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ABSTRACT

This thesis project is centered around the retrieval of meteorological parameters using
a fast-scanning phased array radar, specifically targeting precipitation-like objects such
as raindrops. The main objective is to transform radar data into variables that accurately
characterize precipitation. This endeavor involves addressing various challenges, in-
cluding extracting meteorological object-related variables, mapping targets from noisy
radar measurements affected by phase noise, and resolving the issue of Doppler alias-
ing. In this report, these challenges are tackled by introducing a range of techniques and
algorithms designed to enhance radar data analysis and validate the proposed methods.

The most commonly derived radar parameters for meteorological targets, known as
Doppler moments, are extensively discussed, including reflectivity, mean Doppler veloc-
ity and Doppler spectrum width. An exploration of the circular calculation of Doppler
spectra moments is conducted, providing valuable insights into the velocity distribution
of radar targets. By analyzing higher-order moments, the characteristics and dynamics
of the targets can be better understood, leading to improved target identification and
tracking.

Additionally, a novel circular variance-based target mapping technique is proposed
to map targets from noisy radar measurements effectively. This approach proves partic-
ularly well-suited for scenarios where traditional reflectivity-based methods fall short.

Apart from the circular variance-based technique, this thesis explores reflectivity-
based target mapping approaches that offer enhanced methods for identifying and clas-
sifying different target parts. Two pipelines are proposed: the morphology-based pipeline
and the entropy-based pipeline. Through simulation and real-world data analysis, the
pros and cons of each pipeline are carefully evaluated. The second pipeline demon-
strates significant benefits in classification, allowing for a more detailed and accurate
representation of radar returns. It effectively distinguishes point targets, extended tar-
gets of interest, global noise, and phase noise, enabling a more comprehensive analysis
of radar data and enhancing the interpretation of detected targets.

Furthermore, the critical issue of Doppler dealiasing is thoroughly investigated, ad-
dressing the problem of velocity ambiguity caused by the Nyquist limit. Three approaches
are compared: gradient-based, existing advanced technique UNRAVEL, and optimizer-
based. Based on the evaluation of the simulation model, the "ParticleSwarm" optimiza-
tion approach is selected as the most effective in enhancing velocity measurements in
severe weather conditions.

Throughout this report, experimental results are presented, findings are discussed,
and recommendations and suggestions for future research are provided. The proposed
techniques and algorithms have undergone rigorous evaluation and validation using
both simulated data and real-world radar measurements. Overall, this research con-
tributes valuable insights into radar data processing for meteorological applications, of-
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fering improved accuracy and reliability for various weather-related analyses and fore-
casting tasks.
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1
INTRODUCTION

1.1. BACKGROUND
Meteorological observations are essential for weather forecasting and monitoring. In
recent years, phased array FMCW (Frequency-Modulated Continuous Wave) radar sys-
tems have become increasingly popular for remote sensing of meteorological objects
due to their ability to provide accurate and high-resolution data. These systems transmit
a modulated continuous-wave signal and receive the scattered echoes from hydromete-
ors in the atmosphere, and then process the data to obtain information about the loca-
tion, size, shape, and movement of the hydrometeors.

However, the raw data collected by the radar can be noisy and contain artifacts,
bringing challenges to extracting meaningful information. Besides the WGN, which ex-
ists globally, phase noise could be another challenge. Phase noise refers to random fluc-
tuations in the phase of the transmitted signal, which can cause distortion and degra-
dation of the received signal. In FMCW radar, the transmitted signal is modulated with
a frequency sweep, which is then transmitted and reflected back by the target. The re-
ceived signal is mixed with the transmitted signal, and the difference frequency is mea-
sured to determine the range and velocity of the target. Any phase noise in the trans-
mitted signal will also be present in the received signal, and this can affect the accuracy
and resolution of the radar measurements. Phase noise in FMCW radar can arise from
a variety of sources, including oscillator instability, thermal noise, and electromagnetic
interference. The magnitude and frequency of the phase noise depend on the charac-
teristics of the oscillator used in the radar system and the environmental conditions. In
range-Doppler radar systems, phase noise is an undesirable but unavoidable character-
istic, adversely affecting the performance of the radar [1]. One of the influences is that
phase noise in radar transmitters raises the noise floor around large targets, making im-
possible the detection and tracking of small targets nearby [2].

The Robin Radar’s 3DMAX radar, working as a meteorological radar, is a phased ar-
ray FMCW radar that is highly disturbed by thermal noise and additional phase noise.
Therefore, this thesis project aims to develop a set of data processing algorithms to con-
vert radar signals into a set of user-defined derivative variables. These variables are only

1
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relevant to the perceptual objects that the user is interested in, with a specific level of
precision and quality. In meteorological FMCW radars, Doppler processing is used to ob-
tain information about the motion of precipitation particles within the observed weather
volume, enabling the derivation of several important meteorological Doppler moments,
such as reflectivity, mean Doppler velocity, and spectral width. Reflectivity measures
the intensity of the radar signal reflected back from precipitation particles, providing
insights into the size and number of particles within the radar’s range. Mean Doppler
velocity is a measure of the average velocity of precipitation particles along the direction
of the radar beam. The spectral width provides information about the distribution of ve-
locities within the observed weather volume. Analyzing the Doppler moment is critical
for understanding the dynamics of precipitation systems and can be used for weather
forecasting and monitoring.

1.2. PROBLEM STATEMENT
Despite the significant advancements in phased array FMCW radar systems, analyzing
radar data is still challenging due to noise and interference. There are four significant
challenges for this thesis project.

The first challenge is to compute the accurate Doppler spectrum related to the me-
teorological objects of interest.

The second one is to reduce the impact of noise on the radar data to improve the
quality of the derived variables. Phase noise is a critical issue. One way to mitigate the
effects of phase noise in FMCW radar is to use a stable and high-quality oscillator, such as
a temperature-compensated crystal oscillator (TCXO) or an oven-controlled crystal os-
cillator (OCXO). These oscillators have low phase noise and high stability, which can im-
prove the accuracy and resolution of the radar measurements. This approach is not ap-
plicable to this thesis project. Another approach is to use signal processing techniques,
such as phase noise compensation algorithms, to remove the effects of phase noise from
the received signal. These algorithms typically require additional hardware, such as a
reference oscillator, and can be computationally intensive. Hence, the two approaches
do not apply to this case since this project is focused on data processing. It requires a
multi-dimensional analysis of the data. Target detection and noise-suppressing algo-
rithms are developed based on the proper interpretation of the data. The proposed data
processing algorithms must effectively suppress noise while preserving the object of in-
terest, particularly at high-noise azimuth angles.

In remote sensing applications, ground truth data is often used as a reference to val-
idate the accuracy of algorithms. However, obtaining ground truth data can be difficult
or impossible, posing a significant challenge for algorithm validation. This is particu-
larly true in meteorological radar systems, where it is difficult to obtain accurate ground
truth data due to the nature of the observed meteorological phenomena. Thus the third
challenge is to evaluate the performance of these algorithms in terms of their accuracy
and quality and to propose improvements to the algorithms as needed.

Last but not least problem to be solved is Doppler de-aliasing. Doppler de-aliasing is
a critical process in radar data processing that addresses a significant limitation known
as the Nyquist limit. This limitation occurs when radar uses the Doppler effect to mea-
sure the speed of a moving target. The Doppler effect causes a change in the frequency
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of the radar signal when it reflects off a moving object, such as a raindrop in the at-
mosphere. However, radar can only accurately measure speed within a specific range,
called the "unambiguous speed range". Velocities outside this range can lead to an effect
known as "aliasing", where measured velocities are misinterpreted due to the Nyquist
limit.

1.3. RESEARCH OBJECTIVES
The goal of this project is to develop and implement a data processing algorithm for a
phased array FMCW weather radar system that can effectively suppress noise and in-
terference of radar data and provide users with preprocessed information that is easy to
understand and of a certain quality. The proposed algorithm can be based on a combi-
nation of standard, adaptive, and other techniques and will be designed to handle large
amounts of radar data. The performance of the algorithm will be evaluated using both
simulated and real-world data, with a focus on its effectiveness in mitigating noise, ob-
ject detection, improving the accuracy of wind speed measurements, and detecting ob-
jects of interest to the user. Based on this, the research objectives of this paper are as
follows:

1. How to efficiently obtain precipitation-related parameters from radar data to en-
hance meteorological analysis?
This research question explores in depth the development of robust and accurate
methods to extract important meteorological parameters from radar data, such as
traditional Doppler spectrum moments. Its purpose is to explore innovative tech-
niques to improve the precision of parameter derivation.

2. How effective is the target mapping pipeline, including clipping global thermal
noise, detecting phase noise, and removing its effect on detecting extended tar-
gets in noisy radar measurements?
This research question focuses on evaluating the feasibility and performance of a
specific radar data processing pipeline designed to enhance the detection of ex-
tended targets, such as large precipitation systems, in noisy radar surveys. Its pur-
pose is to investigate the impact of each step in the pipeline (from thermal noise
reduction to phase noise detection and cancellation) on the accuracy and relia-
bility of object recognition. By quantifying the effectiveness of this pipeline, the
study aims to provide insights for improving radar data quality and object map-
ping techniques.

3. What novel Doppler anti-aliasing techniques can be proposed to accurately re-
solve the velocity ambiguity induced by the Nyquist limit in Doppler radar mea-
surements?
This research problem addresses a key challenge in Doppler radar data process-
ing: the accurate estimation of velocities beyond the Nyquist limit. It seeks to ex-
plore innovative ways to mitigate the adverse effects of velocity aliasing through
advanced mathematical algorithms or signal-processing techniques.

4. How can the proposed processing pipeline and techniques be rigorously validated
to assess their reliability and performance in characterizing meteorological targets
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and improving radar data analysis?
This research question validates the proposed radar data processing flow and tech-
nique. It aims to establish a comprehensive and systematic validation method to
assess the reliability, accuracy, and overall performance of the developed method.

1.4. RESEARCH LIMITATIONS
Despite the potential benefits of the proposed data processing algorithms, there are sev-
eral limitations to this research project. The first limitation is the dependence on the
specific characteristics of the radar system being used. The proposed algorithms and
techniques may not apply to other types of radar systems or atmospheric conditions.
Secondly, the effectiveness of the proposed algorithms is subject to various factors, such
as the quality and resolution of the raw radar data, the frequency of signal interference,
the atmospheric conditions in the observed region, and the user-defined criteria for ac-
curacy and quality. Other limitations include the computational complexity and prac-
tical implementation of the proposed algorithms in real-time radar systems. Moreover,
while the proposed algorithms will enhance the accuracy and resolution of wind speed
measurements, they may not fully address other limitations of phased array FMCW me-
teorological radar systems, such as their limited range and resolution.

1.5. OUTPUTS OF THIS RESEARCH
This research is concentrated on developing and applying data processing algorithms
tailored for a phased array FMCW weather radar system. These algorithms are aimed
to diminish the noise and phase noise interference within radar data while furnishing
users with comprehensible preprocessed information. This study exclusively centers on
objects resembling precipitation, specifically raindrops to convert phased array radar
data into measurable quantities that help users characterize precipitation. To address
the research problem defined previously, the outputs of this research compose of the
following parts:

• Developed algorithms for the phase noise presence detection in the post-Doppler
processed radar data;

• Developed algorithms for thermal noise detection and suppression, facilitating
the target detection;

• Weather FMCW radar signal models for the validation of developed algorithms;

• Examples of processed data that were measured with Robin 3DMax Radar and re-
sults of provided analysis;

• MSc thesis report.

1.6. STRUCTURE OF THIS REPORT
The overview of the rest of the chapters in the report is provided below.

Chapter 2 provided an overview of the latest relevant research problems, including
the typical data processing pipeline for the weather phased array radar, existing noise
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suppression, and noise clipping algorithms. The developed Doppler de-aliasing tech-
niques are studied.

Chapter 3 shows the importance and conventional estimation of Doppler spectrum
moments, namely reflectivity, mean Doppler, and spectrum width. A novel estimation
method based on circular statistics is proposed and validated with the developed model.
The results of implementing this novel approach on Robin radar data are presented in
detail. Moreover, the circular variance of the Doppler spectrum is demonstrated to be
effective for filtering out the noise, facilitating to create the target binary masks. The
target mask of the real-world data measure with Robin radar provided by the circular
variance method is displayed.

Chapter 4 proposed two reflectivity-focused target mapping processing pipelines.
The 2D Gaussian function-based model for object representation is developed to eval-
uate the two processing pipelines. The first processing pipeline is based on morphol-
ogy and involves CFAR detection, phase elimination, wavelet denoising, morphological
mapping, phase noise restoration, and gap filling. The second employs entropy-based
radar data classification with CFAR detection, Renyi’s Entropy for noise, and normalized
mean for phase noise. Simulation evaluates both processing pipelines and real radar
data results are presented.

Chapter 5 presents three Doppler de-aliasing methods, which are gradient-based al-
gorithm, existing advanced UNRAVEL technique, and optimizer-based approach. Their
performance is compared and evaluated by the developed Doppler azimuth curve model.
In addition, the most suitable optimization algorithm is selected according to the evalu-
ation results of the optimization method.

Finally, conclusions and recommendations are drawn in chapter 6.





2
LITERATURE REVIEW AND

FEASIBILITY STUDY ANALYSIS

This chapter begins by exploring the processing pipeline for meteorological phased array
radar data, highlighting its significance in enhancing radar measurements and extract-
ing valuable information. Various steps and techniques involved in the pipeline are dis-
cussed, including adaptive clutter filtering, temporal filtering, spectral processing, noise
clipping, denoising algorithms based on wavelet transform, and singular value decompo-
sition (SVD).

The section on noise suppression and noise clipping algorithms presents an in-depth anal-
ysis of different approaches used to mitigate noise and interference in radar data. Adap-
tive clutter filtering techniques are investigated, which adaptively suppress clutter signals
to improve the signal-to-noise ratio. Temporal filtering methods, which exploit the tem-
poral correlation in radar data to remove noise, are also examined. Additionally, spectral
processing techniques, such as filtering in the frequency domain, are discussed for noise
reduction.

Moreover, the chapter explores noise-clipping techniques that aim to remove outliers and
extreme values from radar data, improving data quality and enhancing subsequent anal-
ysis. Denoising algorithms based on the wavelet transform are investigated for their ef-
fectiveness in reducing noise while preserving essential signal features. The application of
singular value decomposition (SVD) as a denoising technique is also explored, highlight-
ing its potential to enhance radar data quality.

Furthermore, this chapter studies the developed Doppler de-aliasing techniques and ana-
lyzes their applicability to this situation.

Overall, This chapter provides a comprehensive overview of the existing literature on me-
teorological phased array radar data processing pipelines, various noise suppression and
clipping algorithms, and Doppler de-aliasing techniques. The feasibility study in this
chapter forms the foundation for the subsequent chapters, enabling the development of
an improved radar data processing and analysis framework.

7



2

8 2. LITERATURE REVIEW AND FEASIBILITY STUDY ANALYSIS

2.1. METEOROLOGICAL PHASED ARRAY RADAR DATA PROCESS-
ING PIPELINE

As proposed in the book [3] and the article [4], the data processing pipeline for meteo-
rological phased array FMCW radar is similar to that of traditional meteorological radar
but with some additional steps specific to phased array technology. The following are the
general steps involved in processing phased array FMCW radar data for meteorological
applications:

• Raw Data Acquisition The first step is to acquire the raw radar data. The phased ar-
ray FMCW radar emits a signal composed of multiple frequencies, and each array
element receives the reflected signal. The received signals are digitized and stored
as raw radar data.

