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Abstract

In the last two decades, a lot of attention has been focused on contactless radar-based
vital signs monitoring (heartbeat and respiration rate) as an emerging and comple-
mentary value to our medical care. It is very challenging in real indoor environments
to perform concurrent localization and reliable vital signs monitoring of multiple sub-
jects within practical distance ranges. In fact, the multipath propagation results in the
reflected signal dispersed in time, which not only causes false ToF (Time of Flight)
estimation but also leads to inter-subject interference, jeopardizing the vital signs ex-
traction and the localization. Here we show a methodology based on radar techniques
to automatically locate multiple subjects in indoor environments while keep monitoring
their vital signs. This approach, based on the parametric models both of the propaga-
tion channel and of the radar signals, is able to cancel the undesired contributions from
static clutters and multipath components, by which it is possible to accurately locate
the subjects and extract their heart rates and respiration rates.
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Introduction 1
Radar technologies have been intensively investigated as an emerging key in health care
from which not only the elderly population, caregivers, clinicians but also economy
can obtain several benefits[1–9]. The primary application of interest is multi-people
contactless (non-invasive) vital signs monitoring, namely the remote sensing of the
heartbeat and respiration rate.

1.1 Problem Statement

However, the largest challenge in indoor environments is to properly locate the seat-
ed/lying down (in sofas, chairs, beds, ...) subjects and to accurately monitor their vital
signs parameters. In fact, an unavoidable problem is the severe multipath effect[10–12].
In wireless communications, a reflected signal goes through a multipath channel and
then arrives at the receiver. Each path has its own delay and loss, making it difficult
to estimate the ToF of the direct path and leading to inter-subject interference. As a
result, precise indoor localization and vital signs monitoring by non-contact radar are
still calling for a robust solution. This gets more problematic in presence of static reflec-
tors (i.e., clutters, objects). To the present, the cancellation of interference from static
reflectors and the effect of the multipath effect on radar signals was not sufficiently
considered and addressed.

1.2 Related Works

In the current state-of-the-art, pure Continuous Wave (CW) radars have been exten-
sively used to monitor the vital signs of a single person[13–23]. Due to its narrowband
nature, these architectures are not able to determine absolute distances and to separate
reflections temporally. This means that it cannot monitor multiple subjects and the
detection sensitivity is strongly influenced by static reflectors and multipaths.

UWB (Ultra-Wide-Band) radar architectures have been demonstrated to locate mul-
tiple persons and monitor their vital signs only under the assumption that the signals
coming from different individuals do not interfere each other, meaning the subjects
can be treated independently[24–31]. Based on the single target or on the indepen-
dent multi-targets assumptions, in addition to the basic Doppler phase extraction[30],
techniques like wavelet decomposition[16], independent component analysis (ICA)[17],
complex signal demodulation[18], arctangent demodulation[19], and principal compo-
nent analysis (PCA)[29] have been investigated to retrieve the vital signs parameters.
Using these techniques, in most of the current state-of-the-art works, the vital signs
extraction is performed after a prior knowledge of the position(s) of the subject(s),
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namely the Doppler information is extracted from the range bin(s) where the person(s)
is(are) present.

Some solutions have been also proposed for automatic target localization based
on vital signs[13, 31]. [13] eliminates the constant reflections from static objects by
performing background subtraction. The time varying information due to physiological
motions can still be preserved and be regarded as the signature of identifying human
targets. [31] proposed that increasing the number of Tx-Rx pairs can suppress the
multipath interference. This can be realized by either using one transmitter and a
large number of receivers or multiple transmit and receive antennas. The former one
doesn’t scale well for multiple users and the latter one causes interference between
different FMCW transmitters.

In summary, the aforementioned techniques and approaches fail to deal with multi-
target case in presence of multipath propagation phenomenon which generates ghost
targets due to the replicas of reflected signals and fake targets caused by the combina-
tions of reflected signals from different targets.

1.3 Thesis Objectives

A distinction needs to be done for both single target and the multi-target scenarios.
In the first case, with pure CW architectures, the subject and ghost targets combine

together, generating an overall distorted Doppler signal while, with UWB architectures,
the performance of localization is influenced by multipath components.

In case of multiple targets, and therefore UWB architectures, the multipaths caused
by a subject combine with the reflected signals of other subjects and static objects,
generating false Doppler signals which jeopardize the vital signs extraction and the
localization.

In this work, we show a methodology, based on a Single Input Single Output (SISO)
Frequency-Modulated Continuous Wave (FMCW) radar, which is able to get rid of the
undesired contributions from multipath components and static reflectors. It is possible
to accurately locate the subjects and extract vital signs. The proposed technique is also
free of the resolution problem in Fast Fourier transform (FFT) based methods with a
limited data length. In addition, we present corresponding models of the physiological
motions, of the propagation channels, and of the radar signals.

In conclusion, the main objectives of this thesis project are as follows:

• Automatically locate multiple stationary subjects in a practical indoor situation
using FMCW radar system with only one transceiver.

• Demodulate the physiological motions from Doppler signals.

• Estimate the vital signs of each subject, including heartbeat and respiration.

1.4 Thesis Structure

The thesis is organized as follows:

2



• Chapter 2 will introduce the radar-based long term health monitoring system,
theoretical background of FMCW radar positioning and the model of physiological
activities.

• Chapter 3 will derive the array signal model after considering multipath propa-
gation channel and multiple users.

• The MUSIC (MUltiple SIgnal Classification) algorithm will be presented in Chap-
ter 4.

• In chapter 5, the ICA (Independent Component Analysis) algorithm which is more
suitable for multi-user case will be described.

• Simulation will be done in Chapter 6.

• Experimental validation and performance evaluation will be shown in Chapter 7.

• Final conclusion and future work will be given in chapter 8.
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Radar-based Health
Monitoring System 2
The non-contact health monitoring system aims to monitor the Respiration Rate (RR)
and Heartbeat Rate (HR) of multiple stationary subjects. Fig.2.1 is the sketch of the
whole system which consists of an FMCW radar, two subjects and plenty of static re-
flectors. Due to the limitation of single transceiver, our radar system only provides 1D
spatial information. The room is divided into small range cells with range resolution
∆d. All the objects in the system are assumed to be point scatters. To make the
subjects physically separable, different subjects are assumed to fall into different range
bins but reflectors can exist anywhere.

Figure 2.1: Radar system

The electromagnetic waves are sent into the environment by the transmitting an-
tenna and are reflected by all the objects in the room, carrying the range and phys-
iological information. Those reflected signal arrive at the receiving antenna through
multiple paths, introducing different ToFs and making the indoor localization and vital
sign monitoring more complicated.
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2.1 Theoretical Background of FMCW Radar

The transmitted signal of an FMCW radar system is an up-chirp signal, also named as
a sweep signal, whose frequency is linearly modulated in time, as is shown in Fig.2.2.
In signal processing, the transmitted chirp signal sT (t) is usually expressed in complex
form,

sT (t) = aT e
j2π

∫ t
0 (f0+ρt)dt

= aT e
j2π(f0+ ρ

2
t)t, 0 < t < Tc

(2.1)

aT is the complex amplitude, indicating the transmitted power and the initial phase,
f0 is the starting frequency, the positive constant ρ is the rate of frequency change, Tc
is the sweep period.

(a) frequency domain (b) time domain

Figure 2.2: Example of chirp signal

The corresponding reflected signal sR(t) is nothing but a delayed and attenuated
copy of the transmitted signal,

sR(t) ∝ sT (t− τ)

= aRe
j2π(f0+ ρ

2
(t−τ))(t−τ)

(2.2)

aR is the complex amplitude of the received signal, including the energy loss and phase
shift due to the reflection and path loss, τ is the two-way propagation delay of a certain
path.

