Accelerating Real-Time Voltage
Imaging

A Modular, GPU-Accelerated Framework for High-Speed Neural

Signal Extraction

Justin Klaar

Accelerating Real-Time Voltage
Imaging

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
COMPUTER AND EMBEDDED SYSTEMS ENGINEERING
by

Justin Klaar
born in Zoetermeer, the Netherlands

'i';U Delft Erasmus MC

Computer Engineering Research Group
Department of Quantum & Computer Engineer-

ing Erasmus MC
Faculty EEMCS, Delft University of Technology Dr. Molewaterplein 40, 3015 GD
Delft, the Netherlands Rotterdam, the Netherlands

www.ewl.tudelft.nl WWwW.erasmusmc.nl

www.ewi.tudelft.nl
www.erasmusmc.nl

©2025 Justin Klaar. All rights reserved.

Accelerating Real-Time Voltage
Imaging

Author: Justin Klaar
Student id: 4381130

Abstract

This thesis addresses the critical challenge of real-time spike extraction from high-
throughput voltage imaging data, often overwhelming existing analysis pipelines de-
spite advancements in genetically encoded voltage indicators and imaging hardware.
A novel hybrid processing pipeline is presented, integrating the strengths of state-of-
the-art systems, designed for unified offline and online analysis with enhanced mod-
ularity and reproducibility. Through architectural optimizations, including streaming-
compatible design, algorithmic enhancements like GPU-accelerated filtering, and a
robust calibration framework, processing speed and signal fidelity was significantly
improved. Our evaluation demonstrates real-time throughput of 500 frames per sec-
ond at 680x 680 with 8 ms latency and up to 1000 frames per second at 480x480 with
16 ms latency using a Nvidia Tesla V100, notably reducing startup times and improv-
ing deployability via a containerized environment. While revealing motion-correction
as a persistent bottleneck and the inherent latency-throughput trade-off, this work pro-
vides a scalable, accurate, and user-friendly solution that bridges the gap between fast
data acquisition and real-time analytical capability, paving the way for next-generation
closed-loop neuroscience experiments.

Thesis Committee:

Chair:

C. Strydis, Faculty EEMCS, TU Delft

Committee Member: M. Pertijs, Faculty EEMCS, TU Delft
Committee Member: S. Wong Member, Faculty EEMCS, TU Delft

j.g.a.klaar@student.tudelft.nl

Preface

I would like to express my sincere gratitude to my thesis advisor, Dr. Christos Strydis, with
the Neuroscience department of the Erasmus MC and with the Quantum and Computer
Engineering department of the TU Delft. His guidance, support, and expertise have been
invaluable throughout the course of this project.

Special thanks also go to Rui Silva, PhD candidate at Erasmus MC, whose research
originally posed the problem I tackled in this thesis. I had the pleasure of working closely
with him, and his input and collaboration were instrumental to the progress and completion
of this work.

I am also grateful to all members of the Neuro Support Group at Erasmus MC for the
supportive and collegial atmosphere they created, which made the research process all the
more engaging and enjoyable.

Finally, I wish to thank my partner, Teddie, as well as my family and friends for their
unwavering support, encouragement, and patience during this journey.

Justin Klaar
Delft, the Netherlands
June 16, 2025

iii

Contents

[Prefacel i
v
vii
[List of Tables| ix
(I Introduction| 1
(L1 Motvation and Problem Statement! 2
(L.2__Thesis Goal and Contributionsl 3
2 Background| 7
2.1~ From Calctum to Voltage Imaging| 7
[2.2 Characteristics and Challenges of Voltage Imaging Datal. 7
[2.3 Pipeline and Hardware Constraints| 8
[2.4 Design Drivers from Real-World Experiments| 9
[2.5 Performance Constraints in Real-Time Processing| 11
[2.6 Parallelism and High-Speed Processing| 12
[2.7 Preview: Implementation Mechanics and Relevance| 14
B__Related Works| 21
3.1 Motion-Correction] oLt e e e e 22
[3.2 Neuron Segmentation| 22
[3.3 Photobleaching Correction and Spike Detection| 25
[3.4 Thresholding Strategies| 28
3.5 Summary and Integration| oL L 30
|4 Pipeline design| 33
.1 Profiling State-of-the-Art Pipelines| 33
4.2 Hybnd Pipeline Design| 42
[Tmplementation| 55
[5.1 General Pipeline Implementation| 55
5.2 Setup latency optimization| 57

CONTENTS

[5.3 Profiling-driven optimization|o 60
5.4 Usability and generalizability|. L. 62

6 Results and Evaluation| 65
[6.1 Experimental Setup| 66
6.2 Trace Extraction|. 67
6.3 Vignette Filtering| L 67
6.4 Offlinepipelinel 69
6.5 Onlmepipelinel 78
[6.6 Memory evaluation| Lo 84
[7__Conclusions| 85
[Z1 Thesis Contributions| 85
[/.2 Performance Achievements|. 86
(73 Discussionl. 86
[74 limitations and Future Workl 87
Bibliographyi 89
A~ GPU benchmark comparison| 95
n-depth Analysis o an 99

[B.1 FIOLA: Fluorescence Imaging OnLine Analysis|. 99
B.2 VOLTAGE: A Fast, Modular Voltage Imaging Pipelinef 104
IB.3 Comparisonto FIOLA: 110
[B.4 Summary and Comparative Analysis| 116

vi

List of Figures

|I.I ~ Calcium vs. voltage imaging responses|. 2
[2.1 ~ Structure of an action potential{o 9
[2.2 Voltage imaging experimental pipeline, including acquisition and real-time pro- |
[CeSSINE STAZES] . . « « v v v v e e e e e e e e e e 10
2.3 Parallelism and pipelining| oL oL 13
2.4 FIOLA offline imtialization timelmel 15
2.5 FIOLA online execution timelinel 16
2.6 FIOLA Motion-Correction Workflowl. 17
2.7 VOLTAGE processing timelinef 18
4.1 FIOLA runtime breakdown (percent per step).| 35
4.2 Overview of VOLTAGE runtimes per component| 37
4.3 Motion-correction runtime vs. up-sampling factor for FIOLA and VOLTAGE |
L___onfhe lesla VIODand KT X 30801 00000000000 40
4.4 FI score comparison between FIOLA and VOLTAGE| 41
4.5 Hybnd pipeline integration from FIOLA and VOLTAGE| 44
4.6 Hybrid pipeline, initial processing stages|. 46
4.7 Hybnd pipeline, trace extraction and spike detection|. 47
4.8 Architecture of the online hybrid pipeline integrating FIOLA and VOLTAGE |
[COMPONENES] o v et e e e 48
4.9 Example of a radial Gaussian vignette mask.|. 49
4.10 Comparison of motion-correction templates| 50
4.11 GPU profiling timeline of the motion-correction stage in online mode| 52
4.12 Roofline Model with Manual Metrics for the 680x680 frame, showing the achieved |
[performance relative to theoretical maximums] 53
5.1 Timeline of the hybrid pipeline’s startup and online execution using multiple |
CAhreadd o o o e e e 59
5.2 Schematic comparison of the motion-correction pipeline before and after profiling- |
[driven optimization« v v v e e e e e e e e e e e 61
[5.3 Overview of the demo simulation setup.] 62
6.1 ~ Spike detection FI scores across spike amplitude bins. The hybrid pipeline |

retains the accuracy benefits of FIOLA's adaptive regression model] 67

vii

LI1ST OF FIGURES

[6.2 Comparison of motion-correction runtime with and without vignette filtering| . 69
[6.3 Per-frame runtime of vignette-filtered pipeline runs with and without Tensor- |
I Flow dafa pipeliné optimizafion] v v v v o 70

|6.4 Runtime comparison of CPU vs. GPU median filtering for template generation,| 71
|6.5 Detailed profiling of motion-correction across batch sizes and spatial scaling |

I T 70T P 72
|6.6 Shading correction runtime across thread counts and spatial resolutions.| 73
|6.7 Preprocessing runtime across different thread pool sizes and spatial resolutions.| 74
|6.8 Segmentation runtime as a function of batch size.| 75
|6.9 Per-frame runtime comparison between worst-case, default, and calibrated (best- |
[case) pipeline configurations. Runfime 1S decomposed by stage] 76
[6.10 Total runtime of the offline pipeline before and after optimization. | 77
|6.11 Per-frame latency for the online pipeline stages (motion-correction, trace ex- |
[tracfion, spike detection) across batch sizes] 78

|6.12 Best-case online pipeline latency per frame as a function of spatial scaling factor.| 79
|6.13 Per-frame latency for the online pipeline across batch sizes and scaling factors |

[onfhe TesTa VTOOl v vt v vt e e e e e e e e e e e e e e 80
|6.14 Online motion-correction latency on the H100 system across batch sizes and |
[spatial scaling Tactors] e 81
|6.15 Per-frame latency for the online pipeline across batch sizes and scaling factors |
[after applying motion-correction optimizations] 82
|6.16 Comparison of per-frame processing latency across batch sizes and scaling factors| 83
|6.17 Peak memory usage versus batch size for different spatial scaling factors.| . . . 84
[A.1 Benchmark results for FIOL.A’s dft-based shift correction| 95
|[A.2 Benchmark results for general FFT'sizes| 96
[A.3 Benchmark results for FFT cross-correlation/ 96
|A.4 Benchmark results for image normalization| 97
[B.1 VOLTAGE processing timeline| 104
IB.2 Summary image generation in VOLTAGE| 107

- hi I in VOLTAGE] 109

viii

List of Tables

[2.1 ~ Target performance constraints based on available lab hardware| 12
[2.2 Time and space complexity of FIOLA and VOLTAGE processing stages. Com- |
[plexity is expressed asymptotically in terms of key variables] 19
[3.1 Comparison of motion-correction methods used in voltage imaging pipelines.| . 23

[3.2 Comparison of neuron segmentation methods used 1n voltage imaging pipelines.| 24
3.3 Comparison of photobleaching correction methods used 1n voltage imaging |

..................................... 26
[3.4 Comparison of denoising methods used in voltage imaging pipelines.|. 27
[3.5 Comparison of spike detection methods used in voltage imaging pipelines.|. . . 28
[3.6 Comparison of thresholding methods used in voltage imaging pipelines.| 29
[3.7 Best-in-class modular voltage 1imaging pipeline by processing stage.| 30
.1 Hardware specifications for FIOLA and VOLTAGE profiling experiments| . . . 34
4.2 FIOLA runtime breakdown (average across all videos; offline).| 35
4.3 Runtime breakdown of the VOLTAGE pipeline averaged across all videos 1n |
[the HPCZ dataset published by Bandoetal. [IT] 37
4.4 Hardware configurations for motion-correction benchmarking| 39
4.5 Comparable runtimes for FIOLA and VOLTAGE on the Cube server] 41
4.6 Dependency overview of the hybrid pipeline| 48
[5.1 Languages and frameworks used for major pipeline components.| 57

[6.1 Spatial scaling factors used in evaluation, showing the resulting frame dimen- |
| sions, total pixel count, and side length of an equivalent square 1mage) 66
6.2 Segmentation F1 scores across pipeline configurations and datasets. The hybrid |
[pipeline consistently improves accuracy, with additional gains from _vignette |

...................................... 68
|6.3 Hardware specifications for H100-based evaluation system.| 81

X

List of Acronyms

CPU Central Processing Unit.
FFT Fast Fourier Transform.

GEVI Genetically Encoded Voltage Indicator.

GPU Graphics Processing Unit.
NMF Non-negative Matrix Factorization. [T8] [104]

RAM Random Access Memory.

ROI Region of Interest. [T1]

VSD Voltage-Sensitive Dye.

X1

Chapter 1

Introduction

Understanding how neurons communicate is one of the core challenges in neuroscience.
Over the past few decades, researchers have developed increasingly sophisticated tools to
monitor neural activity, culminating in methods that offer both high resolution and scal-
ability. Among these, calcium imaging became a transformative technique, providing an
accessible way to observe population-level neural dynamics in vivo.

Calcium imaging works by detecting calcium influxes linked to action potentials, serv-
ing as an indirect, but powerful, proxy for neuronal firing. Its appeal lies in its ability
to capture activity across large neural populations using relatively simple optical systems.
However, the approach has a fundamental limitation: the calcium signal spans over hun-
dreds of milliseconds. This slow temporal resolution makes it poorly suited for capturing
fast neural dynamics such as high-frequency activity, rapid oscillations, or subthreshold
voltage changes.

To overcome these constraints, researchers turned to Genetically Encoded Voltage In-
dicators (GEVIs). These fluorescent proteins respond directly to changes in membrane po-
tential, enabling the optical detection of rapid electrical events with millisecond precision.
With continuous improvements in their brightness, speed, and photostability, GEVIs have
matured into powerful tools for studying fast, fine-grained neural activity [3].

As molecular sensors and imaging hardware have advanced, neuroscience has entered
an era of unprecedented observational capabilities. It is now possible to monitor neural
activity across large populations in real time, with both high spatial and temporal fidelity.
Within this context, voltage imaging, powered by GEVIs, has emerged as a leading method
for capturing rapid neural events, complementing and extending the capabilities of calcium
imaging.

In this work, a distinction is made between real-time and online processing paradigms.
Real-time processing is defined as the ability to analyze imaging data at the same rate at
which it is acquired, thereby ensuring that each frame is processed with negligible latency
relative to acquisition. In contrast, online processing refers to a sequential, frame-by-frame
analysis in which data are handled incrementally as they arrive, but without a requirement
to match the acquisition speed. While both methods avoid traditional batch processing, only
real-time processing satisfies the temporal constraints necessary for closed-loop experimen-
tal paradigms. It should be noted that although all real-time systems operate in an online
manner, the converse is not necessarily true.

At the core of this activity are spikes; brief, all-or-none electrical impulses known as ac-
tion potentials. These form the basic units of neural communication, encoding information

1. INTRODUCTION

Jzo%

calcium 5ms

imaging

voltage
imaging

J 40 mV
whole
cell Sms

Figure 1.1: Comparison of signal profiles captured using calcium imaging, voltage imag-
ing, and whole-cell electrophysiology in response to action potentials. Voltage imaging
provides a much closer match to the true electrical activity (as measured by electrophysiol-
ogy), while calcium signals exhibit slower, temporally smeared responses due to indicator
kinetics. Adapted from [2].

in their timing and frequency. Accurately detecting spikes is essential for decoding how the
brain processes information, controls behavior, and adapts to experience.

1.1 Motivation and Problem Statement

Modern voltage imaging systems are capable of recording from hundreds or thousands of
neurons at kilohertz frame rates. This capability however, comes at the cost of massive
data throughput, often reaching terabytes per hour, which presents significant computational
challenges. Extracting meaningful events like spikes from these data requires complex pro-
cessing pipelines capable of motion-correction, denoising, segmentation, and spike infer-
ence. These tasks are further complicated by low signal-to-noise ratios, motion artifacts
and photobleaching.

Although tools such as VoIPy [4], Suite2p [5] and GPU-accelerated frameworks like
Bando et al. [[6] have pushed the field forward, many still falter at frame rates beyond 500
Frames Per Second (FPS) with high-resolution data (e.g., fields larger than 200x 300 pix-
els). In such cases, real-time (zero-latency) analysis becomes infeasible, threatening to
bottleneck the utility of voltage imaging despite its unprecedented window into fast neural
dynamics.

This limitation is especially problematic in closed-loop neuroscience experiments, where

1.2. Thesis Goal and Contributions

detected spikes must trigger immediate feedback interventions, such as optogenetic stimu-
lation or behavior, contingent cues, within milliseconds [[7]. Here, both high precision and
true real-time inference are not just beneficial but essential.

Accordingly, this thesis seeks to address the following research question:
How can a real-time voltage imaging pipeline be optimized to ensure lossless frame
processing, maximize spatial resolution, and maintain high inference accuracy under
strict computational constraints?

1.2 Thesis Goal and Contributions

This thesis addresses the dual challenge of achieving real-time performance and high sig-
nal fidelity in spike extraction from voltage imaging data. It presents a scalable processing
pipeline capable of handling the data volumes generated by next-generation imaging sys-
tems while producing cleaner, better interpretable spike outputs.

Today’s experiments frequently operate at frame rates above 500 FPS and across large
fields of view, enabled by advanced GEVIs and volumetric imaging techniques [} 9.
Yet, existing analysis pipelines often falter under these conditions. This work introduces
a methodology that not only alleviates these performance bottlenecks but also improves the
reliability of the inferred spike traces.

1.2.1 Thesis Objectives

To meet the above mentioned challenges, the thesis pursues the following specific objec-
tives:

* Benchmark existing pipelines: Evaluate prominent existing pipelines on standard
lab hardware to identify key performance and scalability limits.

* Explore optimization strategies: Investigate low-level accelerations, such as custom
kernels and memory-efficient streaming, to improve processing speed.

* Design a modular architecture: Create a flexible, component-based pipeline that
can adapt to diverse experimental setups and computational constraints.

* Develop a benchmarking suite: Build standardized tools for evaluating both per-
formance (e.g., FPS, latency) and signal quality (e.g., spike fidelity, robustness to
noise).

* Validate in real time: Demonstrate lossless spike extraction at >500 FPS in condi-
tions mimicking real-world experiments on 300 x300-pixel frames, achieving end-to-
end processing latency below 50 ms.

¢ Conduct an extensive survey of state-of-the-art tools and building blocks: Re-
view existing software components, libraries, and frameworks relevant to voltage
imaging pipelines.

1. INTRODUCTION

* Develop a portable software stack: Create a fully containerized, dependency-managed
pipeline that can be deployed on any system, from single-GPU workstations to cloud
instances.

1.2.2 Thesis Contributions

This thesis makes the following contributions to the field of voltage imaging analysis:

* Pipeline Bottleneck Analysis: A comprehensive evaluation of the performance lim-
its of existing spike extraction tools. (Chapter [3|and [)

* Hybrid Optimization Framework: A suite of GPU-based and architectural im-
provements tailored for high-speed data processing. (Chapter [3))

 Signal Quality Enhancements: Techniques that improve the consistency of ex-
tracted spike traces. (Section

* Scalable Real-Time System: A prototype capable of real-time spike inference from
high-throughput imaging data without frame loss. (sectionr|[6.5.2))

* Live Deployment Capability: The first end-to-end workflow enabling immediate de-
ployment during ongoing experiments. Unlike existing pipelines that rely on offline
file-based inputs, the proposed system operates directly on live data streams, reflect-
ing realistic experimental conditions requiring online spike monitoring. (Chapter #)

* Open Benchmark Toolkit: A reproducible, publicly available toolkit for evaluating
spike extraction pipelines across diverse conditions. (Section [5.4.3))

* Empirical Validation: Quantitative results demonstrating system performance on
both synthetic and real datasets, including application to closed-loop use cases. (Chap-

ter [6)

Collectively, these contributions bridge the gap between acquisition speed and analytical
capability, enabling a new generation of adaptive, real-time neuroscience experiments.

1.2.3 Thesis Outline

The remainder of this document is organized as follows. Chapter |2| reviews the biologi-
cal foundations of voltage imaging, characterizes its unique data challenges, and surveys
the hardware and real-time processing constraints that drive pipeline design (Sections 2.1-
2.7). Chapter 3| presents a detailed literature survey of existing voltage-imaging workflows,
covering motion correction, segmentation, photobleaching correction, spike detection, and
thresholding, and synthesizes common architectural patterns (Sections 3.1-3.5).

Building on this survey, Chapter | benchmarks and compares state-of-the-art pipelines,
identifies their complementary strengths, and motivates a unified, hybrid pipeline architec-
ture (Sections 4.1-4.2). Chapter 4 also introduces targeted algorithmic improvements, such

4

1.2. Thesis Goal and Contributions

as vignette filtering and GPU-accelerated median computation, driven by empirical profil-
ing (Section 5.3). Chapter [5] then details the software implementation of both offline and
online modes, including startup-latency optimizations, profiling-driven refinements, modu-
lar control, and containerized deployment (Sections 5.1-5.4).

Chapter [6] evaluates the hybrid pipeline using benchmark datasets and representative
hardware, quantifying segmentation and spike-detection accuracy, end—to—end latency in
offline and streaming modes, and memory usage (Sections 6.1-6.6). Chapter [7] summarizes
the key contributions, highlights performance achievements on Tesla V100 and H100 plat-
forms, discusses observed trade-offs and limitations, and outlines directions for future work
(Sections 7.1-7.4).

Chapter 2

Background

This chapter establishes the foundational context for the development of a real-time, scal-
able voltage imaging pipeline. It begins by tracing the evolution from calcium to voltage
imaging and outlines the advantages of the latter in high-temporal-resolution neuroscience.
It then explores the challenges specific to voltage imaging data, including low signal-to-
noise ratio, biological noise, and motion artifacts, and concludes by framing the technical
constraints that motivate the system design introduced in later chapters.

2.1 From Calcium to Voltage Imaging

Calcium imaging has been a staple in systems neuroscience, providing indirect measures
of neuronal activity through the detection of intracellular calcium transients. While it has
enabled significant discoveries about population dynamics and connectivity, its temporal
resolution is inherently limited by the kinetics of calcium binding and unbinding. Typi-
cal calcium indicators respond on the scale of hundreds of milliseconds, rendering them
unsuitable for capturing precise spike timing, fast oscillatory dynamics, or real-time appli-
cations [10].

Voltage imaging, in contrast, uses|[Voltage-Sensitive Dye (VSD)|or[Genetically Encoded|
[Voltage Indicator (GEVI) to record membrane potential changes directly. This modality of-
fers temporal resolutions on the order of 1-2 ms, allowing researchers to resolve action
potentials, subthreshold fluctuations, and fast synaptic inputs with much greater fidelity.
It thus provides access to previously unobservable dynamics, enabling closed-loop experi-
ments, synaptic inference, and real-time neural decoding [6, [10].

A side-by-side comparison of calcium and voltage signals is shown in Figure high-
lighting the sharp temporal contrast between the slow, integrated calcium response and the
precise spike-resolving capability of voltage imaging. These properties position voltage
imaging as a critical modality for real-time applications that demand millisecond precision
in spike detection.

2.2 Characteristics and Challenges of Voltage Imaging Data

Modern voltage imaging systems are capable of capturing data at frame rates ranging from
500 to 1000 FPS, with spatial resolutions spanning from several hundred to thousands of
pixels per dimension. These capabilities yield datasets of considerable size; individual
recordings can exceed 100 GB within just a few minutes. While this high temporal and

7

2. BACKGROUND

spatial resolution provides unprecedented insight into neural dynamics, it also introduces
significant challenges that complicate data processing and analysis.

2.2.1 Photobleaching and Baseline Drift

As fluorescent indicators are exposed to continuous illumination their brightness decays, a
phenomenon known as photobleaching. This leads to slow drifts in baseline fluorescence,
often compounded by physiological fluctuations such as metabolic activity or vascular dy-
namics. Without proper correction, these slow shifts can obscure neuronal signals and de-
grade the performance of spike detection algorithms. Effective photobleaching correction
is therefore essential to maintain a stable baseline for downstream analysis.

2.2.2 Motion Artifacts

Despite the use of head-fixation techniques or mechanical stabilizers, in-vivo recordings are
susceptible to motion artifacts resulting from heartbeat, respiration, and micro-movements
of the tissue. These movements cause spatial misalignments across frames, leading to dis-
torted trace data and complicating neuron tracking. Even subpixel shifts can introduce
significant artifacts, particularly in densely packed neuronal regions. As such, robust and
low-latency motion-correction is a critical component of any real-time imaging pipeline.

2.2.3 Low Signal-to-Noise Ratio (SNR)

In contrast to calcium transients which typically have large amplitude changes, voltage sig-
nals exhibit considerably lower Signal-to-Noise Ratio, SNR, as illustrated in Figure [I.1]
Neural activity is often masked by background fluorescence, thermal noise, and shot noise
originating from the imaging sensor. This low SNR poses a major challenge for detecting
individual spikes, especially in real-time contexts, where computationally intensive averag-
ing or manual curation methods used in offline processing are not feasible [[11].

2.2.4 Neuronal Spiking Dynamics

From a biological perspective, neurons may fire in bursts or as isolated spikes, with inter-
spike intervals ranging from a few milliseconds to several hundred milliseconds depending
on the cell type and experimental conditions. Following a spike, neurons enter a brief re-
fractory period during which no additional spikes can occur. These dynamics impose strict
temporal constraints on detection algorithms, which must resolve the onset of spikes with
sub-frame precision while avoiding false positives caused by noise or filtering artifacts.
Figure[2.T|illustrates the shape of a typical action potential, highlighting the sharp onset,
peak, and refractory dynamics that any voltage imaging pipeline must resolve accurately.

2.3 Pipeline and Hardware Constraints

Despite the growing demand for real-time analysis in voltage imaging, such as closed-loop
stimulation or adaptive imaging control, most existing pipelines remain optimized for of-

2.4. Design Drivers from Real-World Experiments

Action
potential
+40
s I
E s |
o O 0] o
o N o
2 = =)
S g g
3 g
55 Threshold . ,F?'I?d
- initiations
h Resting state
-70 = g
StimulusT

Time (ms)

Figure 2.1: Canonical action potential waveform showing rapid depolarization, peak, repo-
larization, and the hyperpolarization phase. The refractory period prevents immediate reac-
tivation, which poses timing constraints for spike detection algorithms. Image from [12]

fline post-hoc processing. Few pipelines are capable of sustaining data throughput at full
camera frame rates (e.g., 500-1000 FPS) without incurring frame loss or latencies exceeding
tens of milliseconds, which can undermine closed-loop experimental integrity. This chal-
lenge is compounded by hardware limitations common in many laboratories, where access
to high-performance GPUs or real-time operating systems is limited, and software stacks
are often heterogeneous.

Designing a spike inference pipeline that ensures high accuracy, low latency, and real-
time throughput under such constraints remains a core and unsolved challenge in the field.
This motivates the system architecture introduced in the following chapter

2.4 Design Drivers from Real-World Experiments

The requirements and constraints outlined above are shaped by the practical realities of
modern experimental neuroscience. Many cutting-edge studies rely on closed-loop feed-
back systems where neural signals must be detected and acted upon within milliseconds.
These include optogenetic stimulation triggered by specific patterns of neural activity, adap-

9

2. BACKGROUND

tive imaging that adjusts acquisition parameters based on brain state, and behaviorally con-
tingent interventions.

Adding to this complexity is the limited experimental window: each animal subject,
typically a mouse, must undergo a delicate surgical procedure to expose the brain and ap-
ply the VSD or GEVI. Once the mouse is head-fixed under the microscope, every second
becomes valuable. The time window is constrained not only by experimental goals and
ethical considerations, but also by the physiological burden on the animal. Despite being
immobilized, physiological processes such as breathing and heartbeat introduce motion ar-
tifacts and noise into the recordings.

In this context, experimental success depends heavily on the ability to extract reliable
neural signals quickly and under constrained conditions. Most laboratories work with a
single |Graphics Processing Unit (GPU)| workstation and finite memory resources, often in
mixed-platform environments (Linux and Windows). There is typically no access to remote
clusters or cloud-based computing during live experiments. Therefore, it is essential that
the pipeline is lightweight, robust, and real-time capable,designed to interface directly with
acquisition hardware and complete all processing on-site.

~~ Motion correction Segmentation

OMMMwwMM

Iy MAA A N A ™

= s

A PRI M My s Aot A

Spike detection Trace extraction

Figure 2.2: Voltage imaging experimental pipeline, including acquisition and real-time pro-
cessing stages.