• Data Preprocessing Similar to traditional meteorological radar, data preprocessing
is used to remove noise, artifacts, and unwanted signals from the raw data. This
can include range and velocity unfolding, clutter filtering, and attenuation correc-
tion.

• Digital Beamforming In phased array FMCW radar, the digital beamforming pro-
cess is used to form a beam in the desired direction, which is achieved by weighing
the received signals from each element of the array. The beamforming process can
also improve the signal-to-noise ratio and reduce interference.

• Doppler Processing After the beamforming process, the Doppler processing algo-
rithm is applied to the data. This step calculates the Doppler shift of the reflected
signals to estimate the radial velocity of the targets in the radar field of view. The re-
sulting Doppler moments include reflectivity, mean Doppler velocity, and Doppler
spectral width.

• Target Detection The Doppler moments are then used in target detection algo-
rithms to identify weather targets, such as raindrops or snowflakes, and to distin-
guish them from non-meteorological targets, such as birds or insects.

• Product Generation Finally, meteorological products such as reflectivity maps, ve-
locity maps, and precipitation estimates can be generated using the target detec-
tion results. These products are used for weather forecasting, research, and moni-
toring.

Additionally, radar data quality control should be applied at various steps through-
out the meteorological phased array FMCW radar data processing pipeline [5]. During
data acquisition, quality control checks may be applied to the raw data as it is collected
from the radar hardware to ensure that the data is appropriately sampled and that there
are no issues with the hardware. In the stage of preprocessing, quality control checks
may be applied to the preprocessed data to ensure that any noise or interference is re-
moved correctly and that the data is appropriately calibrated. In the beamforming stage,
quality control checks may be applied to the Doppler-processed data to ensure that the
velocity and reflectivity data are accurate and that there are no spurious signals. As for
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Doppler processing, quality control checks may be applied to the Doppler-processed
data to ensure that the velocity and reflectivity data are accurate and that there are no
spurious signals. The target detection stage requires quality control checks to ensure
that the detected targets are valid and that there are no false alarms or missed targets.

As mentioned in the articles [6] and [7], some common quality control algorithms
used in meteorological radar data processing are:

• Data filtering
This involves removing unwanted noise or interference from the data, such as
ground clutter or noise from other sources. Filtering may be performed using tech-
niques such as spectral analysis, wavelet analysis, or adaptive filtering.

• Calibration
This involves adjusting the data to account for any systematic errors in the radar
hardware or data processing algorithms. Calibration may be performed using ref-
erence targets such as calibration spheres or known precipitation types.

• Range and azimuth correction
This involves correcting for any geometric distortions in the radar data due to the
radar beam geometry or the curvature of the earth. Correction may be performed
using geometric models or radar ray tracing.

• Doppler velocity dealiasing
This involves correcting for errors in the measured radial velocity due to the lim-
ited range of the Doppler velocity measurement. Velocity dealiasing may be per-
formed using techniques such as velocity folding or phase unwrapping.

• Signal quality assessment
This involves evaluating the signal-to-noise ratio and other metrics of the radar
signal quality to identify any data that may be corrupted or unreliable. This may be
performed using techniques such as signal-to-noise ratio (SNR) analysis or signal
power analysis.

2.2. NOISE SUPPRESSION AND NOISE CLIPPING ALGORITHMS
Noise suppression and noise clipping are essential aspects of phased array weather radar
data processing, and various techniques have been developed for these purposes. Some
commonly used techniques are introduced as follows.

2.2.1. ADAPTIVE CLUTTER FILTERING

This technique uses statistical methods to estimate the clutter in the radar data and then
remove it. This technique has been widely used in phased array weather radar systems.
Various adaptive clutter filtering algorithms have been developed, such as the constant
false alarm rate (CFAR) algorithms, adaptive Wiener filtering (AWF), adaptive filtering
based on morphological processing, the fuzzy logic-based algorithm, and the maximum
likelihood algorithm.
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CONSTANT FALSE ALARM RATE (CFAR) ALGORITHMS

In the book [8], CFAR algorithms have been introduced comprehensively. The core is to
divide the radar range cell into several sub-cells and compares the power level in each
sub-cell to the average power level of a certain number of neighboring sub-cells. If the
power level of the target cell exceeds the threshold value, the cell is declared a target. The
advantages and disadvantages are summarized in the following texts.

Advantages

• Easy to implement and computationally efficient.

• Can be used for both ground clutter and atmospheric clutter suppression.

• Can handle different clutter statistics and can adapt to changing clutter condi-
tions.

Disadvantages

• Can produce false alarms in areas with high noise levels or non-homogeneous
clutter distribution.

• Can have limited performance in complex terrain environments.

ADAPTIVE WIENER FILTERING (AWF)
In the article [9], AWF is introduced as a technique that employs an adaptive filter that
adjusts its coefficients according to the characteristics of the input signal. The filter coef-
ficients are updated iteratively based on the statistical properties of the signal and noise.

Advantages

• Can effectively suppress both ground clutter and atmospheric clutter.

• Can significantly improve signal-to-noise ratio and enhance target detection per-
formance.

• Can be used for both stationary and non-stationary clutter environments.

Disadvantages

• High computational complexity and memory requirements.

• Requires an accurate estimate of the covariance matrix, which can be difficult to
obtain in practice.

• Can introduce some distortion or artifacts in the filtered data.
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ADAPTIVE FILTERING BASED ON MORPHOLOGICAL PROCESSING

This technique is based on mathematical morphology, which is a non-linear signal pro-
cessing technique that uses the shape and structure of the signal to extract useful infor-
mation. The morphological filter is applied to the input signal, and the resulting signal is
compared to a threshold value to detect targets. [10] develops an approach for robustly
detecting targets of different sizes and shapes (fixed/non-fixed), using a combination of
image frame time difference, deep-threshold, target shape, and size analysis with non-
linear morphological operations.

Advantages

• Can effectively suppress ground clutter and preserve the target signals.

• Can be used for both range and Doppler filtering.

• Can be robust to noise and outliers.

Disadvantages

• Can be sensitive to the choice of structural element or kernel.

• Can introduce some smoothing or blurring effects in the filtered data.

• May not perform well in complex clutter environments or with non-uniform clut-
ter distribution.

FUZZY LOGIC-BASED ALGORITHM

Fuzzy logic is a mathematical technique that deals with uncertainty and imprecision.
In this technique, a fuzzy system is designed that considers the input signal’s charac-
teristics and the noise to estimate the probability of the cell containing a target. Some
applications are present in [11] and [12].

Advantages

• Can adaptively adjust filtering parameters in real-time.

• Effective in reducing clutter and preserving target signals.

• Robust to non-stationary clutter environments.

Disadvantages

• Requires a high number of fuzzy rules for optimal performance.

• Difficult to design and optimize fuzzy rules.

• High computational complexity.
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MAXIMUM LIKELIHOOD ALGORITHM

The maximum likelihood algorithm is a statistical technique used for detecting targets
in the presence of clutter noise. This technique estimates the probability of the cell con-
taining a target based on the statistical properties of the signal and noise. The advantage
of this technique is its ability to handle non-Gaussian clutter, but it can be computation-
ally intensive, as introduced in the article [13].

Advantages

• Highly effective in reducing clutter and noise.

• Can estimate clutter and target parameters simultaneously.

• Can be used with other filtering techniques to improve performance.

Disadvantages

• High computational complexity.

• Requires accurate statistical models of clutter and target signals.

• Sensitive to model assumptions and parameter estimation errors. Reference:

2.2.2. TEMPORAL FILTERING
Temporal filtering involves filtering the data in the time domain. A moving average filter
can be used to remove noise from the data. Various temporal filtering algorithms have
been developed, such as the Kalman filter, the adaptive moving average filter, and the
weighted average filter.

KALMAN FILTER

The Kalman filter is a state estimation algorithm that uses a set of mathematical equa-
tions to estimate the state of a system based on the observations made. The filter esti-
mates the form of a system by incorporating measurements over time and minimizing
the error between the predicted state and the observed state. In the article [14], nu-
merical results show that when the Kalman filter is executed with radar reflectivity mea-
surements observed around a large number of automatic weather observation stations
(AWOS) locations, the mean squared errors of the Kalman filter rainfall estimates are
smaller than the ones obtained with empirical reflectivity (Z) - rainfall (R) relationships.

Advantages

• Can handle noisy and incomplete data

• Can estimate both state and parameters

• Can incorporate system model and measurement uncertainties Disadvantages:
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Disadvantages

• Computationally expensive

• Sensitive to modeling errors

• Requires prior knowledge of system dynamics

MOVING AVERAGE FILTER

The moving average filter is a simple temporal filter that works by averaging a set of con-
secutive data points over a defined time interval. The filter is commonly used to suppress
noise in phased array FMCW weather radar data. The moving average filter can effec-
tively reduce noise, but it can also introduce signal delay and distortion. Thesis report
[15] shows a properly designed moving average filter can be used to reduce fluctuations
in digital signal processing.

Advantages

• Simple and easy to implement

• Computationally efficient

• Effective in reducing random noise

Disadvantages

• Not effective in reducing non-random noise or outliers

• Can introduce lag in the signal

• May not preserve signal features

SAVITZKY-GOLAY FILTER

The Savitzky-Golay filter is a type of digital filter that works by fitting a polynomial to a
set of adjacent data points and using the polynomial to estimate the value of each point
in the set. This filter can be used to reduce noise in phased array FMCW weather radar
data. The Savitzky-Golay filter can effectively reduce noise, but it can also introduce
signal distortion and phase shift. Paper [16] describes a new filter developed for reducing
speckle noise in SAR images.

Advantages

• Can handle noisy and unevenly sampled data

• Preserves signal features such as peaks and valleys

• Can remove random and non-random noise

• Can differentiate the signal
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Disadvantages

• May introduce artifacts or distortions in the signal

• May require tuning of filter parameters,

• Not effective in reducing outliers or extreme noise

2.2.3. SPECTRAL PROCESSING
Spectral processing involves analyzing the frequency spectrum of the radar signal and
applying appropriate filtering methods. Some of the commonly used techniques intro-
duced in the article [17] include the spectral correlation coefficient (SCC) algorithm, the
spectral domain averaging (SDA) algorithm, and the spectral noise floor clipping (SNFC)
algorithm.

The SCC algorithm calculates the correlation coefficients between adjacent range
bins and performs noise suppression by rejecting data with low correlation. The main
advantage of the SCC algorithm is its ability to suppress non-stationary noise, which
cannot be removed using traditional filtering methods. However, the SCC algorithm is
computationally expensive and may cause signal loss in regions with low correlation.

The SDA algorithm calculates the average of the power spectra over a range of adja-
cent range bins to reduce the noise floor. The SDA algorithm effectively reduces the noise
floor and enhances the signal-to-noise ratio (SNR), especially for weak signals. However,
the SDA algorithm may cause blurring of the radar image and distortion of the signal
waveform.

The SNFC algorithm estimates the noise floor in the spectral domain and removes
the noise below a certain threshold. The SNFC algorithm effectively eliminates noise
and preserves the signal waveform. However, the SNFC algorithm may remove weak
signals below the noise floor, and its performance is highly dependent on the accuracy
of the noise floor estimation.

2.2.4. NOISE CLIPPING
Noise clipping involves removing data that is above or below a certain threshold. Vari-
ous noise-clipping algorithms have been developed. In addition to CFAR, there are the
amplitude thresholding algorithm and the adaptive thresholding algorithm.

AMPLITUDE THRESHOLDING ALGORITHM

Amplitude thresholding algorithms apply a fixed threshold to the received signal, and
any values above this threshold are retained, while any values below are discarded as
noise. This method is simple to implement and computationally efficient, but it can
result in the loss of weak signals, especially in areas with high noise levels. The advan-
tages of amplitude thresholding algorithms include their simplicity and computational
efficiency. However, they can result in the loss of weak signals.

ADAPTIVE THRESHOLDING ALGORITHM

On the other hand, adaptive thresholding algorithms dynamically adjust the threshold
value based on the local statistics of the received signal. This allows for better retention
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of weak signals while still removing noise, even in areas with high noise levels. However,
these algorithms can be computationally expensive and may require much processing
power. Adaptive thresholding algorithms, while more computationally expensive, can
better retain weak signals and adapt to changing noise levels.

2.2.5. DENOISING ALGORITHMS BASED ON WAVELET TRANSFORM

Wavelet analysis is a powerful tool for analyzing signals with both temporal and spectral
content. It involves the convolution of a signal with a wavelet, a mathematical function
well-localized in both the time and frequency domains.

WAVELET TRANSFORM

In the book [18], the fundamentals of wavelet have been explained thoroughly. Similar
to Fourier transform, the wavelet transform of the signal f (t ) can be formulated as:

F (τ, s) = 1p|s|
∫ +∞

−∞
f (t )φ∗

(
t −τ

s

)
d t (2.1)

The width of the wavelet φ(x) and its central frequency can be adjusted by changing the
scale parameter s as it is moved across the signal. This results in a stretch or compres-
sion of the wavelet, corresponding to a frequency change. Larger values of s correspond
to lower wavelet frequencies, resulting in an expanded wavelet better at resolving low-
frequency signal components with poor time resolution. In contrast, smaller values s
correspond to higher frequencies, resulting in a shrunken wavelet, better at resolving
high-frequency signal components with good time resolution. The parameter τ repre-
sents the translation of the wavelet across the signal. To perform wavelet analysis, vari-
ous windows are used, which are the dilated or compressed and shifted versions of the
mother waveletφ(t ). The choice of mother wavelet and the scale and translation param-
eters used in the analysis can significantly impact the results obtained.

Calculating wavelet coefficients at every possible scale produces a lot of data. If s and
τ are discrete samples, the wavelet transform won’t generate massive amounts of data. If
s and τ are based on powers of two (dyadic), then analysis becomes much more efficient
and accurate.

D[a,b] = 1p
b

p−1∑
m=0

f [tm]φ

[
tm −a

b

]

where a = τ,b = s, and a = k2− j ,b = 2− j with j as the scale index and k as the wavelet
transformed signal index. In Fig. 2.1, the block diagrams of fast wavelet transform and
inverse fast wavelet inverse transform are given.

In this figure, f [tm] is the input signal, A j and D j are the Approximation and Detail
components, respectively, at j th decomposition level obtained through recursive low
pass filtering (for Approximation component) and high pass filtering (for Detail compo-
nent), and ↓ 2 and ↑ 2 are down-sampling and up-sampling, respectively, by a factor of
2. The process of FWT and IFWT leads to Discrete Wavelet Transform (FWT) and Inverse
Discrete Wavelet Transform (IFWT), and hence they are used interchangeable Eq. (2.2)
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Figure 2.1: Block Diagrams of Fast Wavelet Transform and Inverse Fast Wavelet Transform

and Eq. (2.3) to describe the low pass and high pass filtering process.

A j+1[k] =
L−1∑
n=0

l [n]A j [2k +n] (2.2)

D j+1[k] =
L−1∑
n=0

h[n]A j [2k +n] (2.3)

where l [n] and h[n] are low and high pass signal decomposition filters, respectively. And
L is the length of both the filters (and the scaling and wavelet functions). The filter values
are the coefficient values of the scaling and wavelet functions.

TYPICAL WAVELETS

Orthonormal, semi-orthogonal, and biorthogonal wavelets are different types of wavelet
bases that can be used in wavelet analysis.

Orthonormal wavelets form a complete and orthonormal basis for the signal space,
meaning that any signal can be decomposed into a linear combination of orthonormal
wavelet basis functions without losing any information.

Semiorthogonal wavelets form a complete basis for the signal space but are not nec-
essarily orthogonal. This means that some information can be lost during the wavelet
transform.

