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Abstract—Web3 networks are emerging to replace centrally-
governed networking infrastructure. The integrity of the shared
public infrastructure of Web3 networks is guaranteed through
data sharing between nodes. However, due to the unstructured
and highly partitioned nature of Web3 networks, data sharing
between nodes in different partitions is a challenging task. In
this paper we present the TSRP mechanism, which approaches
the data sharing problem through nodes auditing each other to
enforce carrying of data between partitions. Reputation is used
as an analogue for the likelihood of nodes interacting with nodes
from other partitions in the future. The number of copies of
data shared with other nodes is inversely related to the nodes’
reputation. We use a real-world trace of Twitter to show how
our implementation can converge to an equal number of copies
as structured approaches.

Index Terms—infrastructure, integrity, reputation, Web3, peer-
to-peer, partitioning, split

I. INTRODUCTION

The “Web” is turning anarcho-capitalist. Centrally-governed

infrastructure is no longer required to share files (BitTorrent),

to communicate (OppNets), to transfer money (Bitcoin), or

even to identify at passport strength (TCID [13]). The “Web3”

movement goes beyond classical peer-to-peer solutions, seek-

ing to turn our digital world into collaboratively maintained

infrastructure [16]. However, as individualistic users only

opportunistically interact with others, the classical issue of

network partitioning resurges. A partitioned (split) network is

incompatible with even the weaker consistency models, e.g.,

eventual consistency [1]. We present an emergent algorithm

for Web3 networks to probabilistically guarantee that data is

shared between network partitions by using reputation.

The reality of Web3 networks does not fit the connectiv-

ity model of peer-to-peer networks. The traditional way of

thinking of peer-to-peer networks is that at least one path

exists between any two nodes, allowing a rumor-mongering

protocol to deliver information to all nodes. However, we

observe a shift away from this connectivity assumption. Even

a relatively small network like that of Bitcoin, in the order

of 10 000 nodes [9], cannot keep up with the vast volume

of user interactions and is seeing temporary partitioning,

using aggregated “off-chain” interactions (e.g., the lightning

network [10]). Beyond Bitcoin, partitioning has also been

observed for Web3 digital assets in the interaction graph of

Non-Fungible Tokens [8]. Web3 connection graphs should not

be thought of as relatively static networks that periodically

update connections. Instead, we should consider opportunistic

networks with highly mobile users that frequently migrate

between network partitions.

Web3 networks find themselves in a precarious balance

between nodes’ ability to maintain their public infrastructure

and lowering communication costs. On the one hand, all data

should be available to all nodes, allowing them to identify

when the infrastructure degrades and to correct it (used in

Bitcoin for instance). On the other hand, if overlays are

optimized too much and data is never shared between network

partitions, these networks become vulnerable to attacks again.

Instead of requiring over 50% of the network to be malicious

in order to degrade the infrastructure, an attacker would

require only over 50% of a partition’s size. Some data has

to periodically be shared between partitions.

The main problem that we address in this paper is the

need for data sharing between partitions in split networks with

highly mobile nodes. We leverage reputation mechanisms to

select nodes that are likely to traverse partitions to carry—

and share—data. A node’s reputation reflects the willingness

of other nodes to interact with it. Therefore, nodes with a

high reputation are more likely to share data with others than

low-reputation nodes and make for prime carriers to share

data between partitions. In contrast, more nodes with lower

reputation should be used to have an equal chance of data

being shared. Our contributions are as follows:

• We detail the requirements for Web3 data sharing solu-

tions, and how they can be attacked (Section II).

• We motivate the design of our Timely Sharing with

Reputation Prototype (TSRP) in Section III.

• We apply our prototype to a real-world trace of Twitter to

show how the number of copies converges to the number

for structured networks (Section IV).

II. REQUIREMENTS ANALYSIS

We now derive requirements using three typical Web3

assumptions. Firstly, Web3 applications assume that over half

of the network’s nodes are not malicious. Secondly, nodes do

not enter the system with prior trust for other nodes. Lastly,

it is assumed that there exists no node with special authority.