2.2 Doppler Effect

Fig.2.3 depicts block diagram of range measurement principle FMCW radar system.
The shifted reflected signal mixes a copy of transmitted signal stored at the Local

6



Oscillator (LO), generating a beat-frequency signal sB(t),

sB(t) = aTaRe
j2π(f0+ ρ

2
t)t · e−j2π(f0+ ρ

2
(t−τ))(t−τ)

= aTaRe
j2π(f0τ− ρ2 τ2+ρτt)

≈ aTaRe
j2π(f0τ+ρτt)

= aTaRe
j2πf0τ︸ ︷︷ ︸

aB

ej2π·ρτt

= aBe
j2π·ρτt,

(2.3)

here aB is the complex amplitude of the beat frequency signal and the quadratic term
is neglected as it is very small. From equation (2.3), we can know that the beat-
frequency signal of each reflected signal is a tone with beat frequency fB = ρτ , which
is proportional to the propagation delay τ . Intuitively, from Fig.2.2a, we also can see
that the frequency difference between the transmitted signal and the received signal is
linearly correlated with propagation delay, if ignoring the edge effect at the start and
end of the sweep.

Figure 2.3: Block diagram of radio signal processing for a single chirp

Since the propagation delay is decided by the length of the propagation path

τ =
2d0

c
, (2.4)

here d0 is the path distance, c is the speed of light. Once we know the beat frequency,
which can be easily estimated by performing Fast Fourier Transform (FFT), we know
the path distance

d0 =
τc

2
=
fBc

2ρ
. (2.5)

This is the principle of range measurement in FMCW radar system.
For human subjects, the beat-frequency signal has a Doppler component because of

the physiological motions which introduce some vibration in range detection. In this
case, the propagation delay is not a constant but a function of time, τ(t). This small
variation detected by the radar can be utilized to realize the vital signs monitoring in
our system.
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2.3 Physiological Activity Model

Non-contact health monitoring is based on remote sensing of cardiopulmonary activi-
ties, heartbeat and respiration. The inhalation and exaltation processes during breath-
ing and the contracting and relaxing of the atria and ventricles when pumping blood
through the heart all have contribution to the chest surface motion, which is a distur-
bance source in range detection. [32] proposed accurate statistical models for heartbeat
and respiration. But the number of parameters of such precise models are too high and
those parameters might not well identifiable; therefore, less sophisticated models are
used in practice.

Based on the assumption that the chest surface motion is a short-term stationary
process, a commonly used parametric model of heartbeat component yh(t) is a sine
wave,

yh(t) = ah cos(ωht+ φh), (2.6)

where ah, ωh and φh are deterministic, unknown amplitude, angular frequency and
initial phase of the heartbeat signal [32]. Similarly, the respiration component yr(t)
can also be modeled in the same way,

yr(t) = ar cos(ωrt+ φr), (2.7)

where ar, ωr and φr are deterministic, unknown amplitude, angular frequency and
initial phase of the respiration signal in a short term. Therefore, the chest surface
motion y(t) as the sum of two sine waves,

y(t) = yh(t) + yr(t)

= ah cos(ωht+ φh) + ar cos(ωrt+ φr).
(2.8)

The amplitude of movements caused by heartbeat falls in to the range of 0.2− 0.5 mm
and the chest surface motion due to respiration has an amplitude range of 4−12 mm[33].
Thus the heartbeat is very weak compared with the respiration. The respiration and
heartbeat frequency is usually within the range 0.1−0.8 Hz and 0.8−2 Hz respectively
[32].

If considering this disturbance in range detection, the corresponding time-varying
path distance d(t) and propagation delay τ(t) are

d(t) = d0 + y(t), (2.9)

τ(t) = 2
d0 + y(t)

c
. (2.10)

2.4 Range Resolution and Ambiguity

From equation 2.3, we know that the beat frequency is related to time delay and path
distance which is our signal of interest. Assume w(t) = δ(t − nTs), where Ts is the

8



fast time sampling interval and n is from 0 to N − 1, is a window function, e.g., a
rectangular window. The DTFT of the beat-frequency signal with N samples is

S(ω, t) = F{sB(t) · w(t)}
= F{aBej2π·ρτ(t)t · w(t)}
= |aB|e∠aBδ(ω − 2π · ρτ(t)) ∗W (ω)

= |aB|ej2πf0τ(t)W (ω − 2π · ρτ(t))

= |aB|ej4πf0
d0
c W (ω − 2π · ρτ(t))︸ ︷︷ ︸

A(ω)

ej4πf0
y(t)
c︸ ︷︷ ︸

ejφ(t)

= A(ω)ejφ(t)

(2.11)

where F{·} is the DTFT operation, δ{·} is the impulse function and W (ω) can be

a sinc function, sin(Nω/2)
sin(ω/2)

e−jωN/2. In practice, S(ω, t) is estimated via an FFT whose

result is denoted as S(k, t), which is a sampled version of DTFT,

S(k, t) = A(ω)ejφ(t) · δ(ω − 2πk

N
)

= A(ω)δ(ω − 2πk

N
)︸ ︷︷ ︸

A(k)

ejφ(t)

= A(k)ejφ(t)

(2.12)

where k is the frequency bin index of FFT, from 0 to N − 1.
As is mentioned in section 2.2, the disturbance caused by cardiopulmonary activities

in range detection is regarded as the vital signs of subjects. And the range is estimated
by resolving the beat frequency. However, the resolution of FFT, ∆f , is restricted by
the sweep period,

∆f =
1

Tc
. (2.13)

Therefore, the range resolution ∆d of a radar system is also limited,

∆d =
∆fc

2ρ
=

1
Tc
c

2BW
Tc

=
c

2BW

(2.14)

BW is the radar bandwidth. In our system, BW = 150MHz, thus ∆d = 0.2m. The
amplitude of chest surface motion in section 2.3 is around 1cm, so the frequency res-
olution is not sufficient to reflect the chest surface motion. However, the phase of the
resulting frequency domain signal S(ω, t) still preserves the Doppler information.

For a fixed k, S(k, t) is a complex signal with a magnitude, |A(k)|, a constant phase
component, ∠A(k), and a time varying phase, φ(t), resulting an arc in the complex
plane. Therefore, our signal of interest is then the phase of S(k, t), which is propor-
tional to the chest surface motion, calling for phase demodulation steps to estimate the
vital signs.

9



Figure 2.4: Complex plane visualization of S(k, t)
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Array Signal Model 3
Array signal processing methods are widely used in statistical signal processing domain.
Observation signal is extended from a 1D vector to high dimensional matrix, bringing
novel solutions for problems such as determining the number and locations of sources,
enhancing the Signal-to-Interference-plus-Noise Ratio (SINR), tracking moving objects
and Blind Source Separation (BSS). The main tasks of this project are automatic people
tracking & counting and source separation, both of them are well-suited for array signal
processing.

3.1 FMCW Matrix

Fig.3.1 shows that, in practice, chirps are sent one after one and the corresponding
received chirps are stacked in columns, forming an FMCW matrix for future processing.
The resulting matrix has two dimensions, fast-time and slow-time, both are discrete in
reality.

Figure 3.1: FMCW matrix

The basic idea of doing signal processing for FMCW matrix consisting of two steps,
processing along fast-time column by column to obtain the range profile and processing
along slow-time row by row to extracting vital sign information. The former one is done
by FFT as is shown in Fig.3.2. Based on section 2.4, each column in the resulting matrix
gives us a spectrum. Assume the slow-time sampling interval is T ′s, the discretized
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Figure 3.2: FFT of FMCW matrix

version of S(k, t) is

S(k,m) = A(k) ejφ(t)δ(t−mT ′s)︸ ︷︷ ︸
ejφ(m)

= A(k)ejφ(m)

(3.1)

where m is from 0 to M−1. The expression of each column degrades from equation 2.11
to a one-variable function of k, namely the range profile. Similarly, the row expression
is also a one-variable function regarding to slow-time, namely the Doppler signal.