Biorthogonal wavelets use two sets of basis functions, one for the analysis (decompo-
sition) and one for the synthesis (reconstruction) stages of the wavelet transform. They
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are not orthogonal but satisfy a set of bi-orthogonality conditions that allow for accurate
reconstruction of the original signal.

Before selecting a wavelet for a specific signal, it is crucial to analyze the characteris-
tics of the signal itself. Some essential features to consider include the signal’s frequency
content, its temporal behavior, and the presence of any noise or artifacts.

The frequency content of the signal can inform the choice of wavelet, as different
wavelets have different frequency responses. For example, a wavelet with good high-
frequency resolution may be more suitable if the signal has significant high-frequency
components. The temporal behavior of the signal can also inform the choice of wavelet,
as different wavelets have different time-frequency trade-offs. If the signal contains
rapid changes, a wavelet with good time resolution may be preferred, while for slowly
varying signals, a wavelet with better frequency resolution may be more appropriate. Fi-
nally, the presence of noise or artifacts in the signal can also impact the choice of wavelet.
Wavelets with good denoising capabilities may be preferred for signals with significant
noise. In contrast, wavelets that are robust to certain types of artifacts may be selected
for signals with known sources of interference.

In general, wavelets with good time-frequency localization and low reconstruction
error are preferred for processing noisy radar signals. Since it is difficult to get the best
wavelet for all types of signals and noise. Therefore, an empirical analysis is needed to
determine which wavelet is suitable for processing noisy weather radar signals with high
phase noise at certain azimuth angles.

WAVELET DENOISING ALGORITHMS

Wavelet denoising algorithms are a class of techniques that leverage wavelet transforms
to reduce noise in radar signals. These methods are based on multi-resolution analysis,
which involves breaking the signal into different frequency bands. In wavelet denoising,
the signal is decomposed into varying levels of detail using wavelet transform. The high-
frequency coefficients, which represent noise in the signal, are then thresholded and
eliminated, while the remaining coefficients are used to reconstruct a denoised signal.
One advantage of wavelet denoising is its ability to reduce noise while preserving signal
features effectively. This technique has been shown to outperform other methods in
signal-to-noise ratio (SNR) improvement and preservation of signal features. However,
the choice of wavelet basis function and thresholding method can significantly affect
the denoising performance. Various wavelet denoising algorithms have been developed,
such as the thresholding-based algorithm, the wavelet packet denoising algorithm, and
the wavelet domain Wiener filtering algorithm.

2.2.6. SINGULAR VALUE DECOMPOSITION (SVD)
SVD is a matrix factorization technique that decomposes a matrix into three compo-
nents: a left singular matrix, a diagonal matrix of singular values, and a right singular
matrix. The diagonal matrix of singular values contains information about the relative
importance of each singular vector in the decomposition. The article [19] shows that
SVD and proper orthogonal decomposition can decompose velocity field data into spa-
tiotemporal modes. It provides a method to estimate the noise level in a noise dataset
and the root-mean-square error (RMSE) of the SVD modes, hence filtering the noise us-
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ing only the SVD modes that have low enough RMSE.
One advantage of using SVD for noise suppression is that it can effectively separate

the signal and noise components based on their singular values. Generally, the signal
component has larger distinct values than the noise component, so the noise can be
suppressed by setting a threshold on the distinct values and discarding the correspond-
ing singular vectors. Another advantage of using SVD for noise suppression is that it can
be applied to both spatial and temporal domains.

However, one limitation of using SVD for noise suppression in phased array FMCW
weather radar is that it requires knowledge of the noise statistics, which may not be avail-
able in some cases. Moreover, the effectiveness of SVD for noise suppression may be
limited by the SNR and the complexity of the noise structure.

2.3. DOPPLER DE-ALIASING TECHNIQUES
The majority of Doppler velocity dealiasing techniques rely on spatial continuity princi-
ples, spanning from one-dimensional solutions [20], to more complex two-dimensional
approaches [21], and even further to three-dimensional methodologies [22], and oc-
casionally extending into four dimensions by incorporating temporal continuity [23].
Despite these advancements, a central challenge persists: areas devoid of substantial
returns, which are often censored or omitted from displays, disrupt the velocity field’s
continuity. Furthermore, robust wind shears associated with severe weather conditions
compound the intricacies of correcting velocity aliasing. In cases where preceding neigh-
bors are absent, alternative strategies have emerged, including leveraging upper-air sound-
ings as references [24], or relying on velocity-azimuth display winds [25]. In addition,
there is one advanced dealiasing tool, named "UNRAVEL" introduced in the article [26].

While these methods do provide a logically feasible path to Doppler de-aliasing, it is
worth noting that simulation validation specifically for the FMCW radar environment is
lacking so far.

2.4. CONCLUSION
This chapter gives the state of the art of the typical weather phased array FMCW radar
data processing flowchart and covers the related developed algorithms which aim to en-
hance the data quality, noise suppression, and target detection. The possible solutions
consist of adaptive and standard algorithms. They are validated to work for target detec-
tion and mitigating the interference existing in the radar data. The strengths and weak-
nesses of these algorithms are evaluated. It came to the conclusion that to address this
research project problem, a combination of various algorithms, such as denoising using
wavelet techniques, and target mapping using CFAR detector, morphological operations,
or thresholding, can be the potential approach, resulting in a target mapping processing
pipeline tailed for Robin Radar’s 3DMax phased array radar.

Furthermore, within this chapter, a summary of the newly developed Doppler de-
aliasing techniques is provided. This summary not only highlights the inherent poten-
tial of checking continuity but also underscores the need for further validation of the
UNRAVEL approach.
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APPLICATION OF CIRCULAR

STATISTICS ON THE DOPPLER

SPECTRUM

This chapter focuses on the application of circular statistics for Doppler spectrum analy-
sis. It begins by discussing the characteristics of weather-like spectrum and signals, which
exhibit circular properties due to the cyclical nature caused by Doppler ambiguity. It in-
troduces the concept of Doppler spectral moments, which provide valuable information
about the velocity distribution of radar targets. To analyze these moments, it explains the
principles of circular statistics specifically designed to handle circular data. The different
methods for estimating the mean Doppler and spectrum width are evaluated. Simulation
results and validation are provided to demonstrate the effectiveness of the circular mo-
ments approach. Furthermore, the application of circular moments on real-world data
is shown, highlighting their utility in analyzing actual radar measurements. In addition,
this chapter proposes the circular variance-based target mapping technique. It introduces
circular variance as a measure of the dispersion of radar echoes around the mean Doppler
frequency, thereby measuring the concentration of targets within one radar range gate.
The effectiveness of circular variance as a criterion to filter out noise is proved. The sensi-
tivity of circular variance to DPP, which is the difference between the peak of signal and
peak of noise is discussed. According to that, the threshold value of circular variance is
elected to design the real-world target binary mask.

3.1. WEATHER-LIKE SPECTRA AND SIGNALS

The weather echo and receiver noise have very similar statistical properties, between
which the difference is that the signal power is usually larger and its spectrum is not
broadband [27]. The in-phase, I , and the quadrature-phase, Q, components at one range
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gate for the ith sample can be written as:

I (i ) = s(i )cosφ(i )+n(i )cosψ(i )

Q(i ) = s(i )sinφ(i )+n(i )sinψ(i )
(3.1)

In Eq. (3.1), s(i ) is the Rayleigh distributed signal envelope, and φ(i ) is a uniformly
distributed phase. Equation (3.1) can be expressed as regards a discrete Fourier series
summed over the spectral record of length T −1

pr f :

I (i )+Q(i ) = 1

n

n∑
k=1

P
1
2

k exp
(

jθk
)

exp

(
− j

2π

n
ki

)
(3.2)

where Pk is the exponentially distributed instantaneous power of signal plus noise, in
which the signal is frequency independent, and noise is white. θk is a uniformly dis-
tributed phase. Pk and θk are statistically independent. Sk is the frequency-dependent
signal power density. Since the noise is white, the noise per discrete frequency can be

expressed as N = total noise power
frequency band . Hence, the probability density of Pk is:

P (Pk ) = 1

Sk +N
exp

[
− Pk

Sk +N

]
(3.3)

The average signal-to-noise ratio is then:

signal

noise
=

∑n
k=1 Sk

nN
(3.4)

3.2. DOPPLER SPECTRAL MOMENTS
For atmospheric radars, at each range bin, the Doppler power spectrum is assumed to
be in Gaussian shape. The extracting desired information or measuring some attributes
of the signal may often relate to the fundamental base parameters:

Radar reflectivity factor Z dBZ
Mean Doppler velocity V ms−1

Spectral width W ms−1

Let the Doppler power spectrum of the received signal be denoted by A(v), and then
the three spectrum moments can be computed as:

M0 =
∫

|A(v)|2d v (3.5)

M1 = 1

M0

∫
v |A(v)|2d v (3.6)

M2 =
√

1

M0

∫
(v −M1)2|A(v)|2d v (3.7)

The zeroth moment is the area under A(v) and represents the total signal, clutter, and
noise power from the radar volume at a specific range from radar. The first moment,
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mean Doppler velocity, is the power spectrum’s mean. In the frequency domain repre-
sentation, the Doppler-shifted frequencies caused by the motion of precipitation parti-
cles are observed as peaks or spikes along the frequency axis. Each peak corresponds to
a specific Doppler velocity, indicating the radial velocity of the particles relative to the
radar. The white noise biases the velocity towards zero. For a pure noise spectrum, the
mean Doppler velocity is identically zero. The second moment represents the velocity
spectrum width and is equal to the square root of the velocity variance within the reso-
lution volume. Wind shear, turbulence, and the variability of particles’ falling velocities
with their size contribute to this spectral moment [28].

3.3. CIRCULAR STATISTICS
Doppler ambiguity occurs when a target’s Doppler shift exceeds the pulse repetition fre-
quency (PRF) of the radar system. PRF represents the transmission rate of radar pulses.
When the Doppler shift exceeds this threshold, this wrapping of the spectrum leads to
overlapping and uncertainty, making it difficult to determine the true frequency compo-
nents. The target radial velocity that can be measured unambiguously must lie within
well-defined limits, defined as

|vunamb| ≤
λ ·PRT

4
(3.8)

As discussed above, the standard Doppler moments are derived as equations 3.5, 3.6,
and 3.7 assuming the Doppler velocity is defined in a 1-D linear space from −∞ to +∞.
Due to the Doppler ambiguity, the measured Doppler spectrum, which is the represen-
tative of the precipitation particles’ motion, wraps around the circle whose interval is
[−vunamb, vunamb]. As a result, the standard estimation of the mean Doppler velocity,
which characterizes the environmental wind speed, can shift the linear mean closer to
zero and incorrect spectrum width. For example, if the spectrum will have two strong
modes at [−vunamb +∆u] and [+vunamb −∆u], the mean velocity, which is defined using
linear space Eq. (3.6), will be equal to 0 instead of a more realistic value of ±vunamb.

To overcome the challenges posed by Doppler’s ambiguity, this project turns to the
field of circular statistics. Circular statistics, also known as directional statistics, deals
with data measured in cyclic or circular units. This makes it particularly suitable for an-
alyzing wrapped data, such as the wrapped Doppler spectrum. By leveraging the prin-
ciples and tools of circular statistics, we can effectively estimate the Doppler spectrum
moments while accounting for the ambiguity caused by wrapping.

In the book [29], Mardia gave an overview of circular statistics. Given unit vectors
x1, ...,xn with corresponding angles θ1, ...θn , the mean direction θ̄ is the direction of the
center of mass x̄ of x1, ...,xn . Denote the x j in the Cartesian coordinates, the center of
mass in the Cartesian coordinates are (C̄ , S̄), where

C̄ = 1

n

n∑
j=1

cosθ j , S̄ = 1

n

n∑
j=1

sinθ j (3.9)

The mean resultant length R̄ is given by

R̄ = (C̄ 2 + S̄2)1/2 (3.10)
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When R̄ > 0, the mean direction is given by{
tan−1(S̄/C̄ ), if C̄ Ê 0
tan−1(S̄/C̄ )+π, if C̄ < 0

(3.11)

To measure the dispersion, the circular variance and circular standard deviation are
given by

V = 1− R̄ (3.12)

v = {−2log(1−V )
}1/2 = {−2logR̄

}1/2 (3.13)

For small variances, Batschelet[30] approximates the circular variance and circular stan-
dard deviation to

V = 2(1− R̄) (3.14)

v = {
2(1− R̄)

}1/2 (3.15)

3.4. CIRCULAR ESTIMATION OF MEAN DOPPLER AND SPEC-
TRUM WIDTH

Supposed that Doppler spectrum samples d1, ...,dn for a resolution volume, and corre-
sponding velocity samples v1, ..., vn , the angle samples a1, ..., an can be derived from

ai = π

vunamb
· vi (3.16)

The center of mass can be represented as (c,s) in the Cartesian coordinates where

c =
∑n

j=1 cosa j∑n
j=1 d j

, s =
∑n

j=1 sina j∑n
j=1 d j

(3.17)

Then the resultant length is
r = (c2 + s2)1/2 (3.18)

The mean of the Doppler spectrum refers to the central tendency or the dominant veloc-
ity components of the scatterers or objects within the resolution cell. The circular mean
of the Doppler spectrum can be estimated as

M1circ = vunamb

π
·
{

tan−1(s̄/c̄), if C̄ Ê 0
tan−1(s̄/c̄)+π, if C̄ < 0

(3.19)

The spectrum width measures the velocity dispersion. With Mardia’s circular theory [31],
the circular spectrum width of the Doppler spectrum is

M2circMardia =
vunamb

π
· {−2logr }1/2 (3.20)

And using Batschelet’s theory [30], the circular spectrum width of the Doppler spectrum
for small variance is

M2circBatschelet =
vunamb

π
· {2(1− r )}1/2 (3.21)
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3.5. SIMULATION RESULTS AND VALIDATION FOR MEAN DOPPLER

AND SPECTRUM WIDTH ESTIMATION
In this project, MATLAB software is used to develop the algorithms and perform the
necessary calculations to validate the proposed methods. The models of unfolded and
folded Doppler spectrum are shown in the figures 3.1, with vunamb = 7.3938 [m/s]. This
value of unambiguous Doppler is obtained from real-world data collected by the Robin
Radar’s 3D-Max FMCW radar.

(a) Unfolded Doppler Spectrum (b) Folded Doppler Spectrum

Figure 3.1: Doppler spectrum With and Without the occurrence of Folding

3.5.1. MEAN DOPPLER ESTIMATION
For the simulation evaluation, this work implemented three methods of calculating the
mean Doppler, respectively: (1). Linear estimation; (2). Circular estimation; (3) Shift-
back estimation. Setting the spectrum width as 0.1×vunamb ≈ 0.74[m/s], the mean esti-
mation results of three methods are plotted in Fig. 3.2.

Figure 3.2: Mean Estimation
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The first two are explained in the texts above. The shift-back method is commonly
used in radar and remote sensing applications to estimate the parameters of the Doppler
spectrum. In the frequency domain representation, the Doppler-shifted frequencies
caused by the motion of precipitation particles are observed as peaks or spikes along
the frequency axis. Each peak corresponds to a specific Doppler velocity, indicating the
radial velocity of the particles relative to the radar. The shift-back method leverages the
identification and alignment of the peak in the Doppler spectra to accurately estimate
the mean Doppler and spectrum width.

