department. Viana et al. [82] applied
both approaches of DES and ABM for assessing the number of patients and patient
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length of stay in the obstetrics department of a hospital. In their experiment, the
number of patients and patient length of stay increased by 18% and 200%
respectively, by increasing the arrival rate of patients by 25% [82]. Lin et al. [83]
utilized the DES method for reducing overcrowding in waiting areas and reducing
patient waiting times in outpatient clinics. By improving resource allocation and
optimizing patient appointment scheduling, the congestion in the waiting area was
decreased by 46%-52% [83]. Draeger [84] built a DES model for the emergency
department for evaluating overcrowding and patient waiting times. By improving the
nurse scheduling policy, the crowdedness in the emergency department was down by
19%-23%, and the average patient waiting time was reduced by 51%-57% [84].
Vasilakis et al. [85] used the DES approach to identify the number of patients waiting
for appointments and patient waiting time in surgical care. By altering the method of
scheduling patient appointments, the number of patients was reduced by 30% [85].

Patients waiting times

51

Cubukcuoglu et al. [58] implemented a DES model and found the interrelationship
between hospital layout and patient waiting time. By enlarging the area of the
outpatient department of a hospital and adding one extra doctor, the patient waiting
time was reduced by 86 minutes. McGuire [59] built a DES model for reducing
patients’ length of stay in emergency departments. The study showed that if the
layout of the emergency department was changed by adding a holding area, each
patient’s waiting time would be reduced by 22 min [59]. Baril et al. [60] modelled
outpatient flows in an orthopaedic clinic using the DES method for reducing patient
waiting times. The authors discovered that patient length of stay can be reduced by
up to 67% by improving the layout of the outpatient department (i.e., changing the
number of consulting rooms) and improving the patient appointment scheduling
policy [60]. Morrice et al. [86] utilized the DES approach for improving patient
throughput and reducing patient waiting times in hospitals. The authors found that
changing the layout of the care unit by adding an extra room does not affect patient
waiting times; however, increasing the patient schedule time slot from 12 min to 15
min would decrease the patient waiting time by 50% [86].

Rahmat et al. [87] implemented an Agent-Based Model for reducing patient waiting
times in the emergency department. By improving the triage policy, average patient
waiting times in the emergency department were decreased by 17%-32% [87].
Viana et al. [88] combined the methods of ABM and DES and developed a tool for
reducing patient waiting times and patient lengths of stay in post-term pregnancy
outpatient clinics; the patient waiting time for staff and equipment was reduced by
51.12% and 73.06% respectively. In an early study, Fetter and Thompson [89]
applied the DES method for assessing patient waiting time in the maternity suite,
outpatient clinic, and surgical pavilion. The authors found that by forcing every
patient to arrive on time, each patient’s waiting time would be saved by 8 min, which
leads to a total saving of 280 h in a period of 50 days [89]. Smith and Warner [90]
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used the DES approach for reducing the patient length of stay in hospitals, by
changing the patient’s arrival rate, and patient waiting time decreased by 40%-50%.
Kho and Johnson [91] used the DES approach for assessing patient waiting time in a
radiology department. Kachhal et al. [92] applied the DES approach for evaluating
patient waiting times in ear, nose and throat clinics. The patient average waiting time
has decreased by 44.7% by improving patient appointment scheduling policy [92].
Bailey [93] implemented a DES model for evaluating patient waiting times in the
outpatient department. By improving the department’s patient appointment
scheduling policy, patients’ average waiting time was decreased by approximately
42% [93]. Smith et al. [94] built a DES model for improving patient throughput and
reducing patient waiting time in the outpatient clinic, the mean patient waiting time
was decreased by 17%-33% by improving the patient appointment scheduling
policy. Fitzpatrick et al. [95] applied the DES method for assessing patient
throughput and patient waiting times in a hospital operating room. The average
patient waiting times were reduced by 11% by improving the patient appointment
scheduling procedure [95]. Klassen and Rohleder [96] utilized DES for reducing
patient waiting times in the outpatient department. The authors found that by
changing patient appointment scheduling rules, more than 19% of patient waiting
times can be saved [96]. Hancock and Walter [79] used the DES method for
increasing patients’ throughput in the inpatient department. Walter [97] used the
DES method for assessing patient waiting time and doctor waiting times for patients’
arrival in the radiology departments. Garcia et al. [98] modelled the patient flow in
the emergency department of a hospital using DES for reducing patient waiting times.
By introducing a fast track lane dedicated to non-urgent patients, their waiting times
were reduced by almost 25% without increasing the waiting times for urgent patients
[98]. Kirtland et al. [99] built a DES model for increasing patient throughput and
reducing patient waiting times in emergency departments. Enhancing the utilization
of medical resources leads to a reduction of 24% in patient waiting times [99]. Blake
et al. [100] utilized the DES method for investigating patient waiting times in
emergency rooms. The authors found that by implementing a fast track for
non-urgent patients, a 10% decrease in patient mean waiting time could be realized
[100]. Edwards et al. [101] modelled patient flows in outpatient clinics using DES for
reducing patient waiting times. By improving the patient appointment scheduling
system, the average patient waiting times were decreased by 27% [101]. Alessandra
and Grazman [102] utilized the DES method for improving patient throughput and
reducing patient waiting times in hospital clinics. By improving the staff scheduling
policy, the patient waiting time was reduced by 37% [102]. Mukherjee [103] applied
the DES approach for reducing patient waiting time and improving patient throughput
in a hospital pharmacy. By improving the staff scheduling policy in the pharmacy, the
patient waiting time could be reduced by 8% [103]. Evans et al. [104] utilized the
DES method for reducing patients’ length of stay in an emergency room. Patient
length of stay was decreased by 4% by improving the staff scheduling policy [104].
Mahachek and Knabe [105] utilized DES for evaluating patient waiting times in
obstetrical and gynaecology clinics of a hospital. Liyanage and Gale [106] utilized
the DES approach for reducing patient waiting times in the emergency department.
O’Kane [107] implemented a DES model for assessing the number of patients and
patient waiting time in the radiology department. Klafehn [ 108] modelled the patient
flow in the radiology department using DES to assess the patient waiting time and
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patient length of stay. The author found that by adding one more radiologist, the
patient’s mean waiting time would be reduced by 25% [108]. Vemuri [109] utilized
the DES method to evaluate patient waiting times in an outpatient pharmacy. The
patient mean waiting time could be decreased by 49% if an additional technician is
added to the pharmacy [109]. Ishimoto et al. [110] applied the DES approach for
assessing patient waiting time in a hospital pharmacy. By adding another pharmacist
in the pharmacy, approximately 50% of patient waiting times can be saved [110].
Hashimoto and Bell [111] studied patient flows in outpatient clinics using DES to
reduce patient length of stay. The average patient length of stay was reduced from
75.4 min to 57.1 min by optimizing staffing levels [111]. Lim et al. [112]
implemented a DES model to represent patient flow in emergency departments with
the aim of assessing patient waiting times and lengths of stay. Patient waiting times
were down by 1%-49% and patient length of stay was down by 61%-136% by
improving the staff interactions [112]. Denton et al. [113] applied DES to model
outpatient surgery scheduling in a hospital for assessing patient waiting time. The
authors achieved a 50% improvement in patient waiting times by optimizing the
patient appointment scheduling policy [113]. Kuzdrall et al. [114] built a DES model
for assessing patient waiting time in a hospital surgical suite, the results show that by
improving the patient appointment scheduling policy, 30% of the patient mean
waiting time can be saved. Lim et al. [115] used the DES method to model patient
flows in the hospital and assessed patient length of stay and patient waiting times.
The patient waiting times were reduced by 28% by improving the patient
appointment scheduling policy [115]. Marcon et al. [116] used the DES model to
evaluate the patient waiting time and throughput in the Post-anesthesia Care Unit.
Stahl et al. [117] built a DES model for assessing patient throughput and patient
waiting time in the surgical and anaesthesia care units, 4% of the patient waiting
times can be reduced by applying different staff scheduling policies. Testi et al. [118]
developed a DES approach for reducing patient waiting time and improving patient
throughput in operating rooms. According to their results, patient waiting times
could be reduced by 23/24% if a different patient appointment scheduling policy was
utilized [118]. VanBerkel and Blake [119] used DES for reducing patient waiting
times in the General Surgery Department of a hospital; the patient throughput has
increased by 3.4% by adding four extra beds in the general surgery department.
Marmor et al. [120] modelled patient flow in the emergency departments using DES
for assessing the patient’s length of stay and waiting times. Zhang et al. [121]
developed a DES model for reducing patient waiting times in a hospital. The patient
waiting time can be decreased by 29% by applying different patient appointment
scheduling policies [121]. Pan et al. [122] modelled patient and information flow in
specialist outpatient clinics using DES for reducing patients’ length of stay. The
simulation results show that the average patient waiting time can be reduced by 59%
by enhancing the patient appointment scheduling policy [122]. Min and Yih [123]
applied the DES approach for assessing patient waiting times in an outpatient clinic.
By improving the patient registration and queuing policy, each patient’s waiting time
can be reduced by up to 4 min [123]. Ramirez Valdivia and Crowe [124]
implemented a DES model for reducing patient waiting times in hospitals. The
authors conducted patient interviews and surveys and concluded that patient waiting
times in the outpatient department should be less than 30 minutes they achieved the
goal by improving the patient administration policies [124]. Bowers et al. [125]
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applied the DES method for reducing patient waiting times and improving patient
throughput in the emergency department of a hospital, and the patient length of stay
has decreased by 10% by increasing bed capacity. Chu et al. [126] utilized
simulation modelling for assessing patient waiting times for lifts and the number of
patients waiting for lifts in two hospitals. The average patient waiting times for lifts
can be reduced by up to 26% by applying a lift zoning policy (i.e., different lifts are
designated with different floors) [126]. Niu et al. [127] applied the DES method for
reducing patient waiting times and improving patient throughput in the operating
room. According to their study, 17% of patient waiting time can be saved by
optimizing the resource utilization [127]. Su and Shih [128] proposed a DES model
for reducing patient waiting times in outpatient clinics. By improving the patient
appointment scheduling policy, patient waiting times can be reduced by up to 59%
[128]. Zonderland et al. [129] implemented a queuing model for reducing patient
waiting times and patient length of stay in a university hospital. By changing the
patient appointment scheduling policy, the patient throughput over one year has
increased by 16% [129]. Ortiz et al. [130] proposed a DES model for reducing
patient waiting times in the outpatient department of a hospital. Patient waiting times
can be saved up to 13% by improving staff scheduling policy [130]. Norouzzadeh et
al. [131] developed a DES model for decreasing patient waiting times by almost 20%
in the outpatient clinic. Edward et al. [132] built a DES model for reducing patient
waiting times in the preoperative assessment clinic of a hospital. By optimizing the
patient appointment scheduling system, 95% of the patients’ waiting times were
reduced to less than 10 min [132]. Berg et al. [133] used the DES approach for
reducing patient waiting times in a multidisciplinary outpatient clinic. The authors
found that patient waiting time could be reduced by up to 17% by implementing
different resource assignment strategies [133]. Demirli et al. [134] applied the DES
method to decrease patient waiting times in an outpatient clinic. Patient waiting
times were decreased by 86% by enhancing the cooperation between doctors and
nurses [134]. Patel et al. [135] developed a DES model for assessing patient waiting
times in outpatient clinics. Patient waiting times could be reduced by up to 23% by
applying different resource allocation policies [135].

Creemers et al. [136] developed a Markov process model for reducing patient waiting
times in hospitals. The patient waiting time can be reduced by up to 80% by applying
different resource allocation policies [136]. Liao et al. [137] modelled patient arrival
schedules in a hospital using the Markov chain for reducing patient waiting times.
Pegden et al. [138] developed a Markov process model to evaluate patient arrival
scheduling in hospitals and reduce patient waiting times. Akkerman and Knip [139]
implemented a Markov process model for reducing patient waiting time in hospital
wards.
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Visibility & staff interaction

55

Schaumann et al. [72] reduced patient interruption on staff in an internal medicine
ward by improving the layout of the ward (i.e., adding an extra day room). The result
of the Agent-Based Simulation shows that visitor interruption was reduced by 35%
[72]. Lu et al. [140] applied SSA to find the correlation between the visibility and
density of people and their interactions in an intensive care unit (ICU). The authors
found that the layout influences the visibility in the ICU and hence influences the
people density in the ICU, i.e., there is more staff in the places with higher visibility
(correlation coefficient r = 0.786) [140]. Hadi and Zimring [141] applied SSA for
improving visibility in intensive care units. The authors discovered that an ICU with a
less discretised layout and wider corridors will improve visibility [141]. Ossmann
[142] applied SSA to find the impact of visibility on mortality rates in ICUs. By
analysing the layout of the ICU rooms in terms of visibility, patients’ odds of death
are 42% lower in the rooms with high visibility than in the rooms with low visibility
[142]. Alalouch and Aspinall [143] used the SSA method to find the correlation
between visibility and privacy in hospital wards. According to their results, the ward
layouts with high visibility are less preferred by the patients; in other words, there is a
strong negative relationship (r = —0.957) between the visibility of the ward and the
level of preference for the ward in terms of privacy [143]. Lu et al. [144] identified
the relationship between patient mortality and room visibility using SSA. Their study
shows that visibility accounts for 35% of the variance in ICU mortality [144]. Kim
and Lee [145] used SSA to evaluate users’ movement patterns and visibility in
hospitals. Three different types of hospital ward layouts were evaluated, and the
visibility difference can be up to 32% between different layouts [145]. Trzpuc et al.
[146] applied SSA to assess how the layout design can influence nurse interactions
in medical-surgical nursing units. Gharaveis et al. [147] used SSA for evaluating the
correlation between visibility and staff communication in the emergency department.
The authors found that a change in the layout design of the emergency department
can lead to a 52% improvement in visibility and a 45% improvement in staff
communications [147]. In a similar study, the authors used SSA to evaluate the
influence of visibility on teamwork, collaborative communication and security issues
in the emergency department [148]. Similarly, O’'Hara et al. [149] used SSA to find
the correlation between visibility and team interactions and observation of patients.
Xuan et al. [150] used SSA to evaluate the influence of visibility and accessibility on
nurse communication, perception of privacy, and efficiency in a nursing unit.
Pachilova and Sailer [151] used SSA to investigate the influence of an inpatient
ward’s spatial configuration on staff communication and care quality. Three different
hospital ward layouts were analysed, and the difference in visibilities can be up to
32%, which leads to a difference of 4% in staff interaction [151]. Cai and Zimring
[152] used SSA to examine the nurses’ interaction patterns in hospitals. By
improving the layout design of the ICU, the overall visibility in the ICU was increased
by 3%, and consequently, the nurse’s communication rate was raised by 7% [152].
Rashid et al. [153] used SSA to find the correlation between staff communication
patterns and visibility and accessibility in ICUs. The results show a positive
correlation (correlation coefficient r = 0.387) between visibility and staff interaction,
which indicates that staff interaction tends to happen in places with higher visibility
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[153]. Similarly, in other studies, the authors used SSA to compare two hospital
layout designs and evaluated the association between visibility and staff interaction
[154, 155]. In Ref. [154], Rashid et al. discovered that different types of ICU layouts
could lead to a 13% difference in visibility. In Ref. [155], the authors found that by
improving the layout design of the ICU, the visibility can be improved by 4%-5%.
Lim et al. [156] applied SSA to find the impact of visibility on staff interaction and
team collaboration. Cai and Spreckelmeyer [157] applied SSA for improving visibility
in a hospital’s nurse working area. By improving the layout design of the nursing unit,
the visibility was increased by approximately 10% [157].

Wayfinding & walkability

56

Kim and Lee [145] used SSA to evaluate users’ movement patterns and visibility in
different hospital wards layouts and found that the deep-plan layout can be 22%
more navigable than the courtyard-plan layout [145]. Haqg [158] applied the method
of SSA for assessing visitors’ environmental cognition and wayfinding behaviour in a
hospital. The author found that the accessibility analysis of the layout can predict
56% of the variation in wayfinding difficulty [158]. Lu and Bozovic-Stamenovic [35]
utilized SSA for evaluating patients’ wayfinding behaviour in three hospitals. Haqg et
al. [159, 160] applied the SSA theory for evaluating patient/visitors’ wayfinding
behaviour in different hospitals. Tzeng and Huang [161] reduced patients’ difficulty
in wayfinding in the outpatient department of a hospital using SSA. Pouyan et al.
[162] used SSA for assessing first-time users’ wayfinding behaviours in a hospital.
Lacanna [163] utilized SSA for assessing patient wayfinding behaviour in hospitals.
Zwart and Voordt [164] applied SSA for evaluating the difficulty of wayfinding for
patients and visitors in a hospital ward. Zamani [165] combined the methods of ABM
and SSA for evaluating the visibility and difficulty of wayfinding in hospitals.
Gath-Morad et al. [166] implemented an Agent-Based Model for assessing users’
wayfinding performance in complex buildings such as hospitals.

Schaumann et al. [72] reduced staff walking distance in an internal medicine ward by
improving the ward layout design (i.e., adding an extra day room). The result of the
Agent-Based Simulation shows that the staff’'s mean walking distance was decreased
by 5% [72]. In another study [167], the authors developed an Agent-Based model
for evaluating nurse walking distance, patient waiting times and visitor disruption on
staff in a general hospital. In Ref. [57], Schaumann et al. applied the ABM method for
comparing two layout design alternatives for an ophthalmology outpatient clinic in
terms of people’s walking distance. The simulation results show that one design
alternative outperforms another by 20% and 6% in patient walking distance and
nurse walking distance, respectively [57]. Vahdatzad [168] reduced the patient
walking distance in a hospital by optimizing the hospital layout (i.e., locating the
waiting area in the centre of the layout and locating service areas closer to the
entrance and elevator). With the application of the DES method for measuring the
performances, the mean patient walking distance was reduced by approximately
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33% and the average patient length of stay was decreased by 6% [168]. Nanda et al.
[169] applied SSA for assessing staff travelling distance in a surgical unit of a
hospital. Lee et al. [170] implemented an Agent-Based model for reducing nurse
walking distance in hospital nursing units. Cai and Jia [171] applied the DES method
for reducing surgeon walking distance in a surgical suite. Vahdat et al. [172]
implemented a DES model for reducing patient walking distance and patient length of
stay in the outpatient clinic of a hospital. O’Hara [173] proposed a DES model for
assessing nurse walking distance in the Intensive Care Unit of a hospital.

Other issues

57

Other categories include the following:

Patients/visitors’ interruptions on staff

In [57], Schaumann et al. applied the ABM method for comparing two layout design
alternatives for an ophthalmology outpatient clinic in terms of patient interruptions
to staff. The simulation results show that there is a 22% difference between the two
designs’ performances in reducing patients’ interruptions on staff [57]. Hendrich et
al. [174] used SSA to evaluate the influence of the nursing unit’s layout on nurse
movement patterns and time spent on staff-patient interactions. Sagha Zadeh [175]
developed a design tool using SSA for reducing staff fatigue and interruptions in
acute care units. Setola et al. [176] utilized SSA for assessing the frequencies and
locations of patient-staff interaction in public spaces in the hospital. Huynh et al.
[177] developed an Agent-Based Model for assessing the nurse’s time spent on
interpretation in a hospital. By redesigning the medical administration process, the
time nurses spent on interruptions was reduced 100% [177].

Hospital-Acquired Infections

Wang et al. [52] developed an ABM model for testing the impact of a clinic layout
design on the infection risk of COVID-19. Their findings suggest that overcrowded
areas (e.g., waiting areas) have a higher infection risk (the cumulative exposure dose
in the waiting areas constitutes 66.5% of the total) [52]. Tahir et al. [53] applied
both methods of SNA and ABM to find the correlations between hospital layouts and
the risk of hospital-acquired infections (HAIs). The authors discovered a strong
positive correlation (correlation coefficient » = 0.8) between department prevalence
and the degree centrality of the department (i.e., the higher prevalence was found in
the departments with higher centrality values). Mustafa and Ahmed [54] used SSA
for assessing the effects of different types of outpatient layouts on limiting the
spread of COVID-19. The authors found that the integration value in a decentralized
layout is 23% lower than the integration value in a centralized layout, which means
that a decentralized layout has fewer overcrowded areas and thus more advantage in
providing social distancing [54]. Tang and Chen [55] improved a hospital layout
design for reducing the risk of the spread of COVID-19. The Agent-Based simulation
results show that the overall patient density in the corridor has decreased from
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0.719 patients/m2 to 0.431 patients/m2 after improvement, which enhances the
control of the spread of COVID-19 because reduced congestion in the hospital helps
to keep social distancing [55]. Esposito et al. [56] simulated the HAIs propagation
dynamics in the hospital using the ABM method with the aim of reducing HAIs.
Schaumann et al. [178] developed an Agent-Based Model for simulating and
investigating HAIs in the hospital. Hotchkiss et al. [179] simulated the spread of the
pathogen in an ICU using ABM with the aim of reducing HAIs. Ong et al. [180]
developed an Agent-Based Model for investigating HAIs in the hospital. Meng et al.
[181] applied the ABM approach for reducing HAIs in a hospital ward. Ferrer et al.
[182] proposed an Agent-Based Model to simulate pathogen transmission in the ICU
with the aim of controlling HAIs. Milazzo et al. [183] utilized the ABM approach for
reducing HAIs in a hospital ward. Pelupessy et al. [184] developed a Markov chain
model to simulate the transmission dynamics in a hospital and aimed at controlling
HAIs. Lopez-Garcia and Kypraios [185] developed a Markov chain model for
analysing the spread of nosocomial infections in hospitals.

Review results

58

The hospital design challenges, the approaches for assessing these challenges and
the corresponding indicators and quality criteria were summarized in tables 2.1 and
2.2. In this table, problems related to hospital layout designs are presented in the
first column which is named ‘challenges’, the disaggregated form of measurements of
these problems are presented in the second column (named ‘indicators’), and the
aggregated measurements are shown in the last column which is named ‘quality
criteria’. It is to be noticed that indicators are the disaggregate results from
assessment approaches of SNA or Simulation Modelling. The quality criteria are an
aggregate form of indicators (i.e., average, maximum or minimum values, etc.). Both
indicators and quality criteria indicate how to measure the challenges. Among the
total 102 reviewed papers, they all investigated one or several of the seven
challenges of overcrowding, long patient waiting time, patient/visitors’ difficulties in
wayfinding, low visibility and less staff interaction, hospital-acquired infections, long
patient/nurse travelling distance and patients’ interruptions on staff. Although these
issues are related to layout, many of the reviewed studies do not associate them with
the layout. Only 349% of them (35 out of 102 papers) studied the effects of layout on
hospitals, and most of them applied SSA ([54, 140, 141, 142, 143, 144,145, 146,
147,148, 149, 150, 151, 152, 153, 154, 156, 157, 158, 35, 159, 160, 161, 162,
163, 164, 165, 176, 176]), others used ABM approach ([52, 55, 56, 57, 72, 178]).
One study combined SSA with ABM [165]. There is a clear research gap indicating
that although these studies associate the hospital problems and challenges with
layout, they did not mention the representation of layout, or they do not mention
what a layout representation or how to model the layout. However, a layout
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FIG. 2.3 Disciplines that will be focused on and studied together for our future research, image source: author.

representation is necessary and critical for evaluation. From the review results, the
following can be summarised:

Although all reviewed publications investigated hospital problems and challenges
that are related to layout, few of them associated the problems/challenges with the
layout. Especially, studies that apply simulation modelling approaches rarely
associate the problems with hospital layout. This suggests a potential research
direction of utilizing Simulation Modelling to study the impact of layouts on hospitals.

As for the few studies that investigated the effects of layout on hospitals, they did not
mention the representation of the layout. However, a clear representation of the
layout is needed for assessments. Hence, another potential research direction is to
develop methods of modelling and representing the layout.

