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1
Introduction

1.1. Background and motivation

The increasing availability of 3D datasets, such as LiDAR point clouds [AHN, 2019]
and textured meshes [Google, 2012; Helsinki, 2019], plays a vital role in managing
and studying urban environments (see Figure 1.1). As cities grow and change, there
is an increasing need for effective methods to handle the complexities introduced
by these diverse and intricate datasets. Urban 3D datasets provide detailed spatial
information that helps in accurately mapping urban spaces, essential for applications
such as urban planning [Ran, 2011], spatial analysis [Yaagoubi et al., 2015], and
environmental analysis [Yichuan et al., 2016].

(a) AHN4 LiDAR point cloud (b) Google Earth 3D mesh

Figure 1.1: Representative 3D urban data

The absence of semantic information in 3D datasets can significantly limit the
effectiveness of urban applications. Initially, LiDAR and textured meshes provide
only geometries and basic attributes such as intensity or colors. However, they
lack semantic information regarding objects and their parts, as well as instance
labels. Incorporating semantic information into these datasets allows users to
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1.1. Background and motivation

achieve a detailed and intuitive understanding of urban environments. Significant
advances in computer vision and artificial intelligence (AI), particularly in semantic
understanding of complex 3D urban datasets, are critical [Q. Hu et al., 2022; G. Yang
et al., 2023]. Applying AI techniques, such as neural networks, enables researchers to
transform raw data into actionable insights by identifying structural patterns [Krehl
et al., 2016], detecting anomalies [M. Zhang et al., 2022], and predicting dynamic
changes [Kuru and Yüzer, 2021; Xia et al., 2021]. These enriched semantic
urban datasets substantially improve a range of urban applications and enable the
simulation of complex urban scenarios, such as energy management [Katal et al.,
2022], disaster prevention [Verykokou et al., 2016], microclimate modeling [Garcia-
Dorado et al., 2017], traffic flow analysis [Chao et al., 2020], and urban fluid
simulation [Maragkogiannis et al., 2014].

Semantic segmentation, a critical AI technology, is often applied to scene
interpretation. It significantly enhances the understanding of urban scenes by
accurately classifying and locating each object, thereby boosting the usability and
interpretability of the data. While extensive resources for semantic segmentation,
including datasets, tools, and methods, are available for images and point
clouds [Cordts et al., 2016; Martinovi et al., 2015], research on textured meshes
has predominantly targeted small-scale indoor scenes [Armeni et al., 2017; Chang
et al., 2017; Dai et al., 2017] over expansive outdoor urban settings [Miksik et al.,
2015]. Textured meshes (see Figure 1.2), which provide richer physical details than
point clouds through continuous surfaces embedded with topological and color
information, are lightweight and ideally suited for 3D urban scene interpretation.
However, despite progress made by researchers [Rouhani et al., 2017; Verdie et al.,
2015], the field of urban scene understanding from textured meshes still faces a
significant shortage of methods, datasets, and related applications.

This thesis addresses critical gaps in the semantic understanding of urban scenes
from textured meshes. It focuses on three primary challenges: 1) the lack of
effective strategies and tools for accurately labeling mesh facets and textures; 2)
the limited development of semantic segmentation methods tailored for textured
meshes, as most are designed for LiDAR and images; 3) the underexplored potential
of semantically enriched meshes in applications. This work introduces significant
innovations, including the first large-scale benchmark datasets for semantic urban
textured meshes at both object and part levels, an interactive and semi-automatic
3D semantic annotation framework for mesh facets and textures, and a novel
deep learning semantic segmentation method designed specifically for these
meshes. Additionally, it explores the creation of lightweight 3D city models using
semantic information, setting new directions for future research in semantic-based
applications of 3D urban scenarios. These contributions collectively advance the
field by offering practical solutions and establishing a foundational framework for
continued exploration and development.

2



1. Introduction

1

(a) Wireframe mesh (b) Textured mesh

(c) Semantic objects (d) Semantic parts

Figure 1.2: Examples of urban textured meshes with semantic classes: (a) shows a wireframe
mesh with triangles represented by black edges; (b) depicts a mesh with textures;
(c) demonstrates a mesh with object-level semantics, including terrain , water ,
buildings , high vegetation , cars , boats , etc.; (d) illustrates a mesh with
part-level semantics, detailing components such as roofs , facades , balconies
, chimneys , dormers , windows , doors , road markings , cycle lanes ,

sidewalks .

1.2. Problem statement

To address the limitations of current research, this thesis focuses on the semantic
segmentation of urban textured meshes and identifies four key problems related to
their interpretation and application in 3D urban scene understanding:

Problem I: There is a lack of publicly available, large-scale, part-level semantic
benchmark datasets for urban textured meshes.

Semantic benchmark datasets are crucial for evaluating the performance of
automatic semantic segmentation models and providing training data for learning-
based algorithms. While previous research has primarily concentrated on semantic
benchmark datasets for urban point clouds [Q. Hu et al., 2021; Varney et al., 2020;
Zolanvari et al., 2019] or indoor scene meshes [Armeni et al., 2017; Chang et al.,
2017; Dai et al., 2017], datasets specifically targeting large-scale urban textured
meshes are notably rare [Kölle et al., 2021]. Furthermore, although datasets such
as DublinCity [Zolanvari et al., 2019] and Hessigheim3D [Kölle et al., 2021] include

3
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some part-level details, their categories and scope remain relatively limited. This gap
significantly impedes the development and validation of methods for the semantic
segmentation and interpretation of large-scale urban textured meshes.

Problem II: There is a significant shortage of effective interactive 3D semantic
annotation tools specifically designed for textured urban meshes.

Annotation tools are intended to assign accurate semantic labels to raw data or
correct erroneous labels on predicted data through human-computer interaction.
Traditional manual annotation methods can annotate textured meshes but often
require substantial time investment [Ibrahim et al., 2021; Pütz et al., 2021a]. Most
existing research on efficient interactive 3D semantic annotation focuses on point
clouds [Kontogianni et al., 2023; K. Liu and Boehm, 2014; Schmitz et al., 2022;
Steinlechner et al., 2019; Yue et al., 2024] or solid models [Jayaraman et al., 2021],
with limited studies on triangular meshes tailored for scenes that require specific
camera parameters and original images [D. T. Nguyen et al., 2018; Romanoni
and Matteucci, 2018]. While semantic annotation of mesh textures might employ
interactive image segmentation techniques, these are hindered by the limited
efficiency of traditional methods [Fan and T. C. Lee, 2015; T. N. A. Nguyen et al.,
2012; Rother et al., 2004] and the generalization capabilities associated with deep
learning approaches [Kirillov et al., 2023; Q. Liu et al., 2023]. There is a pressing need
for tools that can efficiently handle interactive 3D semantic annotation of large-scale
urban textured meshes, focusing on both their facets and texture images.

Problem III: Efficient semantic segmentation methods specifically targeting large-
scale urban textured meshes are notably lacking.

Early methods for semantic segmentation of urban textured meshes primarily used
machine learning-based manual feature techniques, which were limited in accuracy,
efficiency, and performance [Rouhani et al., 2017; Verdie et al., 2015]. Modern 3D
deep learning approaches, primarily focused on point cloud segmentation, often
exhibit poor generalization capabilities [Landrieu and Simonovsky, 2018; Qi et al.,
2017; Thomas et al., 2018; Thomas et al., 2019]. Methods applicable to triangular
meshes are generally confined to segmenting small-scale objects [Fu et al., 2021;
L. Gao et al., 2019; Hanocka et al., 2019] or indoor scenes [Nan et al., 2012;
Selvaraju et al., 2021]. Consequently, there is a critical need for research into
advanced semantic segmentation methods tailored for large-scale urban textured
meshes [Rouhani et al., 2017; Verdie et al., 2015].

Problem IV: There is limited research on using urban textured meshes with semantic
information to reconstruct lightweight 3D city models and their applications.

Urban textured meshes typically comprise numerous facets, consuming substantial
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1storage and hindering the efficiency of 3D applications that involve heavy geometric
processing. Developing lightweight semantic city models could mitigate these
challenges. Few studies have explored the reconstruction of detailed semantic
3D city models using semantic-based urban textured meshes, with most focusing
either exclusively on building models [Bouzas et al., 2020; J. Han et al., 2021; Zhu
et al., 2018] or on template-based object matching [Verdie et al., 2015]. Given the
complexity of urban environments, existing techniques fall short in reconstructing
large-scale, lightweight models tailored to diverse urban components and semantic
classes.

1.3. Research objectives and research questions

The main research objective of this thesis is to develop and implement a robust
framework for extracting semantic information from large-scale urban textured
meshes at both object and part-level semantics (see Figure 1.2c and Figure 1.2d).
For example, objects include buildings, roads, and trees, while parts refer to specific
elements like windows and chimneys on buildings or cycle lanes and road markings.
This framework will support both semi-automatic and fully automatic segmentation
methods. Additionally, the research investigates the application of semantic meshes
in generating lightweight city models and explores the various uses of semantic
city models in related fields. To this end, I have established the following specific
objectives and questions.

I. Semantic urban mesh benchmark dataset

• Objective: Build a comprehensive benchmark dataset of large-scale semantic
urban meshes, which includes both object-level and part-level semantics.

• Research questions:

1. Which semantic objects and parts can be precisely identified by humans
and computers from the triangular facets and texture images in urban
textured meshes?

2. What 3D semantic segmentation methods are suitable for performance
evaluation in urban semantic meshes?

II. Urban textured mesh annotation framework

• Objective: Design and develop an interactive 3D annotation tool that enables
semi-automatic semantic labeling for mesh facets and texture pixels of urban
textured meshes.

• Research questions:

1. How can an interactive annotation user interface be designed for urban

5
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textured meshes?

2. How can we develop a semi-automatic annotation framework that
leverages existing annotated data to predict and correct unannotated
regions?

3. How can we achieve an efficient selection of 3D objects and parts in
urban textured meshes with minimal user interaction?

4. How can regions of interest be efficiently selected in the mesh textures?

III. Semantic segmentation of large-scale urban textured meshes

• Objective: Develop fully automatic semantic mesh segmentation algorithms for
large-scale urban scenes.

• Research questions:

1. How can a deep learning framework be developed for semantic
segmentation of large-scale urban meshes?

2. How can the generalizability of deep learning be enhanced for 3D
semantic segmentation tasks?

3. How to obtain sufficient contextual information for semantic
segmentation?

IV. Applications of the semantic urban meshes

• Objective: Develop a semantic-based lightweight city model reconstruction
framework and explore other related practical applications.

• Research questions:

1. How can semantic information from textured meshes be utilized for
lightweight reconstruction of 3D city models?

2. What applications can be developed using urban meshes and lightweight
models equipped with object and part-level semantics?

1.4. Thesis outline

The thesis is organized into seven chapters. Chapter 1 introduces the topic, and the
subsequent chapters each address a specific aspect of the research:

• Chapter 2 introduces the principles of urban 3D reconstruction, focusing on
the 3D reconstruction pipeline that transforms images into textured meshes. It
also covers recent advances in interpreting and encoding urban models and

6
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1discusses the role of semantic information in 3D urban applications

• Chapter 3 is dedicated to creating a benchmark dataset for the semantic mesh
of urban objects. It begins with an overview of existing datasets and detailed
specifications of the input mesh dataset. The chapter then presents a basic
annotation framework for efficient ground truth semantic mesh generation
at the object level of semantics, including a semi-automatic mesh labeling
framework and an automatic semantic mesh segmentation algorithm. The
created dataset covers approximately 4 km2 of the Helsinki center and is used
to evaluate state-of-the-art 3D semantic segmentation methods.

• Chapter 4 introduces the proposed semantic mesh segmentation algorithm
for large-scale urban objects, summarizing recent research on segmentation
of 3D urban data. The chapter presents a solution for processing large-scale
urban meshes using planarity-sensible over-segmentation and a novel graph for
capturing contextual information. Additionally, a feature embedding module
is introduced to integrate handcrafted and learned features. Classification
is performed using a graph convolutional network, and the performance is
evaluated on the benchmark dataset.

• Chapter 5 focuses on an annotation framework designed for efficient part-level
semantic segmentation of large-scale urban textured meshes. It aims to reduce
manual effort by incorporating interactive extraction and structure-aware
matching. This interactive framework is aimed at advancing deep learning
methods for urban analysis. Additionally, the chapter presents a novel dataset
for part-level semantic segmentation of large urban scenes, defined by detailed
annotations of specific urban components like chimneys and road markings.
This dataset is rigorously evaluated against leading 3D semantic segmentation
technologies, illustrating its effectiveness in refining deep learning models.

• Chapter 6 extends the exploration of semantic information from urban
textured meshes towards practical applications, detailing a new framework
for reconstructing lightweight 3D city models that ensure geometric integrity,
surface continuity, and semantic retention. Utilizing semantic information for
3D model reconstruction and surface simplification, the framework supports
the creation of multi-level city models from LoD2 to LoD3. Experiments
conducted on the semantic urban mesh benchmark datasets (SUM) and SUM-
Parts confirm the framework’s effectiveness, surpassing traditional methods
in efficiency and accuracy. These lightweight models facilitate advanced
urban applications, enhancing automation in measurements and realism
in simulations, showcasing the potential of semantic-rich city models in
real-world scenarios.

• Chapter 7 provides a comprehensive summary of the research conducted
in this study, including the contributions, key findings, and reflections. It
also offers recommendations for future research directions to build upon the
current work and further advance the field of 3D urban modeling and analysis.
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2
Fundamentals of urban 3D

reconstruction

This chapter outlines the foundational principles and concepts related to 3D urban
reconstruction. It details the principles of input data generationspecifically, the 3D
reconstruction pipeline that transforms images into textured meshes. Additionally, this
chapter discusses the latest advancements in techniques for interpreting, reconstructing,
and encoding city models within extensive urban environments, as well as the role of
semantic information in 3D urban applications.
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2.1. Textured mesh generation

2.1. Textured mesh generation

Textured mesh generation is a fundamental task in 3D computer vision and
photogrammetry, which aims to reconstruct the 3D geometry of an object or scene
from 2D images. The pipeline for textured mesh generation typically consists of five
steps: keypoints detection and matching, structure from motion (SfM), multi-view
stereo (MVS), surface reconstruction, and texture mapping.

2.1.1. Keypoints detection and matching

In the first step, keypoints detection and matching algorithms are applied to identify
corresponding points among multi-view images. This involves extracting distinctive
features from the images and matching them across different views.

Figure 2.1: Incremental Structure-from-Motion pipeline. Figure taken from Schönberger and
Frahm, (2016).

Traditional methods such as SIFT [Lowe, 1999] and SURF [Bay et al., 2006] are
commonly used for this task, which typically involves detecting local feature points and
computing descriptors to represent them. In recent years, deep learning-based
approaches have shown superior performance in feature detection and matching, such
as SuperPoint [DeTone et al., 2018] and SuperGlue [Sarlin et al., 2020], which are trained
to directly predict feature points and their correspondences in an end-to-end manner.

