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A B S T R A C T

Portland cement paste has a highly heterogenous evolving microstructure that complicates the development of 
stronger and greener cementitious materials. Microstructure is the fundamental input of multiscale studies on 
material behaviors. Herein, we propose a conditional generative AI framework for synthesizing high-fidelity 3D 
microstructures of hydrating cement paste (1–28 days) with varying water-to-cement ratios and Blaine fineness 
values. A latent diffusion transformer, operating within a compact two-stage latent space derived via a vector 
quantized variational autoencoder, efficiently captures and reproduces experimentally measured microstructural 
patterns. Statistical analyses confirm strong consistency in grey value distributions, micromechanical properties, 
hydration phase evolution, and particle size distributions, with only minor boundary-related discrepancies. 
Validation using a pretrained classifier further corroborates the fidelity of generated microstructures. This 
approach provides a robust tool for realistic cement paste microstructure generation, supporting multiscale 
modeling and advancing the design of sustainable cementitious materials.

1. Introduction

Portland cement paste is the most widely used binder in construction 
materials, with its production contributing over 2.7 billion tons of CO2 
emissions annually [1]. Despite extensive application, a thorough un-
derstanding of cement paste is still lacking because of its highly heter-
ogenous and time-evolving microstructure. Such microstructural 
complexity presents a challenge to advancing fundamental research on 
material properties and development/design of durable and green 
binders [2].

Microstructural analysis offers critical insights into the intrinsic 
properties of cementitious materials [3]. Using a realistic microstructure 
as input, multiscale computational models—such as Finite Element 
Method (FEM) [4,5], micromechanical homogenization schemes [6–8], 
Lattice Fracture Models [9,10]—can be built to establish microstructure- 
property relationships. Typically, the microstructure of cement paste is 
characterized by experiments using scanning electron microscopy (SEM) 
and X-ray computed tomography (XCT) [11–13], which demand 

advanced instrumentation and delicate sample preparation [14]. 
Alternatively, researchers have turned to simulating hydration reaction 
to obtain microstructures, leading to the development of hydration 
models such as Hymostruc [15–17], μic [18], CemHyd3D [19], and 
HYD-NSP [20]. These models, validated through experiments, demon-
strate reasonable hydration kinetics and generate complex microstruc-
tural formations. However, the intricate thermodynamics of cement 
hydration—driven by multifield physics, diverse environmental factors, 
reactants and products—necessitates numerous assumptions, such as 
empirical coefficients and simplified particle shapes, to manage model 
complexity.

The challenges faced by the traditional approaches mentioned above 
underscore the difficulty of efficiently capturing realistic cement paste 
microstructures. From a statistical perspective, the microstructure is 
essentially a joint distribution of pixel values over the geometry space. 
Low-order probability functions [21] have been applied to approximate 
the joint distribution of concrete microstructure and calculate the 
properties such as permeability, stiffness, and thermal conductivity 
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Fig. 1. Overall workflow of TL-DiT: Using VQVAE, the 192 × 192 × 192 × 1 microstructure (a) is first encoded to 48 × 48 × 192 × 3 half-latent in stage I (b), and 
then 48 × 48 × 48 × 3 full-latent in stage II (c). A diffusion transformer (d) models the full-latent representation, which can then be sequentially decoded by VQVAE 
in state I and II to obtain the generated microstructure (e). A series of microstructural analysis are conducted to compare the statistical and morphological difference 
between generated and real microstructures (f). The pretrained VGG-16 model is used to compare the generated and real microstructures (g).
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[22,23]. However, high computational costs and oversimplified phase 
assumptions were noted, causing discrepancy in microstructural 
morphology and macroscopic properties [24].

In recent years, the generative deep learning models were success-
fully applied to capture the complex distribution function of various 
microstructures [25]. Among them, variational autoencoder (VAE) [26] 
and generative adversarial network (GAN) [27] were shown to be 
effective in generating microstructures/metastructures of various ma-
terials, such as applications of VAE for two-phase steels and lattice 
metamaterials [28,29] and GAN for carbon steel and heterogenous en-
ergetic materials [30–32]. Recently, Hong et al. [33] applied GAN for 
synthesizing microstructure of cement paste which however is subjected 
to four-phase assumptions. Although promising results were obtained, 
limitations have been noted, such as the blurry images induced by 
Gaussian prior/posterior assumptions in VAEs [34] and unstable 
training and mode collapse induced by the adversarial training in GANs 
[35,36].

Denoising Diffusion Probabilistic Models (DDPM) [37] have recently 
proven effective for microstructure generation [38], using a predefined 
forward diffusion and neural network-based reverse denoising process. 
This approach overcomes the limitations of VAEs’ single Gaussian prior 
[39] and generates images with greater quality and variability than 
GANs [40]. Successful applications of DDPMs are noted in generating 
microstructures of magnesium alloy [41], fiber composite [42], multi-
functional composites [43], and cementitious materials [44]. These 
studies showed that DDPM can generate microstructures that demon-
strate similar statistical and physical patterns. Nevertheless, these 
studies were generally performed on 2D datasets, presumably due to the 
limitations of computational resources and scarcity of comprehensive 
3D datasets. Alternatively, Lee et al. [45,46] developed a multi-plane 
DDPM model, expanding dimensionality to enable 2D-to-3D micro-
structure reconstruction. Such multi-plane training strategies are similar 
to SliceGAN [47], which also generates 3D microstructures from 2D 
images. Despite producing realistic microstructures, these methods 
capture primarily 2D slice-level information while overlooking depth- 
wise details.

To meet the demand for high-fidelity 3D microstructure generation 
of cement paste and overcome challenges in current DDPM applications, 
this paper proposes a Two-stage Latent Diffusion Transformer (TL-DiT) 
to synthesize 3D microstructure of cement paste. The model introduces a 
two-stage latent representation approach to efficiently compress 3D 
datasets while preserving key microstructural information. A vision 
transformer capable of capturing slice-depth information forms the 
backbone of the DDPM in latent space. This model can generate mi-
crostructures of cement paste with varying water-to-cement ratios (w/ 
c), Blaine values, and curing ages, resulting in outputs that not only 
visually resemble real microstructures but also align closely in statisti-
cal, microstructural, and morphological analyses. These findings indi-
cate that the proposed model can generate high-fidelity microstructural 
inputs, suitable for further fundamental studies to establish 
microstructure-property relationships.

2. Overall workflow

The overall workflow of the TL-DiT is shown in Fig. 1. Inspired by 
latent diffusion framework [48], this study first encodes the micro-
structure into the latent space, models the distribution of latent repre-
sentation, and decodes the latent into pixel space to obtain generated 
microstructure. A two-stage strategy is adopted to approach the latent 
space. The 192 × 192 × 192 × 1 grayscale microstructure (Fig. 1(a)) is 
first projected into 48 × 48 × 192 × 3 half latent in the stage I (Fig. 1(b)) 
and then 48 × 48 × 48 × 3 full latent in the stage II (Fig. 1(c)). Two 
vector quantized variational autoencoders (VQVAEs) [49] are used to 
bridge the pixel space, half latent space, and full latent space. The 
backbone of the VQVAE is a convolutional UNet [50] architecture, 
aiming to autoregressively learn the discrete latent representation and 

model their distributions. The perceptual and adversarial loss are 
incorporated to guide the training of VQVAE for reservation of essential 
and detailed microstructural information [51]. The perceptual loss is 
derived by a VGG-16 [52] pretrained on the real microstructure data. 
The adversarial loss involves a convolutional neural network as the 
discriminator and the VQVAE as the generator. The overall architecture 
of the TL-DiT can be found in Appendix A.

