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Abstract

The Catterline Bay, located in North East Scotland, is prone to erosion processes. Using Terrestrial
Laser Scanning (TLS) two point clouds were obtained in 2019 and 2022 from this area of ca. 0.2 km?.
Here, a methodology was proposed and tested to assess how erosion processes can be monitored
from high resolution point clouds in small study areas. Filtering of ground points from the point clouds
was done using a full 3D approach. The local dimensionality on multiple scales was used to generate
features for the classification, for which Linear Discriminant Analysis was used. The algorithm was able
to precisely separate non ground points from ground points with a precision on test data sets of 94.7%
on ground points and 94.3% on non-ground points.

The ground points provided a basis for the Digital Terrain Model (DTM) raster. Several geomorpho-
logical quantities could be derived from this DTM. Next to these quantities, also information about
vegetation height and 3D change detection using the Multi-scale Model to Model Cloud Comparison
(M3C2) was extracted.

From a combination of the Terrain Ruggedness Index (TRI), change detection using the Multiscale
Model to Model Cloud Comparison (M3C2) technique and photos, erosion zones were derived. Also
stable, non-erosion, zones were identified. Various statistics from the geomorphological quantities
were analysed for both zone types. Erosion zones have clear edges of high TRI values, indicating the
scarps of landslides. The erosion zones also contain groups of negative M3C2 distances, indicating
depletion zones. Not only the TRI and M3C2 distances have significantly different statistics for erosion
and non-erosion zones, also the slope is steeper in these zones and the Topographic Wetness Index
is smaller. The mean slope for erosion zones is 39.3° compared to 30.9° for non-erosion zones. To
capture the behaviour of the TRI in the defined zones, prr; was introduced which gives a rate of how
many cells have a high TRI value in a defined zone. The prg|, the rate of TRI values above 0.06 m, is
more than 4 times larger for erosion zones (0.17) than for non-erosion zones (0.04).

Changes in vegetation height could be linked to locations of implemented Nature Based Solutions
(NBS). The results were in agreement with changes in NDVI, which were calculated from optical satellite
imagery.

In conclusion, the new methodology has great potential to identify erosion zones in complex sloped
terrain and monitor changes in vegetation.
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Nomenclature

The next list describes several symbols that are used within the body of the document

ALS Airborne Laser Scanning
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UAV  Unmanned Aerial Vehicle
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Introduction

A large part of the coastlines in Scotland is vulnerable to erosion and with the inevitable further climate
change, coastal erosion could put many of Scotland’s buildings and infrastructure at risk in near future
(Dunkley et al., 2021). Due to climate change, the Scottish coast is not only subjected to sea level
rise, but also to increased precipitation frequency and intensity. These expected increases will raise an
increased likelihood of landslides. Buildings on top of sea cliffs and close to areas subject to landslides
and erosion pose a direct risk to lives and residential properties.

The Catterline Bay, located south of Stonehaven in Aberdeenshire on the north east coast of Scotland,
is an area subject to landslides and erosion. At this bay, new techniques are implemented to counteract
landslides and erosion. Traditionally, structural engineered built up measures were taken to manage
the risks. These man-made structures are constructed using traditional building materials, such as con-
crete, steel or other long-lasting materials. The structural measures are expensive and lack long-term
sustainability (Kumar et al., 2021). Over the last decades, the use of eco-engineered solutions was in-
troduced as a more efficient, cost-effective and sustainable measure to mitigate risks. Vegetation was
used to counteract landslides and erosion at the Catterline Bay, provided by their soil-root mechanical
reinforcement (Gonzalez-Ollauri & Mickovski, 2016). To monitor the effectiveness of these measures
against erosion and the landslide movement, different remote sensing techniques can be used. How-
ever, coastal cliffs have challenging geomorphological features for change detection methods, because
they usually present a complex surface topography that is the result of numerous processes (erosion
and deposition by wave action, mass movements and weathering). Additionally, these changes may
happen in any direction, so 3D change detection methods have to be applied (Gémez-Gutiérrez &
Gongalves, 2020). Thus, a 3D data set is required. A terrestrial laser scanner is a platform capable to
acquire this kind of data. This remote sensing technique uses Light Detection And Ranging (LIDAR) to
create a 3D data set (a point cloud) of its surroundings.

1.1. Problem Definition and Approach

Knowledge about how to define and assess erosion indicators empowers science to reveal and monitor
erosion prone zones. A fieldwork campaign with terrestrial laser scanning (TLS) can provide a point
cloud (a 3D data set) of the study area, the Catterline Bay in Scotland. After intensive processing,
products from the point cloud can be used to monitor the erosion processes. However, there does not
yet exist a general accepted workflow to process the TLS data. This thesis proposes such a workflow,
built up with already well-established methods. Furthermore, erosion and non-erosion zones are iden-
tified. Using these zones, distinctive properties of erosion zones are derived from geomorphological
quantities. Lastly, the possibilities of monitoring the effect of nature based solutions using terrestrial
laser scanning are explored.
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1.2. Research Questions

From the various steps leading to assessment of the erosion patterns, the following research question
is addressed:

How can terrestrial laser scanning be used to monitor erosion processes on a coastal
slope?

Five subquestions are defined as support to answer the main research question:

1. How to acquire a TLS data set in complex sloped terrain?

A field campaign with terrestrial laser scanning asks for good knowledge of the study area. This ques-
tion studies how a terrestrial laser scanning fieldwork is conducted and what potential difficulties or
limitations of the technique are.

2. How to identify static erosion characteristics from point cloud data?

In order to quantify erosion from TLS data, a basic understanding of erosion processes is needed.
Furthermore, finding characteristics of erosion in the point cloud data allows for the identification of
erosion zones.

3. How to acquire an accurate temporal change detection map of erosion?

Erosion can be quantified by looking at the development over time: if major changes are detected, then
the rate of erosion at that zone is high. To detect changes in the geomorphology of the terrain and to
quantify erosion rates, multiple data acquisitions are needed. This question seeks an answer to the
question how these changes can be detected.

4. How to identify erosion zones and assess erosion patterns?

This question adresses how the characteristics from subquestion 2 and change detection from sub-
question 3 can be used to identify erosion zones. The assessment of erosion patterns in the identified
zones can help to develop an understanding of how erosion zones are characterised. If zones are
developing patterns similar to those in erosion zones, zones can be detected as erosion zones in an
early stage, so that measures can be taken.

5. How to compare results from terrestrial laser scanning data to other remote sensing tech-
niques?

In this thesis, the use of specifically terrestrial laser scanning is researched as a tool to monitor erosion
processes. However, there are multiple other remote sensing techniques, which are also able to monitor
erosion to some extent. This question compares results from TLS data to results from other remote
sensing techniques and examines the added value of the terrestrial laser scan data.

1.3. Outline

In Chapter 2, the mechanisms of erosion, eco-engineered solutions against erosion and the physics
behind terrestrial laser scanning are described. Chapter 3 contains information about the structure,
handling and processing of point clouds. Chapter 4 presents the workflow and details on the used
methods such as filtering of ground points and change detection methods. Chapter 5 describes the
study area, the used data sets and the process of data acquisition. The results are presented in Chap-
ter 6 and then discussed in Chapter 7. A brief conclusion and recommendations on further steps are
given in Chapter 8.



Monitoring Geomorphology

This chapter provides background information and theoretical knowledge related to the processes of
landslides and erosion in Section 2.1, eco-engineered solutions to these phenomena in Section 2.2
and the monitoring of these geomorphological processes using notably terrestrial laser scanning in
Section 2.3 and Section 2.3.1.

2.1. Erosion
Some fundamental understanding of forcings and characteristics of erosion will provide the necessary
tools to develop a methodology for monitoring.

Erosion is defined as processes that loosen sediment and move it from one place to another on the
surface (Kenneth Hamblin & Christiansen, 2004). Removal of rock or soil can be physical, chemical or
mechanical. Agents of erosion include water, ice, wind and gravity (Kenneth Hamblin & Christiansen,
2004).

On slopes, the most common form of erosion is mass movement. Mass movement is the transfer of
material downslope through the direct action of gravity, that ’pulls’ materials to a lower gravitational
potential (Kenneth Hamblin & Christiansen, 2004). Although mass movement is possible because of
gravity on slope systems, there are always triggers or drivers needed that cause the mass movement.
Types of mass movement are creep, debris flow and landslides. This study is focused mostly on
landslides. A landslide involves movement along a well-defined slippage plane. A landslide moves
as a unit along a definite fracture, with most of the material moving as a large slump block (Kenneth
Hamblin & Christiansen, 2004), as illustrated in Figure 2.1. Landslides occur when the pore pressure
in the soil skeleton results in a reduction of shear strength (Sidle & Bogaard, 2016). Landslides are
separated in shallow and deep-seated types. This study focuses on shallow landslides which are less
than 2 m deep.
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(a) An idealised rotational landslide showing commonly used names for (b) An idealised translational landslide
labelling different parts.

Figure 2.1: 2 types of landslides. lllustrations from Highland and Johnson (2004).

Two major types of landslides are rotational and translational landslides (Highland & Johnson, 2004).
In a rotational landslide, the surface of rupture is curved concavely upward and the slide movement is
more or less rotational about an axis that is parallel to the ground surface and transverse across the slide
(Highland & Johnson, 2004). Figure 2.1(a) shows an idealised rotational landslide. For a translational
landslide, shown in Figure 2.1(b), the mass moves along an approximately planar surface with only little
rotation or tilting. Figure 2.1(a) also indicates some characteristic features of landslides. At the upper
side of the landslide, the crown shows the ’start’ of the landslide and consists of undisplaced material.
Another unique indicator of a landslide is a scarp: a steep surface on the undisturbed ground at the
upper edge of a landslide, caused by movement of the displayed material away from the undisturbed
ground. This is the visible part of the surface of rupture and helps to identify landslide prone zones
(Kenneth Hamblin & Christiansen, 2004). The surface of rupture is surface which forms the lower
boundary of the displaced material below the original ground surface (Cruden, 1993). Part of the
displayed material in the lower part of the slump block may move more like a debris flow.

Landslides occur at many different scales and on small scale, they appear nearly everywhere. Also
the time scale has a broad range: there are enormous slides occurring within a few seconds, but also
slides gradually moving over a period of weeks or months (Kenneth Hamblin & Christiansen, 2004).

The most important driver causing mass movement is saturation of slope material with water, which
leads to weakening of the soil shear strength. The reduction of shear strength is caused by the buoy-
ancy force exerted by water in a saturated soil and soil suction in an unsaturated soil (Bogaard & Greco,
2016). Heavy rainfall, either a heavy single event or prolonged over multiple days, and also snowmelt
results in the saturation of the slope material (Gonzalez-Ollauri & Mickovski, 2021). Other sources of
water can be pipe leakage and drainage canals. Besides these triggers, slope failures can also be
triggered by earthquakes, although their occurrence is much lower (Kenneth Hamblin & Christiansen,
2004; Sidle & Bogaard, 2016).

Vegetation influences the occurrence of landslide via various paths, which include root strength, evap-
oration, transpiration and root architecture (Sidle & Bogaard, 2016). Most of these factors are linked to
the root distribution. When root systems are well developed, i.e. dense and deeply penetrated into the
soil, they can affect shallow landslides as a slope stabilising agent (Sidle & Bogaard, 2016). Vegeta-
tion depletes soil water moisture and increases soil suction by transpiration and influences the overall
hydrology by canopy and litter layer interception (Bogaard & Greco, 2016). Vegetation contributes to
the development of pores that act as preferential flow paths, increasing the infiltration and drainage
capacity and changing the hydraulic properties of the soil (Bogaard & Greco, 2016). The next section
will present some interventions to prevent landslides using this positive influence of vegetation on slope
stability.
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2.2. Nature Based Solutions

The erosion and landslides as described in the previous section are a form of hydrometeorological haz-
ards (HMHs). A HMH is the result of processes of hydrological, oceanographic or atmospheric origin
that can cause socio-economic and environmental losses (Kumar et al., 2021). One branch of mea-
sures against these hydrometeorological risks (HMRs) are structural: built-up man-made structures,
where traditional building materials, such as steel and concrete are used. Because of these hard struc-
tures, the measures are often called 'grey’. Dikes, storm sewers and floodgates are examples of these
structural measures. Using hard structures hinders that an ecosystem can develop on the structure.
Such structural measures are expensive and often lack long-term sustainability (Kumar et al., 2021).

The drawbacks of traditional measures are taken away by eco-engineered solutions. An example of an
effective eco-engineering measure against shallow landslides and erosion is the use of plants, because
of the interaction between the soil and roots of the plants. A soil with roots creates a composed material
that has enhanced strength providing a similar effect to the soil like that of steel rods to reinforced
concrete (Gonzalez-Ollauri & Mickovski, 2016). Eco-engineered solutions are summarised under the
heading of Nature Based Solutions. A Nature Based Solution (NBS) is either green (vegetation based),
blue (waterbody based) or hybrid (combining either green, blue and grey measures).

Some relevant implementations of NBS in this study are live pole drains, a live ground anchors, high
density planting and live cribwalls. In Figure 2.2 an implementation of the live pole drain is shown. A
live pole drain consists of cylindrical bundles made of live cuttings of trees such as willows with roots
used as drain collectors against the underground seepage rising. The bundles of cuttings are placed
in shallow trenches in such a manner that they intersect and collect the moisture (Polster, 2003).

(a) Live pole drains are used to stabilise slumping soils. (b) Live pole drain implementation in Catterline. Picture taken
lllustration from Polster (2003). by the author.

Figure 2.2: Live pole drains. Left: a schematic view. Right: a real life implementation at the Catterline Bay.

A live ground anchor consists of an anchored grid, which is supplemented with natural sustainable
materials. The temporary structure supports the vegetation growth for a certain time period. This NBS
immediately gives protection against erosion with an anchored grid, which is supplemented with natural
sustainable materials.

A live cribwall is a wall built up of timber logs, locally available earth materials and plant cuttings. A live
cribwall follows the same engineering principles as a concrete-based retention wall, but it uses natural,
organic materials, that will decay over time, such that the wall becomes an element of the natural soil.
In Figure 2.3 an example of a cribwall is displayed.
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(a) Live ground anchors (b) Live cribwall

Figure 2.3: Two examples of Nature Based Solutions. Pictures taken by the author.

Downsides of many NBS are that their effect only becomes significant after quite a while and their
implementation can be labour-intensive and thus making them costly. On the other hand, an NBS
could need less maintenance and be more cost-effective over time.

The relative performance and efficiency of the NBS with respect to a grey solution is important to con-
sider when choosing between different grey and nature based solutions. The performance of an NBS
is assessed using various qualitative and quantitative indicators. Monitoring strategies and techniques
for quantifying the effects of NBS depend on how the mitigation measure targets the landslide pro-
cess. The effectiveness of an NBS designed against hydro-meteorologically driven landslides can be
assessed by either monitoring the impacts of a landslide process (e.g. landslide displacement or topo-
graphic changes) or the direct effects of the NBS itself (e.g. soil reinforcement and hydrological effects).
If derived time series show a trend of reduced landslide activity (e.g. decreasing displacements, lower
number of landslides) after the implementation of an NBS, the NBS can be proven to be effective. To
assess the movement of a landslide over time at specific points, various techniques are possible: either
along profile lines or area-wide. Area-wide measurements usually rely on remote sensing techniques,
including terrestrial laser scanning (TLS), airborne laser scanning (ALS), interferometric synthetic aper-
ture radar (INSAR) and photogrammetric techniques (e.g. Structure for Motion).