2.1.2. Structure from motion

The second step in textured mesh generation involves using structure from motion
techniques to estimate the camera poses and reconstruct a sparse point cloud
(see Figure 2.1). This involves determining the relationship between keypoints in
different views using epipolar geometry constraints, as well as estimating camera
parameters such as focal length and distortion parameters. Bundle adjustment is a key
step in SfM algorithms that optimizes the camera parameters and 3D points by
minimizing the reprojection error between the 2D keypoints and their corresponding
3D points in the reconstructed scene.

SfM algorithms can be categorized into incremental and global methods. Some
well-known SfM systems include Bundler [Snavely et al., 2008; Snavely et al., 2006],
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VisualSFM [C. Wu, 2013; C. Wu et al., 2011], and COLMAP [Schönberger and Frahm,
2016]. Recently, deep learning-based methods have been developed for SfM, such as
DeepSfM [Wei et al., 2020] and SfM-Net [Vijayanarasimhan et al., 2017], which have
shown promising results in improving camera pose estimation and dense point cloud
reconstruction.

In contrast to structure from motion methods, photogrammetry pipelines often employ
aerotriangulation to generate sparse point clouds from aerial imagery [Duane, 1971].
Aerotriangulation involves using ground control points to accurately estimate the
position and orientation of the cameras, which can then be used to triangulate points in
the scene. This approach has the advantage of being able to handle large-scale scenes
and can produce accurate point clouds with minimal user intervention. However, it
requires careful planning and preparation to collect accurate ground control points and
can be sensitive to errors in camera calibration and positioning.

2.1.3. Multi-view stereo

After the sparse point cloud is generated, multi-view stereo algorithms are applied to
densify the point cloud and recover the complete 3D shape of the object. The core
operation of MVS is to estimate the depth of each pixel in the input images, given the
camera poses and sparse point cloud. MVS algorithms can be classified into dense
matching and patch-based methods.

Figure 2.2: Example of textured mesh generation pipeline: input imagery, posed imagery,
reconstructed 3D geometry, textured 3D geometry. Figure taken from Furukawa
and Hernández, (2015).
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Dense matching-based methods aim to find correspondences between pixels in
different images by comparing image patches around each pixel. Classical dense
matching-based methods include PMVS [Furukawa and Ponce, 2010], which performs
multi-view stereo reconstruction based on photometric consistency (see Figure 2.2).
Recent deep learning-based dense matching-based methods, such as
DeepMVS [P.-H. Huang et al., 2018], have shown superior performance in terms of
accuracy and efficiency. However, they require large amounts of training data and
computational resources.

In contrast, patch-based methods divide each image into small patches and attempt
to match these patches across different views. The 3D structure is then reconstructed
by merging the resulting patches. Classical patch-based methods include PatchMatch
Stereo [Michael Bleyer and Rother, 2011], which uses a randomized search strategy to
find correspondences between image patches. Recent patch-based methods, such as
MVSNet [Yao et al., 2018], incorporate deep learning techniques to improve the accuracy
and efficiency of patch-based methods. Patch-based methods are slower but more
memory-efficient and can handle non-Lambertian surfaces better than dense matching-
based methods.

2.1.4. Surface reconstruction

Once the dense point cloud is obtained, surface reconstruction algorithms are applied
to create a mesh representation of the object’s surface (see Figure 2.2). Surface
reconstruction algorithms aim to generate a continuous and smooth surface
representation of the 3D point cloud data by estimating the local surface properties
such as normals, curvature, and connectivity. These algorithms convert a set of
unordered 3D points into a mesh representation, which can be used for visualization,
analysis, and simulations. Surface reconstruction methods can be broadly categorized
as volumetric, implicit, and explicit methods.

Volumetric methods typically convert the point cloud data into a 3D voxel grid and then
extract the surface using techniques such as marching cubes [Lorensen and Cline, 1987].
These methods are computationally efficient but can result in low-quality surfaces due
to voxelization artifacts.

Implicit methods, such as the Poisson surface reconstruction [Kazhdan et al., 2006] and
its variants, represent the surface as the zero-crossing of an implicit function, which is
defined by the point cloud data. These methods generate high-quality surfaces with
fewer artifacts but are computationally expensive.

Explicit methods, such as Delaunay triangulation [D.-T. Lee and Schachter, 1980],
directly generate a mesh representation of the surface by fitting the points to an initial
mesh or constructing a mesh incrementally. While these methods can produce high-
quality meshes, they are often computationally intensive and may result in meshes with
artifacts.
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In recent years, deep learning-based methods have shown promising results in surface
reconstruction tasks. For example, DeepSDF [J. J. Park et al., 2019] learns a signed
distance function that can represent complex surfaces with high accuracy. Deep
marching cubes [Liao et al., 2018] can generate high-quality meshes from 3D point cloud
data with improved efficiency compared to traditional marching cubes. However, these
methods can require a large amount of training data and computational resources for
training and inference.

(a) Gap (with partial overlap) (b) Hole (with islands) (c) Topological noise

Figure 2.3: Examples of three common types of flaws and defects typically found in urban
meshes. Figure taken from Attene et al., (2013).

Despite the advances in surface reconstruction, the generated meshes may contain
errors and artifacts [Attene et al., 2013] due to incomplete or noisy inputs
(see Figure 2.3). To further improve the quality of the reconstructed mesh, various mesh
optimization techniques can be applied, which typically involve iteratively refining the
mesh geometry and connectivity while preserving important surface properties such as
curvature and smoothness [Faugeras and Keriven, 1998; Pons et al., 2007].

It is noteworthy that the mesh dataset used in this thesis is primarily generated by
the commercial software Bentley ContextCapture [Bentley, 2015]. The core surface
reconstruction method [Vu et al., 2012] behind this encompasses the following three
steps:

1. Generation of a Quasidense Point Cloud: Initially, a quasidense point cloud is
created using standard multiview stereo techniques. This forms the foundation for
constructing the 3D model, involving images captured from multiple viewpoints.

2. Extraction of a Mesh that Respects Visibility Constraints: Based on the point
cloud, an initial mesh is constructed through Delaunay triangulation. This mesh
is then adjusted using graph-based optimization methods, such as the minimum
s-t cut algorithm, to more closely resemble the actual 3D surface while respecting
visibility constraints within the scene.

3. Variational Refinement of the Mesh: Finally, this initial mesh is refined through a
variational approach, enhancing its photometric consistency with the image data,
thus improving the details and accuracy of the reconstruction.

This pipeline employs a more efficient and lightweight Lagrangian framework for energy
optimization to enhance processing efficiency for large-scale datasets.
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2.1.5. Texture mapping

Surface reconstruction generates a mesh that approximates the geometric shape of an
object, and the final step in mesh generation is texture mapping, which plays a crucial
role in creating a realistic appearance for the reconstructed object (see Figure 2.2). To
achieve high-quality texture mapping, the selection of the best images to cover the entire
surface of the mesh with high resolution and minimize texture distortion is important.
This process can be done manually [Se and Jasiobedzki, 2006], but it is time-consuming
and error-prone. Alternatively, automatic image selection methods can be used to select
the best images based on several factors such as image quality, resolution, lighting
conditions, and viewpoint coverage [Frueh et al., 2004].

Once the images have been selected, texture mapping involves projecting the 2D texture
images onto the 3D mesh surface. The texture mapping methods can be categorized
into two types: parameterization-based and atlas-based methods. Parameterization-
based methods, such as angle-based flattening (ABF++) [Sheffer et al., 2005] and least
squares conformal maps (LSCM) [Lévy et al., 2002], aim to find a mapping between
the 3D mesh surface and a 2D domain while preserving the texture details. In contrast,
atlas-based methods (see Figure 2.4), such as texture atlas [Purnomo et al., 2004], create
a seamless 2D texture map by partitioning the 3D mesh into several charts and then
mapping them onto a 2D plane. Each method has its own advantages and limitations,
for example, parameterization-based methods may produce distortions, whereas atlas-
based methods may result in seams.

Figure 2.4: An example of Seamless Texture Atlases: where the 3D model is divided into
quadrilateral charts, and the corresponding texture is represented as a flat seamless
atlas. Figure taken from Purnomo et al., (2004).

Another important step in texture mapping is color correction, which aims to balance
the color differences among the input images and create a consistent texture appearance.
This step can be done automatically using color transfer techniques, such as histogram
matching [A. Neumann and L. Neumann, 2005] and color transfer [Gooch et al., 2001]
method, which can achieve good results but may not be effective for complex lighting
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conditions. Deep learning-based methods, such as deep image harmonization [Tsai et
al., 2017] and deep photo style transfer [Luan et al., 2017], have been proposed to address
this issue and can produce high-quality color transfer results.

2.1.6. Summary

In summary, textured mesh generation is a complex and challenging task that requires
the integration of various algorithms and techniques. While traditional methods have
achieved significant success, recent state-of-the-art deep learning-based approaches
have shown great potential in advancing the field. In this research, we use textured
meshes from Helsinki3D [Helsinki, 2019], which are reconstructed via the commercial
software ContextCapture [BENTLEY, 2016] using traditional methods. These meshes
are used as input to extract semantics by leveraging both mesh geometry and texture
information. By combining these two types of information, we aim to achieve more
accurate and robust semantic segmentation of urban textured meshes.

2.2. Large-scale 3D urban modeling

This section on large-scale urban scene modeling covers a range of topics related to the
creation of 3D models of urban environments. The main content of the section includes
the understanding of 3D urban scenes, lightweight modeling, and encoded storage.
Firstly, a critical aspect of understanding 3D urban scenes is applying basic methods for
semantic segmentation of 3D data. These techniques allow for accurate classification
of different elements of the urban environment. Subsequently, lightweight 3D urban
modeling aims to simplify the representation of different object categories in urban
scenes, such as terrain, buildings, vegetation, and infrastructure. This process involves
reducing the complexity of 3D models and making them easier to analyze, manipulate,
and use in various applications. Lastly, the encoded storage of 3D city models introduces
two mainstream 3D urban coding formats, namely CityGML [Gröger and Plümer, 2012;
OGC, 2012] and CityJSON [Ledoux et al., 2019]. These formats provide a standardized
method for storing and sharing 3D urban models, which facilitates collaboration across
different platforms and applications. Overall, the topics covered in this section are
fundamental to the creation of precise and practical 3D models of urban environments.

2.2.1. Urban scene understanding

The understanding of 3D urban scenes has been a highly researched topic in
photogrammetry and computer vision for decades, thanks to the vast potential that 3D
data holds in various fields such as urban planning [Madrazo et al., 2012; Sindram and
Kolbe, 2014], architecture [Benner et al., 2005; Kolbe and Donaubauer, 2021], and
transportation [Geiger et al., 2014]. Semantic information, or the contextual meaning
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and interpretation of 3D data, is critical for extracting meaningful insights from the data
and maximizing its potential.

Figure 2.5: Visualization of Dublin city annotated LiDAR point cloud. Figure taken
from Zolanvari et al., (2019).

Data labeling is the primary method for obtaining semantic information, involving
assigning labels or categories to various elements in the 3D data, such as buildings,
trees, and roads (see Figure 2.5). Manual labeling by professionals is the most accurate
method, as it captures subtle nuances and variations in the scene. However, it can be
time-consuming and expensive for large-scale datasets [Hackel et al., 2017; Serna et al.,
2014]. Semi-automatic labeling combines human expertise with automated algorithms,
making it more efficient and increasing labeling throughput [Patil et al., 2019; Zimmer
et al., 2019]. It requires labeling professionals to possess a higher skill set as they must
instruct and fine-tune the algorithm to accurately segment the data. Fully automatic
labeling methods are the most efficient, but their accuracy is often lower than manual
or semi-automatic labeling methods, especially for complex urban scenes with a high
degree of variability and noise [Q. Hu et al., 2021; Verdie et al., 2015]. Therefore, manual
correction of mislabeled data is essential for accuracy.

In the task of generating semantic labels for large-scale urban scenes, both unsupervised
and supervised methods are commonly employed. Unsupervised methods typically
rely on manual feature design or clustering to segment the data and assign labels to
scenes, as seen in previous works [Verdie et al., 2015]. On the other hand, supervised
methods utilize pre-labeled datasets to learn features and feature distributions and are
capable of predicting labels for unlabeled data. However, recent deep learning-based
supervised methods, such as PointNet [Charles et al., 2017] and PointNet++[Qi et al.,
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2017], require a large volume of labeled data to achieve good performance. Therefore,
they are often used in conjunction with unsupervised methods to refine and improve
labeling accuracy [Landrieu and Boussaha, 2019; Landrieu and Simonovsky, 2018].

In conclusion, labeling 3D data is a complex and challenging task that requires a
combination of human expertise and automated algorithms. Despite its challenges, it
is a fundamental step towards utilizing the vast potential of 3D urban data in various
applications.

2.2.2. Lightweight 3D city model reconstruction

Lightweight 3D city models utilize the minimum number of polygons to accurately
represent solid models or surface models, thereby preserving the original geometric
structure of the input data (see Figure 2.6). In this context, solid models specifically
refer to watertight, 2-manifold 3D solid models, and surface models are defined as
non-closed, 2-manifold polygonal patches. When compared to traditional triangular
meshes, these lightweight 3D models substantially reduce the storage, transmission, and
computational demands in various applications.

(a) Point cloud (b) Triangular mesh (c) Lightweight model

Figure 2.6: Examples of a lightweight building model: (a) shows the input point cloud, where
the color gradient from red to blue represents a decrease in height; (b) depicts
the reconstructed triangular mesh, with black lines indicating the edges of the
triangles; (c) illustrates the lightweight model of a solid building, accompanied by
a polygonized ground surface. The black lines depict the edges of the polygons.

The generation of lightweight 3D city models (see Figure 2.7) has become an essential
aspect of various applications, such as urban planning [Madrazo et al., 2012; Sindram
and Kolbe, 2014], environmental analysis [Leszek, 2015], and virtual reality [Doyle et al.,
1998]. The aim of this process is to create lightweight, simplified, and highly accurate
3D city models, which can significantly reduce the computational costs associated with
their applications, analysis, rendering, and sharing [W. Li et al., 2011].

The main approaches for lightweight 3D city model reconstruction include manual,
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Figure 2.7: 3D city models of Leiden, generated by 3dfier. Figure from Ledoux et al., (2021).

semi-automatic, and fully automatic methods. Manual methods involve the use of
specialized software, such as SketchUp [Trimble, 2000], Autodesk Revit [Autodesk,
2000], or Rhinoceros 3D [Rhinocentre, 1992]. However, for large-scale urban scenes,
this method can be time-consuming. Semi-automatic methods aim to reduce user
interaction by automatically fitting or matching models to the input data on top of the
manual process [Arikan et al., 2013; S. N. Sinha et al., 2008]. Although these methods save
time and effort, they require more sophisticated algorithms and may not be as accurate
as fully manual methods.