3.2 Multipath Propagation Model

In a wireless communication system, multipath interference is always an annoying issue.
It occurs when a signal takes two or more paths from the transmitting antenna to
the receiving antenna, resulting in ghost subjects and inter-subject interference. To
address this problem, [34] proposed an accurate parametric model for indoor multipath
propagation, widely known as Saleh-Valenzuela Model. It states that in an indoor
environment, the reflected rays arrive at the receiving antenna in clusters. The power
gain of different clusters and of rays within a cluster obey the exponential power decay.

The statistical properties of Saleh-Valenzuela Model is difficult to make use. In [35],
Jakes popularized a less sophisticated and less parametric channel which still keeps the
essential properties of the physical propagation model.

Based on the limited room size, we only consider the first L frequency components;
therefore, the number of reflected paths is also L. It comes with the assumption that the
multipath propagation channel h(t) is an Finite-length Impulse Response (FIR) filter
of at most L symbols. This channel is represented by multiple paths having complex
power gain {βl} and propagation delay {τl}, where l is the path index, the resulting

12



channel impulse response is as follows,

h(t) =
L−1∑
l=0

βlδ(t− τl). (3.2)

It is a generalization of all the possible propagation models that occur in practice.
Though it is not a structured one, we can still specify the statistical properties of the
model coefficients at a later stage. Therefore, the received parametric signal model
sR(t) over a multipath channel can be corrected as the convolution

sR(t) = h(t) ∗ sT (t)

=

[
L−1∑
l=0

βlδ (t− τl(t))

]
∗ sT (t)

=
L−1∑
l=0

βlsT (t− τl(t))

=
L−1∑
l=0

βlaTl︸︷︷︸
aRl

ej2π(f0+ ρ
2

(t−πl(t)))(t−τl(t))

=
L−1∑
l=0

aRle
j2π(f0+ ρ

2
(t−πl(t)))(t−τl(t)).

(3.3)

The corresponding baseband signal model sB(t) is then

sB(t) =
L−1∑
l=0

sR(t) · s−1
T (t)

=
L−1∑
l=0

aTaRe
j2πf0τl(t)︸ ︷︷ ︸

aBl (t)

ej2π·ρτl(t)t

=
L−1∑
l=0

aBl(t)e
j2π·ρτl(t)t

=
L−1∑
l=0

sBl(t).

(3.4)
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After performing FFT in fast-time, the frequency domain signal S(k,m) becomes

S(k,m) = F

{
L−1∑
l=0

sBl(t) · w(t)

}
· δ(t−mT ′s)

=
L−1∑
l=0

F {sBl(t) · w(t)} · δ(t−mT ′s)

=
L−1∑
l=0

Al(k)︸ ︷︷ ︸
A′(k)

ejφ(m)

= A′(k)ejφ(m).

(3.5)

3.3 Matrix Factorization

The aforementioned observation signal S(k,m) in equation 3.5 is a dual-variable func-
tion of frequency index k and discrete slow-time m, forming a 2D observation matrix
denoted as X. To explore the characteristics of the observation matrix, it is necessary
to do matrix factorization to isolate the signal of interest. Then the observation matrix
X including all the samples becomes

X =
[
x0 x1 · · · xM−1

]
=


S(0, 0) S(0, 1) · · · S(0,M − 1)
S(1, 0) S(1, 1) · · · S(1,M − 1)

...
...

. . .
...

S(L− 1, 0) S(L− 1, 1) · · · S(L− 1,M − 1)

 : L×M.
(3.6)

It follows that X has a factorization

X = hs (3.7)

where

s =
[
ejφ(0) ejφ(1) · · · ejφ(M−1)

]
: 1×M, h =


A′(0)
A′(1)

...
A′(L− 1)

 : L× 1, (3.8)

Here s contains the Doppler information due to the physiological activities. Time shifts
in propagation delay resulting in frequency/range shifts in range profile; therefore h
contains the attenuation and time delay information of the propagation channel for
each reflector. Obviously, X is a rank-1 matrix and it spans the same row space with
s. However, this is the data model for single user case, in a real indoor environment,
there are a lot of static clutters and what we are interested in is the multi-user case. So
this simple model is going to be extended to a more complicated one for more practical
applications.
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3.4 Extension to Multi-User Case

Assume that there are P subjects and Q static clutters in the room, all of them are
regarded as point scatters. The only difference between human targets and static clut-
ters is that human targets have physiological activities leading to a small disturbance
in range detection. Therefore, for static clutters, the time delay τ is a constant, result-
ing in a constant phase after performing FFT. Generally, the received signal model in
equation 3.3 then can be rewritten as

sR(t) =
P∑
i=1

hi(t) ∗ sT (t) +

P+Q∑
i=P+1

hi(t) ∗ sT (t)

=
P∑
i=1

L−1∑
l=0

βi,lsT (t− τi,l(t)) +

P+Q∑
i=P+1

L−1∑
l=0

βi,lsT (t− τi,l).

(3.9)

A sketch for this data model is shown in Fig.3.3. The baseband model results from

Figure 3.3: Multi-user channel model

multiple subjects and static clutters can be derived from equation 3.4 as

sB(t) =
P∑
i=1

L−1∑
l=0

aBi,l(t)e
j2π·ρτi,l(t)t +

P+Q∑
i=P+1

L−1∑
l=0

aBi,l(t)e
j2π·ρτi,lt. (3.10)

As FFT is a linear operator, the Fourier transform of a sum of functions is the sum
of individual Fourier transforms, the corresponding frequency domain signl S(p, t) in
equation 3.5 should be rewritten as

S(k,m) =
P∑
i=1

A′i(k)ejφi(m) +

P+Q∑
i=P+1

A′i(k)ejφi︸ ︷︷ ︸
A′
i(k)

(3.11)

where φi (i = P + 1, · · · , P +Q) is a constant phase component thus can be concluded
in the complex constant A′i(k) (i = P+1, · · · , P+Q). X has the following factorization

X = HS (3.12)
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where

H =


A′1(0) · · · A′P (0) A′P+1(0) · · · A′P+Q(0)
A′1(1) · · · A′P (1) A′P+1(1) · · · A′P+Q(1)

...
. . .

...
...

. . .
...

A′1(L− 1) · · · A′P (L− 1) A′P+1(L− 1) · · · A′P+Q(L− 1)


=
[

HP HQ

]
: L× (P +Q),

(3.13)

S =


ejφ1(0) ejφ1(1) · · · ejφ1(M−1)

...
...

. . .
...

ejφP (0) ejφP (1) · · · ejφP (M−1)

1Q 1Q · · · 1Q


=

[
SP
SQ

]
: (P +Q)×M

(3.14)

where 1Q is length-Q all-one vector. To isolate the contribution from subjects and
static clutters, the factorization can be rewritten as

X =
[

HP HQ

] [ SP
SQ

]
= HPSP + HQSQ

(3.15)

where the second term contributes DC information in slow-time. As we actually only
focus on the time varying Doppler signals from subjects, we can remove the constant
sources in S matrix, then the data model becomes

X = HS + C (3.16)

where C = HQSQ is an L×M matrix with identical columns,

H =


A′1(0) · · · A′P (0)
A′1(1) · · · A′P (1)

...
. . .

...
A′1(L− 1) · · · A′P (L− 1)

 : L× P, (3.17)

S =
[
s0 s1 · · · sM−1

]
=

ejφ1(0) ejφ1(1) · · · ejφ1(M−1)

...
...

. . .
...

ejφP (0) ejφP (1) · · · ejφP (M−1)

 : P ×M.
(3.18)

In presence of additive noise, the data model can be

xm = Hsm + c + nm ⇔ X = HS + C + N, (3.19)

here m is from 0 to M−1, c is a column in C. The model assumptions are summarized
as follows,
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• L ≤ P .