None of the reviewed publications introduced the method for relativizing/normalizing
the quality criteria for a fair comparison between different hospitals. It is
inappropriate and inaccurate to directly compare the quality criteria of a small
hospital with a large hospital. Hence, methods for relativization or normalization are
necessary.

None of the reviewed studies introduced the method for defining functional units for a
fair comparison. The functional unit quantifies the performance of the system and
serves as a reference unit. It is necessary to have a functional unit for comparing two
different hospitals’ quality criteria. Hence, methods for defining functional units for
comparative assessments of different hospitals are needed.

As illustrated in Figure 2.2, some of the disciplines discussed in this review have been
separated, though they have the potential to be combined and studied, which points
out our future research direction of combining certain disciplines/terminologies for
the study of hospital layout design (as shown in Figure 2.3).
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TABLE 2.1 Problems & Challenges with hospital layout design and how to measure them.

Challenges

Overcrowding[3, 4]

long patient’'s wait-
ing time and/or long
patient length of stay
and/or low patient
throughput [57, 58]

Low visibility [140,
141, 142, 144] and
Less staff interaction
[146, 148]

Indicators (disaggre-
gate indications of
how to measure)

Number of patients
in public spaces
(e.g., waiting areas,
corridors, etc.) of
different functional
areas/departments
[57, 72, 75, 76, 77,
78, 80, 81, 82]

Each patient's time
spent on waiting for
different  procedures
(e.g., diagnosis, clinical
checkup, ultrasound
test, etc.) [58, 122,
87,132,187, 188, 10,
189, 190, 191]

Degree and closeness
centrality value of the
spatial units [140,
148, 149]; Degree and
closeness centrality
value of the spatial
units [146, 147]

Approaches

ABM + aggregation
[74, 75, 76, 77]; DES
+ aggregation [79, 80,
81, 82, 83]; RWS +
aggregation [168]

ABM + aggregation
[57, 72, 77, 76, 87,
88]; DES + aggregation
[78, 187, 58, 122,
188, 10, 59, 60, 113,
73, 80, 81, 84, 86,
89, 90, 91, 92, 93, 94,
95, 96, 97, 98, 100,
101, 103, 104, 105,
106, 107, 108, 109,
110, 111, 112, 115,
117, 119, 124, 125,
127, 128, 130, 131,
132, 133, 134, 135,
190, 191, 192]; RWS +
aggregation [136, 137,
138, 139, 186, 189];
SNA + aggregation
[140]

the visual outputs de-
picting the distribution
of centrality values in
the area [140, 145];
The intelligibility (i.e., a
correlation coefficient
between degree and
closeness centrality
values) of the whole
layout [151]; average
closeness centrality of
different spaces [153]

Quality criteria (ag-
gregate indications of
how to measure)

The average people
density over time in
the public spaces (e.g.,
waiting area, corridor,
etc.) of each functional
area/department &
Their weighted average
[57,72,78,186]

Average agent waiting
time for each proce-
dure (e.g., diagnosis,
clinical check-up, ultra-
sound test, etc.) &
A typical agent’s aver-
age total waiting time
(e.g., outpatient [58,
122,88, 123,125,128,
130, 131, 132, 133,
134, 135, 187, 188,
10, 189, 190, 191]
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Challenges

Difficulty in wayfinding
[3]

long patient/nurse
travelling distance
between processes [3]

Patient Interruption on
staff [175]

Hospital-acquired  in-
fection [184]

Indicators (disaggre-
gate indications of
how to measure)

Each spatial unit’s cen-
trality value. i.e., How
many spatial units is
one connected to and
how close are these
connections [13, 158,
35, 159, 160, 161,
165]; Each agent’s
travel path [57]

Each patient/nurse’s
time spent on travel
[193] or each patient/
nurse’s travel distance
[169, 170]

Each spatial unit's
closeness centrality
value. [174, 175]; the
number of staff-patient
interactions and loca-
tion of each interaction
[57]

location of each actor
and the location of each
interaction between ac-
tors [56]

Approaches

ABM + aggregation
[57, 165, 166]

ABM + aggregation
[167, 170]; DES + ag-
gregation [172, 173];
SNA + aggregation
[193, 169]

SNA + aggregation [57,
174,175, 176]

ABM + aggregation
[52, 55, 56, 178, 179,
180, 181, 182, 183];
RWS + aggregation
[184,185]

TABLE 2.2 Problems & Challenges with hospital layout design and how to measure them. (Continued)

Quality criteria (ag-
gregate indications of
how to measure)

The intelligibility (i.e., a
correlation coefficient
between degree and
closeness  centrality
values) of the whole
layout and/or the vi-
sual outputs depicting
the  distribution  of
centrality values in the
area[13, 158, 35, 159,
160, 161, 165]

A typical agent’s aver-
age travel time [193]
or travel distance [169,
170]

Aggregate location
with higher closeness
centrality values [175];
Aggregate location of
staff-patient  interac-
tions [57]

Aggregate propagation
areas due to the ac-
tor’s interaction with
the environment and
other actors [56]

Conclusion and future research

The conclusion of this review paper is summarised below:

We have established the importance of adequate hospital layouts/by summarising
problems caused by inadequate layouts (see tables 2.1 and 2.2)

We have summarised the gaps in the literature, especially in the proper mathematical
treatment of spatial representation issues and quantification of such problems as
overcrowding and risk of cross-contamination (see section 2.5)

We have illustrated the parallels and analogies between hospital layout problems and
well-known problems in transport planning, especially in conjunction with land-use
planning in cities. In other words, the paper has shown by examples that there is a
lack of comprehensive frameworks for the quantification of such issues. The
hospital-city analogy and the transport planning approach can lead to the
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establishment of adequate methodologies capable of properly quantifying these
issues for hospital layout assessment.

Providing any kind of reliable decision support mechanism is first and foremost about
the provision of reliable and transparent assessment mechanisms for predicting the
impact of design choices. Therefore, we conclude with some priorities for future
research into the quantification and assessment of hospital layouts:

Devising a mathematical framework for spatial representation and measurements in a
clearly defined analogy of a hospital with a city, and borrowing the terminology and
methodological practices of transport planning and land-use transport interaction
models (LUTI).

Developing a standardized hospital/building layout representation model only
containing information relevant for ex-ante assessment of the effects of layout on
human movement inside the hospital.

Developing a standardized hospital layout assessment framework based on
well-defined functional units, relativized formulations of quantities of interest,
estimation methods driven by standardized simulation procedures, and possibly
additional tools for integration/aggregation of multiple criteria in a comprehensive
assessment of design choices.

The nature of the proposed Hospital Design Support System should be similar to a
Transport Planning Support System because designing a hospital is similar to
designing a small town, which is even folded in 3D. From both formal and functional
points of view, it is similar to designing a city. However, in a city, roads can be
widened, and bridges and tunnels can be built to suit the traffic demand. A city can
grow, and it is elastic, while a hospital is plastic. Hence, designing a hospital is similar
to but more difficult than designing a small city. The analogues of the streets of a city
(or its Transport Network) will be the corridors in the hospital, and the analogues of
the land uses in a city will be the different spatial units serving different functions in
the hospital. This study provides a systematic review of the application of SNA and
Simulation Modelling on hospital layout designs. The main focus of this study lies in
the spatial layout.

To demonstrate the function of the proposed Hospital Design Support System, four
use cases are described by answering the following questions: who would be the user
of this system? What questions can this system answer? And at what stage of a
project can these questions be answered?

Use Case 1: The hospital director can use this system to check the crowdedness of a
hospital project during the layout design stage.

use case 2: The architect can use this system to check how difficult it will be for the
first-time visitor to find their way in a hospital project during the layout design stage.

Use Case 3: The head nurse can use this system to check if their walking distance will
be too long in a new hospital project during the layout design stage.
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— Use Case 4: The hospital director can use this system to check if the patient waiting
time or walking distance will be too long in a new hospital project during the layout
design stage.

In short, the proposed Hospital Design Support System is envisaged to be a
Multi-Criteria Decision Analysis toolkit for the integral evaluation of design
alternatives.
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Hospital Configura-
tion Model

3.1

A Configuration Model for Hospital Design
Support Systems

ABSTRACT

64

This sub-chapter has been published by Jia, Z., Nourian, P., Luscuere, P., & Wagenaar,
C. (2024). A Configuration Model for Hospital Design Support Systems. Buildings,
15(2), 163. [38] The layout has been adjusted to fit the template of this thesis.

Hospital layout significantly influences hospital service quality, demanding robust
tools for informed decision-making during the layout design stage. This study
presents a novel Hospital Configuration Model as the foundational component of a
Hospital Design Support System, which utilizes simulation modelling to provide
evaluation mechanisms on hospital efficiencies and functionalities. The Hospital
Configuration Model integrates four critical data types—geometric, topological,
semantic, and operational—into a machine-readable digital twin, enabling
comprehensive spatial and procedural analyses. The Hospital Configuration Model
facilitates simulation modelling to optimize hospital layouts and predict performance
metrics such as crowdingness, patient waiting times, patient walking distance, and
difficulty in wayfinding. In conclusion, the Hospital Configuration Model is the core
and foundation of developing the Hospital Design Support System for evaluating
hospital functionalities and efficiencies, and the potential applications of the model
include digital twin development, facility management, and safety enhancement.
Future research directions should, in particular, include developing the proposed
Hospital Design Support System and establishing a standard way of extracting
hospital operational information into an industry-standard data model.
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Introduction

65

Studies have shown that the layout of a hospital has great impacts on its functionality.
For instance, Jia et al. [48] summarized the problems and challenges caused by
inappropriate hospital layout designs. Chraibi et al. [49] investigated how the layout
of the operating theatres affects staff travel distance. Ulrich et al. [50] discussed
how the physical layout affects patient outcomes and operational efficiency in
healthcare settings. Burgio et al. [51] analyzed nursing staff behaviors in healthcare
facilities, showing the influence of environmental layouts on staff interactions.
Peponis et al. [13] investigated wayfinding within hospital environments,
emphasizing the importance of spatial configuration in user navigation. The reasons
why hospital layout has such a big influence on its functionality are twofold. Firstly,
from the functionality aspect, the medical procedures inside hospitals are complex.
Secondly, from the aspect of configuration, hospitals are as complex as small cities,
where corridors are similar to streets and functional units are similar to different land
uses in cities [48]. Hence, combining these two aspects indicates that the layout of a
hospital significantly affects users’ visibility and walkability inside the hospital. When
architects design a hospital, they are not merely making a building, but a system that
can have many risks and problems if not treated carefully [48].

To improve the design of the system of hospital, we propose to introduce an early
operational insight into the hospital design process through the development of a
decision support system, namely, the Hospital Design Support System (HDSS). The
HDSS is intended to provide reliable and transparent assessment mechanisms for
predicting the performance of different hospital layout designs. To be able to provide
such assessment mechanisms, we need a configuration model, which is a layout
representation model of the hospital system containing four types of information, i.e.,
geometric information, topological information, semantic information, and
operational information. Table 3.1 provides a detailed explanation and examples for
each type of information. The “Explanation” column describes the specific data
contained within each information type, while the “Example” column illustrates this
data using a Python 3.11 dictionary format.

TABLE 3.1 Examples of four types of information in a Hospital Configuration Model.

Geometric Information Room boundary consisting of a {‘central_waiting’: [‘—20, 34, 4’,
series of 3D points ‘—20,29,4’,'—19,29,4",‘—19,
39,4’ —20, 34,4']}

Topological Information A network graph consisting of | {'Graph1 [{“node1”: {“id™
nodes and edges “R1"}, “node2”: {“id™ “R3"},
“edge1”:{“id": “e1"}}]}
Semantic Information Room name {‘Department$Imaging’: [‘Cen-
tral_waiting']}

Operational Information A patient journey through the {‘patient_journey_1": [‘En-
hospital (a series of rooms that | trance/Exit’, ‘Registration’,
the patient needs to attend) ‘consulting’, ‘Entrance/Exit']}
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3.1.1.1  Research Problem and Questions

The research problem of this paper can be stated as follows:

— Despite the hospital layout having significant influences on hospital functionalities
and operational efficiencies, there is a lack of robust tools for systematically
assessing hospital layout designs in terms of operational efficiencies and
functionalities at the layout design stage. To enable a robust tool to assess and
predict hospital layout performance using simulation modelling, a Hospital
Configuration Model integrating geometric, topological, semantic, and operational
information is essential. This research addresses the need for a Hospital
Configuration Model to serve as the core of the proposed tool, enabling evaluations
of hospital layout designs to improve operational efficiency.

The research problem leads to the following research questions:
-~ Why do we need a Hospital Configuration Model?

-~ What information do we need in the Hospital Configuration Model?
— How to extract such information into the Hospital Configuration Model?

3.1.1.2 Related Works

Currently, there are several publications in the scientific literature devoted to the
issue of extracting layout representation models from digital building models such as
Building Information Models (BIM), Industry Foundation Classes (IFC) models, and
Computer-Aided Design (CAD) models, etc. In particular, Diakite et al. [194]
developed a tool for automatically generating IndoorGML models from the IFC model
using C++20. The IndoorGML model is an industry-standard model that incorporates
geometric, topological, and semantic information, it is a specialized layout
representation model designed for indoor spatial analysis and navigation [194].
However, the IndoorGML files generated by this tool do not include any semantic
information, which is inadequate for our research. Similarly, Intratech [195]
developed a plugin for AutoCAD 2020 and Revit 2020 for extracting IndoorGML. The
IndoorGML files generated by this plugin also lack semantic information, and this
plugin relies on proprietary formats. Tong and Zheng [196] developed a tool for
transforming IFC models to IndoorGML files using Autodesk’s Revit 2020 and
Dynamo 2.1.0, McNeel’s Rhino 7 and Grasshopper 2.0, and Python 3.11. The
IndoorGML files generated by this tool have semantic information. However, the tool
only works for modularized buildings with simple geometries (i.e.,
rectangular-shaped rooms with four sides). Since hospitals are complex buildings
with rooms and corridors of all kinds of irregular shapes, this tool is not suitable for
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our research. Jeong et al. [197] developed a tool for manually creating and editing
IndoorGML files; however, this tool does not support generating IndoorGMLs from
other existing sources. Similarly, Brincovean and Butean [198] created software for
editing IndoorGML'’s topological data, which also lacks functionality for generating
IndoorGML from other sources. Taehoon [199] developed a Java-based graphical
editor for manually drawing IndoorGML’s geometric and topological information;
however, this tool cannot extract IndoorGML from other sources. Claridades et

al. [200] developed a methodology for integrating the IndoorGML model with other
3D geometric information for supporting indoor navigation; however, the proposed
methodology does not support the generation of IndoorGML files. Yuan and
Schneider [201] constructed an indoor network model integrating geometric
information for supporting indoor navigation; however, the model is not built in the
industry-standard IndoorGML format, which reduces the data interoperability. Teo
and Cho [202] developed a methodology for extracting geometric network models
from BIM models for various indoor and outdoor route planning applications;
however, their output also lacks compatibility with IndoorGML standards, which
reduces the data interoperability. Khan et al. [203] developed an approach for
transforming IFC files into CityGMLs (i.e., an Open Geospatial Consortium (OGC)
standard designed for the representation, storage, and exchange of 3D urban spatial
data [204]) and subsequently to transform CityGMLs into IndoorGML files. This
approach cannot generate IndoorGMLs directly from IFC files; it can only generate
CityGMLs from IFC files and then convert CityGMLs into IndoorGMLs, which is a
cumbersome and complicated process. Srivastava et al. [205] developed a
methodology for extracting IndoorGMLs from CAD drawings. While this methodology
works for CAD models, it does not work for BIM/IFC models. CAD models are
primarily 2D geometric drawings and often lack semantic information. Generating
IndoorGML from CAD requires manual mapping to infer relationships and semantics,
which can be error-prone and incomplete. Hashim et al. [206] developed a workflow
for converting point cloud data into the Sketchup model and extracting IndoorGMLs
from the Sketchup model. Unlike BIM models, SketchUp models do not inherently
include rich semantic information; hence, the extracted IndoorGML files also lack
semantic information. To summarize, the current gap in the literature lies in the
absence of a tool capable of handling complex buildings with irregular shapes while
generating IndoorGML files enriched with semantic information. Additionally, no
existing tool can convert IndoorGML files into Hospital Configuration Models (HCMs)
that integrate operational data and evaluate the alignment between operational
needs and the spatial configuration of hospitals. This study addresses these gaps by
proposing a novel methodology for the semi-automatic generation of IndoorGML
models from BIM/IFC models and the subsequent conversion of these IndoorGML
models into Hospital Configuration Models (HCMs).

Contributions and Novelties

67

This research introduces a novel framework for supporting hospital design by
proposing the Hospital Configuration Model (HCM) as the foundational component of
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a Hospital Design Support System (HDSS). The contributions and novelties of this
research can be summarized as follows:

Generation of IndoorGMLs:

Our proposed methodology incorporates a tool for the semi-automatic generation of
IndoorGML files from widely used BIM/IFC models and the automated conversion of
these IndoorGML files into Hospital Configuration Models (HCMs). Our tool is
specifically designed to handle complex buildings with irregular shapes, ensuring that
the resulting IndoorGML files contain accurate and comprehensive semantic
information.

Development of the Hospital Configuration Model (HCM):

The HCM integrates four critical data types—geometric, topological, semantic, and
operational—into a comprehensive, machine-readable digital twin model. By bridging
spatial information with operational workflows, the HCM ensures that hospital layouts
are evaluated not only for spatial efficiency but also for their alignment with medical
procedures and operational needs.

Construction of Activity Relations Chart (ARC) Models:

This study proposes a method for systematically building Activity Relations Chart
(ARC) models, which can be used for modelling and optimizing hospital layouts. The
ARC model is a tool for representing relationships between different spatial units
within a building [207] and can be thought of as the simplified graph-theoretical
equivalent of the HCMs.

The goal of the paper can be summarized as making a machine-readable
model/digital twin of a hospital that can bring the operations of a hospital into a
spatial information model as attributes. The rest of the paper is structured as follows:
The following Section 3.1.2 called Background answers research question 1: Why a
Hospital Configuration Model (HCM) is essential to have as the core of an HDSS as an
information system? Then, Section 3.1.3, called Research Methodology, answers the
research question 2: What specific pieces of information content are needed in an
HCM, based on the arguments and reflections provided in the background?
Afterwards, Section 3.1.4 answers the research question 3 of how to extract such
information into the Hospital Configuration Model. We dive deeper into extracting the
proposed pieces of essentially required information from what is typically available as
data and information models on hospitals, both the Building Information Models or
BIM data models and hospital Business Process Model and Notation, or BPMN, data
models. In Section 3.1.5, called Discussion, we talk about key findings, novelties, and
limitations of this research. Finally, in Section 3.1.6, called Conclusion, we introduce
the implications of the HCM and propose potential future research directions.
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Background

3.1.2.1

This section explains the necessity of developing an HCM as the core of HDSS. One of
the major functions of the proposed HDSS is to run simulation modelling to simulate
complex dynamic situations in a hospital environment. The simulation modelling
requires a configuration model as the base on which simulation can be implemented.
Furthermore, another major functionality of HDSS is to ensure that the configuration
of a hospital fits how the hospital is operated. In other words, the space of the
hospital should be laid out in a way that serves the purpose of improving hospital
operations. An HCM is therefore essential to check this fit between the hospital space
and medical procedures (hospital operations).

Simulation Modelling for Ex Ante Assessment
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The primary objective of developing an HDSS is to provide robust mechanisms for
evaluating the potential impact of hospital configuration decisions on various quality
indicators or quantitative outcomes. These outcomes may include measures of
functional efficiency, levels of crowding, and other relevant performance metrics. The
basic idea for devising such assessment mechanisms is to develop spatial analysis
procedures based on spatial queries, which tend to be about spatial networks and
traversals on their graph models. However, in the bigger scheme of configurational
assessment, some inherently dynamic phenomena can only be properly understood
through simulation modelling. There are multiple paradigms and at least two
simulation modelling approaches that are commonly used for the study of complex
systems. Complex system modelling is the bigger picture in which the whole case of
making an HDSS is considered because hospitals are obviously complex
socio-technical organizations that are not only complex from a spatial point of view
but also from an organizational and operational point of view. It is non-trivial to
understand how they work, let alone to be able to come up with recommendations as
to how their functionality or operational efficiency can be improved. Thus, we must
look into the bigger picture of simulation modelling for understanding hospitals as
complex systems to approach the daunting task of HDSS development. To keep the
scope of the paper manageable, however, here we only look at the necessity of having
a hospital configuration model from the point of view of simulation modelling
paradigms and approaches (which are not all necessarily relevant to the case of
HDSS development, but for the sake of generality, we mention them all). There are
four simulation modelling paradigms [208]:

Discrete Event Simulation (DES): A Discrete-Event Simulation (DES) model is a
model of a system in which events occur at specific points in time, causing changes in
the system state [46]. A DES model consists of:

Discrete event: The discrete event is the cause of the system state change. The state
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of the system in the DES model only changes due to the occurrence of events [41].
For example, in a hospital DES model, the patient’s walking distance in the hospital
only changes if the patient moves to the next room.

Clock: The clock records the duration of the simulation. The DES model is dynamic as
time is a critical variable, i.e., the state variables of the system change over
simulation time [41]. For example, in a hospital DES model, the walking distance of
the patient increases as the simulation time increases.

Random number generators: A random number generator can generate random
variables for the DES [41], e.g., medical service time or patient inter-arrival rate.
Statistics: This summarizes the results of the simulation, such as patient waiting
times or patient walking distances [41].

Ending condition: The DES ends when the ending condition is met [41], e.g., a
hospital DES model is set to end when a certain number of patients are discharged.

The proposed HDSS can use DES to simulate patients’ medical procedures in
hospitals and predict hospital performance by calculating performance indicators,
such as people density, patient waiting time, patient walking distance, etc.

Agent-Based modelling (ABM): An Agent-Based Model comprises individual agents,
their interactions with one another, and their interactions with the surrounding
environment [44]. Agents are small computer programs that represent various types
of entities [44]. For example, in a hospital ABM model, agents can be patients,
nurses, doctors, etc. The environment in the ABM model can be a network graph
where agents can interact [44]. The agents have several characteristics, which are
summarized as follows:

Autonomy: Agents are autonomous entities that behave without guidance from
central controllers; they are capable of making independent decisions [45].
Heterogeneity: Agents can have various features, such as ages, jobs, genders,

etc. [45]. For example, in a hospital ABM model, agents can have different roles, such
as patients, medical staff, technical staff, etc.

Active: Agents are active in an ABM model because they are goal-directed; they are
assigned to different goals and they need to achieve them [45]. To achieve their
goals, agents are equipped with the capacity to perceive their environment and
interact with other agents. Additionally, they are enabled to make logical decisions
that facilitate goal attainment [45].

[-25]Interactive: Agents can interact with other agents and also with the
environment [45].

Mobility: Agents can move in the ABM environment [45]. For instance, the patient or
the staff agent of a hospital ABM model can move in the environment (i.e., a graph) to
achieve their goals.

Adaptation/Learning: Agents can be designed to be adaptive; they can alter their
states based on previous states [45]. For instance, in a hospital agent-based model,
a doctor agent becomes available for new patients once they have completed the
treatment of the current patient.

ABM can also be applied in the proposed HDSS for studying individual behaviors,
interactions between patients and staff, or patient flows in the hospital.
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Continuous Simulation: Continuous simulations are designed to model systems in
which the system states change continuously over time. For example, in a hospital
continuous simulation model, the patient’s length of stay increases continuously over
simulation time. Continuous simulation models use differential equations or other
mathematical models for defining the changing rate of the system states over

time [209].