Fully automatic methods represent the most advanced approach to 3D urban scene
modeling. These methods generate models entirely from 3D data, which can be divided
into surface fitting, model fitting, and procedure modeling. Surface fitting, akin to
surface reconstruction, focuses primarily on surface-represented categories such as
terrain and roads in urban scenes [K. Kumar et al., 2019; K. Kumar et al., 2018]. However,
surface fitting typically has specific requirements for compact representations. Model
fitting involves matching and fitting input data with simple geometric models, such as
vertices [L. Li et al., 2022], wireframes [Tian et al., 2022], planes [Nan and Wonka, 2017],
cylinders [Du et al., 2019], or predefined models [Xiong et al., 2014]. This method is
usually applicable to objects with complete 3D structures, such as buildings, vegetation,
and urban furniture. Procedure modeling is another fully automatic approach, which
involves the construction of large-scale virtual urban scenes using certain grammar
rules and parameters [I. Demir et al., 2014]. It is suitable for virtual scenes such as
urban design, games, and movies, but it may not accurately model real scenes.
Nevertheless, inverse procedure modeling can be used for real scene modeling, as it can
infer procedural models and parameters from the input geometry and
semantics [Vanegas et al., 2012].
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In conclusion, lightweight 3D city models are crucial for various applications. Yet,
automatically generating accurate and detailed models of complex urban environments
remains a formidable challenge. Although progress has been made in automated
reconstruction algorithms, capturing the intricate details of urban landscapes accurately
continues to be difficult. Further research and development are essential to enhance
the precision and efficiency of these methods, enabling broader and more effective
implementation of 3D models in urban planning, architecture, and beyond.

2.2.3. Encoding 3D city models

With the growth of smart cities and the increasing availability of 3D data, the demand for
3D city models has grown significantly in recent years. These models are used in a wide
range of applications. However, creating and sharing these models can be challenging,
as they can be complex and difficult to work with.

To address this issue, the Open Geospatial Consortium (OGC) developed
CityGML [Gröger and Plümer, 2012; OGC, 2012], an open data model for 3D urban
objects. CityGML provides a standard way to represent and exchange 3D city models,
making it easier to manage and analyze data from various sources and applications. It
enables the integration of data from multiple sources and provides a common language
and framework for storing, exchanging, and sharing 3D city models. Besides, it
supports various geometrical elements (including volumes), attributes attached to
objects, semantics for surfaces with different levels of detail (LoD) (see Figure 2.8), and
texture materials. Despite its benefits, CityGML has some limitations. Its complexity
and large file sizes can make it challenging to use and process. In response to these
challenges, a more lightweight and streamlined version of CityGML, called
CityJSON [Ledoux et al., 2019], has been developed. CityJSON provides a more
accessible and efficient way to store and share 3D city models, making it easier to use
and integrate with other systems.

Figure 2.8: An example of the Level of Detail (LoD) in a CityGML building model: CityGML
2.0 [Gröger and Plümer, 2012; OGC, 2012] defines multiple LoDs ranging from
simple building footprints (LoD1) to detailed models, including interior and exterior
elements (up to LoD4). In CityGML 3.0 [OGC, 2021], LoD4 has been removed,
allowing interior details to be represented in LoD2 or LoD3. Figure taken
from Biljecki et al., (2014).
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Overall, the development of CityGML and CityJSON has significantly contributed to the
standardization and accessibility of 3D city models. As the demand for these models
continues to grow, it is likely that further innovations will be made to improve their
usability and functionality.

2.3. Applications of 3D city models

The growing prevalence of 3D city models is driven by advances in 3D geoinformation
technology, which enhances the creation, analysis, and management of urban
environment data. With the rising popularity of 3D data such as LiDAR and
photogrammetry, as well as the promotion of CityGML and CityJSON 3D urban data
model standards, applications of 3D city models have become more important in
various fields. These applications enable professionals to visualize and interact with
urban data in a more intuitive and immersive way, leading to better decision-making
and improved urban design.

In urban 3D scene applications, 3D city models are often used as base maps, which
contain essential information such as the geometry, color, and semantics of urban
scenes. By combining them with external data such as meteorological data,
environmental monitoring data, and urban surveillance data, complex 3D
computational analyses can be performed, and the results can be displayed through
rendering based on 3D space. These applications can be further divided into two
categories: applications without semantic information and those with semantic
information [Biljecki et al., 2015b; Ross, 2011]. The former refers to 3D city models that
only contain geometry and color information. Related applications can be built on this
basis, such as visualization [Glander and Döllner, 2009; Mao and Ban, 2011; L. Zhang
et al., 2014], virtual touring [Koutsoudis et al., 2007; Santana et al., 2017], geometric
measurement [Wong and Ellul, 2016], and shadow analysis [Alam et al., 2013; Biljecki
et al., 2017]. In the absence of external data, these applications are still useful for basic
purposes. However, with external data, more advanced applications can be performed,
such as flood simulation analysis by combining precipitation data [Amirebrahimi et al.,
2016; Jain et al., 2000], computational fluid dynamics (CFD) analysis of urban scenes by
combining weather data [Kazak et al., 2022; Maragkogiannis et al., 2014; Paen et al.,
2022], and signal strength analysis by injecting GNSS receiver signals [R. Kumar and
Petovello, 2014; L. Wang et al., 2012; L. Wang et al., 2013].

If semantic information is added on the basis of geometry and color, a wider range of
applications can be extended (see Figure 2.9). In the absence of external data, semantic
information can significantly enhance the level of applications, as mentioned above.
For example, based on semantic information, users can display specific geographic
elements [Pantoja-Rosero et al., 2022; Rouhani et al., 2017] such as building windows,
roof superstructures, etc., assist in the advanced geometric measurement of objects
and object components [Over et al., 2010; Ropinski et al., 2005; Soheilian et al., 2013;
Willenborg et al., 2018], such as road length, window, and roof area, building volume,
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etc., and conduct change detection [Pédrinis et al., 2015; Qin, 2014; Sharkawi and
Rahman, 2014] such as comparison of building damage and changes in vegetation area.

(a) (b)

Figure 2.9: Two examples illustrating the application of semantic 3D city models include: (a)
shows the geometric calculation of buildings in the Virtual Singapore dataset (Figure
taken from Authority, (2021)); (b) shows the computation of incoming sunlight in
the VarCity dataset (Figure taken from Vanhoey et al., (2017)).

With external data, more advanced applications can be performed, such as object
attribute display and management based on GIS data [Apollonio et al., 2012; Padsala
and Coors, 2015] (such as building age, function, and type, vegetation quantity, height,
type, etc.), visibility analysis [L. Liu et al., 2010; P. P.-J. Yang et al., 2007] and sunlight
analysis [Besuievsky et al., 2014; Y. Liu et al., 2015; Yasumoto et al., 2012] based on facade
windows, solar potential analysis [Biljecki et al., 2015a; Eicker et al., 2014; Santos et al.,
2014] based on roof, permeability analysis [L. Luo et al., 2021; C. Wang et al., 2019] based
on urban low vegetation, air pollution analysis [San José et al., 2012; Uznir et al., 2013]
based on roof chimneys, and automatic driving simulation [Schwab et al., 2020; Wagener
et al., 2022; Wysocki, 2020] based on roads and road markings. Various sensors can also
be combined for real-time detection and prediction, such as traffic detection [Brédif,
2013; Chun et al., 2008; Lothe et al., 2010], intensive crowd detection [Aschwanden et al.,
2009; Q. Zhang and Chan, 2020], infrastructure monitoring [Corongiu et al., 2018; Sofia
et al., 2020], building energy monitoring [Agugiaro et al., 2018; D. Lee et al., 2016], wind
flow simulations [García-Sánchez et al., 2021; Paen et al., 2022], etc.

In conclusion, semantic information can greatly enhance and expand the breadth and
depth of applications based on 3D city models, making it possible to finely manage,
analyze, predict, and make decisions about the city [Biljecki et al., 2015b]. This enables
professionals to obtain valuable insights and make more informed decisions, leading
to better urban design and management. The utilization of 3D city models can also
improve public participation in urban planning by providing an intuitive and interactive
way to understand urban data, promoting transparency and accountability in decision-
making. Additionally, integrating diverse data sources and sensors within these models
supports smart city development. This integration enables real-time monitoring and
analysis of urban activities, ultimately enhancing the quality of life for residents.
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Benchmarking object-level

semantic segmentation*

This chapter delves into object-level semantic understanding within large-scale urban
environments. While deep learning methods for semantic segmentation of textured
meshes can significantly enhance this understanding, they are heavily dependent on the
availability of extensively labeled data. To overcome this limitation, this chapter makes
three key contributions: (1) a new benchmark dataset of semantic urban meshes, (2) a
novel semi-automatic annotation framework, and (3) an annotation tool for 3D meshes.
In particular, our dataset covers about 4 km2 in Helsinki (Finland), with six classes, and
we estimate that we save about 600 h of labeling work using our annotation framework,
which includes initial segmentation and interactive refinement. We also compare the
performance of several state-of-the-art 3D semantic segmentation methods on the new
benchmark dataset. Other researchers can use our results to train their networks: the
dataset is publicly available, and the annotation tool is released as open-source.

*This chapter is based on the paper: Gao, W., Nan, L., Boom, B. and Ledoux, H. (2021). ‘SUM: A benchmark
dataset of Semantic Urban Meshes’. In: ISPRS Journal of Photogrammetry and Remote Sensing 179,
pp. 108–120. ISSN: 0924-2716. DOI: 10.1016/j.isprsjprs.2021.07.008.
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3.1. Introduction

Understanding the urban environment from 3D data (e.g. point clouds and 3D meshes)
is a long-standing goal in photogrammetry and computer vision [Hackel et al., 2017;
Matrone et al., 2020]. The fast recent developments in data acquisition technologies
and processing pipelines have allowed us to collect a great number of datasets on our
3D urban environments. Prominent examples are Google Earth [Google, 2012], textured
meshes covering entire cities (e.g. Helsinki [Helsinki, 2019]), or point clouds covering
entire countries (e.g., the Netherlands AHN [AHN, 2019]). These datasets have attracted
interest because of their potential in several applications, for instance, urban
planning [Czyska and Rubinowicz, 2014; Ran, 2011], positioning and
navigation [Cappelle et al., 2012; Peyraud et al., 2013; Li-Ta et al., 2015], spatial
analysis [Yaagoubi et al., 2015], environmental analysis [Yichuan et al., 2016], and urban
fluid simulation [García-Sánchez et al., 2014].

To effectively understand the urban phenomena behind the data, a large amount of
ground truth is typically required, especially when applying supervised learning-based
techniques, such as a deep Convolutional Neural Network (CNN). The recent
development of machine learning (especially deep learning) techniques has
demonstrated promising performance in semantic segmentation of 3D point
clouds [Charles et al., 2017; Landrieu and Simonovsky, 2018; Thomas et al., 2019].
Textured meshes generated through photogrammetric pipelines from multiview images
can also represent and interpret urban 3D scenes. However, these derivative products
may contain errors that affect the accuracy of semantic segmentation. Nevertheless,
compared to point clouds, a surface representation (in the form of a 3D mesh, often
with textures, see Figure 3.1 and Figure 3.2 for an example) of the urban scene has
multiple advantages: easy to acquire, compact storage, accurate, and with well-defined
topological structures. This means that 3D meshes have the potential to serve as input
for scene understanding. As a consequence, there is an urgent demand for large-scale
urban mesh datasets that can be used as ground truth for both training and evaluating
the 3D semantic segmentation workflows.

In this paper, we aim to establish a benchmark dataset of large-scale urban meshes
reconstructed from aerial oblique images. To achieve this goal, we propose a
semi-automatic mesh annotation framework that includes two components: (1) an
automatic process to generate intermediate labels from the raw 3D mesh and (2)
manual semantic refinement of those labels. For the intermediate label generation step,
we have developed a semantic mesh segmentation method that classifies each triangle
into a pre-defined object class. This semantic initialization allows us to achieve an
overall accuracy of 93.0% in the classification of the triangle faces in our dataset, saving
significant efforts for manual labeling. Then, in the semantic refinement step, a mesh
annotation tool (which we have developed) is used to refine the semantic labels of the
pre-labeled data (at the triangle and segment levels).

We have used our proposed framework to generate a semantic-rich urban mesh dataset
consisting of 19 million triangles and covering about 4 km2 with six object classes
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Figure 3.1: Part of the semantic urban mesh benchmark dataset shown as a textured mesh

commonly found in an urban environment: terrain, high-vegetation, building, water,
vehicle, and boat (see Figure 3.2 shows an example from our dataset). With our semi-
automatic annotation framework, generating the ground truth took only about 400
hours; we estimate that manually labeling the triangles would have taken more than
1000 hours. The contributions of our work are:

• a semantic-rich urban mesh dataset of six classes of common urban objects with
texture information;

• a semi-automatic mesh annotation framework consisting of two parts: a pipeline
for semantic mesh segmentation and an annotation tool for semantic refinement;

• a comprehensive evaluation and comparison of the state-of-the-art semantic
segmentation methods on the new dataset.
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Figure 3.2: Part of the semantic urban mesh benchmark dataset, showing the semantic classes
(unclassified regions are in black)

The benchmark dataset is freely available, and the semantic mesh segmentation
methods and the annotation software for 3D meshes are released as open-source1.

3.2. Related work

Urban datasets can be captured with different sensors and reconstructed with different
methods, and the resulting datasets will have different properties. Most benchmark
urban datasets focus on point clouds, whereas our semantic urban benchmark dataset

1https://3d.bk.tudelft.nl/projects/meshannotation/
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is based on textured triangular meshes.

The input of the semantic labeling process can be raw or pre-labeled urban datasets
such as the automatically generated results from over-segmentation or semantic
segmentation (see subsection 3.3.3). Regardless of the input data, it still needs to be
manually checked and annotated with a labeling tool, which involves selecting a correct
semantic label from a predefined list for each triangle (or point, depending on the
dataset) by users. In addition, some interactive approaches can make the labeling
process semi-manual. However, unlike our proposed approach, the labeling work of
most of the 3D benchmark data does not take full advantage of over-segmentation and
semantic segmentation on 3D data and interactive annotation in the 3D space.

We present in this section an overview of the publicly available semantic 3D urban
benchmark datasets categorized by sensors and reconstruction types (see Table 3.1).
More specifically, we elaborate on the quality, scale, and labeling strategy of the existing
urban datasets regarding semantic segmentation.

3.2.1. Photogrammetric products

Dense point clouds. The Campus3D [X. Li et al., 2020] is, to our knowledge, the first
aerial point cloud benchmark. The coarse labeling is conducted in 2D projected images
with three views, and the grained labels are refined in 3D with user-defined rotation
angles. The dataset covers only the campus of the National University of Singapore and
is thus not representative of a typical urban scene.