2.4.1 Typical Experimental Setup

In a standard voltage imaging experiment, a mouse is placed under a high-speed fluores-
cence microscope, where it is head-fixed to minimize large-scale movement. A craniotomy
is performed beforehand to expose the brain, and a VSD or GEVI is used to label neurons in

10

2.5. Performance Constraints in Real-Time Processing

the region of interest. The imaging setup includes a high-speed camera capable of capturing
fluorescence signals at rates up to 1000 FPS, producing substantial data throughput.

These raw signals must be processed in real time to extract spike-resolved information
that is meaningful for downstream applications such as closed-loop stimulation. The pro-
cessing pipeline typically includes motion-correction, neuron segmentation, photo-bleaching,
denoising, and spike detection , executed entirely within the constraints of a single GPU-
equipped workstation.

As illustrated in Figure [2.2] each stage of the pipeline serves a distinct and critical role
in transforming raw fluorescence into usable neural data:

* Motion-Correction: Compensates for brain movement caused by breathing, heart-
beat, or micro-motions. This stage ensures that fluorescence changes reflect actual
neural activity rather than physical displacement.

* Neuron Segmentation: Isolates individual neurons or regions of interest (ROIs) from
the surrounding background, enabling targeted signal extraction and reducing inter-
ference from overlapping sources.

* ROI Trace Extraction: After motion-correction and segmentation, the defined
kgion of Interest (ROI)s are applied to the stabilized image frames to compute fluores-
cence traces. This involves averaging or summing pixel intensities within each ROI
across time, producing one signal trace per neuron for further analysis.

* Photobleaching Correction: Stabilizes fluorescence intensity over time by correct-
ing for signal decay and baseline drift.

* Denoising: Suppresses random noise while preserving meaningful transients, which
is essential for accurately detecting both spikes and subthreshold voltage fluctuations
in low-SNR conditions.

» Spike Detection: Identifies fast, spike-like voltage transients that correspond to neu-
ronal firing events. Accurate detection is critical for real-time interpretation and feed-
back control.

This multi-stage process enables researchers to extract actionable neural data for exper-
iments requiring real-time interaction with the brain.

2.5 Performance Constraints in Real-Time Processing

Enabling real-time voltage imaging analysis poses significant computational and architec-
tural challenges. Modern imaging systems generate hundreds to thousands of frames per
second, often with high spatial resolution and low signal-to-noise ratios. Processing this
data stream fast enough to support closed-loop experiments requires minimal latency, high
memory throughput, and robust inference algorithms, all operating in parallel.

A real-time pipeline must process each frame as it arrives, with tight constraints on
end-to-end latency. This includes overheads from motion-correction, trace extraction, and

11

2. BACKGROUND

spike detection, as well as data transfers from camera to system memory and GPU. Delays
introduced by batch processing, GPU memory limits, or inefficient I/O can quickly exceed
timing budgets, disrupting feedback-based experiments like optogenetic control or adaptive
stimulation [[13] [14]).

To guide system design, this thesis defines a set of target performance constraints based
on the capabilities of a mid-range lab workstation. These constraints represent practical,
achievable goals for enabling real-time operation in experimental neuroscience environ-
ments:

Constraint Target Value

Minimum Processing Rate 500 FPS @ 300 %300 px
Maximum Latency per Frame 50 ms

Frame Drop Tolerance < 0.01% (1 in 10,000 frames)
Maximum |Random Access Memory (RAM)l Usage 64 GB

’m Requirement Single gpu (cross-platform)

Table 2.1: Target performance constraints based on available lab hardware.

2.6 Parallelism and High-Speed Processing

Achieving real-time processing of voltage imaging data necessitates leveraging parallel
computing paradigms. Amdahl’s Law provides insight into the potential speedup of a task
using multiple processors, highlighting that the maximum improvement is limited by the
portion of the task that cannot be parallelized [[15]. The law is commonly expressed as:

1
S (I—P)—i—% (2.1)
where S is the theoretical speedup, P is the proportion of the program that can be paral-
lelized, and N is the number of processing units. This relationship emphasizes that even
with infinite processing resources, speedup is ultimately capped by the serial fraction of the
task.

Modern processors, including multicore [Central Processing Units (CPUs)|and GPU, of-
fer distinct architectural trade-offs when applied to Amdahl’s Law. CPUs are designed for
low-latency, sequential execution with a few high-performance cores, and thus they excel
at the serial portions of a pipeline, those bottlenecked by control logic, memory access, or
conditionals. GPUs, by contrast, are designed for high-throughput parallelism, featuring
thousands of lightweight cores that handle large-scale, data-parallel tasks efficiently. As a
result, GPUs maximize the impact of the parallel fraction P in Amdahl’s Law, achieving
massive speedups where P is high and the workload is well-suited to SIMD (single instruc-
tion, multiple data) execution.

While parallelism helps overcome short-term performance barriers, long-term trends in
hardware advancement have also played a crucial role. According to Moore’s Law, the num-
ber of transistors for same size integrated circuits doubles approximately every two years,

12

2.6. Parallelism and High-Speed Processing

effectively doubling processing performance over the same interval. Although this trend
has slowed in recent years, it remains a guiding principle for expectations around com-
pute capacity and has fueled the proliferation of high-throughput, GPU-based computing
environments critical for voltage imaging workloads.

2.6.1 Pipelining in Imaging Workflows

Pipelining refers to the organization of tasks into sequential stages that operate concurrently
on different pieces of data. In real-time voltage imaging, pipelining allows incoming frames
to be processed in a staggered fashion: while one stage completes motion-correction on
frame n, another stage might be applying spike detection to frame n — 1, and yet another is
acquiring frame n+ 1.

This architectural approach is effective for maximizing hardware usage and reducing
idle time across CPU and GPU components. It also enables smoother streaming and smaller
per-frame latency, which are crucial for closed-loop and interactive experiments. A concep-
tual overview of pipelining in general-purpose processing systems is shown in Figure [2.3]

Sequential Data 1 | Data 2 Sequential
availableavailable

Task 1—{ Task 2 J_’EraSk% P ¢ —l

Para”el ..

Data1 | Data2 | . Pipelining
Task 1 availableavailable

' '
Processor

1 Task 1| [Task 1| Task 1| """
\ \
Processor El'ask ZJ ﬁask ZJ El'ask 2]

[Time > 2 ! >

Time

(a) Parallelism: executing the same operation (b) Pipelining: overlapping different processing
on multiple data simultaneously. Ideal for tasks stages across multiple data items. Common in
like GPU-based matrix operations. imaging workflows.

Figure 2.3: Conceptual comparison of parallelism and pipelined execution. Parallelism ap-
plies the multiple operations concurrently across multiple data elements to boost through-
put, pipelining divides a workflow into sequential stages that overlap in time.

2.6.2 GPU Acceleration in Voltage Imaging Pipelines

GPUs are particularly well-suited for real-time voltage imaging due to their architecture,
which allows thousands of lightweight threads to run in parallel. Unlike cpu, which are op-

13

2. BACKGROUND

timized for sequential logic and complex control flow, GPUs are built around massive num-
bers of simple, parallel processing units that shine when applied to uniform, data-parallel
workloads such as:

» Image registration: Operations like cross-correlation, affine transforms, or optical
flow that can be applied per-pixel or block-wise across frames.

* Filtering and enhancement: Convolutional filters (e.g., Gaussian blur, Sobel edge
detection), morphological operations, and spatial transforms.

* Fourier and frequency-domain analysis: Fast Fourier Transforms (FFT) and re-
lated operations, which are heavily parallelizable and used in denoising, compression,
and texture analysis.

* Frame-wise operations in video processing: Processing streams of image data (e.g.,
temporal filtering, change detection, frame differencing) in parallel.

Whereas CPUs help reduce the (1-P) term in Amdahl’s Law by speeding up serial bottle-
necks, GPUs dramatically shrink the P/N term when applied to parallelizable components.
A balanced pipeline architecture that exploits both is necessary for real-time performance.

Low-Level vs. High-Level GPU Programming

GPU resources can be accessed at multiple abstraction levels. At the lowest level, develop-
ers can write CUDA (Compute Unified Device Architecture) or OpenCL (Open Computing
Language) kernels, specialized code designed to run directly on GPU hardware. These
frameworks allow fine-grained control over GPU memory management and compute oper-
ations, enabling developers to maximize efficiency and performance. This level of access
is especially valuable for custom pipelines with strict performance constraints. However,
writing and optimizing low-level kernels requires deep knowledge of GPU architecture,
memory hierarchies, and parallel programming models, as well as significant development
time.

At a higher level, libraries such as TensorFlow, PyTorch, CuPy, and RAPIDS expose
GPU acceleration through convenient APIs. These frameworks abstract away memory
management and parallelization, allowing developers to implement high-performance code
quickly. While this may sacrifice some control and efficiency, the benefits of rapid pro-
totyping and portability often outweigh the trade-offs in early or general-purpose pipeline
design.

2.7 Preview: Implementation Mechanics and Relevance

This chapter has outlined the biological, experimental, and hardware constraints that shape
the design of a real-time voltage imaging pipeline. While these high-level considerations
motivate the system architecture introduced in the next chapter, many of the key trade-
offs emerge only at the implementation level, where processing delays, memory usage, and
algorithmic structure directly impact performance.

14

2.7. Preview: Implementation Mechanics and Relevance

To preview these lower-level concerns, this section provides a high-level summary
of two representative pipelines: FIOLA and VOLTAGE. Both are designed for high-
throughput voltage imaging, but they adopt distinct architectural strategies. FIOLA empha-
sizes real-time, frame-by-frame execution with fixed ROIs and lightweight computation,
making it well-suited for online deployment. VOLTAGE, by contrast, relies on modular
stages, GPU acceleration, and deep-learning—based segmentation, trading off latency for
flexibility and spatial accuracy.

A key component in both pipelines is motion-correction, which aligns frames to a
reference template. This step is critical to downstream performance and is later shown to
become a computational bottleneck in the hybrid system design (see Section [6.5.1). For
this reason, motion-correction receives particular attention in both the implementation and
optimization chapters.

A concise explanation of FIOLA’s motion-correction is included below, along with a
brief summary of the computational complexity of all components. Readers interested in
the full analysis are referred to Appendix

2.7.1 FIOLA: Fluorescence Imaging OnLine Analysis

FIOLA is an online voltage imaging pipeline designed for low-latency, real-time processing.
After an initial offline calibration, it processes frames independently using a GPU-resident
computational graph, achieving millisecond-scale latencies. FIOLA supports frame-by-
frame motion-correction, fluorescence trace extraction, and spike inference without full
video buffering, making it suitable for closed-loop experimental paradigms.

The structure and execution flow of FIOLA’s offline phase is illustrated in Figure
which highlights each step leading up to online operation and the data artifacts generated at
each stage.

Initialize
Compute -
. median on . Perform Initialize Perform Initialize
Processes
L wdeo batch with N o > motion —> Trace trace spike
from file model on)))
number of X correction) extraction detection
GPU using

frames

temglate Ll ,—f_‘

Dependencies

Motion Externally
» Template cor_rected generated Traces
video ROI masks

Time I :>

Figure 2.4: Timeline of the FIOLA pipelines offline initialization process. Key stages in-
clude motion template creation, segmentation or mask loading, matrix factorization into
signal and background components, and spike template generation. These outputs are used
in real-time during online streaming.

While FIOLA is described as an online pipeline, it does not operate in a fully streaming
mode. Specifically, after offline calibration, the full imaging file is first loaded into GPU
memory. Only then does FIOLA process each frame independently or in small batches with-
out further buffering delays. This distinction is important in the context of real-time systems

15

2. BACKGROUND

that must operate continuously on incoming data. Figure [2.5]illustrates the sequence of op-
erations following offline initialization, capturing the data flow and GPU execution model
during the online phase.

|_> Repeat <—|

Processes |Load video Load data to Get batch Motion correct—» Extract Spike
from file GPU .| ofdata traces detection

S

Externally Spike templates
Template generated generated by
ROI masks | [spike initialization

Time [:>

Figure 2.5: Execution timeline of FIOLA’s online phase. After the entire imaging file is
loaded into GPU memory, frame-by-frame or batch-wise processing is performed with low
latency. This timeline illustrates how motion-correction, fluorescence extraction, and spike
inference are pipelined without further I/O or video buffering.

Dependencies

Motion-Correction

FIOLA performs rigid motion-correction by aligning each incoming frame to a fixed refer-
ence template (typically obtained during initialization) using frequency-domain normalized
cross-correlation (ZNCC). Crucially, once the required subpixel shift is determined, it is
applied directly in the Fourier domain via phase modulation, avoiding interpolation in the
spatial domain.

The algorithm proceeds as follows:

1. Fourier Cross-Correlation: The incoming frame /; and the template T are first zero-
mean normalized and transformed via a 3D [Fast Fourier Transform (FFT)] although
the complex values remain at 0. Their normalized cross-correlation is computed in
the frequency domain using:

ZNCC = |F ' (F (L) - F(T)")] (2.2)

where F denotes the FFT and * is the complex conjugate.

2. Subpixel Shift Estimation: The peak of the ZNCC map is extracted, and Gaussian
interpolation is applied in log-space to estimate subpixel displacements (Ax,Ay).

3. Phase-Based Shift Application: The shift is then applied in the frequency domain
by modulating the phase of the FFT of ;. This approach exploits the Fourier shift
theorem and avoids explicit interpolation:

It/ — ’(}‘71 (.{]j(lt) .672m‘(qu+vAy)> (23)

16

2.7. Preview: Implementation Mechanics and Relevance

where (u,v) are spatial frequency coordinates.

Figure [2.6]illustrates this pipeline, including the FFT-based cross-correlation, subpixel
estimation, and frequency-domain shift correction.

Zero mean Correlation
nomalized cross b
correlation

Apply shifts by
modulating IFFT
FFT FFT phase
A A

Find peak in Resu‘[ting

map to find Motion

shifts 50 FFT corrected

image

Incoming Reference
Frame Template Incoming
L T Frame
I

Figure 2.6: Overview of FIOLAs motion-correction process. Each incoming frame is nor-
malized and transformed via FFT, then aligned to a reference template using frequency-
domain cross-correlation. Subpixel shifts are estimated and applied in Fourier space.

Template Construction: The accuracy of the motion-correction step depends on the qual-
ity of the reference template. FIOLA constructs this during an initialization phase by com-
puting the pixelwise temporal median over a batch of frames (usually 5000 or more). This
median operation is performed on the CPU and has a complexity of O(NLlogL) for N pixels
and L frames.

Computational Complexity: The per-frame cost is dominated by FFT operations and
subpixel refinement:

* FFT and inverse FFT: O(NlogN)

* Phase-based shift: O(N)

* Subpixel peak estimation: O(1) per frame
All steps are parallelized on GPU using TensorFlow’s “fft3d’ and ‘ifft3d’ operations.
Implementation Details: Motion-correction is implemented as a custom TensorFlow layer
using ‘tf.signal.fft3d’ and ‘ifft3d’. The cross-correlation, phase shifting, and inverse FFT
are executed on the GPU for high throughput. Precomputed frequency-domain template
values are reused across frames, and the system maintains a batched pipeline for real-time
operation. Shift values are computed per frame and passed downstream for trace alignment.

The FFT-based correction supports subpixel accuracy without the artifacts that typically
arise from spatial-domain interpolation.

17

2. BACKGROUND

Summary: FIOLA achieves accurate, low-latency spike detection by integrating photo-
bleaching correction, real-time matched filtering, and adaptive thresholding. Its streaming-
friendly design makes it ideal for closed-loop voltage imaging experiments, and its compu-
tational efficiency allows scalability to thousands of neurons in real time.

2.7.2 VOLTAGE: A Fast, Modular Voltage Imaging Pipeline

VOLTAGE (Voltage imaging pipeline) is an open-source framework developed by the MIT
Media Lab and collaborators for high-speed analysis of voltage imaging data [6]. It is de-
signed to operate in real time or faster-than-recording-time on a single high-end workstation
equipped with GPUs.

The pipeline consists of six main stages:

1. Motion-Correction: Stabilizes video data by removing global 2D translational shifts.

2. Shading Correction: Compensates for lighting intensity changes due to movement
and illumination variability.

3. Preprocessing: Aggregates raw frames into summary images to suppress noise.

4. Segmentation: Applies a CNN to summary images and demixes overlapping ROIs
via local [Non-negative Matrix Factorization (NMF)|

5. Trace Extraction: Computes fluorescence traces for each ROI over time.

6. Spike Detection: Identifies spikes on the extracted traces using thresholding or tem-
plate matching.

Motion-correction, shading-correction and segmentation are designed for GPU accel-
eration and multi-GPU parallelism. VOLTAGE is implemented in C++/CUDA and Python
and can be extended or replaced at any stage.

File Motion Shading Pre- Segmen- Mask Trace Spike
Processes ; LS . > p n . h
read correction| ~ |correction ~|processing tation Calculation| ~|extraction etection
l 0y

Time | >

Figure 2.7: Timeline of VOLTAGE'’s pipeline execution. Each stage uses the output of the
previous one as its input, creating a sequential dependency. The only exception is trace
extraction, which depends not only on the ROI mask but also directly on the output of
shading correction.

2.7.3 Computational Complexity

Computational complexity refers to how the resource requirements of an algorithm, typi-
cally time or memory, scale with input size. It is expressed using Big-O notation, which
captures the dominant terms as the input grows large. In the context of voltage imaging

18

2.7. Preview: Implementation Mechanics and Relevance

pipelines, complexity helps predict how performance will degrade with increasing resolu-
tion, number of frames, or neurons. Understanding the asymptotic cost of each component
is critical when optimizing for real-time constraints or large-scale datasets.

The following summarizes the theoretical complexity of major stages in both FIOLA
and VOLTAGE pipelines. Notation is shared unless otherwise specified:

F = Total number of frames
K = Number of neurons (ROIs)

L = Temporal window length

Niter = Number of optimization iterations

s = Patch size
S = Temporal segments (VOLTAGE)
R = Overlapping regions demixed (NMF)

d,N = Pixels per frame

7 = Average ROI size

Tinic = Initialization frame count

P = Patches per frame (VOLTAGE)

M = Shift candidates per patch
p = Pixels in NMF region

Pipeline Component Time Complexity Space Complexity
FIOLA Motion-Correction O(NlogN -F) O(N)

FIOLA Template Construction O(N-LlogL) O(N-L)
FIOLA Trace Extraction (offline) O(Niter - d - K - Tinit) O(N-K +K?)
FIOLA Trace Extraction (online) O(F - (d+K)) O(K)

FIOLA Spike Detection O(F-K-L) O(K-F)
VOLTAGE | Motion-Correction O(F -P-M-s*)=~O(F-N-M) | ON-+P-M)
VOLTAGE | Summary Image Extraction O(S-d-L)~ O(F -d) O(N-L)
VOLTAGE | Segmentation (CNN) O(S-P-s?) O(p*-c)
VOLTAGE | Segmentation (NMF Demixing) | O(R-p-K-S) ON-T+N-K)
VOLTAGE | Trace Extraction O(F -K -7) O(K-F)
VOLTAGE | Spike Detection O(F -K) O(K)

Table 2.2: Time and space complexity of FIOLA and VOLTAGE processing stages. Com-
plexity is expressed asymptotically in terms of key variables.

A complete derivation and additional discussion of scaling behavior appear in Ap-

pendix [B]

19

Chapter 3

Related Works

The previous chapter outlined the biological, experimental, and computational challenges
that make real-time voltage imaging both valuable and difficult. High frame rates, low
signal-to-noise ratios, and motion artifacts create a demanding environment in which anal-
ysis pipelines must operate with high precision and minimal latency. However, addressing
these challenges is not solely a matter of experimental design, it also requires algorithmic
solutions that are robust, scalable, and compatible with real-time constraints. To design a
pipeline that meets these stringent demands, it is essential to understand the current land-
scape of available methods and how they address, or fail to addressthese constraints.

This chapter surveys the existing literature on voltage imaging analysis, with a focus
on pipeline components that support real-time performance. It builds on a meta-analysis
conducted by Rui Silva [[16], which categorized modern pipelines into a series of standard-
ized processing stages: motion-correction, neuron segmentation, denoising, photobleaching
correction, spike detection, and thresholding, as shown in Figure[2.2] These stages provide
a framework for comparative evaluation and guide the architectural choices made in this
thesis.

While Silva’s analysis focused on spike inference accuracy and processing speed, the
increasing demands of real-time and high-throughput neuroscience necessitate a closer ex-
amination of each method’s computational efficiency and scalability. In this review, these
pipeline stages are revisited with an emphasis on runtime performance, memory usage, on-
line compatibility, and hardware acceleration.

Algorithmic complexity is assessed qualitatively, based on factors such as streaming
versus batch-mode operation, parallelizability, and GPU integration. Scalability is evaluated
in terms of performance on large datasets, latency during streaming, and feasibility for real-
time deployment.

Rather than reviewing individual tools in isolation, architectural trade-offs inherent to
each stage of the pipeline are examined. Special attention is given to methods that retain
high accuracy, consistent with Silva’s benchmarks, while advancing scalability and effi-
ciency. Notable examples include GPU-accelerated and real-time capable pipelines such as
FIOLA [17] and VOLTAGE [6], which exemplify state-of-the-art performance in voltage
imaging analysis.

21

3. RELATED WORKS

3.1 Motion-Correction

Motion-correction is essential in voltage imaging, particularly for in vivo recordings where
tissue movement can distort fluorescence signals. Most pipelines use 2D correction due to
the prevalence of one-photon and two-photon imaging [[16]]. For example, NoRMCorre [[18]]
applies piecewise rigid registration using normalized cross-correlation (NCC), but its re-
liance on full-frame operations and high memory usage limits its scalability.

Older tools like TurboReg [[19] and TrackMate [20] rely on global registration methods,
techniques that align an entire image at once by comparing all pixels using measures like
mean squared error (MSE) or by tracking specific objects. However, their lack of GPU sup-
port and the need to load complete datasets make them unsuitable for large-scale imaging.

Recent methods such as FIOLA [17]] and VOLTAGE [l6] improve scalability by lever-
aging GPU acceleration. FIOLA employs frequency-domain NCC using TensorFlow to
achieve real-time alignment at up to 1000 FPS [16]], though at lower spatial resolution and
big batch sizes. VOLTAGE uses zero-mean NCC with intensity normalization for robust
correction, also using GPU acceleration. However, it is designed for Linux-based systems
only, which limits its platform compatibility.

Additionally, Platisa et al. [21]] introduced a region-restricted approach that computes
NCC on a small region of interest (ROI) and applies the correction globally. This method
speeds up processing with minimal accuracy loss, but its closed-source nature restricts wider
use.

In summary, while NoRMCorre is well-established, newer approaches like FIOLA and
VOLTAGE offer improved scalability through GPU-friendly designs. The region-restricted
method further demonstrates that narrowing the correlation scope can enhance performance
with little overhead. A summary of key motion-correction methods and their trade-offs is
provided in Table[3.1]

3.2 Neuron Segmentation

Neuron segmentation is a major challenge for real-time and high-throughput workflows.
In many studies, manual ROI annotation is used, especially in mesoscale or subcellular
imaging where signal shapes vary, but this approach does not scale well and can hurt repro-
ducibility.

VolPy [4] uses PCA and iterative thresholding, which works reasonably well for mid-
sized datasets in offline settings. However, its full-frame decomposition limits scalability. In
contrast, FIOLA [[17] applies ridge regression and real-time clustering with GPU support,
avoiding the need for batch processing and enabling real-time execution. Similarly, the
VOLTAGE pipeline [6] employs U-Net segmentation on summary images of short video
segments, offering low preprocessing overhead and GPU-accelerated inference that makes
it effective for real-time use [16]].

Other strategies include threshold-based masking [21], which is fast but struggles in
noisy or crowded recordings, and manual annotation [22, 23], which is common in small-
scale studies but not scalable. Suite2p [5] uses graph-based clustering and scales well on

22

3.2. Neuron Segmentation

Table 3.1: Comparison of motion-correction methods used in voltage imaging pipelines.

Reference Method Computational Scalability Notes
Complexity
Cai et al, 2021 | NoRMCorre (rigid) Moderate Scales poorly with 1000+

(VolPy)

FPS due to sequential cor-
rection; GPU acceleration
helps

Cai et al., 2023 (FI-
OLA)

Online piecewise rigid +
deep learning

Moderate-High

Designed for online use;
highly scalable with GPU
optimization

Griffiths et al., 2020

Real-time 3D registration
with feature matching

High

Excellent for volumetric
data, but high mem-
ory/compute demand

Xie et al., 2021

Frame-to-template correla-
tion (rigid)

Low-Moderate

Fast but less robust to local
warping or drift

Fan et al., 2022 Rolling average reference | Low Lightweight and fast, but
alignment sensitive to drift and noise
Evans et al., 2023 Suite2p motion-correction Moderate Optimized for throughput
(Python + GPU support)

Abdelfattah et al., | Frame registration via high- | Moderate Real-time capable when
2023 pass reference windowed

Wong-Campos et al., | Subpixel rigid alignment + | Moderate Effective for high-speed
2023 spline smoothing light-field imaging

Kaifosh et al., 2014 Hidden Markov model line | High Not optimized for large-

correction

scale or real-time use

Platisa et al., 2022

2D fast Fourier transform

Low-Moderate

Very fast; scales well for

registration 2D datasets
Sabater et al., 2021 TurboReg (ImagelJ) Low Sufficient for small data but
not real-time suitable
Bando et al., 2024 ZNCC (zero-mean normal- | Moderate Robust against brightness

ized cross correlation)

fluctuations;
fast

moderately

Kannan et al., 2022

Rigid-body + photobleach-
aware correction

Moderate—-High

Tailored for GEVI imaging
with variable intensity

GPU hardware, though it is not optimized for real-time processing. Signal-informed meth-
ods by Kannan et al. [24] and Liu et al. [25] leverage GEVI characteristics like polarity or
template matching to improve specificity, though they depend on predefined models.

More experimental approaches include a neural network-based real-time segmentation
tool by Wang et al. [20] and a probabilistic refinement step for noisy data by Brooks et
al. [27]. Additionally, Weber et al. [28]] and Tian et al. [29] integrate segmentation directly
into volumetric imaging protocols, which can be useful but are computationally intensive
and hardware-dependent.