In the full latent space, a diffusion transformer [53,54] is used to 
model the distribution of the latent representation (Fig. 1(d)), which can 
then be sequentially decoded by the two VQVAEs to obtain micro-
structure (Fig. 1(e)). The transformer backbone comprises slice-wise 
block and depth-wise block to capture the 3D microstructural informa-
tion. Each transformer block consists of a multi-head attention layer and 
a multi-layer perceptron (MLP) layer. Within each transformer block, 
Adaptive layer normalization [53–55] is adopted to process the diffusion 
time steps and class conditions of cement paste (i.e., w/c ratios, Blaine 
values, and curing ages), which enables conditional generation.

Using the established TL-DiT, a database of generated microstruc-
tures is constructed. Using generated and real microstructures as input, a 
series of microstructural analyses is conducted to compare their statis-
tical and morphological differences (Fig. 1(f)). In addition, the estab-
lished VGG-16 model (pretrained in stage I) is leveraged to conduct 
classification tasks on original and generated dataset. The confusion 
matrix of both classification tasks is analyzed and compared to show the 
high-level perceptual difference between the real and generated mi-
crostructures (Fig. 1(g)).

3. Dataset overview and data processing

The real microstructures was sourced from the open-access dataset of 
digitized 3D hardened cement paste microstructures obtained from XCT 
[13]. In this dataset, four types of ordinary Portland cement paste were 
used, varying in w/c ratios (w/c = 0.35 and 0.50), and Blaine values 
(Blaine = 273 m2/kg and 391 m2/kg). The XCT images were taken at 1, 
2, 3, 4, 7, 14, and 28 days after hydration under 20 ◦C and fully saturated 
conditions. The specimens used in the XCT tests are cylindrical with both 
diameter and height of around 1 mm. The imaging resolution (i.e., voxel 
size) is around 1.1 μm.

For each of the 28 parameter combinations, 256 cubic samples are 
first cropped with the size 200 × 200 × 200 voxels from each of the 
cylinder, establishing a dataset containing 7168 microstructural cubes. 
the microstructural cubes are resized into 192 × 192 × 192 voxels based 
on the SciPy library [56] with linear interpolation. Therefore, the size of 
studied microstructure is around 210 × 210 × 210 μm3, with a voxel size 
of around 1.09 μ m (i.e., 210/192).

For training the VQVAE in stage I, 12 192 × 192 slices are extracted 
from each cube by selecting 4 evenly spaced slices along each of the 
three axes, resulting in a dataset of 81,016 slices for training. Then, for 
the VQVAE in stage II, the VQVAE in stage I is applied to all the 
microstructural cubes slice-by-slice and obtained the prismatic half- 
latent with the size 48 × 48 × 192 for each cube. Along the two axes 
with the size of 48, 12 192 × 48 slices are extracted by selecting 6 evenly 
spaced slices, resulting in also a dataset of 81,016 slices for training. 
Finally, the two VQVAEs in stage I and II are used to compress the 192 ×
192 × 192 cubes into 48 × 48 × 48 full latent, which can then be used to 
train the diffusion transformer model. During each stage, the data is 
normalized to (0, 1) with min–max normalization and then scaled to 
(− 1, 1) for training.

4. Two-stage latent diffusion transformer

4.1. Vector-quantitated variational autoencoder

As shown in Fig. 1 (a), two VQVAEs are used to derive the two-stage 
latent representation. Both VQVAEs use convolutional UNet architec-
ture as the backbone to autoregressively conduct data compression and 
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reconstruction. Details of the architecture and the training process can 
be found in Appendix B. The VQVAE is trained in an unsupervised 
manner and uses the loss function as below: 

LVAE = Lrecon + Lcode+λcomLcom+λpeLpe+λadLad (1) 

where the total loss LVAE is the sum of reconstruction loss Lrecon, code-
book loss Lcode, commitment loss Lcom, and weighted loss of perceptual 
loss Lpe and adversarial loss Lad. λcom, λpe and λad represent the wights of 
commitment, perceptual and adversarial loss term, which are 0.2, 1 and 
0.8 in this study. The reconstruction loss, codebook loss and commit-
ment loss are defined as the real VQVAE paper [49]. The perceptual and 
adversarial loss are introduced as below: 

• The perceptual loss is quantified by the metric Learned Perceptual 
Image Patch Similarity (LPIPS) [57], which is calculated from the 
feature maps of a pretrained VGG-16 classification model [58]. To 
ensure that the VGG-16 model can extract essential information from 
the microstructure, the VGG-16 model is pretrained with a classifi-
cation task, where the real microstructural slice was used as input 
and the class information —w/c, Blaine values, and curing ages— 
was the output. A combination of cross entropy functions is used as 
the loss function to ensure that the prediction accuracy of the VGG- 
16 classification reaches almost 100 % in a dataset of 81,016 
microstructural slices. The details of the perceptual loss part can be 
found in Appendix B.2.

• The adversarial loss is calculated during the adversarial training 
between the VQVAE generator and a discriminator built with 
sequential convolutional networks. The discriminator assesses the 
realism of small patches within the microstructural slice input, 
encouraging the VQVAE generator to focus on fine-grained features 
and preserve high-frequency details [59]. The details of the adver-
sarial loss part can be found in Appendix B.3.

4.2. Latent diffusion transformer

4.2.1. Vision transformer architecture
Using the trained VQVAEs, all the 3D microstructural cubes are 

projected into full latent spaces. Then a latent diffusion transformer is 
employed to model the distribution of these latent representations, 
enabling us to ultimately decode them back into microstructures using 
the VQVAEs.

A vision transformer is used as the backbone of the latent diffusion 
transformer. The architecture of the vision transformer is explained in 
Appendix A. Initially, the full 48 × 48 × 48 latent representation is 
divided into patches of size 4 × 4 × 4, with each patch subsequently 
embedded into a token with a hidden size of 768. Note that a fine patch 
size is used here to capture the fine-grained feature. To effectively 
capture 3D microstructural information, we use alternating slice-depth 
transformer blocks. This model comprises 12 transformer blocks, each 
incorporating attention layers with 4 attention heads.

To incorporate conditioning, both the class information for the 
cement microstructure and diffusion time steps are first embedded as 
tokens of size 768. These conditioning tokens are then passed to each 
transformer block, where they are integrated into the microstructure 
tokens through adaptive layer normalization, supporting dynamic con-
ditioning throughout the model. The resulting vision transformer has a 
total of 129,734,832 parameters.

4.2.2. Denoising diffusion probabilistic model
DDPM [37] operates through two sequential stages (Fig. 2): a for-

ward diffusion phase, where noise is progressively added to an image, 
and a reverse denoising phase, where the model gradually removes this 
noise to reconstruct the original image. Both stages are Markov pro-
cesses, meaning that each step only depends on the previous one. In the 
forward diffusion stage, noise is incrementally introduced to the original 
image x0 over a series of steps t = 0 to T by applying a predefined 
transition function q(xt |xt− 1). By the final step, the image is indistin-
guishable from standard Gaussian noise. During the reverse denoising 
phase, vision transformers are used to approximate the reverse transi-
tion function pθ(xt− 1|xt) and iteratively remove noise at each step. Both 
q(xt |xt− 1) and pθ(xt− 1|xt) are assumed to follow Gaussian distributions.

In essence, DDPM can be conceptualized as a hierarchical form of a 
VAE. However, while a traditional VAE approximates the data distri-
bution through a single Gaussian distribution, DDPM iteratively refines 
its predictions through multiple steps of Gaussian noise removal. This 
hierarchical structure allows DDPM to better accommodate the Gaussian 
assumption in its transitions without significantly compromising its 
modeling capacity.

