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Abstract— The increasing risk of cyber-physical 

attacks (CPAs) on power infrastructure has led to need for 
reliable detection technologies. As the landscape of cyber 
threats evolves, it becomes imperative to continually 
update and enhance attack detection techniques. This 
research investigates the formulation of detection 
algorithm, via combination of State Partition Particle 
Filter (SP-PF) theories for power system security. The 
proposed approach applies intelligent partitioning of the 
state space so as to be accurately represented with fewer 
particles. This reduction in computational demand 
enhances the algorithm's efficiency, making it more 
practical for real-time applications. The detection 
algorithm based on SP-PF is tested against switching 
attacks (SAs) launched on the governor and excitation 
systems associated with the generator. The RTDS 
platform is utilized for conducting real-time simulations of  
IEEE 9-bus power network in order to demonstrate the 
efficacy of proposed SP-PF based detection SA in real-
time.   

Keywords—cyber-physical attack detection, state-partition, 

particle-filter, estimation, real-time simulation, switching attack. 

I. INTRODUCTION  

Security forms the bedrock of any system's resilience and 

future sustainability. In acknowledging this fundamental 

aspect, the imperative of upgrading security measures cannot 

be overstated. While predicting the probability of cyber-

physical attacks (CPAs) remains elusive, recent events, 

notably the Ukraine nuclear power plant case, underscore the 

critical need to fortify our power systems. Just as computer 

systems undergo routine upgrades, so too must power plants 

evolve, prioritizing robust security protocols. 

As a reaction to the increasing menace of cyber-attacks, a 

variety of techniques for detecting such attacks have surfaced, 

generally classified into two frameworks: Reference model-

based detection (RMD) and Machine Learning-based 

detection (MLD) [1]. RMD methodologies apply changes in 

system states, whereas MLD methods involve the training of 

classifiers for attack identification. 

RMD involves two stages: estimating the system's internal 

states and processing both measured and estimated data, with 

discrepancies assessed through similarity tests [2]. State 

estimation is classified into static and dynamic types [3]. 

Static state estimation [4] determines the power system's state 

at a specific moment, using data from phasor measurement 

units (PMUs) and SCADA systems. Techniques include 

weighted least squares [5] for minimizing differences, the 

Gauss-Newton method [6] for linear approximations, 

maximum likelihood estimation [7] for maximizing observed 

measurement probabilities, kalman filtering [8] for dynamic 

systems with noise, and sparse estimation [9] to reduce 

computational complexity. However, the techniques 

mentioned above fail to account for changes caused by 

fluctuations in load, generation, or CPAs, which are critical 

for real-time monitoring and control. Deep learning methods 

like recurrent neural network (RNN), fully-connected neural 

network (FCN), and convolutional neural network (CNN) 

detect CPAs but may overlook system properties [10]. In [11], 

estimation offers robust FDI detection, yet it's limited by 

reliance on datasets. This exposes vulnerabilities to 

adversarial attacks, highlighting the need for improved 

defense strategies. 

Dynamic state estimation assumes a pivotal role in real-

time power system management. It empowers operators to 

navigate dynamic events, ensuring grid stability, reliability, 

and efficiency amid contingencies, load variations, and faults, 

through continuous and precise system-state insights. Various 

dynamic state estimation techniques cater to different system 

nuances. The extended kalman filter extends the conventional 

kalman filter for nonlinear systems, often applied in 

estimating nonlinear power system states [12]. The unscented 

kalman filter [13], ideal for highly nonlinear systems, selects 

representative sample points deterministically. Particle filters 

[14], beneficial in non-gaussian and highly nonlinear systems, 

estimates system states using a particle ensemble. Sequential 

monte-carlo methods or particle filters leverage random 

samples to converge on true system states iteratively. Machine 

learning-based attack detection in power systems involves the 

utilization of advanced algorithms and predictive analytics to 

identify anomalous patterns, recognize potential threats, and 

fortify the resilience of the infrastructure [15]. 
Detection tests for CPAs in power systems, assessing 

disparities through various similarity tests is a crucial aspect. 
Particle filtering is recognized as a significant similarity test, 
but its adaptability to sudden changes in system dynamics, 
especially those induced by CPAs, can be limited. Notably, 
state partition particle filters emerge as a promising solution, 