Overall, while accuracy is crucial, efficient processing such as summary-image methods
and GPU inference is equally important. Scalable segmentation pipelines like FIOLA and
VOLTAGE demonstrate that high performance and accuracy can go hand in hand when the
computational framework is optimized for throughput. A comparative overview of segmen-
tation methods is provided in Table[3.2]

23

3. RELATED WORKS

Table 3.2: Comparison of neuron segmentation methods used in voltage imaging pipelines.

and Python-based tools

Reference Method Computational Scalability Notes
Complexity
Cai et al., 2021 (VolPy) PCA-based ROI extrac- | Moderate Handles medium-sized
tion with iterative thresh- datasets well; not real-
olding time optimized
Weber et al., 2023 Confocal segmentation | High Powerful for multiplane
with axial multiplexing imaging; hardware-
integrated segmentation
Platisa et al., 2022 Threshold-based masking | Low Simple but effective for
on filtered images 1P/2P data; not ideal for
crowded fields
Evans et al, 2023 | ROl detection wusing | Moderate Efficient on large
(Suite2p) graph-based clustering datasets; GPU-friendly
Tian T., 2022 High-speed multipho- | High Very effective for dense
ton segmentation using 3D data; computationally
volumetric scans intensive
Liu Z., 2022 (Cell) Fast indicator + ROI | Moderate Designed for GEVI fluo-
matching using templates rescence stability; robust
in vivo
Xiao S., 2021 Targeted illumination | Moderate Tailored for confocal se-
with adaptive segmenta- tups; moderately scalable
tion
Adam Y., 2019 Manual ROI segmenta- | Low Not scalable for large
tion via anatomical land- datasets or automation
marks
Kannan M., 2022 GEVI-aware segmenta- | Moderate Works well in dual-color
tion using signal polarity setups; scalable to ~100
ROIs
Wang Z., 2023 (bioRxiv) Machine learning-based | High High-speed and large-
real-time ROI extraction scale compatible; still ex-
perimental
Brooks F.P, 2024 Probabilistic ROI refine- | Moderate Balanced performance;
ment from denoised sig- good for noisy or dim
nals signals
Piatkevich K., 2019 Max-projection ROI out- | High Optimized for kilohertz
lines from kHz 2P scans recordings; compute-
heavy
Kaifosh P, 2014 Manual mask generation | Low Scripting allows flexibil-

ity, but requires user in-
teraction

Canales A., 2023

Combined ROI extraction
with dendritic tracing

Moderate—High

Precise but slow; not
suitable for real-time

Shu W.C., 2021 Automated clustering of | Moderate Segments active neurons
synchronous events based on spiking syn-
chrony
Hayward R.F,, 2023 Model-based segmenta- | Moderate Targeted for hybrid
tion using hybrid GEVIs probes; not widely
generalizable

24

Continued on next page

3.3. Photobleaching Correction and Spike Detection

Table 3.2 — Continued from previous page

Reference Method Computational Scalability Notes
Complexity
Bando et al, 2024 | U-Net segmentation on | Moderate—High Designed for real-time
(VOLTAGE) summary images from performance; leverages
short videos GPU acceleration and ef-
ficient preprocessing

3.3 Photobleaching Correction and Spike Detection

Photobleaching correction is vital for maintaining accurate AF /F baselines during long
recordings. The AF /F baseline — calculated as the change in fluorescence (AF') divided by
the baseline fluorescence (F) — provides a normalized measure that compensates for vari-
ability in the initial signal. Silva notes that photobleaching and baseline drift often occur to-
gether [16]. Common strategies to correct these effects include exponential fitting [30, [21],
high-pass filters [31]], and rolling averages [32]]. Exponential models are computationally
lightweight and preserve signal frequency content but assume a uniform decay rate, while
filtering methods are fast yet risk dampening subthreshold oscillations.

Because drift and bleaching tend to co-occur, most pipelines address them together us-
ing smoothing or normalization. However, varying decay rates across regions of interest
(ROIs) can complicate parameterization and reduce the method’s generalizability. A com-
parative summary of photobleaching correction methods is shown in Table[3.3]

Denoising often serves as a preprocessing step before spike detection, particularly in
recordings with low signal-to-noise ratios. Methods range from lightweight techniques
like Gaussian filtering and PCA/SVD-based denoising [4], to advanced deep learning-based
models such as DeepVID [33]], which offer high-quality noise suppression with GPU accel-
eration. Table [3.4 compares commonly used denoising approaches in terms of scalability
and computational complexity.

Spike detection is typically performed on thresholded AF /F signals or on z-scored
traces. Z-scored traces are signals normalized by subtracting their mean and dividing by
their standard deviation, resulting in data with a zero mean and unit variance, which helps
highlight deviations. For instance, VolPy [4] combines template matching with statistical
modeling to achieve good accuracy, though it lacks real-time capability. In contrast, FI-
OLA [17] supports real-time inference using online ridge regression with adaptive thresh-
olding that updates noise estimates dynamically. Ridge regression is a linear regression
technique that adds a regularization term to mitigate the effects of multicollinearity, thereby
preventing overfitting.

Simpler detection strategies, like the per-pixel z-score thresholding employed in VOLT-
AGE [6], are GPU-compatible and scale well, although they may struggle in noisy con-
ditions. Platisa et al. [21]] use fixed post-denoising thresholds, which work effectively for
stable ROIs, while Villette et al. [34]] enhance specificity by deconvolving traces before
thresholding, though this adds complexity.

Other methods include Suite2p [S]], which uses autoregressive deconvolution with scal-
able inference. This approach balances computational efficiency and throughput, making it

25

3. RELATED WORKS

Table 3.3: Comparison of photobleaching correction methods used in voltage imaging
pipelines.

Reference

Method

Computational
Complexity

Scalability Notes

Cai et al., 2023 (FI-
OLA)

Online baseline tracking
with exponential smoothing

Low—Moderate

Designed for continuous
correction in streaming
pipelines

David Wong- | Spline fitting over temporal | Moderate Supports long-term record-
Campos et al., | intensity decay ings with gradual intensity
2023 loss
Lu X., 2023 (Nature | Framewise correction using | Moderate Works well in wide-field
Comms) control region references applications; assumes sta-
ble background
Kannan M., 2022 Photobleach-aware rigid | Moderate Designed for GEVI signals
registration with dynamic ranges
Fan L., 2022 (Cell) Rolling average and base- | Low Simple, efficient method
line drift removal compatible with online
analysis
Platisa J., 2022 Intensity normalization via | Low Suitable for stable 2P
ROI baselining recordings with limited
drift
Sabater G.V., 2021 Exponential decay model- | Moderate Effective for correcting
ing per ROI multi-ROI voltage imaging
data
Zhang Jie, 2023 Polynomial detrending | Moderate Designed for robust per-
combined with global formance across different
correction brightness regimes

Bando et al., 2024

Summary image normaliza-
tion using sliding windows

Low-Moderate

Implicit correction through
frame-averaged summaries
improves robustness over
time

well-suited for large datasets. In contrast, the probabilistic model by Brooks et al. [27] effec-
tively handles noisy or ambiguous signals but is computationally more intensive, which may
limit its real-time use. Meanwhile, synchrony-based detectors [35] focus on co-activated
neurons, offering a lighter computational load; however, they tend to miss isolated spikes,
reducing sensitivity in certain scenarios.

A summary of spike detection, denoising, and photobleaching correction methods is
provided in Tables[3.5] [3.4] and [3.3] respectively.

26

3.3. Photobleaching Correction and Spike Detection

Table 3.4: Comparison of denoising methods used in voltage imaging pipelines.

Reference Method Computational Scalability Notes
Complexity
Cai et al., 2023 (FI- | Gaussian filtering and ridge | Moderate Real-time capable; per-
OLA) regression forms well under high
frame rates
Cai et al, 2021 | PCA/SVD-based denoising | Moderate Works well for medium-
(VolPy) size datasets; not ideal for
online processing
Eom et al., 2023 Deep learning-based de- | High Accurate and fast with GPU
noising (statistical predic- acceleration; deep model
tion) training required
Liu et al, 2024 | Self-supervised spatiotem- | High State-of-the-art perfor-
(DeepVID v2) poral filtering mance; scales well with
batch GPU processing
Wang B., 2024 | Self-supervised denoising | High Tailored for GEVI noise
(CellMincer) using residual modeling patterns; well-optimized for
speed
Xie M.E., 2021 Bandpass filtering + local | Low Lightweight method ideal
averaging for real-time, small-volume
pipelines
Kim S., 2023 Optical segmentation-based | High Novel and efficient, but not
compressed reconstruction broadly validated
Fan L., 2020 Temporal smoothing using | Low Common in 1P pipelines;
rolling filters fast but may obscure fast
transients
Ma Yihe, 2023 Spatial averaging and tem- | Moderate Balanced in noise suppres-
poral whitening sion and signal preservation
Brooks E.P., 2024 Signal decomposition and | Moderate Designed to recover low-

filtering

SNR spike trains in voltage

imaging
Bando et al., 2024 Patch-wise background | Moderate—High Works in real-time;
subtraction and Z-score optimized with GPU-

filtering

accelerated ZNCC registra-
tion and summary images

27

3. RELATED WORKS

Table 3.5: Comparison of spike detection methods used in voltage imaging pipelines.

Reference Method Computational Scalability Notes
Complexity

Cai et al., 2023 (FI- | Online ridge regression | Moderate Real-time compatible and

OLA) with adaptive thresholds scalable for dense neural
populations

Cai et al., 2021 | Template matching with | Moderate Accurate but slower; not

(VolPy) noise modeling designed for real-time or
large-scale datasets

Bando et al., 2024 Simple Z-score threshold- | Low Fast, real-time suitable;

ing on pixel traces

sacrifices some accuracy
for speed

Villette V., 2019

Threshold crossing on de-
convolved signals

Low-Moderate

Works reliably for high-
gain indicators; not adap-
tive to baseline shifts

Platisa J., 2022 Voltage trace thresholding | Low Efficient for 2P recordings;
post-denoising best suited for stable ROIs
Evans S., 2023 | Deconvolution with autore- | Moderate High-throughput compati-
(Suite2p) gressive modeling ble; optimized for batch
pipelines
Shu W.C., 2021 Event-based clustering | Moderate Detects spikes based on co-
from synchrony detection activity patterns; not robust
for isolated events
Ma Yihe, 2023 Derivative-based spike de- | Low Simple, efficient, but sensi-
tection tive to noise fluctuations
Xiao S., 2021 Local maxima identifica- | Low Well-suited for stable imag-
tion with threshold gating ing conditions; not robust to
large intensity changes
Zhang Jie, 2023 Combined ROI and global | Moderate Balances speed and accu-
threshold strategy racy; scalable with moder-
ate computational load
Li B., 2020 Template-based spike de- | Moderate Good signal isolation;
tection with matched filters slower when dealing with
overlapping or low-SNR
signals
Brooks F.P., 2024 Filtered trace analysis using | Moderate Optimized for noisy volt-

probabilistic spike events

age recordings; tunable pre-
cision and recall

3.4 Thresholding Strategies

Thresholding methods are crucial for both spike detection accuracy and computational effi-
ciency. The simplest method, fixed z-score thresholding [6]], is fast and scales easily but can
struggle when baseline levels change. In contrast, FIOLA’s adaptive method [17] adjusts to
changing signal variance, which improves reliability at the cost of additional computations.

Hybrid approaches, like those from Zhang et al. [36] and Sabater et al. [37]], use a two-
stage process. They first apply a global threshold to quickly remove obvious noise, then
refine detection using local thresholds. This extra step increases the computational load
compared to fixed thresholding, but it also improves precision in variable signal conditions.

28

3.4. Thresholding Strategies

Brooks et al. [27] go further by implementing soft-threshold models that dynamically ad-
just sensitivity under low signal-to-noise conditions. Although these models require more
processing, modern GPUs can handle the extra load efficiently. Meanwhile, Kim et al. [I3§]]
propose using compressed readouts with spatially varying thresholds. This method can re-
duce the overall data size and computational cost, but its efficiency depends on how well
the compression is optimized.

A comparative overview of these thresholding strategies, including their computational
costs and scalability, is provided in Table [3.6]

Overall, integrating photobleaching correction, baseline stabilization, and noise model-
ing, as seen in pipelines like FIOLA [17]], VolPy [4]], and the approach by Brooks et al. [27],
leads to better accuracy and scalability. These methods are designed to take advantage of
modern hardware, such as GPUs, to manage the increased computational demands without
sacrificing real-time performance on large datasets.

Table 3.6: Comparison of thresholding methods used in voltage imaging pipelines.

Reference Method Computational Scalability Notes
Complexity
Cai et al., 2023 (FI- | Adaptive thresholding | Moderate Automatically adjusts to
OLA) based on signal noise signal variations; well-
estimates suited for online pipelines
Bando et al., 2024 Fixed Z-score threshold per | Low Extremely fast and scal-
pixel trace able; limited flexibility in
noisy or variable baselines
Xiao S., 2021 Local intensity threshold- | Low Works for stable recording
ing with dynamic adjust- conditions; not ideal for
ment drift-prone signals
Fan L., 2022 Simple global thresholding | Low Effective in low-noise con-
on filtered data texts; lacks adaptivity
Lu X., 2023 Polynomial baseline sub- | Moderate Performs well with consis-
traction with fixed thresh- tent background patterns
olds
Brooks F.P., 2024 Signal decomposition with | Moderate Designed for flexible preci-
soft-threshold detection sion tuning in low-SNR en-
vironments
Zhang Jie, 2023 Combined ROI and global | Moderate Balances performance
threshold strategy and simplicity for high-
throughput datasets
Sabater G.V., 2021 ROI-specific threshold tun- | Moderate Better precision than global
ing based on baseline stats thresholds; slightly slower
in large-scale applications
Shu W.C., 2021 Synchrony-based detection | Moderate Thresholds based on
thresholding population-level activation;
less sensitive to single
spikes
Kim S., 2023 Compressed readout with | High Novel approach; suited for
spatially varying thresholds compact encoding systems,
still experimental

29

3. RELATED WORKS

3.5 Summary and Integration

This chapter has examined voltage imaging pipelines by evaluating both spike inference
accuracy, as established in Rui Silva’s meta-analysis [[16]], and the computational complexity
and scalability of each processing stage. These factors are essential for enabling real-time,
large-scale neural data analysis and inform the methodological choices made in this thesis.

Although each processing stage, motion-correction, segmentation, photobleaching cor-
rection, spike detection, denoising, and thresholding, has been optimized independently in
the literature, the real power of voltage imaging emerges when the best elements are com-
bined into a cohesive, hybrid pipeline. The next chapter will show how the modular choices
below can be interwoven to leverage FIOLA’s online efficiency and VOLTAGE’s segmen-
tation accuracy, yielding a system that integrates full pipeline capability, from motion-
correction through spike detection, while remaining fully online.

Table presents a best-in-class modular pipeline, summarizing the most effective
method selected for each processing stage. These selections reflect a balance between
algorithmic accuracy, computational cost, and real-time performance. The table consoli-
dates discussion points from throughout the review, for instance, motion-correction via FI-
OLA [17]], U-Net-based segmentation in VOLTAGE [6], and spike detection using adaptive
thresholding and online regression.

Table 3.7: Best-in-class modular voltage imaging pipeline by processing stage.

Stage Chosen Method Reference Why This Choice?
Motion- Online piecewise rigid + | Cai et al., 2023 (FI- | Real-time capable, GPU-optimized,
Correction deep learning OLA) robust across large-scale datasets
Segmentation U-Net on summary images | Bando et al., 2024 | Accurate with overlapping neurons,
(VOLTAGE) real-time ready, scales well with
fast imaging
Photobleaching Online baseline tracking | Cai et al., 2023 (FI- | Lightweight, adaptive to drift,
with smoothing OLA) works well with online streaming
Denoising Self-supervised spatiotem- | Liu et al., 2024 | State-of-the-art denoising without
poral filtering (DeepVID) needing ground truth; highly gener-
alizable
Thresholding Adaptive thresholding | Cai et al., 2023 (FI- | Dynamically adjusts to signal con-
based on signal noise OLA) ditions; supports high-throughput
pipelines
Spike Detection Online ridge regression + | Cai et al., 2023 (FI- | Fast, continuous inference; inte-
adaptive inference OLA) grates well with adaptive threshold-
ing

Key trade-offs between accuracy, runtime performance, and hardware demands were

highlighted across each processing stage. While denoising via self-supervised spatiotem-
poral filtering (e.g., Liu et al.’s DeepVID [33]]) achieves state-of-the-art noise suppression,
it was excluded from the proposed hybrid pipeline due to its batch-mode architecture, high
GPU load, and incompatibility with real-time streaming. DeepVID relies on multi-frame
input and transformer-based processing, introducing latency and memory requirements that
conflict with the low-latency, modular goals of this pipeline.

30

3.5. Summary and Integration

In contrast, VOLTAGE [6] avoids separate denoising altogether by applying lightweight
temporal smoothing only during the generation of summary images for segmentation. This
approach reduces noise sufficiently for spatial analysis while remaining compatible with
online, frame-wise processing. Because segmentation in VOLTAGE operates directly on
these smoothed summary images using a GPU-accelerated U-Net, it aligns better with the
hybrid pipeline’s goals of modularity, scalability, and real-time performance.

Disclaimer: All performance figures reported in this chapter were obtained under vary-
ing (and often unreported) hardware configurations or software dependencies. As a result,
numerical runtimes and memory requirements are not directly comparable, our goal is a
theory-based relative comparison.

This theoretical comparison sets up the next chapter, where FIOLA and VOLTAGE will
be profiled on the same hardware, quantifying empirical performance, and then constructing
a hybrid pipeline that combines the low-latency motion-correction of FIOLA with the high-
accuracy segmentation of VOLTAGE.

31

Chapter 4

Pipeline design

To translate the findings from the literature into a practical, high-performance solution,
it is essential to move beyond isolated method descriptions and examine how complete
pipelines behave in practice. While individual components, such as segmentation or motion-
correction, may perform well on paper, their real-world efficiency and compatibility depend
heavily on implementation details, memory usage, inter-stage latency, and implementation-
specific bottlenecks.

Accordingly, this chapter begins with a detailed breakdown of the FIOLA and VOLT-
AGE pipelines. Comparable stages are profiled independently to identify computational
bottlenecks and performance trade-offs across different tasks and hardware environments.
The analysis is grounded in practical experiments and includes both step-wise profiling and
hardware-level comparisons.

Building on the insights from Section {.1] the second half of the chapter introduces a
unified hybrid architecture that combines the most effective components from each system.
This design balances accuracy, latency, and usability by separating pipeline responsibilities
into two complementary workflows:

* Offline pipeline: Focused on preprocessing and asset generation, including motion
templates and segmentation masks, with high-throughput, batch-oriented execution.

* Online pipeline: Optimized for online inference with strict latency bounds, enabling
closed-loop and feedback-driven neuroscience experiments.

The remaining sections describe these designs in detail and introduce a series of targeted
enhancements, such as vignette filtering and a focused analysis of the primary bottlenecks
limiting online processing performance.

4.1 Profiling State-of-the-Art Pipelines

This section evaluates the computational performance and accuracy of two leading voltage
imaging pipelines, FIOLA and VOLTAGE, with the goal of identifying runtime bottlenecks
and informing the hybrid pipeline design presented in later sections. This profiling serves
two key purposes: first, it reveals which components deliver the best empirical performance;
second, it lays the groundwork for a modular, hybrid pipeline architecture that combines the
most efficient elements of each system.

33

4. PIPELINE DESIGN

4.1.1 Setup and Experimental Conditions

Profiling was conducted using the benchmark dataset published by Bando et al. [1]], specifi-
cally the HPC2 subset, which serves as the representative dataset throughout this study. This
dataset includes pre-aligned ground truth data and manually curated masks for validation,
which are used throughout this chapter.

The dataset consists of image sequences with a spatial resolution of 116x496 pixels
and a general temporal depth of 15,000 frames. If longer sequences are encountered, they
are capped at 15,000 frames to ensure consistency across evaluations.

All profiling was conducted on the CUBE server at the Neuroscience department, as
shown in Table [4.T] using the open-source Miniconda distribution with Python 3.8. The
FIOLA pipeline was executed using TensorFlow 2.4.1 with CUDA 12 and CUDNN 8, while
the VOLTAGE pipeline required CUDA 11 to satisfy its compatibility constraints. GPU
execution was run in eager mode, and deterministic behavior was enforced across all runs.
A batch size of 1000 frames was used for both pipelines unless otherwise stated.

Table 4.1: Hardware specifications for FIOLA and VOLTAGE profiling experiments.

Component CUBE Server

CPU AMD EPYC 7551 (32-core, 2.56 GHz)
GPU NVIDIA Tesla V100, 32 GB

RAM 128 GB DDR4 (Kingston)

Disk Dell NVMe P4600, 3.2 TB

(0N Ubuntu 20.04.6 LTS

Despite being publicly available, both FIOLA and VOLTAGE required substantial ef-
fort to install and configure. Compatibility mismatches, missing dependencies, and undoc-
umented environment assumptions led to significant delays during the initial benchmarking
phase. In some cases, direct source code modifications were required to enable stable exe-
cution on modern GPUs. These setup challenges motivated the later development of a fully
containerized hybrid pipeline, described in Section[5.1] to ensure future reproducibility and
ease of deployment.

Profiling Methodology: Runtime measurements were obtained by inserting timers before
and after each stage of execution, with all steps included (I/O, preprocessing, model infer-
ence, and output writing). To ensure consistency, each profiling run was repeated five times
per file in the dataset, and results were averaged. Internal validation was performed using
cProfile, the built-in Python profiler, to confirm timer accuracy, and nvprof, the offical
NVIDIA profiler, was used to inspect GPU behavior, particularly for the motion-correction
modules. Model warm-up was performed by executing a full run once and discarding its
output. Memory usage was not recorded as part of this profiling.

34

4.1. Profiling State-of-the-Art Pipelines

4.1.2

7.5%

6.2%

13.4%

7.8%

FIOLA Runtime Breakdown

0.9% 19.2%

3.0%

14.0%

28.0%

Steps
GPU Initialization
File Read

Template
Calculation (Median)

Model Initialization

Motion Correction
(Inference)

Trace Extraction
Spike Detection
initialization
Spike Detection
File Write

Figure 4.1: FIOLA runtime breakdown (percent per step).

Table 4.2: FIOLA runtime breakdown (average across all videos; offline).

Step Time (s) | Time (%)
GPU Initialization 8.24 7.5
File Read 6.85 6.2
Template Calculation (Median) 14.72 134
Model Initialization 3.29 3.0
Motion-Correction (Inference) 15.46 14.0
Trace Extraction 30.78 28.0
Spike Detection initialization 21.15 19.2
Spike Detection 0.98 0.9
File Write 8.62 7.8
Total 110.09 100

FIOLA Pipeline Breakdown

FIOLA is an online-capable pipeline designed for accelerated processing of calcium and
voltage imaging data [17]. Built using GPU-optimized TensorFlow models, it processes
image sequences frame-by-frame with minimal buffering and latency. However, the version
profiled here reflects its offline configuration. At the time of benchmarking, full online
integration was not yet available; thus, modifications were later introduced to enable frame-
wise streaming and online profiling.

Profiling Insights

Table .2 summarizes the average runtime of each pipeline stage in FIOLA’s offline, batch-
processing mode, measured over our test dataset. Although FIOLA appears to support
online streaming, it actually first loads the entire dataset onto the GPU before any pro-

35

4. PIPELINE DESIGN

cessing begins. This GPU pre-loading stage scales linearly with the number of frames and
introduces several important implications:

* It adds upfront latency, delaying the onset of processing, especially problematic for
short recordings or low-latency applications.

* Itimposes a high memory footprint, limiting scalability to longer recordings or higher
resolutions due to GPU memory constraints.

* It breaks compatibility with true real-time operation, where frames arrive sequentially
and cannot be preloaded.

As such, the reported runtimes reflect isolated per-stage computational cost, but under
conditions that bypass the complexities of real-time buffering, incremental data flow, and
pipeline concurrency (see Section for those details). A few key observations emerge:

¢ Per—frame vs. front-loaded work:

— Per—frame stages: Motion-correction, trace extraction, spike detection, and GPU
transfer scale directly with the number of video frames. Each additional frame
incurs the full cost of these operations, so their cumulative runtime grows lin-
early with frame count.

— Front-loaded stages: Template calculation and spike—detector initialization are
performed once at startup using a fixed set of initial frames. Their cost does
not increase with video duration. However, in FIOLA’s offline mode, GPU
preloading acts as a hybrid stage, performed once but scaling with video length,
thereby contributing both to initialization latency and memory pressure.

* I/O overhead: Disk reads and writes account for roughly 14% of total runtime.
While not dominant on a high-performance NVMe SSD, I/O can become a limit-
ing factor on slower storage systems or when simultaneously processing multiple
datasets.

» Implications for real-time operation: To achieve low-latency, high-throughput stream-
ing, it is critical to avoid full preloading and instead implement efficient per-frame
transfers and buffering strategies. Front-loaded costs can be amortized over long
sessions, but true real-time performance demands that processing keeps pace with
acquisition without holding the full dataset in memory.

For a detailed analysis of the algorithmic and memory complexity associated with each
pipeline component, including asymptotic bounds and scaling behavior, refer to Table[2.2]
This table provides a side-by-side comparison of FIOLA and VOLTAGE stages in terms of
their computational and spatial demands, offering insight into their scalability and real-time
feasibility.

36

4.1. Profiling State-of-the-Art Pipelines

4.1.3 VOLTAGE Pipeline Breakdown

This section reports a detailed runtime profile obtained under controlled conditions, match-
ing the FIOLA profiling setup. The pipeline performs the operations in sequential order
as shown in Table {.3] which shows average execution times over the entire dataset. The
segmentation model, motion-correction and the evaluation of the pipeline steps dominate
computational cost.

Voltage Runtime Breakdown
24.4%

Steps

Initialize weights for
segmentation model

File read

Motion correction
initialization

Motion correction (GPU)
Shading correction
Preprocessing
Segmentation
Compute masks
Trace extraction
Spike detection
Result write
Evaluation of pipeline

10.5%
6.5%

b5%

0.9%
7.9%

13.9%

19.3%

Figure 4.2: Overview of VOLTAGE runtimes per component

Table 4.3: Runtime breakdown of the VOLTAGE pipeline averaged across all videos in the
HPC?2 dataset published by Bando et al. [1].

Step Time (s) | Time (%)
Initialize weights for segmentation model 5.34 6.46
File read 6.56 7.94
Motion-correction initialization 9.59 11.61
Motion-correction (GPU) 15.98 19.34
Shading correction 1.11 1.34
Preprocessing 2.04 247
Segmentation 11.51 13.93
Compute masks 0.70 0.85
Trace extraction 0.62 0.75
Spike detection 0.32 0.39
Result write 8.71 10.54
Evaluation of pipeline 20.14 24.38
Total 82.62 100.00

37

4. PIPELINE DESIGN

Profiling Insights: VOLTAGE Pipeline

Table .3 summarizes the average runtime per processing stage in the VOLTAGE pipeline,
measured across all videos in the HPC2 dataset under the same controlled conditions used
for FIOLA profiling. Although the operations are executed sequentially, their computational
impact varies considerably across stages. Figure 4.2] provides a visual overview of relative
costs. A few key observations emerge:

Profiling Insights: VOLTAGE Pipeline

Table .3 summarizes the average runtime per processing stage in the VOLTAGE pipeline,
measured across all videos in the HPC2 dataset under the same controlled conditions used
for FIOLA profiling. Although the pipeline executes its steps sequentially, their computa-
tional characteristics differ in terms of batching behavior, scalability, and real-time feasibil-
ity. Figure [4.2)illustrates relative runtime contributions. A few key observations emerge:

e Per-batch vs. front-loaded stages:

— Per-batch stages: motion-correction, shading-correction, preprocessing, and
trace extraction can be performed on batches of frames. These operations scale
with batch size and do not require global knowledge of the full video, making
them potentially suitable for streaming or real-time use.

— Less-than batch stages: Preprocessing generates summary images (e.g., max,
mean, std projections) in both spatial and temporal domains. Its cost depends
on the number and size of summary windows used (S, L), not the total number
of frames.

— Blocking stages: evalution, segmentation and mask computation require access
to the entire dataset of the preceding stages. Spike detection must also be per-
formed on the full extracted traces to ensure temporal accuracy. These stages
inherently block real-time execution due to their dependency on future or global
data. Evaluation however is a nice-to-have feature, but is not necessary for spike
detection.