The noise-adding step in the forward diffusion process is defined as: 

q(xt |xt− 1) = N
(

xt ;
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − βt

√
xt− 1, βtI

)
(2-1) 

q(x1:T|x0) =
∏T

t=1
q(xt |xt− 1) (2-2) 

where βt is a predefined noise schedule that gradually increases from 
0.0001 to 0.02 over t = 0 to 1000 steps. Using the additive properties of 
Gaussian distributions, the noisy image at any step can be written 
directly in terms of x0 and βt , as below: 

q(xt |x0) = N(xt ;
̅̅̅̅
αt

√
x0, (1 − αt)I ) (3) 

where αt = 1 − βt, αt =
∏t

i=0αi. By applying Bayes’ rule to the forward 
diffusion process and utilizing Eq. (2 ~ 3), the posterior distribution is 
obtained: 

q(xt− 1|xt) = N
(

xt− 1; μ̃t(xt , x0), β̃tI
)

(4-1) 

μ̃t(xt , x0) =

̅̅̅̅̅̅̅̅̅
αt− 1

√
βt

1 − αt
x0 +

̅̅̅̅αt
√

(1 − αt− 1)

1 − αt
xt (4-2) 

Fig. 2. Forward diffusion and reverse denoising process of DDPM.
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β̃t =
1 − αt− 1

1 − αt
βt (4-3) 

The transition function for the reverse denoising phase is also a 
Gaussian: 

pθ(xt− 1|xt) = N
(
xt− 1; μθ(xt , t), σt

2I
)

(5) 

where σt
2 can be assumed the same as βt or ̃βt , which both lead to similar 

results [37]. In this case, we useσt
2 = β̃t. The loss function for DDPM 

training is derived from maximizing the evidence lower bound (ELBO) 
on the negative log-likelihood. Similar to a VAE, this training objective 
encourages the model to maximize the likelihood of the data by 
minimizing: 

E[ − logpθ(x0) ] ≤ Eq

[

− log
pθ(x0:T)

q(x1:T|x0)

]

= Eq

[

− logp(xT) −
∑

t≥1
log

pθ(xt− 1|xt)

q(xt |xt− 1)

]

(6) 

Rearranging terms leads to the loss function: 

L=Eq[DKL(q(xT |x0)‖p(xT))− logpθ(x0|x1)+DKL(q(xt− 1|x0,xt)‖pθ(xt− 1|xt))]

(7) 

where DKL is the Kullback–Leibler divergence [60], which is a common 
measure of distance between two probability distributions and can be 
calculated by DKL(p(x)‖q(x) ) =

∫
p(x)log p(x)

q(x) dx. The first term in Eq (7)
is a constant term and can be ignored, since both q(xT|x0) and p(xT) are 
standard Gaussian distribution. The second term is the reconstruction 
term. The last term is the distance between the posterior of the forward 
diffusion (Eq (4)) and the transition in the reverse process (Eq (5)). 
Because we set σt

2=β̃t , minimizing the last term is equivalent to fitting 
μθ(xt , t) with μ̃t(xt , x0). By reparametrizing the second and third term 
following Eq (4), a simplified loss function for the DDPM can be ob-
tained, as below: 

Lsym = Et,x0 ,∊

[

‖∊ − ∊θ

( ̅̅̅̅
αt

√
x0 +

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − αt

√
∊, t

)
‖

2
]

(8) 

where ∊θ
( ̅̅̅̅̅

αt
√

x0 +
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − αt

√
∊
)

is the vision transformer which takes the 
original images x0 and step t as the input and predicts the stepwise noise 
that needs to be removed; ∊ is the noise sampled from a standard 
Gaussian distribution in the forward diffusion process.

4.2.3. Training
The trained VQVAEs in stage I and II are applied to project the real 

microstructures into the full latent space, and then the diffusion trans-
former is trained to model the distribution of the full latent, which can 
then be decoded by the VQVAEs to generated microstructures. The 
diffusion transformer is trained in mini-batches with a batch size of 32 
for a total of 200,000 training steps. The training is conducted on two 
NVIDIA RTX 6000 GPUs (Ada architecture), each with 48 GB of mem-
ory. The entire training process takes approximately 25 h. The maximum 
step T of the forward diffusion process is 1000. In the training process, 
the time step t is sampled from a uniform distribution of 1 ~ 1000, and 
the noise ε is sampled from a standard Gaussian distribution. Using the 
original image x0, time step t, and the noise ε as input, the diffusion 
process (Eq (2)) can be conducted to get the noised image xt. Slices of a 
noised latent cube at equally spaced time steps from 1 ~ 1000 and depth 
from 1 ~ 48 are shown in Fig. 3.

The transformer can then take the noised image xt, time step t, and 
class conditions including w/c ratios, Blaine values, and curing ages, as 
the input to predict the noise, εθ for the reverse denoising process. Using 
the gradient descent optimizer Adam [61], the parameters of the vision 
transformer (i.e., θ) are optimized according to the loss function in Eq 

Fig. 3. Slices of a noised latent cube at different diffusion time steps.

Fig. 4. Slices of a generated latent cube at different depths.
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(8). In the gradient descent optimization, a cosine warm-up schedule for 
the learning rate is used, which comprises a linear warm-up in the first 
10,000 steps and a cosine-shaped decay afterwards as done in many 
large language models to improve convergence [62]. Fig. 4 presents the 
slices of a latent cube generated from the same standard Gaussian noise 
at different training steps. The training results show that the general 
pattern of the latent cube stabilizes before first 50,000 steps, and af-
terwards the model only finetunes the output, resulting in similar 
results.

5. Microstructural analysis

5.1. Hydration model for microstructural segmentation

We use an established hydration model to estimate the content of 
each phase, which then serves as a reference for image-based phase 
segmentation, as also adopted by the dataset authors [63].

5.1.1. Hydration model
The hydration model includes two parts: an Arrhenius equation for 

solving the hydration kinetics and a series of empirical models for 
establishing the relationship between hydration degrees and phase 
contents. Assuming that the hydration kinetics can be described by 
postulating the existence of a Gibb’s free energy dependent on tem-
perature and hydration extent, the hydration reaction can be described 
by the following Arrhenius equation [64–66]: 

α̇ = A(α)e−
Eac
RT (9-1) 

A(α) = A1(
A2

αult
+ α)(αult − α)e− η α

αult (9-2) 

αult =
1.031w/c

0.194 + w/c
(9-3) 

where α is the hydration degree; Eac is the apparent activation energy; R 
is the universal gas constant (8.314 J/mol·K); T is the temperature, 
which is 293 K in this study; η, A1, and A2 are fitting parameters cor-
responding to a certain type of cement, which can be calibrated ac-
cording to adiabatic test results [65,67]; αult is the ultimate hydration 
degree dependent on the water cement ratio w/c. This paper assumes 
that the cement with Blaine fineness values of 273 and 391 correspond 

to normal cement (32.5R or 42.5 N) and fast hardening cement (42.5R, 
52.5 N, 52.5R), respectively. Then, according to [65,67,68], the pa-
rameters given in Table 1 are used herein for the hydration kinetic 
calculations. The apparent activation energy of cement is assumed as a 
constant, which is 41570 J/mol [67].

By solving Eq. (9), the evolution of hydration degrees is obtained for 
cement paste of each parameter setting. Then, the powers’ model 
[69–71] is used to further calculate the evolution of porosity and 
unhydrated cement: 

φ(α) = ρcem(w/c) − fexpα
1 + ρcem(w/c)

(10-1) 

γ(α) = 1 − α
1 + ρcem(w/c)

(10-2) 

where φ and γ are porosity and unhydrated cement content, respec-
tively; ρcem is the specific gravity of cement (herein taken to be 3.2); fexp 
is the volumetric expansion coefficient for the “solid” cement hydration 
products relative to the cement reacted (herein taken to be 1.4 [19,70]). 
Based on Eq(9 ~ 10), the phase evolution results can be obtained for the 
four types of cement paste, as shown in Fig. S12.