2024 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)

979-8-3503-1855-5/24/$31.00 ©2024 IEEE 135

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 C

om
m

un
ic

at
io

ns
, C

on
tro

l, 
an

d 
C

om
pu

tin
g 

Te
ch

no
lo

gi
es

 fo
r S

m
ar

t G
rid

s (
Sm

ar
tG

rid
C

om
m

) |
 9

79
-8

-3
50

3-
18

55
-5

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

Sm
ar

tG
rid

C
om

m
60

55
5.

20
24

.1
07

38
04

1

Authorized licensed use limited to: TU Delft Library. Downloaded on November 08,2024 at 09:06:43 UTC from IEEE Xplore.  Restrictions apply. 



introducing a more structured approach to navigate shifts in 
the state space. This structured approach enhances 
adaptability in scenarios marked by abrupt changes. 
Furthermore, the challenge of accurately tracking multimodal 
distributions, where the system state can exist in multiple 
distinct modes, poses a difficulty for traditional particle filters. 
State partition particle filters, with their emphasis on specific 
partitions of the state space, offer a potential solution by 
providing a more nuanced and targeted approach to capture 
and track multimodal distributions effectively. This nuanced 
approach demonstrates the potential of state partition particle 
filters in addressing the limitations associated with traditional 
particle filters, contributing to the advancement of reliable 
detection mechanisms in the context of power system 
cybersecurity [16]-[17]. 

The contributions of this research paper can be 
summarized as follows: 

1. This study extends the already reported SAs [18], which 
has shed light on the vulnerabilities of power systems to 
SAs and thus contribute valuable insights into the 
development of robust detection mechanisms in context 
of power system security. The detection of SAs has not 
been thoroughly explored in existing literature. 

2. One primary contribution of this research lies in the 
introduction and exploration of State-Partition Particle 
Filter (SP-PF) as a novel approach for SAs detection in 
power systems. While particle filter-based attack 
detection methods are well-established, the application of 
SP-PF specifically for this purpose has not been 
thoroughly studied in existing literature. This research 
pioneers the utilization of SP-PF as a technique to 
enhance the robustness and accuracy of CA detection in 
power systems. 

3. This study developes strong mathematical formulation via 
augmentation of individual techniques; SP and PF 
towards attack detection. The paper delves into the 
theoretical foundations of SP-PF, providing a 
comprehensive examination of its mathematical 
underpinnings in the context of CPAs in power systems. 
This analysis is critical for establishing a sound 
theoretical framework and understanding the intricacies 
of SP-PF-based CA detection. 

By delineating these contributions, this research paper 
aims to not only advance the current state of knowledge in the 
field of power system security but also to stimulate further 
research endeavors in the promising domain of SP-PF based 
CA detection. The remaining sections of the manuscript are as 
follows. Section II presents the power network model used in 
this study, followed by Section III discussing formulation of 
SP-PF theories for CA detection. Section IV presents the 
discussion on real-time set-up developed for performing 
study. Section V discusses the results on CA detection and 
finally conclusions are drawn in Section VI. 