— Front-loaded stages: Weight initialization and file reading occur once at startup.
While initialization has a fixed cost, file reading scales with video duration and
can become a bottleneck for longer recordings.

* Implications for real-time operation:

— Motion-correction, shading correction, and trace extraction are promising tar-
gets for real-time adaptation due to their frame-wise and non-blocking behavior.

— Segmentation, mask computation, and spike detection remain inherently offline,
but could potentially be scheduled periodically in near-online setups if the sum-
mary image design supports it.

38

4.1. Profiling State-of-the-Art Pipelines

4.1.4 Motion-Correction Scaling Comparison

While the theoretical analysis in Table [2.2] suggests that FIOLA’s motion-correction, based
on Fourier-domain alignment, should outperform VOLTAGE’s patchwise ZNCC approach,
practical profiling revealed otherwise. When excluding initialization steps, both pipelines
spent a comparable amount of time on the core motion-correction task. This unexpected
parity prompted further investigation into why VOLTAGE, despite its higher theoretical
complexity, demonstrated similar empirical performance. The next section explores this
discrepancy in detail by examining hardware-level scaling and implementation factors.

VOLTAGE’s ZNCC-based GPU motion-correction performs reasonably on high-end
GPUs but degrades significantly on lower-end hardware. A comparison run on Rui Silva’s
PC showed a nearly twofold slowdown versus CUBE. Additionally, VOLTAGE’s CPU fall-
back (used when GPU support is unavailable) was an order of magnitude slower, taking
108.75 seconds for a single 15,000-frame video. In contrast, FIOLA’s Fourier-based cor-
rection retained near-identical performance across systems, highlighting its portability and
more efficient GPU utilization.

To isolate the impact of GPU architecture on motion-correction performance, both
pipelines were benchmarked on two hardware setups: the CUBE server (Tesla V100) and a
standalone Lab PC (RTX 3080). Table[zlz] summarizes the relevant hardware specifications
for motion-correction profiling.

Table 4.4: Hardware configurations for motion-correction benchmarking

Component CUBE Server (Tesla V100) | Standalone PC (RTX
3080)

CPU AMD EPYC 7551 32-Core | AMD Ryzen 7 5800X
@ 2.56 GHz 8-Core @ 3.8 GHz

GPU NVIDIA Tesla V100 32 GB | NVIDIA RTX 3080 12
(Volta) GB (Ampere)

CUDA Cores 5,120 8,704

Tensor Cores 640 272

RAM 4 xKingston 32 GB DDR4 (single
KF3200C16D4/32GX DIMM)
32 GB 2400 MHz DDR4

Disk Dell Express Flash NVMe | Samsung 970 EVO 1
P4600 3.2 TB TB NVMe SSD

oS Ubuntu 20.04.6 LTS (Focal | Windows 10 (WSL2)
Fossa)

The raw imaging frames were then up-sampled by factors of 1.0, 1.2, 1.4, 1.6, 1.8, 2.0,
2.2, and 2.4, and the motion-correction runtime was recorded for each pipeline on both
GPUs. Figure 4.3]shows these timings.

At modest scales (1.0-2.0x), both GPUs yield comparable performance for each pipeline.
Beyond 2.0x, however, the RTX 3080’s VOLTAGE motion-correction runtime increases
sharply (110 s at 2.4xvs. 38 s on the Tesla V100), while FIOLA’s runtimes remain more

39

4. PIPELINE DESIGN

Motion correction comparison

—e— FIOLA Tesla V100
1001 FIOLA RTX3080
—e— VOLTAGE V100
—e— VOLTAGE RTX3080
- 801
c
)
Rv,
8 601
)
£
'—
40 -
20

10 12 14 16 18 20 22 24
Scaling factor (n)

Figure 4.3: Motion-correction runtime vs. up-sampling factor for FIOLA and VOLTAGE
on the Tesla V100 and RTX 3080.

consistent and even slightly faster on the Lab PC, demonstrating FIOLA’s greater resilience
to GPU architectural differences. This behavior reflects the underlying hardware charac-
teristics: for small up-sampling factors, the RTX 3080’s higher FP32 throughput (29.8
TFLOPS vs. 15.7 TFLOPS on the V100), higher boost clocks, and larger CUDA core count
let it excel when the working set fits in on-chip caches. As frame sizes grow, however, the
workload becomes memory-bound and cache-limited. Here, the V100’s HBM2 memory
(900 GBY/s) and larger on-chip caches sustain higher effective bandwidth than the 3080’s
GDDR6X (760 GB/s) and smaller caches. Additionally, NVIDIA’s cuFFT library lever-
ages the V100’s Tensor-core-accelerated complex-math kernels more aggressively for large
transforms. Together, these factors allow the V100 to maintain flat scaling on large inputs
while the 3080’s performance degrades. Further benchmarking in Appendix [A] confirms
these observations, as the Lab PC outperforms on smaller computational loads but lags on
larger ones.

4.1.5 Opverall Pipeline Runtime Comparison

Although VOLTAGE completes the full pipeline about 44 % faster than FIOLA (82.62 s vs.
131.11 s), the lion’s share of this difference is due to FIOLA’s substantially longer initial-
ization (39.01 s versus 9.59 s). After initialization the actual motion-correction workloads
are nearly identical (15.46 s for FIOLA vs. 15.98 s for VOLTAGE on motion-correction),
demonstrating that the core computational effort is comparable for the spatial resolution of
116 x 496, but signifanctly diverges at higher spatial resolutions.

40

4.1. Profiling State-of-the-Art Pipelines

Table 4.5: Comparable runtimes for FIOLA and VOLTAGE on the Cube server

Pipeline Stage VOLTAGE (s) | FIOLA (s)
File read 6.56 6.85
Motion-correction initialization 9.59 18.01
Motion-correction work 15.98 15.46
Segmentation & trace extraction 15.98 30.78
Spike detection work 0.32 0.98
File write 8.71 8.62
Total end-to-end runtime 82.62 110.09

4.1.6 Spike Detection-Accuracy Comparison

While runtime performance is a critical factor in designing real-time imaging pipelines,
it is not the sole concern. The primary objective of these systems is to enable accurate
and interpretable spike detection under realistic, often noisy conditions. A pipeline that is
computationally efficient but fails to reliably detect spikes, especially at low amplitudes,
ultimately undermines its scientific utility. Accordingly, the next section shifts focus from
speed to signal quality, comparing the spike detection accuracy of FIOLA and VOLTAGE
across a range of signal amplitudes.

To evaluate spike-detection performance across pipelines, FIOLA and VOLTAGE were
compared using the benchmark dataset from Platisa et al.[21]. Both pipelines were run on
identical motion-corrected videos, and F1 scores were computed across a range of spike
amplitudes.

Figure [.4] shows that FIOLA consistently outperforms VOLTAGE, especially at low
spike amplitudes. While both pipelines converge toward high F1 scores at larger amplitudes,
FIOLA maintains a measurable advantage in the low signal-to-noise regime, making it more
suitable for experiments requiring high temporal precision or weak signal detection.

1o Spike Detection Accuracy Spike-to-Noise Ratio
. Ny
0.8
]
o 0.6 o 4
] =2
(7] o
— 0.4 0
w —e— FIOLA 21 —e— FIOLA
0.2 VOLTAGE VOLTAGE
0.0~ : ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ;
0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Spike Amplitude Spike Amplitude

Figure 4.4: F1 scores across spike amplitudes for FIOLA and VOLTAGE. FIOLA exhibits
superior sensitivity at low amplitudes and maintains comparable accuracy at higher levels.

41

4. PIPELINE DESIGN

4.2 Hybrid Pipeline Design

The preceding analysis demonstrates that while FIOLA and VOLTAGE each excel in spe-
cific areas, whether in runtime efficiency, segmentation quality, or spike detection accuracy,
neither offers a complete solution that meets all the demands of real-time, scalable neuro-
science experiments. Performance alone cannot dictate design choices; accuracy, modu-
larity, and compatibility with online workflows are equally critical. These insights directly
motivate the design of a hybrid pipeline that strategically combines the strengths of both
systems.

The goal of this design is twofold: first, to build an offline pipeline that operates on
a single input file containing raw frames, optimized for accuracy and throughput during
initialization and preprocessing; and second, to generate all necessary assets, such as seg-
mentation masks and motion-correction templates, for a streamlined online pipeline. The
online pipeline is designed to prioritize low-latency inference and spatial precision, enabling
real-time operation in feedback-driven or closed-loop experimental settings.

The next two sections describe these two pipeline variants in detail:

* Offline pipeline: Focused on high-throughput batch processing and setup of neces-
sary assets for online use.

* Online pipeline: Designed for real-time operation with minimal per-frame latency,
aiming at 500 - 1000 FPS at a spatial resolution of 300 x300.

Following the offline and online design descriptions, the remainder of this chapter intro-
duces enhancements aimed at improving overall pipeline performance. These are organized
around two key objectives:

e Accuracy: Improvements such as vignette filtering and wavelet-based trace denois-
ing increase spike detection reliability, especially under noisy conditions. (Section
424

* Latency and throughput: Profiling-driven optimizations, including memory-efficient
FFTs, kernel fusion, and TensorFlow graph compilation, reduce critical-path runtime
during online execution. (Section 4.2.

Together, these contributions form a hybrid architecture that balances accuracy, speed,
and real-time feasibility in a cohesive, modular design.

4.2.1 Motivation and Design Rationale

Constructing a hybrid voltage imaging pipeline requires balancing performance, flexibil-
ity, and real-time feasibility across all processing stages. While both FIOLA and VOLT-
AGE provide high-performing components, neither alone satisfies the full set of demands
required for scalable, online-compatible analysis. FIOLA offers robust motion-correction
and reliable spike detection under tight latency constraints, but its segmentation strategy

42

4.2. Hybrid Pipeline Design

is limited in accuracy and generalizability. VOLTAGE excels in segmentation and mod-
ularity but lacks online-optimized spike inference and requires more homogeneous GPU
configurations for consistent motion-correction performance.

The hybrid pipeline is designed to integrate the most effective components from each
system, chosen according to five core design principles:

* Hardware-agnostic motion-correction: FIOLA’s GPU-efficient, frequency-domain
motion-correction exhibits predictable performance across GPU types and resolutions
(Section d.1.4). In contrast, VOLTAGE’s patchwise ZNCC approach performs well
but scales less reliably with resolution and GPU memory. FIOLA’s method thus forms
the foundation of the hybrid pipeline’s spatial alignment module.

* Segmentation accuracy and modularity: VOLTAGE’s U-Net segmentation model,
trained on curated data and using summary projections, outperforms FIOLA’s low-
rank factorization approach in complex or overlapping ROIs. It is also implemented
modularly, allowing its output to be reused in downstream stages without pipeline-
wide coupling. This makes it ideal for integration into a hybrid framework.

* Streamlined trace extraction: VOLTAGE’s post-segmentation trace extraction op-
erates independently of upstream assumptions, using binary or soft ROI masks to
compute fluorescence signals. This modularity ensures compatibility with the FIOLA-
derived motion-corrected video, without the need for re-implementation or format
translation.

* High-fidelity spike detection: FIOLA’s ridge-regression spike inference, augmented
with adaptive thresholds, significantly outperforms VOLTAGE’s z-score baseline,
particularly in low-SNR conditions. Retaining this component provides the hybrid
pipeline with improved spike sensitivity and timing accuracy in real-time settings.

* Latency-aware integration: The hybrid pipeline follows FIOLA’s principle of of-
floading computation to an offline initialization phase. By front-loading steps such
as motion template generation and segmentation, the runtime path avoids per-frame
bottlenecks and maintains compatibility with online or feedback-driven experiments.

Together, these decisions produce a hybrid architecture that preserves the streaming effi-
ciency and spike inference quality of FIOLA, while gaining the segmentation accuracy and
extensibility of VOLTAGE. The result is a pipeline suitable for real-time, high-throughput
experiments under realistic hardware constraints.

4.2.2 Offline Pipeline Design

Figurel.5]illustrates how the hybrid pipeline assembles these components: FIOLA’s motion-
correction and spike-detection replace VOLTAGE’s equivalent stages, while maintaining
VOLTAGE’s preprocessing, segmentation, and modular trace extraction.

While Figure[.5]outlines the modular composition and computational complexity of the
hybrid pipeline, Figures 4.6 and £.7] demonstrate how this architecture operates in practice.

43

4. PIPELINE DESIGN

. . i Blocking: Needs
VOLTAGE plpellne i = all data from
i previous steps
Computa-
tional ONxF) O(NxM=x O(F x N) O(N x L xS) O xPxs?) ONxLxS8S) ORxpxKx O(F x K)
complexity F) S)
Process Motio.n Shading N Pre-. Segmen- Mask. Tracle Spikfe
correction correction processing | @ tation Calculation | + | extraction + | detection
Batch _______________ H “Batch processing ;
processing i i - i
- H possible
possible
FIOLA pipeline
Computa- O(N_iter x
tional O(NxF) O(NxLxlogL) O(NxlogN xF) dxKx O(Nx F) O(F x (N+K)) O(F xKxL) O(Kx F)
complexity H B Initialize T_init) H H H
Compute mobon : :
median on SR 4 | Perform | i | Initialize Perform | & Initialize Perform
Process batch with N S . —> motion —> Trace 0 trace q spike > spike
number of GPU using 4 |correction) i |extraction) i |extraction) i [detection) i (detection
_ frames template i Batch i Batch i i Batch
H processing i i processing H H processing
possible possible possible
Hybrid pipeline @
(" Compute Initialize i "
median on motloln + | Perform .
Process batch with N correction il motion —: Shading | | Pre-
e — model on f St correction processing
Fr— GPU using f H
s template
Origin VOLTAGE ‘ FlOLA VOLTAGE
Save Perform Inltlallze T Mask Segmen-
Process resullts to SoikS il extraction | i | Calculation tation
file detection detectlon i
Origin VOLTAGE ‘ ------- FIOLA --v-:v-- ‘ """""""""" VOLTAGE --=«---- ‘

Figure 4.5: Architecture of the offline hybrid pipeline integrating FIOLA and VOLTAGE
components with computational complexity, batch processing-compatibility and blocking
behavior shown for each component.

It traces the per-frame dataflow during online execution, showing how individual frames are
processed step-by-step through motion-correction, ROI-based trace extraction, and spike
inference, using precomputed artifacts from the initialization phase. This view clarifies the
runtime behavior and modular interactions across the online stages.

44

4.2. Hybrid Pipeline Design

The following variable definitions describe the variables used for the computational com-
plexity, as described in Section [2.7] in Figure [4.5}

F = Total number of frames in the video
N = Number of pixels per frame (image resolution)
K = Number of neurons (ROIs)
r = Average ROI size in pixels
L = Temporal window length (in frames)
Tinic = Number of initialization frames
Niter = Number of optimization iterations
P = Number of patches per frame (VOLTAGE)
s = Patch size (pixels)
M = Number of shift candidates per patch
S = Number of temporal segments (VOLTAGE)
p = Number of pixels in a spatial region (for NMF)

R = Number of overlapping regions demixed via NMF

Integrating across two distinct codebases required data-flow and format standardization:

* Split VOLTAGE’s original fused CUDA kernel into shading and preprocessing, so
pre-aligned frames from FIOLA can be ingested directly, for the aim of keeping mod-
ularity.

* Unified tensor shapes and data types between FIOLA and VOLTAGE modules to
allow seamless swapping.

* Adapted FIOLA’s spike-detector to accept VOLTAGE-generated traces, preserving
ROI indexing without altering core inference logic.

45

4. PIPELINE DESIGN

Median

Motion
correction

Shift frame ::
«—T% ®

ompare frame to median frame (Blue Shading

dot represents center of frame and red correction
dot represents center of median) T

Gather K
frames

I::>

Mask
extraction

Mask 3

i
Segmentation image

Figure 4.6: Step-by-step illustration of the hybrid pipeline’s initial stages. A median image
is computed across the first L frames and used as a template for motion-correction. Each
frame is aligned via motion-correction, shading-corrected, and grouped into batches for pre-
processing. Temporal and spatial summaries are generated and passed into a segmentation
model, which produces ROI masks.

46

4.2. Hybrid Pipeline Design

Mask 3
Shifted Frame as
Overlay masks on o

shifted frames

Trace
extraction

detection ;

\ bt | > \ N
JUEE S

Figure 4.7: Continuation of the hybrid pipeline. Generated ROI masks are overlaid on
motion-corrected frames to extract fluorescence traces over time. These traces are passed to
a spike detection module, which identifies significant neural events using ridge-regression
filters.

47

4. PIPELINE DESIGN

4.2.3 Online Pipeline Design

Initialization phase

Camera Gather frames Calculate Motion correction Motion
Fenerating until batch of L median templateH model P correct
frames number of frames on batch initialization frame batch
Spike .
. Trace Mask Segmen- Pre- Shading
detection . .
o extractlon Calculation tation processmg correction
initialization
Online phase
Camera Motion Trace Spike
enerating correct . .
. extraction detection
frames single frame
Depends on Depends Depends on
template and L
PR on mask initialization
initialization

J

Repeats until camera is
stopped

Figure 4.8: Architecture of the online hybrid pipeline integrating FIOLA and VOLTAGE

components.

To enable low-latency feedback, the hybrid pipeline runs in two phases: initialization
and online. Heavy workloads (template computation, motion-correction, segmentation, ROI
generation, and spike-detector initialization) occur in the initialization phase, while the on-
line phase executes only light, per-frame operations (motion-correction, trace extraction,
spike inference). This separation ensures minimum latency after startup and preserves all

acquired data in buffer.

Table 4.6: Dependency overview of the hybrid pipeline

Stage

Input

Output

Dependencies

Median template
Motion-correction

Shading & preprocess-
ing

Segmentation & ROI
mask generation

Trace extraction

Spike detection

Batch of early frames
Frame or batch of frames

Batch of aligned frames

Temporal and spatial summary
images
Corrected frames & ROI masks

Traces

Single template frame
Corrected frames

Temporal and spatial summary
images
ROI masks

Traces

Spike timings

Template frame

U-Net weights

ROI masks

Warm-up traces

Stage dependencies, input and output are shown in Table 4.6] It illustrates why pre-
computing templates and masks is necessary before online inference. The runtime flow

48

4.2. Hybrid Pipeline Design

for the online pipeline is shown in Figure 4.8] By offloading heavy computations to the
initialization stage, the online stage achieves minimal per-frame latency using FIOLA’s
motion-correction inference, mask-based trace extraction, and ridge-regression spike in-
ference. The design is efficient, modular, and readily extensible to multi-GPU or distributed
environments.

4.2.4 Accuracy

To further build on the efficiency of the online pipeline, attention was next directed to-
ward enhancing its analytical accuracy. While the streamlined runtime design ensures low-
latency execution, it is equally important to maximize the fidelity of neural signal extraction.
Therefore, subsequent efforts focused on algorithmic refinements that improve spike detec-
tion precision and signal quality, particularly in the face of motion artifacts and imaging
noise. These enhancements complement the pipelines modular architecture and maintain
compatibility with its real-time constraints.

Pre-Motion Correction: Gaussian Vignette Filtering

Uneven illumination and peripheral noise are known to degrade motion-correction accuracy,
especially for frequency-domain alignment methods. To counteract these artifacts, a radial
Gaussian vignette mask is generated and applied to each frame, attenuating pixels near the
edges and emphasizing the more reliable central regions.

Unlike traditional Gaussian filtering, which involves local convolution and averages
over neighboring pixels, vignette filtering applies a per-pixel multiplicative weight based
solely on the pixel’s radial distance from the image center. This preserves local spatial
structure while down-weighting peripheral regions.

Figure 4.9: Example of a radial Gaussian vignette mask.

Let the image frame have dimensions H x W, and define the center coordinates (xo, yo)-
The vignette weight at pixel (x,y) is given by the normalized Gaussian:

49

4. PIPELINE DESIGN

“4.1)

(x—x0)*+ (v —)’0)2)
262 ’

W) =exp (-

where G controls the falloff rate. The weights are then normalized to the range [0, 1].

(a) Original motion- (b) Vignette-filtered motion-
correction template correction template

Figure 4.10: Comparison of motion-correction templates. The vignette-filtered template
emphasizes central features while attenuating noisy peripheries (see also Figure[d.9). Image
adapted from [16].

Each frame F(x,y) is preprocessed via element-wise multiplication:

Fﬁltered(%)’) = F(xay) X W(X,Y)a (42’)

thereby suppressing peripheral noise and edge artifacts without blurring or distorting image
content.

50

4.2. Hybrid Pipeline Design

Computational Complexity. Computing the radial weights for d = H x W pixels requires
O(d) operations, and the element-wise multiplication also costs O(d). Thus, the overall
complexity of the vignette filtering stage is scaling linearly with the number of pixels.

O(d)+ 0(d) = 0(d), 4.3)

Both the motion-correction template frame and each incoming frame that must be aligned
are filtered using this vignette function. As shown in Figure the effect is to emphasize
stable, central regions while suppressing edge artifacts. This preprocessing step improves
the robustness and stability of subsequent motion-correction stages by ensuring that align-
ment computations are biased toward the most reliable image areas.

Pre-Spike Detection: Wavelet-Based Trace Filtering

To further improve the signal-to-noise ratio (SNR) of extracted fluorescence traces, a dis-
crete wavelet transform (DWT) filter was initially implemented prior to spike detection.
Wavelet-based denoising techniques have been shown to preserve the temporal structure of
neural signals while effectively suppressing high-frequency noise [39, 40].

In this implementation, each trace was decomposed using a DWT based on a Daubechies
wavelet, which acts as the mother wavelet, a reference waveform that defines the shape and
mathematical properties of all scaled and shifted wavelet functions used in the transform.
The DWT applies a multiresolution analysis by convolving the signal with filter banks de-
rived from this mother wavelet, producing coefficients that capture both coarse and fine
temporal features of the trace. Noise was attenuated by applying soft thresholding to coeffi-
cients at the finer scales, and the signal was reconstructed from the remaining components,
preserving key low-frequency structures likely to reflect neural activity.

This denoising step improved spike-detection performance in early evaluations, partic-
ularly under low SNR conditions. However, subsequent modifications to FIOLA’s spike de-
tection, specifically adjustments to the adaptive regression parameters and decision thresh-
olding, substantially improved its baseline sensitivity and robustness. As a result, the
wavelet-based preprocessing no longer provided a significant benefit and was ultimately
removed from the final hybrid pipeline design.

4.2.5 Latency and throughput

As discussed in Section [4.2] the online pipeline is aiming to operate at real-time frame
rates, 500 to 1000 FPS, with 50 ms latency at most. However, empirical performance mea-
surements revealed that this constraint is not fully satisfied across all conditions. As will
be shown in Section [6.5.1] motion-correction emerges as the dominant source of latency
during online execution.

To better understand and address this limitation, extensive profiling was conducted after
the introduction of the vignette filtering stage (Section @.2.4).

51

4. PIPELINE DESIGN

Profiling Results: Identifying the Bottleneck

Profiling was performed using TensorFlow’s built-in performance tracing tools. Figure @.11]
illustrates the timeline of operations during online motion-correction, captured at a rep-
resentative resolution and batch size. The timeline reveals clear staging points for FFT
computation, image normalization, and inverse FFT, interleaved with memory transfers and
small kernel invocations.

Because of how TensorFlow’s tracing infrastructure operates, profiling must be con-
ducted in eager (non-compiled, but optimized through Tensorflow’s graphing mechanism)
mode to obtain meaningful attribution of function calls. As a result, some execution paths
differ slightly from the actual compiled pipeline. However, this mode is sufficient for iden-
tifying the major bottlenecks: functions that dominate the timeline in eager mode remain
the primary sources of latency in compiled execution as well. Therefore, while absolute
timings may shift, the profiling trace reliably reveals the operations contributing the most to
overall runtime.

model model model
l PartitionedCall PartitionedCall PartitionedCall
body X
12
map
Il | I
CPU . . Vignette Small Small kernels Apply GPU
o FFTon kernel & numpy ; to

filter shifts

GPU template & In\‘,ersecommunication CPU

startup . FFT FFT with CPU
image
Image

normalization
and variance

Figure 4.11: GPU profiling timeline of the motion-correction stage in online mode. FFT
operations, memory transfers, and interleaved CPU/GPU communication dominate latency.

As seen in the breakdown, motion-correction alone accounts for over 99% of total online
latency, with GPU-to-CPU synchronization, FFT/IFFT, and small-kernel fragmentation as
the key bottlenecks. These observations informed several proposed optimizations as shown

in[3.3l

Roofline Analysis

To further understand the performance characteristics and identify whether the application
is memory-bound or compute-bound, a roofline model analysis was performed. Figure @.12]
presents the roofline plot for the key computational kernel.

52

4.2. Hybrid Pipeline Design

Roofline Model with Manual Metrics (680x680 @ 3 ms)

1073 4 /

1012 4
- 1011 B
D @
9
L 1010
g
f=
©
£ 10°4
o
£
v
a

108 B

= DRAM roof
1074 680x680 frame
Time: 3.0 ms
@ perf: 62.33 GFLOP/s
Al: 5.62 F/B
10° T T T T T
1073 1072 107! 10° 10! 10?2 103

Arithmetic intensity [FLOP / Byte]

Figure 4.12: Roofline Model with Manual Metrics for the 680x680 frame, showing the
achieved performance relative to theoretical maximums.

The roofline plot illustrates the upper bounds of performance (the "roof") based on the
system’s memory bandwidth (DRAM roof) and peak floating-point performance. The red
marker on the graph represents the achieved performance of the 680x680 frame processing.

From the plot, the following metrics are observed:

e Time: 3.0 ms
¢ Performance (Perf): 62.33 GFLOP/s
 Arithmetic Intensity (Al): 5.62 F/B (FLOP/Byte)

The red dot, representing our application’s performance point, falls below the "DRAM
roof" line and is located on the rising portion of the roofline. This indicates that the current
operation is memory-bound. The arithmetic intensity of 5.62 FLOP/Byte suggests that for
every byte transferred from memory, 5.62 floating-point operations are performed. Despite
this, the performance is limited by the rate at which data can be fetched from DRAM, rather
than the raw computational power of the processor. This finding aligns with the previous
profiling results that highlighted memory transfers as a significant contributor to latency.
Further optimizations should therefore focus on reducing data movement, improving data
locality, or increasing the arithmetic intensity of the kernel to move the performance point
closer to the computational peak.

53

Chapter 5

Implementation

While the hybrid architecture defines the logical flow and component selection of the pipeline,
its practical utility depends on efficient and portable implementation. This chapter details
how the pipeline was implemented in practice, highlighting the major architectural choices,
development patterns, and performance engineering efforts that make it robust, modular,
and scalable. The following sections cover:

* General pipeline implementation: Each processing stage- motion-correction, seg-
mentation, trace extraction, and spike detection, is implemented as a modular, GPU-
accelerated component using Python and TensorFlow. The design emphasizes clean
stage boundaries and interoperability, enabling both offline and online reuse. (Sec-

tion[3.1

* Setup latency: Initialization-time optimizations, such as GPU-accelerated median
filtering and multithreaded pipeline startup, minimize delays during experiment setup
and accelerate transition to online operation. (Section[5.2)

* Profiling-driven optimization: Key performance bottlenecks identified in Section[5.3]
were targeted through algorithmic refinements and efficient use of TensorFlow prim-
itives.