Based on results in Fig. 5, microstructure can be segmented into three 
phases: pores, hydration products, and unhydrated cement. Then, using 
Jenning’s model [72], the hydration products can be further divided 
into inner product and outer product: 

Mr = 3.017(w/c)α − 1.347α+0.538 (11) 

where Mr is the ratio of the mass of outer product to inner product. 
Therefore, with the hydration model comprised by Eq (9 ~ 11), the 
microstructure can be segmented into a four-phase composite and then 
more in-depth comparison of generated and real microstructures can be 

Table 1 
Parameter settings of the hydration kinetics model.

Blaine value A1 A2 η

273 6 × 107 5 × 10− 2 8.5
391 8 × 107 8 × 10− 2 8

Fig. 5. Phase evolution of the four types of cement paste given by the hydration model.

Fig. 6. Calculation of the threshold points for microstructural segmentation.
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conducted.

5.1.2. Microstructure segmentation
Based on the estimated phase volume fractions derived from the 

hydration model, the microstructure is segmented into four primary 
phases: unhydrated cement, inner product, outer product, and pores. 
The segmentation is conducted by determining three thresholding points 
on the greyscale CDF of the microstructural image, as done by the au-
thors of the dataset [63]. As shown in Fig. 6, and considering the fact 
that the brightness of unhydrated cement, inner product, outer product, 
and pores typically decreases in this order, the greyvalue threshold 
corresponding to unhydrated cement (i.e., S3) is first determined by 
subtracting the predicted volume fraction of cement from the upper 
limit of the CDF (i.e., 1.0). Subsequently, the thresholds for inner 

product (S2) and outer product (S1) are determined by sequentially 
subtracting their respective volume fractions from the remaining CDF 
interval.

The accuracy of such segmentation method essentially depends on 
the validity of the adopted hydration model, whose parameters in this 
study were calibrated to yield phase fractions comparable to those re-
ported in the original work [63]. While alternative segmentation 
methods are available— such as those involving detailed analysis of 
local microstructural features and case-specific threshold selection, as 
shown in [73] —they often involve subjective tuning and are less suit-
able for comparative studies. This work does not aim to validate the 
hydration model, its parameters, or the segmentation methodology it-
self, but rather to establish a unified and consistent framework that 
enables meaningful comparison of the phase assemblages and their 

Fig. 7. Randomly selected generated and real microstructures of different w/c ratios, Blaine values, and curing ages (Note: G stands for “generated” samples and R 
stands for “Real” samples).
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evolution between generated and real microstructures.

5.2. Size distribution of cement particles

This paper used the SciPy [56] and scikit-image [74] to calculate 
cement particle sizes. To analyze particle size distributions, 3D micro-
structural cubes were extracted from both real and generated datasets. 
For improved data quality, a preprocessing step using Total Variation 
Denoising (TVD) was applied, which minimizes noise while preserving 
edges in the microstructure. The denoised data cubes were then binar-
ized based on predefined phase thresholds to isolate the target micro-
structural phase for further analysis.

The particles within the microstructure were segmented using a 
watershed-based approach. First, a Euclidean distance transform was 
applied to the binary microstructure, generating a distance map where 
each voxel’s value represents its distance to the nearest background 
voxel. Local maxima of this distance map were then identified as particle 
centers, constrained by a minimum distance threshold to mitigate the 
risk of over-segmentation. At early ages, unhydrated cement particles 
are typically larger and more densely clustered, increasing the likeli-
hood that a single particle may be mistakenly split into multiple seg-
ments. To address this, a larger threshold was applied at early hydration 
stages, while smaller values were used at later ages as the particles 
become smaller and more dispersed. Specifically, the minimum distance 

Fig. 8. Comparison between the probability distribution function (PDF) and cumulative distribution function (CDF) of the gray values of generated and real mi-
crostructures with different w/c ratios, Blaine values, and curing ages.
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Fig. 9. Microstructural phase segmentation: based on the CDF graph, the threshold values S1, S2, S3 can be calculated based on volume fraction of each phase 
calculated by a hydration model. The threshold points (a) of generated and real microstructures over 28 types of parameter combinations are clustered near the 45- 
degree line, indicating strong similarity; Six slices (b ~ e) are cropped (depth-wise) every 19 μm from the generated microstructures, with generated slices on top and 
corresponding segmented slices at bottom. All slices have Blaine values = 273. (b ~ c) have w/c = 0.35 and (d ~ e) have w/c = 0.50, covering the ages of 7, and 28 
days; (f) is the legend of phases for the segmented microstructures.
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was set to 20, 18, 16, 14, 12, 10, and 10 μm for curing ages of 1 to 28 
days, respectively. The watershed algorithm was subsequently applied 
to the negative distance map to partition the 3D microstructure into 
distinct particles. Each segmented particle was assigned a unique label, 
enabling further size-based statistical analysis. While this segmentation 
procedure involves manual tuning of the minimum distance threshold, 
the same values were consistently applied to both real and generated 
microstructures, ensuring fair and meaningful comparison. For more 
advanced and automated segmentation strategies, readers are referred 
to [75].

For each particle, its volume (V) was computed as the number of 
voxels in its labeled region, and the equivalent spherical diameter (D) 
was calculated using: 

D =

(
6V
π

)1
3

(12) 

The particle size distribution was further analyzed by calculating the 
cumulative volume distribution (CDF). For a given particle size D, the 
cumulative volume fraction F(D) was defined as: 

F(D) =
∑n

i=1Vi
∑N

i=1Vi
(13) 

where Vi is the volume of the i-th particle, n represents particles with 
diameters less than or equal to D, and N is the total number of particles. 
CDF curves were generated for both real and generated datasets, 
enabling direct comparison of their particle size distributions.

5.3. Phase connectivity analysis by lineal path function

We characterize the connectivity of microstructural phases using the 
lineal path function (LPF) [21], a statistical descriptor developed to 
quantify the spatial continuity within a given phase. In this study, LPF is 
computed using the open-source PoreSpy library [76]. The LPF mea-
sures the probability that a line segment of a specified length lies entirely 
within a single phase, thus providing a quantitative assessment of phase 
connectivity. This approach has been effectively applied in previous 
studies to assess the statistical similarity of cementitious microstructures 
[33,44,77].

As demonstrated by micromechanical analyses [33,78,79], cracks 
are more likely to propagate through weaker phases such as outer 
product and pores. Therefore, these two phases play a dominant role in 
influencing the micromechanical behavior of the material. In this 
context, we compute the LPFs of both the pore and outer product phases 

for real and generated microstructures within the evaluation dataset. 
These connectivity statistics serve as indicators for evaluating the 
effectiveness of the proposed generative model in reproducing realistic 
microstructural features.

6. Results and discussion

6.1. Overview of generated microstructures

The TL-DiT is trained with a dataset of 3D microstructures of cement 
paste [13] and generated 28 types of microstructures, covering repre-
sentative parameters including 2 w/c ratios (i.e., 0.35 and 0.50), 2 
Blaine values (i.e., 273 and 391 m2/kg2), and 7 curing ages ranging from 
1, 2, 3, 4, 7, 14, to 28 days. For each parameter set, 32 virtual micro-
structural cubes are generated and compared with 32 randomly selected 
cubes from the same categories of the real dataset.

Fig. 7 displays generated and real microstructures of 28 different 
parameter combinations. In each combination, the cube on the top is 
randomly selected from generated microstructures and the one on the 
bottom from real microstructures. The bright areas in the microstructure 
represent the unhydrated cement particles [14]. Beyond visual simi-
larity, the impact of curing ages and Blaine values on the generated 
microstructures is evident. For different w/c ratios and Blaine values, a 
clear decrease in the amount of unhydrated cement particles along the 
axis of curing ages is observable, indicating that TL-DiT successfully 
captures the ongoing hydration process of cement particles. Addition-
ally, microstructures with higher Blaine values exhibit smaller, more 
dispersed cement particles, confirming that TL-DiT captures the fineness 
of cement particles as represented by the Blaine values.