II.   POWER NETWORK MODEL AND ITS DESCRIPTION 

The IEEE 9-bus power system network [19] as shown in 
Fig. 1 is used as a test canvas.  The representation of power 
components, including circuit breakers (CBs) are exactly the 
same as referred in [18]. The use of same network parameters 
and operating conditions allow for a deeper understanding of 
system dynamics on account of CA, aiding in the development 
of more robust and efficient detection algorithm. The system 

parameters as a reference are given in Table I in Appendix 
section. Each generator in the network is represented by the 
following 4th-order differential equations given as [20]: 

 

 

Fig. 1. IEEE 9-bus power network 

 �� = ��∆� (1) 

 ∆�� = �
�	 (�� − �� − ��∆�) (2) 

 ���� = �
���� (��� − ��� − (�� − ��� )��) (3) 

 ���� = �
���� (−��� − ��� − ���  �� (4) 

In the given context, � represents the rotor angle in radians, 
∆� signifies the rotor speed deviation, �� � and ���  denote the 

transient voltages along the " and # axes, respectively. �� 
stands for the mechanical torque, �� represents the electric air-
gap torque, ��� is the internal field voltage, �� is the nominal 

value of angular frequency, $ is the inertia constant, and �� 
is the load damping constant. Additionally, ��%�  and 
��%�  represent the open-circuit time constants in the direction 

of the " and # axes, while �� and ��  are the synchronous 

reactance at the " and # axes, respectively. Lastly, ���  and 
���  denote the transient reactance along the " and # axes. 

 Each generator is associated with its excitation system and 
governor, and operated such as to maintain integrity of the 
entire power network. The control parameters of these are 
referred from [18]. 

III. DETECTION ALGORITHM 

This section presents the basics of particle filter, and state 

partition particle filter and its formulation for CA detection 

problem. 

A. Particle Filter (PF) 

The PF is a technique used in probabilistic estimation, 

particularly in scenarios involving nonlinear and non-

Gaussian systems. Its fundamental concept revolves around 

representing the posterior probability density function using a 

collection of random samples or particles, each associated 

with a weight. Instead of directly calculating the posterior 

density function, which can be complex or intractable in many 

real-world scenarios, the PF approximates this density 

function using these particles and their weights. These 
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particles are drawn from a proposed distribution, often 

referred to as the importance density or proposal distribution. 

The weights assigned to these particles reflect their relative 

likelihood or importance in representing the true underlying 

distribution of the system states. 
To facilitate the PF application, the state equations 

representing the generator dynamics (1-4), including those of 
excitation and governor system can be re-written in a general 
state space form as in (5-11): 

 �� = &'(�, )) + +' (5) 

 , = ℎ'(�, )) + .' (6) 

 �/+'+'�0 = 1 (7) 

 �/.'.'�0 = 2 (8) 

 � = 3� ∆� ���  ��� 4�
 (9) 

 ) = 3�� ���  �5  �64�
 (10) 

 , = /�5 �60� (11) 

In this context, � denotes the state vector, ) represents the 
input vector, and , is the output vector. The functions &'(∗) 
and ℎ'(∗) correspond to the state transition and output 
functions, respectively. The subscript '8' signifies the 
continuous form of the equations. The vectors +' and .' stand 
for the process and output noise, respectively, modeled as 
white noise with covariance matrices defined by (7) and (8). 

To apply a Particle Filter (PF) on discrete measurements, 
it is necessary to discretize the continuous equations (5-11) 
into a discrete model as outlined in (12-13), where the 
subscript indicates the time at 9∆:. 

 �; = &(�;<�, );<�) + +;<� (12) 

 ,; = ℎ(�; , );) + .; (13) 

The Euler method [21] is utilized to discretize the general 
state-space (5), which represents the state equations of the 
power system network, in each time step as described in (14). 

Here, &='  can be computed using equations (15) and (16). 
Additionally, +;<� denotes the discrete process noise. 