3.5.2. SPECTRUM WIDTH ESTIMATION
For the Doppler spectrum width, there are four methods in need to validate in simulation
evaluation: (1). Linear estimation; (2). Circular estimation using Batschelet’s equation;
(3). Circular estimation using Mardia’s equation; (4). Shift-back method. The different
thing with the mean Doppler estimation is that there are two available equations. One
formula 3.20 is proposed by Mardia and the other one 3.21 is put forward by Batschelet
with a different approximation method. In MATLAB, after Doppler processing, the shift-
back method to calculate the spectrum width is implemented following the steps:

1. Find the location of the dominant velocity component;

2. Shift the spectrum to align the dominant velocity component to zero;

3. Estimate the spectrum width using the linear method.

Setting the mean Doppler as µ = 1.5× vunamb ≈ 11.09 [m/s], the mean estimation
results of four methods are plotted in Fig. 3.3.

Figure 3.3: Spectrum Width Estimation with Different Methods Given Mean = 1.5× Unambigious Doppler
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From Fig. 3.3, there are some conclusions can be drawn:

1. When the spectrum width is located at the interval (0,0.15] times the unambiguous
Doppler, all of the four methods give the correct estimation.

2. When the spectrum width increases to the interval (0.15,0.8) times the unambigu-
ous Doppler, the circular method using Mardia’s equation gives the least error es-
timation.

3. In the case where the actual spectrum width lies in the interval (0.15,55) times
the unambiguous Doppler, the linear method gives the spectrum width estimation
higher than the true value. While in the interval (0.55,0.8) times the unambiguous
Doppler, the linear method estimate is lower than the true value.

From the initial investigations into the statistical characteristics of spectral width
provided by [32], in most cases without extreme weather, the spectrum width should
lie below 3 [m/s], which is around 0.4 × vunamb. Take a focus on the interval where
σ/vunamb ∈ (0,0.4), the circular method using Mardia’s equation has the most accurate
estimation.

In addition, it is necessary to analyze each method’s spectral width estimation perfor-
mance under different mean Doppler since the methods may have different underlying
assumptions and algorithms, which can impact their performance under different mean
values. The simulation results are shown in figures 3.4, 3.5, 3.6, and 3.7.

Figure 3.4: Spectrum Width Estimation Given Different Mean Doppler Using Linear Method
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Figure 3.5: Spectrum Estimation Given Different Mean Doppler Using Circular Method with Batschelet’s
Equation

Figure 3.6: Spectrum Estimation Given Different Mean Doppler Using Circular Method with Mardia’s
Equation
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Figure 3.7: Spectrum Width Estimation Given Different Mean Doppler Using Shift-back Method

There are some conclusions can be drawn from the figures above:

1. Examining the results, it becomes evident that the linear estimation of spectrum
width reacts particularly sensitively to shifts in the mean Doppler’s placement,
shown in Fig. 3.4. When the mean Doppler approaches closer to 0, a noticeable
enhancement in the precision of the spectrum width estimation becomes appar-
ent.

2. The remaining three methods: two circular estimations using different equations
and the shift-back method, demonstrate remarkable robustness in the face of mean
Doppler variations.

3. The circular estimation utilizing Mardia’s equation stands out for its consistent
stability across conditions with various mean Doppler values while also exhibiting
the least significant margin of error.

Taking all these factors into consideration, it came to the conclusion that the circular
estimation with Mardia’s equation has the best performance both in the mean Doppler
and the spectrum width estimation.

3.6. CIRCULAR SPECTRUM MOMENTS OF REAL-WORLD DATA
After performing discrete Fourier transformation processing on samples within a single
range bin, the Doppler spectrum of each resolution volume can be acquired from the
gathered radar data. One example of the Range-Doppler map of the received signal at a
specific azimuth and elevation is shown in Fig. 3.8. In Fig. 3.8, the black dots represent
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Figure 3.8: Range-Doppler map of the received signal at a specific azimuth and elevation

the power spectrum values. The concentrated Doppler region has high values, which is
meant by the yellow region from the colorbar. It can be observed that the yellow line
(circular estimation of the mean Doppler) is more following the dominant Doppler than
the white line (linear estimation of the mean Doppler).

Fig. 3.9 and Fig. 3.10 illustrate the conventional linear and the proposed circular
determination of Mean Doppler and Spectrum width. Notably, compared with the linear
method, the circular moments reveal more pronounced Discontinuities resulting from
Doppler ambiguity. The employment of the circular method enhances the precision of
mean Doppler and spectrum width estimation.

Besides that, it’s important to highlight that Fig. 3.9b distinctly indicates whether the

(a) Mean Doppler of Real-world Data Using Conventional
Linear Method

(b) Mean Doppler of Real-world Data Using Proposed
Circular Method

Figure 3.9: Mean Doppler of Real-world Data Using Conventional Linear Method and Proposed Circular
Method
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(a) Spectrum Width of Real-world Data Using Conventional
Linear Method

(b) Spectrum Width of Real-world Data Using Proposed
Circular Method

Figure 3.10: Spectrum Width of Real-world Data Using Conventional Linear Method and Proposed Circular
Method

pixel represents noise or effective Doppler velocity, given the intricate pattern of data.
The noise area identified by the mean Doppler aligns with the portion of the spectral
width plane where oscillations hover around 0. This alignment implies that spectrum
moments derived from circular statistics can potentially facilitate recognition in distin-
guishing between objects and noise.

3.7. TARGET MAPPING BASED ON CIRCULAR VARIANCE
This section presents the proposed circular variance-based target mapping technique.

3.7.1. CIRCULAR VARIANCE
As previously mentioned, circular statistics encompasses a variety of statistical measures
and techniques specifically designed to handle circular data. Besides circular mean and
circular spectrum width, circular variance can be used as a factor to filter out noisy data.
The circular variance quantifies the spread or dispersion of the data around the circular
mean. It measures the variability of the angles or directions in a circular dataset. Using
Eq. (3.12), the circular variance of the real-world radar measurements, is shown in Fig.
3.11.

From Fig. 3.11, it can be observed that there are distinct regions with high circular
variance, which are shown in red. Within the specified range gates, the circular variance
is denoted in blue, indicating that its value remains below 0.3.

The circular variance is a metric that spans a range from 0 to 1, encapsulating the
degree of variation within angular measurements. A circular variance value of 0 indicates
a high degree of consistency and alignment among measurements. Data points cluster
tightly around a central angle, forming a compact grouping. This scenario manifests as
a sharply peaked circular distribution, reflecting a coherent target signal.

Conversely, a circular variance of 1 indicates an absence of a preferred or dominant
direction. Data points are uniformly scattered across the entire circular range, resulting
in an even distribution. In practical terms, a circular variance of 1 signifies the presence
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Figure 3.11: Circular variance Derived from the Real-world Data

of random noise within the measurements.

Within a single range gate, a higher circular variance value implies a greater likeli-
hood of noise-like behavior. Consequently, the circular variance can serve as an indica-
tor of noise presence. By setting a threshold for circular variance, it becomes possible to
filter out data points that are potentially noisy or unreliable. The selection of an appro-
priate threshold is a topic explored in the subsequent sections.

3.7.2. SENSITIVITY OF CIRCULAR VARIANCE ON DPP
The determination of the specific circular variance threshold value hinges on the intrin-
sic characteristics of the data and the requisite noise elimination level. To ascertain this
threshold value, a detailed analysis is conducted, focusing on the sensitivity of circu-
lar variance about the Difference between the Peak of the signal power spectrum and
the Peak of the noise power spectrum (referred to as DPP)—measured in decibels. In
this context, DPP quantifies the variation between the highest points of the signal and
noise power spectra. Within each range gate, the power spectrum of thermal noise is
presumed to be uniformly distributed, while the target’s power spectrum conforms to a
Gaussian distribution. To explore the interplay between circular variance and DPP, the
Doppler spectrum within a specific range gate is conceptualized, as depicted in Figure
3.12.
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Figure 3.12: Modeling the Doppler Spectrum within One Range Gate

By varying the value of DPP, a series of circular variance estimation plots correspond-
ing to different DPP scenarios can be generated. As depicted in Figure 3.13, these plots
take into account distinct standard deviations of the signal power spectrum.

Figure 3.13: Sensitivity of Circular Variance on DPP Under Different Signal Standard Deviations

From the illustration, a clear pattern emerges that as the circular variance value in-
creases, the inherent noise in the data becomes more pronounced. This relationship
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emphasizes the fact that larger circular variance values correlate with a higher level of
noise within the measurements.

3.7.3. TARGET MASK FOR REAL-WORLD DATA

For real-world radar measurements provided by Robin 3DMax radar, data points with
corresponding circular variance above the threshold are filtered out. From Fig. 3.13, the
smaller threshold means to be more stringent and filter out more data points. Setting the
threshold as 0.8 to generate the target mask and apply it in the circular mean Doppler
and reflectivity planes. The results are shown in Fig. 3.14 and Fig. 3.15.

Figure 3.14: Apply Circular-variance Based Mask on Reflectivity

Figure 3.15: Apply Circular-variance Based Mask on Mean Doppler
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3.8. CONCLUSION
In this chapter, the characteristics of weather-like spectrum and signals are analyzed,
exhibiting the circular properties caused by Doppler ambiguity. The importance of the
three essential Doppler spectrum moments: reflectivity, mean Doppler, and spectrum
width, are explained. The conventional estimation of the Doppler spectrum moments is
considered in linear statistics, strongly affected by the circular properties of the Doppler
spectrum.

The concepts of circular mean, circular variance, and circular standard deviation are
then introduced. The application of such circular concepts on the Radar Doppler spec-
trum is then analyzed. Based on the circular method, the novel estimation of mean
Doppler and spectrum width are derived. This proposed technique is verified to have
more accurate results and more robust performance against the other factors in the sim-
ulation compared to the conventional method. Utilizing the technique to plot the range-
Doppler map of the Robin radar’s received signal at a specific azimuth and elevation, it
is clear that the circular method can provide the mean Doppler more following the dom-
inant component in the spectrum. Especially, with regards to the mean Doppler estima-
tion, the circular method using Mardia’equation is validated to be more effective than
that using Batschelet’s equation. The results of applying the circular method to compute
the mean Doppler and spectrum width of the real-world data are displayed.





4
TARGET MAPPING BASED ON

REFLECTIVITY

The ability to map targets accurately from radar measurements is of paramount impor-
tance for military, civil, and environmental purposes. This chapter presents two target
mapping approaches focusing on reflectivity in radar data analysis. It begins by discussing
the modeling of objects in an image using a 2D Gauss function, which provides a math-
ematical representation of target reflectivity. This modeling approach allows for accurate
estimation and characterization of target properties based on their reflectivity patterns. A
simulation model in MATLAB is developed to validate the target mapping pipelines. The
first pipeline is based on morphology and contains stages such as CFAR detection of the
point targets, detecting the azimuth where phase exists and making them void, wavelet
denoise, applying morphological operations to map the targets, restoration of phase noise
azimuths, and morphological filling gaps. The second one is classifying the radar data
types based on entropy, incorporating the following stages: CFAR detection for point tar-
gets, thresholding using Renyi’s Entropy for white Gaussian noise detection, and detection
using normalized mean along range for phase noise. Evaluation and performance analy-
sis is conducted to assess the effectiveness of the pipeline using simulated data. The results
of applying these two pipelines to real-world radar measurements are present.

4.1. MODELING OBJECTS IN AN IMAGE WITH A 2D GAUSS FUNC-
TION

One of the challenges in this project is that there is no ground truth. To validate and eval-
uate the algorithms proposed, the algorithm can be operated on a well-defined model
or simulation. This involves defining specific scenarios and evaluating the algorithm’s
behavior and outcomes within those scenarios. The ideal weather measurement reflec-
tivity samples Z are comprised of the echoes from targets (weather signal samples) S and
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noise N:

Z = S+N (4.1)

To fit an elliptical contour to a two-dimensional Gaussian in an image, the signal matrix
S involves two random variables, sx and sy, with mean values s̄x and s̄y. A particular
combination of sx and sy can be represented as a column vector:

sT = (sx,sy) (4.2)

where sx, sy consists of M and N samples respectively. The mean values corresponding
to each variable can be written as a vector s̄ = (s̄x, s̄y)T . Each variable will have a variance
σ2

x and σ2
y . Denote the covariance σ2

x y and σ2
y x with σ2

x y = σ2
y x , which can be incorpo-

rated into a variance-covariance matrix:

Q =
(
σ2

x σ2
x y

σ2
y x σ2

y

)
(4.3)

The Gaussian is then given by

f {s} = 1√
(2π)2|Q|

exp

[
−1

2
(s− s̄)T Q−1(s− s̄)

]
= A ·exp

[
−1

2
(sx − s̄x,sy − s̄y)T Q−1(sx − s̄x,sy − s̄y)

]
(4.4)

where A = 1
2π

p|V| is the amplitude with |V| the determinant of V.

For the case of uncorrelated variables sx and sy, the Gaussian PDF can be represented
as:

f (sx,sy) = A ·exp

[
−1

2

(
(sx − s̄x)2

σ2
x

+ (sy − s̄y)2

σ2
y

)]
(4.5)

4.2. SIMULATION MODEL DEVELOPMENT IN MATLAB
The results of 2D Gaussian models are shown in Fig. 4.1. Adding the thermal noise on
Fig. 4.1a, which is normal distribution globally, 4.1b can be plotted. By observing the
measurements, it can be noted that phase noise exists at some specific azimuths. As
mentioned in the chapter1, inherent imperfections of real-world oscillators and vari-
ous analog components, environmental factors, and strong reflection from radar near-
zones can introduce phase noise into the system. To perform simulations in MATLAB,
the phase noise is built under the assumption that it has a relatively smaller variance
along range but a high noise level, as shown in Fig. 4.1c. In the zone close to the radar,
there is strong reflectivity caused by the point targets, which could be buildings, shown
in Fig. 4.1d. Applying the simplest way of target detection, fixed thresholding technique
on reflectivity model, the corresponding target masks can be generated in Fig. 4.1e, 4.1f,
4.1g, and 4.1h.
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(a) Target Only

(b) Target, Thermal Noise

(c) Target, Thermal, Phase noise

(d) Target, thermal, phase noise, Point Targets

(e) Ground Truth

(f) Target, Thermal Noise Mask

(g) Target, Thermal, Phase Noise Mask

(h) Target, Thermal, Phase Noise, Point Target Mask

Figure 4.1: Reflectivity Model in MATLAB
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Using the standard thresholding technique, the thermal noise, phase noise, and point
targets can be mistakenly classified as target signals, resulting in a higher false alarm
rate. On the other hand, the noise can also cause the target signals to fall below the fixed
threshold, resulting in missed detections.

4.3. MORPHOLOGY-BASED TARGET MAPPING PIPELINE

This section presents a Morphology-based target mapping pipeline that focuses on re-
flectivity to enhance the quality of the radar data and accurately identify targets. The
pipeline consists of several key steps that aim to detect the point targets, detect the
azimuth where phase exists and make them void, denoise the reflectivity data using
wavelet techniques, apply morphological operations to map the targets, restore phase
noise azimuths, and morphologically fill any remaining gaps. The following subsections
provide a detailed explanation of each step. To validate the proposed algorithm, the
model mentioned in section 4.2 is used.

4.3.1. POINT TARGETS DETECTION USING CFAR

The high-level values in the observations are either point targets or phase noise. These
two classes can be differed by applying CA-CFAR (Cell Averaging CFAR) along ranges
since the phase noise has a smaller variance along ranges than point targets do. For each
azimuth, the values along ranges are divided into windows. Within each window, the
CFAR detector calculates the average power of the signal across all the reference cells.
This average is referred to as the "local cell average", which is obtained By using a spe-
cific number of neighboring cells (guard cells and reference cells) around the cell to test
(CUT). The CFAR detector compares the local cell average with the CUT. If the CUT is
above the threshold, which can be controlled by the multiplication of a threshold fac-
tor with the local cell average, the CUT is determined to be "target present". Once the
CFAR detector identifies potential targets based on thresholding, it generates a detec-
tion output indicating the presence and location of these targets in the original array.
The output may include target coordinates or a binary mask indicating the detected tar-
get areas, which is shown in Fig. 4.2. It can be noted that the point targets close to the
radar are detected correctly by comparing with Fig. 4.1d.