Continuous simulations can be compared with DES, where state variables in
continuous simulation models change continuously over time, while in DES models
they change at distinct points in time. Continuous simulations can be used for
studying the spread of a contagious airborne disease (e.g., influenza or COVID-19)
throughout a hospital to understand infection risk in different areas.

System Dynamics: System dynamics is a type of continuous simulation that is
developed for supporting policy making in complex and dynamic systems [209]. In
system dynamics models, the behavior of the system is created by the interactions
between different components over time. The key components of a system dynamics
model are introduced in the following:

Stocks: Stocks are accumulations of resources in a system; they represent the state
of the system [209], e.g., the number of patients in a hospital.

Flows: Flows represent the changing rates of stocks over time [209]. In a hospital, for
example, the flow could be the rate at which new patients are admitted or discharged.

Information links: In a system dynamics model, information links connect stocks with
flows and transfer information from a stock to the flow; they define how a stock
influences the values of the flow [209]. For example, in a hospital system dynamics
model, by linking stock (i.e., number of patients in the hospital) to the flow (i.e.,
patient inter-arrival rate), the patient inter-arrival rate can be influenced by the
current number of patients in the hospital.

System dynamics can be applied in hospital management in terms of understanding
patient flow, resource allocation, the spread of disease, etc.

And there are mainly two simulation approaches [210]:

Causal or signal-flow-based modelling as in Simulink [211].
Acausal or equation-based modelling as in Modelica [212].

Both of these simulation modelling approaches result in the construction of network
models to be used in running the simulation model. However, the first type of network
produced in signal flow-based simulation modelling is a Directed Acyclic Graph (DAG)
that is used almost directly as a computational network model, whereas the second
type of network model produced in equation-based modelling is closer to our
configuration model. It is a network model that closely resembles the physical
interconnections of elements in the system. It does not, however, readily represent a
computational network model. Such a model still needs to be coupled with
mathematical models to be converted into a simulation model. In an equation-based
simulation modelling language like Modelica, this step happens thanks to the
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computational engine of the language, but in our workflow, we have to consider this
as a secondary step of modelling to be performed by the modeler for the
domain-specific simulation tasks. However, discussing these details is beyond the
scope of this paper. Instead, here, we reflect on the requirements of an HCM for being
applicable and useful for building various simulation models, such as the four types
of simulation models mentioned previously.

Reflecting on the properties of the HCM from the point of view of simulation
modelling, what should the properties of an HCM be to be ready for simulation
models? According to the previous introduction of the four types of simulation
models, DES is perhaps the most suitable simulation modelling paradigm for studying
the operational efficiency of hospitals. However, ABM simulation models are also
used for studying stressful, chaotic, extreme or urgent situations in which the human
agents might behave like herds or flocks of animals, following and interacting with
each other closely. Continuous simulation models and system dynamics models are
less suitable for modelling hospital operations. Continuous simulation models are
more applicable in specific contexts, such as studying the spread of contagious
airborne diseases in hospitals, and system dynamics models are more suitable for
supporting the design of hospital policies or management strategies. So, in short,
DES and ABM models are the two simulation modelling paradigms that are most
suitable for this research, with the ABM simulation models able to be used to assess
the extraordinary working situations and the DES to assess the ordinary working
situations of the hospitals.

Ideally, our proposed HCM can cater for the needs of both the simulation modelling
approaches. This means that our HCM should have the essential spatial and
operational pieces of information that can potentially be further elaborated
automatically to extract higher resolution and more detailed information models as
bases of such simulation models. For example, if you consider a base simple floor
plate in an HCM, it can be further meshed into a high-res grid for running an ABM, but
only if necessary. However, it is not necessary to store high-resolution detail
information in the HCM at all times, as the high-resolution mesh can be generated
on-demand using the essential boundary information already stored in the HCM.

Operational vs. Spatial Information
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The most important reason to consider making an HDSS is to enhance the fit between
the hospital’s operational information and spatial information. A hospital’s
operational information pertains to the processes, workflows, and activities that
occur within a hospital. It encapsulates the dynamic aspects of how the facility
operates, focusing on the flow of people, materials, and resources through various
functional units. Key elements include:

Patient Journeys: A sequence of steps or locations that patients visit during their
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hospital stay; for an instance of the patient journey, please see ‘Operational
Information’ in Table 3.1.

Resource Utilization: Details of how hospital resources (e.g., rooms and beds) are
allocated and used.

Spatial information focuses on the layout/configuration of the hospital. It provides a
static framework that determines how operational activities are accommodated
within the facility. Key elements include:

Geometric Information: Details about the shapes, dimensions, and coordinates of
physical spaces, such as room boundaries. For an example of a room boundary,
please see ‘Geometric Information’ in Table 3.1.

Topological Information: The connectivity between spatial units, represented as a
network of nodes (e.g., rooms) and edges (e.g., connections between rooms).
Table 3.1’s ‘Topological Information’ provides an example of a simple network.

While operational information captures the dynamic aspects of hospital activities,
spatial information provides the static framework that houses these activities.

The purpose of enhancing the fit between a hospital’s operational information and
spatial information can be expressed as ensuring that the configuration of a hospital
is fit for the purpose for which it is built.

The operational steps can be related to the spatial units of a hospital—the sequences
or medical procedures inevitably entail the transport of people (patients and staff),
materials, and equipment inside the hospital. Therefore, the challenge of operational
management of the hospital will significantly involve transport planning and
operations research in a spatial sense. In conclusion, it can be said that the problem
of designing an optimal hospital configuration is about the fitness of the hospital
configuration for undertaking the medical procedures that are supposed to take
place through the spatial layout of the hospital. Figures 3.1-3.3 illustrate some
representative examples of medical procedures in real-world hospitals; Figures 3.4
and 3.5 together show the ideal configuration obtained from these medical
procedures. For further explanation on how to achieve an ideal hospital configuration
with regard to hospital medical procedures, please see Section 3.1.3.2.
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Research Methodology
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This section is about what we need to have in an HCM and why. An HDSS is essential
for designing a better hospital system, as it can quantitatively and systematically
evaluate the design. A configuration model is a prerequisite for developing the HDSS
because it contains spatial and non-spatial information about the hospital for
evaluation. This section first talks about the required information in an HCM by
introducing the use cases of an HDSS. It then introduces essential data needed in
hospital ARC models, which are simplified equivalents of HCM. Additionally, this
section discusses the required four types of data in an HCM; each type of data is
explained with a detailed example. Lastly, this section introduces the available data
models from which the four types of data can be extracted. The available data and
information models include two types, i.e., spatial-information-type models, such as
Building Information Models (BIM), Industry Foundation Classes (IFC), and
IndoorGML, and operational-information-type models in the form of Business
Process Model and Notation (BPMN) data models.
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Use Cases of HDSS
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This section explains what we envisage to be the use cases of the HDSS and
concludes the list of necessary information in an HCM based on the desired
functionalities of the HDSS. The kind of information we need is not readily available in
any existing file/information model. We are proposing a software application for
assessing, managing or optimizing hospital configurations; the first logical step in
developing such software is to have clear ideas about information processing and
operations within the system.

To demonstrate the functionality and utility of the proposed HDSS, several use cases
are described as examples by answering the following questions: Who would be the
user of the HDSS? What questions can the HDSS answer? And at what stage of a
project can these questions be answered? The required information for each use case
is also summarized. However, this list is not meant to be and cannot possibly be
exhaustive.

Use case 1: The architect can use the HDSS to semi-automatically create a hospital
layout at the layout design stage of a new project or optimize the hospital layout of
an existing project. For this use case, the operational information of patients’ medical
procedures in the hospital is needed for obtaining an Activity Relations Charts (ARC)
model (for further explanations, please see Section 3.1.3.2). Thus, the HCM should
contain the operational information on patients’ medical procedures in the hospital.

Use case 2: The architect can use this HDSS to assess the safety of the hospital
environment during the layout design stage. The environment’s safety can be
measured by the visibility and accessibility of spatial units within the hospital. As the
visibility increases, the nurse can supervise bigger areas and hence the safety of the
environment can be improved. A network graph consisting of nodes and edges is
needed for this function, where each node represents a spatial unit of the hospital
and each edge connecting two nodes represents the adjacent relationship between
the two nodes. Hence, the HCM of the HDSS should contain the topological
information of a network graph.

Use case 3: The hospital director can use the HDSS to check if the hospital will be
overcrowded during the layout design stage. For this use case, we need the
topological information of the network graph. We also need to incorporate semantic
information into the graph by assigning the area of each spatial unit to its
corresponding node, so that the average people density in the room/spatial unit can
be computed to indicate the crowdedness.

Use case 4: The hospital director can use this system to check if the patient waiting
time will be too long in a new hospital project during the layout design stage. In this
use case, the graph is again needed. We also need to integrate semantic information
into the graph by assigning the name of each spatial unit (e.g., ‘central waiting’ or
‘registration’, etc.) to its corresponding node. The patient’s waiting time will be from
the time the patient enters the waiting room till the time the patient enters the
diagnosis room.
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— Use case 5: The head nurse can use this system to check if patients’ walking

distances will be too long in a new hospital project during the layout design stage.
For this use case, we need the operational information of patients’ medical
procedures to obtain the optimal patient paths with the shortest distance. We also
need the topological information of the network graph of the hospital. Furthermore, it
is necessary to incorporate semantic information into the graph by assigning the
name of each spatial unit to its corresponding node. This will enable the identification
of specific patient paths within the graph. Finally, it is essential to integrate
geometric information into the graph by assigning 3D coordinates to each node. This
will allow for the calculation of the distances along the patient’s path.

Use case 6: The architect can use this system to check how difficult it will be for
first-time visitors to find their way in a hospital project during the layout design
stage. For this function of measuring the difficulty in wayfinding, the extra walking
distance will be the criterion of measurement. Hospital space is large and
complicated; when first-time visitors enter the hospital to look for their destinations,
they might get lost and go to several wrong places before arriving at their
destinations. Hence, their actual travel journey will be different from the optimal
journey (i.e., the shortest path); the difference between the shortest path’s distance
and the patient’s actual travel journey’s distance will indicate how difficult it is for
patients to find their way. This use case requires the same information as Use Case 5.

Use case 7: The hospital director can use this system to develop a digital twin for
simulating the operational management of the existing hospital during the operation
and maintenance stage. A digital twin can help hospital directors assess the impact
of changes on system performance and predict the result of specific medical
procedures [213]. For this use case, the needed information is the topological
information of the hospital graph and the operational information, such as the
patient’s journey.

In summary, the HCM of the HDSS requires four main types of information:
operational information, such as patient paths in the hospital, topological
information, such as the hospital’s network graph, semantic information, such as
each room’s name and area, and geometric information, such as each room’s
location represented by a 3D coordinate. Each type of information is explained with
an example in Table 3.1. Note that developing the calculation methods for the
performance indicators mentioned in the use cases above, such as crowdingness,
patient waiting time, patient walking distance, and difficulty in wayfinding, is beyond
the scope of this research.

ARC Model
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As mentioned in use case 1 of Section 3.1.3.1, Activity Relations Charts or ARC
models [207] can be thought of as the simplified graph-theoretical equivalents (or
excerpts) of the HCMs. These ARC models are large square matrices that denote
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complex directed graphs, which use numbers indicating the relative importance of
links in terms of frequencies of travel/transport between spatial/operational units of
a hospital. Thus, it is clear that these ARC models form the basis of configurational
approaches to the design and optimization of hospital layouts in computational
design [193]. However, there is little in the scientific or professional literature about
how these ARC models can be made systematically. Here, we propose a conceptual
process for building these ARC models in a participatory process in consultation with
the directors and planners of hospitals. The idea is to construct an ARC model in
multiple logical steps by collating or superimposing multiple operational “paths”
consisting of nodes that represent spatial/operational stations or operational
milestones and links that indicate the smallest operational/procedural actions and
their temporal duration (these attributes may or may not be used later for building
Discrete Event Simulation models [193, 214]). Our proposed method is based on the
idea of compiling a list of operational/spatial stations (rooms) and conducting a
workshop/survey with the stakeholders to collect their proposed operational paths
consisting of chains/sequences of these spatial/operational units. By putting
together these paths, literally by adding the graph adjacency matrices representing
these paths, we can then construct the main ARC model and its directed adjacency
matrix in one go. If desired, this graph can then be row-normalized to extract the
relative importance of the links between 0 and 1 [215].

Figures 3.1-3.5 together provide an illustrative example of the process for building
the ARC models. Specifically, Figures 3.1-3.3 are the proposed operational paths in
the form of BPMN models. A BPMN model is the industry standard that uses flow
charts for modeling and illustrating processes in complex systems [216]. These
BPMN models (or flow charts) show all the space-related procedures included in the
patient journeys in outpatient, inpatient, and emergency departments of a real-world
hospital. The hospital selected for this research is Panyu Central Hospital, located in
Guangzhou, China. It is selected due to its available operational data of patient
journeys as well as its representative layout complexities [3]. The Panyu Central
Hospital has three main departments, namely, the outpatient department, inpatient
department, and emergency department. Figures 3.1-3.3 illustrate the typical
patient journeys in the outpatient, inpatient, and emergency departments of Panyu
Central Hospital in the form of a flow chart. Based on the flow charts, an Activity
Relations Chart can be formed as illustrated in Figure 3.4, where the rows and
columns are labeled by space-related procedures in the flow charts, and entries
indicate the relationships between any two pairs of procedures. The relations range
from 0 to 1. If there is no connection between two procedures, the relation is 0. If a
connection between two procedures exists, the relation is larger than 0 and is
calculated according to the frequency of transitions between procedures. The higher
the number is, the more adjacent the two procedures need to be to each other.

It can be observed that the ARC model itself is a weighted graph, where each cell in
the first row/column is a node, and the entries of the ARC model are the edges
associated with weights ranging from 0 to 1. This graph can be represented in a more
visual way, namely, a metro network diagram, as illustrated in Figure 3.5, where each
procedure is represented by a circle (node) and the connections between different
procedures are represented by lines (edges). Pairs of procedures with stronger
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connections (i.e., higher numbers in the ARC model) are put close to each other in
this diagram. By indicating and visualizing which procedures need to be adjacent to
each other, these ARC models and the metro network diagram can aid in use case 1
of the HDSS, where hospital layouts need to be designed or optimized.

Hospital Configuration Model
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According to the HDSS's use cases and functionalities introduced in Section 3.1.3.1,
we can conclude what data is needed in a Hospital Configuration Model. As illustrated
in Figure 3.6, a Hospital Configuration Model contains spatial and non-spatial
information. The spatial information can be further divided into two types, namely,
topological information and geometric information. The non-spatial information can
also be further divided into semantic information and operational information.

A detailed technical exposition of the HCM's components is summarized as follows:

Geometric Information

The geometric data in the HCM represent the physical shapes of the hospital,
encompassing the boundaries and 3D spaces of rooms and corridors. These are
defined using mathematical constructs, such as:

Vertices and Edges: Each room is represented as a polygon defined by a set of
vertices (3D coordinates) and edges connecting these vertices. The polygon data are
extracted from BIM/IFC models using tools like Revit and Dynamo. For an example of
the room polygon data, please see geometric information in Table 3.1.

Mesh Representation: The 3D space of the room is represented by the mesh
geometry, and the mesh representation algorithm is developed using the COMPAS
library in Python [217].

Topological Information
Topological information encodes the spatial relationships between different functional
units of the hospital, represented as a network graph. The graph consists of:

Nodes: Each spatial unit (room or corridor) is a node.
Edges: An edge between two nodes signifies the adjacency relationship.
Attributes: Each node can carry attributes such as the room name or room capacity.

The nodes and edges are extracted from BIM/IFC models using Rhino and
Grasshopper, and the network graph is built in Python using the NetworkX

library [218]. For a simplified example of a hospital graph, please see the topological
information in Table 3.1.

Semantic Information

Semantic information provides meaning to the spatial units by linking them to their
functional roles. Examples include:
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- Room Names: Identifying units such as operating rooms, waiting areas, and

diagnostic labs.
Organizational Hierarchy: Associating rooms with departments to enable functional
grouping.

The algorithm for extracting semantic information from the BIM/IFC model is
implemented in Python, and the extracted data is stored in the form of a Python
dictionary. For an example of extracted semantic information, please see Semantic
Information in Table 3.1.

Operational Information

Operational information captures patient journeys within the hospital. A patient
journey is a detailed sequence of rooms visited during a medical procedure, e.g., see
Operational Information in Table 3.1.

Business Process Model and Notation (BPMN) diagrams are used to standardize and
visualize the patient journey. The patient journey data is represented as a Python list,
with each element of the Python list being a room the patient needs to visit during the
patient journey.

Section 3.1.4.1 explains how we extract the four types of information from available
sources, such as BIM/IFC models and BPMN models, to form the HCM. In the HCM, all
types of information are connected logically; the dashed lines in Figure 3.6 show the
relationships between different classes, e.g., the relationship named ‘Person uses
rooms’ indicates specific rooms that a person uses. Ideally, we will achieve
consistency among the spatial information, the semantic information, and the
operational information, to make the operational management in a hospital
straightforward. The following subsections introduce the available data models (i.e.,
BIM/IFC models, IndoorGML models, and BPMN models) from which the four types of
data can be extracted.
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FIG. 3.6 A UML diagram illustrating data included in a Hospital Configuration Model.
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Building Information Modeling (BIM) consists of designing and using a digital 3D
model of buildings to support architectural planning, design, construction, operation,
maintenance, refurbishing and demolition [219]. BIM is widely used in the
Architecture Engineering and Construction (AEC) domain for aiding the design and
construction stages of an architectural project [219].

One typical challenge facing BIM is that different BIM software have different file
formats that do not always support one another, which causes interoperability
problems when exchanging files [219]. To solve this problem, the buildingSMART
consortium has invented the industry foundation classes (IFC) as a common and
open format for exchanging BIM models [219].

Due to the wide application of BIM/IFC in the AEC domain, most digital 3D models of
hospitals are BIM/IFC models. Hence, we will use hospital BIM/IFC files as source
files for extracting geometric, topological, and semantic information for the HCM.
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BIM/IFC models are very complex and contain much information that is irrelevant to
geospatial applications and research [194]. They integrate geometric, spatial,
structural, and material information across different stages of a building’s life cycle.
The information we need for the use cases and functionalities of the HDSS is only a
small part of the entire information in the BIM/IFC model; the rest of the information
is irrelevant to our research purpose. Hence, for simplicity and convenience reasons,
we only need to extract relevant information from BIM/IFC models and abandon the
rest.

We can extract IndoorGML files from BIM/IFC models. IndoorGML is an Open
Geospatial Consortium (OGC) standard used for the description of 3D indoor spaces
and facilitating applications such as indoor navigation [194]. IndoorGML files
provide geometric, topological, and semantic information about indoor spaces, which
suits the aim of our research [220].

IndoorGML models have two main parts: one is the Primal Space Features and the
other is the Node-Relation Graph [220]. The Primal Space Features divide the indoor
space of a building into cells; cells are representations of rooms and corridors. The
Node-Relation Graph describes the relations among these cells (i.e., whether two
cells are adjacent). The Primal Space Features are further divided into the Cell Space
and Cell Space Boundary, where the Cell Space is the smallest spatial unit of a
building, such as a room, corridor and staircase, etc., and the Cell Space Boundary is
the door in a building. The Node-Relation Graph is also divided into two modules, i.e.,
nodes and edges. A node is the dual of the corresponding Cell Space (room) or Cell
Space Boundary (door), and an edge connects two nodes if the two corresponding
Cell Spaces (or Cell Space Boundaries) are adjacent. Figure 3.7 gives an illustration
of the four modules of the IndoorGML, and Figure 3.8 is an example of the IndoorGML
model extracted from the open-source hospital IFC model used in this

research [221], where the red Node-Relation Graph is embedded in the transparent
Primal Space Features.

Although IndoorGMLs seem suitable for our research, they present several
challenges and drawbacks that are not conducive to this research as follows:

There is a lack of available IndoorGML files in the industry because, according to the
literature study conducted in Section 3.1.1.2, there are no appropriate tools for
generating correct IndoorGML files. Furthermore, IndoorGMLs are encoded in XML
(eXtensible Markup Language) format [222], which is complex, highly hierarchical,
cumbersome to manage, and unpopular for web applications [219].

While IndoorGML is designed to support applications in indoor navigation and facility
management, effective execution of these tasks typically requires integration with
additional data, such as operational information and enriched semantic information.
However, IndoorGML files currently face the challenge of lacking this critical
supplementary information.
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Hence, IndoorGML itself cannot meet our research requirements. To deal with the
above challenges, we first developed our tool for semi-automatically generating
correct IndoorGML files from BIM/IFC models. The generated IndoorGML files are
further parsed into JSON (JavaScript Object Notation) format [223], which is a more
popular format due to its readability and editability. Our tool can also integrate
operational and semantic information into IndoorGML'’s spatial information to make
the later simulation modeling feasible [224].

CellSpace CellSpaceBoundary

Node Edge

FIG. 3.8 An example of a hospital IndoorGML model, image source: [224].

Hospital BPMN Models
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Since hospital BIM/IFC and IndoorGML models do not contain operational
information, such as medical processes or patient journeys, we need to collect this
information from other sources. In this research, we extract the operational
information for the HCM from business process model notation (BPMN) models.
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BPMN is an industrial standard for modeling business processes; it uses flow charts
to visualize the steps included in the business process [216]. It is a common
approach to model hospitals’ medical processes [216, 225]. Hospitals, as complex
systems, have very complicated processes involving different users and multiple
steps taking place in different places. Hence, BPMN is a perfect method to model
these processes. We will use BPMN models as our source files for extracting
operational information into the HCM.

In this research, we selected representative hospital operational information about
patient journeys from Peng’s study [3] and manually modeled this information into
BPMN models. The automatic generation of BPMN models is beyond the scope of this
paper. However, we propose that an expert (such as an industrial engineer or
someone familiar with operations research) should systematically extract such
information from textual and visual documents concerning the operational
management and service design of a hospital to construct multiple BPMN models to
describe the main procedural workflows in a hospital. Figures 3.1-3.3 show BPMN
models that we built for modeling the medical processes in outpatient, inpatient, and
emergency departments in a real-world hospital. We used these three BPMN models
as our source files for extracting the operational information into the HCM.

Section 3.1.4.1 explains how we extract operational information from these

BPMN models.

Research Results

3.1.4.1

In this section, we discuss how we extract the required information about our HCM
from what is typically available as data and information models.

We introduce the main results of this research, which are our methodologies of
extracting data from BIM/IFC models to build the HCM.

From Hospital IFC Model to HCM
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This research developed software to automatically generate a configuration model
from an IFC model for the evaluation of the hospital’s functionality and efficiency.
The generation workflow includes two main steps. The first step is converting the
hospital IFC model to the IndoorGML model. The second step is to build the HCM
from the IndoorGML file. Figure 3.9 depicts the workflow of converting the Hospital
IFC Model to the HCM.
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FIG. 3.9 The workflow from Hospital IFC Model to Hospital Configuration Model, source: [224].

Our software for generating IndoorGML is inspired by Tong and Zheng’s work, but is
more generalized and works for more complex buildings with rooms of irregular
shapes. As illustrated in Figure 3.9, the workflow of generating IndoorGML files starts
with extracting relevant information from the IFC model using Autodesk’s Revit and
Dynamo. Three groups of data (i.e., room names, boundaries and areas, stair
boundaries, and door locations) are taken out of the IFC model for building
IndoorGML's geometric and semantic information. The extracted data can be further
used to generate IndoorGML'’s topological information (i.e., Node-Relation Graph),
but because Dynamo and Grasshopper use different data structures to store data,
the data from Dynamo needs to be first processed in Python so it is readable by
Grasshopper. Once the data is imported into Grasshopper, the scripts in Grasshopper
read the data and generate a Node-Relation Graph of the IndoorGML model. The data
exported from Grasshopper again needs to be processed in Python so that they can
be read by other Python libraries to write an IndoorGML file. Since the IndoorGML file
has an XML-based exchange format [226], we use etree [227], an XML library for
Python, to write the IndoorGML file. The processed geometric, topological, and
semantic information is read by the Python generator and turned into XML-formatted
output (i.e., IndoorGML). For more implementation details about the software, such
as the scripts in Dynamo, Grasshopper, and Python, please refer to the study by Jia et
al. [224].