6.2. Statistics of generated microstructures

The histogram of grey values is a key statistical descriptor when 
analyzing microstructures represented by XCT or SEM images. These 
grey values are significant because they reflect the local density in XCT 
images and the atomic number in SEM images. Herein, the probability 
density function (PDF) and cumulative density function (CDF) averaged 
from 32 generated microstructures and 32 real microstructures of 28 
different combinations of parameters are presented in Fig. 8. Despite 
noticeable shifts in grey value ranges across different material condi-
tions, the model remains robust and accurately captures the underlying 
grey-level distributions. The coefficients of determination (R2) between 
the PDFs and CDFs of generated and real microstructures were also 
calculated. The results illustrate that TL-DiT generates nearly identical 

Fig. 9. (continued).

M. Liang et al.                                                                                                                                                                                                                                   Materials & Design 256 (2025) 114251 

10 



statistical distribution of grey values compared to the real dataset. All 
parameter combinations exhibited R2 values greater than 0.995, indi-
cating high similarity [14].

6.3. Microstructural phase assemblage and evolution

The cement paste is assumed as a four-phase composite including 
pore, outer product, inner product, and cement particle [80]. Based on 
the grey value statistics and an established hydration model, this paper 
calculates the threshold points S1, S2, and S3 for segmentation of the 

four-phase composites [63]. The threshold points of generated and real 
microstructures for 28 parameter combinations are shown in Fig. 9(a). 
The paired threshold points of the generated and real microstructures 
closely align with the 45-degree line, with a coefficient of determination 
of 0.996, highlighting the high correlation between the phase assem-
blage of real and generated microstructures. Fig. 9(b, c) and Fig. 9(d, e) 
present the 2D slices cropped every 19 μ m along the depth axis from 
segmented and real microstructural cubes, which are generated by the 
TL-DiT with Blaine values = 273 at curing ages of 7 and 28 days. The 
former has a w/c ratio of 0.35 while the latter has a w/c ratio of 0.50. 

Fig. 10. Phase assemblage and evolution of 28 types of generated and real cubes: (a ~ d) represents the results of (w/c = 0.35, Blaine value = 273), (w/c = 0.50, 
Blaine value = 391), (w/c = 0.50, Blaine value = 273), (w/c = 0.50, Blaine value = 391) over 7 curing ages, respectively. For each w/c and Blaine value com-
bination, the degree of hydration, outer product ratios, porosity, and cement content are presented.
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Although the distance between every two adjacent slices is relatively 
long (i.e., 19 μ m), the consistent change of microstructure along the 
depth can be seen with the existence of large cement particles, such as 
Fig. 9(c), suggesting the effectiveness of the depth transformer blocks in 
capturing the depth-wise microstructural information.

If comparing the microstructures at different ages (within Fig. 9(b, c) 
or Fig. 9(d, e)), it clearly illustrates that as the hydration reaction of 
cement continues, the porosity decreases and the volume of outer 
product and inner product increases, indicating a pore filling process by 
generation of hydration products. More interestingly, in the segmented 
results at a more mature age (Fig. 9(c, e)), the cement particles are 
generally surrounded by an inner product layer, which is in accordance 
with common understandings of microstructures of cement paste [81]: 
As the cement particle dissolves and reacts, it forms a dense layer of 
hydration products inner product around the particle. Comparing the 
microstructures with different w/c ratios, the hydration products in 
microstructure with low w/c ratio are dominated by inner product 
(Fig. 9(b, c)). On the other hand, the hydration products in micro-
structures with high w/c ratio are mainly comprised of outer product 
(Fig. 9(d, e)). The inner product either forms a clear rim structure 
around the cement particles or sparsely distributes in the outer product 
matrix. The sparsely-distributed inner product is likely to be the Calcium 
Hydroxide (CH) which is often produced in the water-filled space and 
mixed with the outer product [14].

Furthermore, all the threshold points in Fig. 9(a) are used to segment 
32 generated and real microstructure cubes of each parameter combi-
nation. The volume fractions of each microstructural phase are then 
calculated. The hydration degree, outer product ratio, porosity, and 
cement content of all parameter combinations are shown in Fig. 10. The 
results show strong agreement in evolution of volume fraction of each 
phase between generated and real microstructures. Moreover, such re-
sults tell an evolution process depicted by classical hydration theories 
[80]: as the curing ages increases, the hydration reaction continues to 
consume cement, produces hydration products that fill the pores. Be-
sides, the effects of w/c ratios and Blaine values on the microstructures 
are also clearly illustrated, which are in good agreement with common 
understandings of cementitious materials [82], listed as below: 

• Comparing Fig. 10(a) with Fig. 10(b), or Fig. 10(c) with Fig. 10(d), it 
is found that higher w/c ratio generally leads to higher degree of 
hydration but creates more pores. Moreover, microstructure with 
high w/c ratios usually generates more outer product than the lower 
ones [72].

• Comparing Fig. 10(a) with Fig. 10(c), or Fig. 10(b) with Fig. 10(d), it 
is found that cement with higher Blaine values reacts faster, causing 
faster increase in hydration degrees that consumes more cement, 
produces more hydration products, and therefore less pores are 
created.

In summary, both the qualitative and quantitative microstructural 
analysis above prove that the TL-DiT captures the microstructural evo-
lution of cement paste inducted by hydration reaction.

6.4. Size distribution of cement particles

Based on the segmented microstructure, the cement particles are 
separated by SciPy library’s watershed segmentation algorithm [56] and 
calculated assuming a spherical geometry. Fig. 11 presents the accu-
mulative volume distribution (AVD) of cement particles in microstruc-
tures with Blaine value = 273 and w/c = 0.35 at the ages of 1, 7, and 28 
days, which is calculated by averaging the results of 32 microstructural 
cubes. The segmented cement particles of real and generated micro-
structures are presented in the middle and right of Fig. 11, respectively. 
Except for the visual similarity of the cement particles, a decreasing 
particle count is noted with increasing curing ages, indicating ongoing 
consumption of cement during the hydration reaction. Generally, the 
AVD curves of cement particles of both real and generated microstruc-
tures show high resemblance, underscoring the effectiveness of TL-DiT 
in capturing the morphology of cement particles in the microstructure. 
Across different ages, the AVD curves exhibit a nearly self-similar dis-
tribution shape. However, because of the cement consumed within the 
first 7 days, a clear decrease in cement particle sizes can be observed 
from the age of 1 day to 7 and 28 days, by comparing Fig. 11(a) with 
Fig. 11(b, c).

Nevertheless, when it comes to large particle sizes (>50 μm), the 

Fig. 10. (continued).
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AVD curves in Fig. 11 suggest inconsistency between the generated and 
real microstructures. Such inconsistency may be attributed to the “wall 
effect” introduced by the microstructural cube’s finite boundaries. The 
large particles are more susceptible to being intercepted by the cube 
boundaries and therefore the morphology information of cement parti-
cles is obscured. Such boundary effects are more evident when 
comparing characteristic particle sizes. The AVD curves for all param-
eters were calculated, and characteristic diameters—D10, D50, and 
D90—were extracted to represent particle diameters at the 10th, 50th, 
and 90th percentiles of accumulative volume, as depicted in Fig. 12.

Overall, there is good agreement between the real and generated 
microstructures, especially with small and medium particle sizes D10 

and D50. The particle size distribution in the generated microstructures 
behaves similarly to the real ones, with particle sizes predominantly 
decreasing over the initial 7 days and stabilizing afterward. This pattern 
aligns with the phase evolution trends observed in the previous section. 
However, a noticeable discrepancy in the D90 evolution is present be-
tween generated and real microstructures, possibly due to the “wall 
effect”. Such wall effects significantly influence the morphology repre-
sentation of the large cement particles. Clear evidence is that the D90 in 
real microstructures evolves in a disordering and non-continuous way, 
indicating that the morphology of intercepted cement particles may be 
more difficult to capture.