Load-balancing over nodes is required to meet Web3’s

incentives. Without external regulation, peer-to-peer interac-

tions lead to rich-get-richer dynamics [6], [15]. Therefore,

if interactions are used to select nodes to carry data, nodes

with more interactions become disproportionally burdened

with data. To select nodes to carry data our proposal uses

reputation, which is based on nodes’ interactions. Therefore,

simply selecting high-reputation nodes as carriers for data

places an unequal burden on these nodes, effectively punishing

them for a high reputation score. In turn, unequal burden leads
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Fig. 1: New records and new copies from others are carried in

a node’s local storage between partitions based on reputation.

to unequal reciprocity between nodes, which is not compatible

with peer-to-peer incentive mechanisms without payment [4].

Nevertheless, we do expect nodes with a high reputation to

interact more frequently with other nodes and, therefore, to

be more effective as carriers for data between partitions.

All nodes have a partial view of a Web3 system due

to the lack of trust in data obtained from others. However,

nodes do share logic that allows them to verify that the data

they receive complies with a system’s rules. This approach

was pioneered by Bitcoin, in which every node adopts the

longest chain of correctly hashed data. In a general sense, this

corresponds to a Web3 system design pattern that consists of

providing all nodes with an algorithm to verify the integrity of

their common public infrastructure. However, nodes are never

forced to accept data and may deviate from the shared logic.

Records are required to both be locally stored on nodes

and be shared to avoid network partitioning in our system

model. We use the term record to refer to all (possibly

encrypted) data that is usable by a given Web3 application.

Every instance of the same record is what we refer to as

a copy. Both records proposed by a node and those copied

from other nodes are stored in a node’s local storage. The

implementation of the local storage can be a simple database

and may serve a higher-order data structure, like a blockchain.

Our system model consists of three components that form

the feedback cycle shown in Fig. 1. First, any newly introduced

record becomes part of the local storage of a node. A node

decides what other nodes to share a record with based on its

shared verification logic and by using its stored copies. Other

nodes that receive a record verify that they should store a copy

of the record in their own local storage using the same shared

logic. The feedback cycle continues until nodes no longer want

to, have to, or have space to, store a copy of the record.

The refusal to store records is the main attack a data

sharing solution is required to resolve. Any node that does not

store records should be detectable by any other node through

shared verification logic. Nodes may then choose to not further

interact with a node that does not store what it must store.

We do not distinguish between nodes with malicious intent

and non-malicious nodes that have simply run out of storage

space, as both necessitate additional copies of a record in the

network. However, specifically for our solution, the manner of

calculating the change in reputation due to not storing a copy

can differ per node. Nevertheless, the reputation of a node is

still based on the copies it shares with other nodes.

III. DESIGN

Our Timely Sharing with Reputation Prototype (TSRP) is

designed to select nodes to carry copies of records based on

nodes’ reputation. Using both the identity and the reputation of

a node, TSRP provides the shared logic to decide whether the

node “must store” a given record (i.e., locally store a copy).

A. Overview

Every node using TSRP follows a simple two-step decision

flow to determine whether a node (including the node itself)

should act as a carrier for a given record. First, the distance

between an identifier and a record is calculated using a

distance function, which we call the binding score. Finally,

the binding score is compared to the reputation of a node to

decide whether it “must store” the given record.

The distance between an identifier and a record, i.e., the

binding score, is used in a similar fashion to how DHTs

decide which identifiers should store certain records. Typically,

DHTs, like Kademlia [7], use XOR functions to bind nodes’

identifiers to the records they should store. In particular, TSRP

uses the Hamming distance, which is part of the class of

symmetric XOR functions [2]. The binding score is used to

provide the initial association of records with nodes and has

nothing to do with the value, quality or importance of a record.

The binding score is made to resist index poisoning attacks,

which consist of creating fake identities until one with a

high binding score is found [12]. The score is grounded

in values produced by a pseudo-random number generator

(PRNG). The PRNG is seeded using both a record and a node

identifier. Thereby, the generated values are always the same,

regardless of which node evaluates it and when it is evaluated.

Assuming attackers cannot pre-empt the creation of a record,

this disallows index poisoning attacks through fake identities.