• S has full row rank P .

• Each row of S is regarded as a signal from an independent source. All the sig-
nals are assumed to be random, independent, identically distributed (i.i.d.), with
modulus equal to 1.

• The noise is assumed to be additive, white, zero mean, complex Gaussian dis-
tributed, with covariance Rn = E{nnH} = σ2I and independent from the sources.

• C is a complex matrix with identical columns; therefore, the rank of C is 1.
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The MUSIC Algorithm 4
MUltiple SIgnal Classification (MUSIC) algorithm is a widely used method for param-
eter estimation. Our parameters of interest here is the frequencies of heartbeat and
respiration. From chapter 3, we know exactly the data model and the signal structures;
therefore, in this chapter, a detailed explanation about using MUSIC to estimate pa-
rameters of interest will be introduced. To arrive at the common data model we use in
statistical signal processing, a preprocessing step to remove the DC components should
be done first.

4.1 DC Removal

Recall the array data model in equation 3.19, there is a DC term, C, caused by the
static clutters. Based on the matrix property, i.e., the columns of C are identical, it
can be removed by doing matrix projection

XPr = HSPr + CPr + NPr

= HSPr + NPr,
(4.1)

One possible solution of projection matrix Pr is

Pr = I− 1M1TM
M

, (4.2)

with which

CPr = HQ1Q1TM ·
(

I− 1M1TM
M

)
= HQ ·

(
1Q1TM − 1Q1TM

)
= 0.

(4.3)

However, in this way, we also change the structure of S, that is to say, the DC compo-
nents in S are also removed after multiplying with Pr. The influence of such undesired
DC removal for the Doppler signal is shown in Fig.4.1.

Despite the rows in S being zero mean slow-time series, the physiological motion is
still preserved. Since direct angle extraction gives us incorrect phase information, wiser
ways to do phase demodulation will be covered in later chapters. Let us denote the
zero mean observation matrix as X = XPr, zero mean signal matrix as S = SPr. The
noise matrix is still the same, N = NPr, because noise is assumed to be zero mean.
Then the new data model becomes

X = HS + N. (4.4)
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Figure 4.1: DC removal of Doppler signal

4.2 Approximate Data Model

Recall the source signal model in equation 3.18 which can be rewritten as

S =

ejφ1(0) ejφ1(1) · · · ejφ1(M−1)

...
...

. . .
...

ejφP (0) ejφP (1) · · · ejφP (M−1)

 =


sH

1

sH
2
...

sH
P

 (4.5)

where each vector si (i is from 1 to P ) is a function of discrete time m, si(m), m =
0, 1, · · · , (M − 1). The complex Taylor expansion of si(m) is

si(m) = ejφi(m)

= 1 + jφi(m)− φ2
i (m)

2!
+ · · ·

= 1 + j
4πf0

c
yi(mT

′
s)−

(
4πf0

c

)2
y2
i (mT

′
s)

2
+ · · ·

(4.6)
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where yi(mT
′
s) is physiological activity of subject i. Substituting yi(mT

′
s) =

ah,i cos(ωh,imT
′
s + φh,i) + ar,i cos(ωr,imT

′
s + φr,i) into equation 4.6,

si(m) = j
4πf0

c
[ah,i cos(ωh,imT

′
s + φh,i) + ar,i cos(ωr,imT

′
s + φr,i)]

+
1

4

(
4πf0

c

)2 [
a2
h,i cos (2ωh,imT

′
s + 2φh,i) + a2

r,i cos (2ωr,imT
′
s + 2φr,i)

]
+

1

2

(
4πf0

c

)2

ah,iar,i cos ((ωh,i + ωr,i)mT
′
s + φh,i + φr,i)

+
1

2

(
4πf0

c

)2

ah,iar,i cos ((ωh,i − ωr,i)mT ′s + φh,i − φr,i)

+ 1− 1

4

(
4πf0

c

)2 (
a2
h,i + a2

r,i

)
+ · · · ;

(4.7)

therefore, the Doppler signal is consist of a DC component and a group of harmonics.
In our case, f0 = 7.3 GHz, therefore, 4πf0

c
ar,i ≈ 1 and 4πf0

c
ah,i ≈ 0.1, an approximate

model for s̄i(m) can be

s̄i(m) ≈ j
4πf0

c
ar,i cos(ωr,imT

′
s + φr,i)︸ ︷︷ ︸

s̄i,1(m)

+
1

4

(
4πf0

c

)2

a2
r,i cos (2ωr,imT

′
s + 2φr,i)︸ ︷︷ ︸

s̄i,2(m)

= s̄i,1(m) + s̄i,2(m)

(4.8)

where s̄i,1(m) is the first harmonic which is the most powerful component and s̄i,2(m)
is the second harmonic which is the least powerful one. Thus S in equation 4.4 is

S =


sH

1

sH
2
...

sH
P

 (4.9)

where sH
i = [si(0), si(1), · · · , si(M − 1)].

4.3 Dimension Reduction and Hilbert Transform

From equation 4.8, we know that though si(m) is a complex signal, it can not be written
as the sum of two complex sine waves, which is the required data structure for almost
all parametric methods. Assume xk and hk are row vectors in X and H respectively, k
is from 0 to L− 1. There is a linear transform between xk and S,

xk = hkS. (4.10)

Since xk is the linear combination of rows in S, the data structure of xk also doesn’t
fit the common data model.
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Through projecting the complex observation signal into a vector space, we can get
a real signal which is can be written as the sum of real sine waves. The projection
vector can be anything but a wise option can be the first component of row-wise PCA
transform. Because PCA tends to preserve the most powerful components and the
first harmonic is always more powerful than the second harmonic. As a result, PCA
provides an extra benefit, harmonic suppression.

For example, in the single user case, rows in observation matrix X are nothing but
delayed and attenuated versions of the source signal. Fig.4.2 illustrates the PCA trans-
form of such an observation signal. After performing PCA transform, the imaginary
part in time domain is the first harmonic in Fig.4.2b and the real part is the second
harmonic. By selecting the first principal component, the second harmonic is removed
perfectly.

(a) The effect of performing PCA transform
to the complex Doppler signal.

(b) Real and imaginary part of Doppler signal
after performing PCA

Figure 4.2: PCA transform of single-user case

However, For multi-user case, we can only choose the direction that contains most
energy. So we still preserve part of the second harmonics. The signal in the most
powerful direction is the summation of projections of the first and second harmonics
of two subjects. Generally, after projecting the complex observation vector onto the
vector space spanned by the first principal component, we obtain a real signal xk(m)

xk(m) =
P∑
i=1

[αi,1(k) cos(ωr,imT
′
s + φr,i) + αi,2(k) cos(2ωr,imT

′
s + 2φr,i)] (4.11)

where m = 0, 1, · · · , (M − 1) and αi,1(k) and αi,2(k) are real coefficient. The Doppler
signal is no longer complex after removing the second principle component. In order
to factor out the parameters we show no interest in, Hilbert transform is performed to
obtain the analytic signal. The Hilbert transform of xk(m) is defined as

x∗k(m) = H{xk(m)}

=
P∑
i=1

[αi,1(k) sin(ωr,imT
′
s + φr,i) + αi,2(k) sin(2ωr,imT

′
s + 2φr,i)]

(4.12)
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where H{·} represents the Hilbert transform. So the analytic signal xAk (m) is

xAk (m) = xk(m) + j · x∗k(m)

=
P∑
i=1

[
α′i,1(k)ejωr,imT

′
s + α′i,2(k)ej2ωr,imT

′
s

] (4.13)

where α′i,1(k) = αi,1(k)ejφr,i and α′i,2(k) = αi,2(k)ej2φr,i are complex coefficients. The
corresponding data model after applying row-wise PCA transform and Hilbert trans-
form is defined as follows,

X = H · S + N (4.14)

where

X =


xA0 (0) xA0 (1) · · · xA0 (M − 1)
xA1 (0) xA1 (1) · · · xA1 (M − 1)

...
...