Fig. 11. Size distribution of cement particles with the parameter set of Blaine value = 273 and w/c = 0.35: (a ~ c) represents the results of 1, 3, and 7 days. The left 
is the pore size distribution curve, middle is the cement particles of real microstructures, right is the cement particles of generated microstructures.
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6.5. Phase connectivity

Using the LPF, the phase connectivity of the pore and outer product 
phases is quantified. Fig. 13 presents the results for microstructures with 
two representative mixtures—namely, w/c = 0.35 with a Blaine value of 
273, and w/c = 0.50 with a Blaine value of 391—at two curing ages (7 
and 28 days). Overall, the LPF results indicate a strong similarity in the 
spatial connectivity of both the pore and outer product phases between 
the generated and real microstructures.

In general, the outer product phase exhibits higher LPF values over a 
broader range of path lengths compared to the pore phase. However, an 
exception is observed in the 7-day microstructure produced with coarser 
cement and a lower w/c ratio (Fig. 13(a)), where the pore phase shows 
higher connectivity than the outer product. Such discrepancy can be 
explained by mainly two reasons: 

• The combination of coarser cement and lower w/c ratio results in a 
slower hydration process. This is evident when comparing the degree 
of hydration between the samples in Fig. 13(a) and Fig. 13(c)—0.54 
versus 0.67, respectively, as discussed in Section 6.2. As hydration 
progresses to 28 days, a marked reduction in pore connectivity is 
observed (Fig. 13(b)), which aligns with expectations based on hy-
dration kinetics.

• A lower w/c ratio generally leads to a reduction in the ratio of outer 
product to inner product, indicating that outer product may not be 
the dominant hydration product in the corresponding sample. This 
pattern is consistent with the theoretical relationship described by 

the adopted hydration model (i.e., Eq. (11)) and well demonstrated 
in Sections 6.2 and 6.3.

6.6. Confusion matrix of microstructures given by the classification model

For the two-stage latent representation (Fig. 1(a)), VGG-16 classifi-
cation model is trained to provide the perceptual losses for training the 
VQVAE. The VGG-16 model in the stage I was trained to classify the 
Blaine values, w/c ratios, and curing ages of 2D slices of real micro-
structures. Herein, this model is used to further validate the TL-DiT by 
comparing the difference between generated and real microstructures.

From each of the 28 parameter combinations, 128 2D slices are 
randomly cropped from 32 real and generated microstructural cubes. 
Thus, 3584 2D slices of real and generated microstructures are sampled, 
which can be used as the input testing data for the VGG-16 classification 
model. Fig. 14 presents the confusion matrix derived by the testing data, 
with the left column being the results of real microstructures and right 
being the generated microstructures. The results show that the VGG-16 
model obtains excellent prediction accuracy on the dataset of both real 
and generated microstructures. The performance on the real micro-
structures is slightly better than that on generated microstructures, 
which is not surprising because the real microstructures are the source of 
training set for the VGG-16 model.

Moreover, the detailed performance of the VGG-16 on the two 
datasets shows similar characteristics. On the real microstructure data-
set, the VGG-16 gets relatively low accuracy (i.e., 94 %) when it tries to 
classify the microstructures at the curing age of 14 days, with a low 

Fig. 12. Evolution of characteristic sizes of cement particle over the curing ages from 1 to 28 days: (a ~ d) represents results of (w/c = 0.35, Blaine value = 273), (w/ 
c = 0.50, Blaine value = 391), (w/c = 0.50, Blaine value = 273), (w/c = 0.50, Blaine value = 391).
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probability to classify the 14-day microstructures as 4, 7, or 28-day ones. 
The reason for this is that over 50 % of the hydration reaction happens in 
the first 3 days, and afterwards the microstructures evolve much slower, 
as also shown in the analysis of phase assemblage evolution and cement 
particle size. Therefore, the microstructures after 14 days are more 
similar and more difficult to classify. Another potential reason may lie in 
the difference in XCT imaging settings. Most interestingly, the same 
pattern is also found in the results of the generated microstructure 
dataset. The prediction of the VGG-16 over the 14-day generated mi-
crostructures obtains relatively low accuracy (i.e., 91 %), with a low 
probability to be falsely classified as 4, 7, or 28-day microstructures. 
Such similarity holds also for the prediction of 7-day microstructures. 
Overall, the testing results strongly suggest the resemblance between the 
real and generated microstructures, underscoring the effectiveness of 
the TL-DiT in generating high-fidelity microstructures of cement paste.

7. Conclusions

Encoding cement paste microstructures into a two-stage latent space 
using VQVAEs yields highly compact latent representations while pre-
serving essential microstructural information. The diffusion trans-
former, enhanced with slice-depth blocks, effectively captures the latent 
cube distributions, enabling rapid sampling and the generation of real-
istic microstructures.

The generated microstructures exhibit a statistical distribution of 
XCT grey values that closely matches that of real microstructures. This 
alignment indicates a high level of consistency in micromechanical 
characteristics such as elastic modulus and hardness, which have been 

shown in the authors’ previous studies [79,83,84] to correlate with grey 
values. Additionally, strong agreement is observed in the evolution of 
microstructural phase assemblage. Predictions obtained using the VGG- 
16 classification model for both real and generated microstructures 
show excellent accuracy, with only minor discrepancies in a small 
number of false predictions.

Cement particle size distributions in the generated and real micro-
structures exhibit a similar pattern, particularly in the distribution of 
small and medium-sized particles. However, discrepancies are noted in 
the large-particle range, where both generated and real microstructures 
display a disordered and discontinuous evolution pattern. This deviation 
is primarily attributed to wall effects, where large particles are inter-
cepted by cube boundaries, resulting in the loss of morphological in-
formation. Such limitations stem from the restricted size of the 
representative volume element (RVE) in the real dataset. Although 
increasing the RVE size can mitigate wall effects, this comes at a sig-
nificant computational cost, and boundary-induced artifacts remain 
unavoidable. A promising solution lies in the implementation of conti-
nuity conditions across adjacent microstructural cubes. By conditioning 
the generation process on neighboring boundaries, the model could 
preserve morphological coherence across cube edges. This would enable 
the generation of arbitrarily large and seamless microstructures through 
tiling or autoregressive stitching of smaller volumes.

Another key limitation lies in the current conditioning mechanism, 
which treats the input variables—curing age, w/c ratio, and Blaine 
fineness—as discrete classes, implemented via learnable embedding 
layers. While these embeddings exist in a continuous latent space, the 
model does not explicitly support continuous or interpolated inputs (e. 

Fig. 13. LPF function calculated for pore and outer product: (a) w/c = 0.35, Blaine value = 273, age = 7 days; (b) w/c = 0.35, Blaine value = 273, age = 28 days; (c) 
w/c = 0.50, Blaine value = 391, age = 7 days; (d) w/c = 0.50, Blaine value = 391, age = 28 days. (Note: r is the line length and D is the side length of each 
microstructure).
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Fig. 14. Confusion matrix of testing results of the real and generated microstructures using the VGG-16 classification model: (a, c, e) and (b, d, f) are the confusion 
matrixes of Blaine values, w/c ratios, and curing ages of real and generated microstructures, respectively.
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g., a w/c ratio of 0.42). Moreover, the current dataset is limited to OPC, 
where Blaine fineness remains a widely accepted parameter to charac-
terize particle fineness. For alternative or blended cementitious systems, 
Blaine fineness may not be sufficient, and other influential parameter-
s—such as chemical composition, curing temperature, and humid-
ity—would need to be considered. These variables, however, are not 
available in the present dataset and therefore could not be incorporated 
into the model. Extending the conditioning scheme to handle real- 
valued inputs, for instance through an MLP-based encoder, and 
expanding the dataset to cover a broader range of material systems, 
would enable the generation of microstructures under more diverse or 
intermediate conditions. We consider this a meaningful direction for 
future work, particularly in the context of predictive microstructure 
generation across a wider class of cementitious materials.