2.3. Remote Sensing for Monitoring Erosion

In-situ measurements give information on soil reinforcement and hydro-mechanical effects of the veg-
etation on the sloped soil. Possible experiments are rainfall or scouring simulations. A downside of
field experiments is that it lacks a good resolution of spatial information (Gao et al., 2021). This con-
strains accurate monitoring and understanding of erosion processes. Other drawbacks of these direct
measurements is that they are invasive and time consuming.

Remote sensing techniques can complement these in-situ measurements to provide a more area-wide
analysis of on-going erosion processes. A number of studies tried to monitor erosion using erosion
pins (Barnes et al., 2016), tape measurement (Casali et al., 2006; Zhu, 2012), total station (Myers
et al., 2019), global navigation satellite system (GNSS) (Wu & Cheng, 2005), aerial photogrammetry
(D’Oleire-Oltmanns et al., 2012), close-range photogrammetry (Gémez-Gutiérrez et al., 2014), interfer-
ometric synthetic aperture radar (Bayer et al., 2017; van Natijne et al., 2022; Yin et al., 2010), optical
satellite imagery (King et al., 2005; Travelletti et al., 2012) and terrestrial laser scanning (TLS) (Gao et
al., 2021; Longoni et al., 2016; Mukupa et al., 2017; Sasak et al., 2019). In contrast with photogramme-
try and TLS, results from erosion pins, tape measurement, total station and GNSS are usually suffering
from a low spatial resolution and are therefore unsuitable for a detailed analysis of erosion and change
detection. Interferometric synthetic aperture radar (InSAR) is a radar technique, that allows for 3D de-
formation information using wave phase differences in radar waves and the spatial distance between
two synthetic aperture radar images (Yong et al., 2022). A benefit of this technique is that data is ob-
tained all day and is not affected by weather conditions. By continuously tracking deformations, trends
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in erosion patterns can be analysed. However, manual calibration is needed and human interventions
can cause misjudgement of results (Yong et al., 2022). Optical satellite images are also used to monitor
erosion. A benefit is that the coverage is large, but this comes at the cost of low spatial resolution and
it also is strongly affected by weather conditions. From the spectral bands of optical satellite images,
information on soil surface, temporal changes of surface states, incision and the geometry of possi-
ble water pathways on the surface can be extracted (King et al., 2005). Photogrammetric and laser
scanning data can either come from ground-based or unmanned aerial vehicle devices. The benefit of
photogrammetry is that the equipment is relatively low budget and easy to use. Although, the quality
of the results will be significantly lower compared to laser scanning results. The use of an unmanned
aerial vehicle (UAV) in combination with laser scanning requires a larger investment in equipment and
also more skills (i.e. drone flying) compared to a terrestrial laser scanning campaign. Furthermore, the
accuracy depends stronger on the quality and calibration of the system’s scanner, IMU and GNSS com-
ponents. Also, repeatedly completing photogrammetry or LIDAR measurements (either with a drone
or a terrestrial scanning station) on the topographic changes is more time-consuming than data from
satellites (INSAR, optical imagery, GNSS), as multiple campaigns to the study area are needed. Lastly,
a laser scanning campaign using ground based stations, terrestrial laser scanning (TLS), is an often
used technique to monitor erosion processes. A vast advantage of TLS compared to other remote
sensing techniques is that it is able to acquire very high spatial resolution data with high precision and
accuracy (Yong et al., 2022). Furthermore, it gives a 3D data set, which allows to perform 3D change
detection. In this study, terrestrial laser scanning is used to monitor erosion processes. The next
section will discuss the technique of Terrestrial Laser Scanning in more detail.

2.3.1. Terrestrial Laser Scanning

Laser Scanning, also referred to as LIiDAR (Light Detection And Ranging), is a remote sensing tech-
nique that determines the distance from the instrument to objects in the surrounding environment by
analysing a laser light return from the object’s surface (Soudarissanane, 2016). To measure range, two
techniques are available: (1) pulse-based or Time-of-Flight (ToF) and (2) continuous wave (CW). With
ToF laser scanners, precise timing is used. These scanners use a very accurate clock mechanism to
determine the time difference between the transmission and the registration of the laser pulse echo af-
ter reflection (Stal et al., 2021). The continuous wave scanners continuously emit a signal of moderate
intensity. Based on the difference in phase between emitted and reflected waves, the distances are cal-
culated. This surveying technique allows for a rapid acquisition of large amounts of 3D coordinates of
objects’ surfaces, with a high level of precision. Most scanners also obtain the reflected intensity of the
laser pulse from all points of objects’ surfaces. This intensity depends on the range distance, incidence
angle, material reflectivity, atmospheric transmittance and the system characteristics of the used scan-
ner (Winiwarter et al., 2021). The scanner device can be placed on different platforms. Possibilities for
close to mid-range LiDAR sensors are laser scanning from a drone (or UAV: unmanned aerial vehicle),
airborne laser scanning (ALS), mobile laser scanning (MLS) or terrestrial laser scanning (TLS). For
MLS, the scanner is situated on a moving platform, such as a boat, train or car. TLS is ground-based
and during a scan, the scanner is placed on a stable, stationary platform, such as a tripod. In this study,
a Time-of-Flight terrestrial laser scanner is used. An example of such a set up is shown in Figure 2.4.
A Terrestrial Laser Scanner (TLS) makes it possible to semi remotely survey areas that are complex or
inaccessible to traditional surveying techniques, such as levelling or total station. A TLS consists of a
rotating motor and a rotating mirror. In this way, with both components rotating 180° the resulting point
cloud covers almost 360° in both horizontal and vertical directions. However, the scanner cannot scan
surfaces right underneath itself, since the motor and tripod are obstructing this view.
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Figure 2.4: Example of a ToF laser scanner, the Leica ScanStation P40, on a tripod.

As with every measurement devices, measurements from the TLS are subject to noise. The influencing
factors can be grouped in four main groups: the scanner mechanism, atmospheric conditions, object
properties and scanning geometry (Soudarissanane, 2016):

» Scanner mechanism: misalignment of hardware components, calibration, settings and the vari-
ations of the emitted laser beam properties and its detection process.

+ Atmospheric conditions: errors related to the atmospheric conditions (humidity, temperature
and pressure variations). Also the presence of ambient lighting is taken into account (total dark-
ness, artificial light or natural sunlight).

» Object properties: surface properties (reflectivity, roughness of the surface material with respect
to the wavelength of the scanner).

+ Scanning geometry: the placement of the TLS relative to the location and orientation of the
scanned surface, which determines the local incidence angle, the local range and local point
density of the laser points sampling the surface.

After a TLS survey, a point cloud is acquired, which is a 3D data set that represent all laser returns from
objects in the surroundings of the instrument.

Using the comparison with other remote sensing techniques and the description of working principles
of TLS, Table 2.1 summarises advantages and drawbacks of Terrestrial Laser Scanning.

Table 2.1: Advantages and drawbacks of Terrestrial Laser Scanning
Advantage High spatial resolution (high point den-
sity)
High accuracy
Full 3D data set
Possible in complex terrain
Drawback Limited temporal resolution, compared
to satellite data which has daily cover-
age
Dependent on weather conditions, not
possible in rainy conditions
Data processing can be complex and
computationally intensive
A labour intensive campaign is needed
at the study area, so not fully remotely.




Point Clouds: Structure, Handling and
Processing

A terrestrial laser scanning campaign results in the acquisition of a point cloud. This chapter explains
the basics of point clouds. Also, some well-established methods of processing and analysing point
clouds are introduced.

Point clouds are 3D data sets that represent objects or space. The points represent the z, y and z
coordinates of a single point on an underlying sampled surface. Point clouds are the collection of these
single spatial measurements. Intensity or RGB-values can also be part of the information; in that case
a point cloud becomes a 4D (or even higher dimensional) data set. Point clouds are often generated
using 3D laser scanners and LiDAR technology. Figure 3.1 visualises an example of a point cloud. The
sea water surface is not represented by points, since the water will absorb all the energy, instead of
reflecting it. Furthermore, the intensity varies for different objects. For example, bare earth patches
give higher intensity than various types of vegetation. Every type of material is characterised by a
certain reflectivity.

Intensity

o ) 30000.00

95 o e

Figure 3.1: The point cloud of the 2022 terrestrial laser scan acquisition of the Catterline Bay, colourised with the intensity.
Water surface is not represented with points. Intensity varies for different objects.
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For human eyes, the visualisation of this spatial arrangement of points in Figure 3.1 is already suffi-
ciently clear to reason about specific structures in a scene. However, the unstructured and unordered
point clouds lack semantic information, which is required to do any kind of interpretation or analysis
(Mayr et al., 2017). Due to strongly varying point densities, different types of objects and surveying
complex terrain, it is challenging to analyse raw point cloud data (Weinmann et al., 2017). Groups of
points in 3D space can represent a 2D surface (i.e. a roof or a wall of a house), which makes interpre-
tation more complicated. Based on the spatial arrangement of 3D points within a local neighbourhood,
geometric features can be derived. These features can support what humans already partially see from
the spatial arrangement of points, but now based on a neighbourhood calculation.

3.1. Methods and Principles

In this Section, several methods of processing point clouds are introduced. First of all, the widely used
technique Principal Component Analysis is shortly summarised. This technique is needed to introduce
the computation of geometric features. Then, the terrain models are introduced. Lastly, a wide range
of methods to filter ground points is discussed.

3.1.1. Principal Component Analysis

To generate the features, Principal Component Analysis (PCA) is used. PCA aims to transform a set
of possibly correlated variables into a set of uncorrelated variables that can be considered as a set of
orthogonal linear combinations of variables that maximise the variance of each combination in rank.
These uncorrelated variables, representing the reduced dimensions are called Principal Components
(PCs) (Nurunnabi et al., 2022). PCs are computed by using the Singular Value Decomposition (SVD)
to the covariance matrix, C,

c=lxTx (3.1)
n

where X is the mean centred data matrix, having n observations and m variables, X = x;, — ¢ (i =
1,2,...,n), x; is the ith row of the matrix X and c is the centre (mean) of n observations. PCs are
usually sorted in descending order of the non-negative eigenvalues. The first PC then describes the
largest proportion of the data variance.

3.1.2. Geometric Features

Next to intrinsic properties of the laser scanner and the resulting point cloud (point coordinates and
intensity), certain geometric features can be computed for each point (Nurunnabi et al., 2022). These
geometric features are computed based on the local dimensionality of a point and they depend on a
user specified local neighbourhood. To get the respective neighbourhood in three dimensions, the k
nearest neighbour (kNN) algorithm is used, which avoids problems with point density variation and lack
of adequate redundant observations. Geometric features for a point of interest are derived from the
covariance matrix of the respective neighbours. To generate the features, PCA is used, which results
in 3 PCs (PC1, PC2, PC3) with corresponding eigenvalues \;, A2 and A3 with A3 > Ao > \; > 0. The
most common geometric features are: the three eigenvalues from PCA (A1, A2, A3), the proportion of
variance explained by each eigenvalue (p1, p2, p3) roughness, surface point normal vector (n, n,, n.),
curvature (o), linearity (L), planarity (P), scattering (5), omnivariance (O), eigentropy (£) and verticality
() (Nurunnabi et al., 2022), (Pauly et al., 2002). The proportion explained by each eigenvalue is defined
as (Brodu & Lague, 2012):

Ai

e — 3.2
A1+ A2+ Ag (3:2)

Di

The roughness for a certain point is defined as the distance between that point and the best fitting plane
computed on its nearest neighbours. In Figure 3.2 roughness, p; and p,, which are the proportion of
variance explained by the first and second PCA eigenvalue, are visualised for a small part of the studied
area. It can be seen that smooth surfaces, such as the road and the beach, have distinctive other values
than parts of the slope with vegetation. Also bare earth patches on the slope can be seen. p; and ps
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are also referred to as local dimensionality features, since they reveal whether the cloud in that local
neighbourhood appears mostly 1D, 2D or 3D (Brodu & Lague, 2012).

PCAL (0.3)
100

PCA2 (0.3)
050

(a) Roughness (b) Proportion of variance explained by the (c) Proportion of variance explained by the
first PCA eigenvalue second PCA eigenvalue

Figure 3.2: For the computation of the geometric features a neighbourhood of » = 0.30m is used.

3.2. Digital Terrain Model

To reveal relevant information about erosion processes from point clouds, it is essential to classify the
points in ground and non-ground. From the ground points, the terrain height can be derived. This model
of terrain heights is called a Digital Terrain Model (DTM) and includes only the bare-earth, without man-
made objects or vegetation. This differs from a Digital Surface Model (DSM), which also includes all
objects and structures on the terrain, as shown in Figure 3.3 (Ledoux et al., 2021).

DSM
DTM

Figure 3.3: Top: A terrain with a mountain, a tree and a building. Bottom: its DSM and DTM. Figure based on illustration from
Ledoux et al., 2021.

A DTM can be acquired from LiDAR data, which are 3D point clouds. To generate a DTM from these
point clouds, ground an non-ground points have to be separated. This filtering process is a delicate
process, for which various types of algorithms have been proposed. The design of an automatic and
universally applicable algorithm is still a big challenge (Zhang et al., 2016).

3.3. Ground Filtering

From a LiDAR point cloud, the non-ground points have to be removed in order to create a DTM. Al-
ready numerous methods exist to filter non-ground points: iterative interpolation based, slope-based,
segmentation-based, cloth simulation, machine learning and mathematical morphological based meth-
ods. Each method has its strengths and weaknesses. The optimal choice of method can be hard,
because validation of the generated DTM is often complicated. In order to validate the performances
of the filtering methods, Sithole and Vosselman (2004) published a comparison study based on 15 ref-
erence study sites, representative of different environments, provided by the International Society for
Photogrammetry and Remote Sensing (ISPRS). Results indicated that most filters perform well in flat,
smooth and uncomplicated landscapes, but landscapes containing steep slopes with vegetation and
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abrupt changes are still problematic (Chen et al., 2013). However, it is not possible to blindly use the
best method from the paper of Sithole and Vosselman (2004), since the point clouds of that study came
from 2.5D airborne laser scanning (ALS). In other words, one cannot apply a 2.5D method one-to-one
to dense 3D point clouds obtained from ground based LIiDAR data. It could be that a full 3D approach is
needed. Furthermore, the terrain in this study contains some steep slopes and complicated vegetation,
so this also needs attention. In this section, some methods to be tested in this research are discussed.

3.3.1. Cloth Simulation Filter

An effective ground filtering method is an algorithm called Cloth Simulation Filter (CSF) . This filtering
algorithm is capable of approximating the ground surface with a few parameters (Zhang et al., 2016).
The algorithm is based on the observation that the lower points are usually forming the ground (assum-
ing that no outliers appear below the ground in the data set). The key idea is to invert (upside-down)
the point cloud and to let a piece of cloth fall from the sky. The cloth will fall until it reaches the points
forming the ground. During the process, we aim to control the tension (or rigidity) of the cloth, so that
areas where there is no sample point or where there are large buildings can be filled realistically. When
the process is completed, the surface of the cloth can be used as an approximation of the bare-earth
(Ledoux et al., 2021). The CSF algorithm is a simplification of an algorithm in computer graphics to
simulate a piece of cloth falling on an object. The cloth is modelled as a surface formed of particles
(vertices) that are regularly distributed on a grid, these particles have a mass and they are connected
to their neighbours. For terrains the particles are constrained to only move vertically.