Figure 4.2: Point Target Mask and Result After Point Target Removal
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4.3.2. PHASE NOISE DETECTION

Phase noise can be identified by its characteristics: high-level and exist at specific az-
imuths. Calculating the normalized mean along the range, and then scaling them up to
plot the Fig. 4.3, the phase noise can be masked in Fig. 4.4.

Figure 4.3: Scaled Mean Along Range Dimension

Figure 4.4: Result After Removing Azimuths Existing Phase Noise

4.3.3. WAVELET DENOISE

Since the target signals get contaminated with noise, wavelet-based techniques are ap-
plied to denoise. Wavelet denoising is a signal processing technique used to reduce
noise from a signal while preserving important features and structures. It is based on
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the principles of wavelet analysis, which allows for both time and frequency localization
of signals. The basic idea behind wavelet denoising is to decompose the noisy signal
into its wavelet coefficients using a wavelet transform, apply a thresholding operation to
these coefficients to remove the noise, and then reconstruct the denoised signal using
the modified coefficients. Here’s an overview of the steps involved in wavelet denoising:

1. Signal Decomposition
The first step is to decompose the noisy reflectivity values into the wavelet coeffi-
cients using Discrete Wavelet Transform (DWT). The wavelet transform allows the
signal to be represented in terms of different scales and positions (or time points).
This provides a multi-resolution representation, where high-frequency details are
represented in the higher scales, and low-frequency trends are represented in the
lower scales.

2. Thresholding
After the signal is decomposed, wavelet coefficients at each scale are individually
analyzed to determine their significance. The key idea in wavelet denoising is that
noise tends to have smaller amplitudes compared to signal components. So, a
thresholding operation is applied to the wavelet coefficients, which sets small co-
efficients to zero, effectively removing the noise. There are different thresholding
methods that can be used, such as: (1). Hard Thresholding: Set coefficients be-
low a certain threshold to zero. (2). Soft Thresholding: Shrink coefficients toward
zero by an amount specified by the threshold. (3). Non-Linear Thresholding: More
advanced methods based on statistical models.

3. Signal Reconstruction
Once the thresholding is applied to the wavelet coefficients, the denoised signal
is obtained by reconstructing the signal using the modified coefficients. The re-
construction process combines the denoised coefficients from different scales to
obtain the final denoised signal. This process of reconstruction is known as an
Inverse Wavelet Transform (IDWT).

To select the wavelet type and level which can function well for the simulation data,
the "Wavelet Analyzer" in-built tool within MATLAB is utilized, allowing importing the
noisy reflectivity image and choosing different types and levels of wavelet transmission
to obtain the denoised image. From the in-built tool, it can be found that orthogonal
wavelets have better denoising performance than biorthogonal wavelets. Since the im-
age may be less informative than the matrix itself, different types of orthogonal wavelets
are applied to the matrix values. The "Haar" wavelet is chosen, and the decomposition
level is determined to be 2. By comparing the soft thresholding and hard thresholding
methods, soft thresholding is performed on the detail coefficients of the wavelet decom-
position vector. This thresholding step selectively removes small-scale noise compo-
nents while preserving important features, effectively denoising the data. After recon-
struction, a cleaner and more refined reflectivity map is shown in Fig. 4.5.

Although wavelet denoising techniques have many advantages, such as being effec-
tive in preserving important features of the signal while reducing noise and being well
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Figure 4.5: Result After Wavelet Denoising

suited for multi-resolution signal analysis, there are some limitations of the wavelet de-
noising technique. The selection of an appropriate threshold can be challenging and
may depend on the characteristics of the noise and signal. Wavelet denoising may in-
troduce some artifacts in the denoised signal, especially when aggressive thresholding is
used. And it may not work well for signals with a very low signal-to-noise ratio (SNR).

4.3.4. MORPHOLOGICAL OPERATION

Following the wavelet denoising phase, the subsequent steps require the use of mor-
phological operations to further refine specific features of interest within the reflectivity
map. Morphological techniques, encompassing operations like dilation or erosion, are
judiciously applied to accentuate or smooth these features.

By manipulating the shape and proportions of targeted regions, it becomes feasible
to enhance the visibility and distinctness of the targets embedded within the radar data.
This undertaking involves the creation of a primary binary mask, exemplified in Fig. 4.6,
which is subsequently subjected to morphological operations.

The primary binary mask is crafted through standard thresholding of the wavelet de-
noised signal. This entails setting a threshold value that segregates signal components
from noise. The resulting binary mask effectively segregates target regions from back-
ground clutter, thereby facilitating subsequent morphological operations to be precisely
targeted to amplify the desired features while suppressing undesired elements.

By comparing the mask generated by morphological operations and the ground truth,
the optimum morphological operations, in this case, are chosen to be: (1)first open; (2)
then filling with holes. The structure element used is a disk shape.

The "open" morphological operation proves most effective in scenarios where the
primary objective is the elimination of minor noise or delicate structures while main-
taining the overall form and prominent characteristics of objects within an image. This
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Figure 4.6: Primary Binary Mask by Thresholding the Denoised Values and Removing Azimuths Existing Phase
Noise

operation involves a combination of two fundamental morphological processes: ero-
sion, followed by dilation.

Erosion entails the movement of a structuring element, often a small binary mask,
across the image. In this process, each pixel in the image is substituted with the lowest
value among the pixels encompassed by the structuring element. This step effectively
erodes the outer pixels of objects and eradicates small, isolated regions.

On the other hand, dilation involves using the same structuring element to traverse
the image. Each pixel is replaced with the highest value from the pixels covered by
the structuring element. This operation enlarges objects and fills minute gaps or voids
within them. The notion of "filling with holes" aligns with a specific instance of the "clos-
ing" operation, which comprises dilation followed by erosion. This operation rectifies
small cavities within objects, enhancing their completeness and continuity. It facilitates
the smoothing of object boundaries and reinforces the interconnectedness of objects in
the image.

The outcome after this procedure is visualized in Fig. 4.7.

An essential consideration lies in the selection of the structure element and the deter-
mination of the number of iterations for the morphological operation. These parameters
require adjustment according to the unique attributes of the image and the dimensions
of the voids or openings that need rectification.

Resizing and iterating structure elements is critical to achieving effective results. For
example, employing larger structural elements or performing multiple iterations may
prove essential to successfully address more substantial voids. However, care must be
taken to prevent over-smoothing or inadvertently merging adjacent objects.

Striking an appropriate balance between structuring element size, number of itera-
tions, and image features is critical to achieving optimal results.
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Figure 4.7: Binary Image After Applying Morphological Operation on the Primary Binary Mask

4.3.5. RESTORATION OF PHASE NOISE AZIMUTHS
Having performed the necessary processing and enhancements, the next step is to re-
store the phase noise azimuths that were marked as void previously, as shown in Fig.
4.8.

These void regions are replaced with zeros, ensuring that the reflectivity map is com-
plete and does not contain any missing or distorted information due to the phase noise.

Figure 4.8: Result After Restoring Azimuths Existing Phase Noise with Zeros
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This step guarantees the integrity and coherence of the reflectivity data, providing a
more accurate representation of the detected targets.

4.3.6. GAP FILLING
The final step in the target mapping pipeline is gap-filling and clearing out the point
targets using the mask obtained in the first step. Despite the previous processing steps,
there may still be small gaps or discontinuities in the reflectivity map. To address this,
another morphological operation is applied to fill in these gaps. By selectively expanding
or contracting target regions, the target mapping becomes continuous and coherent,
resulting in a more reliable and comprehensive representation of the targets detected
by the radar system. After Moving out the point targets, the final target mask is shown
in Fig. 4.9. The Mean Square Error between this mask and the ground truth is 0.0875,
meaning that in the whole matrix, there is 18 percent of the pixels detected wrongly.

Figure 4.9: Final Binary Mask Derived from the Simulation Model Using Morphology-based Target Mapping
Pipeline

Applying this target mapping pipeline based on reflectivity aims to enhance the qual-
ity of the radar data, remove noise and artifacts, and produce an accurate and detailed
map of the detected targets.

4.3.7. EVALUATION AND PERFORMANCE ANALYSIS
The effectiveness of the proposed target mapping pipelines could potentially be influ-
enced by the Signal-to-Noise Ratio (SNR). To comprehensively assess their performance
under varying SNR conditions, a model is constructed for experimentation.

This model creation involves the generation of a target with uniform reflectivity across
its entirety. Subsequently, White Gaussian Noise (WGN) is introduced, both globally and
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selectively for specific azimuths, to emulate the presence of noise within the radar data.
Furthermore, to simulate the impact of phase noise, regions exhibiting elevated reflec-
tivity across all ranges are incorporated.

To gauge the performance under different SNR scenarios, models are constructed for
SNR values of 20 dB. These models, exemplifying the interaction between target map-
ping pipelines and SNR, are visually illustrated in Fig. 4.10.

(a) Target only (b) Target, Thermal Noise (c) Target, Thermal, Phase Noise

Figure 4.10: Model Used to Evaluate Target Mapping Pipelines at SNR = 20dB

Besides MSE, there are other parameters used to evaluate the performance of the
processing pipelines. Precision is defined as equation 4.6. It measures the accuracy of
the positive predictions made by the detection algorithm. Recall is defined as equation
4.7. It measures the ability of the detection algorithm to identify positive instances cor-
rectly. Both the precision and recall are calculated based on FN (False Negative) and
TP (True Positive). The F1Score is the harmonic mean of precision and recall and pro-
vides a balance between precision and recall, calculated with equation 4.8. Intersection
over Union (IoU) measures the overlap between the predicted bounding boxes and the
ground truth bounding boxes, with the equation 4.9.

Precision = TP

TP + FP
(4.6)

Recall = TP

TP + FN
(4.7)

F1Score = 2
Precision ·Recall

Precision + Recall
(4.8)

IoU = Area of Intersection

Area of Union
(4.9)

(4.10)

where T , F , P , N means "True", "False", "Positive", and "Negative".

With the model, measures of the performance dependence on the SNR can be plot-
ted in Fig. 4.11. As SNR increases, MSE gets lower and converges to 0.01, meaning there
are 0.01 percent of the pixels in the whole model detected wrongly. This algorithm works
badly when SNR is smaller than -20dB with an MSE of approximately 0.42.
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Figure 4.11: Performance Measures Dependence on SNR for Morphological-based Target Mapping Pipeline

For cases where SNR is lower than -20 dB, the performance of the morphology-based
target mapping pipeline is poor, with a 0.3 F1Score. For cases where SNR is larger than
20 dB, the performance of the morphology-based target mapping pipeline has a 0.98
F1Score.

4.4. ENTROPY-BASED TARGET MAPPING PIPELINE
The second target mapping pipeline is inspired by classification since the real-world re-
flectivity data could be considered as a combination of four classes:

f (x, y) = s1(x, y)+ s2(x, y)+n(x, y)+p(x, y) (4.11)

where f (x, y) represents the observations in each pixel, s1(x, y) the point targets, s2(x, y)
the extended targets of interest, n(x, y) the global thermal noise, and p(x, y) the phase
noise existing in specific azimuths. Each class can be characterized from two aspects, as
the table 4.1 shows. To get the mask of s2, the improved pipeline is built to distinguish
each class.

Reflectivity Distribution
s1 High, >50dB Concentrate
s2 Middle, [30,50]dB Spread
n Low,[15,30]dB Spread
p Middle to High, >40dB Along ranges

Table 4.1: Characteristics of the Four Classes in Radar Data
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With the definition of four classes involved in the observations, the classifier is de-
signed following the decision tree, shown in Fig. 4.12.

Figure 4.12: Decision Tree for Classifier (Entropy-based Target Mapping Pipeline)

This target mapping pipeline consists of the following parts: point target detection
using CFAR, thermal noise detection using a threshold provided by Renyi’s entropy, and
phase noise detection by a combination of CFAR and thresholding the normalized mean.

4.4.1. POINT TARGETS DETECTION USING CFAR ALONG RANGES
This stage is also included in the first target mapping pipeline. But in this pipeline, the
difference is that the point targets are masked and removed for further process. The
point target mask and the result after removing the point target are shown in Fig. 4.2.

4.4.2. THERMAL NOISE DETECTION USING RÉNYI ENTROPY
After distinguishing the s1, the noise can be detected by Information Entropy Techniques.
Shannon’s entropy, also known as Shannon entropy or information entropy, is a widely
used measure of uncertainty or information contained in a probability distribution. It
quantifies the average amount of information required to describe an event from the
distribution. Shannon’s entropy is defined as:

H(X ) =−
N∑

i=1
p(xi ) log2 p(xi ) (4.12)

where H(X ) is the entropy of the random variable X , p(x) is the probability of the event
x, and the summation is taken over all possible events x1, x2, ...xN in the distribution.
Shannon’s entropy is non-negative and reaches its maximum value when the probability
distribution is uniform.

Rényi’s entropy, named after Alfréd Rényi, is a family of entropy measures that gen-
eralize Shannon’s entropy. Rényi’s entropy is defined as:

Hα(X ) = 1

1−α log2

(
N∑

i=1
p(xi )α

)
(4.13)
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The difference is that Hα(X ) introduces parameter α to control the order of the Rényi
entropy. Different values of α yield different entropy measures. When α approaches 1,
Rényi’s entropy converges to Shannon’s entropy. Rényi’s entropy provides a more flexible
framework for measuring the uncertainty or information contained in a distribution. It
allows for different orders of entropy that can capture different aspects of the distribu-
tion. When α is less than 1, Rényi’s entropy gives more weight to the events with higher
probabilities, focusing on the most probable outcomes. In the radar measurements,
there are several types existing, as discussed previously. Each type can be considered
as a probability distribution. Then the key to classifying types is to distinguish by thresh-
olding. Using the probability of values existing on the dataset to realize the classification
can be proved in Fig. 4.13.

Figure 4.13: Distribution Sets to Validate the Threshold Provided by Renyi’s Entropy

The threshold provided by Entropy is around the cross point of two distributions
when they have the same variance. While in the cases where the variances are different,
the cross point could be biased to the wider one.

Using Rényi Entropy to create a target mask was proposed in the paper [33]. Rényi
entropy is a mathematical measure that quantifies the uncertainty or randomness in a
probability distribution. It can be utilized to analyze the distribution of pixel intensities
in an image matrix and aid in the classification task. Here’s the approach to using Rényi
Entropy to distinguish the thermal noise:
(1). Compute the probability distribution of value bins within the matrix. This can be
achieved by counting the occurrences of each value bin and normalizing them to obtain
probabilities. Let pi = p(x1), p(x2), ..., p(xk ) be the probability distribution for a matrix
with k different value bins.