SensatUrban [Q. Hu et al., 2021] is another example of the photogrammetric point
clouds covering various urban landscapes in two cities of the UK. The semantic points
are manually annotated via the off-the-shelf software tool CloudCompare [Girardeau-
Montaut, 2016], and the overall annotation is reported to have taken around 600 hours.
The dataset also contains several areas without points, especially for water surfaces and
regions with dense objects. The leading causes are the Lambertion surface assumption
during the image matching and the inadequate image overlapping rate during the flight.

Similarly, the Swiss3DCities [Can et al., 2021] was recently released that covers three cities
in Zurich but twice smaller than the SensatUrban. The annotation work was conducted
on a simplified mesh in the software Blender [Foundation, 2002], and then the semantics
were transferred to the mesh vertices, which are regarded as point clouds, via the nearest
neighbor search. The mesh simplification may result in the loss of small-scale objects
such as building dormers and chimneys, and the automatic transfer of the labels could
have introduced errors in the ground truth.

Triangle meshes. To the best of our knowledge, the ETHZ RueMonge
2014 [Riemenschneider et al., 2014] is the first urban-related benchmark dataset
available as surface meshes. The label for each triangle is obtained from projecting

27



3

3.2. Related work

N
am

e
P

latfo
rm

s
Year

D
ata

Typ
e

A
rea

a/
Len

gth
C

lasses
P

o
in

ts
/

Trian
gles

R
G

B
A

u
to

m
atic

P
re-lab

ellin
g

A
n

n
o

tatio
n

T
im

e
C

o
st(h

o
u

rs)

O
aklan

d
3D

M
LS

2009
P

o
in

tC
lo

u
d

1.5
k

m
5

1.6
M

N
o

N
o

3D
M

an
u

ally
N

o
trep

o
rted

P
aris-ru

e-M
ad

am
e

M
LS

2014
Po

in
tC

lo
u

d
0.16

k
m

17
20

M
N

o
2D

sem
an

tic
segm

en
tatio

n
3D

Sem
i-m

an
u

ally
N

o
trep

o
rted

iQ
m

u
lu

s
M

LS
2015

Po
in

tC
lo

u
d

10
k

m
8

300
M

N
o

N
o

2D
Sem

i-m
an

u
ally

N
o

trep
o

rted
Sem

an
tic3D

T
LS

2017
Po

in
tC

lo
u

d
-

8
4000

M
Yes

N
o

2D
&

3D
Sem

i-m
an

u
ally

N
o

trep
o

rted
P

aris-L
ille-3D

M
LS

2018
Po

in
tC

lo
u

d
1.94

k
m

9
143

M
N

o
N

o
3D

M
an

u
ally

N
o

trep
o

rted
Sem

an
ticK

IT
T

I
M

LS
2019

Po
in

tC
lo

u
d

39.2
k

m
25

4549
M

N
o

N
o

3D
M

an
u

ally
1700

To
ro

n
to

-3D
M

LS
2020

Po
in

tC
lo

u
d

1.0
k

m
8

78.3
M

Yes
N

o
3D

M
an

u
ally

N
o

trep
o

rted
ISP

R
S

A
LS

2012
Po

in
tC

lo
u

d
0.1

k
m

2
9

1.2
M

N
o

N
o

3D
M

an
u

ally
N

o
trep

o
rted

A
H

N
3

A
LS

2019
Po

in
tC

lo
u

d
41,543

k
m

2
4

415.43
B

b
N

o
3D

sem
an

tic
segm

en
tatio

n
3D

M
an

u
ally

N
o

trep
o

rted

D
u

b
lin

C
ity

A
LS

2019
Po

in
tC

lo
u

d
2.0

k
m

2
13

260
M

N
o

N
o

3D
M

an
u

ally
2500

D
A

L
E

S
A

LS
2020

Po
in

tC
lo

u
d

10.0
k

m
2

8
505.3

M
N

o
3D

sem
an

tic
segm

en
tatio

n
3D

M
an

u
ally

N
o

trep
o

rted

L
A

SD
U

A
LS

2020
Po

in
tC

lo
u

d
1.02

k
m

2
5

3.12
M

N
o

N
o

3D
M

an
u

ally
N

o
trep

o
rted

E
T

H
Z

R
u

eM
o

n
ge

A
u

to
-m

o
b

ile
cam

era
2014

M
esh

0.7
k

m
9

1.8
M

(low
res) c

Yes
(p

er
vertex) d

2D
over-segm

en
tatio

n
2D

Sem
i-m

an
u

ally
230

(701
fram

es) e

C
am

p
u

s3D
U

AV
cam

era
2020

Po
in

tC
lo

u
d

1.58
k

m
2

14
937.1

M
Yes

N
o

2D
&

3D
M

an
u

ally
N

o
trep

o
rted

Sen
satU

rb
an

U
AV

cam
era

2020
Po

in
tC

lo
u

d
6

k
m

2
13

2847.1
M

Yes
N

o
3D

M
an

u
ally

600
Sw

iss3D
C

ities
U

AV
cam

era
2020

P
o

in
tC

lo
u

d
2.7

k
m

2
5

226
M

Yes
N

o
3D

M
an

u
ally

(o
n

m
esh

)
144

(1
M

Trian
gles) f

H
essigh

eim
3D

U
AV

Lid
ar

&
cam

era
2021

Po
in

tC
lo

u
d

&
M

esh
0.19

k
m

2
11

125.7
M

/
36.76

M
g

Yes
(textu

re) h
N

o
3D

M
an

u
ally

i
N

o
trep

o
rted

SU
M

-H
elsin

ki(O
u

rs)
A

irp
lan

e
cam

era
2021

M
esh

4
k

m
2

6
19

M
Yes

(textu
re) h

3D
over-segm

en
tatio

n
&

3D
sem

an
tic

segm
en

tatio
n

3D
Sem

i-m
an

u
ally

400

a
T

h
e

area
w

as
m

easu
red

in
a

2D
m

ap.
b

T
h

e
n

u
m

b
er

o
fto

talp
o

in
ts

(i.e.,415.43
b

illio
n

)
is

estim
ated

.
c

T
h

e
low

-reso
lu

tio
n

m
esh

es
co

n
tain

1.8
m

illio
n

trian
gle

faces,acco
rd

in
g

to
th

e
p

u
b

licatio
n

s.
d

A
n

R
G

B
co

lo
r

w
as

assign
ed

to
each

trian
gle

vertex.
e

T
h

e
fram

es
w

ere
fro

m
vid

eo
seq

u
en

ces.
fA

b
o

u
to

n
e

m
illio

n
trian

gles
(16

tiles)
fro

m
sim

p
lifi

ed
m

esh
w

ere
lab

eled
,w

h
ich

to
o

k
aro

u
n

d
6

to
12

h
o

u
rs

p
er

tile.
g

T
h

e
n

u
m

b
er

o
fLiD

A
R

p
o

in
ts

is
125.7

m
illio

n
an

d
th

e
n

u
m

b
er

o
ftrian

gle
faces

is
36.76

m
illio

n
.

h
T

h
e

co
lo

r
o

feach
trian

gle
face

co
rresp

o
n

d
s

to
a

p
atch

o
fth

e
textu

re
im

age.
iT

h
e

LiD
A

R
p

o
in

tclo
u

d
s

w
ere

m
an

u
ally

an
n

o
tated

an
d

th
e

lab
els

w
ere

tran
sferred

to
th

e
m

esh
.

Table
3.1:Com

parison
ofexisting

3D
urban

benchm
ark

datasets,including
O

akland
3D

[M
unoz

et
al.,2009],Paris-rue-M

adam
e

[Serna
et

al.,
2014],iQ

m
ulus[Valletetal.,2015],Sem

antic3D
[H

ackeletal.,2017],Paris-Lille-3D
[Roynard

etal.,2018],Sem
anticK

IT
T

I[Behley
etal.,2019],Toronto-3D

[Tan
etal.,2020],ISPRS

[N
iem

eyeretal.,2014],AH
N

3
[AH

N
,2019],D

ublinCity
[Zolanvarietal.,2019],

D
ALES

[Varney
et

al.,
2020],

LASD
U

[Ye
et

al.,
2020],

ET
H

Z
RueM

onge
[Brostow

et
al.,

2009;
Riem

enschneider
et

al.,
2014],

Cam
pus3D

[X.Lietal.,2020],SensatU
rban

[Q
.H

u
etal.,2021],Sw

iss3D
Cities

[Can
etal.,2021],and

H
essigheim

3D
[Kölle

etal.,
2021;Laupheim

eret
al.,2020]

28



3. Benchmarking object-level semantic segmentation

3

selected images that are manually labeled from over-segmented image
sequences [Brostow et al., 2009]. In fact, due to the error of multi-view optimization and
the ambiguous object boundary within triangle faces, the datasets contain many
misclassified labels, making them unsuitable for training and evaluating supervised
learning algorithms.

Hessigheim 3D [Kölle et al., 2021; Laupheimer et al., 2020] is a small-scale semantic
urban dataset consisting of highly dense LiDAR point clouds and high-resolution
textured meshes. In particular, the mesh is generated from both LiDAR point cloud and
oblique aerial images in a hybrid way. The labels of point clouds are manually
annotated in CloudCompare [Girardeau-Montaut, 2016], and the labels of the mesh are
transferred from the point clouds by computing the majority votes per triangle.
However, if the mesh triangle has no corresponding points, some faces may remain
unlabelled, which results in about 40% unlabelled area. In addition, this dataset
contains non-manifold vertices, which makes it difficult to use directly.

3.2.2. LiDAR point clouds

Unlike photogrammetric point clouds, LiDAR point clouds usually do not contain color
information. To annotate them properly, additional information is often required, e.g.
images or 2D maps. LiDAR point cloud benchmark datasets are more common than
photogrammetric ones.

Street-view datasets. The Oakland 3D [Munoz et al., 2009] is one of the earliest mobile
laser scanning (MLS) point cloud datasets, which was designed for the classification of
outdoor scenes. It has five hand-labeled classes with 44 sub-classes but without color
information and semantic categories like roof, canopy, or interior building block, which
are typical for all street-view captured datasets.

Compared to Oakland 3D, Paris-rue-Madame [Serna et al., 2014] is a relatively smaller
dataset that used the 2D semantic segmentation results for 3D annotation. Specifically,
the point clouds were projected onto images to extract the objects hierarchically with
several unsupervised segmentation and classification algorithms. Although the 2D pre-
labelled generation is fully automatic, different semantic categories require different
segmentation algorithms resulting in difficulties in the classification of multiple classes.

The iQmulus dataset [Vallet et al., 2015] is a 10 km street dataset annotated based on
projected images in the 2D space. Specifically, the user first needs to extract objects
by editing the image with a polyline tool and then assign labels to the extracted object
regions. Some automatic functions are made for polyline editing in this framework, but
the entire annotation pipeline is still complicated.

Unlike other street view datasets, Semantic3D [Hackel et al., 2017] is a dataset consisting
of terrestrial laser scanning (TLS) point clouds (the scanner is not moving and scans
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are made from only a few viewpoints). It has eight classes, and colors were obtained
by projecting the points onto the original images. There are two annotation methods:
(1) annotating in 3D with an iterative model-fitting approach on manually selected
points; (2) annotating in a 2D view by separate background from a drawn polygon in
CloudCompare [Girardeau-Montaut, 2016]. Although it covers many urban scenes and
includes RGB information, the acquired objects are incomplete because of the limited
viewpoints and occlusions.

The other three typical MLS point cloud datasets that were manually labeled are Paris-
Lille-3D [Roynard et al., 2018], SemanticKITTI [Behley et al., 2019], and Toronto-3D [Tan
et al., 2020].

Aerial-view datasets. As for ALS benchmark point clouds, representative datasets are
ISPRS [Niemeyer et al., 2014], DublinCity [Zolanvari et al., 2019], and LASDU [Ye et
al., 2020] covering various scales of city landscapes and were annotated manually
with off-the-shelf software. Instead of fully manual annotation, the Dayton Annotated
LiDAR Earth Scan (DALES) [Varney et al., 2020] used digital elevation models (DEM)
to distinguish ground points with a certain threshold, the estimated normal to label
the building points roughly, and satellite images to provide contextual information as
references for annotators to check and label the rest of data. Similarly, the AHN3
dataset [AHN, 2019] was semi-manually labeled by different companies with off-the-
shelf software. Besides, since the ALS measurement is conducted in the top view
direction, unlike oblique aerial cameras, the obtained point clouds often miss facade
information to a certain degree.

3.3. The semantic urban mesh dataset

3.3.1. Dataset specification

We have used Helsinki’s 3D textured meshes as input and annotated them as a
benchmark dataset of semantic urban meshes. Helsinki’s raw dataset covers about 12
km2, and it was generated in 2017 from oblique aerial images that have about a 7.5 cm
ground sampling distance (GSD) using an off-the-shelf commercial software, namely
ContextCapture [BENTLEY, 2016]. The source images have three color channels (i.e.,
red, green, and blue) and are collected from an airplane with five cameras that have
80% length coverage and 60% side coverage. To recover the 3D water bodies that do not
fulfill the Lambertian hypothesis, 2D vector maps and ortho-photos are used when
performing the surface reconstruction. Furthermore, processing like aerial
triangulation, dense image matching, and mesh surface reconstruction were all
performed with ContextCapture. It should be noticed that the entire region of Helsinki
is split into tiles, and each of them covers about 250 m2 [KIGA-digi, 2019]. As shown
in Figure 3.3, we have selected the central region of Helsinki as the study area, which
includes 64 tiles and covers about 4 km2 map area (8 km2 surface area) in total.
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3.3.2. Object classes

We define the semantic categories for urban meshes by the most common objects in
the urban environment with unambiguous geometry and texture appearance. Moreover,
each triangle face is assigned to a label of one of the six semantic classes. Ambiguous
regions (which account for about 2.6% of the total mesh surface area), such as shadowed
regions or distorted surfaces, are labeled as unclassified (see Figure 3.4). The object
classes we consider in the benchmark dataset are:

• terrain: roads, bridges, grass fields, and impervious surfaces;

• building: houses, high-rises, monuments, and security booths;

• high vegetation: trees, shrubs, and bushes;

• water: rivers, sea, and pools;

• vehicle: cars, buses, and lorries;

• boat: boats, ships, freighters, and sailboats;

• unclassified: incomplete objects like buses and trains, distorted surfaces like
tables, tents and facades, construction sites, and underground walls.

Figure 3.3: Overview of the semantic urban mesh benchmark: the left one shows the textured
meshes covering about 4 km2 map area; the right one shows the ground truth
meshes. More views of the same scene (with different visualization styles) are
shown in Figure 3.1 and Figure 3.2.
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(a) (b)

(c) (d)

Figure 3.4: Ambiguous regions are labeled as unclassified (in black): (a) shows a shadow region
with texture; (b) depicts a shadow region with semantic color; (c) shows a distorted
region with texture; (d) illustrates a distorted region with semantic color.

3.3.3. Semi-automatic mesh annotation

Rather than manually labeling each triangle face of the raw meshes, we design a semi-
automatic mesh labeling framework to accelerate the labeling process. Figure 3.5 shows
the overall pipeline of our labeling workflow.