. . .
...

xAL−1(0) xAL−1(1) · · · xAL−1(M − 1)

 : L×M, (4.15)

H =


α′1,1(0) · · · α′P,1(0) α′1,2(0) · · · α′P,2(0)
α′1,1(1) · · · α′P,1(1) α′1,2(1) · · · αP,2(1)

...
. . .

...
...

. . .
...

α′1,1(L− 1) · · · α′P,1(L− 1) α′1,2(L− 1) · · · α′P,2(L− 1)


: L× 2P,

(4.16)

S =



1 ejωr,1T
′
s · · · ejωr,1(M−1)T ′

s

1 ejωr,2T
′
s · · · ejωr,2(M−1)T ′

s

...
...

. . .
...

1 ejωr,PT
′
s · · · ejωr,P (M−1)T ′

s

1 ej2ωr,1T
′
s · · · ej2ωr,1(M−1)T ′

s

1 ej2ωr,2T
′
s · · · ej2ωr,2(M−1)T ′

s

...
...

. . .
...

1 ej2ωr,PT
′
s · · · ej2ωr,P (M−1)T ′

s


: 2P ×M, (4.17)

N remains the same because the additive noise is assumed to be white. The model
assumptions are summarized as follows,

• S has full row rank 2P . Each row of S is a complex sine function of slow-time.
All the signals are assumed to be random, independent, identically distributed
(i.i.d.), with modulus equal to 1.

• The noise is assumed to be additive, white, zero mean, complex Gaussian dis-
tributed, with covariance Rn = E{nnH} = σ2I and be independent from the
sources.
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4.4 The Singular Value Decomposition (SVD)

The L×M observation matrix X of rank 2P has the following SVD [36],

X = U ·Σ ·VH

=
[
Us Un

]


σ2
1

. . .
σ2

2P

σ2
n

. . .
σ2
n

0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0


[
VH

s

VH
n

]
(4.18)

where U is an L× L unitary matrix, V is an M ×M unitary matrix, Σ is a diagonal
matrix whose diagonal elements are singular values of X. Columns in U and V are
called right and left singular vectors respectively. Singular values are positive real
numbers, representing the energy in the corresponding singular vector space. They are
ordered such that

σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
2P ≥ σ2

n.

The first 2P columns of U are denoted as Us, which spans the same column space of X.
The rest columns of U are denoted as Un, which spans the null space of Us. Similarly,
the first 2P columns of V is denoted as Vs, which spans the same row space of X,
namely the signal space. Vn is the null space of Vs, namely the noise space.

Figure 4.3: Singular values from a practical measurements of two subjects

It is expected to see P comparably large singular values if the second harmonics
are suppressed well while to see P + 1 to 2P comparably large singular values if not.
An example is shown in Fig.4.3, which is from a practical measurement of 2 subjects.
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The first two singular values are much larger than the rest, which means the second
harmonics are suppressed very well. Singular values give the power allocation in differ-
ent singular vector space, based on which, the number of sources can be estimated by
identifying the number of dominant singular values.

4.5 The MUSIC Algorithm

As mentioned above, the singular values can be utilized to estimate the number of
sources. What’s more, the singular vectors give the information about the signal space,

span(Vs) = span(S); (4.19)

therefore,
S ·Vn = 0. (4.20)

Given an observation matrix X, we can estimate the number of sources k and hence the
signal space Us by selecting the first 2P singular vectors as well as the null spaceUn.
Our objective is to estimate the source matrix,

S =



sH(ωr,1)
...

sH(ωr,P )
sH(2ωr,1)

...
sH(2ωr,P )


(4.21)

where the unknown parameters are the respiration frequencies and their second har-
monics.

MUltiple SIgnal Classification (MUSIC) is an effective algorithm to estimate the
frequencies based on the orthogonality condition in equation 4.20. Since we have

sH(ωi)Vn = 0, 1 ≤ i ≤ 2P, (4.22)

the corresponding cost function of MUSIC is

JMUSIC =
||s(ω)||2

||sH(ω)Vn||2
. (4.23)

The frequencies corresponds to the first 2P largest local maxima of the cost function
are chosen as the estimated frequencies. An example of the estimated MUSIC pseudo-
spectra from the same measurement in Fig.4.3 are shown in Fig.4.4a and Fig.4.4b when
the number of sources is set to 2 and 4 respectively. The ground truth of the respiration
frequencies is: fr,1 = 0.2Hz, fr,2 = 0.26Hz.

With regard to the results shown in Fig.4.3 and Fig.4.4, we can conclude that after
performing PCA, it is for sure that the power of the first harmonics are much larger
than the that of the second harmonics. Therefore, it is not necessary to consider the
second harmonics in the source matrix S. However, to precisely describe the model, we
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(a) 2 sources (b) 4 sources

Figure 4.4: MUSIC pseudo-spectrum of respiration

can keep the second harmonics in S and then pick P estimated frequencies out of 2P
estimated ones based on the relationship between the first harmonic and the second
harmonic, i.e., the frequency of the second harmonic is twice of the frequency of the
first harmonic.

Recall the signal model of physiological activities in equation 2.8 and the source
signal model in equation 4.7, if we want to estimate the heartbeat frequency using
MUSIC, one option is to extend both the signal space and the steering frequency range.
In other words, we also consider the heartbeat signal in si(m). Then,

s̄i(m) ≈ j
4πf0

c
[ar,i cos(ωr,imT

′
s + φr,i) + ah,i cos(ωh,imT

′
s + φh,i)]

+
1

4

(
4πf0

c

)2

a2
r,i cos (2ωr,imT

′
s + 2φr,i) ,

(4.24)

S =



sH(ωr,1)
...

sH(ωr,P )
sH(2ωr,1)

...
sH(2ωr,P )
sH(ωh,1)

...
sH(ωh,P )


: 3P ×M. (4.25)

For instance, let us still consider the same measurement, if we regard the first 6
singular vectors as Vs and scan the frequency from 1Hz to 1.5Hz with step size 0.01Hz,
we can obtain a pseudo-spectrum which is shown in Fig.4.5. The corresponding fre-
quencies of the two largest two local maxima are the estimated heartbeat frequencies.
The references of heartbeat frequencies are: fh,1 = 1.26Hz, fh,2 = 1.37Hz. The esti-
mated results are regarded to be consistent with the references. However, as we can see
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Figure 4.5: MUSIC pseudo-spectrum of heartbeat

from equation 4.7, the heartbeat signal is very weak compared with other components.
It is likely that the harmonics fall into the searching range are more dominant than
the heartbeat. Another problem of MUSIC algorithm is that for multiple parameter
estimation problem, it suffers from the order ambiguity. For two subjects, there are
4 different combinations of respiration frequencies and heartbeat frequencies. Conse-
quently, MUSIC is applicable to single user case instead of multi-user case. A more
robust way which is also applicable to multi-user case will be introduced in the next
chapter.
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Blind Source Separation 5
In chapter 3, we derived a general data model for our radar-based health monitoring
system, in presence of noise and interference from static clutters, expressed in equation
3.19. In section 4.1, we remove the DC information by multiplying a projection matrix,
resulting in a common data model in array signal processing, expressed in equation
4.4. Since the performance of the MUSIC algorithm suffers from the harmonics, a
more robust Blind Source Separation (BBS) algorithm, i.e., Independent Component
Analysis (ICA), will be proposed in this chapter.