Simulated Cloth =

Inverted Surface Measurement

Surface Measurement

Figure 3.4: lllustration of the Cloth Simulation Filter algorithm. The original point cloud is turned upside down, and then a
simulated fabric falls on the inverted surface from above, dividing the point clouds into ground and non-ground parts.

When setting up the Cloth Simulation Filter, some general parameters and advanced parameters need
to be set.

» Scenes: this setting helps to set the scene type of the point cloud (steep slope, relief and flat).
When setting this parameter, the rigidness will be determined.

+ Slope post processing for disconnected terrain: for steep slopes, the algorithm yields rela-
tively large errors because the simulated cloth is above the steep slopes and does not fit very
well with the ground measurements. Using this option, this problem can be partially solved.

Cloth resolution: with this setting, the grid size of the cloth can be tuned, which is used to cover
the terrain. A bigger cloth resolution results in a coarser DTM.

Max iterations: this refers to the maximum iteration times of terrain simulation.

Classification threshold: this refers to a threshold to classify the point clouds into ground and
non-ground parts based on the distances between points and simulated terrain.
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3.3.2. Ray Tracing Voxel Method

Another approach to tackle the filtering of points is by looking at ray tracing. For this method, all possible
laser beams of each laser scan location are traced and decomposed. In order to do this, the point cloud
is enclosed by the minimum bounding box. This box is divided in 10x10x10 cm voxels and then stored
in the memory as a data cube. Each individual scan is traced and written to the cube. The role of each
pixel is evaluated: it can either be intersected by a ray, the end point of a ray or neither intersected nor
an end point of a ray. This idea is visualised in Figure 3.5. For each role, a specific marker is given
to the pixel. Pixels marked as 0 are undefined. Other pixels are a sum of binary markers: 1 for air,
2 for object and 4 for the scanner. Hence, the final sum of 3 can indicate a voxel with a combination
of markers: marked both as an object as well as air. From this marking process, true ground voxels
can be extracted. In literature, this method is also referred to as Voxel Beamlet Superposition (VBS)
framework.

)
) °
()
)
(a) Intersecting a ray (b) Including (c) Combined situation of ray
the ’end’ of tracing
the ray

Figure 3.5: (a) is labelled as free (green) and (b) is as occupied (blue). (c) is subdivided into multiple voxels and labelled
accordingly. Idea of this illustration comes from Min et al. (2020).

A shortcoming of this model is the assumption that the laser bundle has a very small beam width. In
reality the beam width increases for larger distances from the scanner. This means that a laser beam
can penetrate two different voxels at a certain distance from the scanner. This is not considered in this
simplified model.

3.3.3. Multi-resolution Hierarchical Classification Method

A possible method to extract ground points from raw point clouds is the use of interpolation-based
filters. As the name of this type of filter suggests, a critical step here is to construct reference surfaces
using interpolation methods. One promising method of this type is the multi-resolution hierarchical
classification method (MHC) (Chen et al., 2017). The International Society for Photogrammetry and
Remote Sensing (ISPRS) commission provided fifteen benchmark reference samples from seven sites
to assess the performances and this MHC had the best overall performance (Chen et al., 2013; Sithole
& Vosselman, 2004). However, one important remark is that all data came from airborne laser scanning
and all methods are designed towards this type of data. Therefore, this does not give any guarantee
that the method will perform well on TLS data.

MHC achieves surface interpolation with a robust finite difference thin plate spline (Chen et al., 2017).
Thin plate spline (TPS) with high interpolation accuracy and numerical stability has been commonly
adopted. Because analytical TPS has a high computational cost due to its local interpolation of the
huge volume of data points for surface construction, the reference surface can be globally and efficiently
produced by finite difference TPS in case of gridded data. The method uses a hierarchy of three
levels, where the resolution of reference surfaces increases from a low to a high level. The method
incorporates existing interpolation methods: analytical TPS and weighted finite difference TPS. The
procedure of MHC is extensively explained in the paper of Chen et al. (2017). In Appendix B some
results are shown of the MHC method.

The method is tested on the available TLS data, but the performance was not considered high enough.
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3.3.4. Filtering based on geometric features

Based on visual inspection of geometric features of the point cloud, it is clear that the distribution for
geometric features of ground points differs from that of vegetation or other non-ground points. For
example, ground points seem to represent a smoother plane (representing the surface), whereas tree
points are arranged more chaotic. On the other hand, the stem of a tree or the wall of a house can
also be smooth. Id est, the arrangement of points is assumed to be different for different objects. This
assumption is used to filter ground points from non-ground points. Geometric features such as rough-
ness, the proportion of variance explained by each PCA eigenvalue (p;) or point density could in theory
differentiate between different objects. From visual inspection on the behaviour of various geometric
features, computed for different values of the neighbourhood radius, it was found that the proportion
of variance explained by each PCA eigenvalue, p; and p», were quite distinctive for ground and non-
ground. In Figure 3.6 the proportion of variance explained by the first and second PCA eigenvalues, p;
and p,, are plotted against each other. For ground points from the road section and bare soil section,
it can be seen that the behaviour is very different from the tree and low vegetation sections.
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Figure 3.6: Black lines indicate the domain of possible proportions of eigenvalues for a 3D point cloud PCA.

However, choosing a threshold value manually based on this small analysis would be a bit arbitrary. A
possible solution to overcome this arbitrariness is the use of machine learning to fit a decision boundary
based on training data. Furthermore, the choice of the neighbourhood radius would strongly influence
the filtering. Combining the distribution of geometric features for different neighbourhood radii would
be a possible solution for this problem. The next subsection introduces a method which implements
these suggested solutions.

3.3.5. Classification with multi-scale local dimensionality features

The CSF and MHC methods are not specifically designed for terrestrial laser scan data, but are more
tailored towards airborne laser scanning. Preliminary results from these methods did not give satisfying
results. The ray tracing voxel method and the filtering based on geometric features both had potential,
but needed a more sophisticated implementation. The latter will be incorporated in a classification
algorithm.
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In this subsection, a relatively new method developed by Brodu and Lague (2012) is introduced: CANUPO
(CAractérisation de NUages de POints). This is a classification algorithm based on separating two
classes (for example ground and non-ground), which has given good results in complex cases (steep
terrain, specific vegetation) and has a real 3D approach, instead of 2.5D as with most filtering tech-
niques for ALS data.

From the insight that a geometric feature helps to characterise different classes of points, a classifier
based on local dimensionality at multiple scales is created. Local dimensionality means how the cloud
geometrically looks like at a given location and a given scale: as aline (1D), a plane surface (2D) or as a
sphere (3D) if points are distributed in the whole volume around the considered location. For example,
at a small scale (few centimeters) a bare-earth patch looks line a 2D surface and the vegetation is a
mixture of elements like stems (1D) and leaves (2D). At a larger scale (about 30cm) the bare earth patch
still is mostly 2D, whereas the vegetation has become a 3D bush. When the information from different
scales is combined, signatures are build to identify different classes (Brodu & Lague, 2012). In the
following the multi-scale dimensionality feature is defined and thereafter the classification procedure is
described.

Multi-scale local dimensionality features
Since a 3D point cloud is a set of points, a point cloud can be mathematically written as (Brodu & Lague,
2012):

C={p= ($i7yi72i)}i:1...N (3:3)

Furthermore, the scale s is defined as the diameter of a ball centred on a point of interest. For each point
in the scene, the neighbourhood ball is computed at each scale of interest, and a Principal Component
Analysis (PCA) is performed on the recentred Cartesian coordinates of the points in that ball. PCA
gives the eigenvalues \;, i = 1,2, 3, ordered by decreasing magnitude: A\; > A2 > A3. As introduced
in Section 3.1.2, the proportion of variance explained by each eigenvalue is (Brodu & Lague, 2012):

Ai

-t 34
A+ A2+ A3 (34)
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When only the first eigenvalue \; accounts for the total variance in the neighbourhood ball, the points
are distributed in one dimension around the reference scene point. When two eigenvalues are neces-
sary to account for the variance, the cloud is locally mostly two-dimensional. Similarly, a fully 3D cloud
is one where all three eigenvalues have the same magnitude. Thus, proportions of eigenvalues define
a measure of how much 1D, 2D or 3D the cloud appears locally at a given scale.

Given the constraint p; + p2 +p3 = 1, a two-parameter feature for quantifying how 1D, 2D or 3D a cloud
appears can be defined at any given point and scale. Thus, given N, scales, a feature vector with 2V,
values is obtained for each point in the scene.

Combining the local dimensionality characterisation over multiple scales gives discriminating features,
which are used to train the classifier. The use of PCA is a simple and common known tool for finding
relevant directions in the neighbourhood ball.

The best combination of scales at which the dimensionality is measured, is when the separability of
two or more classes is maximum. However, in many cases, because of natural variability in shape and
size of objects, this is far from trivial. In the Cloud Compare software, the CANUPO plugin contains
an automated construction of a classifier that finds the best combination of scales to maximise the
separability.

The treatment described above is repeated at each scale of interest. The vector describes the local
dimensionality characteristics of the cloud around that point at multiple scales. In the context of ground
based LIiDAR data there may be missing scales, especially the smallest ones, because of reduced
point density or nearby shadowing. In that case the geometric properties of the closest available larger
scale is propagated to the missing one in order to complete 2N, values.
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Classification using Linear Discriminant Analysis

The general idea behind the classification procedure is to define the best combination of scales at
which the dimensionality is measured, that allows maximum separability of two or more categories.
Practically, the user could have an intuitive sense of the range of scales at which the categories will
be the most geometrically different, but in many cases, because of natural variability in shape and size
of objects, this is not trivial. Therefore, an automated construction of a classifier that finds the best
combination of scales is used.

To be able to define a classifier, the 2N, feature space is considered. First, the data is projected in a
plane of maximal separability and then the classes can be separated in this new plane. This method
allows for an easy supervision of the classification, since visual inspection is intuitive. In this study, the
binary linear classifier Linear Discriminant Analysis (LDA) is used (Bishop, 2006). Another possibility is
the use of Support Vector Machines (SVM). Brodu and Lague (2012) show that using one or the other
of these classifiers has little impact on the results.

In order to describe how LDA works, some mathematical definitions are introduced. The multi-scale
feature space with a dimension of 2N, with (z;,y;) the coordinates within the feature space can be
written as F' = X = (z0,v0,*1,¥1, - TN,,Yn.) - FT and F~ are the sets of points labelled respectively
with +1 and —1 for the two classes to discriminate (e.g. ground vs non-ground). Now, a linear classifier
proposes a solution in the form of an hyperplane that separates '+ from F'~ in the best possible way.
This hyperplane is defined as w” X — b = 0, where w is a weight vector and b the bias (Brodu & Lague,
2012). Linear Discriminant Analysis proposes to set w = (X1 +X3) (1 — u2), where X, and .. are the
covariance matrix and the mean vector of the samples in class c. Originally, LDA is a non-probabilistic
classifier, but the bias b is defined such that a probabilistic interpretation is given to the classification.
This approach is referred to as Platt scaling (Platt, 1999). The distance d of a sample to the hyperplane
corresponds to a classification confidence, estimated by fitting the following logistic function:

1

p(d) = m (3.5)

Then, the feature space F is projected on the hyperplane and the distance to the hyperplane d; — w{ X — b,
is calculated for every point. This is done once more to obtain the second-best direction orthogonal to
the first, along with the second distance d;. Now (d;,ds) is used as the coordinates defining the 2D
plane of maximal separability. There is a degree in freedom for choosing w and d such that w” X —b = 0,
so the axes are rescaled such that « = 1 (Brodu & Lague, 2012).

This classification method allows for semi-supervised learning, which means that it combines a small
amount of labelled data with a large amount of unlabelled data during the training, using information
present in unlabelled points. This is a great feature, because manually segmenting labelled training
data takes a lot of time for the large amount of points in the data. The plane of maximal separability
is only computed with labelled examples. However, the searched direction in this plane minimises the
density of all (labelled and unlabelled) points along that direction, while still separating the labelled
examples. When there is no additional unlabelled data, the classes are separated with a line splitting
both with equal probability.

One problem or question that may arise from this proposed binary classification method, is the case of
a multi-class scenario. In this case, the final classifier is a combination of elementary binary classifiers.
So, "one against one” elementary binary classifiers are trained, which are then combined by a majority
rule.

The most time-consuming parts of the algorithm are computing the local neighbourhoods in the point
cloud at different scales in order to apply the local PCA transform, as well as the training process. By
computing the multi-scale local dimensionality feature on a subsampling of all points, called the core
points, the computing time can be reduced enormously. The whole data is still considered for computing
the geometric features, but they are only computed at the core points.

In contrast with other ground filtering methods such as MHC and CSF, CANUPO performs well, when
it is applied to dense 3D point clouds from TLS data, where a full 3D approach is needed. Because
the CANUPO algorithm works in 3D, the method can also be used on 2.5D point clouds from ALS. The
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multi-scale analysis distinguishes CANUPO from other methods. Sites with natural surfaces exhibit
a large range of characteristic scales and natural objects within one class can have a large range of
geometric behaviour. Therefore, it is impossible to find a single scale that can adequately classify an
entire scene. Because all scales contribute to a varying degree to the classification process, the method
is relatively robust to shadow effects, missing data and irregular point density. By using a probabilistic
classifier, user input is minimised, whereas the generalisation ability is good.

3.3.6. Summary and Discussion

All described methods are applied to the available data, which will be introduced in Chapter 5. From
these preliminary results and the literature review, an overview with pros and cons for each method is
created in the following.

Cloth Simulation Filter
» Pros: Based on a physical process, which makes the filter insightful. Repeatedly validated to be
an accurate, automatic and easy-to-use algorithm for ALS point clouds.

» Cons: Specifically designed for ALS data. Has difficulties with steeps slopes and discontinuous
scarps.

Ray Tracing Voxel Method
* Pros: In theory a strong mathematical approach of decomposing laser beams.

» Cons: Very basic implementation, needs further development. Computationally heavy.

Multi-resolution Hierarchical Classification
* Pros: Good overall performance on 15 reference study sites provided by ISPRS.

» Cons: Specifically designed for ALS data. Has some input parameters, which are not so insightful
to specify for the user. Heavy computations.

Filtering based on geometric features
* Pros: Comprehensible and simple to apply. Full 3D approach.

» Cons: Strongly depends on the choice of a neighbourhood radius and a threshold value for
filtering, which is hard to substantiate and justify.

CANUPO
» Pros: Full 3D approach. Acts on multiple scales. Semi-supervised classification which gives the
user insight in the process, but minimises the user input. Easy to use, because it is implemented
as a plugin in CloudCompare.

» Cons: Requires high-quality training samples and is therefore labour intensive. High computing
demand and slow computing speed, because of point-wise classification. For multi-class scenar-
ios, a combination of binary classifiers is needed. Limited flexibility, because it is implemented
as a plugin in CloudCompare.

In Appendix B some results from these methods are displayed. From literature review and visual
inspection of results of all different methods, it is decided to use CANUPO in the further workflow of
this thesis.