Given the fact that urban environments consist of a large number of planar regions in
the data, we opt to label the data at the segment level instead of individual triangle faces.
Specifically, we over-segment the input meshes into a set of planar segments. These
segments can enrich local contextual information for feature extraction and serve as the
basic annotation unit to improve annotation efficiency.

Instead of randomly choosing a mesh tile as input for annotation and refinement, which
is insufficient for manual annotation progress, we favor picking a mesh tile that is more
difficult to classify. Similar to active learning, we first compute the feature diversity
(see Equation 3.1) to optimally select a mesh tile containing a variety of classes and
objects at different scales and complexity. The feature diversity Fm of tile m is computed
as

Fm =
∑N f

i=1

(
fi − f̄

)2

N f
(3.1)
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Figure 3.5: The pipeline of the labeling workflow

where fi represents each handcrafted feature described in ’Initial segmentation’, and f̄ is
the mean value of a N f dimensional feature vector. To acquire the first ground truth data,
we manually annotate the mesh (with segments) that is selected with the highest feature
diversity. Then, we add the first labeled mesh into the training dataset for the supervised
classification. Specifically, we use the segment-based features as input for the classifier,
and the output is a pre-labeled mesh dataset. Next, we use the mesh annotation tool to
manually refine the pre-labeled mesh according to the feature diversity. Finally, the new
refined mesh will be added to the training dataset to improve the automatic classification
accuracy incrementally.

Initial segmentation. To avoid redundant computations of numerous triangles, we
first apply mesh over-segmentation (i.e., linear least-squares fitting of planes) based on
region growing on the input data to group triangle faces into homogeneous
regions [Lafarge and Mallet, 2012]. Such grouped regions are beneficial for computing
local contextual features. We then extract both geometric and radiometric features from
those mesh segments as follows:

• Eigen-based features are computed from the covariance matrix of the triangle
vertices with respect to the average centre within each segment, which is beneficial
for identifying urban objects with various surface distributions. The linearity
= (λ1 −λ2)/λ1, sphericity = λ3/λ1 and change of curvature = λ3/(λ1 +λ2 +λ3)
are computed based on the three eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ 0. The local
eigenvectors ni and the unit normal vector nz along Z-axis are used to compute
the verticality = 1 − |ni ·nz | [Hackel et al., 2016]. Note that many eigen-based
features have been studied in literature [Hackel et al., 2016; Weinmann et al.,
2013; West et al., 2004], and some of them were designed for and tested on LiDAR
point clouds. These eigen-based features are mostly computed per point based
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on its spherical neighborhood, which often contains noise and does not form a
surface. Our chosen eigen-based features are defined on a segment representing
the surface of a mesh, and thus they can capture non-local geometric properties of
an object. Additionally, in this work, we have tested all eigen-based features from
the literature [Hackel et al., 2016], and we only present the ones that are effective
for textured meshes.

• Elevation is divided into absolute elevation za , relative elevation zr and multiscale
elevations zm . Where za is the average elevation of the segment; the relative
elevation is computed as zr = za − zrmi n ; the multiscale elevation [Rouhani et al.,

2017; Verdie et al., 2015] is defined as zm =
√

za−zmi n
zmax−zmi n

. And zrmi n denotes the

lowest elevation of the local largest ground segment computed within a cylindrical
neighborhood with 30 meters radius around the segment center. zmi n and zmax

represent the local minimum and maximum elevation values of a cylindrical
neighborhood within the scale of 10 meters, 20 meters, and 40 meters. Such large
cylindrical neighborhoods allow to find the local ground considering the resilience
to hilly environments, and the square root ensures that small relative height values
(i.e., values smaller than 1 m) get a larger elevation attribute to enlarge elevation
differences between small objects and the local ground (e.g., cars against the
ground, boats against the water surfaces). More importantly, due to the influence
of terrain fluctuations and various scales of urban objects, the elevation of these
three categories can complement each other.

• Segment area is computed as ar ea(Sk ) = ∑N
i=1 ar ea( fi ), where fi denotes a

triangle of the segment Sk , and N denotes the total number of triangles in Sk .

• Triangle density is defined as densi t y(Sk ) = N
ar ea(Sk ) , which reveals the object

complexity, especially for adaptive urban meshes.

• Interior radius of 3D medial axis transform (InMAT) [Ma et al., 2012; Peters and

Ledoux, 2016] of a segment Sk is formulated as rk =
∑M

i=1 ri

M , where M denotes the
total number of triangle vertices of Sk , and ri denotes the interior radius of the
shrinking ball that touches the vertex vi within the segment Sk . It is designed to
distinguish objects with different scales.

• HSV color-based features are derived from the RGB channel of the entire texture
map. We use the HSV color space since it can better differentiate different objects
than RGB. We compute the average color, the variance of the color distribution of
all pixels within each segment, and we further discretize it into a histogram that
consists of 15 bins of the hue channel, five bins of the saturation channel, and five
bins of the value channel.

• Greenness ag is used to classify objects that are similar to green
vegetation [McKinnon and Hoff, 2017]. Specifically, it is computed according to
the averaged RGB color of each segment via ag =G −0.39 ·R −0.61 ·B .

34



3. Benchmarking object-level semantic segmentation

3

All the above features are concatenated into a 44-dimensional feature vector used by our
random forest (RF) classifier in the initial segmentation.

Annotation tool for refinement. Because of the under-segmentation errors and the
imperfect results of the semantic mesh segmentation process, we design a mesh
annotation tool (see Figure 3.6) to manually correct the labeling errors. Our mesh
annotation tool is developed based on the labeling tool of CGAL [The CGAL Project,
2024].

Figure 3.6: The interface of our annotation tool for 3D textured meshes

As shown in Table 3.2, it consists of three operation categories: view, selection, and
annotation. The view operations provide essential functions for the user to manipulate
the scene camera, such as translating, rotating, zooming, or setting the new pivot for
the scene. In addition, to use textures as a reference for labeling, we map texture and
face color with a certain degree of transparency, and we visualize the segment border to
differentiate each segment.

The selection operations allow the user to select or deselect either triangle faces
(see Figure 3.7) or segments (see Figure 3.8) freely via a brush or a lasso. Specifically, the
face selection operation is used to fix the under-segmentation errors and generate new
segments, and the segment selection operation is to fix incorrect segment labels.
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Categories Operations Objects

View

Translate Camera
Rotate Camera

Zoom in / out Camera
Set pivot Camera

Selection

Multi-selection / Lasso Triangles / Segments
Expand / Reduce Triangles / Segments

Semantic selection Segments
Split region Segments

Planar region extraction Triangles
Split mesh Triangles

Annotation

Probability slider Segments
Segment area slider Segments

Progress bar Triangles
Switch semantic view Triangles

Labelling Triangles / Segments

Table 3.2: Basic operations in our annotation tool

(a) (b) (c)

Figure 3.7: An example of labelling by selecting triangles using the lasso tool (blue edges:
segment boundaries): (a) shows the input; (b) depicts Lasso selection result (in
red); (c) demonstrates the correct label has been assigned to the selected region.
In this example, the label of the selected region has been changed from ‘ground’ to
‘vehicle’.

We also allow the user to edit the selection of each individual segment with splitting
functions (see Figure 3.9) and automatic extraction of the most planar region
(see Figure 3.10). As for splitting, we first detect the potential planar and non-planar
segments marked by user strokes, and then the non-planar one is split according to the
vertex-to-plane distance. It allows the generating candidate non-planar regions (with
respect to the detected planar segment) for the user to edit, and it is useful to split a
segment that covers large non-planar regions or contains more than one dominant
planar area.

To extract the most planar region, we apply the region growing algorithm [Lafarge
and Mallet, 2012] within the selected segment to automatically generate the candidate
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(a) (b) (c)

Figure 3.8: An example of segment labeling: (a) shows part of a wall of the building was
previously labeled as ‘high vegetation’ (in green); (b) depicts segment selection
results (in red); (c) demonstrates the label of the selected segment has been
corrected with the new label ‘building’.

triangle faces with user-defined thresholds (i.e., the maximum distance to the plane, the
maximum accepted angle, and the minimum region size). Such an operation allows the
user to filter out some small bumpy regions of the selected segment.

(a) (b)

Figure 3.9: An example splitting planar and non-planar regions: (a) illustrates the user draws a
stroke (in red) across the border of the non-planar segment and the planar segment;
(b) shows the detected non-planar segment has been split into two parts (i.e., a
non-planar region shown in red and a planar segment shown in green).

Besides, probability and area-based sliders and a progress bar are provided in the
annotation panel to improve annotation efficiency and experience, respectively.
Specifically, the probability slider is introduced for the user to visually inspect the
segments that are most likely misclassified. Moreover, the user can further use it to
inspect a specific class by switching the view to highlight a specific semantic class. The
segment area slider is used to identify isolated tiny segments, which commonly appear
as errors. The progress bar is used to indicate the estimated labeling progress during
the annotation. After performing the selection, the user can easily assign the
corresponding label to the selected area.
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(a) (b)

Figure 3.10: Editing an individual segment: (a) shows a segment is selected (highlighted in
green) for splitting; (b) demonstrates automatic extraction of the most planar
region (shown in red) within the selected segment according to user-defined
thresholds.

3.4. Experiments

3.4.1. Data split

To perform the semantic segmentation task, we randomly select 40 tiles from the
annotated 64 tiles of Helsinki as training data, 12 tiles as test data, and 12 tiles as
validation data (see Figure 3.11 (a)). For each of the six semantic categories, we compute
the total area in the training and test dataset to show the class distribution. As shown
in Figure 3.11 (b), some classes, like vehicles and boats, only account for less than 5%
of the total area, while the building and terrain together comprise more than 70%. The
unbalanced classes impose significant challenges for semantic segmentation based on
supervised learning.

3.4.2. Evaluation metrics

Since the triangle faces in the meshes have different sizes, we compute the surface area
for semantic evaluation instead of using the number of triangles. The performance of
semantic mesh segmentation is measured in precision, recall, F1 score, and intersection
over union (IoU) for each object class. The evaluation of the whole test area is
applied with overall accuracy (OA), mean per-class accuracy (mAcc), and mean per-class
intersection over union (mIoU).
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(a) (b)

Figure 3.11: Overview of the data used in our experiment: (a) shows the distribution of the
training, test, and validation dataset; (b) shows semantic categories of training
(including validation dataset) and test dataset.

3.4.3. Evaluation of initial segmentation

We have implemented the semantic mesh segmentation and annotation tool in C++
using the open-source libraries, including CGAL [The CGAL Project, 2024], Easy3D [Nan,
2021a], and ETHZ random forest [Walk, 2014].

Our proposed pipeline for initial segmentation only takes a few input parameters, which
are shown in Table 3.3. The over-segmentation is intended to find all planar regions in
the model, for which we set the distance threshold to 0.5 meters. This threshold value
specifies the minimum geometric features we would like the over-segmentation method
to identify. In other words, the region-growing-based over-segmentation method will
not be able to distinguish two parallel planes with a distance smaller than this threshold.
We set the angle threshold to 90 degrees, which is large enough to cope with high levels
of noise (e.g., the distance value is small, but the angle between the triangle normal and
the plane normal is large). Moreover, the minimum area is set to zero to allow planar
segments of any arbitrary size. As for the random forest classifier, we set the parameters
initially to those of Rouhani et al. [Rouhani et al., 2017] followed by fine-tuning using
the validation data. Specifically, using 100 trees is sufficient to guarantee the stability of
the model, and using a depth of 30 is adequate to avoid over-fitting and under-fitting for
training.

Rather than classifying about 19 million triangle faces (i.e., the entire dataset), we use
515,176 segments that are clustered during over-segmentation. Although both semantic
segmentation and labeling refinement can benefit from mesh over-segmentation, the
degree of the under-segmentation error cannot be avoided. Since our mesh over-
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Method Parameters Value

Region Growing

Minimum area 0 m2

Distance to plane 0.5 m
Accepted angle 90◦

Random Forest
Number of trees 100
Maximum depth 30

Table 3.3: Parameters used in our approach

segmentation does not intend to retrieve the individual objects and the purpose is to
perform semantic segmentation, we measure the maximum achievable performance by
calculating the upper bound IoU instead of using under-segmentation errors to evaluate
it. In other words, the upper bound IoU indicates the perfect classification results
of each segment. The upper bound IoU of each class we could achieve for semantic
segmentation is presented in Table 3.4, and the upper bound mean IoU (mIoU) over all
classes is about 90.9% as shown in Table 3.5. In addition, the results of our experiment
in Table 3.4 and Table 3.5 are reported based on the average performance of ten times
experiments with the same configuration.

Class Precision (%) Recall (%) F1 scores (%) IoU (%)
Upper

bound IoU
(%)

Terrain 87.7 94.3 90.9 83.3 93.9
High Vegetation 96.3 93.8 95.0 90.5 96.2

Building 94.6 97.7 96.1 92.5 99.0
Water 97.0 88.3 92.5 86.0 92.7

Vehicle 77.9 41.7 54.4 37.3 73.2
Boat 77.9 7.5 13.7 7.4 90.5

Table 3.4: Overall evaluation of our method. The Upper bound IoU refers to the maximum
achievable IoU in theory.

For semantic segmentation, a detailed evaluation of each class is listed in Table 3.4, and
we achieve about 93.0% overall accuracy and 66.2% mIoU as shown in Table 3.5. The
qualitative evaluation of it is shown in Figure 3.12. As shown in Figure 3.12 (e), most of
the prediction errors occur at small-scale objects such as vehicles and boats due to fewer
training samples and errors from over-segmentation.

To better understand the relevance of the features, we measure the feature importance
and perform ablation studies (see Table 3.5). We can observe that the radiometric
features (which account for 62.8%) are more important than geometric ones (which
account for 37.2%). Moreover, after removing individual feature vectors, the
performance will decline, indicating each feature contributes to the best results.
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Model OA (%) mAcc (%) mIoU (%) ∆mIoU (%)

Upper bound (Perfect) 98.1 91.6 90.9
Ours (best) 93.0 70.6 66.2 0.0

Without sphericity 93.0 70.5 66.1 -0.1
Without segment area 92.9 70.5 66.0 -0.2

Without triangle density 92.9 70.4 66.0 -0.3
Without variance HSV 92.9 70.3 65.9 -0.3

Without absolute elevation 93.0 70.2 65.9 -0.3
Without relative elevation 92.9 70.3 65.8 -0.4

Without curvature 92.9 70.2 65.8 -0.4
Without multiscale elevations 92.8 69.8 65.1 -1.1

Without linearity 91.8 66.6 62.0 -4.2
Without greenness 91.9 66.6 61.9 -4.3

Without InMat 91.6 66.4 61.6 -4.6
Without average HSV 91.7 66.1 61.4 -4.8

Without verticality 91.4 66.1 61.3 -4.9
Without HSV histogram bins 91.5 66.0 61.1 -5.1

Table 3.5: Ablation study of the features in our approach. The Upper bound (Perfect) refers
to the maximum achievable performance in theory.