The reputation of each node is calculated individually by

nodes it interacts with. As a result, the calculated reputations

may differ wildly between nodes, depending on the node

that calculates it. As the reputation of a node is a factor in

deciding whether or not it should store a given record, nodes

using TSRP may not come to the same decision on whether

a particular node should store a particular record.

A node with a high reputation should be avoided when

choosing carriers for records to achieve load balancing. In a

peer-to-peer setting, the reputation of nodes is a reflection of

the “work” they have done that has gone unreciprocated [14].

Therefore, selecting high reputation nodes to perform more

“work”, in the form of carrying records for TSRP, is not com-

patible with the incentives of Web3 applications (Section II).

Instead, TSRP makes a node’s reputation inversely related to

the probability of it storing any record. New records are more

frequently coupled to nodes with a low reputation.
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B. Auditing

To detect nodes in the network that do not follow the shared

storage logic, TSRP uses “audits”. Each audit consists of

a request for proof of an audited node storing the required

records according to the storage logic, based on their estimated

reputation and the auditor’s known records. Audit proofs can

be naively implemented by showing the record belonging to

a hash, used within the scope of this paper. However, these

proofs can also be implemented in the encrypted domain [18].

Failing an audit (i.e., not being able to show that a required

record is stored locally) negatively affects the reputation of

the audited node. Nodes that fail audits are punished through

ostracization by setting their reputation score to 0 until they

store the required records.

As Web3 users are egocentric and records quickly become

stale, nodes are both expected and incentivized to remove

records that are no longer interacted with. For example, in

Bitcoin this staleness occurs after blocks have six descendants,

at which point blocks are considered to be probabilistically

finalized [11] and no longer require frequent auditing.

C. Formalization

In order to prove that our decision flow leads to availability

of records through random carriers, we provide the concrete

definitions of its elements. For any node i it can be calculated

whether or not i should store a specific record d (a node may

also decide this for its own identifier). To do so, the binding

score B(d, i) is calculated. Basically, a node i must store a

record d if its reputation R(i) is smaller than its binding score

B(d, i) for d. If a node does not store what it must store, we

consider it to be a malicious node. We formulate the store

condition function S as follows:

S(d, i) ≡ R(i) ≤ B(d, i) (1)

This carrier-selection function S is deterministic. When

given the same reputation R(i) and binding score B(d, i), all

nodes will have the same output for S. However, nodes do not

necessarily agree on the reputation R(i) of a node i.
The binding score B(d, i) is calculated for a record-identifier

pair (d, i) in four transformations. First, the PRNG, seeded

with the concatenation of the binary strings representing d
and i, is used to generate a binary string of Q bits. Second, a

uniformly distributed secure hash function HQ is used on the

binary string representing the node identifier i, shortening the

representation without violating its probabilistic distribution.

Third, the Hamming distance is calculated between the PRNG-

generated binary string and the hash value (i.e., two binary

strings of the same length Q). Lastly, the resulting distance is

mapped to the interval [0, 1] with a mapping function Z. In

short, these four transformations are formalized as follows:

B(d, i) = Z(∆(HQ(i), r(d, i))) (2)

The mapping function changes the relationship between a

node’s reputation and its chance to store any particular record.

For example, Z can be chosen to have a doubling of reputation

lead to a quarter of the storage requirements. In the context of

this paper, we use Z(x) = x/(Q − D), where Q and D are

integers where Q > D ≥ 0. Both the length of the hash Q
and the minimum storage factor D can be chosen to guarantee

a minimum expected number of copies of a record.

D. Lower bound on available copies

We now discuss TSRP’s probabilistic guarantee on the

number of available copies of a record. Given our definition

of TSRP and the function Z(x) = x/(Q−D), we show that

any record d has an expected lower bound of n× 1

2

Q
copies.