* Usability and generalizability: Modular stage control, containerized deployment
via Docker, and automated calibration tools improve reproducibility and adaptability
across hardware configurations and lab setups. (Section [5.4)

5.1 General Pipeline Implementation

The hybrid pipeline is implemented in Python, with core components written using Tensor-
Flow, NumPy, Cython, Cuda and C++ for performance-critical sections. Both the offline
and online variants share a modular architecture centered around a unified configuration
system and reusable processing stages. This modularity enables reproducibility, rapid pro-
totyping, and smooth integration of GPU acceleration.

5.1.1 Offline Pipeline

The offline pipeline is launched from a Python entrypoint that loads configuration files,
initializes models, and executes processing stages sequentially. Each stage is conditionally

55

5. IMPLEMENTATION

enabled via a configuration dictionary and supports output caching. Tagged Image File
Format (TIFF) video files, used for high bit depth lossless compression, are loaded using
tifffile, stored as NumPy arrays and further processed downstream.

Each stage is defined in a dictionary with an enabled flag and an associated cache path:

stages = {
"motion_correction": {
"enabled": True,
"save_path": "intermediates/registered.npy"
b

Each stage checks its enabled flag before running. If disabled, the corresponding
output is loaded from disk using np.load (), allowing downstream stages to execute nor-
mally. For example, if segmentation is disabled but a cached ROI mask is available, the
pipeline loads intermediates/segmentation_mask.npy and continues with trace extrac-
tion. This strategy minimizes recomputation during development or parameter tuning.

Algorithm 1: Offline pipeline stage execution logic

1 foreach stage in pipeline do

2 if stage.enabled then

3 L run(stage.function)

4 else if stage.cache_path exists then

5 L load(stage.output <— np.load(stage.cache_path))

6 else

7 L raise Error("Missing cached output and stage disabled")

To further reduce preprocessing latency and improve data throughput within Tensor-
Flow stages (e.g., segmentation), the offline pipeline uses a highly optimized input pipeline
built with TensorFlows t f.data API. Batch generators are constructed using
tf.data.Dataset.from_generator, combined with prefetching and parallel mapping to
overlap data preparation with GPU execution. This ensures the GPU remains consistently
fed with ready-to-process batches, minimizing idle time due to I/O stalls or preprocessing
delays. These design choices follow TensorFlow performance guidelines [41] and con-
tribute significantly to offline execution efficiency.

Key processing steps:

* Motion-Correction: TensorFlow-based layer using batched FFTs, XLA compila-
tion, and Cython-managed memory for speed.

* Shading & Preprocessing: NumPy and Cython kernels applied as batch functions,
including background subtraction and bandpass filtering.

* Segmentation: U-Net model from VOLTAGE, fed with summary projections and
postprocessed with SciPy and connected-component labeling.

56

5.2. Setup latency optimization

* Trace Extraction: Implemented in multithreaded Cython with OpenMP, accessing
CuPy arrays via memory views.

* Spike Detection: Batch evaluation using FIOLA’s regression-based spike inference.

5.1.2 Online Pipeline

The online pipeline uses the same configuration and model-loading routines but operates on
a online loop. Memory-mapped files and ZMQ simulate camera input during development.
Concurrent threads manage the pipeline as described in[5.2.2}

* Motion-Correction: TensorFlow layer processes frames and outputs aligned images.
* Trace Extraction: Applies masks to incoming frames using multithreaded python.
» Spike Detection: Real-time regression inference using a stateful £it_next () method.

Data is passed via thread-safe queues to maintain frame order and avoid latency spikes.
Online execution is designed to maintain >500 FPS on standard GPUs with minimal over-
head.

5.1.3 Language and Framework Overview

Table 5.1: Languages and frameworks used for major pipeline components.

Component Implementation

Pipeline orchestration Python

Configuration and I/O Python (YAML, NumPy, TIFF)
Motion-correction Python, TensorFlow (XLA)

Shading & preprocessing | Cython, C++

Segmentation Python, TensorFlow (U-Net), SciPy
Trace extraction Python

Spike detection Python (NumPy, FIOLA)

Streaming infrastructure | Python (ZMQ, memmap, threading)
Profiling and logging Python,psutil, tracemalloc

5.2 Setup latency optimization

For real-time pipelines, minimizing setup latency is critical, not only to reduce downtime
between experiments but also to enable rapid prototyping and deployment in fast-paced
experimental workflows. This section focuses on optimizations that reduce initialization
time, particularly those affecting the offline preprocessing stages that must complete before
online execution can begin. These include GPU-accelerated median filtering for motion-
correction template generation and parallelized startup procedures that improve resource
utilization and responsiveness. Together, these strategies help transition the pipeline from
raw input to real-time readiness with minimal delay.

57

5. IMPLEMENTATION

5.2.1 GPU-Accelerated Median Filtering

To generate the motion-correction template, the pipeline computes the per-pixel temporal
median across a stack of L frames. While the median provides superior robustness com-
pared to the mean, especially for motion alignment, its computation is significantly more
expensive. A naive CPU implementation computes the median at each pixel by sorting L
values, resulting in a complexity of O(d - LlogL), where d = H x W is the number of pixels
per frame.

To eliminate this bottleneck, a GPU-accelerated approximation was implemented using
TensorFlow. Although TensorFlow lacks a native GPU median operator, the median was
computed as the (|L/2] + 1)-th largest value using tf.nn.top_k, applied after transposing
the input tensor from [L,H,W] to [H,W,L]. This avoids full sorting and leverages partial
sort acceleration on GPU.

The core median function, fast_median (), is compiled with XLA using
@tf.function (experimental_compile=True), enabling kernel fusion and reducing launch
overhead. For high-resolution inputs (e.g. [15,000,464,498]), this approach alone can ex-
ceed 32 GB of available device memory . To manage this, a chunked strategy was intro-
duced: the volume is divided along the height dimension into smaller strips (e.g. 50 rows at
a time), each processed independently using fast_median (). The results are stitched to-
gether to form the full template. This method maintains GPU residency for all computation
while bounding memory usage.

The final implementation includes two key components:

* fast_median(frames): Transposes and computes the approximate pixelwise me-
dian.

* median_chunked (frames, chunk_h): Splits input along height, applies
fast_median () to each chunk, and concatenates outputs.

Alternative methods, such as using the mean or a rolling average, were tested but yielded
worse F1 scores in segmentation and spike detection, and were therefore not adopted. The
final design achieves a more scalable

0(d-L) (5.1)

complexity while enabling template computation at full resolution without out-of-memory
failures.

5.2.2 Multithreaded Model Loading and Pipeline Parallelism

One major optimization involves launching key tasks concurrently during pipeline startup
and execution. As shown in Figure a multithreaded design was implemented to load
models, buffer frame batches, and initiate downstream modules in parallel rather than se-
quentially. Threading was deliberately chosen over multiprocessing, as the pipeline is pre-
dominantly I/O-bound rather than compute-bound. Initial experiments with multiprocess-
ing, particularly in the spike detection setup, introduced unnecessary overhead due to inter-

58

5.2. Setup latency optimization

process communication and memory duplication, resulting in slower startup times. Using
threads avoids these issues and enables faster, more efficient initialization.

Thread 1 | Camera generating frames JEEEEE
Thread 2 | Save frames to file REREE
Initialize
Thread 3 |segmentation ‘ Motion correct frames ‘ -----
weights
Gather frames until Start
Thread 4 batch of L number of| Initialize pipeline using this batch | online Extract traces | -----
frames pipeline
Thread 5 ‘ Detect spikes ‘ -----
Thread6 I T e

data to file

Time >

Figure 5.1: Timeline of the hybrid pipeline’s startup and online execution using multiple
threads. Early stages, including data buffering and model loading, are run concurrently.
Downstream components operate in parallel, synchronized through shared memory buffers.

[Write trace and spiking }

Specifically:

* Thread 2 continuously receives frames from the camera, saving them to disk and
populating an in-memory buffer until a minimum batch size L is reached.

* Thread 3 initializes the segmentation model weights.

* Thread 4 performs pipeline initialization on the buffered frames (e.g., template cal-
culation, shading correction, and mask generation).

Once initialization completes, the system enters its online mode, where the following
stages are run in a pipelined fashion:

* Motion-correction, trace extraction and spike detection are executed concurrently in
separate threads, consuming frames from the shared buffer.

* Output (traces and spikes) is written to disk asynchronously, decoupling computation
from I/O latency.

Shared memory buffers are used between stages to decouple the producer and consumer
threads. This ensures that temporary delays (e.g., in writing to disk or during GPU-inference
steps) do not stall upstream modules. The use of fixed-size buffers and thread-safe queues
also enables dynamic flow control and prevents data loss during peak frame arrival times.

59

5. IMPLEMENTATION

5.3 Profiling-driven optimization

The motion-correction component was originally implemented using normalized cross-
correlation between each incoming frame and a static reference template, computed either
in the spatial domain (t £.nn.conv2d) or the frequency domain (via FFTs). While effective
for early testing, the initial implementation was not viable for real-time operation due to
redundant computation, inefficient tensor operations, and limited GPU utilization.
Following the profiling analysis presented in Section the motion-correction layer
was restructured around a GPU-optimized Mot ionCorrect TensorFlow module. This refac-
toring focused on eliminating bottlenecks, improving batch throughput, and enabling static
graph execution. A visual summary of the architectural differences is shown in Figure [5.2]
The most significant implementation changes include:

* Template FFT reuse: The FFT of the static template is now computed once dur-
ing layer construction and reused across all input batches. This prevents redundant
recomputation and reduces memory bandwidth usage.

* Depthwise Vignette Gaussian filtering: Input frames can optionally be smoothed
using separable 1D Gaussian filters, implemented with tf.nn.depthwise_conv2d.
This reduces the cost of smoothing from quadratic to linear in kernel size and enables
efficient GPU execution over entire batches.

* Optimized local normalization: The normalize_image routine was rewritten to
compute local mean and variance using depthwise separable convolutions. This re-
places reduction-based methods with fused operations and improves memory locality.

* Subpixel shift estimation: Gaussian interpolation is used to refine the correlation
peak and extract fractional-pixel motion vectors. This improves alignment accuracy
without increasing the computational burden.

* Graph compilation and type constraints: The entire operation is compiled with
@tf.function to enable XLA graph optimizations such as kernel fusion and op-
eration reordering. To support this, the internal FFT data type was changed from
complex128 to complex64, which was necessary for compatibility but did not de-
grade alignment performance.

60

5.3. Profiling-driven optimization

Before
optimizations

Frame
CPU-to-
GPU

Recomputed FFT on
every batch template

Variance
calculated using Frame

expensive normalization

tf.nn.avg_pool2d

Cross correlation
through Inverse FFT

v

estimation (with

Subpixel shift
Laussian interpolation)

Shift
application

IFFT on
shifted
frame

v

GPU-to-
CPU

After
optimizations

Depthwise
convolutional
Vignette filter

Rewritten to

Local normalization depthwise

: (stacked convolutions +
|I"> seperable

ENEEED PEling)) convolutions

FFT on
frame

Cached
Template

Cross correlation
through Inverse FFT

(with gaussian
interpolation)

Shift
application

LSubpixel shift estimation

—

. Complex FUS d for
R increase
; datatype 64 performance
: bits Inverse
FFT
v
GPU-to-
CPU

Figure 5.2: Schematic comparison of the motion-correction pipeline before and after
profiling-driven optimization. The new implementation enables FFT reuse, optional GPU-
side vignette filtering, fused normalization, and shift application within a compiled Tensor-

Flow graph.

61

5. IMPLEMENTATION

5.4 Usability and generalizability

Beyond raw performance, a practical imaging pipeline must be easy to deploy, adapt, and
maintain across varied lab environments. This section highlights implementation features
that enhance usability and extend the pipelines applicability to different hardware, work-
flows, and development contexts. Key contributions include a fully functional demonstra-
tion environment that simulates real-time acquisition without physical hardware, container-
ized deployment for reproducibility, modular control over individual processing stages, and
an automatic calibration module that adapts runtime parameters, such as batch size and
thread count, to the available system. Together, these features ensure robust, hardware-
agnostic deployment in both research and production settings.

5.4.1 Demonstration Environment and Simulation

To support testing, validation, and demonstration without requiring a physical imaging
setup, a full-featured simulation environment was implemented. This demo replicates the
behavior of a live camera by generating synthetic frame streams and writing them to a
shared memory-mapped file, which is then consumed by the online pipeline running inside
a Docker container.

The simulation framework uses a sender_thread to emulate camera behavior by writ-
ing frames incrementally to disk and transmitting metadata (e.g., timestamps) via ZMQ
sockets. The pipelines receiver_thread monitors the shared file and processes each frame
in real time, allowing seamless substitution of the simulated stream for actual camera input.

This design mirrors the camera-to-GPU data flow used in production systems, ensuring
that all components, memory buffers, synchronization primitives, and GPU pipelines, are
tested under realistic timing conditions. As shown in Figure [5.3] this architecture enables
the entire online pipeline to operate as if connected to a real acquisition device.

Docker
Sender Receiver
Writing to shared file at Shared Thread constantly
file P
speeds comparable to > » monitoring for updates
camera (500/1000 fps) on file

Figure 5.3: Overview of the demo simulation setup. A sender process emulates the camera
by writing to a memory-mapped file, which is mounted into the Docker container. The
receiver inside the container reads frames in near real time.

The demo environment plays a critical role in achieving the goals outlined in Sec-
tion[d.2.4)on generalizability and usability:
» Portability: It enables rapid testing of the pipeline on new systems or GPU configu-
rations without requiring specialized hardware.

62

5.4. Usability and generalizability

* Debugging and benchmarking: Developers can replicate exact conditions across
systems, simplifying profiling and regression testing.

* Demonstration: The demo supports live presentations or tutorials in scenarios where
deploying actual hardware is impractical or infeasible.

Together, these features make the pipeline easier to deploy, extend, and validate in di-
verse research and development contexts.

5.4.2 Containerized Deployment via Docker

To ensure reproducibility across systems and simplify setup, the entire processing pipeline
was containerized using Docker. The container bundles all dependencies, including CUDA,
TensorFlow, Python libraries, and model weights, into a portable runtime image that can
execute identically across lab desktops, high-performance clusters, and cloud nodes.

The Docker build process is organized into multiple stages to ensure modularity and
minimize image size:

* Base stage: Begins from nvidia/cuda:12.1.0-base-ubuntu22.04, providing the
required CUDA runtime and a compatible Linux distribution.

» System dependency installation: A separate build stage installs core packages such
as gcc-9, libomp-dev, ffmpeg, and python3-pip, required for both compilation
and runtime support.

* Dual CUDA support: To ensure compatibility with both TensorFlow (requiring
CUDA 12.1) and legacy VOLTAGE components (built against CUDA 11.0), two
CUDA toolkits are installed side-by-side. Symlinks and environment variables al-
low runtime switching between toolchains.

* Miniconda environment: A dedicated stage installs Miniconda and creates a cus-
tom environment (rtvi) using an environment.yml file. This isolates Python de-
pendencies and facilitates version control. The container automatically activates the
environment for all subsequent commands via the SHELL directive.

* XLA and GUI support: Environment variables are set to support GUI features (e.g.,
OpenCV via Qt on XCB) and TensorFlow’s XL A compiler. These settings ensure
compatibility when executing precompiled models or visual tools.

» Sanity checks: The final stages include diagnostic calls (e.g., import numpy) to
verify that all layers were successfully built and that GPU acceleration is enabled
within the activated environment.

* Entrypoint: The container launches into a Bash shell with the environment fully
configured, allowing developers to run the offline or online pipeline directly without
additional setup.

63

5. IMPLEMENTATION

The final image runs via nvidia-docker and supports GPU passthrough. All CUDA
and cuDNN libraries are statically bundled, ensuring independence from host drivers and
enabling consistent behavior regardless of the execution platform.

5.4.3 Hardware-aware calibration

To prepare the pipeline for real-time deployment under diverse hardware constraints, a sys-
tematic calibration procedure was developed. This process involves iteratively varying key
parameters, including batch size, number of processing threads, and spatial scaling factor,
and evaluating their impact on runtime performance and stability.

The full calibration logic is formalized in Algorithm [2] For each candidate configura-
tion, the pipeline is benchmarked on a fixed-length input stream, and the average per-frame
latency is measured. Configurations that exceed a predefined latency threshold (e.g., 50 ms)
are discarded, and the setup with the lowest valid latency is selected.

This approach enables automated tuning of the pipeline for a wide range of GPU and
CPU configurations, ensuring low-latency operation and sustained throughput. It also ex-
poses performance ceilings under constrained conditions, guiding future hardware choices
and system scaling.

Algorithm 2: Hardware- Aware Calibration Procedure
Require: Candidate batch_sizes, thread_counts, scaling_factors, performance
threshold latency_max
Ensure: Optimal configuration: (batch_size, thread_count, scale)
best_config <— None, min_latency ¢ oo
for all scalein scaling_factors do
Increase image size based on base resolution and scale factor scale
for all batch_size inbatch_sizes do
for all thread_count in thread_counts do
Configure pipeline with current scale, batch_size, and thread_count
Run profiling on a fixed-length input stream
Measure average per-frame latency /¢
if / < latency_max and / < min_latency then
min_latency < ¢
best_config < (batch_size, thread_count, scale)
end if
end for
end for
end for
return best_config

64

Chapter 6

Results and Evaluation

Having detailed the implementation of the hybrid voltage imaging pipeline in the previous
chapter, we now turn to evaluating its real-world performance. This chapter presents a
comprehensive assessment of the system, focusing on both computational efficiency and
signal fidelity.

The evaluation is structured around the pipelines two operational modes, offline and
online, and reflects realistic workloads and hardware constraints. Key metrics include seg-
mentation and spike detection accuracy, per-frame latency, scalability, and GPU memory
usage. The results are presented in the following order:

Experimental setup: Description of hardware, benchmarking procedures, and datasets
used throughout the evaluation.

Trace extraction comparison: Assessment of using FIOLA’s trace extraction with
VOLTAGE masks in place of FIOLAs native strategy, highlighting the impact on
spike detection accuracy.

Effect of vignette filtering: Analysis of Gaussian vignette filtering (Section (4.2.4)),
showing its impact on segmentation F1 scores and motion-correction performance.

Offline implementation timeline: Chronological, by implementation, evaluation of
implementation-level optimizations in the offline pipeline, beginning with:

— TensorFlow data pipeline acceleration,
- GPU-accelerated median filtering (Section [5.2.1]),
— Followed by an assessment of individual component performance as a function

of spatial resolution, batch size, and thread count.

Offline pipeline performance: End-to-end runtime performance and throughput
analysis of the complete offline pipeline under various scaling conditions.

Initial online evaluation: Evaluation of the unoptimized online pipeline, which does
not yet meet the 500-1000 FPS target, followed by performance on a high-end GPU
as an upper-bound baseline.

Post-optimization online performance: Results after integrating motion-correction
optimizations described in Section[d.2.5] demonstrating improved latency and through-
put.

65

6. RESULTS AND EVALUATION

* GPU memory profiling: Detailed breakdown of memory usage across online pipeline
stages, varying spatial resolution and batch size to expose hardware limits and guide
configuration.

Together, these results validate the hybrid pipelines practical viability and demonstrate
how targeted design and implementation strategies yield a system that balances accuracy,
speed, and generalizability across real-world neuroscience workloads.

6.1 Experimental Setup

All primary performance evaluation experiments were conducted on the CUBE server con-
figuration described in Table[d.] using representative recordings from the HPC2 dataset [1]].
Offline testing was performed using the complete hybrid pipeline, including all retained
algorithmic enhancements (e.g., vignette filtering). The wavelet-based trace filtering de-
scribed in Chapter[4.2.4] was not included in the final evaluation, as it was found to have lim-
ited impact on spike detection accuracy and was therefore removed from the active pipeline
configuration.

To assess performance across different spatial resolutions, synthetic inputs were gen-
erated by vertically stacking a single recording. Specifically, the original frame of size
116 x 498 pixels was duplicated n times along the vertical axis, where n is the scaling
factor. This method preserved the input structure while simulating increased resolution
workloads. A scaling factor of 1 corresponds to the original 116 x 498 frame; a factor of 2
yields a 232 x 498 frame; and so on. This setup enabled controlled increases in pixel count,
allowing fair comparisons of GPU throughput and memory usage over a known range of
resolutions. Table [6.1] summarizes the scaling factors, including total pixel counts and the
side length of an equivalent square image (for easier interpretation).

Table 6.1: Spatial scaling factors used in evaluation, showing the resulting frame dimen-
sions, total pixel count, and side length of an equivalent square image.

Scaling Factor | Frame Size (H x W) | Total Pixels | Square Equivalent (Vd)
1 116 x 498 57,768 240
2 232 x 498 115,536 340
4 464 x 498 231,072 480
8 928 x 498 462,144 680
16 1856 x 498 924,288 960
32 3712 x 498 1,848,576 1359

Preliminary evaluation of motion-correction was also conducted on an alternative hard-
ware setup (the Lab PC), detailed in Table 4.4, While the Lab PC was useful in testing
GPU performance across different architectures (Volta vs. Ampere), it was unable to sup-
port motion-correction above a n = 4 spatial scaling factor due to VRAM limitations (12
GB vs. 32 GB on the CUBE server). As a result, all high-resolution and final performance
evaluations were conducted exclusively on the CUBE server, which is shown in Table 4.1}
to ensure consistency and eliminate memory-related constraints

66

6.2. Trace Extraction

6.2 Trace Extraction

As established in Section FIOLA’s ridge-regression method significantly outperforms
VOLTAGE's z-score-based spike detection, particularly in low-SNR conditions. To ensure
that this advantage is retained in the hybrid pipeline which uses VOLTAGE’s trace extraction
instead of FIOLA’s, F1 performance was re-evaluated using FIOLA’s detector operating on
traces extracted via VOLTAGE’s modular segmentation. Spike detection was evaluated on
both the HPC2 and L1 datasets using amplitude-binned F1 scores. The results showed
that the hybrid configuration reproduced FIOLA’s original accuracy characteristics, with no
observable drop in sensitivity or precision.

10 Spike Detection Accuracy Spike-to-Noise Ratio
) 6l
0.81
(]
S 0.6 o 4+
v} =2
(9] o
— 0.4 n
v —e— FIOLA 5] —e— FIOLA
0.2 VOLTAGE VOLTAGE
0.0~ ‘ ‘ ‘ ‘ ‘ ‘ ‘ : : ; ; ; ;
0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Spike Amplitude Spike Amplitude

Figure 6.1: Spike detection F1 scores across spike amplitude bins. The hybrid pipeline
retains the accuracy benefits of FIOLA’s adaptive regression model.

This confirms that FIOLA’s spike inference generalizes well to downstream integra-
tion in the hybrid pipeline, and that the use of VOLTAGE's trace-extraction step does not
compromise detection fidelity. .

6.3 Vignette Filtering

To understand how the Vignette filter contributes to improved downstream accuracy, we
next evaluate its specific impact on segmentation performance. By isolating the effects of
motion-correction and pre-filtering in otherwise identical pipelines, we can attribute gains
in segmentation quality to individual components with greater confidence.

6.3.1 Segmentation Accuracy

To evaluate the impact of motion-correction enhancements on segmentation quality, F1
scores were compared across three pipeline configurations:

1. The original VOLTAGE pipeline with its default motion-correction and U-Net seg-
mentation.

2. The hybrid pipeline using FIOLA’s motion-correction and VOLTAGE’s U-Net seg-
mentation.

67

6. RESULTS AND EVALUATION

3. The hybrid pipeline using FIOLA motion-correction preceded by vignette filtering

(Section[4.2.4).

Evaluations were performed on two datasets published by the same group: HPC2 and
L1 [1]], both containing ground truth masks and pre-aligned frames suitable for benchmark-
ing. Each configuration was tested on both datasets using identical settings, and average
F1 scores were computed per dataset by comparing frame-level segmentation outputs to
ground truth ROIs.

Table 6.2: Segmentation F1 scores across pipeline configurations and datasets. The hybrid
pipeline consistently improves accuracy, with additional gains from vignette filtering.

Pipeline Configuration HPC2 (F1) | L1 (F1)
VOLTAGE (baseline)

Average F1 0.58 0.71
Best F1 0.78 0.86
Worst F1 0.36 0.61
Hybrid (FIOLA motion-correction)

Average F1 0.62 0.82
Best F1 0.86 0.88
Worst F1 0.41 0.68
Hybrid + Vignette Filter

Average F1 0.67 0.85
Best F1 0.87 0.91
Worst F1 0.55 0.76

As shown in Table[6.2] both the HPC2 and L1 datasets show consistent improvements in
segmentation accuracy when switching from the VOLTAGE pipeline to the hybrid pipeline
with FIOLA motion-correction. The addition of vignette filtering yields further gains of
approximately 0.01-0.06 F1 points.

Importantly, the benefit of vignette filtering was not uniform across all recordings. In
cases where baseline segmentation F1 scores were already high (e.g., above 0.85), the im-
provement from vignette filtering was modest. However, in recordings with blurred or low-
contrast frames, where baseline F1 scores were significantly lower (e.g., 0.65-0.75), the
vignette-enhanced pipeline consistently raised scores by 0.10-0.15 points.

6.3.2 Performance Trade-Off of Vignette Filtering

While vignette filtering significantly improves segmentation accuracy, particularly in low-
contrast or blurry recordings, it introduces a measurable performance overhead in the motion-
correction stage. This trade-off was quantified by comparing the total motion-correction
time with and without vignette filtering, using otherwise identical configurations.

As shown in Figure[6.2] the vignette-enhanced pipeline consistently requires more time
per frame during motion-correction. This increase is due to the additional convolution on
each incoming frame. While the cost varies slightly with batch size and resolution, the
overhead ranges from 15-25% in typical configurations. Despite this cost, the improvement
in segmentation F1 score (up to 0.10-0.15 in worst-case conditions) justifies the inclusion
of the vignette filter in most scenarios.

68

6.4. Offline pipeline

N
o
L

N
w
L

N
IS
L

N
w
L

N
N
L

—e— With vignette filter
Without vignette filter

Total time motion correction (ms/frame)
N

N
o
L

20 2t 22 23 24 25
Scaling factor (n)

Figure 6.2: Comparison of motion-correction runtime with and without vignette filtering.
The added cost stems from pre-filtering each frame prior to alignment.

6.4 Offline pipeline

The following sections examine the performance characteristics of the offline pipeline and
document the implementation-driven optimizations applied throughout its development.
These changes were introduced incrementally and validated through stepwise profiling. We
begin with a key improvement to throughput using TensorFlows data pipeline API, followed
by enhancements to GPU-accelerated median filtering, and continue with a stage-by-stage
evaluation of each pipeline component. This is followed by an analysis of the full offline
pipeline performance under varying conditions.

6.4.1 TensorFlow Data Optimization

To assess the effectiveness of the TensorFlow data pipeline improvements (Section [5.1.1]),
vignette-filtered runs were compared with and without the optimized tf.data configu-
ration. The evaluation focused on per-frame latency during motion-correction, as motion-
correction was the only affected component. As shown in Figure[6.3] the optimized pipeline
results in a speed up between 1.78 and 3.32, having more impact on bigger figures. This
gain is primarily attributed to overlapping CPU-side preprocessing and GPU-side execution,
enabled by asynchronous data loading and multi-threaded mapping functions.