A point of discussion is the question why the intensity is not used as a criterion for filtering. Using the
reflected laser intensity for classification purposes has been attempted in some studies. However, the
difficulties are plenty, since the reflected intensity is a complex function of distance from the scanner,
incidence angle and surface reflectance. In simple cases, for which the distance and incidence angle
are not greatly changing (cliff survey for instance), the laser intensity can be used to distinguish between
materials relatively well (Brodu & Lague, 2012). In simple natural environments it can be used to
improve the robustness of a classifier based on simple geometrical parameters. However, for complex
scenes, the LIDAR intensity is much more difficult to use given the large changes in distances, incidence
angles and state of the surface. Because laser reflected intensity is not globally nor temporal consistent
on a complex 3D scene, it cannot be used as a primary classifier. In the case of CANUPO, the reflected
intensity could be used as an extra attribute in the classification.



Methods

In order to identify erosion zones and assess erosion patterns, point clouds from two laser scan acqui-
sitions are used. The process from raw point clouds to the evaluation of erosion patterns is illustrated
in Figure 4.1.
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Figure 4.1: Overview of the workflow for alignment, filtering and analysis
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From one point cloud acquisition, a static analysis can be performed. Erosion zones can be revealed
based on the slope and other geomorphometric calculations, which are introduced in Section 4.3. Fur-
thermore, Section 4.4 explains how distance calculations between vegetation and ground points give
information about vegetation heights. If multiple point cloud acquisitions are compared, a dynamic anal-
ysis allows to detect changes. Section 4.5 describes a 3D change detection method. Change detection
is either point cloud based or by comparing different derived GIS layers.

All elements of this process are discussed in this chapter.

4.1. Pre-processing

All individual scans from one year are registered using the precise coordinates of the reflector targets,
which results in a combined point cloud. The original point clouds from 2019 and 2022 are too big to
open in the software CloudCompare on a personal laptop, so they are subsampled to 50 mm. This
means that the software picks points from the original cloud such that no point in the output cloud is
closer to another point than 50 mm.

18
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4.1.1. Registration

To be able to compare multiple laser scan acquisitions, point clouds have to be spatially aligned. The
goal is to minimise the difference between two point clouds using a rigid transformation. A rigid transfor-
mation is defined as a geometric transformation that preserves the Euclidean distance between every
pair of points. Rigid transformations include rotations and translations or any sequence of these. A
classic and well-known registration formulation is the Iterative Closest Point algorithm (ICP).

Iterative Closest Point

In the ICP algorithm, the reference (also target) is kept fixed, while the other one, the source, is trans-
formed to best match the reference. The algorithm repeatedly reconsiders the transformation (combi-
nation of translation and rotation) needed to minimise an error metric, which is usually defined as the
distance from the source to the reference cloud (sum of squared differences between the coordinates
of the matches pairs) (Besl & McKay, 1992). Iterative closest point is a non-linear least squares method.
The input data are two point clouds (reference and source) and the output is the transformation matrix
to align the source point cloud with the reference point cloud. Furthermore, a final root mean square
(RMS) error is computed on 50,000 points. In Figure 4.2 the principle of ICP is illustrated. ICP can only
guarantee the convergence to a local minimum, thus the user of the algorithm needs to be aware that
the algorithm can get stuck in a local solution (J. Yang et al., 2013). To prevent this, the point cloud
is manually aligned, before applying ICP. The most important tuning parameters are the number of
iterations or RMS difference and final overlap:

* Number of iterations or RMS difference: ICP is an iterative process. In this case, it means that
the registration error decreases every iteration. To stop the iterations, either a maximum number
of iterations can be given as a parameter or as soon as the RMS error difference between two
iterations becomes below a given threshold.

» Final overlap: This parameter lets the user specify the actual portion of the data in the registered
cloud that should overlap the reference cloud if both clouds are registered. In this way, entities
with only a partial overlap can be registered.

A RMS difference of 1.0 x 10~°m is used. For the final overlap, 90% is used, but during iterations
of applying the ICP algorithm, the overlap is gradually decreased to 40%. This is done, because the
amount of stable objects is assumed to be around this percentage in the complete scene. However, this
is only a rough estimate. The main driver in tuning the parameters is decreasing the RMS difference.

Figure 4.2: An example of ICP, where the source dragon is iteratively transformed to get the best match to the reference
dragon. lllustration from Glira and Pfeifer (2015).

4.2. Classification of ground points

After discussing and comparing different methods of filtering ground points in Section 3.3, the semi-
supervised method CANUPO seemed the most suitable one in this research. In this section more
details are provided to apply this method.

Since CANUPO is a semi-supervised classification method, training data is prepared by manually se-
lecting segments of non-ground and ground. For each class several typical subsets of points should
be included. Also, the two subsets should have roughly the same total number of points or the relative
quantities are representative of their occurrence in the whole point cloud. After regrouping each class
in a single cloud, the classifier can be trained. Two parameters are described below:

+ Maximum number of core points: these points will be randomly extracted from the input cloud.
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» Scales: The scales at which the descriptors are calculated, can be specified. The more scales
are used, the more discriminative the result can be, but also the longer the computations.

To evaluate the performance of the classifier the balanced accuracy (ba) is used, which is especially
useful in case of a different number of points in each class. With tv, tg, fv and fg the number of points
truly (¢) or falsely (f) classified into vegetation (v) or ground (g), the balanced accuracy is defined as
(Brodu & Lague, 2012):

tv tg
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A large ba value indicates a good recognition rate (0.5 implies random class assignment). Also, the
precision is used, which is defined as the fraction of correct predictions for a class:

tv
tv+ fu

precision = (4.2)

In order to assess the class separability, the Fisher Discriminant Ratio (fdr) is used. The classifier
assigns to each sample a signed distance d to the separation boundary (negative values for one side
and positive for the other). The measure of separability is defined as (Brodu & Lague, 2012):

Fdr = (k2 — p1)? (4.3)

V1 + V2

where 1. and v, are the mean and variance of the signed distance d for class ¢. An important note is
that class separability can still be high despite a not so good accuracy. This can indicate a bad training
with potential for better separation. A large fdr value indicates that classes are well separated (and
that the ba score is robust) (Brodu & Lague, 2012).

The performance of the classification is not only assessed on the training data set. To obtain a better
view on the precision, also a test data set is created. The test data set contains points, labelled by the
supervisor as ground or non-ground points. A first attempt of creating the test data set in this thesis
work resulted in a too positive display of the performance. Because the test data set only contained
very clear cases of ground or non-ground points, the test data set was not a good representation of the
complete point cloud. Therefore, it is important that the test data set contains all kinds of ground and
non-ground points, also points where the class is not directly evident. The final test data also contained
less clear cases of ground and non-ground points, to obtain a better representation of the point cloud.
However, the test data set will still have some inevitable bias, because it only contains points of which
the supervisor was to some degree sure to which class the points belonged.

4.3. Static Analysis: Geomorphological Indicators

As discussed in Section 3.2, a Digital Terrain Model can be created from point clouds. From a DTM,
topographical or geomorphometric quantities can be derived. A geomorphometric approach to analyse
landslides can help identifying landslide locations. By characterising landslides and related phenomena
using quantitative indices, it provides a more objective insight. Furthermore, geomorphometry can
reveals 'hidden’ topographic features in landslide terrains (Rézycka et al., 2017). These metrics include
among others slope angle, the topographic wetness index and topographic ruggedness index. For
example, the slope angle is one of the key factors in inducing slope instability (Sarkar & Kanungo,
2004). In this section, the metrics are explained shortly.

From point clouds, topographical maps can be derived. Other resources to create data layers with are
geological and environmental parameters (Yilmaz, 2009). However, these data layers often used at
larger scales.
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4.3.1. Digital Terrain Model

From the classified ground points in the point cloud a raster is created. This raster represents the
Digital Terrain Model (DTM). The spatial resolution of 0.05m is used to create the raster, which gives
8947x10288 cells. A finer resolution is not needed, because of the accuracy of the used measurement
set up and the previous processing steps. This raster gives the height of the digital terrain model. To
visualise the terrain more insightful, hillshade is added to give a shaded relief effect.

4.3.2. Slope Angle

The slope angle for a particular location is computed as the maximum rate of change of elevation
between that location and its eight neighbouring cells. Horn’s formula is used to compute the slope. In
comparison to the other often used formula Zevenbergen & Thorne, Horn’s formula is known to perform
better on rougher terrain. Horn’s method uses the 8 neighbouring cells to calculate the slope. It applies
a weight of 1 to the 4 corner cells (the indirect neighbours) and a weight of 2 to the other 4 cells (the
direct neighbours) (Horn, 1981).

4.3.3. Topographic Wetness Index

The Topographic Wetness Index (TWI) is a useful model to estimate where water will accumulate in
an area with elevation differences and is used to study spatial scale effects on hydrological processes
(Ambroise et al., 1996; Sarensen et al., 2006). Itis a function of slope and the local upslope contributing
area:

a

TWI =1
ntanb

(4.4)

where « is the local upslope contributing area draining through a certain point per unit contour length
and tan b the local slope (Sgrensen et al., 2006). TWI is a unitless quantity. Low TWI values indicate
areas with less 'wetness’ and high TWI areas that are bodies of water. When the angle b is large or the
local upslope contributing area a small, such that - < e, then the TWI will be negative, indicating low
wetness. On catchment scale, spatial patterns of high TWI values can help to identify lines of preferred
drainage of a landslide body (Rdézycka et al., 2017). In essence, TWI is an indicator of convexity (plan
view) and concavity (cross-section view). At cm-scale, however, it is not completely clear how TWI
links to landslides. TWI still gives drainage patterns, but it is unknown if these can be related to erosion
zones.

4.3.4. Terrain Ruggedness Index

The Terrain Ruggedness Index is a parameter that quantifies surface roughness through consideration
of absolute elevations in the surrounding of a given location (or raster cell). The TRI of a cell is calculated
as the squared sum of the squared differences with the eight neighbouring cells (i = 1, ..., 8) (Riley &
Degloria, 1999):

8

TRI= | > (2 — 2)° (4.5)
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where 2. is the elevation of the evaluated cell and z; the elevation of one of the neighbouring cells. From
the formula can be seen that the units of the TRI are meters. The computation of the TRI is sensitive
to local differences in elevation, so the presence of a long and steep scarp is likely to increase the
average value of the calculated TRI for a landslide (Rozycka et al., 2017). Therefore, outcomes of TRI
calculations strongly depend on the used spatial resolution.

Rézycka et al. (2017) concluded that TRI is especially useful to characterise depositional parts of land-
slides.

4.4. Presence and Height of Vegetation

This section describes a newly developed method to derive vegetation height from classified point
clouds. Section 2.1 and Section 2.2 suggest a link between presence of vegetation and occurrence
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of landslides. Although the height of the vegetation is not directly linked to landslides, the root system
of vegetation does have influence. For example, a soil with roots creates composed material that has
enhanced strength (Gonzalez-Ollauri & Mickovski, 2021). Various studies (Guerrero-Campo & Fitter,
2001; Li & Bao, 2015) showed a strong positive correlation between vegetation height and root system
size. Because most nature based solutions (NBS) are focused on soil-root reinforcement, the evolution
and effectiveness of the NBS can be monitored by the changes in presence and height of vegetation.

From the classified ground points, a mesh is created, representing the DTM. Now, cloud (non-ground
points) to mesh (DTM) distances are calculated. Since almost all non-ground points correspond to
vegetation, these distances are a good measure for the vegetation height. In the case that points in
the non-ground points do not belong to vegetation, either the CANUPO algorithm can be applied to
separate two distinct classes or the non-vegetation points can be segmented out manually. In the
cloud to mesh distances, it is assumed that the vegetation height is equal to the shortest distance to
the ground. In some cases, this assumption may not hold completely.

4.5. Dynamic Analysis: 3D Change Detection Methods

Previous discussed susceptibility indicators are calculated from the DTM from one acquisition in time.
Next to these static indicators, the comparison of two or more acquisitions allows for change detection.
This change detection can be focused on local distances between two point clouds acquisition, but also
on changes in gully or channel locations, changes in objects or volume changes.

After removing non-ground points, 3D change detection is a suitable way to quantify the on-going
erosion. However, this can be a complicated task in the context of rough complex topographies without
corresponding elements among successive point clouds.

Because of uncertainties and ambiguities, two point clouds will never have the exact same point sam-
pling on the surface and no one-to-one point homology can be established. With no one-to-one point
homology, it is meant that one point for a first point cloud can never be matched to one specific point
from a second point cloud. Therefore, point-to-point distances cannot be calculated (Winiwarter et
al., 2021). Various distance measurement methods without point homologies have been developed,
such as DEM of difference (DoD), direct cloud-to-cloud comparison with closest point technique (C2C),
cloud-to-mesh distance or cloud-to-model distance (C2M).

The current state-of-the art method in geomorphological point cloud change analysis is Multiscale Model
to Model Cloud Comparison (M3C2) (Lague et al., 2013). This latter method is the most sophisticated
method, because it is able to operate in complex 3D cases and can also be used as a simpler and
more robust alternative to DEM differencing in 2D cases. M3C2 operates directly on point clouds with-
out meshing or gridding and computes the local distance between two point clouds along the normal
surface direction, which tracks 3D variation in surface orientation. It also provides an estimation of the
confidence interval for each distance measurement depending on point cloud roughness and registra-
tion error.

4.5.1. Multiscale Model to Model Cloud Comparison (M3C2)

The starting point of this algorithm is the estimation of a local surface normal vector (N) fitting a plane
to the points contained in the neighbourhood for any given point ¢ defined by a radius D /2. D is named
the normal scale and it is a crucial parameter in M3C2 distance analysis, because it determines the
normal direction in which changes will be searched (Gomez-Gutiérrez & Gongalves, 2020). When
the normal is defined for a core point i, then it is used to project ¢ onto each cloud at scale d (called
projection scale). This amounts to defining the average positions i; and i, of each cloud in the vicinity
of i (Step 1 in Figure 4.3). Then, a cylinder with radius d/2 is defined, whose axis goes through ¢
and which is oriented along the normal vector N. To speed calculations up, a maximum length of the
cylinder is imposed (Lague et al., 2013). The average position of each cloud (i; and i) is obtained
using the location of points within the previously defined cylinder and projecting i; and i, along the
axis of the cylinder (Step 2 in Figure 4.3). So, the distance between i; and i, in the normal direction is
the resulting M3C2 distance and is stored in one of the two point clouds together with an uncertainty
measure. The uncertainty measure is derived from a confidence interval, which is used to assess
whether a statistically significant change is detected at a prescribed confidence level (Lague et al.,
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2013). This confidence interval boundary corresponds to the minimum detectable change, so it is also
referred to as the Level of Detection (LoD) at x% (LOD,y). Change below this minimum amount of
change is indistinguishable from noise from different sources (Winiwarter et al., 2021). In the paper of
Lague et al. (2013) it is derived that:

o1(d)? n o2(d)?

ni n2

LOD95%(d) = +1.96 \/ +r (46)

where o1 and o5 are the independent variances of point positions for each sub-point cloud and r corre-
sponds to the co-registration error between the two compared point clouds.