The development of the HCM follows the design pattern of model-view-controller
(MVC). MVC is the most common design pattern for developing software or user
interfaces [228]. This pattern divides the program logic into three separate yet
interconnected parts, i.e., data model, view, and controller [229]. Figure 3.10
presents the interrelationships among the three parts of the MVC. The data model
component of the MVC is a data structure which contains all the raw data of the
project [230]. In the case of the HCM, the data model is derived from the IndoorGML
file and carries all the geometric, topological, semantic and operational information
of a hospital system. The view component of MVC presents the model’s information
to the users [230]. It contains functions to access the data model and organize the
data more logically so that humans can easily read it. We have developed view
functions of our HCM according to the use cases introduced in Section 3.1.3.1 for
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users to easily query relevant information. The controller component of MVC serves
as an intermediary between the model and the view. It listens to the event triggered
by the view and makes a response to the model (e.g., adding or changing information
to the data model) [230]. In the following text, we demonstrate how we obtain the
data model of the HCM, develop view codes to extract information from the data
model and present them in a human-readable manner, and develop controller codes
to add or edit contents in the data model.

Updates Manipulates
See\ Use
User

FIG. 3.10 The basic architecture of MVC, image source [231].

Obtaining the Model part of the HCM

Figure 3.9 shows that the development of the data model for the HCM includes
parsing the IndoorGML file into a JavaScript Object Notation (JSON) file [223]. The
parser for IndoorGML used in this study was developed by Ledoux [232]. With this
parser, all the information in the IndoorGML (e.g., cell spaces, cell space boundaries,
nodes and edges) is parsed into a JSON file as the data model.

Developing the View part of the HCM

The information presented by the view codes should be a mathematical construct
about sets and relations. These relations are graphs, so most of our view functions
should output sets and graphs or hypergraphs (a mesh is a hypergraph, and the edge
in a face is considered to be a hyperedge). According to the use cases demonstrated
in Section 3.1.3.1, we developed view codes to extract the following information: a
mesh (hyper-graph) describing the geometrical information (i.e., the Primal Space
Features) in the IndoorGML model, a graph showing the topological information (i.e.,
the Node-Relation Graph) in the IndoorGML model, a set of room names and room
areas showing the semantic information of the hospital in the IndoorGML model,
another set of hospital departments and all the rooms within their respective
departments, which shows the semantic information of the hospital’s organizational
structure, and lastly, a set of lists demonstrating the operational information of
patient journeys in the hospital.
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The mesh output is obtained using the COMPAS library in Python. COMPAS is an
open-source framework designed for computational research in the fields of
architecture, engineering, digital fabrication and construction [217]. Users can use
the view code to generate and visualize the mesh geometry to obtain a view of what
the IndoorGML model of the building looks like. The graph output is obtained by
developing Python scripts using the NetworkX library, a Python package made for
creating, manipulating, and analysing complex networks [218]. Users can use the
view code to obtain the network graph, which will be the base for running the
simulation modeling. The simulation modeling is one of the core functionalities of
HDSS, as mentioned in use cases 4, 5, and 6. Figure 3.8 is a visualization of the mesh
output and graph output generated from the open-source hospital IFC model [221],
where the red graph is embedded in the transparent mesh. The set output of room
names and room areas is a Python dictionary. A Python dictionary is a data structure
in Python that stores data in key-value pairs (e.g., {key: value}) [233]. In the Python
dictionary of room names and areas, the room name is the key and the room area is
the value. Users can use the view code to obtain all the room areas, which can aid in
addressing use case 3 of assessing crowdingness in hospitals. Specifically, in the
later simulation modeling step, once the room area and the number of people in the
room are known, it is straightforward to assess the room’s crowdingness by
calculating the people’s density in the room. The set output of departments and
rooms is also a Python dictionary. In this dictionary, each department is represented
as a key, and its associated rooms are grouped as the corresponding values.

Figure 3.11 shows the Python code to implement this function of organizing all rooms
in the hospital into their respective departments, and Table 3.3 shows the resulting
Python dictionary of hospital departments and rooms. The extracted operational
information related to patient journeys in the hospital is in the form of Python lists.
For extracting this information, we first turned the BPMN models (Figures 3.1-3.3)
into multiple lists (e.g., see Input data list in Table 3.2), where each element in the list
is a space-related procedure in the BPMN (i.e., rounded-corner rectangle in the flow
Figures 3.1-3.3), and the entire list is a complete medical procedure in the BPMN
flow chart (i.e., the procedure starts with patient entering the hospital and ends with
patient leaving hospital). Subsequently, we developed view codes to identify the
corresponding room names of list elements based on the extracted semantic
information of hospital departments and rooms (Table 3.3). For example, the
corresponding room name for the element 'registration’ in the semantic information
dictionary is ‘RECEPTION1B13". The view codes find the corresponding room names
for each element in the list and put all corresponding room names into a new list
(e.g., see Output data list in Table 3.2). The new lists contain extracted operational
data on patient journeys, which can serve as input for HDSS simulation modeling,
e.g., these data enable determining the shortest path for patients/agents in DES or
ABM simulations. Table 3.2 provides an example of the input data list generated from
the BPMN model and an example of the output data list of operational information
generated from the input data list. It should be noted that one element in the input
data list might have multiple corresponding room names in the output data list. This
is because in a hospital, there can be multiple rooms for the same function. For
example, the element ‘diagnosis’ in the input list has twelve corresponding room
names (‘INTERACTIONSTATION1DO7’, INTERACTIONSTATION1DO08’, etc.) in the
output data list because, in the selected hospital BIM model, there are twelve rooms
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all serving the same function of diagnosis. Hence, the patient can have twelve options
when choosing the diagnosis room, and there will be twelve different potential paths
for the patient to complete the same patient journey. For more implementation
details of the view codes’ Python scripts, please refer to [224] or the repository
(https://github.com/ZhuoranJia/IFC2BCM, accessed on 25 November 2024).

TABLE 3.2 Source data and output data of HCM’s operational information, source: [224].

Input Data List Output Data List

origianl_medical_path_1 = [‘registration’, ‘triage’,
‘waiting’, ‘diagnosis’, ‘medicine’]

medical_path_1 = [‘RECEPTION1B13’, ‘WTSand-
MEAS.ROOM1D15’,  ‘WTSandMEAS.ROOM1D30’,
‘WAITING/ACTIVITYAREA1DC1’, ‘INTERACTION-
STATION1D11’, ‘INTERACTIONSTATION1DO7’,
‘INTERACTIONSTATION1D32’, ‘INTERACTION-
STATION1DO2’, ‘INTERACTIONSTATION1D13",
‘INTERACTIONSTATION1D36’, ‘INTERACTION-
STATION1D10’, ‘INTERACTIONSTATION1DO8’,
‘INTERACTIONSTATION1D09’, ‘INTERACTIONSTA-
TION1D28’, ‘INTERACTIONSTATION1D34’, ‘IN-
TERACTIONSTATION1D35’, ‘PHARM.DISP.1A16’]

Organize rooms to their deparments

def get_department_of_rooms_dict(room_name_area):
output_data = {}

# Loop through each item in the list to organize by department
for key in room_name_area:

=Dy Dy B @

# Extract department character (the last third character of the room name)

department = 'Department$’ + key[-3]

# Check if the department key exists in the dictionary
if department not in output_data:
# If not, create a new list for this department
output_data[department] = []

# Append the room and area tuple to the appropriate department list

output_data[ department] .append (key)
return output_data
new_output_data = get_department_of_rooms_dict(dict_room Name_and_area)

new_output_data

v 80s

Python

FIG. 3.11 View function for extracting semantic information, source: [224].
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TABLE 3.3 Extracted semantic information of the HCM. Note: for simplicity reasons, the information shown
here is incomplete; for a complete version of the information please see this repository
(https://github.com/ZhuoranJia/IFC2BCM, accessed on 25 November 2024).

{‘Department$A”
[‘CENTRALWAITING1AC1’, ‘CORRIDOR2AC3’, ‘PHARM.DISP.1A16’,
‘CORRIDOR2AC1’, ‘DENTALWAITING2A11’,

‘X-RAYALCOVE2A12-A'1}
{‘Department$B’:
['CORRIDOR1BC2’, ‘LAB1B04’, ‘CORRIDOR1BC4’,

‘RECEPTION1BO1’, ‘RECEPTION1B13’, ‘TECHOFFICE2B9']}
{‘Department$D’:
[‘WAITING/ACTIVITYAREA1DC1’, ‘MAINMECHANICALROOM2DO05’,

‘INTERACTIONSTATION1D11’, INTERACTIONSTATION1DO7’,
‘INTERACTIONSTATION1DO8’, INTERACTIONSTATION1D0O9’,
‘INTERACTIONSTATION1D28’, INTERACTIONSTATION1D34",
‘INTERACTIONSTATION1D35’,

‘COMPUTERROOM2D04A’]}

— The Controller part of the HCM

The controller codes we envisage are for updating the data model; in other words,
adding/changing information to the data model. Once the simulation is complete, we
need to update the data model by adding the disaggregated simulation results and
aggregated evaluation results to the data model, so that users can easily view them.
For example, once the simulation is finished and we know each room’s people density,
we need to add this attribute to the dictionary that describes the room’s information.
Table 3.4 provides an example for illustrating how one part of the data model has
been changed before and after the controller code adds information to it. In addition
to adding the disaggregated information, we also propose controller codes for adding
aggregated information, such as the average people density, average patient walking
distance, average patient waiting time, and average patient’s extra walking distance.

Another example of the use of controller code is for updating the data model’s
network graph. The original network graph only contains topological information; the
controller codes can integrate semantic and geometric information into the graph,
for example, assigning each node its corresponding room name, area, and 3D
coordinate. By adding such information to the graph, the graph can aid in the
simulation modeling, such as finding the shortest path in the graph according to the
patient journey data list (output data list in Table 3.2), calculating the distance along
the shortest path, and calculating the people density in a room.
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TABLE 3.4 An example showing how controller codes add information to the data model (please note the data
for people density in this example is hypothetical).

Room Attributes

Before {‘CENTRALWAITING": {*area” ‘127'}‘WAITING/ACTIVITYARE": {‘area’: ‘178},...}

After {‘CENTRALWAITING': {‘area’: ‘127’, ‘people density’: ‘0.9'},‘'WAITING/ACTIVITYARE":
{‘area’: ‘178, ‘people density’: “1.0'}, ...}

Discussion
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This study presents a novel Hospital Configuration Model (HCM) as the foundational
component for a Hospital Design Support System (HDSS). By integrating geometric,
topological, semantic, and operational data, the HCM enables the HDSS to utilize
simulation modeling for assessing hospital layout efficiency and functionality. In this
section, we summarize the key findings, the comparison with the academic literature,
and the research limitations.

This study presents several key findings that contribute to advancing the field of
hospital layout design and simulation modeling. First, a robust systematic
methodology was developed for the semi-automatic generation of IndoorGML files
from existing Building Information Models (BIM) and Industry Foundation Classes
(IFC) data. This approach helps enhance the accessibility and availability of
IndoorGML data for applications such as indoor navigation and indoor
location-based services. The methodology further facilitates the automatic
transformation of IndoorGML files into Hospital Configuration Models (HCMs). These
HCMs, integrating geometric, topological, semantic, and operational data, enable
spatial analysis and simulation modeling. To validate the methodology, it was
successfully applied to a real-world hospital BIM model, resulting in an HCM which
allows for a quantitative evaluation of hospital layout designs, focusing on key
performance indicators, such as crowdingness, patient walking distance, patient
waiting time, and difficulty in wayfinding.

This research bridges the gaps of other related studies. As discussed in

Section 3.1.1.2, several gaps and limitations are evident in the existing body of
related studies. Firstly, certain tools, such as those developed by Diakite et al. [194]
and Intratech [195], generate IndoorGMLs that lack semantic information. Our
methodology can generate IndoorGMLs integrated with semantic data. Secondly,
Tong and Zheng’s software [196] is incapable of dealing with complex building
models with irregular shapes—our methodology overcomes this limitation. Thirdly,
many existing tools do not support the generation of IndoorGML from other sources.
These tools include the ones developed by Jeong et al. [197], Brincovean and
Butean [198], Taehoon [199], and Claridades et al. [200]. Our methodology can
generate IndoorGMLs from BIM/IFC files. Fourthly, several tools, such as those
developed by Yuan and Schneider [201] and Teo and Cho [202], generate layout
representation models in other formats, instead of the industry-standard IndoorGML
format, which reduces data interoperability. Our methodology can generate correct
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IndoorGML files, enhancing data interoperability. Additionally, the approach
developed by Khan et al. [203] includes the extra step of converting IFC files into
CityGMLs, and then extracting IndoorGMLs from CityGMLs, which is cumbersome. OQur
methodology can directly extract IndoorGMLs from IFC models. Lastly, Srivastava et
al. [205]'s methodology and Hashim et al. [206]’s workflow can only generate
IndoorGML files from CAD and Sketchup models instead of BIM/IFC models. The lack
of 3D geometric information in CAD models and semantic information in SketchUp
models makes them less suitable as source models for this research compared to
BIM/IFC models. Our methodology is designed to be able to work with BIM/IFC
inputs. Furthermore, none of the studies developed further steps for editing the
IndoorGML files. Our methodology can subsequently convert the IndoorGML files into
HCMs. The advantages of HSMs over IndoorGMLs can be found in Section 3.1.3.5.

While this research provides valuable insights, it is important to note that this
research has several limitations. Firstly, the operational information discussed in this
research focuses solely on the patient aspect. Specifically, when extracting
operational data into the HCM, we concentrated only on the patient journey.
However, operational information encompasses additional aspects, such as staff
workflows, which include staff movement patterns and their interactions with both
other staff and patients. This aspect is also integral to HCM’s operational information
and could provide further insights if considered. Secondly, the operational data
integrated into the HCM were derived from pre-existing sources and may not
comprehensively capture the dynamic variability of hospital workflows. The static
nature of some operational inputs might limit the model’s ability to simulate highly
dynamic scenarios, such as those involving emergencies or sudden changes in
patient flows. Incorporating real-time or stochastic operational data into the model
could enhance its predictive capabilities and applicability in more complex scenarios.
The third limitation of the developed methodology lies in its approach to representing
spatial connections in the hospital layout graph. When generating the graph for the
hospital layout, the methodology creates edges by connecting a room’s node to the
corresponding node of its door. Consequently, the methodology only establishes
connections between two spatial units if they are linked by a door. For instance, if a
room and a corridor share the same door, they will be connected through that door.
However, if two corridors are directly connected without an intervening door, the
methodology does not create an edge between them, leaving them unlinked. This
approach introduces inaccuracies, as spatial units that are directly connected
without doors should still be represented as connected by an edge in the graph.
Additionally, the methodology is developed using a combination of Python scripts,
Grasshopper scripts, and Dynamo scripts. While this multi-tool approach leverages
the unique strengths of each platform, it also imposes significant challenges on
users. Specifically, users must switch between these three tools to execute the
software’s functionality, resulting in a fragmented and cumbersome workflow. This
lack of integration not only complicates the user experience but also introduces
potential inefficiencies, such as increased learning curves, higher risks of user error,
and reduced operational consistency. Lastly, the application and validation of the
methodology were conducted on a single real-world hospital BIM model. While this
case study demonstrates the feasibility and effectiveness of the proposed approach,
the generalizability of the findings to other hospital layouts with varying levels of
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complexity and functional requirements remains to be further investigated.

Conclusions

3.1.6.1

The aim of this study was to develop a methodology for building a Hospital
Configuration Model as the foundational component of a Hospital Design Support
that applies simulation modeling for providing evaluation mechanisms on hospital
layout performances in terms of operational efficiencies and functionalities. In
practical application, the methodology can be used at the layout design stage of a
new building project; it can also be used at the operation and maintenance stage of
an existing hospital. The research results include the methodology of
semi-automatically generating configuration models for hospitals from BIM/IFC
models. The methodology has two parts: the first part includes the conversion of
hospital BIM/IFC models to IndoorGML models, and the second part pertains to the
automatic generation of HCM from the IndoorGML model. The following sub-sections
discuss the future research directions and implications of this study.

Future Research

3.1.6.2

Our future research and development should, in particular, focus on the development
of HDSS prototypes, which use an HCM as input and implement operational
simulation models for assessing the accessibility of services and the efficiency of
mobility. The HDSS development process further involves establishing methodologies
for calculating key performance indicators, including average people density, average
patient waiting time, average patient walking distance, and average difficulty in
wayfinding. Another potential direction for future research is to establish a standard
way of extracting hospital operational information (e.g., medical procedures) into a
data model using the methods of BPMN.

Implications
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The HCM's implications for policy, industry, and economy are summarized as follows:

The HCM can help policymakers in establishing guidelines that ensure new hospital
layout designs prioritize patient outcomes and operational efficiency. By mandating
early-stage evaluations of layout designs against operational requirements,
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regulatory bodies can minimize hospital inefficiencies and operational expenditures.

An HCM can aid in the application of space optimization by providing the basis to
study relationships and flows between different spatial units.

Together with the operational information, an HCM can be used as a digital twin for
simulating and monitoring the daily operations of a hospital, e.g., in operational
management and in facility management

An HCM can help improve the safety of a building by optimizing the placement of
guards or cameras to ensure maximum coverage while keeping the lowest number of
guards/cameras within the building.

An HCM can be augmented with 3D information (after the hospital is realized) to help
build a model for indoor navigation and way-finding.

By optimizing hospital layouts and operational flows, the HCM can help reduce costs
related to inefficiencies, such as prolonged patient waiting times and excessive
patient walking distances. For hospitals, these improvements can translate into lower
operational costs, and enhanced capacity to serve more patients without increasing
physical space or workforce.

For the construction and architecture sectors, the integration of HCM into hospital
design processes promotes cost-effective planning, reducing redesign expenses and
construction overruns.

We can conclude that a specific type of information model, dubbed a Hospital
Configuration Model (HCM) is needed to collate spatial and operational information
concerning the planned procedures in a hospital as a core of a class of information
systems called Hospital Design Support Systems (HDSSs). In this paper, we
introduced and proposed some constructs that need to be embodied into an HCM
with an outlook towards the envisaged use cases for an HDSS. It is only natural that
when prototyping an HDSS, we might realize that we need to revise our HCM, but
such revisions are quite common and necessary in design science research [234,
235]. For now, given the outlook of usage of the HDSS, the most essential types of
information to be squeezed into an HCM are the spatial, configuration, semantic, and
operational pieces of information as introduced in the paper.

IFC2BCM: ATool for Generating IndoorGML
and Building Configuration Model from IFC
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This sub-chapter has been published by Jia, Z., Nourian, P., Luscuere, P., & Wagenaar,
C. (2025). IFC2BCM: A Tool for Generating IndoorGML and Building Configuration
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Model from IFC. SoftwareX, 29, 101975. [224] The layout has been adjusted to fit
the template of this thesis.

ABSTRACT
IFC2BCM is a novel software tool designed to generate IndoorGML and Building
Configuration Models (BCM) from IFC/BIM models. The primary motivation behind
IFC2BCM is to develop a tool for generating BCM as the core foundation of a Spatial
Design Support System that will evaluate layout designs of complex buildings such as
hospitals regarding operational efficiency. The software addresses the need for
detailed spatial network analysis and simulation modelling in complex environments,
offering a semi-automatic process to convert IFC data into IndoorGML, and
subsequently into a comprehensive BCM. The BCM generated by this tool consists of
geometric, topological, semantic, and operational information, it supports
applications such as space optimization, facility management, ensuring safety, and
indoor navigation. More generally, the results are relevant to the study of complex
buildings such as airports, transport hubs, public buildings, etc.
Metadata
The ancillary data table 3.5 gives information about the codes of software.
TABLE 3.5 Code metadata
Current code version v1.1.0
Permanent link to code/repository used for this | https://github.com/ZhuoranJia/IFC2BCM
code version
Permanent link to Reproducible Capsule https://codeocean.com/capsule/8363427/tree
Legal Code License MIT License
Code versioning system used git
Software code languages, tools, and services used Python, Jupyter Notebook, Autodesk’s Revit and
Dynamo, McNeel’s Rhino and Grasshopper
Compilation requirements, operating environments | dependencies for python: pandas, NumPy, COM-
& dependencies PAS, Matplotlib, NetworkX, LXML.
dependencies for Grasshopper: Human, LunchBox,
LunchBoxML.
If available Link to developer documenta- None
tion/manual
Support email for questions Z.Jia@tudelft.nl
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Introduction

Motivation and significance

The spatial configuration of complex buildings significantly impacts their
functionality, creating varying distances and connections. Unlike traditional
architectural analysis, configurational design focuses on the spaces within a building
rather than its physical boundaries. It is challenging to obtain an explicit model of
these internal spaces using standard Building Information Models (BIM). This paper
introduces a digital workflow to extract a Building Configuration Information Model
(BCM) from BIM models in Industry Foundation Classes (IFC) file formats. We
designed this workflow for general use in supporting the design and analysis of
different types of complex buildings such as airports, transport hubs, museums,
hospitals, etc. In this study, among all types of complex buildings, we chose hospitals
as the case, because the hospital is a very representative type of complex buildings.
Its complexities are twofold, firstly, the spatial complexity of a hospital can be
compared to small cities, where corridors in hospitals are similar to roads in a city
and different rooms with various functions in a hospital are similar to different land
uses in a city [48]. Secondly, the procedural/operational complexity in a hospital is
significant. Hospitals function as a ‘healing factory’ where multiple procedures (e.g.,
diagnostic procedures, surgical procedures, emergency and critical care procedures,
etc.) take place simultaneously [48]. Hence in this paper, our attention is focused on

Our research is part of a project developing Hospital Design Support Systems
(HDSS), which incorporates early operational insights to improve hospital layouts.
The HDSS uses spatial analysis and simulation modelling to evaluate hospital
efficiency, requiring a Hospital Configuration Model (HCM) that includes spatial and
non-spatial information. Spatial information encompasses geometric and topological
data, while non-spatial information includes semantic and operational details. For
instance, geometric data can be room boundaries defined by lists of vertices with 3D
coordinates, and topological data can be a graph that illustrates relationships
between spatial units. Semantic information might include room names and areas,
while operational information covers medical processes in hospitals such as patient
journeys (see figure 3.17). Figure 3.12 illustrates the spatial and non-spatial
information in an HCM and the relationship between different types of information.
Consistency among these data types ensures effective operational management in

According to our literature study (see section 3.2.1.4), there is no available tool that
can generate hospital configuration models or building configuration models. To
address the lack of tools for generating building configuration models, we developed
IFC2BCM [236], a tool for semi-automatically creating BCM/HCM from BIM/IFC
models. This tool forms the core of the HDSS, enabling the evaluation of hospital
layout designs in terms of functionality and efficiency.