5.1 Noise Reduction via SVD

The data model after DC removal is X = HS + N where every row of S is an arc,
resulting in a complex sinusoidal-like wave which is a linear combination of groups of
sine waves with a dominant component, i.e., respiration signal. The statistical inde-
pendence of common signals are validated in [37]. It has been proved that sine waves
of different frequencies are highly independent with each other; therefore, the rows in S
can be regarded as independent source signals. The statistics of the above data model
are summarized as follows,

• S has full row rank P .

• Rows of S are random, independent and i.i.d.

• The noise is additive white Gaussian noise with covariance Rn = σ2I.

The SVD of X is

X = U ·Σ ·VH

=
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(5.1)

where U is an L×L unitary matrix containing left singular vectors while V is an M×M
unitary matrix containing right singular vectors, Σ is a diagonal matrix containing
all the singular values. The first P columns in U and V are denoted as Us and Vs
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respectively. The rest columns are denoted as Un and Vn respectively. Indeed, columns
of Vs span the same subspace as rows in S and columns of Vn span the null pace as
rows in S. Hence, Vs can be expressed as the following linear transform [36],

Vs = AS, (5.2)

where A is a P × P square mixing matrix. In this way, the noise falls into the null
space of the signal subspace can be removed totally.

5.2 The ICA Algorithm

In equation 5.2, rows of S are underlying sources, A is a mixing matrix and rows of Vs

are mixtures of sources in S. This data model is consistent with the classical cocktail-
party problem in [38]. Such kind of BBS problem can be addressed by ICA. According
to [39], the restrictions of applying ICA are,

• the source signals are non-Gaussian distributed,

• the source signals are statistically independent,

• the mixing matrix is square.

Since the rows of S are sinusoidal-like waves, it is for sure that the sources are non-
Gaussian distributed. The independence of sources are discussed in section 5.1. Thus,
our data model satisfies all the restrictions. Intuitively, the inverse of A is the unmixing
matrix we look for. While both S and A are unknowns, ICA seeks an unmixing matrix
W that maximizes the statistical independence of each source [37].

Based on the central limit theorem, the sum of independent random variables tend
to a Gaussian distribution. This gives us the inspiration that the estimated independent
sources should tend to be as non-Gaussian distributed as possible. According to [39],
there are plenty of metrics to measure the non-Gaussianity of S, such as the maximum
likelihood, kurtosis, negentropy and mutual information, leading to different objective
functions.

Maximum likelihood requires the probability density distribution of the source signal
or a family of simple approximations of the density functions. Estimators of higher-
order cumulants using finite samples are very sensitive to outliers. Besides, higher-order
cumulants mainly measure the tails of the distribution, ignoring the density structure
around the center of the distribution [39]. For uncorrelated sources with unit variance,
the cost functions of mutual information and negentropy differ only by a sign and a
constant [38]. Above all, we choose negentropy as the measure of non-Gaussianity.

Negentropy JNeg of a complex random vector ψ is defined as [40],

JNeg(ψI , ψR) = H(ψRgauss, ψ
I
gauss)−H(ψI , ψR) (5.3)

where ψgauss is a Gaussian random variable with the same covariance matrix as ψ and
H(·) represents the differential entropy. Since negentropy requires the prior knowledge
of the pdf, nonlinear smooth even functions are used to approximate the negentropy
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[40]. The cost function of the fixed-point algorithm for complex signals under the ICA
data model is given by [41],

JFastICA(w) = E{G(|wHVs|2)} (5.4)

where w is an M -dimensional unmixing vector,Gi is a is a smooth even function with
G : R+ ∪ {0} → R. The following choices are widely used in practice,

G1(ψ) =
√
a1 + ψ, (5.5)

G2(ψ) = log(a2 + ψ), (5.6)

G3(ψ) = 1
2
ψ2 (5.7)

where a1 and a2 are constants. One obtains the following optimization problem,

max
wj

P∑
j=1

JFastICA(wj)

subject to E{(wH
i x)(wH

j x)∗} = δij,

(5.8)

where i and j are from 1 to P . Then the estimated sources can be obtained by multi-
plying the unmixing matrix,

Ŝ = WHVs, (5.9)

where W is the matrix containing all wj. The cost function in equation 5.3 only
considers the modulus of the the signals for source separation, resulting circular outputs
whose structures coincide with our estimated sources in equation 3.18.

Fig.5.1 demonstrates the estimated complex sources by ICA from a practical mea-
surement. As is known to all, independent signals are uncorrelated; therefore, SVD
is actually half ICA. However, there is no physical reason for the independent sources
to be orthogonal with each other, what ICA does is to optimize the projection angles
between the singular vectors and maximize the statistical independence. Similarly,
ICA also suffers from the order ambiguity but the difference with MUSIC algorithm
is that the heartbeat and respiration signal from the same target are still preserved in
one Doppler signal. The way to recover the subject order will be covered in the next
chapter.

5.3 Phase Demodulation

Latent sources estimated in section 5.2 are the zero mean Doppler signals whereas our
signal of interest is the phase information of the Doppler signals. The DC removal
step in section 4.1, removes all the DC information, resulting in direct angle extraction
unfeasible.

5.3.1 Arctangent Demodulation

An intuitive way to demodulate the phase is to recover the DC information and then
extracting the phase. Recall the zero mean Doppler signal model in equation 3.18, each
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(a) Signal space (b) Independent components

Figure 5.1: Estimated sources by ICA

Figure 5.2: Circle fitting

Doppler signal forms an arc in the complex plane. Fig.5.2 illustrate the samples of the
estimated sources in Fig.5.1b in an IQ plane

The corresponding center and radius of an arc can be estimated by resolving a non-
linear least-squares geometric fitting problem [42]. Assume ŝi is the sample vector of
i-th estimated Doppler signal, zi and ri are the center and radius of the corresponding
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circle respectively, the objective function becomes

min
zi,ri

M−1∑
j=0

Dj(zi, ri)

subject to Dj = (||zi − ŝi,j|| − ri)2,

(5.10)

whereDj represents the geometry distance between j-th sample and the circle. The best
circle is iteratively computed then. A good starting vector is the solution of minimizing
the algebraic distance [42]. Assume Θi = [ŝRi , ŝ

I
i ], The algebraic representation of a

circle is defined as
F (θi) = aθT

i θi + bTθi + c = 0 (5.11)

where a is a nonzero number, θi, b ∈ IR2 and θTi is a row of Θi. Given the sample

matrix Θi, we can compute the circle parameters, â, b̂, ĉ. Only when all the samples are
on one circle can we find a unique solution. Otherwise, it is an overdetermined problem
when the sample length is more than 3. Let ηi = [a, b1, b2, c]

T and Bi = [ΛiΛ
T
i ,Λi,1],

equation 5.11 can be converted into a linear equation Biηi = 0. The non-trival solution
can be obtained by solving the following standard optimization problem,

min ||Biηi||
subject to||ηi|| = 1.

(5.12)

Then the center and the radius can be computed:

zi =

(
− b1

2a
,− b2

2a

)
ri =

√
||b||2
4a2

− c

a
. (5.13)

After knowing the coordinates of the center, the arc can be shifted back to where it
was. As a result, we can demodulate the phases by directly computing the angles of
the complex values. According to equation 2.11, the chest surface motion is obtained
as,

ŷi(t) =
4πf0

c
φi(t) = tan−1

(
ŝIi (t)− zi,1
ŝRi (t)− zi,2

)
· 4πf0

c
(5.14)

which is known as arctangent demodulation [13]. Examples of the demodulated phases
from the same measurement used in Fig.5.2 are shown in Fig.5.3. As derived in equation
2.8, y(t) consists of a strong respiration signal and a comparably much weaker heartbeat
signal. Clearly we can see in Fig.5.3 the respiration is the most dominant component
and heartbeat is more obvious during the transition period between inhalation and
exhalation.