Step 1 : Calculation of normal i Step 2 © Average distance bebween H.I_E two
at a scale D around the core polnt |, clouds measured at a scale d alang N
a2
! . L-l'.".::ﬁ"__.-"" | H
la © lo—pn 04 o 8] o O f - 0
IR s T - T~ -K iy ) L Lo e
S -2 Qrosdua-Sady’ai(D)  oLoqe Neid
T 0Ng Yoot M 7T o ’ |
= i
. . Erf . ki)
o ®0 359 % e 0e e ©F ok He
S; e @ "y s g%ﬂ
o & g ¢ 99 @ {? :lf 1 2 5

Average positions "'%;’
af the point clouds

Figure 4.3: lllustration of the M3C2 algorithm with parameters D (normal scale) and d (projection scale). Two steps of the
algorithm are visualised. Step 1: The normal is estimated from cloud 1. The scale at which the cloud is most planar will be
selected. Step 2: 2 sub-clouds are defined by the intersection of the reference and compared clouds with a cylinder of diameter
d and axis (i, 1\7). Each sub-cloud is projected on the cylinder axis which gives a distribution of distances along the normal
direction. These are used to define the mean (or median) position of each cloud i1 and é. lllustration from Lague et al. (2013).

The M3C2 algorithm is integrated as a plug-in in the open-source software CloudCompare. The pa-
rameters (D, d and h) can be defined by the user or estimated automatically by the algorithm on the
basis of point cloud density and roughness:

* Normal scale (D): the diameter of the spherical neighbourhood extracted around each core point
to compute a local normal. The normal is used to orient a cylinder inside which equivalent points
in the other cloud will be searched for.

» Projection scale (d): the diameter of the above cylinder.
» Max depth: corresponds to the cylinder height (in both directions).

» Selection of the core points: these points will be used for the computations. Since it is not
necessary to measure the distance at such a high density, either the whole cloud, a sub-sampled
version of the input cloud or a custom set of core points can be chosen as a selection.

The bigger the first two radii are, the less local surface roughness and noise will influence the computa-
tion, but also more points will be "averaged’, so the slower the computation will be. Furthermore, some
options about the normals can be chosen. In this research, the multi-scale option is used: for all core
points, normals are computed at several scale and the most ’flat’ one is used. In this research, the
following settings are a normal scale of D = 1.0m, a projection scale of d = 0.5m and a max depth of
15m. For the multiscale option, a range between 0.1m and 2.1m is used with steps of 0.25m.



Data and Study Area

This chapter describes the study site in detail. Also, the data availability is discussed and an explanation
of how to do a terrestrial laser scan (TLS) survey is given.

5.1. Study Area

The study area is situated at the bay in Catterline, Aberdeenshire, North East Scotland (see Figure 5.1).
The small study area of circa 0.2 km? has an mean annual temperature of 8.9° C and a mean annual
rainfall of 565 mm (Gonzalez-Ollauri & Mickovski, 2016). The precipitation is characterised by frequent,
low-intensity rainfall events, whereas heavy storms rarely occur.

Aberdeen

Catterline

Agricultural land

0 50 100 km 50 m
] |

Figure 5.1: The study area, the Catterline Bay, as seen from Google Satellite Imagery.
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The topography of the study site is dominated by sloped (25 — 50°) terrain and cliffs ending up into the
sea, combined with a flatter inland area that is crossed by a small stream that leads to the formation
of inclined river banks. Furthermore, the site includes a series of exposed slope sections alternating
with gully-outcrop forms with a height between 2 and 10 m (Gonzalez-Ollauri & Mickovski, 2021), which
are visible in Figure 5.2. The northern part of the bay has a small tarmac-surfaced access road, which
divides the slope in an upper and a lower part there. Along the crest of the slope, twelve houses are
located, as well as a grassed public footpath offsetting the houses from the actual slope. A branch of
the footpath leads to a mid-slope structure - a former pumping station used in the past to capture water
from the slope (Gonzalez-Ollauri & Mickovski, 2021). Figure 5.2 captures the exposed slope sections
with outcrops forms well from drone footage.

Shallow (ca 600mm) and well-drained soils can be found within the study area resting on top of sedi-
mentary bedrock. The soil along the slopes is a cohesive mixture of silty sands with contents of clay. It
is partly covered by gravel and rock but low vegetational cover and less organic matter which explains
the instability of the slopes in heavy rain or high waves (Operandum Project, 2022). The vegetation
cover is dominated by herbaceous weeds and grasses, riparian trees and agricultural crops of wheat
and barley. The sea has limited influence on the vegetation, because south-westerly winds prevail.
Different soil mass wasting episodes (landslides and erosion) have been reported on the site, mainly
associated with long periods of rainfall (Gonzalez-Ollauri & Mickovski, 2016). Several properties, the
access road to the harbour, plants and wildlife are at risk due to landslide and coastal erosion (Tardio
& Mickovski, 2016).

Figure 5.4 (a) and (c) show failure zones, that are easily identifiable by eye, presenting exposed bare
ground or areas of sparse vegetation.

(b) Southern part of the bay

Figure 5.2: Drone footage of the Catterline Bay, taken by Graeme Davidson in May 2016.

At the study site several landslide events occurred, which are revealed by hollows, gullies, outcropping
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rock mounds, bulges and areas of ongoing creep. Based on detailed site inspection, some mechanisms
of failure are discovered by Gonzalez-Ollauri and Mickovski (2021). Translational slips with 0.5-1.0 m
depth are seen at the slope above the access road. On the slope below the access road, deeper slides
(1.0 -2.0 m depth) are reported, which may be connected to the stability and retention capacity of the
seawall defence (Gonzalez-Ollauri & Mickovski, 2021). In Table 5.1 an overview of historical failure
events is given. In Figure 5.1 the location of the sea defence wall is depicted, where the failure in 2013
happened. The failure in 2020 took place mid-slope at the height of where the access road and pier
come together. The landslide in 2021 is also shown in Figure 5.4(c) with the location at B in Figure 5.3.

Table 5.1: Record of recent failures on the slopes. Information from Gonzalez-Ollauri and Mickovski (2021).

Year Event Consequence

2013 Storm surge, erosion of the slope toe Breached seawall defence

2020 Slope failure initiated mid-slope after a | Road blockage
period of continuous rainfall

2021 Slope failure initiated below the road on | Undermined and exposed existing road
the southern extent of the access road | drainage infrastructure

In Figure 5.3 different layers at the study site are labelled to give an overview of what structures are
present. Figure 5.3 also indicates landslide zones as found in the paper of Gonzalez-Ollauri and Mick-
ovski (2021). These zones will later be used in a comparison with erosion zones from this research.
Furthermore, the left map shows 4 locations, for which more detailed figures are created.

Layer

[ arable land
[ beach

[ building
[ built environment
[] garden
[ grassland
I green path
[ landslide
[ river

[ rock

[ tree

Figure 5.3: Left: 4 locations are highlighted, which are shown as a photograph and as point cloud data (coloured with intensity)
in Figure 5.4. Satellite image from Google Satellite. Right: different layers at the Catterline Bay. In red, landslides are
highlighted.
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(a) An erosion zone, located at A in Figure 5.3 (b) The bare soil is clearly distinguished with higher intensity
values, whereas vegetation has much lower intensity values.

(d) In both figures, the pipe is clearly visible.

(g) Cribwall, located at C in Figure 5.3 (h) Point cloud snapshot: intensity

Figure 5.4: Left figures: pictures taken by the author in April 2022, right figures: point cloud with intensity. Yellow indicates high
intensity, whereas blue indicates low intensity. It can be seen that the ground points have higher intensity than vegetation
points.
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5.2. Terrestrial Laser Scanning in Catterline

This section introduces the used laser scanner, presents how to carry out a TLS survey and describes
the available data from terrestrial laser scanning.

In this particular research, the Leica ScanStation P40 Laser Scanner is used, which is shown in Fig-
ure 5.5. This is a Time-of-Flight laser scanner. The operating range of the scanner is up to 270m.
The field of view is 360° horizontally and 290°. The scanner has a scan rate up to 1 million points per
second. It has an on-board camera, which allows to assign true-colour RGB values to points. The ac-
curacy is 3 mm at a distance of 50m (“Leica ScanStation P30/P40”, 2015). In Table 5.2 some relevant
specifications are listed.

]

Figure 5.5: The Leica P40 Laser Scanner on top of a tripod. This specific model is used during the field work acquiring the
point clouds. Image from CR Kennedy.

Table 5.2: Specifications and system accuracy of the Leica P40. From “Leica ScanStation P30/P40” (2015). The accuracies
are all valid at 78% albedo.

Specification

Type Time-of-Flight with WFD Technology

Range 180 m (18% albedo), 270 m (78%
albedo)

Field of View Horizontal: 360°, vertical: 290°

Scan rate Up to 1,000,000,000 points per second

Accuracy of single measurement

Range accuracy 1.2 mm + 10 ppm over full range

Angular accuracy 8” horizontal; 8” vertical

3D position accuracy 3 mm at 50m; 6 mm at 100m

Target Acquisition 2mm standard deviation at 50m

When setting up a survey, it is important to start with a clear idea of the area and its possible difficulties,
such as obstructions, that may cause occlusions. To ensure a complete coverage of the study area, it
is important to select suitable scanning positions with care. In order to minimise the amount of missing
data due to occlusion, scans are collected from different angles and heights. Figure 5.6 shows how
objects can cause shadowing and how including different scanning positions overcomes this problem.
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Figure 5.6: Vegetation can cause occlusions. By using multiple scanning stations, occlusions can be prevented.

Overlapping scanning directions are chosen in order to minimise shadows and obstruction by vegeta-
tion in the sloped terrain. In order to tie scans accurately together, three reflector targets with known
dimensions are placed into the scanned scene. These are used in the post-processing stage as tie
points for the geo-referencing process of the combined point cloud (Kuhn & Prifer, 2014). The targets
are placed at various elevations and distributed spatially as evenly as possible in order to obtain a
spatially uniform registration error (Lague et al., 2013).

When scanning on the cobble beach in Catterline, the tides are heavily influencing the possible scan
locations. During high tide, there is almost no beach left, which is especially a problem on the southern
part of the bay. Therefore, scanning on the beach should be planned during low tides. Because the
Catterline Bay is too large in dimensions to scan during one day, the scans are done on two or three
consecutive days. On the first day, the path down to the beach is used for the scanning locations. On
the second day, the scanning locations are located on the beach. These two days can be connected
using a few stable targets, which are left in the field during the night. These stable targets were printed
on paper, unlike the reflector targets, and taped on the door of the boathouse, a mailbox on the pier
and an old pulley used for boats. After scanning at different locations, the point clouds of all scans from
these two days (scan-to-scan registration) were registered using the Leica Cyclone software in order to
form a combined point cloud for one acquisition timestamp. This scan-to-scan registration can be easily
done based on the centre coordinates of the three reflector targets, which are scanned accurately with
the Leica P40. The final point clouds are exported from Cyclone to a so-called .E57 file, which can be
further processed using the methods from Chapter 4. To be able to work with the two point clouds, both
point clouds are subsampled to 50mm. In Figure 5.7, an example of the reflector target is shown, as
well as how it looks like in the point cloud, coloured with intensity values.

5-

Figure 5.7: Left: image of a black and white target, right: scanned point cloud of the target (intensity coloured). Image from
JanRen et al. (2019).

The available field surveys with TLS at the Catterline Bay were carried out in October 2019 and April
2022. In October 2019, a complete and accurate point cloud was acquired. During this survey, some
of the NBS were already installed. This point cloud was created from 29 registered scans. Figure 5.8
shows the 29 scan positions in the acquired point cloud. In April 2022, another data acquisition with
Leica ScanStation P40 was performed. This resulted in a point cloud created from 41 terrestrial laser
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scans. For the 2019 and 2022 point clouds, the scans were taken on two or three consecutive days
respectively. Table 5.3 includes some information on the acquired point clouds.

e 7%
& e

Figure 5.8: The 29 scanning positions in 2019 are shown in black.

Table 5.3: Available point clouds in .E57 format from TLS campaigns

Acquisition date File Size (GB) Number of scans Number of points
2019, October 16 and 17 | 10.6 29 581,492,611
2022, April 18,19 and 20 | 42.4 41 2,298,123,242

Although there was well thought of possible occlusions during the fieldwork, some shadowing could not
be prevented, because only limited locations were accessible to use as a scan position. At the access
road and on the cobble beach it was possible to set up the laser scanner. The shadowing by vegetation
led to gaps in points at some places. Figure 5.9 points out some important spots with black boxes. The
occlusions are mainly caused by vegetation in combination with gully-like slope, which makes it difficult
to obtain points at the upper part of a gully if vegetation is obstructing the view at the lower part of the

slope.

(a) Occlusions above the access road, caused by vegetation (b) Occlusions in the middle part of the bay. On the right a part

Figure 5.9: Occlusions by vegetation on the slope in the 2022 data set are shown within the black boxes. The number of

o SE ]

of the access road is visible.

neighbours within a radius of 20cm for each point are visualised with the colourmap.
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5.3.

Processing Software

To process and analyse all data, the following software is used:

Leica Cyclone: software used to register the point clouds of all individual scan sets (scan-to-scan
registration) and to form a combined point cloud.

CloudCompare: an open source 3D point cloud processing software, including many advanced
algorithms (registration, resampling, scalar fields handling, statistics computation and classifica-
tions). At http://danielgm.net/cc/ more information can be found.

QGIS: an open source geographical information system (GIS) application that supports viewing,
editing, printing and analysing geospatial data.

Python: an open source programming language. In the scripts multiple libraries and packages
are used.

Matlab: a programming language and numeric computing environment. To be able to use Matlab,
a license is needed.

The scan-to-scan registration in Leica Cyclone was performed on a laptop of the TU Delft. All other
processing steps and computations were performed on a personal laptop (HP Zbook Studio G5) with
an Intel Core i7-9750H (hexa-core) and 16 GB memory.


http://danielgm.net/cc/

Results

The methods described in Chapter 4 are applied on the point clouds from 2019 and 2022. This chapter
contains results from the registration in Section 6.1, ground points classification in Section 6.2 and
topographical data layers in Section 6.3. Furthermore, erosion and non-erosion zones are identified
and then characterised by some statistics in Section 6.4.

6.1. Registration

To co-register the point clouds from 2019 and 2022, the 2022 point cloud is first manually aligned and
then lterative Closest Point (ICP) is applied. Manual alignment is needed to prevent that the ICP algo-
rithm gets stuck in a local optimum. Sections of the final registration result are shown in Figure 6.1. For
various segments with stable points, the root-mean-square error (RMSE) of the registration between
the two point cloud acquisitions from 2019 and 2022 is calculated. Over eight segments of chimneys,
lampposts, a part of the pier and a wall and a roof, an average RMSE of 0.033 m is found. Because of
the relatively large size of the study area, this RMSE is considered acceptable.

(a) Chimneys from houses and a lamppost (b) Part of the pier

Figure 6.1: Points that are assumed stable, used to calculated the registration error between the 2019 and 2022 point clouds.
In red, the 2019 point cloud. In blue, the 2022 point cloud.

32
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Table 6.1: Registration RMSE for segments with points that are considered stable
RMSE (m)
Lamppost 0.032
Chimney 1 0.045
Chimney 2 0.042
Chimney 3 0.038
Chimney 4 0.026

Pier 0.031
Roof 0.022
Wall 0.026
Average 0.033

6.2. Ground Classification

The classifier is trained on the training objects from the point cloud from 2022. In Figure 6.2 the training
objects are shown. 2,142,977 ground points and 4,068,607 non-ground points are selected in the
training data set. In case that appearance frequencies are not equal for the two classes, it will affect
accuracy metrics. This problem is solved by applying random subsampling on both data sets to acquire
an equal amount of core points for both data sets. Thus, balanced data is used for training the classifier.