The findings presented in this study highlight the potential of TL-DiT 
as an efficient tool for generating high-fidelity microstructures of Port-
land cement paste. This deep learning-based approach demonstrates 
that generative AI can serve as a cost-effective alternative to conven-
tional imaging techniques, such as SEM and XCT, in capturing the 
microstructure of ordinary Portland cement paste. By providing high- 
fidelity microstructural data in a computationally efficient manner, 
TL-DiT offers new possibilities for multiscale investigations into the 
microstructure-property relationships of concrete materials and 
structures.
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Appendix A. Overall architecture of the TL-DiT

The overall model architecture of the Two-stage Diffusion Transformer (TL-DiT) is shown in Fig. S1. Inspired by latent diffusion models [48], TL- 
DiT performs generative tasks within a latent space to significantly reduce the computational demands associated with processing the real 3D dataset. 
As in Fig. S1(a), stage I begins by encoding the xy slices of a 192 × 192 × 192 microstructure of cement pastes into a half latent space to obtain a 48 ×
48 × 192 half latent representation, by stacking the encoded xy slices along the z axis. Then, in stage II, the model encodes the xz slices of the half 
latent into the full latent space to obtain a 48 × 48 × 48 full latent representation, by stacking the encoded xz slices along the y axis. Finally, the full 
latent representation is decoded in a sequential manner to reconstruct and generate the 3D microstructure of the cement paste.

This paper used two vector quantized variational autoencoders (VQVAE) [49] to bridge the pixel space, half latent space, and full latent space 
(Fig. S1(b, c)). The backbone of the VQVAE is a convolutional UNet [50] architecture, aiming to autoregressively learn the discrete latent repre-
sentation and model their distributions. The VQVAE is usually trained by reconstruction loss, commitment loss, and codebook loss. More importantly, 
to maintain the major microstructural information in the data compression stages, this model incorporated the perceptual and adversarial loss to guide 
the training of VQVAE for reservation of essential and detailed microstructural information [51]. The perceptual loss is derived by a VGG-16 model 
pretrained on the microstructure data. The adversarial loss involves a convolutional neural network as the discriminator and the VQVAE as the 
generator.

In the full latent space, this paper used a diffusion transformer [53,54] to model the distribution of the 48 × 48 × 48 full latent representation 
(Fig. S1(d)). The full latent is patchified and embedded to form initial feature representations, which can then be processed by a series of transformer 
blocks. The transformer backbone comprises two transformer block types: slice transformer block and depth transformer block. Each block consists of 
a multi-head attention layer and a multi-layer perceptron (MLP) layer. The slice block captures the distribution of the microstructure over the slice, 
while the depth block focuses on the changes of the microstructure along the depth. When a full latent cube is patchified and embedded with positional 
tokens, it forms a token sequence with dimensions D × W × H × d, representing depth, width, height, and token dimension. For the slice block, tokens 
are reorganized into D × n × d (where n = W × H) to extract the slice-wise microstructural representation. For the depth block, tokens are rearranged 
into n × D × d for depth-wise analysis. Within each transformer block, the tokens of diffusion timesteps and class conditions (i.e., w/c, Blaine values, 
and curing ages) are first processed by an MLP to obtain six parameters, which can then be used for adaptive layer normalization [53–55], enabling 
conditional generation.  
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Appendix B. Two-stage latent representation learning by VQVAE

The VQVAEs are utilized to encode the microstructures and decode the latent, bridging the pixel and latent space. The VQVAE configuration in 
stage I is shown in Fig. S2. Note that the VQVAE in stage II is the same as that in stage I, except for only the dimension of input/output.

The training of VQVAE is guided by reconstruction loss, codebook loss, commitment loss, perceptual loss, and adversarial loss, as below: 

LVAE = Lrecon + Lcode+λcomLcom+λpeLpe+λadLad (S1) 

where the total loss LVAE is the sum of reconstruction loss Lrecon, codebook loss Lcode, commitment loss Lcom, and weighted loss of perceptual loss Lpe 
and adversarial loss Lad. λcom, λpe and λad represent the wights of commitment, perceptual and adversarial loss term, which are 0.2, 1 and 0.8 in this 
study.

The reconstruction loss is for direct comparison of the real and reconstructed images, quantified by L2 loss. The codebook loss is for learning the 
discrete embedding space (i.e., codebook) based on vector quantization algorithms. The commitment loss is for regularizing the grow of latent space to 
make the latent commit to the codebook. The reconstruction loss, codebook loss and commitment loss are as below [49]: 

Lrecon = ‖xo − xr‖
2 

Lcode = ‖sg(z) − e‖2 

Lcom = ‖sg(e) − z‖2 

where xo, xr, z, and e are real image, reconstructed image, latent, and codebook vectors, respectively. The sg(·) operator is the stopgradient operator. In 
addition, to reserve the image details, this model also added perceptual loss and adversarial loss terms, which will be introduced in the following 
subsections.

Fig. S2. VQVAE configuration in Stage I

B.1 U-net architecture

This paper constructed a U-Net [50] as the backbone of the VQVAE for the two-stage latent representation learning. The U-Net architecture is 
shown in Fig. S3, with the downward path being the encoder and the upward path being the decoder. Both encoder and decoder use residual con-
volutional blocks (i.e., ResNet Conv block in Fig. S3) and multihead attention layers to extract representations while progressively increasing the 
channel numbers. The ResNet Conv block mainly comprises residual convolutional layer [85], group normalization layer [86], and SiLU activation 
layer (Sigmoid-Weighted Linear Units) [87]. Downsample and Upsample blocks are used in encoder and decoder respectively, which decreases/in-
creases the size of images by a factor of 2 using a convolutional layer with a stride of 2. Connecting the downward and upward block is a codebook 
embedding layer, where the continuous results are embedded into discrete latent space, forming the latent representation in stage I and stage II. The 
numbers of parameters of the VQVAEs in stage I and stage II are 9,922,844 and 9355678.

This study specified the channel size of latent as 48 × 48 × 3 and the codebook size of 8192. Although it is possible to further decrease the size of 
latent and codebook, which may benefit the computational efficiency, this work found that the current settings best fulfill the objective of high-fidelity 
reconstruction of the microstructures, which greatly benefit the latent diffusion task. Note that both Stage I and Stage II use almost the same settings of 
VQVAE, except for that the VQVAE in stage II has a different input size of 192 × 48 × 3. In this case, the upsample/downsample blocks only work on 
the first dimension, leading to the desired full-latent size 48 × 48 × 3. 

Fig. S1. Overview of the TL-DiT architecture: (a) Overall workflow. In stage I, the xy slices of 192 × 192 × 192 microstructure are encoded by the first VQVAE 
encoder to form a 48 × 48 × 192 half-latent. Then, in stage II, the xz slices of the 48 × 48 × 192 half-latent are encoded by the second VQVAE encoder to form the 48 
× 48 × 48 full-latent. Finally, a diffusion transformer is used in the full-latent space for generative tasks. The generated full-latent can then be decoded sequentially 
by the two VQVAE decoders to generate microstructures with specific inputs. (b) The first VQVAE in stage I, which encodes/decodes the 2D xy slices of the real 
microstructures. (c) The second VQVAE in stage II, which encodes/decodes the 2D xz slices of the half-latent. (d) The diffusion transformer in the full latent space, 
which utilizes sequentially connected alternating slice and depth blocks to capture the 3D information of the 48*48*48 full latent. The diffusion transformer takes the 
input of w/c ratios, Blaine values, and curing ages to generate corresponding full latent, which can then be sequentially decoded to generate the microstructure of 
specific type of cement paste.
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Fig. S3. UNet architecture for VQVAE

B.2 Perceptual loss

This work employs the Learned Perceptual Image Patch Similarity (LPIPS) [57] metric to compute the perceptual loss between generated and real 
microstructures, focusing on high-level feature similarity rather than pixel-by-pixel differences. Perceptual loss is advantageous for image generation 
tasks, as it captures semantic similarities and high-level structural information, which are essential for accurately reproducing microstructural details 
in cement paste images.