5.3.2 Linear Demodulation

Another way to do phase demodulation is based on the Taylor expansion we discussed
in section 4.2. Based on small angle approximation which is the case in our project as
is shown in Fig.5.2, the Doppler signal can be approximated as,

si(t) = ejφi(t)

≈ 1 + jφi(t)−
φ2
i (t)

2
.

(5.15)
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Figure 5.3: Demodulated phases by arctangent demodulation

From equation 4.7, we know that the quadratic term in equation 5.15 consists of the
second harmonics and a constant. Therefore, si(t) can be rewritten as,

si(t) ≈ sDCi + jφi(t) + γi(t), (5.16)

where γi(t) includes the sine waves with angular frequencies: 2ωr,i, 2ωh,i, ωr,i−ωh,i, ωr,i+
ωh,i and sDCi is the DC component of si(t). Hence, the estimated zero-mean complex
source ŝi(t) can be modeled as

ŝi(t) = jφi(t) + γi(t) (5.17)

where the imaginary part is more powerful than the real part and they are orthogonal
with each other. Let ŝi = [ŝRi , ŝ

I
i ], the most powerful component can be found by PCA.

The SVD of ŝi is defined as,

ŝi = [u1,u2] ·
[
σ1

σ2

]
· [v1,v2]H, (5.18)

where u1 and u2 are left singular vectors, v1 and v2 are right singular vectors, σ1 and
σ2 are positive real singular values with σ1 > σ2. By projecting the ŝi(t) on to the most
powerful direction, i.e., the vector space spanned by v1, we can obtain the estimated
phase φ̂i(t). Therefore, the chest surface motion can be estimated as,

ŷi(t) =
4πf0

c
ŝi · v1. (5.19)
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Figure 5.4: Demodulated phases by linear demodulation

An example is shown in Fig.5.4, which is very similar with the result obtained by
arctangent demodulation. The advantages of performing linear demodulation are: first,
it is faster than circle fitting; second, it is more robust in presence of outliers.

5.4 Generalized Line Spectral Estimation

Conventionally, FFT is used for frequency estimation problem. However, the resolu-
tion of FFT depends on the observation time; therefore, FFT is not popular for real
time application. Parametric methods such as MUSIC [43] and ESPRIT (Estimation
of signal parameters via rotational via rotational invariance) [44] are array signal pro-
cessing algorithms, requiring multiple observations. The chest surface motion y(t) can
be regarded as the sum of sinusoidal waves. [45] proposed a generalized line spectral
estimation algorithm to estimate both frequencies and amplitudes of a mixture of few
sinusoidal signals. This approach can be applied to recover signals that are sparse in
continuously indexed dictionaries. In practice, the parameter space is a discretized
continuous parameter space which introduces gridding error. However, as long as the
step size of the parameter space is chosen to be sufficiently fine, the gridding error
can be negligible. Such kind of signal reconstruction problem can be converted into a
quadratic smoothing problem [46] and solved by convex optimization tools.
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5.4.1 Respiration Frequency Estimation

The first step of frequency estimation is to generate the analytic signal. The Hilbert
transform of ŷi(t) is defined as,

ŷ∗i (t) = H(ŷi(t))

= ah sin (ωht+ φh) + ar sin (ωrt+ φr) ,
(5.20)

The analytic signal ŷAi (t) is then

ŷAi (t) = ŷi(t) + j · ŷ∗i (t)
= ah,i cos (ωh,it+ φh,i) + ar,i cos (ωr,it+ φr,i)

+ j · ah,i sin (ωh,it+ φh,i) + j · ar,i sin (ωr,it+ φr,i)

= ah,ie
jφh,iejωh,it + ar,ie

jφr,iejωr,it

= ah,ie
jφh,iej2πfh,it + ar,ie

jφr,iej2πfr,it.

(5.21)

The benefit of using analytic signal is that the amplitude and the initial phase can be
factored out, as a result, the only parameter to be estimated is frequency. Equation
5.21 can be rewritten into a matrix form as ŷAi = λH

i f , where

f = [ej2πfmint, ej2π(fmin+∆f)t, ej2π(fmin+2∆f)t, · · · , ej2πfmaxt]H, (5.22)

λi is an unknown vector which indicates the complex weights of the sinusoidal candi-
dates in f , ∆f is the resolution of the discretized dictionary. To estimate λi from the
estimated complex vital sign ŷAi , we can convert the estimation problem into a convex
optimization problem of the form,

min
λi

||ŷAi − λH
i f ||22 + ζ||λi||1 (5.23)

where ζ is a positive real value and the l-1 norm term is added to preserve the sparsity
of the weight vector. Based on the prior knowledge about respiration, we know that
the respiration frequency range is from 0.1Hz to 0.8Hz. Since the heartbeat signal is
very weak compared with the respiration signal, we can assume yi(t) ≈ ar,ie

jφr,ie2πfr,it.
Therefore, we can temporally focus on frequencies between 0.1Hz and 0.8Hz to re-
construct ŷAi . Fig.5.5 illustrate an estimated weight vectors and the reconstructed
respiration signals. The ground truth of respiration frequencies are: fr,1 = 0.36Hz,
fr,2 = 0.24Hz.

5.4.2 Heartbeat Frequency Estimation

To prevent the strong respiration signal from burying the weak heartbeat signal, it
would be wise to estimate the parameters (i.e., respiration frequency f̂r and heartbeat

frequency f̂h) iteratively [47]. That is to say, we can estimate the stronger one first and
remove it form the mixture to reveal the weak sinusoidal signal, heartbeat. Let ŷr,i(t)
denote the reconstructed respiration signal, we can estimated the heartbeat as,

ŷh,i(t) = ŷAi (t)− ŷr,i(t). (5.24)
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(a) Weight vector estimation (ζ=20) (b) Reconstructed respiration

Figure 5.5: Respiration frequency estimation

For instance, if we subtract the reconstructed respiration signals in Fig.5.5b from the
corresponding estimated vital signs, the heartbeat signal will be revealed as is shown
in Fig.5.6a. Same methodology in equation 5.23 is applied to estimate the heartbeat
frequencies but the frequency range differs,

min
λi

||ŷh,i − λH
i f ||22 + ζ||λi||1. (5.25)

The estimated result is shown in Fig.5.6b The ground truth of heartbeat frequencies
are: fh,1 = 1.14Hz and fh,2 = 1.17.

(a) Estimated heartbeat signal (b) Weight vector estimation(ζ = 5)

Figure 5.6: Heartbeat frequency estimation
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Indoor Positioning 6
In equation 4.4, we derived the data model after DC removal, which cancels the interfer-
ence from static clutters while still preserves the physiological motions of the subjects.
S is the source matrix whose estimator is Ŝ in equation 5.9. Since we have the noisy
observation matrix X and the estimated source matrix Ŝ, it is possible to estimate H
which contains the channel information, range and attenuation, making it possible to
locate the subjects in the room. With Ŝ known, we estimate H by minimizing the
residual error,

min
H
||X−HŜ||2 + ζ||H|||1, (6.1)

where the l-1 norm regularization term is added to preserve the sparsity of the multipath
propagation channel. Fig.6.1 below is an estimated propagation channel Ĥ from a
practical measurement (with observation time 20s) where the two subjects are at 1.07m
and 2.26m respectively.

Figure 6.1: Estimated channel (ζ = 8)

Due to the multipath interference from the first subject, vital signs around 2.26m
might be disrupted; therefore, we achieve a higher peak at 3.4m, making it more difficult
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for indoor positioning of the second subject. With both Ĥ and Ŝ known, we can remove
the order ambiguity resulting from ICA.
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Experimental Validation 7
The experiments were conducted at imec-NL. All the volunteers are employees, interns,
students having a contract with imec-NL. The system used for remote and ono-invasive
long-term health monitoring is based on UWB radar technology. In addition, a reference
device is used which records contact PPG (photoplethysmogram) signals using a finger
clip as well as respiration signals using piezo-resistive sensor on a belt.