 �; ≈ �;<� + &='∆: + +;<� (14) 

 &=' = (&'(�?; , );) + &'(�;<�, );))/2 (15) 

 �?; = �;<� + ∆: ∙ &'(�;<�, );<�) (16) 

 1� ≜ �(+;<�+;<�� ) (17) 

Output function (6) can be discretized as (18), with the 
discrete output noise 

 ,; = ℎ'(�; , );) + .; (18) 

 2� ≜ �(.;.;�) (19) 

B. State Partition Particle Filter (SP-PF) 

SP-PF is a specialized variant of particle filter designed to 

handle high-dimensional state spaces more efficiently. It 

divides the state space into smaller, more manageable 

partitions. This division reduces the curse of dimensionality, 

making it easier to represent and track the state space 

accurately with a smaller number of particles. Additionally, 

partitioning the state space allows, for more focused sampling 

within each partition. Instead of spreading particles uniformly 

across the entire space, particles are concentrated in regions 

that are more likely to contain the true state, improving 

accuracy.   
The SP-PF partitions the state at time : as �D =

/��,D� , ��,D� , … , �;,D� 0, where �;,DFℝ�H is the state vector of 

partition 9. Each partition is handled by a distinct PF, and 
there is no requirement for all partitions to have the same size. 
The 9th PF approximates the marginal posterior I(�;,D|,D) by 

generating a discrete random measure K;,D =
L�;,D

�M , +;,D
�MN�MO�

PM
, consisting of Q; particles �;,D  and their 

corresponding weights +;,D. The workflow of SP-PF for a 

specific time instant : can be succinctly summarized through 
the following steps: 

4. At time :, each filter 9 proposes Q; particles by sampling       

  

              �;,D�;   ∼  I��;,DS� ;,D<��;  , �T<;,D<�                  (20) 

 where U;  =  1, . . . , Q;. Here, �T<;,D<� represents the 

estimates of all partitions from the previous time step 

except the 9th, i.e., �T<;,D<�X  =
 /�T� ,D<�, . . . , �T;<�,D<�, �T;Y�,D<�, . . . , �TZ,D<�0.  

 These estimates are obtained through the exchange of 
information from the other filters at the end of the previous 
time step. 

5. The proposed particles can be used to obtain predictions 
of the current state �D as:  

 �?; ,D = �
 PM �;,D

(�;)
 (21)  

 The 9th filter transmits these predictions to the remaining 
filters and receives predictions, denoted as �?<; ,D, from the 

other filters. Here, �?<; ,Dis defined similarly to �T<; ,D<�.  

6. The filters use the obtained predictions and estimates to 

update the weights in accordance with  +[;,D
(�;)  ∝

+[;,D<�
(�;) ]^,D _�;,D

(�;) , �?<; ,D`]a�;,D�;  b�T<; ,D<�c
 �^�;,D

(�;) _�T<; ,D<�, ,D`
    (22) 

 In this context, the top part of the fraction signifies the 
probability and transition density, while the bottom part 
corresponds to the assessment of the proposal distribution 
at the U;th particle (refer to [22], [23] for detailed 
definitions and derivations of PF). The adjustment factor 
is an approximation since it relies on predictions and 
estimates of all state partitions except the 9th element. 

7. Normalize above estimated weights as  

           +;,D�; = d˜ (�;);,D
∑  d[M,g

(h)iMhjk   , U; =  1, . . . , Q;        (23) 
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8. Obtain the state estimates for each partition �;,D using the 

weights, for e.g.  

                      �T;,D =  ∑ +;,D
(�;) �;,D�;  PM�MO�            (24) 

9. Implement iterative resampling if needed to prevent 
weight degeneracy [23].  

10. Identify the occurrence of the SA using the procedures 
outlined in the section III (C). 

C.  SP-PF based Detection 

In this subsection, we explore the approach to identifying 

CA, specifically SA, using the information derived from the 

SP-PF. Beyond the challenge of filtering a signal, there exists 

the task of determining the presence or absence of SA. This is 

commonly referred to as the detection problem [24]. 

Considering two hypotheses: 

•ℋ� : CPS absent 

�(9) = &(�;<�, );<�) + +;<� 

• ℋ�: CPS present 

�(9) = m{&(�;<�, );<�) + +;<�} 

where, �;<� evolves according to system (12-13) 

The likelihood ratio is defined by: 

 p(q;) = ]���, … , �;Sℋ� 
]���, … , �;Sℋ�  (25) 

The SA is declared to be present whenever, the likelihood 
p(q;) exceeds a threshold r (a user defined threshold value) 
thus, when  

 p(q;) >  r (26) 

In study the value of threshold r is calculated for study 
system following discussions given in [22].  