(2) From this distribution, object distribution which represents the WGN, and back-
ground distribution, which contains all the remaining information, can be obtained. De-
note the object distribution and background distribution as:

p A : p1/P A , p2/P A , ...pt /P A and pB : pt+1/PB , pt+2/PB , ...pk /PB (4.14)

where P A =∑t
i=1 p(xi ),PB =∑k

i=t+1 p(xi ).
(3). Calculate the Rényi entropy using the probability distribution. The Rényi entropy
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of order α for each distribution is given by:

H A
α (t ) = 1

1−α log2

(
t∑

i=1
(pi /P A)α

)
(4.15)

H B
α (t ) = 1

1−α log2

(
t∑

i=1
(pi /PB )α

)
(4.16)

(4). Set a threshold value by considering the distribution of values for object and
background regions. This appropriate threshold is aimed at maximizing the difference
or distinctiveness between the object and background distributions. It implies that this
threshold can maximize the information gain or reduction in entropy when separating
the two classes. In other words, the threshold should be chosen such that it results in the
largest reduction in uncertainty or randomness when differentiating objects from the
background, minimizing the overlap and improving the accuracy of classification. The
threshold t is denoted by:

t (α) = argmax
t

[
H A
α (t )+H B

α (t )
]

(4.17)

(5). Create a binary mask by comparing the value of each pixel in the matrix with
the threshold. If the value exceeds the threshold, classify the pixel as part of the object.
Otherwise, classify it as part of the background. In this case, the optimum α is found to
be 0.2, which is effective in distinguishing the thermal noise.

The thermal noise mask and the result after removing the thermal noise are shown
in Fig. 4.14.

Figure 4.14: Mask for Thermal Noise and Result After Removing Thermal Noise

4.4.3. PHASE NOISE DETECTION
After removing the thermal noise, the phase noise can be identified with CFAR and thresh-
olding the mean along the range. It is visible that the phase noise exists in specific az-
imuths with high-level values and occupies more pixels along ranges than the target of
interest. Therefore, implementing CFAR along azimuth can give the phase noise mask as
Fig. 4.15 shows. Another criterion is to filter out these azimuths by limiting the number



4

50 4. TARGET MAPPING BASED ON REFLECTIVITY

Figure 4.15: Mask for Phase Noise Detected
by CFAR

Figure 4.16: Scaled Mean Along the Range
Dimension

of pixels with invalid values and the normalized mean along ranges bigger than 0.45. The
scaled normalized mean along the range is present in Fig. 4.16.

In Figure 4.16, the identified peaks, which are marked as white crosses, bear signif-
icance as they correspond to the azimuths affected by phase noise. This occurrence
marks a critical point for phase noise detection and subsequent mitigation.

The synergy of two techniques, namely CFAR processing, and thresholding the mean,
ultimately reveals the unique pattern of phase noise. This process generates a depiction
of the phase noise detection, as depicted in Figure 4.17. By applying the principles of the
CFAR approach and considering the thresholded mean, the resultant plot showcases the
success of phase noise removal, illustrated in Figure 4.18.

This integrated approach underscores the capacity of the methodology to effectively
detect and eliminate phase noise, enhancing the accuracy and reliability of the target
mapping procedure.

Figure 4.17: Mask for Phase Noise Figure 4.18: Result After Phase Noise Removal

The resultant outcome of the entropy-based target mapping pipeline is displayed in
Fig. 4.19. In this particular instance, the Mean Squared Error (MSE) computed between
the ground truth and the final detection mask is equal to 0.13245.
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Figure 4.19: Mask for Extended Targets

The MSE, in essence, quantifies the dissimilarity between two binary masks. Its inter-
pretation can be understood as reflecting both the number of instances where detections
were missed as well as the occurrences of false alarms. This MSE summarizes the accu-
racy of the object mapping process, outlining the trade-off between correctly identifying
targets and incorrectly identifying non-targets.

4.4.4. EVALUATION AND PERFORMANCE ANALYSIS

By implementing the identical operations as those presented in the first pipeline, the
efficacy of the second pipeline can be assessed through the depiction of performance
measures about the signal-to-noise ratio(SNR). This analysis is illustrated in Fig. 4.20.

Observing the Fig. 4.20, a notable observation emerges that the entropy-based tar-
get mapping pipeline exhibits a performance pattern similar to that of the morphology-
based pipeline. The dependency of performance measures on SNR exhibits a congruent
trend between these two processing pipelines. It’s worth highlighting that the perfor-
mance measures of the entropy-based target mapping pipeline demonstrate less pro-
nounced fluctuations compared to the measures of the morphology-based target map-
ping pipeline.

This observation indicates comparable performance levels between the two target
mapping pipelines, indicating that the entropy-based approach might offer comparable
results in terms of target mapping accuracy and reliability, while potentially showing
enhanced stability under varying SNR conditions.
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Figure 4.20: Performance Measures Dependence on SNR for Entropy-based Target Mapping Pipeline

4.5. COMPARISON OF TWO PROCESSING PIPELINES
To compare the target mapping performance of the proposed two pipelines, four param-
eters are taken into consideration: IoU, false alarm rate, missed detection, and F1Score.
From the Fig. 4.21, it can be noticed that around -15 dB, the curves can be divided into
two portions: below -15dB low SNR region and above -15dB high SNR region. For the
four parameters, it can be said that higher-value IoU, lower-value false alarm rate, lower-
value missed detection, and higher-value F1Score mean better performance.

It can be observed that in the low SNR region, the morphology-based target mapping
pipeline has the following characteristics compared with the entropy-based one:

1. lower IoU;

2. similar false alarm rate but more fluctuated;

3. higher missed detection;

4. lower F1Score.

Therefore, the comprehensive evaluation shows that the performance of the morphology-
based target mapping pipeline exhibits a decline compared to the entropy-based target
mapping pipeline in low SNR regions. This observation may be attributed to the limi-
tations of wavelet denoising techniques in effectively reducing the noise to a level that
enables target detection.

In the morphology-based target mapping pipeline, the application of morphological
operations is crucial to detect high-intensity point targets that were previously masked
by noise. However, in scenarios with high-level phase noise, these operations may inad-
vertently amplify the risk of introducing false positives.



4.6. FINAL TARGET MAPPING OF THE REAL-WORLD DATA

4

53

Figure 4.21: Comparison of the Performance Measure for Morphology-based and Entropy-based Target
Mapping Pipelines

As for the high SNR region (above -15 dB), the morphology-based target mapping
pipeline has the following characteristics compared with the entropy-based one:

1. higher IoU;

2. lower false alarm rate;

3. lower missed detection;

4. higher F1Score.

It means that in the high SNR region, the morphology-based target mapping pipeline
performs better than the entropy-based target mapping pipeline. So selecting the suit-
able pipeline should depend on the application itself. And it is worth mentioning that
the morphology-based target mapping pipeline has a larger fluctuation, meaning it may
be more vulnerable.

4.6. FINAL TARGET MAPPING OF THE REAL-WORLD DATA
Implementing the proposed pipelines on the real-world data, the intermediate results
are obtained. Applying the final masks maps the target of interest.

4.6.1. MORPHOLOGY-BASED PIPELINE APPLIED ON REAL-WORLD DATA

For the morphology-based target mapping pipeline, the results are drawn in Fig. 4.22.
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(a) Original (b) Phase Noise Removal on Real-world Data1

(c) Wavelet Denoised Real-world Data (d) Morphological Detection on Real-world Data

(e) Restore phase noise azimuth with zeros (f) Final Mask Using Morphology-based Pipeline

Figure 4.22: Results of Morphology-based Pipeline on Real-world Data

4.6.2. ENTROPY-BASED PIPELINE APPLIED ON REAL-WORLD DATA
For the entropy-based target mapping pipeline, the results are drawn in Fig. 4.23.

It can be found that the entropy-based pipeline has better performance than the
morphology-based one. The reasons could be:

1. The low SNR is dominant in the real-world data, which the morphology-based
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(a) Original (b) Point Target Removal on Real-world Data

(c) Thermal Noise Removal on Real-world Data (d) Phase Noise Removal on Real-world Data2

(e) Final Mask Using Entropy-based Pipeline

Figure 4.23: Results of Entropy-based Pipeline on Real-world Data

pipeline is not good at dealing with.

2. The disk-shaped structure element is well-suited for the simulation model. How-
ever, the size and shape of the extended targets existing in the real-world data are
unknown, bringing the challenge of choosing the optimum structure elements.
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The level of reflectivity from the extended targets makes it tricky to decide the cor-
rect wavelet type and transformation scale.

In addition, since the entropy-based pipeline is designed to identify the data types
existing in the measurements, the mask for the different classes can be shown in Fig.
4.24.

Figure 4.24: Class Identification of Real-world Data Provided by Entropy-based Target Mapping Pipeline

Utilizing the entropy-based pipeline, the before and after-processed PPI for real-
world reflectivity can be plotted in Fig. 4.25.

Figure 4.25: Before and After-processed PPI for Real-world Reflectivity Using Entropy-based Target Mapping
Pipeline

4.7. FINAL TARGET MASK
In this section, the target binary mask for real-world data is introduced by taking into
account the two masks obtained earlier: one from circular variance and the other from
reflectivity using the entropy-based pipeline. By merging these two masks, the binary
masks of intersection and union are displayed. The potential factors contributing to the
variation between these two masks are also examined.
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4.7.1. TARGET MASKS

As previously mentioned, the target binary mask derived from the circular variance is
acquired based on the principle that when the circular variance exceeds the designated
threshold, it can be determined as noise; conversely, if it falls below the threshold, it
can be recognized as the target. Using the threshold of circular variance 0.8, the mask is
shown in Fig. 4.26.

Figure 4.26: Mask Provided by Circular Variance of the Doppler Spectrum

The mask of the entropy-based target mapping pipeline is shown in Fig. 4.27.

Figure 4.27: Mask Provided by Entropy-based Target Mapping Pipeline on Reflectivity
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The mask which takes the two masks into combination is shown in Fig. 4.28, where
green is the mask from the circular variance, blue represents the mask from the reflectiv-
ity, and red is the mask of intersection. Applying the intersection mask on the real-world
data, the result is shown in Fig. 4.29.

Figure 4.28: Combination of the Mask Provided by
Circular Variance and the Mask Provided by
Entropy-based Target Mapping Pipeline on

Reflectivity

Figure 4.29: Intersection of the Mask Provided by
Circular Variance and the Mask Provided by
Entropy-based Target Mapping Pipeline on

Reflectivity

The union of the two masks and the result after applying the union on the real-world
radar reflectivity data are shown in Fig. 4.30 and 4.31.

Figure 4.30: Union of the Mask Provided by Circular
Variance and Mask Provided by Entropy-based

Target Mapping Pipeline on Reflectivity

Figure 4.31: Apply Union of the Mask Provided by
Circular Variance and Mask Provided by

Entropy-based Target Mapping Pipeline on the
Real-world Reflectivity

It can be observed that there are some pixels identified as objects by the circular vari-
ance and defined as noise by the entropy-based pipeline. It could happen if the extended
target has insignificant reflectivity, which is not under the consideration of the pipeline.
The reflectivity model 4.32 and 4.33 can prove it. The visibility of the targets depends on
the bounds defining the targets.
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Figure 4.32: Reflectivity Model
(target only)

Figure 4.33: Reflectivity Model
(target only but with lower bound)

4.8. CONCLUSION
In this chapter, two target mapping pipelines with a focus on reflectivity are proposed.
The first pipeline, based on morphology, involves several steps: (1) identifying point tar-
gets using CFAR, (2) detecting phase noise by thresholding the mean along the range
and excluding them, (3) wavelet denoising, (4) employing morphological operations to
detect the target of interest, and finally (5) restoring the phase noise azimuths and filling
any gaps using morphological techniques.

On the other hand, the second pipeline, which is entropy-based, consists of (1) iden-
tifying point targets using CFAR along the range, (2) identifying thermal noise using a
threshold based on Renyi’s entropy, and (3) detecting phase noise by combining CFAR
along the azimuth and thresholding the normalized mean along the range.

Through evaluating the simulation model’s performance, it can be concluded that
when the Signal-to-Noise Ratio (SNR) is below -15dB, the entropy-based pipeline per-
forms better. Conversely, when the SNR is above -15dB, the morphology-based pipeline
is more effective. Some parameters to measure the performance are shown in table 4.2.
The values are average in the low SNR and high SNR regions.

To substantiate the effectiveness of the target mapping pipelines, their practical ap-
plicability is tested on real data. The results of this implementation reveal a clear trend,
which is the entropy-based pipeline exhibits superior performance compared to the
morphology-based one. This performance difference is especially noticeable when deal-

Low SNR (<=-15 dB) High SNR (>15 dB)

Morphology-based

IoU 0.1458 0.9099
Flase Alarm Rate 0.7088 0.0108
Missed Detection 0.7556 0.0835
F1Score 0.2500 0.9513

Entropy-basede

IoU 0.1867 0.7084
Flase Alarm Rate 0.7967 0.1603
Missed Detection 0.3041 0.1843
F1Score 0.3146 0.8159

Table 4.2: Summary of Performance Measures for Morphology-based and Entropy-based Pipelines
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ing with extended objects with complex, scattered shapes and different sizes.
Another significant advantage inherent to the entropy-based pipeline is its ability

to comprehensively represent the various data types contained in radar measurements.
This broader perspective encapsulates the inherent ability to identify and classify the
different types of information present in radar data.

Conclusions from real-world validations further support the notion that the entropy-
based object mapping pipeline is a robust and general solution, especially in scenarios
involving complex object structure and data type variations.



5
DOPPLER DEALIASING

This chapter begins by presenting a model that highlights the challenges posed by Doppler
aliasing, which occurs when the actual Doppler frequency of a target exceeds the Nyquist
limit. Doppler aliasing can lead to incorrect velocity measurements and hinder accurate
target tracking and identification. Then it introduces a simple algorithm aimed at elimi-
nating Doppler aliasing. Discussion of the approach, its challenges, and its limitations are
present. Next, it explores an advanced existing dealiasing tool known as UNRAVEL. UN-
RAVEL employs a more sophisticated algorithm that considers 2D and even 3D continuity.
Moreover, this chapter presents a novel approach to Doppler dealiasing based on opti-
mization techniques. The development of this approach involves formulating the problem
as an optimization task and utilizing optimization algorithms to find the best possible so-
lution. By comparing and evaluating different optimization methods, their performance
and effectiveness in dealing with Doppler aliasing can be assessed. The optimization re-
sults demonstrate the improved accuracy and reliability of the proposed Doppler dealias-
ing approach.

In summary, this chapter provides a comprehensive overview of Doppler de-aliasing tech-
niques, including a gradient-based algorithm, advanced existing tools UNRAVEL, and
optimizer-based methods. It discusses their rationale, challenges, limitations, and com-
parative performance. The findings and techniques presented in this paper contribute to
advancing Doppler anti-aliasing methods, improving the accuracy of velocity measure-
ments, and enabling more reliable target tracking and identification in radar data analy-
sis.

In radar systems, the Doppler effect measures the velocity of moving targets. A target
in motion induces a frequency shift in the radar signal known as the Doppler frequency.
In some cases, the Doppler frequency can be modeled using a cosine function, result-
ing in what is referred to as a cosine-modeled Doppler velocity. The cosine-modeled
Doppler velocity assumes that the target’s velocity is constant and its motion is purely
along the radial direction from the radar. This simplification is often applicable for tar-
gets moving at a relatively constant velocity and without significant changes in direction.
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Aliasing in the Doppler domain arises when the Doppler frequency exceeds the Nyquist
frequency. When aliasing occurs, the higher frequencies in the Doppler spectrum fold
back into the lower frequencies, leading to incorrect measurement or representation of
the Doppler velocity. This can result in false velocities or incorrect estimation of target
motion. Aliasing is a significant problem in radar systems, as it can introduce ambiguity
and distort the Doppler spectrum. Recall that the unambiguous Doppler is defined as:

∣∣vDoppl er
∣∣≤ vunamb = λ ·PRT

4
(5.1)

Then the observed velocity is related to the unambiguous velocity:

vo = vt ±2nvunamb (5.2)

where vo is the observed velocity, vt is the true velocity.