Importantly, this improvement was achieved without modifying the computational graph
or changing model logic. Instead, the benefit derives purely from more efficient input deliv-
ery to the GPU, which helped maintain near-constant GPU occupancy, even during trace-
heavy or template-initialization phases. Given the relatively low implementation complex-
ity and general applicability of this optimization, it was adopted as a standard configuration
for all subsequent experiments. This change is especially beneficial in online or streaming

69

6. RESULTS AND EVALUATION

N
o
L

N
[
L

N
IS
L

N
N
L

N
ey
n

—e— Before Tensorflow optimization
After Tensorflow optimization

Total time motion correction (ms/frame)
N N
o w

20 21 22 23 2 25
Scaling factor

Figure 6.3: Per-frame runtime of vignette-filtered pipeline runs with and without Tensor-
Flow data pipeline optimization. Improvements are primarily due to reduced data-loading
overhead.

modes, where idle GPU time directly increases latency and impacts real-time responsive-
ness.

6.4.2 GPU-Accelerated Median Filtering

The GPU-based implementation of the median filter led to substantial improvements in
template generation time. Figure [6.4] compares the total runtime of the CPU and GPU
implementations on representative datasets from the HPC2 collection. The median was
computed across 15,000 frames with a resolution of 116 x 496 pixels, representative of
typical use cases.

The CPU-based median computation required over 25 seconds to complete the full
template calculation, consistent with its O(d - LlogL) complexity. In contrast, the GPU-
accelerated implementation completed in just 2.7 seconds, yielding a speedup of over 9x.
This improvement is attributable to the highly parallel nature of the reduction-style com-
putation and optimized GPU memory access patterns used in the TensorFlow-based imple-
mentation. Despite the increased complexity of implementing a GPU-based approximation
to true median computation, the runtime savings are substantial enough to justify its use
even in single-batch or offline modes. This improvement also opens the door to recomputing
the motion-correction template dynamically within online pipelines, something previously
infeasible under the CPU-based approach.

6.4.3 Runtime Analysis

To understand the performance characteristics of the hybrid pipeline under varying opera-
tional conditions, a series of evaluation experiments were conducted as part of the calibra-

70

6.4. Offline pipeline

N
>

N
w

N
Y

—— CPU
GPU

Total time motion correction (ms/frame)
N N
> i

20 21 22 23 24 25
Scaling factor

Figure 6.4: Runtime comparison of CPU vs. GPU median filtering for template generation.
GPU implementation reduces computation time by over 90%.

tion process (see Section [5.4.3)). These tests evaluated how runtime scales with batch size,
thread count, and spatial resolution across key computational stages. The evaluation was
carried out on the CUBE server using the HPC?2 dataset unless otherwise noted.

Motion-Correction Evaluation
Motion-correction was the most computationally intensive streaming-stage component and

was therefore profiled in detail. Tests were conducted across a range of batch sizes and
spatial scaling factors, with measurements taken for:

* Total runtime per batch,

GPU kernel execution time,

CPU-to-GPU memory transfer time,

GPU-to-CPU output retrieval time.

71

6. RESULTS AND EVALUATION

N
S

N
-

Total time(ms/frame)
N N

N
i

Batch Size (n)

(a) Total runtime per batch.

CPU-to-GPU (ms/frame)

21 23 25 27
Batch Size (n)

(c) CPU-to-GPU transfer time.

29

fps
0 fps

Processing (ms/frame)

2! 23 25 27 2°
Batch Size (n)

(b) GPU kernel execution time.

20 M
2 W

GPU-to-CPU (ms/frame)

2! 23 2° 27 2°
Batch Size (n)

(d) GPU-to-CPU readback time.

factor 1
factor 2
factor 4
factor 8
factor 16
factor 32

Figure 6.5: Detailed profiling of motion-correction across batch sizes and spatial scaling
factors. Each quadrant shows a different performance metric: (a) total runtime, (b) GPU
kernel time, (c) input transfer time, and (d) output readback time. Batching yields significant
speedups, with optimal ranges depending on resolution.

Figure [6.5] presents these measurements across four subplots. Across all conditions,
processing frames individually results in the highest latency and poorest GPU utilization.
Batching significantly improves throughput, particularly between 64-256 frames. However,
extremely large batches can regress in performance due to memory or kernel scheduling

overhead.

72

6.4. Offline pipeline

These results informed the default batching configuration for the hybrid pipeline and
reinforce the importance of tunable execution in real-time environments.

Shading Correction Performance

Shading correction is a lightweight but necessary preprocessing step applied to each frame
following motion-correction. During calibration, this stage was evaluated on its scalability
across thread pool sizes and spatial resolutions.

20.01

—e— Threads 32
Threads 64

—e— Threads 128

—e— Threads 256

17.5+

=
o
o

12.5

10.0+

7.5+

Processing (ms/frame)

5.0

2.5

0.0

20 2! 22 23 24 25
Scaling factor (n)

Figure 6.6: Shading correction runtime across thread counts and spatial resolutions. Run-
time is measured per frame.

As shown in Figure[6.6] performance improves when increasing thread count up to 128
threads. However, beyond this point, further gains become negligible across all tested image
sizes, indicating a saturation in CPU-side parallelism, likely due to memory access limits or
thread-management overhead.

Notably, although the shading correction module is not a major bottleneck, it was found
to be slower in the hybrid pipeline than in the original VOLTAGE implementation. In
VOLTAGE, shading and motion-correction were fused into a single CUDA kernel, resulting
in a total runtime of approximately 1.11 seconds for the full shading operation. In contrast,
the hybrid pipeline separates these stages, and the standalone shading correction step alone
required 5.18 seconds at the default spatial resolution, using 15000 frames. This regres-
sion stems from a modular restructuring: the decoupling was necessary to allow FIOLA’s
motion-correction to be integrated in place of VOLTAGE’s original kernel. However, the
resulting shading pass uses a more generic, unsophisticated CUDA implementation, incur-

73

6. RESULTS AND EVALUATION

ring additional memory transfers between stages. This trade-off was accepted to preserve
modularity and maintain cross-pipeline compatibility, but it identifies a clear area for future
kernel-level optimization.

Preprocessing Performance

In addition to motion-correction, upstream preprocessing steps, including shading correc-
tion, temporal filtering, and summary image generation, were also profiled during the cali-
bration phase. These operations are primarily CPU-bound and were evaluated as a function
of thread pool size and spatial resolution.

Preprocessing Profiling (Method: max-med)

0.0018
—& Threads = 32 -®
0.0016 4 Threads = 64 ,,”
"8 —@ Threads = 128 s
© 0.0014 { -@ Threads = 256 ,/’
o —& Threads = 512 -~
£ 0.0012 L7
e L
5 0.0010 -
=% e 2 ~
£ 0.0008 T ,,;:.’—‘1
= - 2ze""
- _e
Y, 0.0006 - o=
g ."— - -
= 0.0004 " PR
= T L
0.00024 @=cTCT-Tllllaaam-- e Auinin
| e
T T T T
20 2! 22 23

Figure Size (logz)

Figure 6.7: Preprocessing runtime across different thread pool sizes and spatial resolutions.
Runtime is normalized per frame.

As shown in Figure increasing the thread count significantly improves performance
up to approximately 128 threads. The improvement from 32 to 128 threads nearly doubles
preprocessing throughput across all tested resolutions. However, gains diminish beyond that
point, particularly for higher-resolution inputs, indicating that memory access and schedul-
ing overheads begin to dominate past this threshold.

At large spatial resolutions, multi-threading becomes increasingly important to keep
per-frame latency below the thresholds required for real-time operation. These findings
informed the choice of thread pool sizes used in the hybrid pipeline’s initialization phase
and highlight the need for hardware-aware tuning in CPU-intensive components.

Segmentation Performance

Segmentation was profiled to evaluate how batch size affects the throughput of the U-Net
inference model used in the VOLTAGE segmentation stage. While segmentation is GPU-
accelerated and benefits from batched execution, excessive batch sizes can introduce mem-
ory contention or kernel scheduling inefficiencies.

74

6.4. Offline pipeline

Segmentation Profiling

0.006 /_g. Seg Batch Size = 64 »
Seg Batch Size = 128 /’.
—& Seg Batch Size = 256 ,”/

0.005 { —® 5eg Batch Size = 512 //{/ ,’
T -@ Seg Batch Size = 1024 R P
u 27 ’f
-E"—- 4 /, #
v /,’/
£ 0.004 S
s ,’,z i
. £ 50t
[‘y (4
=% ¢)t
L ‘7 ’f
£ 0.003 - %
= R [
v e |
o /’/’

. L
e ,’,”;'
Y 0.002 LLge”
=L /r"I"
L a®
—— A
HH”:_pn
0.001 - g- et

T T T T
20 2! 22 23
Figure Size (logz)

Figure 6.8: Segmentation runtime as a function of batch size. Runtime shown per frame,
averaged over entire input volume.

As shown in Figure [6.8] runtime performance improves with batch size up to a point, but
does not follow a linear scaling trend. A batch size of 64 serves as a baseline, and increasing
to 128 and 256 results in lower per-frame processing time. However, performance begins to
degrade beyond this point: batch size 512 is slightly slower than 256, and batch size 1024
is noticeably worse than all smaller configurations.

These results indicate that extremely large batches are suboptimal for this U-Net model,
likely due to GPU memory saturation or internal overhead related to tensor allocation and
execution graph complexity. In particular, large batches may exceed the cache capacity of
shared memory or saturate tensor core pipelines, resulting in degraded parallel efficiency.

Based on these findings, batch sizes between 128 and 256 are recommended for seg-
mentation tasks, offering the best balance of throughput and memory stability without over-
saturating GPU resources.

Mask computation, trace extraction and Spike Detection

The ROI mask generation, trace extraction and spike detection were also included in the
overall evaluation, but no performance calibration was performed on these components.
This is because they do not expose configurable runtime parameters such as batch size or
thread count within the current implementation.

Demixing is a lightweight post-segmentation operation that generates ROI masks from
predicted segmentation maps. It completes in under 1 ms per frame across all tested inputs

75

6. RESULTS AND EVALUATION

and resolutions. Given its simplicity and negligible runtime, further optimization or evalu-
ation was deemed unnecessary. Similarly, spike detection, both in offline batch mode and
online streaming mode, showed stable and efficient performance under default settings. The
offline mode performs batch inference after trace extraction, while the online mode uses an
incremental ridge-regression model with minimal per-frame cost following initialization. In
both cases, the absence of tunable runtime parameters made these stages straightforward to
deploy and excluded them from parameter sensitivity analysis.

As such, these stages were omitted from the detailed calibration figures but are included
in total pipeline runtime measurements reported in later sections.

Calibration Summary and Impact

To consolidate the effects of runtime parameter tuning, the pipeline’s per-frame perfor-
mance was compared across three representative configurations.

* Worst case: Unreasonably small batches (e.g., single-frame processing), minimal
threads, and suboptimal scaling, used to illustrate the lower bound of performance.

* Default case: Reasonable defaults similar to VOLTAGE’s original configuration,
without calibration.

* Best case: Fully calibrated configuration based on evaluation results, using optimized
batch sizes, thread counts, and resolution settings.

Pipeline Summary Distribution at Factor 8

size [462144, (680 x 680)] pixels mmm Motion Correction
Worst Case I EEm Correct Shading
Il Preprocessing
Default Case I Segmentation
Hll Compute Mask
Best Case I B \/oltage Extraction
0.00 001 002 003 004 005 Spike Detection

Average Time per Frame (sec)

Figure 6.9: Per-frame runtime comparison between worst-case, default, and calibrated
(best-case) pipeline configurations. Runtime is decomposed by stage.

As shown in Figure [6.9] using the wrong runtime settings can result in over a 5 X
increase in processing time per frame compared to the best-case configuration. Even the
default setup, while functionally correct, is approximately 1.5 X slower than the fully op-
timized version. This illustrates how critical calibration is for systems that operate under
real-time constraints.

The breakdown of best-case runtime also reveals the dominant cost components in
the optimized pipeline. When correctly configured, segmentation, motion-correction and
shading correction consume the largest share of compute time, followed by preprocessing.

76

6.4. Offline pipeline

Meanwhile, demixing, trace extraction, and spike detection remain lightweight, confirming
that further optimization effort for the offline stage is best focused on the preceding pipeline
stages.

6.4.4 Total Offline Pipeline Performance

To quantify the impact of algorithmic and implementation improvements on full pipeline
execution, the offline pipeline was benchmarked across a range of spatial resolutions and
input durations (frame counts). Results are compared against the original, unoptimized
version of the pipeline to highlight practical runtime gains under realistic conditions.

Comparison by Scaling Factor and Frame Count

Bl Pre-optimization
[Post-optimization

SF 1, F 5000
SF 1, F 10000
SF 1, F 15000
SF 2, F 5000
SF 2, F 10000
SF 2, F 15000
SF 4, F 5000
SF 4, F 10000
SF 4, F 15000
SF 8, F 5000
SF 8, F 10000
SF 8, F 15000
SF 16, F 5000
SF 16, F 10000
SF 16, F 15000

SF 32, F 5000
SF 32, F 10000
SF 32, F 15000

102 103
Time (s)

Figure 6.10: Total runtime of the offline pipeline before and after optimization.

As shown in Figure the optimized pipeline consistently outperforms the original
implementation across all tested configurations. Speedups are especially pronounced at

77

6. RESULTS AND EVALUATION

lower resolutions and shorter video lengths, where computational overhead was previously
an issue.

In some cases, total runtime was reduced by more than factor 4. While for longer videos
with higher resolutions it is a factor 2.

6.5 Online pipeline

This section evaluates the hybrid pipelines performance under real-time streaming condi-
tions, where frame-by-frame responsiveness and minimal latency are essential. Unlike the
offline mode, which emphasizes throughput and batch processing, the online pipeline must
balance GPU efficiency with tight timing constraints. The focus here is on quantifying la-
tency, analyzing how batch size and resolution affect performance, and identifying which
components limit real-time feasibility.

We begin by profiling the baseline performance of the core online stages, motion-
correction, trace extraction, and spike detection, under various batch sizes. This is followed
by resolution scaling tests and hardware comparisons to determine where further optimiza-
tions are needed.

6.5.1 Initial Performance

To evaluate the responsiveness and throughput of the hybrid pipeline in streaming mode, the
core online stages, motion-correction, trace extraction, and spike detection, were profiled.
These components represent the minimal processing required to deliver real-time feedback.
Performance was measured as a function of batch size, ranging from 1 (strict frame-by-
frame streaming) to 512, increasing in powers of two.

Pipeline Summary Distribution by Batch Size
Image Size: [462144, (680 x 680)] pixels

512
256
128
64
32
16

I Motion Correction
HEEl \/oltage Extraction
Hll Spike Detection

= N A~ 00

0 5 10 15 20 25 30 35 40
Average Time per Frame (sec)

Figure 6.11: Per-frame latency for the online pipeline stages (motion-correction, trace ex-
traction, spike detection) across batch sizes. Results are shown for a spatial scaling factor
of 8 but are representative of overall trends across different resolutions.

78

6.5. Online pipeline

As shown in Figure [6.11] single-frame processing incurs the highest per-frame latency,
largely due to repeated kernel launches and I/O overhead that cannot be amortized. Increas-
ing the batch size to 4 or 8 yields an immediate reduction in latency per frame, as operations
are batched more efficiently on the GPU.

Although the figure reflects performance at a spatial scaling factor of 8, this latency vs.
batch size trade-off is consistent across all tested scaling factors. In each case, small batches
favor low-latency real-time responsiveness, while larger batches offer greater computational
efficiency at the cost of delayed feedback.

To further illustrate this relationship, Figure [6.12] shows the per-frame latency of the
online pipeline as a function of scaling factor, using the batch size that yielded the best
latency for each resolution. As expected, latency increases with spatial resolution due to
the growing number of pixels per frame. However, the trend remains smooth and within
real-time constraints when batching is tuned appropriately.

Importantly, the results also show that motion-correction dominates the total latency in
the online processing stage. Trace extraction and spike detection contribute only a small
fraction of the total per-frame cost, confirming that further latency reduction efforts should
prioritize optimizing the motion-correction stage, either through kernel improvements or
more aggressive batching strategies.

Online latency per scaling factor

BN Motion Correction
Il \oltage Extraction
Hll Spike Detection

Scaling factor

0 20 40 60 80 100 120 140 160
Average latency per Frame (ms)

Figure 6.12: Best-case online pipeline latency per frame as a function of spatial scaling
factor. Each point uses the optimal batch size for that resolution.

Real-Time Constraints

In many experimental and closed-loop neuroscience applications, real-time performance is
defined in terms of throughput targets, such as sustaining 500 or even 1000 FPS. These
thresholds correspond to maximum per-frame latencies of 2 ms and 1 ms, respectively.
However, achieving such low latencies is challenging due to the computational cost of
motion-correction and data transfer operations, particularly at high spatial resolutions.

79

6. RESULTS AND EVALUATION

To explore this constraint, online pipeline latency was measured across both batch sizes
and spatial scaling factors. Figure [6.13] overlays two reference lines at 2 ms and 1 ms to
indicate the performance boundaries for 500 FPS and 1000 FPS operation, respectively.

274
qE-) 25<
o
5 —e— factor 1
£ 23] factor 2
g —— factor 4
% —e— factor 8
% 214 —e— factor 16
|*§ —e— factor 32

2—1

2! 23 25 27 2°
Batch Size

Figure 6.13: Per-frame latency for the online pipeline across batch sizes and scaling factors
on the Tesla V100. Dashed horizontal lines represent 2 ms (500 FPS) and 1 ms (1000 FPS)
thresholds.

The results highlight an important constraint: while single-frame processing offers
the lowest theoretical latency, it is not computationally efficient enough to meet high-
throughput requirements. Instead, achieving 500 FPS or 1000 FPS typically requires bigger
batch sizes, which increase the per-frame latency extensively but enable much higher GPU
efficiency.

At lower spatial resolutions (scaling factors < 4), the pipeline can achieve 1000 FPS
performance using batch sizes of 8—16. However, at higher resolutions (scaling < 8), only
500 FPS is sustainable without exceeding the 2 ms frame budget. Even then, performance
must be carefully tuned: too small a batch wastes compute resources, while too large a batch
introduces excessive latency due to delayed output availability.

These findings reinforce the importance of calibration in real-time deployments. In
practice, a compromise in per-frame latency is necessary to sustain high frame rates under
realistic hardware constraints.

Hardware Scaling

To evaluate how the hybrid pipeline’s online performance scales with hardware improve-
ments, the evaluation experiments were repeated on a third system featuring a newer-
generation GPU: the NVIDIA H100 NVL. Key hardware specifications of this system are
shown in Table

80

6.5. Online pipeline

Table 6.3: Hardware specifications for H100-based evaluation system.

Component H100 System

CPU AMD EPYC 9334 (32-core, 3.9 GHz)

GPU NVIDIA H100 NVL, 96 GB

RAM 755 GB DDR5

Disk Dell PM9A3 NVMe SSDs (2 x 3.84 TB + 1 x 447 GB)
(0N Ubuntu 22.04.3 LTS

Despite the substantial GPU upgrade compared to the CUBE server’s Tesla V100, the
H100 system was still unable to execute motion-correction in strict frame-by-frame mode
(batch size = 1) at any of the tested spatial resolutions. This finding underscores the compu-
tational intensity of the frequency-domain motion-correction algorithm and highlights the
limits of single-frame efficiency, even on top-tier hardware.

However, when modest batching (e.g., batch size 4-16) was introduced, the H100 sys-
tem outperformed the V100 setup across all spatial resolutions. Specifically:

* Real-time operation (< 2 ms per frame) was sustained up to a spatial scaling factor
of 16.

* Even higher scaling factors (e.g., 20-24 x) incurred only minor latency overhead and
may still be acceptable for less time-critical online applications.

26

—e— factor 1
factor 2
—e— factor 4
—e— factor 8
—e— factor 16
—e— factor 32

Total latency (ms/frame)

71 23 25 27 29
Batch Size (n)

Figure 6.14: Online motion-correction latency on the H100 system across batch sizes and
spatial scaling factors. Dashed lines indicate 1 ms and 2 ms latency thresholds for 1000 FPS
and 500 FPS operation, respectively.

81

6. RESULTS AND EVALUATION

As shown in Figure [6.14] even though frame-by—frame motion-correction remains out
of reach, the H100 significantly expands the operational envelope of the hybrid pipeline.
With modest batching, it achieves real-time throughput at higher resolutions than previously
possible. These results suggest that modern hardware and future hardware, can bring the
system closer to true real-time feedback operation at scale.

6.5.2 Profiling-Driven Optimization Outcomes

The batch and kernel-level optimizations described in Section f.2.5] produced substantial
reductions in the per-frame processing time of the online pipeline. In particular, switching to
single—precision FFTs, precomputing the template FFT, and fusing FFT —multiply —IFFT
into a single XLLA—compiled kernel all contributed to this speedup.

Figure [6.13] showed the latency vs. batch size trade-off before these changes. To high-
light the impact of our optimizations, Figure [6.15] compares the total per-frame latency for
the core online stages both before and after profiling-driven improvements on the CUBE
server. Similarly, Figure [6.15]isolates the motion-correction stage to show its raw speedup.

24
- \f
o)
€
S 22<
5 —e— factor 1
£ factor 2
g 21 —e— factor 4
E.{; —e— factor 8
— 0] —e— factor 16
©
|§ —e— factor 32
2714

21 23 25 27 29
Batch Size (n)

Figure 6.15: Per-frame latency for the online pipeline across batch sizes and scaling factors
after applying motion-correction optimizations. Dashed horizontal lines represent 2 ms
(500 FPS) and 1 ms (1000 FPS) thresholds.

As shown, the end-to—end per-frame latency (Figure [6.16) drops by over 50 % in the
small-batch regime, bringing batch sizes of 2-256 within the 2 ms frame budget for most
spatial factors. The core motion—correction kernel alone (Figure [6.15) now executes in
under 2 ms for all resolutions when using a batch size bigger than 1.

With computational overhead largely addressed, the dominant remaining bottleneck is
now the GPU-to—CPU memory transfer in strict frame-by-frame operation. This transfer

82

6.5. Online pipeline

Processing (ms/frame)

71 73 25 27 29 —e— factor 1
Batch Size (n) —— factor 2
—e— factor 4
—e— factor 8
—— factor 16
fps —e— factor 32

D fps

Total latency (ms/frame)

21 23 25 27 29
Batch Size (n)

Figure 6.16: Comparison of per-frame processing latency across batch sizes and scaling
factors (top), and post-optimization latency (bottom). Dashed horizontal lines in the top
panel indicate the 2 ms (500 FPS) and 1 ms (1000 FPS) thresholds.

cost, quantified in Figure [6.5d] underscores the necessity of further optimizing data move-
ment, via pinned memory, true asynchronous transfers, or deeper kernel fusion to push
towards true 1000 FPS responsiveness.

83

6. RESULTS AND EVALUATION

6.6 Memory evaluation

Real-time voltage imaging pipelines must not only meet strict latency budgets but also op-
erate within the memory limits of commonly available workstations. Excessive GPU or
host memory usage can lead to out-of-memory errors or force swapping, both of which
dramatically increase per-frame latency and undermine closed-loop experiments. To ensure
our hybrid pipeline remains accessible to laboratories with modest hardware, such as a sin-
gle 8 GB or 12 GB GPU a detailed memory evaluation across key online parameters was
performed.

Figure plots peak resident memory (in GB) as a function of batch size for several
spatial scaling factors. Each curve corresponds to a different input resolution (see Table [6.1]
for scaling definitions). As batch size increases, memory consumption grows approximately
linearly on the GPU because larger tensors must be allocated on the GPU.

244

23]
o
S —— factor 1
g 52 factor 2
> —— factor 4
g —— factor 8
2 2! —e— factor 16

—e— factor 32
20<

21 23 25 27 2°
Batch Size (n)

Figure 6.17: Peak memory usage versus batch size for different spatial scaling factors.
Higher resolution and larger batch sizes both drive up GPU memory requirements.

There is an inevitable trade-off between latency, batch size, spatial resolution, and mem-
ory availability. Larger batches amortize kernel launch and transfer overhead, lowering per-
frame latency, but simultaneously raise the memory bar (Figure[6.17). Likewise, increasing
the spatial scaling factor inflates tensor sizes, further tightening memory constraints. These
results underscore the importance of jointly evaluating compute and memory to identify
Pareto-optimal operating points that satisfy both low-latency and resource-availability re-
quirements.

84

Chapter 7

Conclusions

Voltage imaging offers a powerful window into fast neural dynamics, but existing pipelines
rarely meet the dual demands of real-time performance and practical usability. Many prior
systems have focused on optimizing individual components, such as motion-correction or
segmentation, in isolation, often overlooking whole-system latency, initialization overhead,
and deployment complexity. As a result, even high-performance methods have struggled to
integrate seamlessly into closed-loop experimental workflows.

This thesis set out to address that gap. The central objective was to design and evalu-
ate a hybrid voltage imaging pipeline that combines the real-time capabilities and motion-
correction performance of FIOLA with the modularity and segmentation accuracy of VOLT-
AGE. A strict real-time budget was established, capping per-frame latency at 50 ms for spa-
tial resolutions up to 300(E300, to ensure closed-loop compatibility. The resulting system
delivers real-time feedback, high-throughput performance, and end-to-end reproducibility,
all within a flexible, GPU-accelerated architecture suitable for in-lab use.

Through careful architectural design, modular integration, and profiling-driven opti-
mization, this work demonstrates that targeted system-level improvements can substantially
enhance both the performance and usability of neural imaging pipelines. The final design is
practical, accurate, and readily deployable, while leaving a clear and modular path forward
for future improvements.

This final chapter has summarized the thesis contributions, quantified empirical perfor-
mance across hardware configurations, and discussed the trade-offs and limitations encoun-
tered during development. Together, these results highlight the importance of full-system
thinking in neuroscience software engineering and establish a foundation for continued ad-
vancement in real-time imaging pipelines.

7.1 Thesis Contributions

The work culminated in a hybrid voltage imaging pipeline that merges the GPU-based
motion-correction and spike detection of FIOLA with the U-Net segmentation and modular
trace extraction of VOLTAGE. The design emphasizes real-time capability, modularity, and
reproducibility, bridging the gap between offline analysis and live experimental demands.

* Pipeline Bottleneck Analysis: A detailed evaluation of runtime performance in ex-
isting and hybrid pipelines, identifying motion-correction as the primary bottleneck
for real-time spike extraction. (Chapter [))

85

7. CONCLUSIONS

* Hybrid Optimization Framework: The development of a modular hybrid pipeline
combining FIOLAs motion-correction and spike inference with VOLTAGESs segmen-
tation and trace extraction, integrated with GPU-based enhancements such as XLA-
compiled median filtering and TensorFlow data pipeline optimization. (Chapter[d.2.4))

* Signal Quality Enhancements: Accuracy-focused methods such as vignette filtering
and wavelet-based denoising that improve spike detection consistency and segmenta-
tion precision, especially in noisy or low-contrast recordings. (Chapter{4.1.6)

* Scalable Real-Time System: An online-capable pipeline architecture that supports
real-time spike inference at 500-1000 FPS, with tunable batching for low-latency
feedback. (Chapter|[6.5.2))

* Live Deployment Capability: A Dockerized, streaming-compatible execution model
with shared-memory input and camera simulation, enabling seamless integration into
live experimental setups without the need for file-based preprocessing. (Chapter [4))

* Open Benchmark Toolkit: A reproducible benchmarking suite supporting calibra-
tion, evaluation, and profiling across different datasets, resolutions, and GPU config-
urations. (Chapter[5.4.3))

* Empirical Validation: Comprehensive results validating throughput, latency, and
spike detection accuracy using both synthetic and real data, including application to
closed-loop contexts. (Chapter [6])

7.2 Performance Achievements

The primary evaluation system was a CUBE server equipped with an NVIDIA Tesla V100
GPU. On this hardware, the optimized pipeline reached real-time throughput of 500 FPS
for spatial resolutions up to 680x 680, albeit with 8 ms latency.