The likelihood ratio test is employed to detect SA. The 
likelihood ratio will vary according to state variable under 
normal and SA conditions.  

IV. REAL-TIME SETUP 

Fig. 2 illustrates the application of a SA logic implemented 
on power components; excitation system (ES) and governor 
system (GS) as explored in [25]. The construction of a 
successful SA involves the use of an intruder device that 
establishes a stable sliding surface and operates at a unique 
switching instant obtained from the phase portrait. The phase 
portrait serves as a graphical representation of two crucial 
state variables of the system, namely the rotor angle and rotor 
speed of the generator. The SA indirectly manipulates the 
switches corresponding to the excitation system and governor 
system, rendering them operative and idle between two 
specific time instants. During the periods, when the switch is 
operative and idle, the system exhibits two distinct 
characteristics, thereby referred to as Subsystem t� and 
Subsystem t�. The SA operates the switch between these 
subsystems continuously until the power system becomes 
inherently unstable. This deliberate manipulation and 
oscillation between subsystems to contribute towards 
destabilization of the overall system, emphasizing the potency 
of SAs in compromising power system stability. The 
utilization of the phase portrait and the dynamic switching 

mechanism adds a layer of complexity to the attack strategy, 
making it essential to employ advanced detection and 
mitigation techniques, such as the proposed SP-PF to 
safeguard the power system against such threats. 

 
Fig. 2. Illustration of SA on power components [17] 

In study, a real-time simulation setup, i.e. real-time digital 
simulator (RTDS) is developed to monitor and demonstrate 
the ability of proposed SP-PF for detection of SA in real-time. 
The schematic is shown in Fig. 3. The said setup consists of 
three interconnected systems; the first one incorporates the 
SP-PF algorithm implemented in MATLAB, while the second 
system features a 9-bus power network model simulated in 
RSCAD and third one consists of SA logic being accessed by 
intruder. The integration of these three systems is achieved 
through the use of the TCP/IP protocol, enabling seamless 
communication between the developed detection algorithm 
and the power network. Within this framework, the primary 
focus is on the continuous estimation of the power system's 
states, with specific emphasis on the rotor angle state variable, 
utilizing the SP-PF algorithm. The rotor angle is a significant 
state variable indicating the power system stability. To 
simulate realistic scenarios and assess the resilience of the 
system, the SA is introduced on ES and GS. This intentional 
switching of control parameters induces instability within the 
system as discussed in [25].  

As discussed in next section, the SP-PF algorithm 
calculates a likelihood ratio that dynamically evolves over 
time. This evolving likelihood ratio is then compared against 
predefined threshold value. The continuous monitoring of the 
likelihood ratio allows for the timely detection of deviations 
from the normal behavior, indicating the presence of SA in the 
power network. With implementation of detection algorithm 
in real time, the research aims to enhance the understanding of 
power system stability under dynamic conditions and provide 
valuable insights into the effectiveness of the SP-PF algorithm 
in detection of SA. 

 
Fig. 3. Real-time simulation setup for SA detection 
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V. REAL-TIME SIMULATION RESULTS 

The primary focus of this study is to detect implementation 
of SA introduced on ES and GS, associated with the generator 
in the power network. As discussed later in the section, the 
real-time simulation results reveal the effectiveness of the 
proposed detection algorithm in promptly identifying the SA. 
The SP-PF exhibits a high degree of accuracy in 
distinguishing between normal system behavior and malicious 
switching events, showcasing its potential as a reliable 
detection mechanism.  