Assuming that the wind speed and direction are constant within the radar scan cov-
erage, the horizontal wind-originated velocity w1, w2, w3, ..., wn as a function of the az-
imuth a1, a2, a3, ..., an can be formulated as a cosine curve:

wi = wmax ×cos(ai +φ) (5.3)

Here, wmax signifies the maximum horizontal velocity magnitude, while φ symbolizes
the angle delineating the direction of the wind relative to the radar.

Since the radar measures the radial velocity, in cases where the elevation of the radar
scan exhibits a non-zero value, the observed Doppler velocity v1, v2, v3, ..., vn at one con-
stant elevation θ is also affected by the vertical speed of raindrops, which is dominated
as a constant D as explained in the Fig. 5.1.

vi = wi ×cosθ+D × sinθ (5.4)

Then the observed Doppler velocity for a non-zero constant elevation scenario can be
expressed as:

vi = wmax ×cos(ai +θ)×cosθ+D × sinθ (5.5)

At elevation θ, let vmax = wmax×cosθ and G = D×si nθ, equation 5.5 can be simplified
as:

vi = vmax ×cos(ai +θ)+G (5.6)

This equation (referred to as the Doppler equation) shows the relationship between
observed Doppler velocity, azimuth angles, elevation, and the components of wind and
vertical raindrop speed, providing a fundamental understanding of the observed velocity
phenomenon in the cases of varying elevation angles.
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Figure 5.1: Demonstration of Raindrop Velocity with Elevation Angle Not Equal to Zero

Given vmax = 1.5×vunamb, the sketch for the ideal situation where aliasing takes place
is plotted in Fig. 5.2.
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Figure 5.2: Velocity at Azimuths with Occurrence of Doppler Folding

5.1. MODEL USED TO EVALUATE THE DOPPLER DE-ALIASING

TECHNIQUES
The lack of ground truth makes validating the Doppler dealiasing algorithms tricky. Con-
sidering the effect of thermal noise as the fluctuation and phase noise as missing data,
the simulation model is built in MATLAB to evaluate the performance of dealiasing algo-
rithms. The simulation model under the condition that the maximum fluctuation value
is 1 [m/s] shows 10 percent missing data in Fig. 5.3.
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Figure 5.3: Doppler to dealiase

5.2. SIMPLE ALGORITHM TO ELIMINATE DOPPLER ALIASING
From the filtered Circular Mean Doppler introduced in the section 3.6, it is discernible
that the discontinuities caused by Doppler ambiguity are more distinct than that in the
linear Mean Doppler plane. This section introduces a simple algorithm that checks the
continuity along azimuth and eliminates the Doppler dealiasing.

5.2.1. APPROACH
The one-dimensional continuity approach takes advantage of the fact that the Doppler
spectrum of a target typically exhibits a smooth and continuous behavior. By exploiting
this continuity, it is possible to resolve the ambiguity caused by aliasing and correctly es-
timate the target’s velocity [34]. The steps involved in using 1D continuity for dealiasing
Doppler are as follows:

1. Find the discontinuity points by calculating the gradient. These points, whose gra-
dients are above the threshold, will be defined as discontinuity points.

2. Cut the curve into pieces.

3. Make the piece-wise folded velocity-azimuth curve continuous. It can be achieved
by adding ±2nvunamb to the first point within each piece until the gradient at that
point is below the threshold.

5.2.2. RESULTS
Applying the simple algorithm based on the continuity along range dimension on the
model introduced in Fig. 5.3, the de-aliased result is shown in Fig. 5.4, in which case the
RMSE is 8.1 [m/s].

This algorithm is theoretically feasible but brings the challenges of deciding the thresh-
old. It is possible that the gradient at some points could never fall short of the threshold
if the threshold is too high. And reducing the threshold could diminish the sensitivity of
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Figure 5.4: De-aliased Doppler Based on the Continuity Along Range

the discontinuity points. Besides that, with global noise and phase noise at specific az-
imuths, the gradients of such noisy velocity values become less informative in detecting
the discontinuity points.

5.3. ADVANCED EXISTING DE-ALIASING TOOL UNRAVEL
UNRAVEL was proposed in the paper [26]. It is an open-source, modular, Doppler ve-
locity dealiasing algorithm for weather radars. The advantages of UNRAVEL introduced
are:

1. No need for external reference velocity data: UNRAVEL is an algorithm that does
not require external reference velocity data, making it easily applicable.

2. Possibilities to be modified or replaced independently.

3. Good performance: UNRAVEL has shown good performance in dealing with Doppler
velocity aliasing in weather radars. It takes advantage of the strengths of previous
algorithms and constrains them to a certain domain of competence by putting
checks and limitations on each module.

4. Automated scheme: UNRAVEL finds reference velocities in the input velocity field.
It does not require manual intervention or external data sources.

The noisy velocity data is generated in the way as the model 5.5. Considering the sit-
uation of targets existing anywhere, meaning the velocity can be observed anywhere, the
actual velocity, folded velocity, and unraveled velocity are present as follows. To analyze
the factors which could affect the performance of UNRAVEL, under the assumption that
the targets spread anywhere, there are four scenarios taken into account, respectively:
(1). Target only, (2). Target and thermal noise, (3). Target and phase noise, and (4). Tar-
get, thermal noise, and phase noise. The results for the first scenario are shown in Fig.
5.5. The RMSE between the accurate velocities and UNRAVEL velocities is 0.17 [m/s].
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(a) Reference Doppler Velocity (b) Folded Doppler Velocity (c) Unraveled Doppler Velocity

Figure 5.5: Results of UNRAVEL for Scenario: Targets Diffuse in All pixels and Targets Only

The processing ratio representing the percentage of valid data determined by UNRAVEL
is 0.98.

The second scenario is all cell existing targets and global thermal noise. The results
are present in Fig. 5.6. The RMSE between the true and UNRAVEL velocities is 10.25
[m/s]. The processing ratio representing the percentage of valid data determined by UN-
RAVEL is 0.60.

(a) Reference Doppler Velocity (b) Folded Doppler Velocity (c) Unraveled Doppler Velocity

Figure 5.6: Results of UNRAVEL for Scenario: Targets Diffuse in All pixels and Targets, Thermal Noise Both
Exist

The third scenario is all cell existing targets and specific azimuths existing phase
noise. The results are present in Fig. 5.7. The RMSE between the true velocities and
UNRAVEL velocities is 11.50 [m/s]. The processing ratio representing the percentage of
valid data determined by UNRAVEL is 0.97.

(a) Reference Doppler Velocity (b) Folded Doppler Velocity (c) Unraveled Doppler Velocity

Figure 5.7: Results of UNRAVEL for Scenario: Targets Diffuse in All pixels and Targets, Phase Noise Exist
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The last scenario is all cell existing targets, thermal noise, and specific azimuths exist-
ing phase noise. The results are present in Fig. 5.8. The RMSE between the true velocities
and UNRAVEL velocities is 23.66 [m/s]. The processing ratio representing the percentage
of valid data determined by UNRAVEL is 0.74.

(a) Reference Doppler Velocity (b) Folded Doppler Velocity (c) Unraveled Doppler Velocity

Figure 5.8: Results of UNRAVEL for Scenario: Targets Diffuse in All Pixels and Targets, Thermal Noise and
Phase Noise All Exist

It is noted that the influence of thermal noise on the performance of UNRAVEL is
more significant than phase noise since there is a smaller percentage of values pro-
cessed. The RMSE and processing ratio can be summarized in the table 5.1.

Scenario (Target Diffuse in all pixels) RMSE [m/s] Processing
Ratio

Target only 0.17 0.98
Target and thermal noise 10.25 0.60
Target and phase noise 11.50 0.97
Target, thermal noise, and phase noise 23.66 0.74
Target, thermal noise, phase noise with missing data 12.99 0.93

Table 5.1: Performance of UNRAVEL

In addition, there is another challenge existing in this case. Raindrops are not evenly
distributed in the atmosphere. They can vary in size from very small droplets to larger
raindrops, and they can be concentrated in specific areas or dispersed more widely de-
pending on the weather conditions. When raindrops are detected by radar with a high
resolution, they may span multiple resolution cells or be concentrated within a single
cell, depending on their size and distribution. In some cases, rain could exist at all res-
olution cells within the radar’s coverage area if there is a widespread and uniform rain
event. However, more often, raindrops will be present in specific areas or regions, lead-
ing to variations in radar reflectivity across the coverage area. It means only partial cells
have effective Doppler velocities, and the remaining cells occupied by Doppler shifts re-
sulted from global thermal noise and even phase noise. Implementing UNRAVEL on the
model where targets exist partially, the results are shown in Fig. 5.9. The RMSE between
the true velocities and UNRAVEL velocities is 12.99 [m/s]. The processing ratio repre-
senting the percentage of valid data determined by UNRAVEL is 0.93.
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Figure 5.9: Results of UNRAVEL for Scenario: Targets Diffuse in Certain Pixels and Targets, Thermal Noise and
Phase Noise All Exist

It is observed that UNRAVEL has poor performance in this simulation model. It could
be possible that UNRAVEL is not tuned to the optimum configuration since this algo-
rithm has many parameters that can be changed to fit different applications. But by
now, the de-aliased real-world data provided by UNRAVEL is doubtful.

5.4. DOPPLER DEALIASING BY OPTIMIZER-BASED APPROACH
An optimization framework is adopted to address the issue of Doppler aliasing and es-
timate the true velocity-azimuth curve. With real-world data, for each range gate, the
velocity-azimuth points VR can be denoted as:

VR = {vR1 , vR2 , vR3 , ..., vRn } (5.7)

Under the assumption and equation 5.6 introduced in the previous sections, the mathe-
matical model used to represent the expected true velocities VE and folded velocities VF

are defined as

vEi = A cos(ai +φ)+G (5.8)

and vFi = mod(vEi + vunamb,2vunamb)− vunamb (5.9)

where ai is the corresponding azimuth, A, φ, and G are the parameters to estimate.
Considering the complexity of computing the gradient of the objective function with

regards to the three parameters, the objective function is formulated as the MSE between
the model predictions and the observed velocity-azimuth points instead of RMSE, and it
is given by:

MSE = f = 1

N

N∑
i=1

(vRi − vFi )2 (5.10)

where N is the number of non-"NaN" values in the set VR , i.e., N = |{vRi ∈VR : vRi is not NaN}.
This MSE quantifies the discrepancy between the predicted velocities and the actual ob-
served velocities. The goal of such an optimization problem is to determine the optimal
values for the parameters A,φ and G that minimize the MSE between the model of folded
velocities VF and the observed velocity-azimuth points VR .

The cost is measured as the root square of the objective function to facilitate consis-
tency when comparing performance with the gradient-based approach and UNRAVEL.
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5.4.1. DEVELOPMENT
To estimate the optimal parameter values, an optimization algorithm was employed.
MATLAB optimizers such as "fmincon", "patternsearch", and "particlaswarm" are uti-
lized. The optimization algorithm adjusted the parameters iteratively, aiming to mini-
mize the objective function and find the best possible fit between the predicted model
and the observed velocity-azimuth points.

Three factors could affect the optimization: max actual velocity, max fluctuation
caused by global noise and phase noise, and the fraction of missing values determined
by the circular variance. The robustness of optimizers could be evaluated by the differ-
ence between the actual value and estimation value of three parameters a,φ, and G . The
results of the simulation are obtained in three scenarios:

1. Change the max velocity;

2. Generate the fluctuation randomly and then use the Monte-Carlo method to re-
move the bias;

3. Generate the location of missing values randomly with the controllable fraction.

Here are the explanation and simulation results of the optimizers:

"FMINCON" OPTIMIZER

The "fmincon" function is designed for solving constrained nonlinear optimization prob-
lems. It stands for "function minimization under constraints". The main purpose is to
find the local minimum of a given objective function while considering constraints on
the variables involved. The function takes into account the problem’s nonlinear nature
and can handle problems with both continuous and discrete variables.

The algorithm implemented in "fmincon" is based on a combination of interior point
and sequential quadratic programming methods. It uses iterative techniques to search
for the optimal solution by gradually refining the estimate. With a wise starting guess to
avoid the algorithm running too long, it can find the first-order optimality in the region
defined by the low and upper bounds of parameters based on the derivative rule. In
this case, The low and upper bounds are determined by nature law. According to the
equations 5.9 and 5.10, the gradient with respect to A, φ, and G can be computed as:

∇A f =−2 ·
∑N

i=1(vRi − vFi )

N
· sin(ai +φ)) (5.11)

∇φ f =−2 ·
∑N

i=1(vRi − vFi )

N
· A ·cos(ai +φ)) (5.12)

∇G f =−2 ·
∑N

i=1(vRi − vFi )

N
(5.13)

where N is the number of non-"NaN" values in the set VR , i.e., N = |{vRi ∈VR : vRi is not NaN}.

Scenario 1: Different Max Velocities
For the "fmincon" optimizer, the performance for different max velocities is shown in
Fig. 5.10.
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Figure 5.10: Performance of "fmincon" Optimization for Different Actual Max Velocities

Scenario 2: Different Fluctuation
Changing the maximum fluctuation, the performance of the "fmincon" optimizer is shown
in Fig. 5.11.
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Figure 5.11: Performance of "fmincon" Optimization for Different Fluctuations Caused by Noise



5.4. DOPPLER DEALIASING BY OPTIMIZER-BASED APPROACH

5

71

Scenario 3: Different Fractions of Missing Values
Changing the fraction of missing values, which could represent the invalid data caused
by noise, the performance of the "fmincon" optimizer is shown in Fig. 5.12.
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Figure 5.12: Performance of "fmincon" Optimization for Different Fractions of Invalid Data Caused by Noise

From the figures about "fmincon" above, it can be observed that:

1. The estimation of the parameters A,φ, and G is the most sensitive to the changing
of max velocities.

2. The cost, which means the RMSE between the estimation Doppler and actual Doppler,
increases as the increasing fluctuations. However, the cost has a decreasing trend
as the fraction increases. It can be explained as the valid data becomes less.

"PATTERNSEARCH" OPTIMIZER

The "patternsearch" function is a robust optimization algorithm used to find the min-
imum of a nonlinear, continuous, or integer-valued multi-variable function. Different
from "fmincon", "patternsearch" finds the global minimum of a given objective func-
tion without requiring any derivative information. Instead, it explores the parameter
space by iteratively probing different points, seeking to converge to the optimal solu-
tion while maintaining the integrity of the search pattern. The algorithm starts with an
initial guess and successively generates new candidate points based on certain patterns
or directions. The algorithm aims to find the best solution or a close-to-best solution
by trying out different options and evaluating its success using a variety of methods, in-
cluding polling and pattern moves. This is done by testing the objective function at these
candidate points. The performance of this optimizer is shown in Fig. 5.13, 5.14, and 5.15.
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Scenario 1: Different Max Velocities
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Figure 5.13: Performance of "patternsearch" Optimization for Different Actual Max Velocities

Scenario 2: Different Fluctuations
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Figure 5.14: Performance of "patternsearch" Optimization for Different Fluctuations Caused by Noise
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Scenario 3: Different Fractions of Missing Values
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Figure 5.15: Performance of "patternsearch" Optimization for Different Fractions of Invalid Data Caused by
Noise

It can be noticed from the figures about "patternsearch" above that:

1. When confronted with scenarios involving different maximum velocities, the pa-
rameter estimations for A,φ, and G exhibit a significantly higher degree of prox-
imity to the actual values. This "patternsearch" optimizer’s distinct performance is
notably superior to that achieved by the "fmincon" optimizer. The "patternsearch"
optimizer consistently achieves remarkably accurate Doppler retrievals in certain
instances.

2. In scenario 3, where the fraction of missing values changes, the "patternsearch"
optimizer has negligible errors about the estimation of G .