100

.
TS g

Figure 6.2: CANUPO Training data from the 2022 point cloud. In green all training objects for non-ground points (4,068,607
points). In brown all training objects for ground points (2,142,977 points).

After assessing the balanced accuracy ba and Fisher Discriminant Ratio fdr, which were introduced in
Section 4.2, for different sets of scales, the scales [0.01,0.26,0.51,1.26,1.51,1.76,2.01] (a linear ramp
with min = 0.01, max = 2.01, step= 0.25) gave the best statistics with ba = 99.4% and fdr = 21.9.
All other sets of scales had a lower balanced accuracy and Fisher Discriminant Ratio. The maximum
number of core points was set to 100, 000, because Girardeau-Montaut (2019) states that 10,000 should
be enough in most of the cases. However, because the scene is larger than scenes classified in
examples, the chosen number of core points was set at 100,000. In Table 6.2 quantitative performance
results of the classifier are summarised.



6.2. Ground Classification 34

Table 6.2: Quantitative results on 2022 data set of separating non-ground from ground using CANUPO.

Precision ba (%) fdr
(%)
Training set  Ground 99.5% 99.4% 21.9
Non-ground | 99.3%
Test set Ground 94.7%
Non-ground | 94.3%

The classifier is used to classify the 2019 and 2022 point clouds. In Figure 6.3 the result of classifying
the 2022 point cloud is visualised. Green represents non-ground and brown ground. The grey points
in Figure 6.3 are points for which the class confidence was not above 95% and therefore, no class
was assigned to these points. In total, 13,174,153 points were classified as ground and 10,241,900 as
non-ground.

CANUPO.class
2.00 _

Figure 6.3: CANUPO Classification 2022 data. 1 is given to all points classified as ground, 2 to all points classified as
non-ground.

A test data set was created, where ground and non-ground points were manually separated into classes
by visual inspection using field knowledge from photos. Although the test data set was created thor-
oughly as explained in Section 4.2, the test data set will still have some inevitable bias, because it only
contains points of which the supervisor was to some degree sure to which class the points belonged.
772,721 non-ground points were selected for the test data set, of which 728,985 points were classified
as such by the classifier, yielding a 94.3% accuracy. From the 712,054 ground points in the test data
set 673,971 points were correctly classified, which gives a 94.7% accuracy. These statistics are also
summarised in Table 6.2.

Figure 6.4 gives a closer look at the classified point cloud, such that some details are visible. Some
willows and small vegetation can be distinguished, as well as a tripod and the fence with some poles.
From Figure 6.4 it is clear that the classifier has difficulties with transitions from vegetation to ground.
The classification result could be refined, when the original unsubsampled point cloud is used.



6.3. Maps 35

CANUPO class
200

Figure 6.4: CANUPO has difficulties with vegetation near the ground. Grey indicates unclassified points, because their class
confidence is lower than 95%. The red boxes indicate difficulties close to the ground.

6.3. Maps

In this section some maps from static quantities are shown. Here only results from 2022 are presented,
but in Appendix C also the maps from 2019 are shown. In Figure 6.5 the DTM of 2022 of the full bay
is shown. From the classified point cloud, the ground points are extracted. The points are rasterised,
such that a DTM is created. The spatial resolution of the raster is 5cm. For all derived layers, the
spatial resolution is also 5cm. From the DTM, the slope, aspect, Topographic Wetness Index (TWI)
and Terrain Ruggedness Index (TRI) were calculated in QGIS.

In Figure 6.7 a map with the slope is shown. At the left side of the upper part, a bulge can be seen.
This is an actual salience in the field (see Figure 6.6(a)).
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Figure 6.5: Digital Terrain Model 2022. In red, the bulge from Figure 6.6(a) is outlined.

(b) Outcrop with very steep slopes. This outcrop is indicated in Figure 6.7 with the
2019, by A. van Natijne and T. Bisschop. pink box. Photo by the author, April 2022.

Figure 6.6: Saliences in the scene
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Figure 6.7: Map of the slope, 2022. In pink the outcrop from Figure 6.6(b) is outlined. The blue boxes outlines display zones
with high uncertainty in the slopes because of dense vegetation.

The slope map for 2022 is displayed in Figure 6.7. In blue, zones with dense vegetation are featured.
In these zones it is hard to obtain ground points. Therefore the DTM has a large uncertainty and looks
coarse here. In the pink zone, the slope has the highest values. This is in agreement with the actual
setting, because an outcrop with very steep slopes is found at this place, shown in Figure 6.6b.

In Figure 6.8 a map of the Topographic Wetness Index (TWI) is shown. Some water drainage channels
are revealed, indicated with higher values of TWI. The access road is also clearly distinguishable with
high values of TWI.
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Figure 6.9: A zoomed section of the TWI map: the black box in Figure 6.8. Here a water drainage channel and a part of the
access road are clearly indicated with high TWI.
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The Terrain Ruggedness Index (TRI) is displayed in Figure 6.10. In this map sudden height differences
are indicated with high TRI values. For example, scarps of beginning landslides can be detected by
looking at this map. This finding will be highlighted with detailed sections of the TRI map in Section 6.4.

TRI (m)
i 0.02

il 0.05
B 0.08
B 0.09
9 0.11
70.13
£710.15

100 m

Figure 6.10: Terrain Ruggedness Index 2022

In Figure 6.11 the vegetation height of 2022 is visualised. Also some locations are depicted, which will
be discussed in more detail in Section 6.5.
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Figure 6.11: Vegetation Height in 2022 with some locations indicated, which are displayed in more detail in Figure 6.24.

The Multiscale Model to Model Cloud Comparison (M3C2) is applied on the ground points from 2019
and the ground points from 2022. Additionally to the proposed settings in Section 4.5, also the global
registration error is set t0 0.033m, as found in Section 6.1. In Figure 6.12 the M3C2 result is visualised in
the 2022 point cloud with ground and non-ground points in brown and green. The result shows only the
significant changes, which is based on a Level of Detection at 95% (LO Dysy,). The Level of Detection
can vary spatially. Red points indicate a decrease in height, which can point to a depletion zone,
whereas blue points indicate an increase in height, pointing to for example accumulation of material.
Each M3C2 distance comes with an uncertainty, which depends among other on the the local point
cloud roughness of the two point clouds. Figure 6.13 displays the uncertainty of the M3C2 distances.
Most uncertainties vary between 4 and 6¢cm (95%).
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Figure 6.12: M3C2 distances [m] visualised in the point cloud.
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Figure 6.13: The distance uncertainty [m] for the M3C2 distances.

To grasp how these differences between the two point clouds look, a cross section of the landslide zone
C from Figure 5.3 is given in Figure 6.14. In the upper part, material is deposed, whereas in the lower
part some accumulation of material is seen.
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Figure 6.14: Cross section of a landslide zone. This is the landslide zone in Figure 5.4(c). The green points are from the 2022
point cloud and the purple points from the 2019 point cloud.

6.4. Identification of Erosion Zones

From the M3C2 result, zones with a clear change were selected. A clear change is defined as a group
of points with high positive or negative M3C2 values. An area with a clear pattern of negative M3C2
distances is marked as a possible erosion zone, because it points to depletion of material. Sometimes,
a group with negative M3C2 distances is found together with a group of positive zones nearby, which
indicates accumulation of material. These are grouped together into one zone.

Combining this with the terrain ruggedness index (TRI), some clear scarps could also be seen in the
erosion zones: a scarp is in most cases indicated with high values of TRI. In Figure 6.15 five erosion
zones and one of the four stable zones are visualised with the TRI and the M3C2. Erosion zone 5 is
the area of the landslide, that occurred in 2021 (see Table 5.1). Figure 6.17 shows the full area, where
the location of each zone is indicated. By comparing photos of the author from April 2022 with these
zones in Figure 6.16, the erosion zones are validated: if the selected zones also showed some signs
of erosion on the photos, such as visible scarps, then this gave a confirmation.



6.4. ldentification of Erosion Zones 43

Erosion zone 2 ] ~ FErosion zone 3

A3

M3C2 (m)
;. -1
Bl -0.875
I -0.75
[ -0.625
[1-05
[]-0.375
[1-0.25
[ 1-0.125
[ o

[ ]0.125
[10.25
[]0.375
o5
[ 0.625
[ 0.75
I 0.875
[l

TRI (m)

[ o
[10.02
[10.04
[ 0.05
I 0.08
I 0.09
Il 0.11
Il 0.13
012m Il 0.15

-_le

Figure 6.15: M3C2 distances and TRI (2022 data) at 5 erosion zones and one of the 4 stable zones. The TRI is visualised with
a grey colourbar, such that the M3C2 distances are clearly visible.

(a) Erosion zone 1 (b) Erosion zone 2 (c) Erosion zone 3

(d) Erosion zone 4 (e) Erosion zone 5 (f) Stable zones

Figure 6.16: All zones from photos taken by the author. The orientation of the photos is different than in Figure 6.15.
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Figure 6.17: Locations of the five erosion zones and four stable zones with TRI (2022 data) visualised.

A closer look at the M3C2 distances for each selected zone is taken by the creation of histograms and
calculation of some statistics. From the histograms in Figure 6.18 it is clear that the changes in the
erosion zones are mostly between -1 and +1 m. However, most values are negative in these zones.
As expected, the four stable zones have mostly M3C2 values close to 0. Erosion zone 5 has a different
distribution than the other erosion zones. The spread of M3C2 distances is larger, with values between
-2 and 2 m and also positive values occur much more. The positive values indicate the deposition area
at the bottom of the area (see Figure 6.16(e)). In erosion zone 5, a landslide happened in 2021 (see
Table 5.1). In very short time, the movement took place. Here, the erosion is classified as rotational
movement. The other erosion zones are very shallow, translational landslides.
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Figure 6.18: Histogram of the M3C2 distances in the depicted zones.

Although, the type of landslide is not completely similar for every erosion zone, the five erosion zones
will be grouped together for further analysis instead of treating each zone individually. This gives a more
generalised view on erosion zones compared to non-erosion zones. Appendix D presents the analysis
of all individual erosion zones. Erosion zone 1 till 5 are referred to as erosion zones. In Figure 6.19
all M3C2 distances of the erosion and non-erosion zones are visualised in a histogram. Table 6.3
summarises the statistics of all M3C2 distances for the zones.
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Figure 6.19: Histogram of the M3C2 distances for non-erosion and erosion zones.

Table 6.3: M3C2 distances statistics in erosion and non-erosion zones.
Mean (m) Std (m)
Erosion -0.21 0.53
Non Erosion | -0.08 0.33

In Figure 6.20 a histogram of slope values for the non-erosion and erosion zones is presented for 2019
and 2022. The histograms in Figure 6.20 show that erosion zones have higher slopes than non-erosion
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zones. Aremarkable note is that erosion zone 5, with the rotational landslide, has a mean slope of 35.8°,
whereas the other erosion zones have mean slopes between 40.0° and 49.6°. This could be expected,
based on the deposition area in erosion zone 5 where the slopes are flattened.
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Figure 6.20: Histogram of the slope for erosion and non-erosion zones.

Table 6.4 summarises some statistics. As the histograms show, the mean slope for erosion zones
(39.3°) is higher than for non-erosion zones (30.9°). Furthermore, there is a larger spread in slope
values for erosion zones than for non-erosion zones.

Table 6.4: Slope statistics in erosion and non-erosion zones.

Mean (deg) | Std (deg)
Erosion 2019 39.1 14.9
2022 39.5 14.1
Non Erosion 2019 31.3 1.6
2022 30.6 1.4

The values of the TWI for erosion and non-erosion zones in 2019 and 2022 are plotted in histograms in
Figure 6.21. From the histograms it seems that erosion zones have lower TWI values than non-erosion
zones. This was not initially expected from the knowledge on TWI behaviour on a larger catchment
scale, where higher TWI values are expected in landslide prone zones. A possible explanation is that
the slope is a dominating factor for erosion prone zones in this small study area, whereas the local
upslope contributing area plays a more insignificant role.
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Figure 6.21: Histogram of TWI for erosion and non-erosion zones.

Table 6.5: Statistics for the TWI in erosion and non-erosion zones.

Mean Std
Erosion 2019 -3.76 1.73
2022 -3.89 1.82
Non Erosion 2019 -2.93 1.79
2022 -2.86 1.90

In Table 6.5 statistics for the Topographic Wetness Index are summarised. As the histograms in Fig-
ure 6.21 already indicated, the mean TWI for erosion zones (3.83) is lower than for non-erosion zones

(2.90), but the standard deviation is similar for both zone types.

The values of the Terrain Ruggedness Index (TRI) for erosion and non-erosion zones in 2019 and 2022
are plotted in histograms in Figure 6.22. From these histograms, it is not directly clear whether there

is distinctive behaviour for erosion from non-erosion zones.
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Figure 6.22: Histogram of TRI for erosion, landslide and non-erosion zones.

In Table 6.6 the mean and standard deviation of the TRI for 2019 and 2022 are summarised for the
zones. Non-erosion zones have a lower mean TRI (0.029 m) in combination with a smaller standard
deviation (0.015 m) compared to erosion zones (mean: 0.042 m, std: 0.029 m). This is in agreement
with the photos in Figure 6.16. The slopes in stable zones seem to be continuous without sudden height
differences, such as scarps, which results in low TRI values.

Table 6.6: Statistics for the TRI in erosion and non-erosion zones.

Mean Std
Erosion 2019 0.042 0.030
2022 0.041 0.027
Non Erosion 2019 0.029 0.017
2022 0.028 0.013

The histograms in Figure 6.22 and the statistics in Table 6.6 show some differences in distribution of
the TRI for erosion and non-erosion zones, but they do not appear as distinct as from the map with
TRI in Figure 6.10, where erosion zones can be easily identified from scarps with high values of TRI.
Therefore, a new parameter prg) is introduced:

#(TRI > 0.06)

= ©.1)

The threshold of TRI is determined by inspecting the values of TRI at the scarps. The highest values
of these scarps are above 0.13, but values above 0.06 are seen at the transition from scarps to other
terrain. Therefore, 0.06 is set as a threshold. Table 6.7 summarises ptg, for the erosion and non-erosion
zones.
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Table 6.7: pyR in erosion and non-erosion zones.

PTRI
Erosion 2019 0.17
2022 0.16
Non Erosion 2019 0.05
2022 0.03

prRrI, the rate of TRI values above 0.06 m, is more than 4 times larger for erosion zones (mean prg;:
0.17) than for non-erosion zones (mean prr;: 0.04). This same comparison for TRI yields that the mean
TRI in erosion zones (mean TRI: 0.042) is only 1.5 times larger than in non-erosion zones (mean TRI:
0.029). This large difference in factors shows that prg, is a good indicator of erosion zones.

This section analysed the slope, TWI, TRI and M3C2 distances for erosion and non-erosion zones.
This analysis gave some distinct features. However, it was not yet shown whether the derived mean
values are significantly different for the two zone types. Therefore, Welch’s t-test is performed on the
data. This testis a a two-sample location test to test the null hypothesis that two populations have equal
means, but it does not assume equal variances like the Student’s t-test. For all discussed quantities, a
p-value below 0.001 was found, which indicates that the means of slope, TWI and TRI for erosion and
non-erosion zones are statistically significantly different.