Additionally, startup time was significantly reduced through preloading optimizations
and parallelized initialization routines. In contrast to the original FIOLA and VOLTAGE
pipelines, both of which required extensive manual setup and environment management, the
final system can be deployed from a single Docker container with minimal configuration.
This usability improvement lowers the barrier to adoption in real-world lab environments
and is on itself a major contribution.

7.3 Discussion
While performance and accuracy were improved, several trade-offs and observations emerged:

* Unified workflow and reproducibility: A key advantage of this work is its stream-
lined, modular architecture. It supports offline and online modes using the same code-
base and enables partial execution with cached data, a feature particularly helpful for
testing and iterative development.

86

7.4. Limitations and Future Work

* Latency vs. frame rate trade-offs: To achieve higher frame rates, moderate batch-
ing is required. However, batching inherently introduces latency. The system’s con-
figurability makes it possible to tune this trade-off per experiment, but low-latency,
high-resolution operation remains challenging.

* Latency vs. Memory Footprint: Memory profiling (Section[6.6) shows that increas-
ing batch size or spatial resolution improves GPU throughput but rapidly inflates
VRAM usage and device-host transfer overhead. Since spike detection must com-
plete within a 50 ms window, we must balance batch-driven latency gains against
the risk of out-of-memory errors and longer transfer times, especially on GPUs with
limited memory.

* Ease of use vs. internal complexity: The Dockerized deployment and camera sim-
ulation make the system easy to install and run. However, maintaining modularity
(e.g., separating shading and motion-correction) comes at the cost of some perfor-
mance overhead, most evident in the shading correction runtime.

7.4 Limitations and Future Work

While the proposed hybrid pipeline achieves substantial improvements in real-time spike
inference and modularity, several limitations remain and offer directions for future develop-
ment:

* Lack of live hardware testing: Although the system was evaluated extensively us-
ing synthetic camera streams and memory-mapped simulation, it has not yet been
validated with real acquisition hardware in a live experimental setup.

* Frame-by-frame streaming limitations: True frame-by-frame (batch size = 1) exe-
cution in the online pipeline was not achievable due to persistent GPU-to-CPU mem-
ory transfer overhead. Addressing this would require one or more of the following:

— Direct streaming of camera video to GPU memory,
— Lower-level memory pinning and data transfer optimizations,

— GPU-based trace extraction to reduce host-device communication entirely, po-
tentially converting this into a sparse GPU computation pipeline.

* Shading correction overhead: The current shading correction step is implemented
using a combination of C++, CUDA, and Cython, which limits maintainability and
performance tuning. A reimplementation using fully GPU-native operations (e.g.,
CuPy or TensorFlow) could eliminate this bottleneck.

* Limited optimization of offline components: While motion-correction and median
filtering were heavily optimized, other offline stages, such as segmentation and trace
extraction, did not receive comparable acceleration. If significantly higher spatial
resolutions become standard in future experiments, these components may require
additional tuning or GPU acceleration.

87

7. CONCLUSIONS

* No automatic configuration tuning: Runtime parameters such as batch size, thread
count, and chunk size are currently set manually. Future versions could incorporate
automated calibration based on real-time hardware profiling to dynamically select
optimal settings.

* Lack of multi-GPU or distributed support: The pipeline is designed for single-
device execution. Extending it for multi-GPU or cloud-deployed use cases could
allow much higher throughput in parallel imaging scenarios.

These limitations do not undermine the systems current utility but highlight concrete op-
portunities for future refinement as deployment contexts and experimental demands evolve.

88

[1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]

[9]

Bibliography

Yosuke Bando, Ramdas Pillai, Atsushi Kajita, Farhan Abdul Hakeem, Yves
Quemener, Hua-an Tseng, Kiryl Piatkevich, Changyang Linghu, Xue Han, and Ed-
ward S. Boyden. Real-time Neuron Segmentation for Voltage Imaging [dataset], oct
2023.

Antic Lab, University of Connecticut Health. Sequential dendritic voltage imaging
and dendritic calcium imaging from the same region of interest on a basal dendrite of
a layer 5 cortical pyramidal neuron. Antic Lab Image Gallery, n.d. Recolored version.

Darcy S. Peterka, Hiroto Takahashi, and Rafael Yuste. Imaging voltage in neurons.
Neuron, 69(1):9-21, 2011.

A. Giovannucci, J. Friedrich, P. Gunn, J. Kalfon, B. L. Brown, S. A. Koay, J. Taxidis,
F. Najafi, J. L. Gauthier, P. Zhou, B. S. Khakh, D. W. Tank, D. B. Chklovskii, E. A.
Pnevmatikakis, and L. Paninski. Volpy: Automated and scalable analysis pipelines for
voltage imaging. bioRxiv, 2021.

M. Pachitariu, C. Stringer, M. Dipoppa, S. Schroder, L. F. Rossi, H. W. P. Dalgleish,
M. Carandini, and K. D. Harris. Suite2p: beyond 10,000 neurons with standard two-
photon microscopy. bioRxiv, 2017.

Y. Bando, M. Chen, N. J. Hill, R. Zhou, H. Kawsar, G. Hobbs, M. Glenn, A. D.
Douglass, D. B. Chklovskii, and E. A. Pnevmatikakis. Real-time neuron segmentation
and spike extraction from voltage imaging data. arXiv preprint, arXiv:2403.16438,
2024.

Logan Grosenick, James H. Marshel, and Karl Deisseroth. Closed-loop and activity-
guided optogenetic control. Neuron, 86(1):106-139, 2015.

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann,
R. M. Bruno, and E. M. C. Hillman. Swept confocally-aligned planar excitation
(scape) microscopy for high-speed volumetric imaging of behaving organisms. Na-
ture Photonics, 9:113-119, 2015.

A. S. Abdelfattah, T. Kawashima, A. Singh, O. Novak, H. Liu, H. Shuai, A. Y. Hu,
P. Borden, H. A. Day, R. O. Rasmusson, A. D. Snyder, D. J. Blake, A. P. Cham-
bers, R. Y. Tsien, and M. Inoue. Bright and photostable chemigenetic indicators for
extended in vivo voltage imaging. Science, 365(6454):699-704, 2019.

&9

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

[21]

[22]

90

Thomas Knopfel and Chenchen Song. Optical voltage imaging in neurons: mov-
ing from technology development to practical tool. Nature Reviews Neuroscience,
20(12):719-727, 2019.

R. U. Kulkarni and E. W. Miller. Voltage imaging: Pitfalls and potential. Biochemistry,
56(39):5171-5177, 2017.

Wikipedia contributors. Refractory period (physiology). |https://en.wikip
edia.org/w/index.php?title=Refractory period (physiology)é&oldid=
1257739036, Nov 2024. Accessed: 2025-06-07. Text available under CC BY-SA 4.0.

G. J. Gage, C. R. Stoetzner, A. B. Wiltschko, F. H. Gage, E. O. Boateng, S. Ribeiro,
J. N. Meta, K. Zebrowski, and G. G. Koch. The real-time experimental interface: A
tool for studying closed-loop neuroscience. Frontiers in Neural Circuits, 9:44, 2015.

Adrien Jouary and Germédn Sumbre. Real-time imaging and optogenetics in neuro-
science. Current Opinion in Neurobiology, 79:102708, 2023.

John L. Gustafson. Amdahls law. In David Padua, editor, Encyclopedia of Parallel
Computing, pages 53—60. Springer, Boston, MA, 2011.

Rui Silva. Personal communication, 2025. PhD candidate at Erasmus MC, advisor to
the author.

Changjia Cai, Johannes Friedrich, Abhinav Singh, Mohammad H Eybposh, Efty-
chios A Pnevmatikakis, Kaspar Podgorski, and Andrea Giovannucci. Fiola: An accel-
erated pipeline for fluorescence imaging online analysis. bioRxiv, 2021.

Eftychios A. Pnevmatikakis and Andrea Giovannucci. Normcorre: An online algo-
rithm for piecewise rigid motion correction of calcium imaging data. Journal of Neu-
roscience Methods, 291:83-94, 2017.

Philippe Thévenaz. Turboreg and other imagej plugins at the biomedical imaging
group of epfl. In Proceedings of the Euro-Biolmaging First Workshop on Bioimage
Analysis Software: Is There a Future Beyond ImageJ?, page 23, Barcelona, Spain,
2012.

Jean-Yves Tinevez, Nick Perry, Johannes Schindelin, Genevieve M. Hoopes, Gre-
gory D. Reynolds, Emmanuel Laplantine, Sebastian Y. Bednarek, Spencer L. Shorte,
and Kevin W. Eliceiri. Trackmate: An open and extensible platform for single-particle
tracking. Methods, 115:80-90, 2017.

Ljubisa Platisa and et al. Roi-accelerated motion correction in voltage imaging, 2022.
Closed-source method described in unpublished technical documentation.

George Adam. Manual annotation in neural imaging studies, 2019. Unpublished
dataset annotation protocol.

https://en.wikipedia.org/w/index.php?title=Refractory_period_(physiology)&oldid=1257739036
https://en.wikipedia.org/w/index.php?title=Refractory_period_(physiology)&oldid=1257739036
https://en.wikipedia.org/w/index.php?title=Refractory_period_(physiology)&oldid=1257739036

Bibliography

[23] Patrick Kaifosh, Michael Lovett-Barron, Georg Turi, Thomas R. Reardon, and Attila
Losonczy. Sima: Python software for analysis of dynamic fluorescence imaging data.
Frontiers in Neuroinformatics, 8:80, 2014.

[24] R. Kannan and collaborators. Signal-informed segmentation using gevi polarity fea-
tures, 2022. Technical report.

[25] Y. Liu and collaborators. Template matching for segmentation in gevi recordings,
2022. Unpublished method description.

[26] L. Wang and collaborators. Real-time neural network-based segmentation for voltage
imaging, 2023. Manuscript in preparation.

[27] H. Brooks and collaborators. Probabilistic refinement for segmentation in noisy volt-
age data, 2024. Preprint in submission.

[28] M. Weber and collaborators. Integrated volumetric segmentation pipelines for neural
imaging, 2023. Technical documentation.

[29] J. Tian and collaborators. Segmentation within high-speed volumetric imaging sys-
tems, 2022. Conference poster.

[30] Xin Fan and collaborators. Exponential fitting for photobleaching correction in cal-
cium imaging, 2020. Unpublished protocol or internal documentation.

[31] David Pedrosa and collaborators. High-pass filter based baseline correction in neural
fluorescence recordings, 2024. Manuscript in review.

[32] Emily Jackson and collaborators. Baseline stabilization using rolling averages in volt-
age imaging, 2024. Conference presentation.

[33] Chang Liu, Jing Lu, Yiyang Wu, Xin Ye, Allison M. Ahrens, Jelena Platisa, Vincent A.
Pieribone, Jerry L. Chen, and Lei Tian. Deepvid v2: Self-supervised denoising with

decoupled spatiotemporal enhancement for lowphoton voltage imaging. Neuropho-
tonics, 11(4):045007, 2024. E-published Oct 29, 2024.

[34] V. Villette, M. Chavarha, 1. Dimov, J. Bradley, N. Pradhan, C. E. Pizoli, A. Tanguay,
I. Khan, S. Chen, D. Font-Rodriguez, Y. Kim, A. G. Richardson, C.-F. Latchoumane,
E. A. Pnevmatikakis, M. J. Schnitzer, F. Gao, W. Grueber, K. Holthoff, C. A. Barnett,
J. T. Vogelstein, H. Shimazaki, Z. Knox, O. Parnas, J. Echegoyen, K. Deisseroth,
and G. Feng. Ultrafast two-photon imaging of a high-gain voltage indicator in awake
behaving mice. Cell, 179(7):1590-1608.e23, 2019.

[35] A. Shu and collaborators. Low-complexity synchrony-based spike detectors for real-
time imaging, 2021. Technical report.

[36] R. Zhang and collaborators. A hybrid thresholding strategy for robust spike detection
in voltage imaging, 2023. Preprint under review.

91

BIBLIOGRAPHY

[37]

[38]

[39]

[40]

[41]

[42]

[43]

92

J. Sabater and collaborators. Global-local hybrid thresholding in neural signal extrac-
tion, 2021. Presented at IEEE EMBC 2021.

D. Kim and collaborators. Compressed neural imaging with spatially adaptive thresh-
olding, 2023. Manuscript in preparation.

Rodrigo Quian Quiroga, Zoltan Nadasdy, and Yoram Ben-Shaul. Unsupervised spike
detection and sorting with wavelets and superparamagnetic clustering. Neural compu-
tation, 16(8):1661-1687, 2004.

Miroslaw Latka, Zbigniew Was, Andrzej Kozik, and Bruce J] West. Wavelet analysis
of epileptic spikes. Physical Review E, 67(5):052902, 2003.

Google. Better performance with the tf.data api. https://www.tensorflow.org
/quide/data performance, 2023. Accessed: 2025-06-08.

Kaiming He, Georgia Gkioxari, Piotr Dolldr, and Ross Girshick. Mask r-cnn. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV), pages
2961-2969, 2017.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In Medical Image Computing and Computer-
Assisted Intervention (MICCAI), volume 9351 of Lecture Notes in Computer Science,
pages 234-241. Springer, 2015.

https://www.tensorflow.org/guide/data_performance
https://www.tensorflow.org/guide/data_performance

Glossary

This appendix provides an overview of frequently used terms and abbreviations.

Graph: In GPU computing, a "graph" often refers to a computational graph or dataflow
graph, which represents a sequence of operations and their data dependencies. This
structure allows the GPU to efficiently parallelize and execute these operations by
identifying independent tasks and optimizing memory access patterns.objects.

TensorFlow: An open-source machine learning framework developed by Google. Ten-
sorFlow allows users to build and train models using computational graphs, where
operations are represented as nodes and data (tensors) flow along edges. It supports
both CPU and GPU execution and is widely used for deep learning, signal processing,
and other numerical tasks.

93

Appendix A

GPU benchmark comparison

This appendix presents benchmarking results for key GPU-accelerated operations used in
the hybrid voltage imaging pipeline. The goal of these benchmarks is to compare perfor-
mance across two representative hardware setups: an NVIDIA RTX 3080 (consumer-grade
GPU) and an NVIDIA Tesla V100 (data center-class GPU). The focus is on critical op-
erations such as DFT-based shift correction, FFT execution, cross-correlation, and image
normalization. These comparisons guided decisions around kernel configurations, batching
strategies, and hardware deployment scenarios during pipeline development.

DFT-based Shift Correction: Cube Server vs RTX 3080

—e— Cube Server
RTX 3080

Time Taken (Seconds)

sssctee =

T T T T T T T
256 512 1024 2048 4096 8192 16384 32768
Image Size (x * x) pixels

Figure A.1: Benchmark results for FIOLA’s dft-based shift correction

95

A. GPU BENCHMARK COMPARISON

96

Time Taken (Seconds)

Time Taken (Seconds)

FFT Benchmark: Cube Server vs RTX 3080

—e— Cube Server
RTX 3080
10!
10° {
014 ® 4 L]
256 512 1024 2048 4096 8192 16384 32768

Image Size (x * x) pixels

Figure A.2: Benchmark results for general FFT sizes

FFT-based Cross-correlation: Cube Server vs RTX 3080

102 4 —@— Cube Server
RTX 3080
10!
10° 4
10-1 4
T T u T u T T
256 512 1024 2048 4096 8192 16384

Image Size (x * x) pixels

Figure A.3: Benchmark results for FFT cross-correlation

Time Taken (Seconds)

Image normalization: Cube Server vs RTX 3080

—8— Cube Server
RTX 3080
10! 4
100 4
- - 1
256 512 1024 2048 4096 8192 16384 32768

Image Size (x * x) pixels

Figure A.4: Benchmark results for image normalization

97

Appendix B

In-depth Analysis of FIOLA and
VOLTAGE

B.1 FIOLA: Fluorescence Imaging OnLine Analysis

FIOLA is an online voltage imaging pipeline designed for low-latency, real-time processing.
After an initial offline calibration, it processes frames independently using a GPU-resident
computational graph, achieving millisecond-scale latencies. FIOLA supports frame-by-
frame motion-correction, fluorescence trace extraction, and spike inference without full
video buffering, making it suitable for closed-loop experimental paradigms.

The structure and execution flow of FIOLA’s offline phase is illustrated in Figure [2.4]
which highlights each step leading up to online operation and the data artifacts generated at
each stage.

While FIOLA is described as an online pipeline, it does not operate in a fully streaming
mode. Specifically, after offline calibration, the full imaging file is first loaded into GPU
memory. Only then does FIOLA process each frame independently or in small batches with-
out further buffering delays. This distinction is important in the context of real-time systems
that must operate continuously on incoming data. Figure [2.5]illustrates the sequence of op-
erations following offline initialization, capturing the data flow and GPU execution model
during the online phase.

B.1.1 Motion-Correction

FIOLA performs rigid motion-correction by aligning each incoming frame to a fixed refer-
ence template (typically obtained during initialization) using frequency-domain normalized
cross-correlation (ZNCC). Crucially, once the required subpixel shift is determined, it is
applied directly in the Fourier domain via phase modulation, avoiding interpolation in the
spatial domain.

The algorithm proceeds as follows:

1. Fourier Cross-Correlation: The incoming frame /; and the template T are first zero-
mean normalized and transformed via a 3D although the complex values remain
at 0. Their normalized cross-correlation is computed in the frequency domain using:

ZNCC = |F " (F (1) F(T)")]

where F denotes the FFT and * is the complex conjugate.

99

B. IN-DEPTH ANALYSIS OF FIOLA AND VOLTAGE

2. Subpixel Shift Estimation: The peak of the ZNCC map is extracted, and Gaussian
interpolation is applied in log-space to estimate subpixel displacements (Ax,Ay).

3. Phase-Based Shift Application: The shift is then applied in the frequency domain
by modulating the phase of the FFT of ;. This approach exploits the Fourier shift
theorem and avoids explicit interpolation:

It/ _ ’,}-71 (,{F(lz) . e*Z’lL'i(MAX‘FVAy))
where (u,v) are spatial frequency coordinates.

Figure illustrates this pipeline, including the FFT-based cross-correlation, subpixel
estimation, and frequency-domain shift correction.

Template Construction: The accuracy of the motion-correction step depends on the qual-
ity of the reference template. FIOLA constructs this during an initialization phase by com-
puting the pixelwise temporal median over a batch of frames (usually 5000 or more). This
median operation is performed on the CPU and has a complexity of O(NLlogL) for N pixels
and L frames.

Computational Complexity: The per-frame cost is dominated by FFT operations and
subpixel refinement:

* FFT and inverse FFT: O(N1logN)
* Phase-based shift: O(N)
* Subpixel peak estimation: O(1) per frame

All steps are efficiently parallelized on GPU using TensorFlow’s ‘fft3d’ and ‘ifft3d’ opera-
tions.

Implementation Details: Motion-correction is implemented as a custom TensorFlow layer
using ‘tf.signal.fft3d’ and ‘ifft3d’. The cross-correlation, phase shifting, and inverse FFT
are executed on the GPU for high throughput. Precomputed frequency-domain template
values are reused across frames, and the system maintains a batched pipeline for real-time
operation. Shift values are computed per frame and passed downstream for trace alignment.
The FFT-based correction supports subpixel accuracy without the artifacts that typically
arise from spatial-domain interpolation.

B.1.2 Trace Extraction

FIOLA does not perform neuron segmentation online. Instead, it relies on pre-generated
ROI masks, which must be computed during an offline initialization phase. These masks
define the spatial footprints of individual neurons and can be obtained using methods such
as manual annotation, external segmentation models (e.g., Mask R-CNN [42])), or low-rank

100

B.1. FIOLA: Fluorescence Imaging OnLine Analysis

matrix factorization applied to a batch of frames. Once these masks are defined, FIOLA
uses them for fast online trace extraction.
The motion-corrected video is represented as:

Y € RT, (B.1)
where d is the number of pixels and 7' the number of frames. This is approximated as:
Y =~ AC+B, (B.2)
where:
« A € R¥X contains spatial neuron footprints (one column per ROI),
 C € R¥*T holds the corresponding temporal activity traces,

* B models background fluorescence.

Offline Initialization: FIOLA initializes A, C, and B from a batch of frames (7;,;; ~ 1000)
using projected gradient descent (PGD) on the following objective:

/Enci%mmt—AC—BH,% st. A>0,C>0. (B.3)

This produces spatial masks in A, which serve as neuron segmentation for later trace extrac-
tion.

Online Trace Extraction: Once initialized, FIOLA fixes A and B. For each incoming
frame y,, the temporal activity vector ¢; is computed via:

¢; = argmin ||y, —Ac—b;||%, (B.4)
c>0

where b, is the background at time ¢. In regions without ROI overlap, this reduces to:

alt] =Y (i) = bi(i)), (B.5)

I€ERy

where Ry is the support of ROI k. In overlapping regions, small nonnegative least squares
(NNLS) problems are solved per cluster (e.g., 2x2), which introduces negligible overhead.

Computational Complexity:

* Offline Initialization: O(Njerd K Tini), amortized over time. GPU acceleration and
sparse operations make this feasible.

* Online Trace Extraction: O(d + K) per frame with optional local NNLS for over-
lapping ROIs.

101

B. IN-DEPTH ANALYSIS OF FIOLA AND VOLTAGE

Implementation Details:

* A, B, and incoming frames are kept on GPU.
* PGD and online updates use GPU kernels (cuBLAS, cuDNN, or custom CUDA).

* Minimal memory transfer overhead; only spike traces c; are stored.

Summary: FIOLA’s online trace extraction is fast and accurate but depends on external
segmentation. The framework assumes fixed masks and does not dynamically discover or
update ROIs. This constraint simplifies online inference but limits adaptability to shifting
neural activity patterns or new spatial regions during acquisition.

B.1.3 Spike Detection and Photobleaching Correction

FIOLA identifies spike events in real time by applying matched filtering and adaptive thresh-
olding to each neuron’s trace. To maintain accuracy throughout long recordings, photo-
bleaching correction is integrated directly into the filtering steps.

Photobleaching Correction (DC Blocker & Running Median): To compensate for base-
line decay and low-frequency drift, FIOLA applies a two-stage high-pass filtering sequence:

1. DC-Blocking Recursive Filter: For each fluorescence trace F[n], apply:
X[n|=F[n]—Fn—1]+R-X[n—1], (B.6)

where R ~ 0.995 defines a cutoff at approximately 0.5 seconds (200 frames at 400
Hz). This suppresses slow transients while retaining spike-scale dynamics.

2. Running Median Filter: The signal X [r] is then centered using a running median of
window size w, typically 15 frames:

F[n] = median(X[n —w : n]). (B.7)

This removes residual drift and subthreshold fluctuations. Due to the sparsity of
spikes, the median is not affected by sharp transients.

3. Adaptive Recalibration: Every M frames:

* Recompute a long-term baseline using the median of the past M samples.

+ Update the detection threshold using the 95" percentile of the last 100 detected
spike amplitudes.

102

B.1. FIOLA: Fluorescence Imaging OnLine Analysis

Template Matching: Once filtered, each trace X [n] is convolved with a predefined spike
template h[n| of length L (usually 5-10 frames):

S[n] = (X *h)[n] :LilX[n—i-’c] -h[1). (B.8)
=0

This matched filter amplifies true spike events by integrating over time. The template is ob-
tained during initialization by averaging clean spike waveforms. Spike template extraction
during initialization is performed explicitly in parallel using multiple CPU cores.

Adaptive Thresholding and Peak Selection: Spikes are identified as local maxima in
S[n] exceeding a dynamically updated threshold:

+ Adaptive Threshold: Every L frames, the threshold is reset to 50% of the 95" per-
centile of recent spike amplitudes.

* Refractory Enforcement: A refractory period of L frames prevents overcounting.
Once a spike is detected at ng, further detections are suppressed until n > ng+ L.
Post-Processing:
* Merge adjacent detections within L frames into a single event.
* Assign the spike time to the frame with the highest value of S[n| in the detection

window.

Optional Subthreshold Trace Extraction: If desired, spikes can be removed from X|n]
to reveal underlying subthreshold membrane fluctuations. This is done by masking spike
regions and applying a smoothing filter to the residual trace.

Computational Complexity:

* DC-blocking and median filtering: O(1) per frame per trace.

Matched filtering: O(L) per frame per neuron.

Thresholding and post-processing: O(1) per frame per neuron.

Total: O(K - L) per frame, efficiently parallelizable.

Implementation Details:

* All filtering and template matching are implemented using sliding windows or simple
vector operations and run efficiently on the CPU.

* Initialization routines, including spike template extraction and percentile threshold
estimation, are parallelized across multiple CPU cores.

* Threshold updates and signal filtering are integrated into the same frame-processing
loop, minimizing latency.

103

B. IN-DEPTH ANALYSIS OF FIOLA AND VOLTAGE

Summary: FIOLA’s spike detection pipeline achieves robust performance through a com-
bination of baseline correction, template matching, and dynamic thresholding. Its modular,
online-friendly architecture allows for consistent, high-speed operation suitable for real-
time feedback systems.

B.2 VOLTAGE: A Fast, Modular Voltage Imaging Pipeline

VOLTAGE (Voltage imaging pipeline) is an open-source framework developed by the MIT
Media Lab and collaborators for high-speed analysis of voltage imaging data [6]. It is de-
signed to operate in real time or faster-than-recording-time on a single high-end workstation
equipped with GPUs.

The pipeline consists of six main stages:

1. Motion-Correction: Stabilizes video data by removing global 2D translational shifts.

2. Shading Correction: Compensates for lighting intensity changes due to movement
and illumination variability.

3. Preprocessing: Aggregates raw frames into summary images to suppress noise.

4. Segmentation: Applies a CNN to summary images and demixes overlapping ROIs
via local NMBA

5. Trace Extraction: Computes fluorescence traces for each ROI over time.

6. Spike Detection: Identifies spikes on the extracted traces using thresholding or tem-
plate matching.

Motion-correction, shading-correction and segmentation are designed for GPU accel-
eration and multi-GPU parallelism. VOLTAGE is implemented in C++/CUDA and Python
and can be extended or replaced at any stage.

File Motion Shading Pre- Segmen- Mask Trace Spike
Processes o L L > ; ; . A
read correction| " correction| " processing tation Calculation| ~|extraction etection
l 0y

Time | >

Figure B.1: Timeline of VOLTAGE’s pipeline execution. Each stage uses the output of the
previous one as its input, creating a sequential dependency. The only exception is trace
extraction, which depends not only on the ROI mask but also directly on the output of
shading correction.

104

B.2. VOLTAGE: A Fast, Modular Voltage Imaging Pipeline

B.2.1 Motion-Correction

The first stage of the pipeline performs rigid motion-correction using patch-based Zero-
mean Normalized Cross-Correlation (ZNCC). For each incoming frame I;, the goal is to
estimate the optimal shift (Ax, Ay) relative to a fixed reference template 7. ZNCC is com-
puted for candidate shifts across small patches to determine this displacement.