3.2.1
3.2.1.1
hospitals.
hospitals.
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FIG. 3.12 A UML diagram illustrating data included in a Hospital Configuration Model [38]
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Contribution
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The contributions of this software are summarized as follows:

IFC2BCM can semi-automatically generate a correct IndoorGML file, which is an
Open Geospatial Consortium (OGC) standard for representing and exchanging indoor
spatial information [220]. IndoorGML consists of four groups of spatial data, namely,
CellSpace, CellSpaceBoundary, Node, and Edge. The term ‘CellSpace’ refers to the
room or corridor in a building, ‘CellSpaceBoundary’ refers to the door, ‘Node’ is a
point representation of the room, and an ‘Edge’ connects two nodes if the two
corresponding rooms of the nodes are adjacent. IndoorGML files can facilitate
applications in indoor navigation and facility management [ 194]. However, there is a
lack of available IndoorGML files, and also a lack of appropriate tools for correctly
generating IndoorGML files. Our model resolves these limitations, as it contributes to
providing more IndoorGML files with correct structures and necessary information. It
also works for any type of building input (e.g., buildings with regular/irregular
shapes, or buildings with simple/complex indoor space, etc.).

Although IndoorGML is designed to support applications in indoor navigation and
facility management, to be able to accomplish such tasks, IndoorGML models often
need to be equipped with other data, such as operational information and meaningful
semantic information. For instance, if we want to simulate the operations in a
hospital using a hospital IndoorGML model, besides the geometric and topological

Hospital Configuration Model



3.2.1.3

information that the hospital IndoorGML has, we also need to acquire the operational
information of the hospital (e.g., the patient journey in the hospital) and semantic
information related to hospital organizations. IndoorGML files are facing the
challenge of missing such information. The HCM generated by our software addresses
this challenge. In this study, we developed software functions for extracting
hierarchical semantic information according to hospital organizational structures into
HCM. We also developed functions for extracting operational information (i.e., patient
journey in the form of Python lists) from available data (figure 3.17) into HCM.

Another challenge that IndoorGML faces is that it is encoded in XML (eXtensible
Markup Language) format [222], which is tedious, deeply hierarchical, complicated
and not well-suited for the web [219]. These features of XML encoding make
IndoorGML files very hard to parse and collect information from. As a result, there is
a limited number of software packages supporting IndoorGML, and a limited number
of available IndoorGML files [219]. By contrast, our BCM/HCM files are encoded in
JSON (JavaScript Object Notation) format [223], which is a more popular exchange
format with more available libraries and users. We use JSON format to encode
BCM/HCM in a more ‘flattened out’ structure [219], which makes the BCM/HCM more
editable and easier to understand by humans compared to IndoorGML.

The BCM generated by IFC2BCM can support multiple research applications such as
space optimization, facility management, indoor navigation, wayfinding, etc.

Jia et al. [38] used this software to develop an HCM as the core of HDSS for
assessing hospital layouts’ efficiencies and efficacy in terms of four performance
indicators, i.e., crowdedness in hospital space, patient waiting time, patient walking
distance, and difficulty in way-finding).

Experimental setting
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IFC2BCM is designed for semi-automatically converting BIM/IFC files into IndoorGML
and generating BCM/HCM from IndoorGML. The software used for developing
IFC2BCM includes Autodesk’s Revit and Dynamo, McNeel’s Rhino and Grasshopper,
and Python. Dependencies are also needed for this tool. The dependencies for
Grasshopper include Human, LunchBox, and LunchBoxML. The libraries for Python
are pandas, NumPy, COMPAS, Matplotlib, NetworkX, and LXML. The data used for this
experiment is an open-source hospital IFC file [221].

The experimental procedure includes three main steps, which are summarised as
follows:

Step 1, Importing IFC. Open the open-source IFC file with Autodesk’s Revit. In Revit,
open the Dynamo file ‘Home.dyn’ which is located in ‘geometry_software’ directory of
the repository. This step will produce two output files, one for the building’s room
boundaries and another for the building’s door locations.
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- Step 2, Generating IndoorGML. This step can be subdivided into five sub-steps.

Sub-step 1, generating CellSpace for IndoorGML. Put the room boundary output
file from step 1 into the ‘edit_csv.ipynb’ file located in the ‘notes/csv processor’
directory of the repository, and process the boundary file, the processed boundary
here is the room lower boundary (i.e., floor boundary), then put the processed file
into the ‘add_storey.ipynb’ file to get room storeys. The functions in the
‘add_storey.ipynb’ file assign each room a storey. Each room’s Z coordinate was
checked; if it is zero, the functions assign level O to this room, if it is 4.57, the
functions assign level 1 to this room, and if the Z coordinate is 9.25, the functions
assign level 2 to this room. Next, put the room lower boundary file into the
‘create_upper_boundary.ipynb’ file to get the room upper boundary (ceiling
boundary) file, here room boundaries’ Z coordinates were changed according to the
storey. Then put both the room lower boundary and upper boundary files into
‘create_wall_boundary.ipynb’ to get the wall boundary file. Lastly, put the room lower
boundary, upper boundary, and wall boundary files into
‘add_all_csBoundary_together.ipynb’ to create the CellSpace data.

Sub-step 2, generating CellSpaceBoundary for IndoorGML. Put the door location
output file from step 1 into ‘edit_door_csv.ipynb’ located in the ‘notes/csv processor’
directory of the repository for processing the data and make it readable by
Grasshopper, then put the processed data into the Grasshopper file named
‘create_graph.gh’ in ‘geometry_software’ directory of the repository, and create door
boundaries. The Grasshopper scripts treat the door’s location as a lower centre point
and draw the door boundary upwards. Next, put the door boundaries file into
‘edit_door_boundaries.ipynb’ to get the final CellSpaceBoundary data.

Sub-step 3, generating nodes for IndoorGML. In the room boundary file generated
by step 1, select only corridor boundaries to obtain a corridor boundary file, and
select only stair boundaries to obtain a stair boundary file. Then put the room
boundary file, corridor boundary file, and stair boundary file into the ‘edit_csv.ipynb’
file to process them and make them readable by Grasshopper. Then, put the
processed files into the Grasshopper file ‘create_graph.gh’ to get the nodes and
edges data. The nodes were created by finding each room boundary’s centre point,
and the edges were created by connecting the room boundary’s centre point to its
corresponding door location point. Specifically, the algorithms in the Grasshopper
check if the door location point is on the room boundary; if yes, connect the door
location point to this room boundary’s centre point, if not, skip. Subsequently, put
the nodes and edges data into the ‘add_edges_to_nodes.ipynb’ located in the
‘notes/csv processor’ directory of the repository to add both groups of data together
to obtain the final nodes file.

Sub-step 4, generating edges for IndoorGML. In the last sub-step, from the
Grasshopper file ‘create_graph.gh’, export all edges’ start and end points to a csv file,
and then put this output file together with the final nodes file from the last sub-step
into ‘create_transitions.ipynb’ in ‘notes/csv processor’ directory of the repository to
generate final edge data.

Sub-step 5, generating IndoorGML. Put all four final output files from previous
sub-steps into ‘etree_to_gml.ipynb’ in the ‘IndoorGML Generator’ directory of the
repository to obtain the IndoorGML file. This Python generator uses LXML's etree

Hospital Configuration Model



3.2.1.4

modeule [227] for encoding XML files. The functions were designed according to the
XML'’s structure for creating properly structured IndoorGML files.

Step 3, Generating HCM. Import the IndoorGML file from step 2 into the IndoorGML
parser named ‘ig2ij.ipynb’ in the ‘HCM generator’ in the ‘notes/HCM generator’
directory of the repository to get a JSON [223] file, which is encoded in a more
‘flattened out’ and editable structure [219]. Then put the JSON file into
‘ij2cp_and_nx.ipynb’ for extracting geometric and topological information for the
HCM. The geometric information was extracted into COMPAS mesh and visualized
using COMPAS library [217], and the topological information was extracted into a
network graph using NetworkX [218]. The JSON file can also be put into the
‘ij2semantic_and_operational_info.ipynb’ file for extracting semantic and operational
information. The semantic information was extracted into a Python dictionary,
demonstrating hospital departments and all the rooms within their respective
departments. The operational information is extracted into Python lists, indicating
patient journeys in the hospital. All these four types of information constitute the
HCM.

Related works
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Our work is inspired by Tong and Zheng’s work [196]. They developed a tool for
transforming IFC models to IndoorGML files using Autodesk Revit and Dynamo,
McNeel Rhino and Grasshopper, and Python. However, the generated IndoorGML files
are not equivalent to configuration models, and this tool is limited to modular
buildings with simple geometries, such as rectangular rooms with four sides. It does
not work for buildings with complex shapes. Our software is built on Tong and
Zheng's tool, and is equipped with the function of generating HCM from an
IndoorGML file, it also offers a more generalized solution that works for buildings
with rooms of irregular shapes. Other software used in our study includes an
IndoorGML parser developed by Ledoux [232].

Another related work is a tool developed by Diakite et al. [194], they created a C++
tool that automatically generates IndoorGML models from IFC models, but the
resulting IndoorGML files lack semantic information.

Intratech [195] developed a plugin for AutoCAD and Revit to extract IndoorGML.
However, this plugin also generates IndoorGMLs that lack semantic information, and
this plugin relies on exclusive formats.
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FIG. 3.13 The workflow of the software system [38]

Software description
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Software architecture
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Figure 3.13 illustrates the detailed workflow of the software system. As described in
section 3.2.1.3, the workflow includes three main steps. The first step is to import the
IFC file into the Dynamo parser to extract relevant information.

The second step is to put the extracted data into Python processors as well as
Grasshopper and Python generators for generating IndoorGML files. Because
Dynamo and Grasshopper utilize different data structures, the data exported from
Dynamo in Step 1 needs to be first processed in Python processors to be compatible
with Grasshopper generators. Once the data is processed and imported into the
Grasshopper generator, the scripts inside the Grasshopper generator read the data
and generate the necessary components for the IndoorGML model. The data made by
the Grasshopper generator again needs to be processed in Python processors to
become compatible with the Python generator that will write the final IndoorGML file.
Given that the IndoorGML file uses an XML-based exchange format [226], we use
etree [227], an XML library for Python, for scripting our Python generator.

The last step of the workflow is to create an HCM file from the IndoorGML file. The
IndoorGML model was first parsed into a JSON file by the Python parser that was
developed by Ledoux [232]. The JSON file was then processed by the Python viewer
and controller for extracting semantic and operational information and integrating
them with geometric and topological information to form the HCM. Libraries used for
scripting the Python viewer and controller include COMPAS [217], NetworkX [218],
and matplotlib [237].
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Software functionalities

3.2.3

The major functionalities of the software are summarised as follows:

Major function 1, Semi-automatically producing IndoorGML files with semantic
information that can be applied in indoor navigation and facility management.
Compared to Tong and Zheng’s software [196], our software’s functionality is more
generalized and works for complex-shaped buildings.

Major function 2, Automatically generating BCM/HCM containing four types of
information (i.e., geometric information, topological information, semantic
information, and operational information) from the IndoorGML file, which can be used
for spatial network analysis and simulation modelling. This major function is
composed of four minor functions. The first minor function is to extract the geometry
of the interior space of the IndoorGML model and convert it into a mesh and visualize
it. The second minor function is to extract the topological information of the
IndoorGML model and convert it into a graph and visualize it. The third minor
function is to extract the semantic information of the IndoorGML model and convert it
into a Python dictionary with a hierarchical structure. The fourth minor function is to
extract operational information (i.e., patient journey data) from available documents
related to hospital procedures and convert such information into Python lists for
further simulation uses.

Illustrative examples
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This section shows an instance of HCM, and it shows what exactly it contains. We
used a real-world hospital’s IFC model [221] as our input and used our software to
convert it into an HCM. Figure 3.14 illustrates the geometric and topological
information of the HCM, where the red graph is embedded in the transparent building
geometry. It is to be noticed that for clarity reasons, we only visualized one floor of
the hospital building instead of all three floors. Figure 3.15 shows the hierarchical
semantic information of the HCM as well as the function codes of how to extract such
information and organize it into a hierarchical structure. Table 3.7 is the resulting
Python dictionary of the extracted departments and their rooms. Table 3.6’s right
column shows HCM'’s operational information, since the hospital IFC model does not
contain operational information such as medical procedures, we need to extract such
information from other sources. We selected representative hospital operational
information pertaining to patient journeys from Peng’s study [3] and reproduced this
information in the form of a BPMN flow chart (see figure 3.17). BPMN is an
industry-standard using flow charts to illustrate system processes [216]. Figure 3.17
illustrates typical patient journeys in the outpatient department. We converted the
patient journeys in this figure into Python lists as shown in the left column of table
3.6. In these lists, each element is a place in the hospital that the patient needs to go
to, and the entire list is the patient’s journey. What we did next was to use these lists
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as inputs for our tool to generate the operational information. Specifically, for each
element (i.e., space) in the input list, we used our tool to find its corresponding room
names from the HCM’s semantic information which contains all the room names of
the hospital, and put all corresponding room names into a new list to form the patient
path data (right column of table 3.6). This patient path data is HCM’s operational
information and will be used for HDSS’s simulation modelling process. It is to be
noticed that the element in the input data list might have multiple corresponding
nodes, for example, there are multiple ‘registration stations’ or ‘waiting areas’ in our
hospital case, and we only chose the appropriate ones to form the output data list
according to the IFC model.

TABLE 3.6 Input and Output data list of HCM’s operational information (notice: for simplicity reasons, not all
data are shown in this table, for complete data please go to https://github.com/ZhuoranJia/IFC2BCM)

Input data list Output data list

origianl_medical_path_1 =

)

['registration’,'triage’,'waiting’,

‘diaganosis’,’'medicine’]

medical_path_1 =
['RECEPTION1B13’,
'WTSandMEAS.ROOM1D15’,
'WTSandMEAS.ROOM1D30’,
WAITING/ACTIVITYAREA1DC1’,
'INTERACTIONSTATION1D 11",

ey

'PHARM.DISP.1A16’]

origianl_medical_path_2 =

,

['registration’,'triage’,’'waiting’,

‘diaganosis’,'waiting’,
"clinical-checkups’,’medicine’]

medical_path_2 =
['RECEPTION1B13’,
'WTSandMEAS.ROOM1D15’,
'WTSandMEAS.ROOM1D30’,
"WAITING/ACTIVITYAREA1DC1,
'INTERACTIONSTATION1D11’,
'CENTRALWAITING1AC1’,
'BLOODDRAW1B03’,
'PHARM.DISP.1A16’]

origianl_medical_path_3 =

['registration’,'triage’,'waiting’,

‘diaganosis’,'waiting’,
‘imaging’,’medicine’]

medical_path_3 =
['RECEPTION1B13’,
'WTSandMEAS.ROOM1D15’,
'WTSandMEAS.ROOM1D30’,
"WAITING/ACTIVITYAREA1DC1’,
'INTERACTIONSTATION1D 11",
'CENTRALWAITING1AC1’,
'RADIOGRAPHICROOM1B19’,
'"PHARM.DISP.1A16’]
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FIG. 3.14 Visualization of an HCM’s geometric and topological information

Organize rooms to their deparments

def get_department_of_rooms_dict(room_name_area):
output_data = {}
# Loop through each item in the list to organize by department
for key in room_name_area:
# Extract department character (the last third character of the room name)
department = Departnent$’ + key[-3]
# Check if the department key exists in the dictionary
if department not in output_data:
# If not, create a new list for this department
output_data[department] = []
# Append the room and area tuple to the appropriate department list

output_data[ departnent].append (key)

return output_data

new_output_data
v 00s

new_output_data = get_department_of_rooms_dict(dict_room Name_and_area)

FIG. 3.15 An HCM’s semantic information
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FIG. 3.16 Second Floor Plan of the selected hospital case

TABLE 3.7 Extracted semantic information of the HCM (notice: for simplicity reasons, not all data are shown in
this table, for complete data please go to https://github.com/ZhuoranJia/IFC2BCM)

{Department$A’:
['CENTRALWAITING1AC1’’CORRIDOR2AC3’,PHARM.DISP.1A16’,
"CORRIDOR2AC1’’DENTALWAITING2A11’,

"X-RAYALCOVE2A12-A'}
{'Department$B’:
[’CORRIDOR1BC2’’LAB1B04’CORRIDOR1BC4’,

"RECEPTION1BO1’/RECEPTION1B13’ ' TECHOFFICE2B9']}
{'Department$D’:
['WAITING/ACTIVITYAREA1DC1’’MAINMECHANICALROOM2DO5’,

'INTERACTIONSTATION1D11’ INTERACTIONSTATION1DO7",
'INTERACTIONSTATION1DO08’ INTERACTIONSTATION1D09’,
'INTERACTIONSTATION1D28’ INTERACTIONSTATION1D34’,
"INTERACTIONSTATION1D35’,

"COMPUTERROOM2D04A']}

Figure 3.16 proves our software’s ability to handle complex building geometries. This
figure is the second-floor plan of the selected hospital case study, and it shows the
geometric complexities of the hospital space. Several corridors with irregular shapes
(e.g., multiple turns and corners) are highlighted in red. These irregular-shaped
corridors were successfully handled by our tool for generating correct IndoorGML
files. By contrast, Tong and Zheng’s tool [ 196] failed to generate the correct
IndoorGML file for this hospital case.
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Contributions to Future Research

One of the potential Future research directions is to use the BCM as an input for

developing Spatial Decision Support Systems (e.g., HDSS), which applies methods of
spatial network analysis and simulation modelling for evaluating service accessibility
and mobility efficiency in complex buildings such as hospitals, airports, and transport

Another possible direction for future research is to develop a standardized method
for automatically extracting hospital operational data, such as medical procedures,
into a data model utilizing business process model notation (BPMN) [216] or
enterprise resource planning (ERP) system [238] techniques. BPMN is an industry
standard for business process modelling, utilizing flow charts to depict the steps
involved in a business process [216].

It is straightforward to understand that the necessary operational information for
comprehending hospital procedures can be extracted into BPMN diagrams. Thus,
creating a systematic approach for the automatic extraction of such information can
be a desirable future research direction. We propose that an expert, such as an
Industrial Engineer or someone knowledgeable in Operations Research, should
systematically extract this information from textual and visual documents related to
the operational management and service design of a hospital to build BPMN models
for describing the main procedural workflows in the hospital. These models,
providing operational information, can be integrated into the HCM. In Figure 3.17, we
illustrate how the BPMN model of the operational information in a real-world hospital

324 Impact
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should look.
3.2.4.2

Contributions to Current Research

108

The ways how our software improves the pursuit of existing research are summarised
as follows:

IFC2BCM can semi-automatically generate a BCM which can facilitate space
optimization by serving as a foundation to analyze the relationships and flows
between various spatial units.

With operational information, an HCM generated by IFC2BCM can serve as the basis
of a digital twin for simulating and monitoring the medical processes taking place in a
hospital, such as operational management and facility management.

A BCM generated by IFC2BCM can enhance a building’s safety by strategically
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FIG. 3.17 Patients’ Paths in Outpatient Department of Panyu Central Hospital, image source: [3] [38]
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positioning guards or cameras to achieve optimal coverage with the minimal
necessary number of guards or cameras.

After the building is constructed, we can use IFC2BCM to generate the building’s
BCM and augment it with 3D information to create a model for indoor navigation and
way-finding.

Impact Pathway

3.24.4

This subsection introduces the impact pathway of IFC2BCM. Impact pathway is a
concept model proposed by the Dutch Research Council (NWQO) [239]. It outlines the
process through which a research project’s outputs lead to intended outcomes, and
result in some impacts, where outputs are direct findings of the research project,
outcomes are changes in stakeholders’ behaviours and activities due to the
application of outputs, and impacts are changes in economic, environmental or social
conditions caused by outputs [239]. Figure 3.18 illustrates the impact pathway of
our software. The direct outputs of our software are generated IndoorGML and
BCM/HCM models. These outputs can lead to the intermediate outcomes that more
researchers will use this software to generate IndoorGMLs and BCMs for supporting
applications such as space optimization, facility management, indoor safety
improvement, and indoor navigation. These intermediate outcomes, together with the
future work of the development of an HDSS, can further contribute to the outcomes
that architects and hospital directors design better hospitals in terms of operational
efficiency, which ultimately leads to the impacts of reduced hospital expenditures and
improved public health.

Application

110

Jia et al. [38] used this software in a study for constructing a hospital configuration
model as the core of a Hospital Design Support System (HDSS) for assessing the
performances of hospital layout designs in terms of crowdingness in hospital spaces,
patient waiting time, patient walking distance, and difficulty in way-finding. In this
study, we first stated that it is beneficial to use spatial design support systems such
as HDSS for assessing hospital performances in terms of accessibility and mobility
because such systems can provide intuitive and explainable assessment mechanisms
for design decision support. We then argued that the HCM is the core of HDSS
because it will be what we evaluate. Specifically, the HCM contains four types of
information, i.e., geometric information, topological information, semantic
information, and operational information. These types of information will be the
inputs for running the assessments.
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FIG. 3.18 Impact pathway of IFC2BCM

To determine what specific data of each type is needed in the HCM, we first envisaged
the use cases for the HDSS, then based on the use cases, we decided what specific
data we want in the HCM. For example, one of the use cases is that the architect can
use this HDSS to check how long a patient needs to walk in the hospital to complete
the patient’s medical procedure. In this use case, the operational information of the
patient’s medical procedure is needed because from the patient medical procedure,
we can extract the patient’s path, which shows all the rooms the patient needs to go
to in order to complete the medical procedure. The topological information needed in
this use case is a network graph of the hospital layout. The network graph contains
nodes and edges where nodes represent spatial units in the hospital and edges show
their relationships. We also need to add semantic information to the graph, i.e., we
need to add each spatial unit’s name to its corresponding node, so that we can find
the specific patient path in the graph. Lastly, we need to add geometric information
to the graph, in other words, we need to add each node’s 3D coordinates so that we
will be able to calculate the distance of this patient’s path. For other use cases and
other specific data needed in the HCM, please refer to [38].

Conclusions

111

We developed a tool for converting IFC/BIM models into IndoorGML and
subsequently into Building Configuration Models (BCMs), this tool provides the basis
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for developing the Spatial Design Support System, which uses methods of spatial
analysis and simulation modelling for evaluating service accessibility and mobility
efficiency in complex buildings. Addressing the lack of tools for generating
IndoorGMLs and enhancing IndoorGML files with operational and semantic data,
IFC2BCM uses JSON encoding to improve accessibility and usability. Table 3.8
summarises the differences between IndoorGML files and BCMs. This software’s
robustness and flexibility make it applicable to various building types, including
hospitals, airports, and transport hubs, highlighting its broader relevance and
potential impact on the design and operational efficiency of complex environments.
However, this software still has several limitations which are summarised as follows:

User Experience: This software is written in Python scripts, Grasshopper scripts, and
Dynamo scripts. Users are required to switch between these three tools to operate
the software, which significantly complicates the user experience.

Software’s Accuracy: When creating the graph for the hospital layout, this software
generates edges by connecting the room’s node to its corresponding door’s node.
This means the software will only connect two spatial units if they are connected by a
door. For example, if a room and a corridor are connected to the same door, then this
room and this corridor will be connected through that door. If one corridor is directly
connected to another corridor and there is no door connecting them, the software
will not link these two corridors and leave them disconnected, which is inaccurate
because if two spatial units are directly connected without doors, they should be
linked by an edge in the graph.

Time Efficiency: The software’s overall time efficiency performance is adequate.
However, the scripts for visualizing the mesh geometry of the HCM are
time-consuming. As the input IFC model gets bigger, more time will be taken to
visualize the model’s geometry.

These limitations lead to the future works:

Integrating the scripts in different tools into one for a simpler user experience.

Improving software’s accuracy in terms of generating edges of the hospital’s layout
graph.

Improving software’s function of visualizing geometric information of the HCM so it
can be less time-consuming.