By definition of S, nodes store records if R(i) ≤ B(d, i).
Clearly, the smallest number of nodes will store a copy

of a given record d if all reputations R(i) are equal to

the maximum reputation of 1. By expansion of B(d, i), we

derive 1 ≤ Z (∆ (HQ (i) , r (d, i))). The smallest number of

copies are now stored if the function Z is minimized, by

setting D to 0. Our storage function is now simplified to

Q ≤ ∆(HQ (i) , r (d, i)). As both HQ (i) and r (d, i) are

bit strings of length Q, the function can only be satisfied if

the distance between both strings is maximized (equal to the

chance that both strings are exactly equal). Because its inputs,

r and HQ, are both uniformly distributed and independent,

it follows that the Hamming distance ∆ follows a binomial

distribution B(Q, 1

2
). The chance to store any record r on a

particular node i is given by P (HQ (i) = r (d, i)) = P (X =

Q | X ∼ B(Q, 1

2
)) =

(

Q

Q

)

1

2

Q
(1 − 1

2
)0 = 1

2

Q
. Finally, all n

nodes together are expected to store at least n× 1

2

Q
copies.

E. Estimating reputation

A node may estimate its own reputation incorrectly for a

variety of reasons. For example, due to the differing reputation

mechanisms employed by other nodes or their malicious

behavior, views of a node’s reputation may be inconsistent.

In these cases, a “correct” estimation of a node’s reputation

does not exist. We therefore scale the current reputation

estimate of a node’s own reputation estimation by the amount

of interaction rejections by other nodes. Upon a successful

interaction, the scalar for the node’s own reputation estimation

increases and upon a rejection the scalar decreases.

IV. REAL-WORLD TWITTER TRACE

We apply TSRP to a real-world trace of Twitter to show

that the emergent storage of TSRP does not necessarily lead

to many more copies of records in comparison to storage

schemes for structured peer-to-peer networks. We replay the

trace using our 64-physical-core machine (clocked at 2.4 GHz)

with 528 GB DDR4 RAM (clocked at 2933 MHz). To provide

a benchmark for the number of emergent copies of TSRP, we

choose two representative solutions for respectively DHTs and

data allocation: Kademlia [7] and CRUSH [17].

We replay the Twitter data set in such a way that data in

shared between users, instead of data being distributed by a

server to users. We use a Twitter data set that covers a flash

crowd of tweets about the Higgs boson [3]. We construct

records by mapping the “retweets”, “mentions”, and “replies”,
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Fig. 3: The average storage fraction (i.e., the copies per record

per node) per round for the Twitter data set.

between users to records shared between nodes. Through this

construction, the trace that we replay contains 563069 records

between 304691 nodes captured over 604621 seconds (roughly

a week). We share records between nodes every ten minutes,

to form the total of 1008 rounds of these record exchanges,

for which we show the number of records per round in Fig. 2.

The source of reputation for the Twitter data set comes from

the number of “followers” per Twitter user. Reputations are

calculated using the “simplified version” of the Distributed

EigenTrust algorithm [5] (normalized toward the median, a

localized trust value of 1 if there was a record between nodes

and 0 otherwise, and using a “forget factor” of 0.2). The

follower count from the data set serves as the “a priori trust

value” for each node. As the trace is played, this simplified

EigenTrust algorithm causes the median of all the reputations

of nodes in the network go to 1 and the average to near 0.72.

The visualization of the number of copies per record per

node is given in Fig. 3, with a data point sampled every

100 rounds. As users build reputation in the network, we see

that TSRP stores a similar number of records on average to

Kademlia. In the final state of this experiment, in the 1008th

round, only 29.5% of the network stores a particular record

on average with an average reputation score of 0.72. This

is a 70.5% decrease from the starting state, where 100% of

all nodes stored a particular record on average. Considering

the number of stored records, TSRP successfully achieves the

same result as Kademlia.

V. CONCLUSION

Web3 networks need to be approached differently. Struc-

ture cannot be imposed over these networks. There is no

authority to govern nodes and users should be assumed to be

individualistic and egocentric. Connections between users are

opportunistic, making a Web3 network prone to partitioning.

Users do not wish to serve each other data, but rather police

each other to uphold the integrity of their shared public infras-

tructure. We have shown that records can be shared efficiently

between partitions without breaking the Web3 incentives for

cooperation. Our TSRP prototype allows users to cooperatively

maintain the integrity of records in a Web3 system.
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