_ LZ (I (i + Ax, Ay) —) (T (i) — pr)
o ‘P| O;O0T1

ZNCC(ayay)

)
ieP

where P denotes a patch of pixels (e.g., 21 x 21), and u, ¢ are the patch-wise means and
standard deviations of the current frame and template, respectively.
Algorithm Steps:

1. Divide each frame into m x n patches.

2. For each patch, evaluate ZNCC over a grid of M shift candidates (e.g., =5 pixels in
each direction).

3. Aggregate patch ZNCC scores across the frame.
4. Select the shift with the maximum aggregated ZNCC.
5. Translate the frame using the negative of the estimated shift (e.g., via bilinear inter-

polation).

B.2.2 Shading Correction

To account for illumination variability, such as vignetting or motion-induced shading changes,
VOLTAGE integrates normalization into the motion-correction phase. Because ZNCC in-
herently removes differences in mean and contrast, it provides illumination-invariant align-
ment:

* Patches are zero-meaned and normalized by their standard deviation.

* No additional shading correction step is necessary.

Implementation Details:

* CUDA Parallelism: Patchwise ZNCC computations and shift evaluations are im-
plemented via custom CUDA kernels or tensor libraries, allowing all patches and
candidate shifts to be processed in parallel.

* Integral Images: Patch means and variances are computed using summed-area tables
(integral images), which allow O(1) lookup.

* Memory Optimization: Double-buffered GPU memory and pinned CPU memory
ensure uninterrupted frame acquisition from NVMe storage.

105

B. IN-DEPTH ANALYSIS OF FIOLA AND VOLTAGE

* Parallel GPU Strategy: One GPU is allocated to motion and shading correction;
others may handle segmentation and trace extraction.

Computational Complexity: Let:

* F be the number of frames,

* N be the number of pixels per frame,

* P be the number of patches per frame,

* M be the number of candidate shifts evaluated per patch.

The total complexity over all frames is:

O(F-P-M)
Each ZNCC evaluation within a patch is O(s?), where s x s is the patch size. Thus, the full
complexity per frame becomes:
O(P-M-s*) = O(N-M)

assuming patch coverage over the full image. For example, a 512x512 image with 21 x21
patches, sliding every 16 pixels, results in roughly 1024 patches, with M ~ 441 candidate
shifts. This totals over 450,000 comparisons per frame.

B.2.3 Preprocessing

In VOLTAGE, preprocessing is performed without explicit denoising. Instead, the pipeline
constructs two types of summary images over short temporal windows of L motion- and
shading-corrected frames. These summaries reduce noise, enhance salient structures, and
serve as input to the segmentation model.

Summary Types: Two complementary summary statistics are computed per L-frame seg-
ment:
¢ Temporal Average Image:

1
L

M=

A(x) V(x1),

t=1

where V(x,7) denotes the motion-corrected intensity at pixel x and time 7. This
smooths out uncorrelated noise and highlights persistent spatial features (e.g., cell
bodies).

¢ Max-minus-Median Image:

M(x) = lrgflngV(x,t) — median; << (V (x,1)),

where V (x,t) is the result of Gaussian blurring each frame with standard deviation
o = 3 pixels. This highlights transient events, such as spike-evoked fluorescence,
while suppressing slow drift and local noise.

106

B.2. VOLTAGE: A Fast, Modular Voltage Imaging Pipeline

Noise Suppression: These summary strategies are designed to attenuate noise without
sacrificing spike visibility:

* Averaging attenuates random noise and accentuates stable neuron outlines.

* Gaussian blurring in the max-minus-median suppresses high-frequency pixel-level
noise that might otherwise corrupt the median baseline.

* The max operation preserves transient peaks, making this summary ideal for identi-
fying neurons with sparse firing.

Implementation Notes:
* Raw frames are streamed and buffered in GPU memory for each L-frame segment.

* Gaussian blurring is implemented via separable convolutions using either CUDA or
cuDNN-accelerated PyTorch ops.

* The median is computed per pixel over time, with exact methods costing O(L) per
pixel. Approximate medians (e.g., bin-based quantile estimation) can be used for
large L to reduce runtime.

* Only the two summary images A(x) and M(x) are stored, greatly reducing memory
overhead compared to keeping raw frame buffers.

Computational Complexity: Letd be the number of pixels per frame. The computational
cost of summary image extraction is:

0(d-L),

as each pixel requires L operations for mean, max, and median across frames.

I:> Time segment summarization
:> Spiking pixel identification

% — » Neuror ()()t])]l‘l t reconstructios
]

U-Net NMF-based
decomposition
Input:

o 64x64x2
- Uﬂﬂﬂﬂﬂﬁ;

Spatial Take sliding patches
summary filter (64x64-pixels)

Time segment

Z

Input video
(motion corrected)

Output: T
64x64x1 ‘ ‘ Neuron
ROI masks
Temporal i r — e
filter Sequence of probability maps
summary 1 Temporal summary images (neurons: 1, background: 0)

Figure B.2: Illustration of the two summary images used for neuron segmentation in VOLT-
AGE. The average image highlights stable spatial structures, while the max-minus-median
emphasizes sparse, transient events such as spikes. Image from [6]

107

B. IN-DEPTH ANALYSIS OF FIOLA AND VOLTAGE

These summary images are then passed to the U-Net-based segmentation model, where
they act as spatial priors for neuron identification.
B.2.4 Segmentation

Following preprocessing, VOLTAGE applies a convolutional neural network based on the
U-Net architecture to the summary images. This model identifies the spatial footprints of
individual neurons by learning to map image features to binary masks indicating regions of
interest (ROIs).

Model Input and Output: The network receives two-channel input:
* Channel 1: the temporal average image.
* Channel 2: the max-minus-median summary image.

The output is a single-channel probability map where each pixel denotes the likelihood
of being part of a neuron. This is subsequently thresholded and post-processed to obtain
discrete, labeled ROIs.

Architecture Overview: The U-Net consists of an encoder-decoder structure with skip
connections:

* The encoder path progressively downsamples the input through convolutional and
max-pooling layers, capturing hierarchical spatial features.

* The decoder path upsamples feature maps using transposed convolutions and merges
them with corresponding encoder features via skip connections. This recovers spatial
resolution while retaining learned context.

* A final sigmoid activation produces a dense probability map suitable for segmenta-
tion.

This structure is particularly well-suited for biomedical image segmentation tasks, where
both coarse context and fine detail are needed to distinguish overlapping or faint features.

Training and Inference: The model is trained offline using manually annotated masks
and data augmentation (e.g., rotation, scaling). During inference, it runs on the GPU and
operates on summary images generated in the preprocessing stage. Predictions are made
segment-wise and are immediately available for ROI extraction.

Implementation Notes:

* All computations are GPU-accelerated using PyTorch or TensorFlow, enabling effi-
cient inference even for moderate-sized images.

* Summary images are normalized before being passed to the network.

108

B.2. VOLTAGE: A Fast, Modular Voltage Imaging Pipeline

2 32 32 64 32 32 1
Input
summary Output
patch pair || ap||sp > | || = |2 |2 || probability
2 map
e
Z
64 g 64 T
ﬁ
;1 » * L > td g
- # Conv 3x3, ReLU
128 128 256 128 & Co
o Py
El".*- :>E.".". § Max poo 22
- 1] 256 s I ConvTranspose 2x2
"-‘-‘- o> Conv 1x1, sigmoid

Figure B.3: Structure of the U-Net model used for segmentation in the VOLTAGE pipeline.
The two summary images serve as input channels, and the output is a pixelwise probability
map indicating neuron locations. Image from [6]

* Output probability maps are thresholded and filtered (e.g., by area or shape) to remove
false positives.

Once segmentation masks are obtained, they are used in downstream processing to ex-
tract fluorescence traces in combination with the motion and shading corrected frames.

B.2.5 Trace Extraction

Once final ROI masks Ry are obtained, compute each neuron’s fluorescence trace in the
motion-corrected video:

LY .

‘ k ‘ i€Ry,
where I, (i) is the intensity of pixel i at frame .
Implementation Options:
* Direct Summation: Loop over frames in C++ and sum ROI pixels per neuron.

* Matrix Multiplication: Let A be the binary (or weighted) mask matrix (pixels X
neurons) and Y be frames (pixels x time). Then AY yields (neurons X time).

* GPU Reduction: Use masked parallel reduction per neuron, producing all Fi[t] in
one GPU pass.

Photobleaching Note: The pipeline does not perform explicit photobleaching correction
at this stage. Raw traces may exhibit slow decay; users can apply post-hoc baseline sub-
traction (e.g., high-pass filter or fitting an exponential) if desired.

109

B. IN-DEPTH ANALYSIS OF FIOLA AND VOLTAGE

B.2.6 Spike Detection

VOLTAGE does not prescribe a single spike detection algorithm but provides a baseline
z-score thresholding approach:

1. Z-score Normalization: For each trace Fi[t], compute a sliding-window mean g t]
and standard deviation o [t] over recent frames, then

Filt) — pelt
Zk[l‘] _ kH ‘le[].
(o7 [t]
2. Thresholding: Mark times where Z[r] > 0 (typically 6 ~ 2-4) as candidate spikes.

3. Refractory Enforcement: Enforce a minimum inter-spike interval (e.g., no two
spikes within 5-10 ms) by ignoring peaks within that window.

4. Optional Refinements: Users may convolve Fj[t] with a spike template or apply
high-pass filtering before thresholding for improved SNR.

Computational Complexity:
* Trace extraction is O(K 7) per frame, where 7 is average ROI size.

* Spike detection (z-scoring + thresholding) is O(K) per frame.

Implementation Notes:

* Sliding-window statistics (mean, std) can be updated in O(1) per frame per neuron
using exponential moving averages or running accumulators.

* Thresholding and refractory logic are trivial to implement in C++ or Python.

* Advanced methods (template matching, deconvolution) can replace the baseline z-
score step without modifying upstream stages.

Summary: By decomposing processing into six GPU-friendly stages, motion-correction,
shading-correction, preprocessing, segmentation, trace extraction, and spike detection, VOLT-
AGE achieves real-time, accurate voltage imaging analysis. Each stage is optimized for
parallelism and minimal latency, while allowing modular replacement or extension.

B.3 Comparison to FIOLA:

While FIOLA employs FFT-based motion-correction and assumes fixed illumination, VOLT-
AGE integrates shading normalization directly via its patch-wise ZNCC formulation. This
makes VOLTAGE more robust to dynamic brightness changes but also more tightly coupled
in its preprocessing stages. Unlike FIOLA’s modular NMF-centric model, VOLTAGE’s
front-end is optimized as a tightly integrated CUDA pipeline.

110

B.3. Comparison to FIOLA:

B.3.1 Preprocessing and Summary Image Extraction

The VOLTAGE pipeline does not include an explicit denoising stage. Instead, it achieves
noise reduction indirectly through a summary-based preprocessing step that condenses tem-
poral information into representative 2D images. These summary images highlight neuron
activity and suppress unstructured noise, enabling efficient and robust segmentation.

Temporal Summarization: VOLTAGE divides the video into short temporal segments
(typically 250-1000 frames) and computes two types of summary images:

* Temporal Average: A per-pixel mean over the segment:

1

Alx) = 7

V(x,t)

M=

t=1

This reduces uncorrelated noise and reveals persistent spatial structures (e.g., cell
bodies, vasculature).

* Max-minus-Median (Max-Med): A transient-sensitive projection computed as:

M(x) = mlaxV(x,t) — median, (V (x,1))

where V(x,t) is the spatially blurred version of V(x,¢) (Gaussian blur with ¢ = 3
pixels). This operation emphasizes fluorescence transients (spikes), as neurons that
fired during the segment produce bright blobs, while background and noise yield
smaller or zero values.

Noise Suppression Strategy: The summary images serve to denoise by aggregation rather
than per-frame filtering. The average suppresses Gaussian-like pixel noise, and the max-
med removes baseline and slow fluctuations while retaining spike peaks. Gaussian blurring
before computing the median reduces pixel-level noise and stabilizes the baseline estimate.

Implementation Details:
* Raw frames are buffered in GPU memory and processed in batches.

* Gaussian blurring is applied using small 2D convolutions, optimized via CUDA or
PyTorch backends.

* Median computation may be approximated using fast quantile estimation or selection
algorithms. While the exact median over L frames per pixel is O(L), approximation
techniques (e.g., temporal subsampling or histogram-based methods) reduce over-
head.

* Only two 2D images (average and max-med) are retained per segment, minimizing
memory.

111

B. IN-DEPTH ANALYSIS OF FIOLA AND VOLTAGE

Computational Complexity: The per-segment cost is O(dL), where d is the number of
pixels and L the segment length. With modern GPUs, this step takes ~0.5-0.7 s for L = 1000
frames at 450 x 138 resolution (i.e., ~62k pixels), amounting to ~60 million operations.
Operations are trivially parallelized across pixels.

Design Rationale and Comparison to FIOLA: Whereas FIOLA performs low-rank ma-
trix factorization to explicitly separate signal and noise per frame, VOLTAGE sidesteps tra-
ditional denoising entirely. Instead, it compresses activity-rich temporal data into high-SNR
summary images and uses a convolutional neural network to separate neurons from noise.
This reduces compute time, simplifies implementation, and enables real-time operation.
Moreover, because max-med is computed per segment, it implicitly mitigates photobleach-
ing by anchoring baseline estimates to short time windows.

B.3.2 Segmentation

The segmentation module in VOLTAGE is central to the pipeline’s performance. It identi-
fies the spatial footprints of active, spiking neurons from summary images, using a multi-
stage pipeline combining learned inference (U-Net CNN), classical image processing, and
lightweight matrix factorization for demixing. This section outlines each stage in detail.

1. CNN-Based Probability Mapping: VOLTAGE uses a compact convolutional neural
network (U-Net) to process pairs of summary images (average and max-minus-median) and
generate per-pixel spiking probability maps.

* Patch-based U-Net: Input images are divided into 64 x 64 patches, and the U-Net
is applied independently to each. This constrains model size, allows local focus, and
enables full GPU parallelism.

* Architecture: A standard encoder-decoder U-Net [43] with skip connections is em-
ployed. The model is lightweight to ensure < 10 ms inference per patch on RTX-class
GPUs.

e Training: The U-Net is trained on both synthetic and real datasets with annotated
neuron ROIs, using data augmentation (e.g., rotations, brightness shifts) for general-
ization.

Each patch’s output is a 64 x 64 probability map P;(x) indicating the likelihood of each
pixel x belonging to a spiking neuron in segment i.

2. Thresholding and Morphological Filtering: To obtain discrete candidate neuron re-
gions:

* A threshold is applied to each P;(x) to form binary maps B;(x).

* Morphological filters are used to remove small, spurious regions based on area, ec-
centricity, and concavity criteria.

112

B.3. Comparison to FIOLA:

* Overlapping or irregular regions are retained if their shape resembles a plausible neu-
ron.

This stage outputs a clean binary mask B; for each time segment i containing likely
active ROIs.

3. Temporal Aggregation: To form a unified set of ROIs across the entire recording,
VOLTAGE performs a temporal logical OR across all segment masks:

Ball(x) = B](X) \/Bz(x) AV \/BN(X)

This step merges all pixel locations that were part of any detected neuron in any time seg-
ment, producing a single mask of candidate spatial neuron footprints.

4. Demixing with Local Non-negative Matrix Factorization (NMF): To separate over-
lapping neurons:

1. Each connected region in By is treated independently.

2. A data matrix Pregion € R? *N is constructed, where p is the number of pixels in the
region and N the number of time segments.

3. Local NMF is applied:
B region ~ F-T

where F € R”*K contains spatial footprints, and 7 € RK*N

activation weights.

contains segment-wise

4. K (number of neurons in the region) is chosen heuristically or via error minimization.
This step is crucial for demixing spatially overlapping neurons that spike in different

segments.

5. Final ROI Assembly: The final output of segmentation is a set of clean, non-overlapping
neuron masks derived from the NMF step. These masks are then used in downstream fluo-
rescence trace extraction.

Computational and Implementation Notes:

» Patch-based U-Net inference is highly parallelizable. For a 450 x 138 image divided
into ~24 patches, total inference takes < 50 ms on a modern GPU.

* Morphological filtering and temporal aggregation are O(d), with negligible cost.

* NMF demixing is performed on small regions (e.g., 100-200 pixels), and typically
requires only a few thousand operations per region. It is performed on the CPU or
GPU depending on matrix size.

* The overall segmentation runtime (including CNN and NMF) is under 1 second per
segment in practice.

113

B. IN-DEPTH ANALYSIS OF FIOLA AND VOLTAGE

Comparison to FIOLA: FIOLA segments neurons via matrix decomposition of the en-
tire video and separates spatial/temporal components globally. VOLTAGE instead performs
spatial segmentation via a learned CNN on temporally compressed summary data, followed
by localized demixing using NMF. This modular approach enables faster processing and
real-time capability at the cost of requiring supervised model training.

Summary of Algorithm:

* Step 1: Generate summary images (average, max-minus-median).

Step 2: Predict neuron probability maps via U-Net CNN on 64 x 64 patches.

Step 3: Threshold and clean each prediction to produce binary ROI masks.

Step 4: Combine all segment masks using logical OR.

Step 5: For each connected region, apply local NMF to resolve overlapping neurons.
* Output: A set of spatial neuron masks for trace extraction.

This multistage segmentation pipeline is optimized for high-throughput, high-SNR de-
tection with minimal human intervention, and is suitable for both online and offline appli-
cations.

B.3.3 Voltage Trace Extraction and Spike Detection

After segmentation, VOLTAGE extracts fluorescence (or voltage) traces for each identified
neuron and optionally detects spikes. While the authors describe this stage as rudimentary,
it provides a real-time baseline implementation with opportunities for extensibility.

Trace Extraction: Each neuron’s ROI mask, produced during segmentation, is used to
compute its fluorescence trace from the motion-corrected video.

* Per-frame intensity average: For each neuron £, its trace is:

where Ry, is the set of pixels in the ROI, and /(i) is the intensity of pixel i at time ¢.

* Weighted or soft masks: Optionally, traces may be computed as a weighted sum
using soft masks from the segmentation network.

* Implementation: This can be computed via:

— Simple frame-wise pixel summation on CPU or GPU.

— Matrix multiplication: using the mask matrix A (pixels X neurons) and video
matrix Y (pixels x time), compute ATY.

— ROI gather/reduce operations using CUDA or C++ for fast streaming computa-
tion.

114

B.3. Comparison to FIOLA:

Photobleaching Considerations: Photobleaching correction is not explicitly implemented:

* Segmentation phase: Each segment uses local median subtraction (e.g., for max-
minus-median), mitigating bleaching within that segment.

* Trace phase: The extracted raw traces often show baseline drift due to photobleach-
ing. Users are expected to apply post-hoc corrections such as:

— High-pass filtering or baseline subtraction (e.g., moving average, exponential
decay fit).

— Computing AF' /F using percentile-based baselines.

* Pipeline extensibility: A simple real-time baseline subtractor (e.g., FIR/IIR filter or
DC blocker) could be added with negligible cost.

Spike Detection (Optional): While not the focus of the pipeline, basic spike detection is
feasible and lightweight.

* Z-score thresholding: For each trace Fi[t], compute:

Fi[t] — puet]

Zk [t] = or [l‘]

using a sliding window mean g and standard deviation ;. Spikes are detected where
Z[t] > 0, with 6 = 2-4.
¢ Optional refinements:

— Apply high-pass filtering to remove slow drifts.
— Require local maxima and enforce refractory period.

— Use convolution with a spike template for enhanced SNR.
¢ Advanced extensions (not implemented):

— Matched filtering or AR(1) deconvolution (e.g., OASIS).
— Learning-based classifiers on trace snippets.

— Temporal integration of CNN outputs from segmentation.

Computational Complexity:

* Trace extraction: O(K - 7) per frame, where K is the number of neurons and 7 the
average ROI size.

* Spike detection: O(K) per frame for z-scoring and thresholding.

* Total: O(K-T) over T frames; trivially parallelizable on CPU or GPU.

115

B. IN-DEPTH ANALYSIS OF FIOLA AND VOLTAGE

Implementation Notes:
* Trace computation can be implemented in C++ or CUDA with parallel reduction.
* Median filtering or quantile-based baseline estimation can run in background threads.

* The default pipeline stops at trace extraction; spike detection is a post-processing
step.

Comparison to FIOLA: FIOLA incorporates spike detection into its matrix decompo-
sition framework using matched filtering and adaptive thresholds, suitable for streaming
data. VOLTAGE, in contrast, adopts a modular design with optional spike detection. This
separation simplifies real-time processing and allows flexible post hoc analysis.

Summary:
* VOLTAGE trace extraction is a fast, linear-time process using simple ROI averaging.

» Spike detection, while optional, can be performed with lightweight methods such as
z-scoring or threshold crossing.

* Photobleaching is not corrected during extraction but mitigated in segmentation and
easily addressed post hoc.

» Users may substitute this stage with any preferred method once clean ROI traces are
obtained.

B.4 Summary and Comparative Analysis

FIOLA and VOLTAGE represent two complementary design philosophies for real-time
analysis of high-speed voltage imaging data. Both pipelines aim to extract spike infor-
mation from fast, noisy recordings in (near) real-time, but differ markedly in architecture,
scope, and algorithmic emphasis.

Speed vs. Scope:

* FIOLA is engineered for low-latency closed-loop experiments, with a single-GPU
pipeline capable of processing frames at millisecond resolution. However, segmen-
tation is less resilient to suboptimal image conditions and is not as optimized as the
other components are.

* VOLTAGE, in contrast, is optimized for throughput and flexibility. It decouples the
analysis into modular stages that can be parallelized or swapped independently. The
focus is on real-time processing of large batches of frames, with emphasis on deep
learning-based segmentation and general-purpose design.

116

B.4. Summary and Comparative Analysis

Motion and Shading Correction:

* FIOLA uses frequency-domain normalized cross-correlation (FFT-based) to perform
fast translation correction. It assumes consistent illumination and does not address
vignetting or spatially varying shading.

* VOLTAGE performs joint motion and shading correction using patchwise Zero-Normalized
Cross-Correlation (ZNCC) in the spatial domain. This method is more robust to
nonuniform illumination and small local deformations. GPU-1 handles this step in
real time using integral image tricks to accelerate the patch correlation computation.

Segmentation:

* FIOLA uses a model-based approach: it identifies neurons by performing a low-rank
matrix factorization on the incoming video stream. While this yields interpretable
components, it may struggle with overlapping neurons or variable morphology, and
initialization can be sensitive to hyperparameters.

* VOLTAGE applies a U-Net CNN trained on synthetic and real data to segment neu-
rons from summary images (average and max-minus-median projections). The seg-
mentation supports overlapping and irregular ROIs and is further refined by combin-
ing detections across time (via OR logic) and performing local nonnegative matrix
factorization (NMF) within overlapping regions to demix multiple neurons.

Spike Detection:

* FIOLA uses matched filtering with template waveforms and adaptive thresholds to
infer spikes with temporal precision directly on each frame. This enables fast, robust
detection even in low SNR regimes, and includes photobleaching compensation via
high-pass filtering.

* VOLTAGE, by contrast, leaves spike detection as a post-processing step on extracted
traces. A baseline method using z-score thresholding is suggested, but users are ex-
pected to provide their own methods. This design reflects the pipeline’s modularity:
segmentation identifies spiking neurons, and the spike detection algorithm can be
chosen independently.

Architectural Design and Implementation:

* FIOLA is a tightly integrated GPU pipeline. Each module operates on the output of
the previous, and all data resides on the GPU to minimize transfer overhead. It uses
a computational graph (e.g., TensorFlow or custom CUDA ops) and asynchronous
streaming to hide latency. Memory management and execution order are optimized
for minimal delay.

117

B. IN-DEPTH ANALYSIS OF FIOLA AND VOLTAGE

* VOLTAGE is more loosely coupled. It divides the work across two GPUs: GPU-1
performs motion-correction and computes summary images, while GPU-2 performs
segmentation via CNN inference. The use of summary images allows major temporal
data compression (from tens of thousands of frames to a few dozen 2D images),
drastically reducing the computational load on the CNN. Each pipeline stage uses
GPU-friendly primitives, and the entire process typically completes faster than the
recording duration.

Photobleaching and Baseline Drift:

» FIOLA explicitly corrects for photobleaching during inference using a high-pass filter
or DC blocker, ensuring stable baselines for spike detection throughout the recording.

* VOLTAGE does not perform photobleaching correction by default. However, since
segmentation is based on short temporal segments with median baseline subtraction
(in max-minus-median images), it is resilient to slow drifts during detection. Post hoc
correction (e.g., moving average subtraction or AF /F computation) is left to the user
during trace analysis.

Use Cases and Scalability:

* FIOLA is ideal for experiments requiring real-time feedback or online control, such
as closed-loop optogenetics. Its low-latency, all-GPU architecture ensures minimal
delay between signal and response.

* VOLTAGE is better suited for high-throughput batch processing of large imaging
datasets. It is designed to scale across hardware setups, supports easy integration
of new models (e.g., updated CNNs or denoisers), and is conducive to exploratory
analyses and deep learning extensions.

Concluding Remarks: FIOLA and VOLTAGE represent two advanced, yet divergent,
approaches to real-time neural signal extraction:

118

* FIOLA integrates motion-correction, ROI discovery, and spike detection into a single
end-to-end GPU workflow, with each step optimized for low latency. Its reliance on
hand-designed filters and adaptive thresholds ensures interpretability and robustness
at the cost of flexibility.

* VOLTAGE breaks the problem into stages and applies modern tools (CNNs, local
matrix factorization, temporal projections) to each. It emphasizes modularity, GPU
acceleration, and data-driven inference. Although slower in per-frame latency, it
achieves full analysis in a fraction of total recording time, with accuracy compara-
ble to manual annotation.

B.4. Summary and Comparative Analysis

Both pipelines are extensible and scalable. FIOLA’s performance can be enhanced by
parallelizing its segmentation steps across more cores or GPUs. VOLTAGE explicitly sup-
ports multi-GPU usage and can accommodate future modules (e.g., improved spike detec-
tors, photobleaching correction) with minimal disruption.

Together, these pipelines showcase the diversity of design tradeoffs available in high-
speed neural imaging: from unified, closed-loop systems like FIOLA to flexible, data-rich
frameworks like VOLTAGE. Each provides a compelling blueprint for future developments
in real-time neuroimaging analysis.

119

	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation and Problem Statement
	Thesis Goal and Contributions

	Background
	From Calcium to Voltage Imaging
	Characteristics and Challenges of Voltage Imaging Data
	Pipeline and Hardware Constraints
	Design Drivers from Real-World Experiments
	Performance Constraints in Real-Time Processing
	Parallelism and High-Speed Processing
	Preview: Implementation Mechanics and Relevance

	Related Works
	Motion-Correction
	Neuron Segmentation
	Photobleaching Correction and Spike Detection
	Thresholding Strategies
	Summary and Integration

	Pipeline design
	Profiling State-of-the-Art Pipelines
	Hybrid Pipeline Design

	Implementation
	General Pipeline Implementation
	Setup latency optimization
	Profiling-driven optimization
	Usability and generalizability

	Results and Evaluation
	Experimental Setup
	Trace Extraction
	Vignette Filtering
	Offline pipeline
	Online pipeline
	Memory evaluation

	Conclusions
	Thesis Contributions
	Performance Achievements
	Discussion
	Limitations and Future Work

	Bibliography
	GPU benchmark comparison
	In-depth Analysis of FIOLA and VOLTAGE
	FIOLA: Fluorescence Imaging OnLine Analysis
	VOLTAGE: A Fast, Modular Voltage Imaging Pipeline
	Comparison to FIOLA:
	Summary and Comparative Analysis