3.4.4. Evaluation of competition methods

To the best of our knowledge, none of the state-of-the-art deep learning frameworks
of 3D semantic segmentation can directly be used on large-scale textured meshes.
Additionally, although the data structures of point clouds and meshes are different, the
inherent properties of geometry in the 3D space of the urban environment are nearly
identical. In other words, they can share the feature vectors within the same scenes.
Consequently, we sample the mesh into colored point clouds (see Figure 3.13) with
a density of about 10 pt s/m2 as input for the competing deep learning methods. In
particular, we use Montecarlo sampling [Cignoni et al., 1998] to generate randomly
uniform dense samples, and we further prune these samples according to Poisson
distributions [Corsini et al., 2012] and assign the color via searching the nearest neighbor
from the textures.

To evaluate and compare with the current state-of-the-art 3D deep learning methods
that can be applied to a large-scale urban dataset, we select five representative
approaches (i.e., PointNet [Charles et al., 2017], PointNet++ [Qi et al., 2017],
SPG [Landrieu and Simonovsky, 2018], KPConv [Thomas et al., 2019], and
RandLA-Net [Q. Hu et al., 2020]). We perform all the experiments on an NVIDIA
GEFORCE GTX 1080Ti GPU. Note that these deep learning-based methods downsample
the input point clouds significantly as a pre-processing step. In our experiments, the
point sampling density is limited by the GPU memory, and increasing or decreasing the
sampling density within a reasonable range may lead to slightly different performance.

41



3

3.4. Experiments

(a) Original (b) Segments (c) Predictions (d) Truth (e) Error maps

Figure 3.12: Part of our semantic segmentation results: the first column shows the input
meshes; the second column shows the over-segmentation results; the third column
shows the predicted semantic meshes; the fourth column shows the ground truth
meshes; and the last column shows the error maps (red: errors; green: correct
labels).

It should be noted that no matter how dense the input point clouds are, almost all
state-of-the-art deep learning architectures (such as PointNet, PointNet++, RandLaNet,
KPConv, and SPG, etc.) downsample the input point clouds significantly, and they are
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(a) Textured mesh (b) Wireframe (c) Sampled point cloud

Figure 3.13: Sampling point cloud from textured meshes: our sampled points preserve both
geometric and radiometric information of the original mesh.

still able to learn effective features for classification. Besides, different deep
learning-based point cloud classification frameworks exploit different strategies for
downsampling the input points. In addition, we also compare with the joint
RF-MRF [Rouhani et al., 2017], which is the only competition method that directly takes
the mesh as input without using GPU for computation.

The hyper-parameters of all the competing methods are tuned according to the
validation data to achieve the best results we can acquire. Besides, the results of each
competitive method (see Table 3.6) are demonstrated in average performance based on
ten times experiments with the same setting. From the comparison results, as shown
in Table 3.6, we found that our baseline method outperforms other methods except for
KPConv. Specifically, our approach outperforms RF-MRF with a margin of 5.3% mIoU,
and deep learning methods (not including KPConv) from 16.7% to 29.3% mIoU.
Compared with the KPConv, the performance of our method is much more robust,
which can be observed from Table 3.6 that the standard deviation of our method is close
to zero (i.e., the standard deviation of mIoU of our method is about 0.024%). The reason
is that in our method, we set 100 trees in the random forest to ensure the stability of the
model, but in KPConv, the kernel point initialization strategy may not be able to select
some parts of the point cloud, which leads to the instability of the results. Furthermore,
compared with all deep learning pipelines, our method is conducted on a CPU and uses
much less time for training (including feature computation). This can be explained by
the fact that we have fewer input data (triangles versus points), and the time complexity
of our handcrafted features computation is much lower than the features learned from
deep learning.

3.4.5. Evaluation of annotation refinement

Following the proposed framework, a total of 19,080,325 triangle faces have been
labeled, which took around 400 working hours. Compared with a triangle-based
manual approach, we estimate that our framework saved us more than 600 hours
of manual labor. Specifically, we have measured the labeling speed with these two
different approaches on the same mesh tile consisting of 309,445 triangle faces and 8,033
segments. It took around 17 hours for manual labeling based on triangle faces, while
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ś
2.1

46.1
ś
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ś
0.0

1.1
K

P
C

o
n

v
[T

h
o

m
as

etal.,2019]
86.5

88.4
92.7

77.7
54.3

13.3
68.8

ś
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with our segment-based semi-automatic approach, it took only 6.5 hours.

We also evaluate the performance of semantic segmentation with different amounts
of input training data on our baseline approach with the intention of understanding
the required amount of data to obtain decent results. Specifically, we use ten sets of
different training areas with ten times experiments with the same configuration of each
set, and we linearly interpolate the results as shown in Figure 3.14. From Figure 3.14a,
Figure 3.14b, and Figure 3.14c, we can observe that our initial segmentation method
only requires about 10% (equal to about 0.325 km2) of the total training area to achieve
acceptable and stable results. In other words, using a small amount of ground truth data,
our framework can provide robust pre-labeled results and significantly reduce manual
labeling efforts.

(a) mIoU (b) OA (c) Standard deviation

Figure 3.14: Effect of the amount of training data on the performance of the initial
segmentation method used in the semi-automatic annotation: we repeated the
same experiment ten times for each set of training areas and presented the mean
performance.

3.5. Conclusion

We have developed a semi-automatic mesh annotation framework to generate a large-
scale semantic urban mesh benchmark dataset covering about 4 km2. In particular, we
first used a set of handcrafted features and a random forest classifier to generate the pre-
labeled dataset, which saved us around 600 hours of manual labor. Then, we developed
a mesh labeling tool that allows the users to interactively refine the labels at both the
triangle face and the segment levels. We have further evaluated the current state-of-the-
art semantic segmentation methods that can be applied to large-scale urban meshes,
and as a result, we have found that our classification based on handcrafted features
achieves 93.0% overall accuracy and 66.2% of mIoU. This outperforms the state-of-the-
art machine learning and most deep learning-based methods that use point clouds as
input. Despite this, there is still room for improvement, especially on the issues of
imbalanced classes and object scalability. For future work, we plan to label more urban
meshes of different cities and extend our Helsinki dataset to include parts of urban
objects (such as roofs, chimneys, dormers, and facades). We will also investigate smart
annotation operators (such as automatic boundary refinement and structure extraction),
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which involve more user interactivity and may help reduce further the manual labeling
task.
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Planarity-sensible semantic mesh

segmentation*

Building upon the dataset and tools developed in Chapter 3, this chapter delves deeper
into the semantic segmentation process to enhance the accuracy and efficiency of
interpreting 3D urban environments. Specifically, we introduce a novel deep
learning-based framework to interpret 3D urban scenes represented as textured meshes.
Based on the observation that object boundaries typically align with the boundaries of
planar regions, our framework achieves semantic segmentation in two steps:
planarity-sensible over-segmentation followed by semantic classification. The
over-segmentation step generates an initial set of mesh segments that capture the planar
and non-planar regions of urban scenes. In the subsequent classification step, we
construct a graph that encodes the geometric and photometric features of the segments in
its nodes and the multi-scale contextual features in its edges. The final semantic
segmentation is obtained by classifying the segments using a graph convolutional
network. Experiments and comparisons on two semantic urban mesh benchmarks
demonstrate that our approach outperforms the state-of-the-art methods in terms of
boundary quality, mean IoU (intersection over union), and generalization ability. We
also introduce several new metrics for evaluating mesh over-segmentation methods
dedicated to semantic segmentation, and our proposed over-segmentation approach
outperforms state-of-the-art methods on all metrics.

*This chapter is based on the paper: Gao, W., Nan, L., Boom, B. and Ledoux, H. (2023). ‘PSSNet: Planarity-
sensible Semantic Segmentation of large-scale urban meshes’. In: ISPRS Journal of Photogrammetry and
Remote Sensing 196, pp. 32–44. ISSN: 0924-2716. DOI: 10.1016/j.isprsjprs.2022.12.020.

47



4

4.1. Introduction

4.1. Introduction

Recent advances in photogrammetry and 3D computer vision have enabled the
generation of textured meshes of large-scale urban scenes that contain buildings, trees,
vehicles, etc. [W. Gao et al., 2021; Google, 2012; Helsinki, 2019]. Deriving semantic
information from the mesh models is critical to allowing the use of these meshes in
diverse applications, e.g., energy estimate, noise modelling, and solar
potential [Besuievsky et al., 2018; Biljecki et al., 2015b; Saran et al., 2015].

There exists a large volume of machine learning-based algorithms for the semantic
segmentation of 3D data, and they are designed mainly for 3D point clouds [Charles
et al., 2017; Demantké et al., 2011; Hackel et al., 2016; Qi et al., 2017; Thomas et
al., 2018; Thomas et al., 2019]. A few recent works also address deep learning for
surface meshes [Fu et al., 2021; L. Gao et al., 2019; Hanocka et al., 2019; Selvaraju et
al., 2021] but are limited to individual objects or small indoor scenes (e.g., living room,
kitchen). Unlike point clouds that are usually obtained as the raw input from typical data
acquisition devices, textured meshes (see Figure 4.2a) provide topological information,
have continuous surfaces, yield better visualization, and are lightweight, which makes
them an ideal representation for urban scenes. Surprisingly, the semantic segmentation
of urban meshes has rarely been investigated, [W. Gao et al., 2021; Rouhani et al., 2017;
Verdie et al., 2015] are exceptions.

Figure 4.1: Object boundaries often align with the boundaries of planar regions: the top figures
show planar and non-planar segmentation results; the bottom figures depict the
corresponding ground truth object boundaries (shown as yellow lines).

In this work, we address the semantic segmentation of urban meshes by introducing
a two-step framework using deep learning. Our framework is designed to improve the
following three aspects of semantic segmentation:

1) Segmentation quality. Urban scenes typically contain piecewise regions, which can
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already inspire the separation of man-made objects (e.g., roads, buildings) from organic
objects (e.g., trees). We observe that semantic segmentation algorithms usually perform
well in the interior of large smooth surfaces (including planar surfaces), but that they
perform poorly for the identification of object boundaries. Given the fact that object
boundaries typically align with the boundaries of planar regions (see Figure 4.1), our
framework achieves semantic segmentation by first exploiting a planarity-sensible over-
segmentation step that separates planar and non-planar surface patches.

2) Descriptiveness of geometric features. Existing methods for semantic segmentation
of 3D data commonly rely on features defined on local primitives (i.e., points or
triangles) [Charles et al., 2017; J. Huang et al., 2019; S. Li et al., 2019; Schult et al.,
2020; Weinmann et al., 2015; Weinmann et al., 2013] or segments (i.e., a group of
points or triangles) [Cohen-Steiner et al., 2004; Lafarge and Mallet, 2012; Landrieu
and Simonovsky, 2018; Y. Lin et al., 2018; Rouhani et al., 2017; Verdie et al., 2015].
Features from local primitives are limited to a certain distance in the local neighborhood,
while features used in existing segment-based approaches do not effectively capture
the contextual relationships between segments. Thus, they are less descriptive in
representing the complex shapes of diverse objects and in revealing the relationships
between objects. In our work, by initially decomposing a mesh model into planar and
non-planar segments, both local geometric features of individual segments and global
relationships between segments can be captured.

3) Efficiency. Existing deep learning-based methods for processing 3D data are limited
by the data size, especially for large-scale urban scenes. This has already motivated over-
segmentation for semantic segmentation [Hui et al., 2021; Landrieu and Boussaha, 2019;
Landrieu and Simonovsky, 2018; Weinmann et al., 2015]. Following the spirit of the
previous work for improving efficiency, our over-segmentation facilitates better object
boundaries and strengthens semantic segmentation by distinctive local and non-local
features, which is suitable for the subsequent classification using graph convolutional
networks (GCN).

Besides the two-step semantic segmentation framework, we also introduce several new
metrics for evaluating mesh over-segmentation techniques. We believe the proposed
metrics will further stimulate the improvement of over-segmentation for semantic
segmentation. Experiments on two benchmarks show that our approach outperforms
recently developed methods in terms of boundary quality, mean IoU (intersection over
union), and generalization ability.

In summary, our contributions are 1) a novel mesh over-segmentation approach for
extracting planarity-sensible segments that are dedicated to GCN-based semantic
segmentation; 2) a new graph structure that encodes both local geometric and
photometric features of segments, as well as global spatial relationships between
segments; 3) several novel metrics for evaluating mesh over-segmentation techniques
in the context of semantic segmentation.
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4.2. Related work

While there is a large volume of research on the over-segmentation and semantic
segmentation of urban images [Cordts et al., 2016; M. Yang et al., 2018], we focus in this
sole section on methods designed to process large-scale 3D data, i.e., point clouds and
meshes of urban scenes. Methods specially designed for handling individual objects or
small scenes [Fu et al., 2021; L. Gao et al., 2019; Hanocka et al., 2019; Nan et al., 2012;
Selvaraju et al., 2021] usually do not scale to large-scale urban scenes and thus are not
covered.

4.2.1. Over-segmentation of 3D data

Many methods for over-segmentation of 3D data are inspired by image
over-segmentation algorithms [M.-Y. Liu et al., 2011] and can be divided into four
categories: (1) primitive-based fitting [Ben-Shabat et al., 2018; Lafarge and Mallet, 2012;
Schnabel et al., 2007], (2) graph-based partitioning [Ben-Shabat et al., 2018; Landrieu
and Simonovsky, 2018], (3) local region expansion [Cohen-Steiner et al., 2004; Lafarge
and Mallet, 2012; Y. Lin et al., 2018; Melzer, 2007; Papon et al., 2013; Rouhani et al., 2017;
Vosselman et al., 2017], and (4) learning-based methods [Hui et al., 2021; Landrieu and
Boussaha, 2019]. Over-segmentation often serves as pre-processing for tasks such as
semantic segmentation, instance segmentation, or reconstruction and aims at reducing
the complexity of subsequent tasks by using fewer segments having local homogeneity.
Due to the complexity of real-world scenes and the irregularity of the data, it is
challenging to obtain over-segmentation results with a desired number of segments
and clear object boundaries. The aforementioned methods are either limited by the
primitive types (e.g., plane, sphere, and cylinder) or suffer from severe
under-segmentation errors when the number of segments is reduced or by the type of
available labels in the training data (e.g., a few methods require instance labels [Hui
et al., 2021; Landrieu and Boussaha, 2019]). We propose to partition the input meshes
into a relatively small number of homogeneous regions with clear object boundaries
based on both geometric and photometric characteristics (see Section 4.3), which is
beneficial to semantic segmentation (see Section 4.4).