A. Detection of SA introduced in ES 

As an illustration, the SA is applied on the ES of generator 
G1 for different operating conditions; changes in active 
power/reactive power. The SA is launched at 1 sec and 
remains applicable until 5sec. In Fig. 4(a), variation in 
likelihood ratio is depicted under base power operating 
conditions of power network. The likelihood ratio, being state-
dependent, exhibits dynamic changes over time following the 
initiation of the attack. Detection of the attack occurs when 
this likelihood ratio surpasses the predefined threshold limit, 
which is calculated as −3.72 × 10<y [24]. Similarly, in Figs. 
4(b)-4(d), the results on variation in likelihood ratio is shown 
for 50% change in active power, 50% change in reactive 
power and 30% change in reactive power respectively from 
base load condition.  

The outcomes demonstrate the successful detection of the 
SA using the SP-PF technique under these altered operating 
conditions. The algorithm proves its efficacy in identifying 
deviations caused by the SA from normal the behavior, thus 
reinforcing its utility as a reliable tool for detecting and 
mitigating SAs in power network. The ability to detect 
variations in active and reactive power highlights the 
algorithm's sensitivity to changes in the system dynamics, 
emphasizing its potential for enhancing the security and 
resilience of power systems against malicious attacks. 

Further, it should be noted that after elapse of SA at 5 sec, 
the likelihood ratio follows its trend below the threshold scale. 

 
(a)                                                        (b) 

(c)                                                       (d) 

Fig. 4. Detection of SA at ES (a) base power condition. (b) 50% change in 

active power. (c) 50% change in reactive power. (d) 30% change in reactive 

power. 

B. Detection of SA introduced in GS  

The effectiveness of SP-PF detection technique is further 

evaluated, when the GS system is subjected to a SA. The SA 

is effective from 0.3 sec and remains applicable until 5 sec. In 

Fig. 5(a), the SA is initiated under base power operating 

condition. The likelihood ratio, a key output of the SP-PF 

algorithm, dynamically evolves, and when it surpasses the 

predefined threshold value (set as −3.72 × 10<y) [24], the 

algorithm successfully detects the SA attack in the system. 

To comprehensively assess the robustness of the SP-PF 
technique, it is further tested under different power conditions. 
In Fig. 5(b)-5(d), the SP-PF algorithm is evaluated under 
conditions, where the active power is altered to 50%, the 
reactive power is changed to 50%, and the reactive power is 
modified to 30%, respectively. Remarkably, the SP-PF 
technique demonstrates its capability to detect the SA under 
all these tested conditions, as evidenced by the outcome in the 
variation of likelihood ratios. Thus, this underscores the 
adaptability and reliability of the SP-PF detection technique in 
identifying anomalies and deviations induced by SAs on the 
governor system from normal system behavior.  

  

(a)                                                         (b)

 

(c)                                                         (d) 
Fig. 5 Detection of SA at GS (a) base power condition. (b) 50% change in 

active power. (c) 50% change in reactive power. (d) 30% change in reactive 

power. 

Also, to note unlike ES as discussed above, the variation of 

likelihood ratio for SA in GS, remains above the threshold 

scale, even after its elapse. Particularly for base power and 

changed active power conditions, with SA on GS, the 

likelihood ratio indicates a linear increase. This reaffirms the 

speculation from the discussion given in [25]-[26] about most 

vulnerability of GS than other components like ES or CB. 

VI. CONCLUSIONS 

In the presented study, with SA launched on ES and GS 
associated with the generator, the proposed detection 
algorithm was successfully on real-time set up. Through the 
combination of SP-PF, strategic allocation of particles in 
relevant regions and thereby resulting in reduced 
computational burden, the approach significantly improved 
the detection performance, which was demonstrated in real-
time. The detection remained robust for different operating 
conditions and also with SA launched on either GS or ES. The 
approach adopted dynamically varying detection index, i.e. 
likelihood ratio, which on surpassing a unique threshold value 
indicated the SA, both for ES and GS. 
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APPENDIX 

Table I: Power flow data of IEEE 9-bus power system 
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