3. Nonetheless, it’s important to acknowledge that the "patternsearch" optimization
technique is not immune to significant errors, particularly in random cases. This
susceptibility stems from its heightened sensitivity to the initial guess or start-
ing point. If the initial estimate deviates markedly from the actual state, "pat-
ternsearch" may face challenges in convergence, and there’s a potential for it to
converge to a local minimum rather than the desired global minimum.

To delve deeper into the origins of pronounced errors occurring in random instances,
the objective function is simplified to depend on two essential parameters: A andφ. This
simplification offers a foundation for analyzing the optimization process more compre-
hensively. To gain visual insight, a meticulous investigation of the optimization plane is
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depicted in Fig. 5.16. Discernible is that the objective function takes the form of a non-
convex multimodal landscape characterized by the presence of multiple local minima.

The complexity inherent in this field of optimization, combined with the sensitiv-
ity of the "patternsearch" method to initial approximations, highlights its sensitivity to
challenges in ensuring accurate convergence. Specifically, "patternsearch" tends to get
stuck in local minima rather than trying to reach a global minimum.

Figure 5.16: Dependence of Objective Function on Parameters for Optimization Process

"PARTICLESWARM" OPTIMIZER

The "particleswarm" function implements the particle swarm optimization (PSO) algo-
rithm. PSO was proposed by Kennedy and Eberhart in 1995 [35]. As stated in the original
paper, socio-biologists posit that a collective behavior observed in a school of fish or a
flock of birds allows them to "benefit from the collective knowledge of all members."
In simpler terms, when a bird, for instance, is flying and randomly searching for food,
its discoveries can be shared among all the birds in the flock, leading to an optimized
hunting experience for the entire group.

It’s noteworthy that the Particle Swarm Optimization (PSO) algorithm is particularly
adept at handling non-convex and multimodal functions due to its capacity to adeptly
traverse the search space, thereby avoiding local optima. The ability of PSO to maintain
distinct sets of particles empowers it to concurrently explore multiple solution regions,
rendering it especially advantageous for non-convex problems that involve numerous
local minima.

Drawing inspiration from the collective foraging behavior of birds, the Particle Swarm
Optimization (PSO) algorithm commences its journey by dispersing a collection of par-
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ticles randomly. Each of these particles undertakes an independent quest to uncover the
minimum point within the objective function landscape, setting off in diverse random
directions.

Throughout each iteration, every particle’s exploration unfolds across two avenues:
it scrutinizes the region surrounding the smallest point it has encountered hitherto, and
concurrently, it takes into account the smallest point identified collectively by the entire
assemblage of particles.

As the optimization process progresses through a series of iterations, the particle
swarm collectively navigates this dynamic landscape, eventually converging to a specific
point that attains the role of the function’s global minimum.

Similar to "patternsearch", "particleswarm" is a derivative-free global optimization
method. It is designed to solve unconstrained optimization problems, seeking the min-
imum or maximum of a given objective function without requiring derivative informa-
tion. In gradient descent, the minimum of a function f (X ) is found by moving X to the
direction of −∇ f (X ) as it is where the function goes down the fastest. For any particle
at the position X at the moment, how the particle moves does not depend on which
direction is the "downhill" but only on where are the best position ever found thus far.

For the "particleswarm" optimizer, the performance for different max velocities is
shown in Fig. 5.17, 5.18, and 5.19. Some observations are described after the figures.

Scenario 1: Different Max Velocities
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Figure 5.17: Performance of "particleswarm" Optimization for Different Actual Max Velocities

Scenario 2: Different Fluctuations
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Figure 5.18: Performance of "particleswarm" Optimization for Different Fluctuations Caused by Noise

Scenario 3: Different Fractions of Missing Values
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Figure 5.19: Performance of "particleswarm" Optimization for Different Fractions of Invalid Data Caused by
Noise

The observations from the figures about "particleswarm" above consist of:
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1. In the first and third scenarios, "particleswarm" has insignificant errors, which
means it can retrieve the Doppler velocity well.

2. In the second scenario, the "particleswarm" optimizer has an increasing tendency.
At an explicit velocity of 7.3938 [m/s], the fluctuation value increases to 5 [m/s]. In
real-world radar measurements, the fluctuation caused by noise rarely has such a
high value. Therefore, the error caused by fluctuation is allowable.

5.4.2. OPTIMIZATION COMPARISON

To solve the optimization problem, various algorithms are used. These algorithms itera-
tively adjust the values of the input variables in a way that gradually improves the value of
the objective function until a satisfactory solution is found. The cost represents the value
associated with a specific solution, while the objective function defines the goal of the
optimization problem. The objective function, which measures the difference between
the expected and actual Doppler values, is minimized by finding the optimal values for
the input variables. The minimum value of the objective function is the best possible
outcome according to the problem’s constraints and goals. Therefore, the cost achieved
after applying the Monte Carlo method can be used to evaluate the performance of three
optimizers under different scenarios. The dependence of cost on parameters is plotted
in figures 5.20. 5.21, and 5.22.
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Figure 5.20: Dependence of Cost on Actual Max Velocity for Three Optimizers
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Figure 5.21: Dependence of Cost on Fluctuation Caused by Noise for Three Optimizers
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Figure 5.22: Dependence of Cost on Fraction of Invalid Data for Three Optimizers

Generally speaking, in the face of three factors that may affect the optimization per-
formance, namely the maximum velocity, the maximum fluctuation value, and the frac-
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tion of missing data, the "particleswarm" optimizer has better performance than similar
optimizers. The "fmincon" optimizer has the most significant error. When the maxi-
mum velocity changes or the fraction of missing data changes, the "particleswarm" op-
timizer always has an error close to 0, which means it can restore the actual velocity very
well. The "particleswarm" optimizer has slightly less error than "patternsearch" when
subjected to different max-fluctuation values or ranges. The "particle swarm" optimizer
not only demonstrates its ability to explore the search space efficiently but also ensures
reliable and consistent performance even with significant modifications of the target pa-
rameters. Its robustness in adapting to these changes highlights its suitability for solving
parameter Real-world optimization problems where values are uncertain or dynamically
adjusted. In general, the "particleswarm" optimizer can handle fluctuations in different
factors. Its resilience and versatility make it ideal in scenarios where such changes are
expected or anticipated preferred.

5.5. DE-ALIASING TECHNIQUES COMPARISON
To validate the proposed "particleswarm" optimizer-based approach, the de-aliasing
techniques introduced in this chapter are compared in this section by applying them
to the model developed previously. Considering that UNRAVEL is only applicable for at
least two-dimensional Doppler velocities, the performance of UNRAVEL can be evalu-
ated by the RMSE and processing ratio for different scenarios, which is summarized in
table 5.1.

Applying the simple algorithm and optimizer-based approaches with "fmincon", "pat-
ternsearch", and "particleswarm" to the model introduced in Fig. 5.3, the de-aliased
results are shown in Fig. 5.23.
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Figure 5.23: Comparison of De-aliasing Techniques
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The RMSE between the de-aliased Doppler and Ground Truth using different tech-
niques are concluded in table 5.2, from which the "particleswarm" optimizer-based ap-
proach is proven to have the least error.

Error RMSE [m/s]
Gradient-based Simple Algorithm 8.0927
fmincon 3.1891
patternsearch 2.4936
particleswarm 2.4929

Table 5.2: RMSE of Doppler De-aliasing Techniques

5.5.1. OPTIMIZATION RESULT
With the analysis above, the "particleswarm" optimizer has been proven to have the
lease error. Applying the "particleswarm" optimizer to the filtered Mean Doppler, which
was introduced previously, the de-aliased Doppler is shown in Fig. 5.24.

Figure 5.24: Before and After Optimization Doppler Velocity

5.6. CONCLUSIONS
This chapter compares three approaches to solving the Doppler aliasing problem: a
simple algorithm based on continuity along the range dimension, an advanced exist-
ing UNRAVEL algorithm, and an optimizer-based approach. Due to the lack of ground
truth of the real-world observations, the Doppler velocity model is developed to validate
the techniques, considering the effect of thermal noise(fluctuation) and the impact of
phase noise (missing data). It is proven that the gradient-based algorithm is vulnera-
ble to fluctuation, as well as UNRAVEL. The performance of algorithms can be assessed
by the RMSE between de-aliased results and ground truth. It should be mentioned that
during the development of the optimizer-based de-aliasing techniques, "particleswarm"
was selected as the best optimizer. Then the RMSE values of the three algorithms are
8.0927, 12.99, and 2.4929 with unit m/s. With the simulation results, the "particleswarm"
optimizer-based approach outperforms any other techniques proposed in this chapter.
The de-aliased Doppler of the real-world observations is then obtained accordingly.
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CONCLUSION AND

RECOMMENDATIONS

6.1. CONCLUSIONS
The main objective of this thesis project is to retrieve meteorological parameters using a
fast-scanning phased array radar and evaluate its performance. This thesis focuses only
on precipitation-like targets (i.e., raindrops). To convert the phased array radar data into
variables that help characterize the precipitation, the steps followed to achieve this goal
are the following.

• Derive parameters related to precipitation;

• Propose a target mapping pipeline consisting of clipping the global thermal noise,
detecting the phase noise, and eliminating the effect, thus detecting the extended
targets;

• Propose a Doppler de-aliasing technique;

• validate the proposed processing pipeline and techniques;

The most commonly derived radar parameters to characterize meteorological targets are
derived from the Doppler spectrum and are known as the Doppler moments, and they
are:

• The reflectivity (zeroth Doppler moment) of the hydrometeors. Meteorologists are
interested in reflectivity to estimate rainfall intensity and identify regions of po-
tentially severe weather, such as intense thunderstorms.

• The mean Doppler velocity (first Doppler moment) determines the wind direction
and speed. Analyzing Doppler velocities in a thunderstorm can reveal the pres-
ence of updrafts and downdrafts, essential for understanding storm dynamics and
potentially severe weather events like tornadoes.
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• The Doppler spectrum width (the second moment of the Doppler moment) is re-
lated to the turbulence and variability in the wind field within the radar volume. It
can be used to identify areas of turbulence, microbursts, and atmospheric insta-
bility, which are crucial for aviation safety and severe weather forecasting.

Before addressing the problem of Doppler de-aliasing (Determine an accurate estimate
of the location of the mean Doppler velocity outside the unambiguous velocity limit),
for the problem of target mapping, we consider the problem of accurate moment esti-
mation when Doppler aliasing takes place. This is due to the fact that the existing lin-
ear Doppler moment estimators tend to provide erroneous estimates of Doppler mo-
ments when Doppler aliasing takes place. Considering the folding nature of the Doppler
spectrum, a novel calculation of the spectrum moments based on circular statistics (see
chapter 3) is proposed in this thesis. To our best knowledge, linear moment estimation
and shift-back estimation are the most common-used methods when it comes to calcu-
lating the mean Doppler and spectrum width [36]. I suggest circular moment estimation
using Batschelet’s theory [30] and Mardia’s theory [31]. The comparative results (Fig. 3.3
and Fig. 3.2) suggest that the circular moment estimation using Mardia’s theory has the
least error. The circular moment estimates, especially the Doppler spectrum width, are
immune to the effect of Doppler aliasing.

To the author’s knowledge, for the first time, a target mapping technique based on
circular variance is proposed. This approach proved particularly valuable in scenarios
where traditional reflectivity-based target mapping approaches fall short, such as sit-
uations dealing with unknown size and unknown shape diffused targets. The results
indicated that the circular variance-based target mapping technique can provide com-
prehensive and accurate information about the observed targets.

Besides the circular variance-based target mapping technique, two target mapping
pipelines with a focus on reflectivity are proposed. Each of them is a combination of var-
ious existing techniques. By analyzing the characteristics of the point targets, extended
targets of interest, thermal noise, and phase noise, the 2D target reflectivity model is
developed to validate the reflectivity-based pipelines.

The first one, which is a morphology-based pipeline, consists of the following steps:
(1). Point target detection using CFAR; (2). Phase noise detection and then nullified
by thresholding the mean value along the range dimension; (3). Denoise using wavelet
techniques; (4). Morphological operation to detect the target of interest; (5). Restoring
the phase noise azimuths and morphological filling of the gaps.

The second one, which is an entropy-based target mapping pipeline, includes: (1).
Point target identification using CFAR along range; (2). Thermal noise identification with
threshold provided by Renyi’s entropy; (3). Phase noise detection by combining the CFAR
detector along the azimuth and thresholding the normalized mean along the range.

By evaluating the performance of the simulation model, it can be concluded that in
the cases where SNR is below -15dB, the entropy-based pipeline is better, with 0.0409
less IoU, 0.0879 less false alarm rate, 0.4715 more missed detection, and 0.0646 less
F1Score. While in the cases above -15 dB, the morphology-based pipeline works bet-
ter, with 0.2015 more IoU, 0.1495 less false alarm rate, 0.1008 less missed detection, and
0.1354 more F1Score. The two pipelines are also implemented on real-world data. And
since the extended targets have diffused shapes and sizes, the entropy-based pipeline
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has a better outcome than the morphological-based one. Another advantage of the
entropy-based pipeline is that it can provide an overview of the data types existing in
the radar measurements.

As the velocities of raindrops in severe storms can exceed the maximum unambigu-
ous velocity defined by the radar pulse repetition frequency, aliasing (folding) takes place
in the Doppler spectrum, greatly affecting the moment computation. The existing Doppler
de-aliasing techniques are mostly about checking the continuity from range(1D), az-
imuth(2D), elevation (3D), and even temporal (4D), stated in the chapter 2. Assuming
that wind speed and direction are constant within the radar scan coverage. The wind-
originated Doppler velocity as a function of the azimuth is modeled as a cosine curve.
According to the cost function introduced in chapter 5, a Doppler dealiasing technique
based on the "particleswarm" optimizer was proposed for the first time. The algorithm
has been applied both to computer-simulated and real radar observations. This ap-
proach offers enhanced accuracy and reliability, enabling more precise velocity mea-
surements for various applications, including weather forecasting, aviation, and wind
energy.

In conclusion, the calculation of Doppler spectrum moments that are related to the
meteorological objects of interest was introduced in chapter 3 with the novel circular
spectrum moments estimation. The target mapping algorithm based on the circular
variance was proposed in the chapter 3. The target mapping pipelines based on reflec-
tivity were proposed in chapter 4, with the simulation model and validation results. The
"ParticleSwarm" optimizer-based Doppler dealiasing technique was concluded as the
best approach to deaslise Doppler in chapter 5.

6.2. RECOMMENDATIONS
Due to the time limitation, the following research is not included in the scope of this
thesis project. It is recommended to explore the integration of circular calculation and
circular variance-based techniques with advanced machine learning algorithms, partic-
ularly deep learning, to enhance target classification and identification. By leveraging
the power of machine learning, the accuracy and efficiency of target mapping can be
further improved.

For the morphology-based target mapping pipeline, exploring different morphologi-
cal operations and structuring elements tailored to specific target features is suggested to
improve pipeline performance in complex scenarios. As for the entropy-based pipeline,
the sensitivity of parameters existing in the entropy theory on the performance of distin-
guishing different distributions is recommended for further study.

Regarding Doppler dealiasing techniques, it is recommended to improve and refine
the Doppler velocity model closer to real-world scenarios.

Additionally, to ensure the effectiveness and reliability of the proposed techniques,
it is suggested to extend the evaluation and selection process beyond simulation data.
Real-world data from diverse meteorological scenarios should be thoroughly analyzed
and validated to ascertain the practical applicability and generalizability of the proposed
methods.

By considering these recommendations, future research can continue to advance
radar data processing for meteorological applications, enhancing the accuracy and reli-
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ability of weather-related analyses and forecasting tasks.
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