6.5. Changes at Nature Based Solutions

Next to the erosion patterns, the evolution of nature based solutions (NBS) and changes in vegetation
also stand out from the results. For example, the two live cribwalls were implemented between the
2019 and 2022 TLS acquisitions. Figure 6.25(a) shows one of the live cribwalls at various moments.
Figure 6.23 shows the M3C2 distances from the point clouds at the location of the two live cribwalls.
At the bottom of the slope material is dug away, whereas atop of the live cribwall, the slope is higher
after implementation of the live cribwall. Some salient differences in vegetation height between 2019
and 2022 are depicted in Figure 6.24. Some spots near the two live cribwalls show an increase of
presence and height of the vegetation. Also at the location of the live ground anchors a large increase
of vegetation is seen. These increases are in line with photos in Figure 6.25 from the OPERANDUM
deliverable (Zieher et al., 2022), where an increase in vegetation is seen over time. For the live cribwall,
the photos in Figure 6.25(a) are harder to compare with the found vegetation changes in Figure 6.24,
since the found changes are mostly seen next to the live cribwall, instead of on top of these.
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Figure 6.23: M3C2 and slope at the two live cribwalls. The red rectangles show more or less the outline of the live cribwalls.
The left side gives the results of the cribwall at the upper part of the access road, the right side the results from the one at the
lower part of the access road.
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Figure 6.24: Vegetation changes at three locations near Nature Based Solutions. Exact locations are indicated in Figure 6.11.



6.5. Changes at Nature Based Solutions

51

24/08/2021

¥
L

(a) Live cribwall

20/04/2021

(b) Live ground anchors

Figure 6.25: Evolution of the plant cover over time at the two Nature Based Solutions.
deliverable Zieher et al. (2022).

28/09/202

18/08/2021

Photos are from the OPERANDUM



Discussion

This chapter provides a discussion around the data acquisition, used methods and the results presented
in Chapter 4, Chapter 5 and Chapter 6.

7.1. Data Acquisition

The point clouds from 2019 and 2022 were both acquired in two or three consecutive days. Because
of good weather conditions, there were no big issues during the scanning in relation to data acquisition.
However, because of limited possibilities of scanning positions, some occlusions occurred caused by
vegetation blocking the upper part of a slope. With terrestrial laser scanning (TLS) in complex sloped
terrain, this type of occlusions are often inevitable when using a ground based scanning station. Some
occlusions can be overcome when an unmanned aerial vehicle (UAV) such as a drone, is used. A drone
flies over the terrain and then also acquires data of the slope 'behind’ the vegetation, as illustrated in
Figure 7.1. A drawback of a UAV set up is that more uncertainty factors come into play. For example,
the uncertainties from the orientation (from the IMU sensor) and the positioning (uncertainties from
GNSS) of the drone should be taken into account.

UAV (drone)

@= UAV(drone)
X

N\ Xe
X X e

@@= TS

Figure 7.1: Viewing geometry and coverage from terrestrial laser scanning (TLS) and an unmanned aerial vehicle (a drone for
example) from single positions in a complex. lllustration based on figure in Sa8ak et al. (2019).

During both TLS data acquisitions, it was chosen to perform non-colourised scans, because this saves
a large amount of time per scan. However, during the data processing, the interpretation of the un-
coloured point clouds was experienced as difficult sometimes. Furthermore, the identification of land-
slide scarps could be improved, if the point cloud was colourised.
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7.2. Data Processing

The first pre-processing step was registration. For registration, the Iterative Closest Point (ICP) algo-
rithm was used and validated. However, the Catterline Bay has abundant stable points in the northern
part, with houses, a pier and lampposts, but in the southern part those objects are lacking. Therefore,
it cannot be guaranteed that the registration error is global for the whole point cloud. The registration
is especially important for the change detection. If there is a small tilt in one point cloud compared
to the other point cloud, then the change detection will give offsets in certain parts of the point cloud.
This problem can be overcome in future studies by placing stable tie points in the study area, such that
multiple data acquisitions can be easily aligned.

The next pre-processing step was subsampling. Because the raw point clouds of 2019 and 2022 were
too large to open and process on a personal laptop, the point clouds were subsampled to 50mm. As
a consequence, some refinement was lost. In some processing steps, the unsubsampled point cloud
could give better results. Therefore, if a high performance computing platform would be available, it is
recommended to work with the original unsubsampled point clouds.

The filtering of point clouds was the first processing step. After an extensive comparison of differ-
ent ground filtering methods, the CANUPO algorithm was eventually used, because it uses a full 3D
approach and it uses the local dimensionality feature on multiple scales. However, because the classi-
fication is supervised and thus requires high-quality training samples, the algorithm is labour intensive.
The CANUPO algorithm gave good precision on both the training and test data sets, respectively ap-
proximately 99.4% and 94.5%. The algorithm had minor difficulties with separating between vegetation
close to the ground. However, the other considered methods in Section 3.3, such as the Cloth Simu-
lation Filter and the Multi-resolution Hierarchical Classification, performed much worse with separating
between vegetation and ground, judged by visual inspection. From Figure 3.1, it seemed that intensity
could help in classifying ground and non-ground points. However, this was not used in the CANUPO al-
gorithm. At the end of this project, a new version of the CANUPO plugin in CloudCompare was released.
The plugin of CANUPO now allowed for adding intensity as a classification feature. A new classifier
was trained, using the same settings and training data set, but this time also intensity was added as a
feature. This yielded ba = 99.4% and fdr = 18.8. Compared to the classifier used in this project, the
balanced accuracy was exactly the same, but the fdr was lower than the original fdr = 21.9, which
means that the classes were less good separated and ba was less robust. Therefore, adding intensity
as a classification feature does not directly lead to a better classification. However, adding new geo-
metric features could possibly increase the performance of the classifier. At this moment, the plugin is
limited to adding one additional scalar field as a feature. Thus, the implementation of a multi-class and
multi-attribute (including intensity) classifier is a suggested improvement in order to develop a more
powerful classifier in the future.

For 3D change detection, the Multiscale Model to Model Cloud Comparison (M3C2) method was used,
which is the current state of the art in geomorphological point cloud-based change analysis. By comput-
ing the Level of Detection (LoD) at 95%, changes large enough to distinguish from noise were detected.
This resulted in changes, M3C2 distances, and their uncertainties. In the formula for LoD in Equa-
tion 4.6, the registration uncertainty r is added as a constant and thus as a systematic influence for the
whole point cloud. However, uncertainties on the sensor side are actually point-based. For example,
if a point is described by spherical coordinates, then uncertainties in the two angular coordinates are
driven by the finite beam divergence of the laser and the angle quantisation (Winiwarter et al., 2021).
The ranging uncertainties are coupled to the intensity of the signal, which varies with range, material
reflectivity and atmospheric transmittance. If these ranging and angular uncertainties are combined
using error propagation, error ellipsoids could be derived per point. Recent studies (DiFrancesco et al.,
2020; Winiwarter et al., 2021) noted that the Level of Detection (LoD) predicted by M3C2 may underes-
timate the actually detectable change. This can happen especially in cases when the roughness of the
object at the projection radius is larger than the range uncertainty. Winiwarter et al. (2021) proposed
an additional error propagation method to the existing M3C2 method, which refines measurement un-
certainties per point. Incorporation of this new method in this study could improve the change detection
results.
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7.3. Data and Sensitivity Analysis

From the M3C2 distances, erosion zones were identified based on grouped negative distances, some-
times with a group of positive distances nearby and an edge of high terrain ruggedness index (TRI)
values. The M3C2 distances indicate change in the terrain model. Accumulation and depletion of ma-
terial caused by erosion are exposed with the M3C2 distances. The edge of high TRI exposes the
scarps of (beginning) landslides. By setting a threshold of TRI = 0.06 for the newly defined prr), a very
distinctive indicator for erosion zones was found.

The mean slope of 39.3° for erosion zones is significantly higher than for non-erosion zones (30.9°).
This is in agreement with earlier studies (Alexakis et al., 2014; Lee & Talib, 2005; Yong et al., 2022).
The slope angle has a critical value, which is also seen for loose material on a slope with the angle of
repose. Every material has a critical slope or angle on which material will remain at rest without rolling
down. This critical slope depends among others on morphology of the material and the presence of
water in the soil. Furthermore, the distribution of the topographic wetness index (TWI) for erosion
zones compared to non-erosion zones was investigated. On catchment scale, spatial patterns of high
TWI are used to identify find landslide prone zones (Rézycka et al., 2017). It was unknown how the
TWI is related to erosion zones on a cm-scale. Using such a small scale in this study, the TWI was
able to reveal water drainage channels and the drainage density, but these channels were not directly
related to the location of erosion zones. The statistical analysis even revealed that the erosion zones
are characterised by lower TWI values than the non-erosion zones. Although this was not initially
expected, a possible explanation is that the slope is a dominating factor for erosion prone zones in
this small study area, whereas the local upslope contributing area plays a more insignificant role, thus
resulting in low TWI values in erosion zones. An important remark to the process of identifying erosion
zones is that the suggested method is subject to human bias. Defining an erosion zone is a delicate
process. One should be consistent in including the depletion and accumulation zones. Even though an
expert works in a consistent way to identify erosion zones, the zones will always be affected in some
sense by human bias and subjectivity.

TRIis a scale-dependent parameter. Therefore, the effect of scale on the TRI outcomes is studied. The
TRI map with the default spatial resolution of 5cm is subjected to many abrupt local changes, which
in some cases can be seen as noisy. Furthermore, some of the characteristics of the erosion zones,
such as the scarps, may have a larger characteristic length than 5cm. This may result in a suboptimal
capture of the scarp in the TRI map. To study this effect, the DTM is downsampled to 10cm, 20cm,
50cm and 100cm. From the downsampled DTM, the TRI is calculated. 3 of the erosion zones are
displayed in Figure 7.2 with the effect of using a downsampled raster on the TRI. Figure 7.2 shows that
by downsampling the original raster the result becomes more smoothened. Especially at the resolution
of 20cm, the scarps are more pronounced than with a 5 cm resolution. At a spatial resolution of 100cm
the result becomes too coarse to perform an analysis. The 50 cm resolution would be on the boundary
of distinguishable scarps. A coarser resolution is not recommended for this study area.
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Figure 7.2: TRI at 3 of the erosion zones at different scales.

Changes in vegetation height were also studied. These changes are not directly related to erosion
processes, but they are used to assess the status of Nature Based Solutions (NBS). Many NBS in
Catterline are focused on the implementation of plants in various ways, among others to increase the
soil strength. The approach of incorporating vegetation changes in the analysis was the calculation of
cloud-to-mesh distances (distances of the cloud of non-ground points to the mesh of ground points).
Comparison of vegetation height in 2019 and 2022 gave some interesting insights. First of all, near the
two live cribwalls an increase of presence and height of vegetation was seen. Also the location of the
live ground anchors showed a great increase. This is in line with the results from the OPERANDUM
deliverable (Zieher et al., 2022).

In the analysis of the different maps, it was important to use photos as a validation tool. From the point
cloud or M3C2 result, it is not visible whether a change is caused by the implementation of an NBS,
which is human intervention, or of natural origin. To analyse and interpret the results, knowledge of the
study area is needed. A drawback of this approach is that human supervision is an important pillar. As
discussed in Section 7.1, colourising of the point cloud could be part of a solution to this problem.

7.4. Comparison with other results at Catterline Bay

The depicted erosion zones in Chapter 6 are validated as erosion zones in various ways. First of
all, photos from the author confirmed the presence of failure zones and scarps in the erosion zones.
Furthermore, the results are also compared with results from optical satellite imagery and results from
a study by Gonzalez-Ollauri and Mickovski (2021). This section compares the results from this study
with other results from the Catterline Bay.
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7.4.1. Results from NDVI

Personal communication with Silvia Alfieri confirmed that optical satellite imagery from WorldView 2
and 3 show a strong decrease in Normalised Difference Vegetation Index (NDVI) in 4 of the 5 identified
erosion zones. The change in NDVI was calculated images from 7 June 2019 and 23 June 2022. In
Figure 7.3 the relative change is visualised. The green zones are the identified erosion zones from this
study. Zones 2, 3 and 5 have a strong decrease in NDVI, whereas zone 1 has only a slight decrease and
zone 4 seems to have a small increase. NDVI is often used in remote sensing for monitoring vegetation.
Strong changes in NDVI can indicate landslides, because vegetated areas often become bare soil areas
in landslide zones (W. Yang et al., 2013). The zones near NBS with an increase in vegetation height
from Section 6.5 are highlighted with green boxes. These zones show an overall positive change
in NDVI. Next to these indicated areas, there are also some zones with strong negative or positive
changes in NDVI at the edges of the road and the beach. These changes are not real changes, but
are due to alignment issues.
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Figure 7.3: Relative change (%) in NDVI, computed from WorldView 2 and 3 optical satellite imagery. Results are obtained by
Silvia Alfieri. In red the identified erosion zones are depicted with a negative change in NDVI. Green indicates the locations
near NBS, that are discussed in Section 6.5. The green zones have a positive change in NDVI. A is at live cribwall 1, B at live
cribwall 2 and C at the live ground anchors.
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7.4.2. Results from Gonzalez-Ollauri and Mickovski (2021)

As discussed in Chapter 5, information on landslide zones is available from Gonzalez-Ollauri and Mick-
ovski (2021). Although these zones were available from the start of the project, the zones were not
used to identify the erosion zones in this research. In this way, the results from this research are not
dependent on results from other sources than the TLS campaigns. Gonzalez-Ollauri and Mickovski
(2021) used a Digital Elevation Model (DEM) with a resolution of 2 m. The stream network and slope
were derived from the DEM and then used to classify landslide-prone zones. These zones will be used
as a validation for the results in this study. To these zones will be referred as ’validation erosion zones’.
The characteristic features are extracted for the validation zones and analysed to see if they match with
the results in this research.

Qualitatively, most validation zones seem to appear on locations with the described erosion character-
istics, such as edges with high TRI values and steep slopes. Some of the validation zones also overlap
with the identified erosion zones. In Appendix C a map is included with the locations of the validation
erosion zones. The M3C2 distances are extracted from the validation erosion zones and compared
with the identified erosion zones in a histogram in Figure 7.4. From Figure 7.4, it becomes clear that the
validation zones have a 2 times smaller mean M3C2 distance, although it has a comparable standard
deviation.
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Validation Erosion

Density
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Figure 7.4: Histogram of M3C2 distances of the validation erosion zones (blue) and the erosion zones (orange).

Table 7.1: Statistics from the M3C2 distances of the three zone types.

Mean (m) Std (m)
Erosion -0.21 0.53
Validation Erosion -0.12 0.46
Non Erosion -0.08 0.33

From the validation erosion zones, also the statistics of the slope, TWI and TRI are calculated. The
slope statistics are summarised in Table 7.2. The mean slope of the validation zones is slightly higher
than for the identified erosion zones.
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Table 7.2: Slope statistics in three zone types.

Year Mean (deg) Std (deg)
Erosion 2019 39.1 14.9
2022 39.5 14.1
Validation Erosion 2019 41.4 13.6
2022 414 13.2
Non Erosion 2019 31.3 13.0
2022 30.6 1.4

Table 7.3 summarises the statistics for the TWI. TWI has very similar statistics for the validation erosion
zones and the erosion zones.

Table 7.3: Statistics for the TWI in three zone types in 2022.