Other future works will include developing the Hospital Design Support System and
enhancing operational data extraction.
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TABLE 3.8 Differences between IndoorGML and BCM

IndoorGML BCM

Information

- Geometric Info
- Topological Info
- Some IndoorGML files contain

- Geometric Info
- Topological Info
- Hierarchical semantic info which

Content o facilitates simulation modelling
unstructured semantic info, ) . N
- Operational Info which facilitates
while others do not
simulation modelling
Encoding XML JSON
Low edit-ability: difficult to
i o High edit-ability: easy to add/remove
edit-ability add/remove contents to/from

IndoorGML

contents to/from BCM
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4 Hospital Design Sup-
port System

ABSTRACT

Hospital layout design plays a crucial role in ensuring operational efficiency. This
study presents a Hospital Design Support System, a data-driven framework that
integrates the Four-Step Transportation Model, Discrete-Event Simulation, and
Exploratory Network Analysis to systematically assess hospital layouts. The HDSS
evaluates four key operational criteria: spatial crowdedness, patient waiting times,
patient walking distances, and difficulty in wayfinding. Hospitals exhibit spatial and
operational characteristics akin to small cities and factories, making transportation
planning and Discrete-Event Simulation highly applicable in evaluating hospital layout
performances in terms of the four operational criteria. Exploratory Network Analysis
further reveals the inherent structural tendencies that impact hospital efficiency and
resilience. Additionally, evaluation mechanisms, including aggregation, relativization,
and interpretation, translate disaggregated simulation outputs into actionable
metrics, enabling comparative assessment of design alternatives. This study
contributes a systematic approach to hospital layout evaluation, offering valuable
insights for architects and policymakers aiming to enhance hospital layout design.

4.1 Introduction

The layout of a hospital has a profound impact on its overall functionality, driven by
two key factors. First, from a functional perspective, medical procedures within
hospitals are inherently complex. Second, from a spatial perspective, hospitals
resemble small cities, where corridors are similar to streets, and functional units
parallel different land uses. Consequently, the integration of these factors highlights
that hospital layout significantly influences users’ visibility and walkability. When
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designing a hospital, architects are not merely constructing a building but developing
a complex system that, if not carefully planned, may present various risks and
challenges. To enhance the design of hospital systems, we propose incorporating
early operational insights into the design process through the development of a
decision support system, referred to as the Hospital Design Support System (HDSS).

The purpose of the HDSS is to help architects assess the overall functional
effectiveness and efficiency of hospital configurations. To elicit such an operational
“big picture", we naturally need to make simplifications, abstractions, and analogies
to replicate, reveal, and simulate (model) the functioning of a hospital as a system. In
this regard, it is important to note the differences of this proposed approach with the
more commonly studied simulation modelling experiments, e.g. way-finding in
hospitals. Even though these two types of endeavours (ours and theirs) are related,
they serve completely different purposes. We are here focused on the efficacy and
efficiency of the day-to-day functioning of a hospital layout configuration as a system
and thus we can use macro simulation models such as Discrete Event Simulation and
Four-Step Transportation Models of the system but of course when the focus is on
the safety and security or the individual experiences of clients and staff in various
spatial situations an Agent-Based Modelling approach (stochastic) or an alternative
deterministic approach to micro-simulation of transport flows such as “social
physics" (Helbing’s model) can be more appropriate for the task. However, due to the
reasons that we are focusing on the bigger picture of hospital operations and their
effectiveness and efficiency, we explicitly exclude such micro-simulation modelling
approaches from our methodology.

It is important to explicitly view and contemplate our methodological choices in the
context of our purpose: Devising a spatial decision support system to help architects,
building managers, and hospital planners assess (ex-ante or ex-post) the efficiency
and efficacy of hospital configurations, practically in objectively comparing various
alternatives about multiple operational optimal criteria. The central analogy of this
system in regarding geographical land-use transport interaction networks as
analogous to the designated functional labels of rooms and their effects on the
transport flows across the corridors of the hospital is based on the spatial metaphor
of the hospital as an “indoor city" and the operational metaphor of the hospital as a
“service-assembling factory". The remainder of the paper is structured as follows:
Section 4.1.1 discusses the necessity of an HDSS in detail. Sections 4.1.2, 4.1.3, and
4.1.4 outline the key components of an HDSS., Section 4.2 describes the
methodology for developing the HDSS. Finally, section 4.3 concludes our key
findings, contributions, limitations and potential future research directions.

Hospital Design Challenges
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In this section, we will explain why an HDSS is needed and what it is needed for
exactly. The main design questions related to hospitals can be summarized as [48]:
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Overcrowding: whether the assumed room capacities are reasonable and consistently
integrated across different functional areas to ensure optimal patient flow and
operational efficiency.

Long Patient Waiting Times: Are the circulation routes and functional zones
configured to facilitate rapid patient transitions and minimize bottlenecks that
contribute to delays in care delivery?

Long Patient/Staff Walking Distances: Are the spatial relationships between key
departments and areas optimized to minimize unnecessary movement and promote
efficient workflows for both patients and staff?

Difficulty in Wayfinding: Whether the layout incorporates clear and intuitive
navigational cues to enable both patients and staff to easily orient themselves and
swiftly navigate the hospital without confusion or delay.

These design questions are not trivial and cannot be easily answered by human
intuition. Specifically, Overcrowding is fundamentally linked to how effectively space
is distributed and how well the layout supports fluctuating operational demands.
Estimating room capacities based solely on intuition or expectation often results in
overestimation or misalignment relative to the intended operational function. In
contrast, simulation modeling provides a rigorous framework for validating these
assumptions and assessing the compatibility of capacities across different functional
areas. Additionally, the long walking distances (and thus the time wasted on and the
fatigue resulting from walking the corresponding paths) are related to how the spatial
configuration is arranged, not only in terms of the unlabeled graph structure but also
how different rooms are positioned within it, according to their operational purpose.
The aggregate effects of such decisions can only be studied concerning the whole
network structure of the hospital building and its node attributes. Furthermore,
wayfinding difficulties emerge when the spatial organization does not provide
coherent pathways. In a well-designed hospital, each room and corridor is not only
functionally defined but also strategically placed to support a logical flow that
minimizes confusion. Reliance solely on intuition or experiential judgment is
insufficient to ensure such spatial coherence; instead, simulation modeling is
essential to quantitatively evaluate a hospital configuration’s performance in terms of
wayfinding efficiency. We argue that to address these questions/challenges
systematically, we need to construct a Hospital Design Support System (HDSS)
consisting of simulation models and an exploratory network analysis module to
assess the hospital layout performances in terms of overcrowding, patient waiting
time, patient walking distance, and difficulty in wayfinding.

Hospital Spatial Structure
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As previously discussed, hospitals exhibit spatial structures akin to small cities. This
spatial structure can be effectively represented using a Hospital Configuration Model
(HCM). The HDSS is designed to provide robust and transparent assessment
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mechanisms for evaluating the performance of various hospital layout designs
through simulation modeling and exploratory network analysis approaches. Both
approaches require a foundational dataset or structure to function properly. An HCM
fulfills this requirement. The HCM is a layout representation model of the hospital
system that incorporates four key types of information: geometric, topological,
semantic, and operational. Jia et al. developed a methodology [38] and software
[224] for semi-automatically generating HCM from hospital Building Information
Models (BIM) or Industry Foundation Classes (IFC) models. A detailed explanation of
the four types of information included in an HCM is illustrated in Table 4.1 and
summarized in the following text:

Geometric Information

The geometric data in the HCM captures the physical structure of the hospital,
including the boundaries and 3D spaces of rooms and corridors [38]. This data is
defined using mathematical constructs such as:

Vertices and Edges: Each room is modeled as a polygon, characterized by a set of
vertices (3D coordinates) and edges connecting them. The polygonal data is obtained
from BIM/IFC models using software tools like Revit and Dynamo. For a detailed
example of room polygon data, refer to the geometric information in Table 4.1.

Mesh Representation: The 3D spatial geometry of each room is represented as a
mesh, constructed using a mesh representation algorithm developed with the
COMPAS library in Python [217].

Topological Information

Topological information represents the spatial relationships among the functional
units of the hospital, structured as a network graph comprising [38]:

Nodes: Each spatial unit, such as a room or corridor, is represented as a node.
Edges: An edge between two nodes indicates an adjacency relationship between the
corresponding spatial units.

Attributes: Nodes can include attributes such as room names, capacities, or other
relevant metadata.

The nodes and edges are derived from BIM/IFC models using tools like Rhino and
Grasshopper, and the network graph is constructed in Python with the NetworkX
library [218]. For a simplified illustration of a hospital network graph, refer to the
topological information in Table 4.1. The topological information of the HCM
explicitly represents the structure of the hospital building.

Semantic Information

Semantic information assigns meaning to spatial units by connecting them to their
functional roles [38]. Examples include:

Room Names: Identifying spaces such as diagnostic rooms and waiting rooms.
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- Organizational Hierarchy: Associating rooms with specific departments to facilitate

functional grouping.

The extraction of semantic information from BIM/IFC models is implemented using
Python, with the resulting data organized as a Python dictionary. A Python dictionary
is a data structure that organizes data as key-value pairs (e.g., key: value) [233]. For
an example of the extracted semantic information, refer to the semantic information
in Table 4.1.

Operational Information

Operational information encapsulates patient journeys within the hospital, detailing
the sequential movement of patients through various rooms during medical
procedures [38]. The patient journey data is represented as a Python list, where each
element corresponds to a room the patient visits during their journey. For a simple
example of a patient journey, please see operational information in Table 4.1.

It is to be noticed that in Jia[38]'s methodology, the operational information of the
HCM is extracted from the patient journey data in an existing hospital, i.e., Panyu
Central Hospital in Guangzhou, China [3]. Although this operational information can
be used to perfectly replicate the patient movements in Panyu Central Hospital, the
simulation model applying this data can become highly specific and overly rigid,
limiting itself to generalize to other hospitals. In this study, we aim to model general
patient movement patterns across different hospitals rather than precisely predict
specific patient journeys in a certain hospital. Our primary goal is to develop a robust
model that remains applicable across a variety of cases, rather than being finely
tuned to fit specific data. This is supported by the theory of model parsimony, where
simplicity and broad applicability are valued over detailed accuracy [240]. To achieve
this, we use the Four-Step Transportation Model, a widely used framework in
transportation planning to predict travel demand and analyze traffic patterns in
urban areas [36], to obtain general operational data of patient journeys that is
applicable in random hospitals. The general patient journeys generated by the
Four-Step Transportation Model are also stored in the form of a Python list, the same
as the one illustrated in Table 4.1.

Figure 4.1 presents a visualization of the HCM’s geometric and topological
information, where the red graph is embedded within the transparent building
geometry.

The structural organization of hospital buildings shares remarkable similarities with
that of small cities. From a mathematical perspective, both hospitals and cities can
be modeled as network graphs consisting of nodes and edges, where nodes
represent spatial units (e.g., rooms in hospitals, or areas/land uses in cities) and
edges denote the connections between these units. This structural resemblance also
enables the application of the Four-Step Transportation Model—the framework that
is widely used in urban transportation planning—to simulate internal transportation
within hospitals, such as the movement of patients. Hence, our HDSS will include a
Four-Step Transportation model for simulating the city-like character of hospitals.
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FIG. 4.1 A visualization of the HCM, image source: [224].

TABLE 4.1 Exemplified descriptions of four types of information in a Hospital Configuration Model [38]

Geometric Information Room boundary consisting of a {‘central_waiting’: [‘—20, 34, 4’,
series of 3D points ‘—20,29,4’,'—19,29,4",‘—19,
39,4, =20, 34, 4']}
Topological Information A network graph consisting of | {'Graph1’ [{“node1”: {“id™:
nodes and edges “R1"}, “node2”: {“id™ “R3"},
“edge1”:{"id": “e1"}}1}
Semantic Information Room name {‘Department$Imaging’: [‘Cen-
tral_waiting']}
Operational Information A patient journey through the | {‘patient_journey_1" [‘En-
hospital (a series of rooms that | trance/Exit’, ‘Registration’,
the patient needs to attend) ‘consulting’, ‘Entrance/Exit']}

Hospital Operational Character
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The structure of processes in hospitals can be represented by patient journeys,
where patients go through a series of medical processes in different functional units
in hospitals (e.g., see operational information in Table 4.1). This procedural nature
makes hospitals analogous to factories, where in factories products are produced
through a series of processes, and in hospitals medical services are produced
through a series of procedures. This procedural similarity between hospitals and
factories makes Discrete-Event Simulations a suitable tool for simulating the medical
procedures in hospitals. Discrete-Event Simulation (DES), a modeling approach that
is commonly applied in simulating the operation of manufacturing systems, models
the operation of a system as a sequence of events that occur at distinct points in
time. Each event marks a change in the system’s state, and the simulation advances
from one event to the next [46]. Our HDSS will include a DES model for simulating
the factory-like character of hospitals.

Hospital Design Support System



4.1.4

Optimal Adaptation vs Redundant Resilience
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The use of simulation modelling is necessary to predict and provide an explanation for
the patterns of use or operation of the building as they might emerge or appear out
of the statistical superposition of many usage pathways of individual (hypothetical)
users of the building. However, the basic assumptions behind simulation modelling
and the evaluation reports resulting from the aggregation of the numeric simulation
results are related to the macroscopic view of the interactions of people with the
building, which implicitly implies a principle of rationality. This implicit assumption of
rationality also brings about the use of mostly deterministic mathematical models of
behaviour under other assumptions, namely the implicit or explicit assumption of the
building working under normal steady-state business-as-usual conditions. Long
story short, these assumptions pave the way towards optimizing or adapting the
building configuration for the assumed ways or patterns of usage. However rational
and necessary this adaptation is, one cannot assume that a perfectly adapted or
optimized building for such presumably rational and ordinary or typical ways of usage
might be resilient to working conditions that can be regarded as unusual, stressful,
extra-ordinary, or irrational (for whatever reason, including the psychological aspects
of the usage that have been disregarded in the interest of the bigger issues). In short,
for various reasons related to such uncertainties, it is customary in any engineering
design practice to introduce “redundancies" into the design of a system or structure,
to be prepared for every unaccounted circumstance. One can argue that the art of
engineering is to introduce such redundancies reasonably while having a clear view of
the barely sufficient backbone structure or system. The inherent difficulty of taking
such uncertainties into account is the fact that one needs to deal with the so-called
unknown unknowns, and yet, for ensuring resilience in the face of uncertainties, a
designer precisely needs to be prepared to include provisions for dealing with such
unknown and unpredictable eventualities. In the case of building configurations, or
spatial network configurations in general, a relatively established way of reflecting on
such eventualities is to use exploratory network analysis methods to look into the
structural tendencies of the network structure in attracting or repelling certain
behavioural patterns, in facilitating or hindering certain distribution patterns, the
likelihood and the shape of inherently random diffusion and spread patterns (of e.g.
contamination), and to reflect on worst-case scenarios of maximal usage due to
maximal (deterministic or stochastic) flows through network arteries. In contrast to
the simulation modelling workflows that are systematically structured to produce
clear performance metrics for assessing conditions, it is hard or even futile to think of
restructuring all kinds of metrics to assess such uncertainties and reflecting on the
necessity of redundancies. Instead, we reason and argue that a suite of tools for
exploratory network analysis in the hands of a reflective practitioner is more likely to
be useful for revealing the patterns that might be invisible to the mere human
intuition of the designer but quite intuitive and informative when visualized. In short,
the decision to provide such a complementary tool suite for exploratory analyses is to
foster the art of provisioning a reasonable amount of design redundancies without
putting too much unnecessary structure on the exploratory process. The simulation
modelling tools provide the apparatus for the science of engineering in dealing with
the rational and predictable aspects of the building operations, while the exploratory
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analysis tools are to provide the mechanisms in support of the art of engineering in
dealing with the irrational and unpredictable aspects of building operations. This is to
explain and justify the reasons why the exploratory analysis part of the toolkit does
not include aggregate evaluation tools and remains only a visual inspection tool for
studying patterns at a disaggregated level.

Methodology

4.2.1

This section introduced how we built the HDSS by developing a Four-Step
Transportation Model, DES model, and exploratory network analysis model for
simulating hospital operations and assessing performance metrics such as
crowdedness, patient waiting times, patient walking distance, and difficulty in
wayfinding.

Four-Step Transportation Model

121

As mentioned in the above section, the Four-Step Transportation Model will be
applied to model the city-like character of hospitals. In this section, we first provide a
brief introduction to the Four-Step Transportation Model, then explain in detail how
our framework utilizes the Four-Step Transportation Model to model the patient
movement patterns in hospitals.

The Four-Step Transportation Model is a widely used framework in transportation
planning for evaluating, assessing, designing and planning transportation systems. It
provides a structured approach to understanding how people or goods move within a
defined area, such as a city, region, or network [36]. The Four-Step Transportation
Model consists of four sequential steps, namely, trip generation, trip distribution,
mode choice, and route assignment. The following text explains each step in detail
with a contrived example. Please note that the numbers and all other aspects of this
example are hypothetical. Although hypothetical, the consistency between the first
two steps of this modeling approach is demonstrated by the correspondence
between the row sums and column sums of Table 3, which align with the values in
Table 2 for generated and attracted trips, respectively, with both totals summing to
the same value.

Step 1: trip generation
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Trip generation involves estimating the number of trips originating from and arriving
at each zone within the study area. Trips originating from a zone are referred to as
“productions," while trips arriving at a zone are termed “attractions" [37]. The
Four-Step Transportation Model needs to preserve the balance between total travel
productions and attractions, which means that the total number of trips produced
across all zones must be equal to the total number of trips attracted [36]:

SNP=>4 (4.1)
i=1 j=1

where:

P;: Total trip productions in zone 1,
Aj: Total trip attractions in zone 7,
n: Total number of zones.

In the context of a hospital design project, the trip generation step focuses on
predicting the number of patients traveling to and from each spatial unit. Table 4.2
provides an example of the estimated number of trip productions and attractions at
each spatial unit in a hypothetical hospital. For simplicity reasons, the hypothetical
hospital only has five spatial units, which are the reception hall, emergency room,
diagnosis room, imaging room, and pharmacy. Notably, the proposed example
demonstrates strict adherence to the production-attraction equilibrium principle
(formula 4.1), with total trip productions balancing total trip attractions.

TABLE 4.2 Trip generation in a virtual hospital project [48]

Functional units Production (number of pa- | Attraction (number of patients)
tients)

Reception hall 50 28

Emergency room 30 26

Diagnosis room 10 20

Imaging room 20 17

Pharmacy 5 24

Total 115 115

Step 2: trip distribution

This step distributes the trips generated in Step 1 (trip generation) between origin
and destination zones, it determines the number of people from each origin to each
destination by producing an origin-destination matrix [37]. A trip distribution model
(e.g., a gravity model) estimates the origin-destination matrix, which shows the
number of trips traveling between each pair of origin and destination [36]. In the
context of hospital design, this step calculates the number of patients moving
between each origin and destination. Table 4.3 presents an example illustrating the
computed number of patients traveling between the five spatial units of the
hypothetical hospital.

It is essential to highlight that in the Four-Step Transportation Model, step one (trip
generation) provides the total number of trips—referred to as productions and
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attractions—that serve as inputs for step two (trip distribution). The trip distribution
process must adhere to these totals for each zone [36]. This relationship is termed
“zonal constraints" and can be formulated as [36]:

 Ty=P Vie{l,2,...,n}

(4.2)
Jj=1
and .
> Ty=4; Vjie{l,2,...,n} (4.3)
i=1
Where:

P;: Total trip productions in zone ¢,

Aj: Total trip attractions in zone 7,

T;;: Number of trips from zone ¢ (origin) to zone j (destination),
n: Total number of zones.

This relationship is also demonstrated in tables 4.2 and 4.3, where the sum of trips
originating from each spatial unit in the origin-destination matrix (table 4.3)
corresponds to the trip production for each spatial unit in table 4.2. Similarly, the
sum of trips arriving at each spatial unit in the origin-destination matrix (table 4.3)
matches the trip attraction for each spatial unit in table 4.2.

TABLE 4.3 Trip distribution in a virtual hospital project

Reception Emergency Diagnosis Imaging Pharmacy

hall room room room
Reception N/A 20 10 10 10 50
hall
Emergency 10 N/A 5 5 10 30
room
Diagnosis 5 2 N/A 2 1 10
room
Imaging 10 3 4 N/A 3 20
room
Pharmacy 3 1 1 0 N/A 5
D 28 26 20 17 24 115

Step 3: mode choice

This step predicts the mode of travel for each pedestrian [37]. In the context of the
Four-Step Transportation Model applied to a hospital, travel modes for patients may
include walking, wheelchair use, or transportation on a hospital bed.

Step 4: route assignment

This step takes the origin-destination matrix (e.g., table 4.3) generated in step 2 as
input, and assigns each trip in the matrix a specific path [37]. In the Four-Step

Transportation Model of a hospital, each trip can be assigned the shortest-distance
path to simulate a scenario in which patients navigate to their destination using the
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optimal route. Alternatively, a random path can be assigned through a random walk
simulation to represent situations where patients become disoriented, visiting
multiple incorrect locations before reaching their intended destination.

The primary objective of developing a Hospital Decision Support System (HDSS) is to
establish robust and explainable evaluation mechanisms for predicting the
performance of various hospital layout designs. This is achieved by leveraging the
Four-Step Transportation Model and Discrete-Event Simulation (DES). Both
approaches require a layout configuration model as a foundation for their
implementation. As discussed in Section 4.1.2, a Hospital Configuration Model (HCM)
that integrates geometric, topological, semantic, and operational information meets
this requirement and serves as the basis for the application of both the Four-Step
Transportation Model and DES in the HDSS. Consequently, an HCM is essential as
input for the HDSS. In this study, we utilized the HCM-generating software developed
by Jia et al. [224] to obtain an HCM from an open-source hospital IFC file [221]. The
obtained HCM contains the geometric information of 3D boundary of each spatial unit
(e.g., room or corridor) in the hospital, the topological information of a network
graph consisted of nodes and edges, where each node is a spatial unit or a door, and
each edge represents the adjacency relationship between two nodes, the nodes are
also assigned with semantic attributes such as room names and room areas. For
generality and applicability reasons, the operational information of the HCM is not
used in this research. Instead, we use the Four-Step Transportation Model to
generate operational information on patient journeys. The subsequent sections
provide a detailed explanation of how each step of the Four-Step Transportation
Model was applied to model patient journeys using the generated HCM as input.

Trip Generation

124

This step estimates the number of trip productions and trip attractions at each node
of the HCM’s network graph. The number of trips for each node is calculated based
on its area attribute. Specifically, we use the room capacity to determine the number
of trip productions and attractions for each spatial unit, and the capacity of each
spatial unit is calculated based on its area:

Area;

P, = A; = Room Capacity = <

(4.4)

where:

P;: Total trip productions in spatial unit 4,
A;: Total trip attractions in spatial unit 1,
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— Area; is the area of the spatial unit i(e.g., in square meters),

- S, is the space requirement per person (in this study, we define space requirement as
10 square meters per person).

The calculated trip production and attraction at each node are stored in the form of a
Python dictionary. In the Python dictionary of trip production and attraction, the key
is the node ID, and the value is the number of trips. Table 4.4 gives an illustration of
generated trip productions and attractions in this step. Please note that for clarity
and simplicity reasons, only a few of the generated trips are shown in this table; for
the complete data, please refer to this repository. Some node has zero trips because
this node is not a room or corridor, instead, it is a door which does not have an area.

TABLE 4.4 Results of trip generation

Node ID Production Attraction

501 0 0

4212 Trip Distribution

In this step, we distribute the trips generated in step 1. Specifically, this step
estimates the number of patients traveling from each origin to each destination by
producing an origin-destination matrix. In this research, we construct the
origin-destination matrix using a simple gravity model, which can be formulated as
follows:

P; - Aj
d?

ij

Tij o (4.5)

where:

— Tj;: Number of trips between nodes ¢ and j,
— P;: Trip production at node 1,

- Aj: Trip attraction at node j,

— d,j: Distance between nodes ¢ and j.
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From a transportation planning perspective, a hospital can be conceptually divided
into two parts: the external connections to the outside world, such as entrances and
exits, and the internal system encompassing the remainder of the hospital. The
Four-Step Transportation Model is applied specifically to the internal system of the
hospital. Consequently, the graph repr,esenting the internal system (i.e., the hospital
graph excluding entrance and exit nodes) must adhere to the principles of total trip
balance (Equation 4.1) and zonal constraints (Equations 4.2 and 4.3).