7.1 Experimental System

7.1.1 System for the Radar-based Measurement

The Doppler signals (containing the vital signs information) are obtained by using
imec’s radar system which consists of a sensor (Fig.7.1), combining radar and compu-
tational features, and a base station for a data processing/storage.

Figure 7.1: Radar-based sensor to be used in the acquisition of the Doppler signals

An FMCW radar signal is generated and sent to the subject, and then its reflected
echo, containing the vital signs information, is collected by the receiver. The resulting
based signals (Doppler signals) are digitized and transmitted through a cable to a base
station that consists of a laptop.
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7.1.2 System for the Reference Measurement

With the aim of obtaining simultaneous reference data in terms of Heartbeat Rate
(HR) and Respiration Rate (RR), the g.USBamp device (CE-certified and FDA
cleared medical device) (Fig.7.2a) is used to measure both contact PPG and respira-
tion respectively. The respiratory activity is measured from a piezo-resistive sensor
placed in a belt also shown in Fig.7.2b, which is placed around the subject’s abdomen
as is shown in Fig.7.3. The PPG measurement is performed using a compact and
lightweight plethysmographic pulse sensor with finger transducer.

(a) g.USBamp device (b) Belt respiratory sensor

(c) PPG sensor

Figure 7.2: g.USBamp devices and sensors

7.1.3 System Setup for Vital Signs Monitoring

The validation was performed in practical room environment (e.g., meeting rooms)
of Holst Centre. The real-life environment contains furniture, tables, chairs, metal
objects and walls, TVs, white boards, and sofas. Wi-Fi access points also present in
the environment.

A high-level block diagram of the experimental set-up is depicted in Fig.7.4. It
consists of three main parts: (1) the radar system, (2) the room setting where the
volunteers are monitored, and (3) the control system for data acquisition. Separate
power supplies are used for the radar, reference system, and data acquisition. The
subjects are seated on the chairs and/or sofas, invited to breath normally. The radar
system is positioned in the room and is at least 1m away from the subjects. A system
operator, who is not in the radar field of view, controls the data acquisition. The
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Figure 7.3: Reference sensor placement

Figure 7.4: Block diagram of the system setup for vital signs monitoring: The radar sensor
is not in galvanic contact with the patient and the reference signal circuits are galvanically
isolated by the g.USBamp.

reference signals are acquired using the g.USBamp software while the radar signals are
acquired using MATLAB.
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7.2 Experimental Results

All the measurements were collected from two subjects as is shown in Fig.7.5. The sub-
jects are seated at different distances (1m-5m) from the radar with reference sensors
on the finger and abdomen. The collected measurements are processed following the
advanced data processing steps in Fig.7.6.

Figure 7.5: Experiments conducted in the classroom environment

Figure 7.6: Advanced data processing block diagram

Sliding window approach is used to track the vital signs (i.e., HR and RR) and
location of the subjects. Fig.7.7 demonstrates the processing result from one of the
measurements using linear demodulation and fast-ICA. The observation time of a slid-
ing window is 20s, overlapping of two consecutive windows is 19s. Two subjects are
seated at 1.05m and 2.1m respectively. The monitoring lasts 60s in total.

Experiments are repeated for different pairs at different locations, recorded in table
7.1. The overall performance are tested by calculating the success rate of HR and RR
(Fig.7.8 and Fig.7.9) and the standard deviation of the location estimation (table 7.2).
Here the standard deviation is only calculated for pairs at 1m and 2m because we don’t
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(a) HR tracking of subject 1 (b) RR tracking of subject 1

(c) Positioning tracking of subject 1 (d) Success rate of subject 1

(e) HR tracking of subject 2 (f) RR tracking of subject 2

(g) Positioning tracking of subject 2 (h) Success rate of subject 2

Figure 7.7: Experimental result of one measurement with window size 20s and step size 1s

have measure the precise distances (from the chestwall of a subject to the antenna) for
pairs at other locations. We only know the distance between the seat and the radar
which is not the precise path distance. Based on the experimental results, we can
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locations of subjects 1m/2m 2m/3.5m 2m/5m 3.5m/5m

number of pairs 3 4 4 4

number of measurements for each pair 4 2 2 2

Table 7.1: Experiment recordings

conclude that the the parameter estimations, including positioning, HR and RR are
more precise for subjects that are closer to the radar. It makes sense because the closer
the subject, the stronger the signal power. The performance of RR tracking doesn’t
degrade a lot with the increase of the distance between the subject and the radar while
it is hard to detect the HR at 5m. Linear demodulation and arctangent demodulation
show similar performance in our experiments.

location of subject 1m 2m

standard deviation (m) 0.23 0.34

Table 7.2: Standard deviation of positioning
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(a) Success rate of sub.1 at 1m (b) Success rate of sub.2 at 2m

(c) Success rate of sub.1 at 2m (d) Success rate of sub.2 at 3.5m

(e) Success rate of sub.1 at 2m (f) Success rate of sub.2 at 5m

(g) Success rate of sub.1 at 3.5m (h) Success rate of sub.2 at 5m

Figure 7.8: Overall performance of vital signs estimation by performing linear demodulation
and fast-ICA with window size 20s.
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(a) Success rate of sub.1 at 1m (b) Success rate of sub.2 at 2m

(c) Success rate of sub.1 at 2m (d) Success rate of sub.2 at 3.5m

(e) Success rate of sub.1 at 2m (f) Success rate of sub.2 at 5m

(g) Success rate of sub.1 at 3.5m (h) Success rate of sub.2 at 5m

Figure 7.9: Overall performance of vital signs estimation by performing arctangent demodu-
lation and fast-ICA with window size 20s.
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Conclusions and Future Work 8
8.1 Conclusions

The aim of this MSc thesis was to explore the data processing algorithms for radar-
based non-contatct long term health monitoring (i.e., HR and RR) and the possibility
of realizing indoor positioning at the same time. This is in-line with the growing de-
mand for non-contatct health monitoring in hospitals, schools, homes and cars. More
precisely, the objective was multi-parameter estimation based on the precise paramet-
ric model we made for the monitoring system. Moreover, by combining with convex
optimization approaches, it was possible to track the HR, RR and locations of multiple
subjects in real time and in a real indoor environment.

The approaches proposed in the conducted research are borrowed from signal pro-
cessing for communication but are novel in the related research domain where classical
signal processing methods such as wavelet and FFT are widely used to estimated the
signals of interests.

The original contributions of this master thesis can be summarized as follows:

• A precise data model were built by taking multipath propagation channel into
consideration;

• Clutter suppression by removing the DC information;

• Array signal processing and model based parametric approaches (i.e., MUSIC,
ICA, generalized line spectrum estimation) were introduced to cancel the inter-
subject interference, overcome the limited resolution of FFT and estimate the
parameters of interest.

8.2 Future Work

Although based on the experimental results from the practical measurements collected
at Holst Centre, the developed data processing algorithms work properly. Further
research need to be done to test the robustness of this algorithm by collecting measure-
ments in different room settings and increasing the diversity of volunteers in terms of
age, profession, gender, and etc.

The algorithms we used in chapter 4 and chapter 5 are based on the assumptions of
second or forth order statistical independence. Algorithms such as constant modulus
algorithm (CMA) [48, 49], which have no restrictions about the statistical independence
of the signals and make use of the constant modulus property instead, is more motivated
based on the source signal model we derived in equation 3.18. Further explorations
about CMA is expected to improve the performance of the blind source separation
part.
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As the performance of applications in indoor environments suffered a lot from the
multipath effect. Multiple-input multiple-output (MIMO) radar system is a better
option to suppress the inter-subject interference, preventing the Doppler signals from
being disrupted by destructive interference. Beamforming or spatial filtering techniques
can be used in MIMO system to better improve the indoor positioning [50] and blind
source separation [51].
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