Year Mean (-) Std (-)
Erosion 2019 -3.76 1.73
2022 -3.81 1.65
Validation Erosion 2019 -3.80 1.75
2022 -3.81 1.67
Non Erosion 2019 -2.93 1.79
2022 -2.93 1.79

Lastly, Table 7.4 summarises the statistics for the TWI. Although the mean TRI in 2019 is a bit lower
for the validation erosion zones, the other values are very comparable for the erosion and validation
erosion zones.

Table 7.4: Statistics for the TRI in three zone types in 2022.

Year Mean (m) Std (m)
Erosion 2019 0.042 0.030
2022 0.041 0.027
Validation Erosion 2019 0.038 0.028
2022 0.044 0.027
Non Erosion 2019 0.029 0.017
2022 0.028 0.014

From the comparison of the identified erosion zones with landslide zones from Gonzalez-Ollauri and
Mickovski (2021), used as validation zones, it is found that the TWI and TRI characteristics from the
identified erosion zones correspond very well with the validation zones. The slope of the validation
erosion zones (41.5°) is slightly higher than for the erosion zones (39.3°). A remarkable difference
is the two times smaller mean for M3C2 distances. One possible explanation is that the identified
erosion zones in this study strongly depend on groups of negative M3C2 distances and thus on the
occurrence of erosion between 2019 and 2022, whereas the landslide zones from Gonzalez-Ollauri
and Mickovski (2021) are based on the slope in wet zones. Another explanation is that the identification
method in this study is too strict on the selection of group of negative M3C2 distances, such that only
very evident and severe erosion zones are identified. This also raises the question whether it is a
fair distinction to separate erosion and non-erosion zones. In reality, it will be more a gradual scale
of how heavy the erosion is in an area. In conclusion, the derived erosion zones in this study have
very similar geomorphological behaviour with the erosion zones from Gonzalez-Ollauri and Mickovski
(2021). However, a large advantage of the identification method in this study is that erosion rates are
also taken into account in addition to the static geomorphometric quantities.



Conclusion & Recommendations

This chapter draws conclusions from this study in Section 8.1 by answering the research questions
raised in Section 1.2. Subsequently, Section 8.2 presents some recommendations for future research
on monitoring erosion using point clouds from terrestrial laser scanning.

8.1. Conclusions

This section provides answers to the defined subquestions from Section 1.2. Then, the main conclusion
of this thesis is presented as an answer on the main research question.

1. How to acquire a TLS data set in complex sloped terrain?

In this research, the Catterline Bay is the area of study. This specific area is characterised by slopes
with vegetation. Furthermore, there are only limited possibilities for scan locations: only at the access
road and on the cobble beach. The beach has large variations in width due to tides, which should be
taken into account. This makes the creation of a complete point cloud without occlusions challenging. It
is especially hard to obtain points 'behind’ vegetation at the upper part of slopes and points below dense
vegetation, because the laser is not able to penetrate through dense vegetation. Because the study
area is too big to cover with scans in just one day, scans were performed on multiple consecutive days.
To be able to tie these individual scans together, stable reflector targets are placed at various locations
overnight. Despite unavoidable occlusions, a satisfying point cloud could be obtained in October 2019
and April 2022 by including enough scanning locations with overlapping areas.

2. How to identify static erosion characteristics from point cloud data?

The area of study Catterline Bay is prone to landslides. A landslide involves movement along a well-
defined slippage plane. Characteristics of landslides are among others scarps, accumulation and de-
pletion zones. These characteristics were detected from derivatives of a Digital Terrain Model (DTM)
of the study area. Therefore, the point cloud was classified in ground and non-ground points. The local
dimensionality of points on various scales was used as feature input to train the LDA classifier. The
performance of classification was assessed by calculating the precision on the test data set. The pre-
cision was found to be 94.7% for ground points and 94.3% for non-ground points. To obtain the DTM,
a raster was created from the classified ground points. Various geomorphometric quantities, such as
slope, Terrain Ruggedness Index (TRI) and Topographic Wetness Index (TWI), were calculated from
the DTM. Scarps are well exposed by an edge of high TRI values.

3. How to acquire an accurate temporal change detection map of erosion?

To perform change detection, the two point cloud acquisitions from October 2019 and April 2022 were
compared. The data sets were aligned using the Iterative Closest Point algorithm. The assessment
of cloud-to-cloud distances of various objects, that were used to be stable, such as chimneys, the pier
and a lamppost, yielded a root-mean-square error of the registration of 3.3 cm. However, only the
northern part of the bay contained stable objects, thus it cannot be guaranteed that this error is global.
The classified ground points were used for change detection. An accurate 3D comparison was done
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using the well-established method Multiscale Model to Model Cloud Comparison (M3C2). Because
of the registration error of 3.3cm, significant change could only be detected if the M3C2 distance was
larger than 3.3cm. Furthermore, a distance uncertainty was calculated for each M3C2 distance based
on local estimates of the point cloud roughness for both acquisitions. This gave a mean uncertainty in
the M3C2 results of 5 cm. However, the uncertainties increased with larger M3C2 distances.

Next to the change detection based on the ground points, also changes in vegetation presence and
height were extracted from calculating the cloud-to-mesh distances between non-ground and ground
points. Because plants are used in the study area to counteract landslides, changes in vegetation
gave insight in the effect of these Nature Based Solutions. Near Live Cribwalls and at the Live Ground
Anchors, a strong increase of vegetation presence and height was observed.

4. How to identify erosion zones and assess erosion patterns?

Various erosion zones were detected using notable 'edges’ with high Terrain Ruggedness Index values,
accompanied with groups of negative M3C2 distances, using photos as a validation tool. Also, stable,
non-erosion zones were identified. From both zone types, the geomorphometric quantities and M3C2
distances were statistically analysed. Various conclusions could be drawn from the statistical analysis.
Erosion zones had a mean M3C2 distance of -21 cm, whereas the non-erosion zones had a mean of
8cm. prr) Was introduced to capture the pattern of high TRI values in erosion zones. prg, is about
4 times larger for erosion zones than non-erosion zones. Erosion zones are also characterised by a
significantly steeper slope of 39.3°, compared to 30.9° for non-erosion zones. Also the Topographic
Wetness Index was analysed for both zone types, but this did not give distinctive statistics. The identi-
fied erosion zones were also validated by changes in NDVI from optical satellite imagery. These zones
showed a strong decrease in NDVI. Lastly, the identified erosion zones were compared to identified
landslide zones from earlier studies. Because of different identification methods, differences were seen
in the mean slope and the mean M3C2 distances. However, the characteristics were still distinctive
from the non-erosion zones.

5. How to compare results from terrestrial laser scanning data compared to other remote sens-
ing techniques?

Terrestrial Laser Scanning is able to deliver very high spatial resolution data, compared to other remote
sensing techniques. The high point density and the 3D component allow for a unique 3D change de-
tection. However, the use of a ground based platform limits the options of scan positions. Especially
in a complex sloped terrain, this can lead to inevitable occlusions. A drone with laser scanning equip-
ment overcomes this problems and is able to acquire data ’behind’ obstacles. Satellite data sources
have often almost daily observations, which allow for trend estimations of the erosion patterns, but this
comes at the cost of low spatial resolution.

Main Research Question
With the answers to the subquestions, the main research question can be answered, which is:

How can terrestrial laser scanning be used to monitor erosion processes on a coastal
slope?

To answer this question, two terrestrial laser scanning campaigns were performed. The acquired point
clouds were processed according to the developed workflow in Chapter 4. The first steps were subsam-
pling, alignment and ground filtering. Ground filtering was done using linear discriminant analysis (LDA)
with the local dimensionality of points on various scales as feature input. From the classified ground
points, DTMs were created and change detection was done using the method Multiscale Model to
Model Cloud Comparison (M3C2). Geomorphometric quantities were derived from the DTM. Based on
a combination of the Terrain Ruggedness Index, M3C2 distances and photos, erosion and non-erosion
zones were derived. From these identified zones, erosion processes were monitored by analysing the
differences in the distributions of various quantities, such as M3C2 distances, slope, TRl and TWI.



8.2. Recommendations 61

8.2. Recommendations

Regarding the proposed workflow in this thesis, there are multiple aspects, which can be further studied
in future research. These points are shortly mentioned below.

* Incorporation of more acquisitions

By incorporating more frequent acquisitions the trend in the erosion patterns can be analysed.

Inclusion of point clouds of similar areas in the analysis

Including other bays with similar erosion patterns enhances the number of erosion zones, which
leads to a more generalised description of the distinctive features of erosion zones.

» Improvement of the ground classification

Although visual inspection showed that intensity might be helpful to separate ground and non-
ground points, the current binary classifier does not allow for multi-attributes. Therefore, the
implementation of a multi-class and multi-attribute (including intensity) classifier is a suggested
improvement in order to develop a more powerful classifier in the future.

Creation of a multi-source susceptibility map

The use of more layers from other sources should improve the predictive power of a suscepti-
bility map. Examples of others sources are geology, weather information, hydrological field ex-
periments (for example runoff and scouring experiments) and also other remote sensing sources,
such as satellite optical imagery and (In)SAR.

+ Data-driven susceptibility assessment

In this research, a knowledge-driven susceptibility assessment was performed, because the
study area and number of erosion events are both too small to perform a full data-driven as-
sessment. However, with more information layers and some supervision, the use of machine
learning methods can be explored. This can be a desirable improvement, because it makes the
assessment less subjective and biased.
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Photographs

The author took photographs during the fieldwork in April 2022. Some of them are included in the main
part of this thesis. Additional ones are displayed in this appendix. These photos may help to grasp a
better understanding of how the Catterline Bay looks like.

(a) Scan from the parking lot. (b) Scan on the road

(c) Scan on the southern part of the beach. (d) Scan on a former sea defence wall.

Figure A.1: Four scanning positions. Photos by the author, April 2022.
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(a) View from the lower part of the access road towards the pier. (b) View from halfway the access road towards the parking lot.

Figure A.2: Two views from the access road. Photos by the author, April 2022.

ke

(a) View from halfway the beach towards the northern part of the (b) View from halfway the road towards the southern part of the
bay. bay.

Figure A.3: Views on the bay from different standing points. Photos by the author, April 2022.
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(a) Large part of the vegetation consists of (b) View on the location of the live ground (c) Former pumping station.
willows. anchors

Figure A.4: Other details from the Catterline Bay. Photos by the author, April 2022.



Results from Ground Filtering Methods

B.1. Cloth Simulation Filter

In Figure B.1 the Cloth Simulation Filter (CSF) gives good results from visual inspection. The ground
and non-ground is well separated. However, Figure B.2 shows an example why CSF has difficulties
with full 3D data, instead of 2.5D airborne laser scanning data. In this section, the outcrop with very
steep slopes and overhanging parts is shown. Here, it is not possible to find a suitable cloth to fit with
the overhanging outcrop.

25 ?—X

Figure B.1: First section from the results of CSF with the 2022 point cloud
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B.2. Ray Tracing Voxel Method 70

A

Figure B.2: Second section from the results of CSF with the 2022 point cloud.

20

B.2. Ray Tracing Voxel Method

Figure B.3 shows a section of filtering ground points with the ray tracing voxel method. Because of the
limited laser beam width, the road does not appear in the data as ground or non-ground. In some scans,
a voxel containing road points is identified as an end points and in some scans as an intersection voxel.
Furthermore, not all points corresponding to vegetation are identified as non-ground points.

Figure B.3: Section from the results of the ray tracing voxel method with the 2022 point cloud.
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B.3. Multi-resolution Hierarchical Classification

Figure B.4 shows a section of the point cloud after applying the Multi-resolution Hierarchical Classifi-
cation (MHC) algorithm. In general, MHC is capable of correctly classifying ground and non-ground
points. However, there are some strange lines of triangles, where the points belonging to the ground
are not classified as ground points. Figure B.5 shows another section of the point cloud after applying
MHC, where MHC is inadequate with handling full 3D data. In this section, the outcrop with very steep
slopes and overhanging parts is shown. The interpolation based method has difficulties with these
characteristics and classifies the outcrop completely as non-ground.

Figure B.5: Second section from the MHC result with the 2022 point cloud.



Maps

C.1. Maps 2019

In the main part of this thesis, full maps of the 2022 data are visualised. To give a complete view on
the results, this appendix also shows the 2019 maps.
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Figure C.1: Digital Terrain Model 2019



C.1. Maps 2019
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Figure C.2: Slope 2019
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Figure C.3: Topographic Wetness Index 2019



C.1.

Maps 2019
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Figure C.4: Terrain Ruggedness Index 2019
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C.2. Locations Validation Zones

Figure C.5 shows the validation erosion zones together with the identified erosion zones in this re-
search.

() validation Zones
3 Erosion zone 1
Erosion zone 2
() Erosion zone 3
Erosion zone 4
] Erosion zone 5

TRI (m)

I o

Bl 0.01875
Il 0.0375
Bl 0.05625
B 0.075
B 0.09375
0 0.1125
[10.13125
. 10.15

0 50 100 m
I 0

Figure C.5: Map with the identified erosion zones and the validation erosion zones. The Terrain Ruggedness Index of 2022 is
also displayed.



Statistics of individual erosion zones
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Figure D.1: Histogram of the six zones. Zones 1 to 5 are erosion zones and in zone 6 multiple stable zones are combined.
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Table D.1: Statistics for the slope in six zones.
Mean (deg) Maximum Std (deg)
(deg)

Zone 1 2019 40.0 74.5 12.0

2022 38.8 78.0 12.2
Zone 2 2019 49.6 83.5 151

2022 53.0 84.0 12.0
Zone 3 2019 45.5 80.7 10.6

2022 42.7 79.2 9.4
Zone 4 2019 40.7 81.7 15.4

2022 40.8 81.9 15.4
Zone 5 2019 35.8 82.2 14.4

2022 36.4 83.2 17.0
Zone 6 2019 31.3 83.7 11.6

2022 30.6 77.0 1.4
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Figure D.2: Histogram of the six zones. Zones 1 to 5 are erosion zones and in zone 6 multiple stable zones are combined.
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Table D.2: Statistics for the TWI in six zones.

Mean (deg) Maximum Std (deg)
(deg)
Zone 1 2019 -4.30 1.59 1.27
2022 -4.44 0.61 1.44
Zone 2 2019 -3.73 3.27 1.69
2022 -4.07 0.71 1.70
Zone 3 2019 -3.52 2.12 1.65
2022 -3.09 2.04 1.48
Zone 4 2019 -3.87 2.73 2.01
2022 -3.97 213 1.80
Zone 5 2019 -3.80 3.79 1.75
2022 -3.96 3.68 1.93
Zone 6 2019 -2.93 5.17 1.79
2022 -2.86 4.72 1.90
Zone 1 Zone 2
Zone 3
gjs
z

Zone 5
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Figure D.3: Histogram of the six zones. Zones 1 to 5 are erosion zones and in zone 6 multiple stable zones are combined
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Table D.3: Statistics for the TRI in six zones.

Mean Maximum Std
Zone 1 2019 0.040 0.16 0.018
2022 0.038 0.27 0.021
Zone 2 2019 0.067 0.64 0.051
2022 0.066 0.65 0.041
Zone 3 2019 0.046 0.33 0.021
2022 0.047 0.40 0.022
Zone 4 2019 0.048 0.44 0.038
2022 0.043 0.32 0.026
Zone 5 2019 0.038 0.53 0.028
2022 0.037 0.71 0.026
Zone 6 2019 0.029 0.77 0.017
2022 0.028 0.24 0.013
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