4.2.2. Semantic segmentation of 3D data

An important step in semantic segmentation is feature extraction. Based on the
methods used for feature extraction, semantic segmentation approaches can be roughly
categorized into three groups: handcrafted-feature-based [Demantké et al., 2011; Hackel
et al., 2016; Rouhani et al., 2017; Thomas et al., 2018; Verdie et al., 2015; Vosselman
et al., 2017; Weinmann et al., 2015; Weinmann et al., 2013], learning-based [Charles et
al., 2017; Q. Hu et al., 2020; Lei et al., 2021; Qi et al., 2017; Thomas et al., 2019], and
hybrid methods [Landrieu and Simonovsky, 2018; S.-C. Wu et al., 2021]. Handcrafted
features are often effective when limited training data is available. In contrast, deep-
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learning techniques are more effective when sufficient training data is available [Guo et
al., 2021]. These methods usually require contextual information to compute or learn
features. However, it is difficult to capture effective global contextual features. Inspired
by SPG [Landrieu and Simonovsky, 2018], our graph structure encodes various local
geometric, photometric, and contextual features, and we apply a GCN for semantic
segmentation. Our method exploits enriched spatial relationships in the graph at both
local and global scales, which greatly facilitates the GCN model in capturing contextual
information and learning distinctive features for semantic segmentation.

4.3. Methodology

Our framework for semantic segmentation of urban meshes has two steps (as shown
in Figure 4.2):
Planarity-sensible over-segmentation. This step decomposes the urban mesh into a set
of planar and non-planar surface patches because object boundaries often align with
the boundaries of planar regions. This step not only enhances the descriptiveness of
the features learned through local context but also significantly reduces the number of
segments to be classified.
Segmentation classification. We construct a graph with its nodes encoding the local
geometric and photometric features of the segments and its edges encoding global
contextual features. We achieve semantic segmentation of the mesh by classifying the
segments using a graph convolutional network.

(a) Input mesh (b) Over-segmented mesh (c) Semantic mesh

Figure 4.2: The workflow of our method: we first decompose the input mesh (a) into a set
of planar and non-planar segments (b); then we classify the segments using graph
convolutional networks to obtain the results of semantic segmentation (c). In (b),
the segments are randomly colorized. In (c), the colors are: terrain, building,

high vegetation, water, vehicle, boat.

4.3.1. Planarity-sensible over-segmentation

This step aims to decompose the urban mesh into a set of homogeneous segments in
terms of geometric and photometric characteristics, see Figure 4.3. Compared with
planar segments generated by classical region growing methods [Lafarge and Mallet,
2012], our segments can accommodate more complex surfaces (i.e., trees and vehicles).
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Our over-segmentation, further detailed below, is achieved in two steps: (1) planar and
non-planar classification, and (2) incremental segmentation.

Planar and non-planar classification We classify the triangle faces of a mesh as either
planar or non-planar. Following Gao et al. [W. Gao et al., 2021], we design a set
of features including Eigen-based (i.e., linearity, planarity, sphericity, curvature, and
verticality), elevation-based (i.e., absolute, relative, and multi-scale), scale-based (i.e,
InMAT radius [Ma et al., 2012; Peters and Ledoux, 2016]: interior shrinking ball radius
of 3D medial axis transformation), density-based (i.e., the number of vertices and the
density of triangle faces), and color-based (i.e., greenness and HSV histograms) features,
and we concatenate these features into a feature vector Fi . We then use random forest
(RF) [Geurts et al., 2006] to learn the probability of a face being non-planar as

Gi (L) = 1

|τ|
∑
t∈τ

log
(
Pt (li | Fi )

)
, (4.1)

where τ is a set of decision trees, and the predicted probability from decision tree t is
denoted by Pt ∈ [0,1]. L = {0,1} represents the potential labels of a face i (i.e., li = 0
for planar and li = 1 for non-planar). We learn a probability map (instead of binary
classification) for the subsequent segment aggregation.

Incremental segmentation Grouping all triangles into segments in one step using
graph cuts would require the total number of segments, which is often not a priori.
Therefore, we use the learned planar and non-planar probability maps to incrementally
aggregate the mesh faces into a set of locally homogeneous segments. Inspired by
Lafarge and Mallet [Lafarge and Mallet, 2012], we accumulate faces for a segment by
solving a binary labelling problem. Starting from the face with the highest planar
probability (i.e., the current region r has only a starting face at the beginning), we
incrementally gather its neighboring face i to the current region r based on the labeling
outcome of face i . The growing process is illustrated in Figure 4.4. Our idea is to grow a
region r if its neighboring face i receives the same label. We exploit a Markov Random
Field (MRF) formulation to select the most suitable face for the aggregation in each

(a) Planar segments (b) Planarity-sensible segments

Figure 4.3: 2D illustrative comparison between planar and planarity-sensible segments. Each
dot and its line denote a segment.
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(a) (b) (c) (d) (e)

Figure 4.4: An illustration of the first few steps of incremental segmentation: (a) shows the
seed face with the highest planar probability is shown in gold color; (b) depicts the
local graph is constructed on the seed face (represented by the region node) and its
three neighboring faces (represented by the face node); (c) illustrates the labeling
outcome of the Markov random field (MRF): one newly added face is used as a
seed face, and two non-added faces will be labeled as visited faces for the current
growth step; (d) demonstrates a local graph is constructed based on the growing
region (represented by the region node) and two neighboring faces (represented by
the face node); (e) shows the new labeling outcome, where the newly added two
faces will be used as seed faces for the next growing step.

growing iteration. The energy function U (X ) is defined as the sum of a unary term ψi (xi )
and a pairwise term φi ,r (xi , xr ), i.e.,

U (X ) =λd · ∑
i∈A

ψi (xi )+λm · ∑
i∈A

φi ,r (xi , xr ), (4.2)

where A denotes the neighboring faces of the current growing region (i.e., the faces
directly connected to r ). xi and xr denote the binary labels that will be received by face
i and region r , respectively. A neighboring face can be added to the current region only
if it receives the same label as the current region. In our implementation, we fix the label
of the current region to 0 (i.e., xr ≡ 0) before minimizing the energy function. The face i
is added to r only when xi = 0 after the optimization. λd ≥ 0 and λm ≥ 0 are the weights
balancing the unary and pairwise terms. A larger λd can lead to an excessive number
of segments with smaller under-segmentation errors (see Figure 4.5a and Figure 4.5b).
In contrast, a larger λm can result in fewer segments but may introduce larger under-
segmentation errors (see Figure 4.5c).

The unary term ψi (xi ) measures the penalty of assigning a label xi to a face i . To define
this term, we consider the geometric distance (for planar regions) and the probability
map (for non-planar regions), which is formulated as

ψ(xi ) =
{

min
{
d( fi , pr ),Ci

}
, if xi = 0

1−min
{
d( fi , pr ),Ci

}
, if xi = 1

, (4.3)
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Ci =
{

1−λg ·Gi , if li = 1∧ lr = 1
∞, otherwise

, (4.4)

where d( fi , pr ) measures the Euclidean distance between the farthest vertex of face i and
the fitted plane pr of the region r . The plane is obtained by linear least squares fitting
using all the vertices of the region and dynamically updated when a new face has been
added. During growing, when xi = 0, min

{
d( fi , pr ),Ci

}
measures the cost of assigning

face i the same label as the current region r (i.e., the cost of adding face i to the current
region r ). On the contrary, the cost is measured by 1−min

{
d(vi , pr ),Ci

}
when xi = 1. In

particular, for the planar case, since Ci =∞, the geometric distance d( fi , pr ) is actually
used as the cost measure. For the non-planar case, the prior term Gi (see Equation 4.1)
is considered to define the cost Ci . λg ≥ 0 is a weight that controls the relative numbers
of planar and non-planar segments (see Figure 4.5a and Figure 4.5d).

The pairwise term φi ,r (xi , xr ) is designed to control the smoothness degree during the
growing process,

φi ,r (xi , xr ) =∠(ni ,nr ) ·1(xi 6= xr ), (4.5)

where ni and nr denote the normals of a neighboring triangle face i and the region r ,
respectively. This term encodes the angle between these normal vectors to reduce the
normal deviation within the local neighborhood in the segmentation. 1(xi 6= xr ) is an
indicator function that measures the coherence between xi and xr .

The energy U (X ) is minimized using the α−β swap graph cut algorithm [Boykov et al.,
2001] to accumulate a face for the current segment. The growth of a segment stops if
no more faces can be accumulated. We then restart growing a new segment from the
face with the highest planar probability in the remaining set of faces. The growing of
segments is repeated until all mesh faces have been processed.

4.3.2. Classification

We construct a graph whose nodes encode features of the segments and edges encode
interactions between segments. With this graph, the semantic segmentation of the mesh
is achieved by classifying the segments using GCN.

Node feature embedding In our graph, each node represents a segment, and it encodes
two types of features generated based on the vertices and face centroids of the segment:
1) Fl (sk )256 is learned using PointNet [Charles et al., 2017], and the input to it is a point
cloud of randomly sub-sampled points from mesh vertices and face centroids. The size
of the feature vector is 128×6 and consists of XYZ and RGB; 2) Fh(sk )48 is generated from
the handcrafted feature generator (HFG), and it contains the same type of features used
for planar and non-planar classification (see in subsection 4.3.1) and four additional
shape-based features capturing local geometric differences (see Table 4.1).
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(a) λd = 1, λm = 0, λg = 0 (b) λd = 2, λm = 0, λg = 0

(c) λd = 1, λm = 1, λg = 0 (d) λd = 1, λm = 0, λg = 1

Figure 4.5: The effect of the parameters λd , λm , and λg on the over-segmentation: these
parameters provide control over the size and boundary smoothness of the segments.

Compactness C Pk = 4·π·ar ea(sk )
C (sk )2 Shape Index SIk = C (sk )

4
p

ar ea(sk )

Straightness SDk =
∑m

i=1
λ2
λ3

m Avg Distance Dk =
∑i=1

n di st (pi ,Pk )
n

Table 4.1: Shape-based features defined on segments: C (sk ) is the circumference of a segment
sk . λ2 and λ3 are the eigenvalues derived from the linear fitting line of m boundary
points in 3D [Pearson, 1901]. Avg Distance measures the average distance from n
mesh vertices pi to the supporting plane Pk of the segment.

Edge feature embedding In contrast to graphs defined on 3D points or triangle faces,
graphs defined on certain segmentation of the data can better capture global contextual
relationships than simple adjacency connections. The idea behind the designed graph
is to give more prominence to the segment differences that are usually present in urban
scenarios. To this end, we intend to include global features that fulfill two conditions.
First, the global features should be generalizable, i.e., they can be captured in different
scenarios. Second, the global features should be established between graph nodes that
have large feature differences. To make full use of the planar and non-planar segments
and establish meaningful relationships between the segments, we propose a graph
consisting of the following four types of edges (see Figure 4.6):

55



4

4.3. Methodology

(a) Parallelism edges (b) Connecting-ground edges

(c) ExMAT edges (d) Spatially-proximate edges

Figure 4.6: An illustration of the four types of edges in our graph: each color indicates a
segment encoded as a node (i.e., the colored dot on each segment) in the graph.
The dash lines denote the graph edges. In (c), the blue circles represent the exterior
shrinking balls.

1) parallelism edges: edges connecting parallel planar segments. Two planar
segments are considered parallel if the angle between their supporting planes is
smaller than a threshold (5◦ in our experiments). These edges mainly connect the
planar segments belonging to man-made objects.

2) connecting-ground edges: edges connecting segments and their local ground
planes. A local ground plane is identified as the lowest and largest planar segment
in a cylindrical neighborhood (30 m in our experiments) around the boundary
vertices of the segment. These edges primarily capture the relationship between
the ground and all non-ground objects.

3) exterior medial axis transform (ExMAT) edges. We first build the ExMAT (i.e.,
exterior shrinking ball radius of 3D medial axis transformation) [Ma et al., 2012;
Peters and Ledoux, 2016] on the segments, and we introduce graph edges that link
the segments connected by the exterior shrinking ball (see Figure 4.6c). Since the
external skeleton usually corresponds to the joints between objects, ExMAT edges
allow connecting segments that are adjacent but belong to different objects.

4) spatially-proximate edges. We first build a 3D Delaunay triangulation [Jaromczyk
and Toussaint, 1992] with the input mesh vertices and the centroids of mesh faces.
Two segments are connected by an edge if at least one pair of points from the two
segments are connected by a Delaunay edge. This type of edges allow the encoding
of contextual information on different scales. Particularly, these edges contribute
to capturing the relationships between urban objects from short-range (for objects
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that are close to the ground) to long-range (for objects that are far away from the
ground).

With the above graph edges defined, we establish the edge feature as Fh(ek,k+1) =
log (Fh(sk )/Fh(sk+1)), where sk and sk+1 are the two segments connected by an edge
ek,k+1. We also introduced two additional edge features defined as the mean and
standard deviation of the vertex offsets of the segment boundaries, in which the offset is
defined using the closest point pair between two segments.

Segment classification Based on the graph and feature embedding (see Figure 4.7), we
exploit a GCN [Y. Li et al., 2017] to classify the segments. The node features learned
from PointNet [Charles et al., 2017] and the handcrafted features are concatenated and
fed to MLP (Multilayer perceptron) to output a 64D feature vector that serves as the
hidden state of the Gated Recurrent Unit (GRU: a gating mechanism in recurrent neural
networks for updating and resetting hidden states to capture short-term and long-term
dependencies in sequence) [Cho et al., 2014]. We apply ReLU activation [Nair and
Hinton, 2010] and batch normalization [Ioffe and Szegedy, 2015] for each hidden layer
of all MLPs. The computed edge features are used as the input to the Filter Generating
Network (FGN: a sequence of MLPs with widths of 32, 128, and 64 to output a 64D edge
feature vector) [Landrieu and Simonovsky, 2018]. The output edge weights are then
used to update the hidden state and refine the GRUs via Edge-Conditioned Convolution
(ECC: a dynamic edge-conditioned filter that computes element-wise vector-vector
multiplication for each edge and averages the results over respective nodes) [Simonovsky
and Komodakis, 2017]. To alleviate class imbalance, we apply a standard cross-entropy

loss [Szegedy et al., 2016] ln =−wyn log
exp(xn,yn )∑C
c=1 exp(xn,c )

weighted by wyn =p
N /nc , where x is

the input, and y is the target. N denotes the total number of segments, and nc represents
the number of segments in each class c. The final output is per-segment labels that are
then transferred to the faces of the input mesh.

4.4. Evaluation

4.4.1. Data split

We have implemented our mesh over-segmentation with CGAL [The CGAL Project, 2024]
and Easy3D [Nan, 2021b], and the semantic classification with PyTorch [Paszke et al.,
2019]. All experiments were carried out on a desktop PC with a 3.5GHz CPU and a GTX
1080Ti GPU.