This work uses a VGG-16 [88] convolutional network to extract the high-level feature of microstructures. To ensure such extraction capabilities, 
the VGG-16 is first trained with a classification task, using the real microstructure dataset along with corresponding class labels (Fig. S4(a)). Then, the 
pretrained VGG-16 model is used to extract the latent representation and calculate the perceptual loss based on the LPIPS method (Fig. S4(b)).

Fig. S4. Calculation of perceptual loss: VGG-16 classification network is first trained using the real microstructure and corresponding class labels (a). Then, the 
pretrained VGG-16 is used to extract features of both real and generated microstructures and then calculate the LPIPS loss (b).

Given a microstructure slice as input, the VGG-16 classification model aims to predict the w/c ratio, Blaine value, and curing age. The VGG-16 
model is trained with the sum of cross entropy loss over the three kinds of labels, as below: 

Lvgg = −
∑m1

c1=1
yo1 ,c1 log(po1 ,c1 ) −

∑m2

c2=1
yo2 ,c2 log(po2 ,c2 ) −

∑m3

c3=1
yo3 ,c3 log(po3 ,c3 ) (S3) 

where m1, m2, m3 are number of classes in w/c ratios, Blaine values, and curing ages respectively. yo,c is a binary indicator (0 or 1) if class label c is the 
correct classification for observation o. po,c is the predicted probability of observation o is of class c.

This work then uses 81,016 microstructural slices to train the VGG-16 in stage I and stage II, with a ratio between training and validation set of 
85:15. The loss entropy and prediction accuracy over each class labels of the VGG-16 model in stage I and stage II are shown in Fig. S5. This work stops 
the training if the average prediction accuracy on the validation set does not improve in 10 epochs, and therefore stopped training at 40 epochs. The 
training history shows that both VGG-16 models achieve accuracy close to 100 % at the end. The accuracy of VGG-16 in stage II is slightly lower than 
the stage I, due to potential information loss in the latent representation learning stage I. This paper did not conduct test over an extra testing set 
because of the large dataset size. However, the test of the VGG-16 classification model in stage I can be found in the main text in Fig. 12, showing high 
accuracy of the pretrained VGG-16 model. 
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Fig. S5. Training history of VGG 16 classification network: (a ~ b) loss entropy and prediction accuracy of the VGG-16 in Stage I; (c ~ d) loss entropy and prediction 
accuracy of the VGG-16 in Stage II;

The trained VGG model is then used to calculate the perceptual loss following the LPIPS method (Fig. S4(b)), as below: 

Lpe
l =

1
Nl

∑Nl

i=1
‖wl

(
φl(xo)i − φl(xr)i

)
‖

2 (S4-1) 

Lpe =
∑

l

Lpe
l (S4-2) 

where Nl is the number of elements in the feature map at layer l. wl represents learnable weights for each channel, applied via a 1x1 convolutional 
layer. These weights allow the model to learn channel-specific importance based on perceptual similarity. The total perceptual loss is obtained by 
summing the contributions across multiple layers.

B.3 Adversarial loss

To reserve the microstructural details, this model incorporates the adversarial loss in the training of the VQVAEs in both Stage I and Stage II. This 
adversarial loss calculation follows the min–max framework of Generative Adversarial Networks (GANs) [27], wherein a generator (VQVAE) and a 
discriminator are trained in a competitive setting. The discriminator is a 6-layer convolutional network, designed to distinguish between real and 
generated (fake) microstructural images, while the VQVAE serves as the generator, aiming to produce realistic microstructural reconstructions.

The discriminator architecture is designed to progressively capture fine-grained details of the microstructure. Each of the first five layers applies a 
convolution with a kernel size of 4 and a stride of 2, progressively increasing the feature channels from 1 to 32, 64, 128, 256, and 512. Batch 
normalization and leaky ReLU activation are employed in these layers to stabilize training and improve gradient flow. Following the PatchGAN 
architecture [59], the discriminator’s final layer uses a sigmoid activation to produce a 6 × 6 feature map, where each cell represents the probability of 
a local patch being real or fake. This patch-based approach allows the discriminator to focus on local structure and texture, enhancing its ability to 
evaluate fine-grained details in microstructural images. Binary cross entropy is used to calculate the loss of discriminator, as below: 

Ldisc = −
1
n
∑n

i=1
[logD(xi)+ log(1 − D(G(zi) ) ) ] (S5) 

where the D(·) is the discriminator and G(·) is the generator. xi and zi are microstructural slices and latent fed to the decoder of the VQVAE respectively. 
The batch size is denoted by n. The Eq (S5) encourages the discriminator to assign a probability of 1 to real microstructures and 0 to generated (fake) 
samples. In contrary, the generator uses the loss function as below: 

Lgen =
1
n
∑n

i=1
log(1 − D(G(zi) ) ) (S6) 

By minimizing Lgen, the generator is driven to produce synthetic samples that appear real to the discriminator, effectively maximizing the discrim-
inator’s error on fake samples. This adversarial training framework, when combined with the VQVAE model, facilitates the preservation of complex 
microstructural details, leading to more realistic reconstructions that retain high perceptual fidelity.
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B.4 Training

In Stage I and Stage II, this paper trained the VQ-VAE models using a learning rate of 0.00005 and a batch size of 32 for both models. To mitigate 
instability in adversarial training, this work delayed the discriminator’s initialization until 5,000 training steps, using a reduced learning rate of 
0.000005 for the discriminator thereafter. Each stage was trained over 12 epochs on two Nvidia RTX 6000 GPUs (Ada architecture), each equipped 
with 48 GB of memory. The entire training process takes approximately 11 h.

The training history for both stages is depicted in in Fig. S5. In Stage I, the VQ-VAE training exhibits a marked instability at epoch 6, evidenced by a 
spike in the generator loss (Fig. S5(e)), which suggests that the generator may be misled by the discriminator. This instability affects other loss terms as 
well (Fig. S5(a, c)). In Stage II, the discriminator loss steadily decreases while the generator loss increases, reflecting a similarly imbalanced trend. 
Nevertheless, the reconstruction, codebook, and perceptual loss terms continue to decrease, indicating progressive training and stable convergence.  

In every epoch, we randomly checked the reconstructed and real microstructures. The comparison between randomly selected microstructures at 
12th epochs are shown in Fig. S7. The reconstructed microstructures almost visually resemble the real microstructures. Furthermore, we checked the 
grey value histograms, latents, reconstructed and real microstructures of the stage I VQVAE, as shown in Fig. S8. The results show that the VQVAEs can 
not only preserve the visual similarity but also the statistical patterns of the microstructures.  

Fig. S6. Training history of reconstruction loss, codebook loss, perceptual loss, discriminator loss, and generator loss of VQVAEs: (a, c, e) loss history in Stage I; (b, d, 
e) loss history in Stage II.
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Fig. S7. Comparison of microstructure reconstruction in VQVAEs of stage I (a) and stage II (b) (Note: the microstructure on top is reconstructed and the one at 
bottom is real).
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Fig. S8. 25 randomly selected microstructures from the VQVAE in Stage I: Reconstructed microstructures (a), real microstructures (b), latent (c), and histogram 
comparison (d).
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Data availability

Data will be made available on request.
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