However, the origin-destination matrix generated by the simple gravity model
(equation 4.5) does not follow the zonal constraints principle. The sum of trips
originating from (arriving at) each spatial unit in the origin-destination matrix is
proportional, but not equal to the trip production (attractions) for each spatial unit.
Hence, we need to adjust the origin-destination matrix to make it follow the zonal
constraints principle. In this study, we applied the Algebraic Iterative Proportional
Fitting algorithm developed by Nourian et al. [24 1] for adjusting the
origin-destination matrix. The Algebraic Iterative Proportional Fitting algorithm is
designed for adjusting a matrix A to satisfy given target row and column sums while
minimizing the squared error, It ensures that the adjusted matrix A satisfies the
constraints [241]:

Row sums of A equal the target row sums (r).
Column sums of A equal the target column sums (c).
Both row and column sums add up to the same total.

In our study, the matrix need to be adjusted is the origin-destination matrix A, the
row sums of the matrix A are the actual trip productions at each spatial unit, and the
target row sums (r) are the estimated trip productions of each spatial unit obtained
in the step of trip generation shown in table 4.4, the column sums of A are the actual
trip attractions at each spatial unit, and the target column sums (c) are the estimated
trip attractions at each spatial unit generated in the step of trip generation. We used
the Algebraic Iterative Proportional Fitting algorithm to adjust the matrix A into A so
that row sums of the A equals (r) and the column sums of 4 equals (c). The resulting
adjusted origin-destination matrix A is stored in the form of a 2-dimensional Numpy
array. A NumPy array is a data structure provided by the NumPy library in Python,
designed specifically for handling large, multi-dimensional arrays and matrices
efficiently [242]. Given the large size of the resulting matrix (A € R%92%%02) table
4.5 only presents a subset of 4, the element ij indicates the number of trips
between the two nodes, i.e., if A;; = 0, it indicates there is no trip between the nodes
iand j, if Aij > 0, it indicates there exists paths between nodes i and j. For the
complete dataset of A, please refer to this repository.
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TABLE 4.5 Results of trip distribution

Node ID

0 0.000e+000| 0.000e+000| ... 1.665e+000 | .. 0.000e+000

1 0.000e+000| 0.000e+000| ... 0.000e+000]| ... 0.000e+000
0.000e+000/| ...

7 1.665e+000 | 0.000e+000| 0.000e+000| 0.000e+000| ... 0.000e+000

501 0.000e+000| ... 0.000e+000

Mode Choice

4.2.1.4

In this step, all patients are assigned the walking travel mode. However, the model is
flexible, and alternative travel modes, such as wheelchair or hospital bed
transportation, can be assigned to different patients in future studies.

Route Assignment

127

For this step, as introduced earlier, we assign two specific paths for each trip. One is
the shortest-distance path to simulate the scenario in which patients reach their
destination using the optimal route, another is the random path, modeling situations
where patients become disoriented and visit multiple incorrect locations before
arriving at their intended destination. The following text describes how to obtain
these two types of paths in detail:

Shortest-distance path:

We assign the shortest path to each trip in the adjusted origin-destination matrix A.
Specifically, for the element A; in the adjusted matrix A, if A;; > 0 (i.e., there exists
paths between nodes ¢ and j), we find the shortest path between nodes ¢ and j and
assign this path to the trip that starts at node ¢ and ends at node j. We use the
NetworkX library, a Python package made for building and analysing complex
networks [218], to find the shortest path between two nodes in the network graph of
the HCM. The shortest path is stored in the form of a Python list, where each element
of the Python list is a node ID. All paths are stored in a Python dictionary, where the
keys of the dictionary are the trips consisted of origins and destinations (see “Trips"
in table 4.6), and the values of the dictionary are the Python lists of the shortest
paths (see “Shortest Paths" in table 4.6). Table 4.6 gives an illustration of some of
the shortest paths stored in the Python dictionary. For the complete dataset of all
shortest paths, please refer to this repository.
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TABLE 4.6 Results of route assignment

Trips Shortest Paths

(0,7) [0, 335, 7]

(0,13) [0, 335, 7,347, 13]

(0, 26) [0, 271, 26]

(10, 6) [10, 297, 89, 266, 193, 263, 454, 51, 391, 6]
(263, 193) [263, 193]

Random path:

Hospitals are large-scale, complex environments where visitors often become
disoriented, leading them to take unintended detours before arriving at their intended
destinations. This deviation results in actual travel paths being longer than the
shortest possible route, reflecting the difficulty in wayfinding. We use a random walk
simulation to obtain a random path for each trip, emulating scenarios where patient
agents become lost and deviate from the shortest path, thereby following a longer
route to their destinations.

Random walk simulation (RWS) is a mathematical modelling technique used to
represent stochastic (random) movement patterns in various domains, such as urban
mobility [243]. In a random walk, an agent moves step by step in a random direction
according to predefined probabilities, making it a valuable tool for simulating
uncertain, unpredictable, or exploratory movement behaviors. The key characters of
RWS can be summarized as follows [243]:

Stochastic Process: The movement of agents follows a probabilistic rule rather than a
deterministic path.

Step-Based Movement: At each step, the agent selects its next position based on a
probability distribution.

State Dependence: The future position depends on the current position and
transition probabilities.

Here we present an illustrative example of an RWS model using the hypothetical
hospital consisting of five spatial units, as introduced in Section 4.2.1. Figure 4.2
represents this hospital environment as an undirected graph, where each node
corresponds to a spatial unit within the facility. The agent’s origin is the “Reception
Hall", and the destination is the “Pharmacy". The simulation assumes that the agent
begins at the origin node and moves to a randomly selected connected node at each
step until reaching the destination. At each step, the agent chooses one of its
neighboring nodes with equal probability. For example, a possible random walk path
could be as follows:

Start at “Reception Hall", move to “Emergency Room" (only available choice).
Move to “Diagnosis Room" (choices: “Imaging Room", “Diagnosis Room").

Move to “Imaging Room" (choices: “Emergency Room", “Diagnosis Room",
“Pharmacy").

Move to “Pharmacy" (choices: “Emergency Room", “Diagnosis Room", “Pharmacy"),
reaching the destination.
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Reception
Hall

Imaging
Room

Emergency
Room

Diagnosis
Room

Pharmacy

FIG. 4.2 An illustrative example of a Random Walk Simulation model

Thus, the random walk path, expressed as a Python list, is: [“Reception Hall",
“Emergency room", “Diagnosis Room", “Imaging Room", “Pharmacy"]. This example
demonstrates the stochastic nature of the random walk process, where agents
navigate the hospital environment without prior knowledge of the optimal path.

Similar to the assignment of the shortest path, for each trip flij in the adjusted
origin-destination matrix A4, if A;; > 0 (i.e., if paths exist between between nodes i
and 7), a random path is assigned to the trip starting at node ¢ and ending at node j.
The RWS method, as introduced in the preceding example, is employed to determine
a random path between two nodes in the network graph of the HCM. The assigned
random path is also stored as a Python list, where each element represents a node
ID. All paths are organized within a Python dictionary, consistent with the shortest
path assignment. For access to the complete dataset of all random paths, please
refer to this repository.

In summary, the final outputs of the Four-Step Transportation Model consist of two
Python dictionaries: one representing the shortest paths and the other capturing
random paths, both of which describe patient movements under different conditions
within the hospital. Figure 4.3 presents a visualization of the patient movement
patterns with the shortest path, using the HCM as input. In this figure, red lines
represent the volume of trips between spatial units, with thicker lines indicating a
higher number of trips. These outputs are instrumental in achieving the HDSS's
ability to evaluate patient walking distances and wayfinding challenges. The trip
production data estimated from the Four-Step Transportation Model’s trip generation
step also supports the evaluation of overcrowding. For a detailed explanation of how
the Four-Step Transportation Model’s outputs contribute to these assessments, refer
to Section 4.2.4. However, the Four-Step Transportation Model is not suitable for
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4.2.2

FIG. 4.3 Visualization of patient movement patterns (please note that for clarity reason, only one floor of the
building geometry is visualized here)

evaluating patient waiting times, as it does not incorporate temporal considerations
or time-related measurements. To address this limitation, an alternative approach is
required. Discrete event simulation emerges as an optimal solution, as it explicitly

models time-dependent processes and can effectively capture patient waiting times.

Discrete Event Simulation

130

The HDSS's Discrete Event Simulation (DES) model is employed to capture the
factory-like dynamics of hospital operations and address the limitations of the
Four-Step Transportation Model, particularly in assessing patient waiting times. This
section begins with a concise introduction to DES, followed by a detailed explanation
of how our framework leverages DES to simulate patient journeys within hospitals. A
Discrete-Event Simulation (DES) model represents a system in which events occur at
distinct time points, triggering changes in the system’s state [46]. A DES model
comprises the following key components:

Discrete Event: A discrete event catalyzes changes in the system state. In a DES
model, the state transitions occur exclusively due to event occurrences [41]. For
instance, in a hospital DES model, a patient’s walking distance changes only when
they move to another room.

Clock: The clock tracks the simulation’s progression over time. Since time is a critical
variable in DES, system state variables evolve dynamically as the simulation advances
[41]. For example, in a hospital DES model, a patient’s total walking distance
increases as time progresses.

Random Number Generators: These generate random variables essential for DES
models [41], such as patient inter-arrival rates or the duration of medical services.
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— Statistics: This component aggregates and analyzes simulation results, including key

performance metrics such as patient waiting times and total walking distances [41].

Termination Condition: The simulation concludes once a predefined condition is met
[41]. For example, in a hospital DES model, the simulation may terminate when a
specified number of patients have been discharged.

The DES model within our framework is designed to utilize patient movement
patterns of shortest paths derived from the Four-Step Transportation Model as
primary input data, enabling the simulation of operational processes within hospitals.
Specifically, the DES model instantiates a patient agent corresponding to each
shortest path in the movement pattern dataset, thereby simulating the
spatiotemporal dynamics of patients traversing their respective shortest paths. The
patient agent starts with the first node in the respective shortest path and moves
node by node through the path until it reaches the last node. The patient agent stays
at each node except for nodes representing connecting units (i.e., doors) for a
random period to simulate diagnosis, treatment or other medical services. Since each
node has a capacity defined in the previous Four-Step Transportation Model (formula
4.4), if the number of patient agents at a node reaches its capacity, the node
becomes unavailable, and the next patient reaches the node need to wait until the
node becomes available again (e.g., one or more patient agents move to the next
node). The architecture of the DES model adheres rigorously to the five components
of DES models—discrete event, clock, random number generators, statistics, and
termination condition—as outlined earlier.

The discrete event of our DES model is the patient agent moving to the next node
along the respective shortest path. The clock of the DES model traces the simulation
time, each patient agent’s arrival time and departure time. The random number
generators in our DES model simulate patient inter-arrival times and service times
using an exponential distribution. Specifically, the inter-arrival time between
consecutive patient agents follows an exponential distribution with a mean of 5
minutes. Similarly, the service time at each node is also modeled as an exponentially
distributed variable with a mean of 5 minutes. The statistics in our DES model mainly
focus on each patient agent’s total waiting time during the traversal of the respective
shortest path. The patient’s total waiting time is calculated as follows:

N N
VVtotaI = Z W; = Z(Tenter,i - Tarrive,i) (4~6)
=1

=1
where:
Wiotal: the patient’s total waiting time across all nodes in the path,
Wi the waiting time at node 4,

Tenter,i: the time the patient enters node ¢,
Tirrive,i: the time the patient arrives at node ¢,
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— N: the total number of nodes in the path.

The termination condition of our DES model is when the simulation time reaches
1000 minutes. Our DES model’s main output is each patient agent’s total waiting
time, plus other patient-level data such as each patient agent’s unique ID, arrival
time, departure time, origin, and destination. These datasets are systematically
stored in a Python dictionary, facilitating efficient data organization and retrieval.

Exploratory Network Analysis

132

To adequately address concerns related to criticalities and required redundancies in
the configuration design of a hospital, we propose to include an exploratory Network
[Centrality] Analysis suite of tools to allow the designer to ‘see’ the bottlenecks, the
hot spots, the spreaders, invisible corners, the hard-to-guard areas, and the natural
clusters and/or similar patterns that result directly from the structure of the network
rather than its attributes. Space Syntax theories (and their alternative counterparts)
typically discuss these structural tendencies of spatial networks in terms of two
essential types of networks: the inter-accessibility network and the inter-visibility
network [244]. Here, the scope of the work does not allow for incorporating
inter-visibility networks and the patterns associated with them because they mainly
concern the micro-scale issues inside hospital rooms or halls; but rather, here we are
mainly concerned with those issues that pertain to the macro-scale structure of the
configuration related to its inter-accessibility network. Therefore, here we propose to
include a suite of tools for performing three archetypical network analysis procedures
as follows:

[Local] Closeness Centrality: Closeness Centrality is a measure from network
analysis and graph theory that helps quantify how near a particular node is to all
other nodes in a network [25]. Local Closeness Centrality is a variant of the
traditional closeness centrality measure that focuses on a node’s immediate
surroundings rather than the entire network [30]. This means it focuses on the
“local” accessibility of resources and interactions. In a hospital network—where
hospitals tend to form clusters based on regional, referral, or specialization
patterns—Ilocal closeness centrality can provide a more nuanced picture of how well
a hospital is connected within its relevant operational community. The Local
Closeness Centrality can be computed as follows [30]:

1

Cc(i) = m (4.7)

where:

Cc(2): the local closeness centrality measure of the node ¢,
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- D(i,j): the distance between node ¢ and node j, given by:

D(isj) = Lhrery , G
where ~; ; is the path from node ¢ to node j, and (. is the weight/cost of the k-th
edge on that path,

PP: the set of nodes within distance R of ¢, given by:

PP ={j|D(i,j) < R}.

When comparing local closeness centrality across different networks or dealing with
networks of varying sizes, it is necessary to normalize the centrality measures, given
by the previous formula multiplied by the number of nodes within the “local
neighborhood” P, resulting in [30]:

|Pf
ZjePiR D(Z,])

This calculation ensures the resulting local closeness centrality is between 0 and 1.

Ce(i) = (4.8)

[Local] Betweenness Centrality: Betweenness centrality is a fundamental measure in
network analysis that quantifies the extent to which a node acts as a bridge within a
network [25]. It identifies nodes that frequently appear on the shortest paths
between other nodes, highlighting their role in facilitating flow or influence
distribution. By contrast, Local Betweenness Centrality focuses on a restricted
subgraph. This is particularly useful in spatial or architectural contexts (e.g., in
hospitals), where designers might only need to assess the impact of a node on routes
in its immediate vicinity or within a functional zone. The Local Betweeness Centrality
is calculated as follows [30]:

Bo(y= 3 2l (4.9)

Ost
s;ﬁtePiR s
where:

Be(4): the local betweeness centrality measure of the node 1,

PE: the set of nodes within distance R of node i.

0. the total number of shortest paths between nodes s and ¢ (both in Pf).
0s,t(1): the number of those shortest paths that pass through .

To compare local betweenness scores across different hospital networks, one can
include a normalization factor based on the size of P{*. For example, if PF has
|Pf| = M nodes, one might normalize as follows [30]:

. 2 Os t(Z)
Be(i) = = 4.10
C(Z) (M*l)(M*2) Z Oat ’ ( )

s<tepPl
where s < t indicates summing only over unique unordered pairs. This scaling
ensures that B (4) falls between 0 and 1 under the assumption that ¢ cannot be on a
shortest path to or from itself.
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[Local] Eigenvector Centrality: Eigenvector centrality assigns a score to each node
such that a node is considered important if it is connected to other nodes that are
themselves important [25]. In other words, not all connections are equal—a
connection to a highly influential node boosts the score more than a connection to a
less influential one. Local Eigenvector Centrality is a variation of the traditional
eigenvector centrality that focuses on a node’s influence within a confined or “local”
region of a network rather than across the entire graph. For evaluating a complex
building network such as a hospital, local eigenvector centrality is more practical
because it captures the immediate, spatially relevant connectivity that underlies
day-to-day operations and helps pinpoint locally critical nodes (such as specific
corridors or doorways) that could be essential for traffic flow. To compute local
eigenvector centrality, we restrict the summation to a local subgraph centered
around i. Let:

S(7) be the local neighborhood of i, typically defined as the k-hop neighborhood (i.e.,
nodes reachable from ¢ within k steps).

Altecad) he the adjacency matrix of this subgraph.
Aocar De the largest eigenvalue of A(tece!)

The local eigenvector centrality can be obtained by [30]:

. 1 (local)
Eo(i) = . , 4.11
i) = gy et @.11)

The equation 4.11 can also be written in a vector form as:

Ec(local) _ 1 A(local)EC(local)
)\local

Which simplifies to the eigenvector equation:

A(local)EC(local) _ )\localEC(local) (41 2)

This shows that Ec°<*! is the eigenvector of the local adjacency matrix A°c*!
corresponding to the largest eigenvalue A\jocqai. TO Normalize the local eigenvector
centrality for comparison across different networks, we first need to compute the
normalized local adjacency matrix Noceh) [245]:

N(locul) _ diag(A(local)e)flA(locul)
Where:

e is the vector of ones.

diag(AU°e®De) is a diagonal matrix containing the row sums of A°<?) je_ the local
out-degrees.

Then the normalized local eigenvector centrality satisfies the equation:

E/C(local) _ (N(local))TElC(local) (413)
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The evaluation mechanisms

4.2.41

In this section, we elaborate on how we deal with the outputs of the three models
within the HDSS (i.e., Four-Step Transportation Model, Discrete-Event Simulation
model, and Exploratory Network Analysis model) to enable informed decision
support.

The evaluation mechanisms for simulation modelling

135

Both simulation models within the HDSS generate disaggregated outputs.
Specifically, the Four-Step Transportation Model produce a large set of patient travel
paths in the hospital, while the Discrete-Event Simulation (DES) model outputs
detailed patient-level simulation data, including patient ID, arrival time, departure
time, total waiting time, origin, and destination. Although these outputs provide a
granular representation of patient flows within the hospital environment, it is hard to
make effective assessments on these outputs due to their disaggregated nature. To
be able to use these outputs to make effective assessments and informed decisions,
the following three steps need to be taken:

Aggregation: The aggregation process refers to the method of summarizing and
consolidating disaggregated simulation results into higher-level statistical metrics or
grouped datasets [209]. This process is used to extract meaningful insights by
computing averages, totals, distributions, or other summary statistics from individual
simulation outputs [209]. For example, in a hospital simulation, different individual
patient waiting times can be aggregated to derive an average waiting time.

relativization: The relativization process involves the normalization or standardization
of the aggregated simulation outputs to facilitate comparison across different spatial
scales [246]. This process typically transforms absolute values into relative
indicators, such as ratios or percentages, allowing for meaningful comparison and
analysis across different scales [246]. For instance, the average patient waiting
times in different hospitals with varied scales can be relativized based on the total
time spent in hospitals.

Interpretation: Functional unit interpretation refers to the process of harmonizing
relativized simulation outputs by adjusting them to a common functional unit,
ensuring comparability between different datasets or scenarios [247]. This is
particularly useful when results come from models with different scales, units, or
baseline assumptions. In hospital simulations, for example, the relativized waiting
times can be interpreted by defining a functional unit such as “percentage of total
time spent per patient" to enable direct comparisons between different hospital
layouts.

The HDSS is engineered to evaluate the efficiency and effectiveness of hospital
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FIG. 4.4 Visualization of people density in each spatial unit

layouts by assessing four key quality criteria: public spatial crowdedness, patient
waiting time, patient walking distance, and wayfinding difficulty. To be able to assess
these quality criteria, we first need to identify the disaggregated indicators of the four
quality criteria from the simulation results. Specifically, for assessing crowdedness in
public spaces, the disaggregated indicator is the people density in each spatial unit,
which can be calculated as: o

- Area; (4.14)

pi
where:

pi: the people density at spatial unit 4,
C;: the count of patients in spatial unit 1,
Area;: the area of spatial unit 4.

We can identify the count of patients in spatial units 7 (C;) from the Four-Step
Transportation Model, i.e., each spatial unit’s total trip production (P;) obtained in
the trip generation step indicates the number of patients at each spatial unit. The
room area data is also available from the node attributes of the HCM’s graph. Hence,
we can rewrite the formula 4.14 as follows:

T Area;

pi (4.15)
and directly compute each spatial unit’s people density, then filter out the public
spatial units’ people densities. Figure 4.4 visualizes the computed people density in
each spatial unit of the HCM, with higher-density spatial units shown in red and
lower-density ones in white.
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The disaggregated indicators for patient walking distance are each patient’s total
walking distance, which is straightforward according to the shortest paths generated
by the Four-Step Transportation Model. We can calculate the total distance for each
path as follows:

kp—1
D;horteSt = Z d(np,is Np,i+1) (4.16)
i=1

where:

Dsrtest: the total distance of the patient p’s shortest path,
np,i: the i-th node in patient p’s shortest path,

d(nyp,i,np,i+1): the distance between node n; and node n;+1 in patient p's shortest
path.

For assessing wayfinding difficulty, we define the disaggregated indicator as each
patient’s extra walking distance. The HDSS assigns two paths to each patient agent.
One is the shortest path, and another is the random path. Both paths have the same
origin-destination pair, but the journeys are different, leading to different total
distances. We can calculate the distance of the random walk paths (Dj2"%°™) using
formula 4.16 and compute each patient’s extra walking distance as follows:

Dze,ma _ Dzr)andom _ D;hortest (4.17)
where:

DE"™: the extra walking distance of the patient p,
D™ the random walking distance of the patient p,
D5t the shortest walking distance of the patient p.

For assessing patient waiting time, the disaggregated indicator is each patient’s
waiting time, which is already recorded by the DES model (see formula 4.6).

The following paragraphs discuss how we use the steps of aggregation, relativization,
and interpretation to turn the four disaggregated indicators into the quality criteria
that are ready to be used for comparing and assessing different hospital layouts.

For results aggregation, we use the average to aggregate the four indicators: people
density in each spatial unit, each patient’s walking distance, extra walking distance,
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and waiting time. Specifically, the average people density in the public area is
calculated as follows:

M
Dim1 Pi

Ppublic = i (4.18)
where:
Poubiic: the average people density in public areas,
pi: the people density in public spatial unit ¢,

M: the total number of public spatial units.

The average patient walking distance is computed as follows:

P
Z D;hortest

p=1

D=
P

(4.19)
where:

D: the average patient walking distance,

Dilertest: the walking distance of patient p,

P: the total number of patients.

Similarly, the average extra patient walking distance can be calculated as:

P extra
2 p—1 Dy

Dextra —
P

(4.20)
where:

D®2: the average patient extra walking distance,

D¢ the extra walking distance of patient p,

P: the total number of patients.

Lastly, the calculation of average patient waiting time is straightforward:

(4.21)
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where:

W: the average patient waiting time,
WP the total waiting time of patient p,
P: the total number of patients.

In the step of relativization, we relativize the aggregated simulation results to enable
the comparison between hospitals of different sizes and scales. We relativize the
average people density in public areas by comparing it to the target people density in
public areas. Specifically, the relativized people density in public areas is calculated
as follows:

Prel = C (4.22)

public

where:

prel: the relativized people density in public spaces,
Protal: the total number of patients in public spaces, given by:
Ptotal = ppublic . Apublim

where poubiic is the average people density in public areas, and Apypiic is the total area
of public spaces.

Chupiic: the total capacity in public spaces, given by:
Cpublic = pPtarget ° Apublic,
where prarget 1S the target people density in public spaces.

In this formula, we define the target people density in public spaces prarget @s 0ne
person per square meter. However, this number can be adjusted according to
different cases.

We relativize the average patient walking distance by comparing it to the hospital
size. Specifically, The relative walking distance R is defined as:

(4.23)

where:

Dy the relative patient walking distance,
D: the average patient walking distance,
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— Dol the total distance of the HCM’s network graph, given by:

Drotal = Z(i,j)eE dij
where E is the set of edges in the graph, and d;; is the distance between nodes 7 and
j.

Similarly, we can compute the relative patient extra walking distance as follows:

extra Dextra
Drel =

= 4.24
Dtotal ( )

where:

D" the relative patient extra walking distance,
Dexra: the average patient extra walking distance,
Diotal: the total distance of the HCM’s network graph.

For the relative patient waiting time, we can obtain it by comparing the average
patient waiting time with the average patient total time spent in the hospital:

|44
Wil = = 4.25
el Whe ( )

where:

Wie: the relative patient waiting time,
W: the average patient waiting time,
Wis: the average patient total time spent in hospital, given by:

Wes = StV
where W;,S is the toal time spent by patient p in the hospital, and P is the total
number of patients.

In the step of interpretation, we establish a functional unit for each relativized quality
criterion to ensure fair comparisons. For example, the functional unit for relative
people density in public spaces is defined as “occupancy percentage per square
meter.” Under this definition, a relative people density of 10% per square meter in a
hospital’s public areas indicates that, on average, only 10% of the hospital’s capacity
is utilized per square meter. Similarly, the functional unit for relative patient walking
distance is defined as “percentage of hospital size per patient.” Consequently, a
relative walking distance of 5% of hospital size per patient implies that the average
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distance walked by a patient corresponds to 5% of the total hospital size. Notably,
this same functional unit is also applied to quantify the relative patient extra walking
distance. Furthermore, the functional unit for relative patient waiting time is defined
as “percentage of total time spent per patient.” Thus, a relative patient waiting time
of 20% of total time per patient signifies that, on average, a patient’s waiting time
constitutes 20% of the overall time spent in the hospital.

Table 4.7 summarizes the mathematical formulas used to derive the disaggregated
indicator, aggregated quality criterion, and relativized quality criterion for each of the
four hospital design challenges. Additionally, the table presents the functional units
associated with these design challenges.

TABLE 4.7 A summary of the HDSS’s evaluation mechanisms

Disaggregated Indicator

Aggregated

Quality Crite-
rion

Relativized
Quality Crite-
rion

Functional
Unit

) . _ P
Spatial Crowd- | p; = Trda; Poublic = | pre = C“u’;'c Occupancy
edness oM, P percentage per
M square meter
Patient walking | Dshortest = | D = | Dy D Percentage of
i P shortest Diotal B N
distance ka—ld(n Mgt Xp=1Dp hospital  size
=1 pP,1y TP, .
per patient
Difficulty ~ in | D&% = prandom_ pehortest | fedtra = | D = | Percentage of
Wayfinding »h_, pgte Dextra hospital  size
P Diotal per patient
Patient Waiting | Wigtar = S0 (Tenter,s — WP o = | Wl = % Percentage of
Time Tarrive, i Spe1 Wi s total time spent
P per patient

Interpretation of exploratory network analysis results
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In the exploratory network analysis, centrality measurements are inherently
disaggregated and normalized, with each node in the graph assigned a unique value
between 0 and 1. As a result, we do not apply the same evaluation mechanisms as
those used in simulation modeling. Instead, we interpret the centrality measures to
analyze their implications for hospital layout design and spatial connectivity.

Figure 4.5 illustrates the results of Local Closeness Centrality measures of the HCM's
network graph. The local region is defined as the subgraph induced by all nodes
reachable within a radius of five edges from the target node. The nodes colored in
blue represent spatial units with relatively high local closeness centrality, indicating
their centrality and strong connectivity within the local region of the hospital
network. These areas are beneficial for accessibility and efficient movement, making
them optimal locations for reception areas or nurse stations, where rapid
communication and coordination are essential. In contrast, the nodes shown in red
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FIG. 4.5 Local Closeness Centrality (R = 5) measures of the HCM’s graph

correspond to spatial units with lower local closeness centrality, signifying more
remote or isolated locations within the network. These areas are likely to serve
specialized or lower-traffic functions, such as patient rooms or recovery areas, where
reduced interaction with other hospital units is appropriate.

Figure 4.6 presents a visualization of the local betweenness centrality measure for
the HCM graph, with the local region defined as the subgraph induced by all nodes
within a five-edge radius. The spatial units represented by blue nodes exhibit high
local betweenness centrality, indicating that they frequently lie along the shortest
paths between other spatial units within the local region of the hospital network. As
critical passageways or “bridges", these areas facilitate connectivity between
different clusters or departments within the hospital. Due to the high volume of
movement through these spaces, they have the potential to become congestion
points. Hence, a consistency can be observed between Figure 4.6 and Figure 4.4, as
spatial units with high betweenness centrality in Figure 4.6 also exhibit high people
density in Figure 4.4. This alignment supports the effectiveness of betweenness
centrality in identifying potential overcrowding areas. The HDSS's exploratory
network analysis model can identify these key areas, which enables architects to
implement strategic design interventions early in the planning process to optimize
circulation and mitigate bottlenecks. Conversely, the spatial units denoted by red
nodes have relatively low local betweenness centrality, meaning they are rarely
traversed as part of the shortest paths between other rooms. Their relative isolation
may be advantageous for functions that require a controlled or quieter environment,
such as therapy rooms or private offices, where minimal disruption is desirable.

Figure 4.7 illustrates the local eigenvector centrality metric for the HCM graph, with
the “local” region defined as the subgraph induced by all nodes reachable within a
five-edge radius. The nodes colored in blue represent spatial units with high local
eigenvector centrality; they are connected to other highly connected rooms, making
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FIG. 4.6 Local Betweeness Centrality (R = 5) measures of the HCM’s graph

them influential within the local region of the hospital layout. Their positioning helps
in the rapid dissemination of people or information. Such rooms are key in facilitating
efficient movement and may be ideal for central functions like lobbies, nurse stations,
or emergency triage areas. In contrast, because they are integrated into a broader
cluster of well-connected spaces, any issues here (e.g., hospital-acquired infection)
could affect a larger portion of the hospital. The red nodes are spatial units with
lower local eigenvector centrality, these rooms are typically connected to other less
connected or isolated areas, reducing their overall influence in the network. Their
relative isolation makes them suitable for functions that benefit from lower foot traffic
and enhanced privacy, such as patient rooms, specialized treatment areas, or private
consultation spaces.

Conclusion
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This study presents a comprehensive framework—the Hospital Design Support
System (HDSS)—that integrates simulation models and network analysis techniques
to evaluate hospital layout performance. By merging the Four-Step Transportation
Model, Discrete Event Simulation (DES), and Exploratory Network Analysis, the HDSS
provides a multifaceted approach to address key operational challenges such as
overcrowding, patient waiting times, excessive walking distances, and wayfinding
difficulties.
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FIG. 4.7 Local Eigenvector Centrality (R = 5) measures of the HCM’s graph

This study presents significant findings that enhance the field of hospital layout
design and simulation modeling. The application of the HDSS revealed that the
combined use of macro-scale simulation models and exploratory network analysis
yields valuable insights into hospital operations. Specifically, the Four-Step
Transportation Model successfully quantified spatial dynamics by simulating patient
movement across various functional zones, effectively identifying potential hotspots
of congestion and inefficient circulation patterns. Concurrently, the DES model
offered a detailed temporal analysis, capturing waiting times and service delays that
are critical for evaluating operational performance. Moreover, the integration of
Exploratory Network Analysis allowed for the identification of critical nodes—via
measures such as local closeness, betweenness, and eigenvector centralities—that
are indicative of areas with high connectivity and potential vulnerability to
bottlenecks. Together, these findings underscore the effectiveness of the HDSS in
providing objective, quantifiable metrics that can inform early design decisions and
facilitate the optimization of hospital layouts.

The primary contribution of this work lies in the development of an integrated
decision support system tailored for hospital layout design. Unlike traditional
approaches that often rely on isolated simulation or qualitative assessments, the
HDSS bridges multiple disciplinary methodologies to create a robust framework for
evaluating hospital layout performance. The innovative combination of
Transportation Planning with Discrete-Event Simulation and Exploratory Network
Analyses not only enhances the accuracy of performance evaluation but also
provides a scalable method adaptable to various hospital configurations.
Furthermore, another contribution is achieved by proposing systematic evaluation
mechanisms—aggregation, relativization, and interpretation of simulation
outputs—that transform disaggregated data into actionable quality criteria. This
methodological rigor establishes a new benchmark for assessing complex healthcare
environments, promoting a more data-driven approach to architectural design in
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hospitals.

Despite its strengths, the HDSS framework has several limitations. First, the
Four-Step Transportation Model is based on certain simplifying assumptions—for
instance, the use of a fixed space requirement per person for all spatial units—which
may not fully capture the complexity and variability inherent in real-world hospitals.
Second, the framework currently lacks integration of real-time operational data,
relying predominantly on synthetic or modeled data. Lastly, the proposed
methodology was applied and validated using a single real-world hospital BIM model.
While this case study confirms the feasibility and effectiveness of the approach,
further research is needed to assess its generalizability across diverse hospital
layouts with varying levels of complexity and functional requirements.

Addressing these limitations offers avenues for future research. Enhancing model
flexibility by incorporating stochastic variations and more nuanced behavioral
parameters could further improve the fidelity of the simulations. Additionally,
integrating HDSS with real-time data processing capabilities enables the
development of hospital digital twins. This advancement would facilitate continuous
performance assessment and enable proactive decision-making in hospital
management. Lastly, validation of the HDSS against various cases will be essential to
refine the models and ensure their applicability in diverse healthcare settings.

In conclusion, while the HDSS framework represents a significant advancement in the
evaluation of hospital layout design, its refinement and validation in different contexts
remain crucial for realizing its full potential in hospital design decision-making.
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Conclusion
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In this dissertation, a spatial design decision support system, termed the Hospital
Design Support System (HDSS), was developed to enhance hospital layout design
performance, specifically addressing issues such as overcrowding, long patient
waiting times, long patient walking distances, and difficulty in wayfinding. A
systematic literature review was first conducted to identify the key design challenges
associated with hospital layout planning and approaches for measuring these
challenges. The HDSS is designed to provide a reliable and transparent assessment
framework for evaluating the performance of various hospital layout designs through
simulation modelling and exploratory network analysis. Both methods require a
robust foundational dataset to function effectively. To meet this requirement, a
Hospital Configuration Model (HCM) is developed, supplying essential
information—including geometric, topological, semantic, and operational
data—necessary for the HDSS to operate with accuracy and efficiency. A software
named is also developed for semi-automatically obtaining HCMs from hospital
BIM/IFC files. The HDSS comprises three core models: (1) a Four-Step
Transportation Model, which simulates the city-like characteristics of hospitals and
assesses layout performance in terms of overcrowding, patient walking distance, and
difficulty in wayfinding; (2) a Discrete-Event Simulation Model, which captures the
factory-like nature of hospital operations and evaluates layout performance based on
patient waiting times; and (3) an Exploratory Network Analysis Model, which
examines the inherent logic of hospital spatial structures. Additionally, an evaluation
mechanism was developed to translate simulation results into actionable insights for
informed decision-making. Specifically, disaggregated simulation outputs are
aggregated, normalized, and defined with a functional unit to enable fair comparisons
across hospitals of varying scales. The HDSS serves as a robust tool for architects,
hospital directors, and head nurses during the early design stages, facilitating the
identification of optimal hospital layout alternatives. This chapter addresses the
research questions proposed in Chapter 1 and discusses the contributions of this
study. Additionally, the research limitations are examined, and potential directions
for future research are outlined.
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Responses to Research Questions
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This section presents the answers to the research questions:

Research question 1: How to measure the accessibility and visibility of a spatial unit
concerning all other spatial units in a hospital layout?

The exploratory network analysis model within the HDSS evaluates the accessibility
and visibility of all spatial units within a hospital layout. This process begins with the
development of a hospital configuration model, which generates a network graph
representing the spatial structure of the hospital. This network graph serves as the
input for the exploratory network analysis model, producing three key
metrics—closeness centrality, betweenness centrality, and Eigenvector
centrality—quantifying the accessibility and visibility of each spatial unit in the
hospital. To enhance interpretability, these centrality metrics are visualized,
providing intuitive representations of spatial units’ accessibility and visibility
concerning all other spaces in the hospital.

Research question 2 How to measure the crowdedness in a hospital layout design?

The Four-Step Transportation Model within the HDSS measures the level of
crowdedness in a hospital layout. The process begins with the development of a
Hospital Configuration Model, which serves as the input for the Four-Step
Transportation Model. This model estimates the number of patients in each spatial
unit based on its area, after which the crowdedness of each unit is calculated as
people density—the number of patients within a spatial unit divided by its area. To
assess overall crowdedness in the public areas of the hospital, the average people
density across all public spatial units is computed. This average density is then
normalized by comparing it to the target density for public areas. Finally, a functional
unit, defined as "occupancy percentage per square meter", is introduced to facilitate
fair comparisons across hospital layouts of varying scales.

Research question 3 How to measure the patient’s walking distance in a hospital
layout design?

The Four-Step Transportation Model within the HDSS evaluates patient walking
distances within a hospital layout. Utilizing the Hospital Configuration Model as input,
the model estimates the total number of trips originating from and arriving at each
spatial unit. It then distributes these trips and generates an origin-destination matrix
to determine the number of trips between each pair of origin and destination.
Subsequently, the shortest path for each trip in the origin-destination matrix is
identified, and walking distances are computed based on these shortest paths. The
disaggregated walking distances are then aggregated using the average walking
distance per patient. To standardize comparisons across different hospital layouts,
this measure is relativized by relating it to the total distance of the hospital network.
Finally, a functional unit, defined as the "percentage of hospital size per patient" is
introduced to ensure fair comparisons across various hospital designs.
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-~ Research question 4 How to measure patient/visitor’s difficulty in wayfinding in a

hospital layout + procedures (program of requirements) design?

The assessment of patient difficulty in wayfinding within a hospital closely parallels
the evaluation of patient walking distance. The only difference is that the Four-Step
Transportation Model assigns two paths for each trip in the origin-destination matrix:
the shortest path and a random path that simulates the scenario in which patients
become disoriented and visit unintended locations before reaching their destination.
Difficulty in Wayfinding is then quantified as the difference between the distance of
the random path and that of the shortest path. The subsequent steps—aggregation,
relativization, and functional unit definition for difficulty in wayfinding—mirror the
methodological approach used in measuring patient walking distance.

Research question 5 How to measure patient waiting time in a hospital layout
design?

Patient waiting times are measured using the Discrete-Event Simulation (DES) model
within the HDSS. The patient’s shortest paths generated by the Four-Step
Transportation Model serve as inputs for the DES model. For each patient’s shortest
path, a corresponding patient agent is created, and the DES model simulates the
process of the patient agent geos through its corresponding patient path, recording
waiting times along the path. The disaggregated waiting times are then averaged and
normalized by comparing them to the total time spent for the patient to complete the
path. Finally, a functional unit, defined as the "Percentage of Total Time Spent per
Patient," is introduced to facilitate fair comparisons across multiple cases.

Contributions
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This section summarises the main contributions of this research. The systematic
literature review presented in chapter 2 summarises the main design challenges
related to hospital layout design and how to assess them (see tables 2.1 and 2.2). We
have identified key gaps in the literature, particularly in the rigorous mathematical
treatment of spatial representation issues and the quantitative assessment of
challenges such as overcrowding and the risk of cross-contamination. These
identified research gaps highlight potential directions for future research.

Building on the research gap identified in Chapter 2—specifically, the lack of a
mathematical representation of hospital layouts—we developed a systematic and
robust methodology for hospital layout configuration modelling (see subchapter 3.1).
This methodology first enables the semi-automatic generation of IndoorGML models
from Building Information Models (BIM) and Industry Foundation Classes (IFC) files,
improving the accessibility and usability of IndoorGML data for applications such as
indoor navigation and location-based services. Furthermore, it facilitates the
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transformation of IndoorGML models into Hospital Configuration Models (HCMs),
which employ mathematical constructs to represent hospital layouts, enabling
advanced spatial analysis and simulation modelling. This methodology addresses
existing limitations in the current approaches for generating IndoorGML models. For
instance, conventional methods often produce IndoorGML files that lack semantic
information or are restricted to input BIM models with simple, modularized shapes.
Our approach overcomes these shortcomings by ensuring rich semantic
representation and broader applicability to complex hospital layouts.

The methodology was further implemented as a software application, IFC2BCM,
which enables the semi-automatic generation of IndoorGML and HCM models from
BIM/IFC files (see subchapter 3.2). A key contribution of this software is its ability to
produce HCMs, which provide several advantages over traditional IndoorGML models.
A significant challenge with IndoorGML is its reliance on XML (eXtensible Markup
Language) encoding, which is inherently complex, highly hierarchical, and not
optimized for web-based applications [219]. These characteristics make parsing and
extracting information from IndoorGML files cumbersome, leading to limited software
support and a scarcity of publicly available IndoorGML datasets [219]. In contrast,
our HCM models utilize JSON (JavaScript Object Notation) encoding, a widely
adopted data exchange format with extensive library support and a broader user
base. By structuring HCM files in a more streamlined and less hierarchical manner
[219], the JSON format enhances readability, simplifies editing, and improves overall
accessibility compared to IndoorGML.

The Hospital Configuration Model provides the foundational dataset required to
develop the Hospital Design Support System (HDSS), a comprehensive framework
designed to provide reliable and transparent assessment mechanisms for evaluating
the performance of various hospital layout designs (chapter 4). It achieves this by
integrating the methodologies of the Four-Step Transportation Model, Discrete-Event
Simulation, and Exploratory Network Analysis. Unlike conventional methods that rely
on either stand-alone simulations or qualitative assessments, the HDSS integrates
multiple disciplinary approaches to create a comprehensive framework for hospital
layout evaluation. This system employs an innovative hybrid simulation approach
that integrates the Four-Step Transportation Model and Discrete-Event Simulation
(DES). The Four-Step Transportation Model captures the city-like characteristics of
hospitals, while DES simulates their factory-like operational dynamics. Both models
collectively represent the rational aspects of hospital functioning. Additionally,
Exploratory Network Analysis is incorporated to account for the irrational aspects of
hospital environments, complementing the overall capabilities of the HDSS and
providing a more comprehensive framework for hospital layout evaluation. The HDSS
also provides a systematic evaluation framework incorporating aggregation,
normalization, and interpretation of simulation results, enabling the transformation
of raw data into meaningful performance indicators. This methodological
advancement sets a new standard for assessing complex healthcare infrastructures,
fostering a data-driven approach to hospital architecture and design.
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Limitations
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While this research offers valuable insights, it is important to acknowledge several
limitations. One key constraint of the methodology for generating the Hospital
Configuration Model (HCM) is its exclusive focus on patient-related operational data.
Specifically, the extraction of operational information into the HCM primarily
considers patient movement and pathways, while other critical aspects, such as staff
workflows, remain unaddressed. Staff movement patterns, as well as their
interactions with both colleagues and patients, constitute an essential component of
hospital operations. Incorporating these elements into the HCM could provide a more
comprehensive representation of hospital dynamics and lead to deeper insights.
Additionally, the operational data integrated into the HCM are derived from
pre-existing datasets, which may not fully capture the inherent variability of hospital
workflows. The reliance on static input data limits the model’s ability to accurately
reflect highly dynamic scenarios, such as emergency situations or sudden
fluctuations in patient flow. Enhancing the model with real-time or stochastic
operational data could improve its predictive capabilities and broaden its applicability
to complex and rapidly changing environments. Another limitation pertains to the
representation of spatial connections within the hospital layout graph. The current
methodology generates edges by linking a room’s node to the corresponding node of
its door, ensuring that only spaces connected by doors are represented as connected
in the graph. While this approach works for many cases, it introduces inaccuracies
when two spatial units are directly connected without an intervening door. For
example, if two corridors transition seamlessly into each other without a door, the
methodology fails to create an edge between them, leaving them unlinked in the
spatial graph. A more refined approach to representing spatial adjacency would
improve the accuracy of the hospital layout model.

The IFC2BCM software, developed for generating Hospital Configuration Models
(HCMs), also has several limitations. One notable constraint is its reliance on a
combination of Python scripts, Grasshopper scripts, and Dynamo scripts. Although
this multi-tool approach capitalizes on the strengths of each platform, it presents
challenges for users, who must navigate between these tools to access the software’s
full functionality. This fragmented workflow complicates the user experience and may
lead to inefficiencies, such as increased learning curves, a higher likelihood of user
error, and reduced operational consistency. Furthermore, the methodology was
applied and validated using a single real-world hospital BIM model. While this case
study demonstrates the feasibility of the approach, the applicability of the findings to
other hospital layouts, particularly those with different levels of complexity and
operational requirements, remains uncertain. Further exploration is needed to assess
the generalizability of the methodology across a wider range of hospital
environments.

While the HDSS framework offers significant advantages, it also has several inherent
limitations. First, the Four-Step Transportation Model rely on certain simplifying
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assumptions, such as assigning a fixed space requirement per person for every spatial
unit. This approach, while practical, may not fully encapsulate the dynamic and
complex nature of real-world hospitals. Another limitation is the framework’s reliance
on synthetic or modeled data, as it does not currently integrate real-time operational
inputs. Incorporating live data streams could enhance the model’s adaptability and
predictive accuracy in dynamically changing hospital environments. Finally, the
methodology has been validated using a single real-world hospital BIM model. While
this case study demonstrates the approach’s feasibility and effectiveness, its
applicability to a broader range of hospital layouts with differing complexities and
functional demands requires further investigation. Expanding the scope of validation
would strengthen the framework’s robustness and generalizability.

Potential Future Research Direction
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The limitations outlined in Section 5.3 suggest several promising avenues for future
research. One direction involves expanding the operational data integrated into the
HCM by incorporating additional variables such as staff workflows and movement
patterns. Another opportunity is to enhance the IFC2BCM software by consolidating
its multi-script implementation into a unified framework, thereby simplifying the user
experience. Another promising direction for future research is the integration of
real-time data capabilities into the IFC2BCM and HDSS frameworks, transforming
them into a digital twin system for hospital management. By continuously receiving
real-time patient movement data, the system could perform simulation modelling and
predictive analysis to identify potential congestion points and areas at high risk of
contamination. This would enable hospital administrators to take proactive
measures, optimizing operational efficiency and improving patient safety. Moreover,
the adaptability of this digital twin framework extends beyond hospital environments.
For instance, it could be applied to intelligent transportation systems in urban
settings, where real-time traffic data is used to simulate and predict congestion
hotspots, allowing policymakers to implement timely interventions. Similarly, the
framework could enhance crowd management in train stations by guiding passenger
flow and improving transit efficiency. These applications highlight the system’s
versatility and potential for broader impact across various domains.

Conclusion
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develops a Hospital Design Support System, a data-driven framework that integrates the
Four-Step Transportation Model, Discrete-Event Simulation, and Exploratory Network Analysis to
systematically assess hospital layout performance in terms of operational efficiency. The HDSS
evaluates four key criteria: spatial crowdedness, patient waiting times, patient walking distances,
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small cities and factories, making transportation planning and Discrete-Event Simulation highly
applicable in evaluating hospital layout performances in terms of the four operational criteria.
Exploratory Network Analysis further reveals the inherent structural tendencies that impact
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