We have used the SUM dataset [W. Gao et al., 2021] and the H3D dataset [Kölle et
al., 2021] to evaluate our method. To the best of our knowledge, SUM is the largest
benchmark dataset for semantic urban meshes, which covers about 4 km2 of Helsinki
(Finland) with six object classes: terrain (terra.), high vegetation (h-veg.), building
(build.), water, vehicle (vehic.), and boat. The whole dataset contains 64 tiles, each
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Figure 4.7: The feature embedding components for segment classification: our network takes
mesh vertices and face centers (with XYZ and RGB) of each segment, denoted
as Fp (sk )6, as input. PointNet [Charles et al., 2017] is used to learn features
Fl (sk )256 for each segment. The handcrafted features Fh (sk )48 are computed using
the feature generator (HFG). These two types of features are then processed jointly
by the MLP and then refined in the GRU. The Fh (ek,k+1)48 are handcrafted edge
features and input to a filter-generating network (FGN). The final classification is
obtained using edge-conditioned convolution (ECC), which takes both node and
edge features as input. The output segment labels L(sk ) are then transferred to
face labels L(i ).

covering a 250 m × 250 m area. Following the SUM baseline, we used 40 tiles (62.5%
of the whole dataset) for training, 12 tiles (18.75%) for the test, and 12 tiles for validation.
The H3D dataset covers about 0.19 km2 area of the village of Hessigheim (Germany) with
11 classes: Low Vegetation, Impervious Surface, Vehicle, Urban Furniture, Roof, Facade,
Shrub, Tree, Soil/Gravel, Vertical Surface, and Chimney. We follow the data splits in
H3D [Kölle et al., 2021], and we further merge small mesh tiles into a large one to obtain
more contextual information.

4.4.2. Evaluation metrics

Metrics for over-segmentation Our over-segmentation aims to produce
homogeneous segments to better facilitate semantic segmentation. We propose three
novel evaluation metrics focusing on the impact of the over-segmentation on the final
semantic segmentation: object purity (OP), boundary precision (BP), and boundary
recall (BR).

Since our goal is semantic segmentation, the best achievable over-segmentation is
identical to the ground truth semantic segmentation. In this ideal situation, each
segment covers exactly an individual object, and its boundaries perfectly align with the
object boundaries. Thus, similar to intersection over union, we define object purity as

OP (S,G) =
∑

k pur i t y(sk ,G)

ar ea(G)
, (4.6)

where S = {sk } denotes the set of segments in our over-segmentation, and G = {gk }
are the segments extracted as connected components from the ground truth semantic
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segmentation. pur i t y(sk ,G) measures the surface area of the largest overlapping region
between a segment and the ground truth segments (see Figure 4.8).

Boundary precision measures the correctness of the segment boundaries. Thus, it is
defined to quantify how much the segment boundaries overlap with the boundaries of
the ground truth semantic segmentation,

BP (BS ,BG ) = leng th(BS ∩BG )

leng th(BS )
, (4.7)

where BS and BG denote the boundaries of the over-segmentation and those of the
ground truth of the semantic segmentation, respectively. The function leng th(·)
quantifies the total length of a set of segment boundaries. To handle noisy and dense
meshes, we allow a tolerance when looking for overlapping boundary edges.
Specifically, two edges e1 and e2 are considered overlapping if the two endpoints of e2

fall within the 2-ring neighborhood of the endpoints of e1 (see Figure 4.8).

Boundary recall measures the completeness of the segment boundaries, defined as

BR(BS ,BG ) = leng th(BS ∩BG )

leng th(BG )
. (4.8)

(a) (b) (c) (d)

Figure 4.8: 2D schematic of object purity, boundary precision, and boundary recall. In (a), the
yellow region represents the ground truth segment G. The blue region represents
the generated segment S. The pink region represents the largest overlapping region
between a segment and the ground truth segments. In (b), the yellow edges
represent the border BG of the ground truth segment. In (c), the blue edges
represent the border BS of the generated segment. The orange edges represent the
first ring of BS . The green edges represent the second ring of BS . In (d), the red
edges are the intersection of BG and BS (as well as its first two rings). The black
dashed line represents the true border between objects.

Metrics for semantic segmentation To evaluate semantic segmentation results, we
measure the precision, recall, F1 score, and intersection over union (IoU) for each object
class, and we also record the overall accuracy (OA), mean accuracy (mAcc), and mean
intersection over union (mIoU) of all object classes.
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4.4.3. Evaluation of over-segmentation

We evaluate over-segmentation on SUM dataset [W. Gao et al., 2021] because it covers a
larger area and contains fewer unlabeled areas compared to H3D dataset [Kölle et al.,
2021]. Figure 4.9 presents our planarity-sensible over-segmentation result and
comparison with seven other commonly used over-segmentation techniques, namely
region growing (RG) [Lafarge and Mallet, 2012], efficient RANSAC (RA) [Schnabel et al.,
2007], geometric partition (GP) [Landrieu and Simonovsky, 2018], supervised
superpoint generation (SSP) [Landrieu and Boussaha, 2019], variational shape
approximation (VSA) [Cohen-Steiner et al., 2004], supervoxel generation (SPV) [Y. Lin
et al., 2018], voxel cloud connectivity segmentation (Vccs) [Papon et al., 2013],
superface clustering (SC) [Verdie et al., 2015], and superface partitioning (SP) [Rouhani
et al., 2017]. RG, VSA, SC, SP, and our method use meshes as input, and the other
methods (originally developed for point clouds) perform over-segmentation on points
that we densely sampled (10 pt s/m2) from the input mesh. We can see from Figure 4.9

(a) Input (b) RG(13656) (c) RA(446424) (d) GP(30586)

(e) SSP(30375) (f) VSA(14177) (g) SPV(53554) (h) Vccs(51199)

(i) SC(85126) (j) SP(92010) (k) Ours (8637) (l) Truth (371)

Figure 4.9: Comparison of mesh over-segmentation methods on a tile of the SUM dataset [W.
Gao et al., 2021]: (b) to (k) show the over-segmentation results with the same
object purity (around 92%) for region growing(RG) [Lafarge and Mallet, 2012],
efficient RANSAC (RA) [Schnabel et al., 2007], geometric partition (GP) [Landrieu
and Simonovsky, 2018], supervised superpoint generation (SSP) [Landrieu and
Boussaha, 2019], variational shape approximation (VSA) [Cohen-Steiner et al.,
2004], supervoxel generation (SPV) [Y. Lin et al., 2018], voxel cloud connectivity
segmentation (Vccs) [Papon et al., 2013], superface clustering (SC) [Verdie et
al., 2015], and superface partitioning (SP) [Rouhani et al., 2017]. The number
below each result denotes the number of segments required to achieve the desired
object purity. (l) shows the connected components extracted from the ground truth
semantic segmentation.
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that the segment boundaries of our method are largely aligned with object boundaries.
RG and VSA perform similarly but generate excessive segments for non-planar objects
such as trees. Our over-segmentation generates segments that are closer to
semantically meaningful objects. In terms of the number of segments, RA, SC, SP, Vccs,
and SPV generate relatively large numbers of segments, which are unfavorable to the
subsequent classification using GCN. In contrast, our method generates the least
segments, which is a strong advantage for the subsequent classification step in terms of
efficiency. We have used the entire test split of SUM dataset [W. Gao et al., 2021] to
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Figure 4.10: Comparison of different over-segmentation method in terms of OP, BP, and BR
on the test split of SUM dataset [W. Gao et al., 2021]. For each method, we tuned
their parameters so that all methods generated a similar number of segments. The
data was recorded at different numbers of segments for all methods.

evaluate our over-segmentation method in terms OP, BP, and BR, and we have
compared them with those of the other seven over-segmentation methods. In the
comparison, we tuned the parameters of each method such that all methods generated
a similar number of segments, and we then computed the OP, BP, and BR for each
method. We recorded the performance of all methods for different numbers of
segments, and the results are shown in Figure 4.10. It can be observed that our method
outperforms the others for all three metrics. Specifically, as the number of segments
increases, the OP of VSA, RG, and SSP get closer to ours. However, VSA underperforms
our method in terms of BP and BR, which indicates that our method generated
segments with better boundary qualities. For RG and SSP, its OP, BP, and BR are rather
low when the number of segments is small, indicating that our method is more robust
with a relatively small number of segments. Other methods like RA, SP, GP, SPV, Vccs,
and SC also require a larger number of segments to produce satisfactory results. To
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Figure 4.11: Comparison of over-segmentation with different parameter configurations in terms
of object purity and the number of segments on the SUM dataset [W. Gao et al.,
2021]. Note that the range of parameters depends on the quality of the input
data.

understand the potential of each method, Table 4.2 provides the maximum achievable
performance of semantic segmentation for each over-segmentation method. The
maximum achievable performance is measured by the maximum IoU and mIoU that
can be achieved in theory. We can see that our method significantly outperforms the
other methods with a considerable margin ranging from 4.8% to 30.1% in terms of
mIoU (which reflects the under-segmentation errors). It is also worth noting that VSA
has slightly better results on very few object classes (e.g., water and boat) while our
method can better distinguish small non-planar objects such as vehicles which are very
common in urban textured meshes.

Performance analysis For the impact of planarity-sensible over-segmentation in
different configurations, we experimented with different settings for each weight term
based on the default parameters (i.e., λd = 1.2, λm = 0.1, and λg = 0.9). In each
experiment, only one weight is tuned while the others remain unchanged. Figure 4.11
shows its results in terms of OP and the number of segments. We can observe that
increasing λd leads to a larger OP but also encourages the splitting of segments into
smaller planar ones. In contrast, increasing λm results in over-smoothed segments (i.e.,
the smaller segments are merged into a larger one). However, λg performs differently
from the other two since our aim is to use λg to reduce the number of segments without
decreasing OP (as demonstrated in Figure 4.11). The performance of applying λg is
limited to the results of planar and non-planar classification, while the performance of
the other two terms is limited to the quality of the mesh.
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Methods Terra. H-veg. Build. Water Vehic. Boat mIoU
SP [Rouhani et al., 2017] 73.4 88.1 96.8 12.5 15.7 68.1 59.1
RANSAC [Schnabel et al., 2007] 82.3 88.6 97.0 57.3 29.8 69.7 70.8
Vccs [Papon et al., 2013] 77.4 86.3 94.3 87.4 35.9 84.5 77.6
SC [Verdie et al., 2015] 86.8 92.5 97.8 75.5 46.1 79.3 79.7
SPV [Y. Lin et al., 2018] 83.7 91.5 97.0 87.1 37.5 84.5 80.2
GP [Landrieu and Simonovsky, 2018] 86.5 91.2 96.6 87.1 46.9 84.6 82.1
RG [Lafarge and Mallet, 2012] 90.9 93.9 98.4 84.5 53.9 75.6 82.9
SSP [Landrieu and Boussaha, 2019] 85.3 91.2 96.1 91.1 49.6 88.3 83.6
VSA [Cohen-Steiner et al., 2004] 91.1 95.1 98.7 93.4 39.3 88.9 84.4
Ours 93.3 95.6 98.9 91.6 67.1 88.8 89.2

Table 4.2: Comparison of different over-segmentation methods in terms of maximum achievable
performance of semantic segmentation on test data from the SUM dataset [W. Gao
et al., 2021], with 50,000 segments. Evaluation metrics are reported as per-class
IoU (%) and mean IoU (mIoU, %).

4.4.4. Evaluation of semantic classification

We have tested our semantic classification method on both the SUM [W. Gao et al., 2021]
and the H3D [Kölle et al., 2021] datasets.

Evaluation on SUM. Figure 4.13 shows the results for two tiles from the SUM dataset.
From the extensive experiments, we also observed that our method is robust against
non-uniform triangulation of mesh, for which an example is shown in Figure 4.12.

(a) Near-uniform triangulation (b) Non-uniform triangulation

Figure 4.12: Robustness against triangulation

We have also compared our method with several state-of-the-art semantic
segmentation approaches, among which RF-MRF [Rouhani et al., 2017] and
SUM-RF [W. Gao et al., 2021] directly consume meshes. To compare with methods
originally developed for semantic segmentation of point clouds, e.g., PointNet [Charles
et al., 2017], PointNet++ [Qi et al., 2017], SPG [Landrieu and Simonovsky, 2018],
KPConv [Thomas et al., 2019], and RandLA-Net [Q. Hu et al., 2020], we sampled points
from the meshes by following [W. Gao et al., 2021]. For each deep learning method
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designed for point clouds, we feed it with the colored point clouds densely sampled
from the texture meshes. We tune the hyper-parameters starting with their default
setting. For a fair comparison, we use the same weight for all the competing methods
involved in the comparison. Due to the randomness of deep learning, we ran each
method ten times with the same settings to record its average performance.

(a) Input (b) Segments (c) Semantic (d) Truth (e) Error (red)

Figure 4.13: Semantic segmentation results of our method on two tiles from the SUM
dataset [W. Gao et al., 2021]

We report the results in Table 4.3, and we can see the results of the top three best methods
in Figure 4.14. Our method achieves the highest per-class IoU on the majority of object
classes, and it outperforms all other methods in all overall metrics, with a margin from
4% to 35.9% in terms of mIoU. Compared to KPConv and SPG, our method requires less
training time, and our results are more stable (i.e., with smaller standard deviations).

Evaluation on H3D. We also attempted to train and test on the H3D dataset [Kölle et al.,
2021] (see for an overview of the results in Figure 4.15). It should be noted that the H3D
dataset is much smaller (0.19 km2) than SUM (4 km2). In addition, 40% of the area of
the mesh in H3D is unlabeled, and many triangles have incorrect labels, which was due
to the limitation in their cloud-to-mesh labeling process where the correspondence was
either not completed or had ambiguities when transferring the labels from the points to
the mesh faces. This prevents H3D from being an ideal training dataset for us, as both
our method and other deep learning methods require a large amount of labeled data.
Besides, to distinguish between different classes that are geometrically coplanar in H3D
(e.g., Low Vegetation, Impervious Surface, Soil, and Gravel), the planar class is divided
into sub-classes and used as a prior for over-segmentation in our approach. The test
results show that our method achieves about 52.2% mIoU, outperforming the KPConv
(45.5% mIoU), SPG (29.9% mIoU), and PointNet++ (15.6% mIoU).

4.4.5. Ablation study

To understand the effect of several design choices made in the graph construction,
and the contributions of the hand-crafted features and the learned features, we have
conducted an ablation study on the SUM dataset [W. Gao et al., 2021].
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ś
0.

9
57

.8
ś
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ś
2.

0
93

.8
ś
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4.4. Evaluation

(a) Original (b) SUM-RF (c) KPConv (d) Ours (e) Truth

Figure 4.14: Semantic segmentation results of SUM-RF [W. Gao et al., 2021],
KPConv [Thomas et al., 2019], and our method on five tiles from the SUM
dataset [W. Gao et al., 2021]

Table 4.4 summarizes the ablation result of the graphs and the features. The upper part
of Table 4.4 reveals the impact of removing each type of graph edge (i.e., connections
between segments) on the final semantic segmentation. It reveals that every type of
graph edge contributes to the performance, and removing any of them results in a drop
in mIoU in the range [2.9%,4.3%]. This implies that both local and global interactions
between segments provide useful information and play an important role in semantic

66



4. Planarity-sensible semantic mesh segmentation

4

(a) Input (b) Segments

(c) Semantic

Figure 4.15: Semantic segmentation results of our method on the test area of the H3D
dataset [Kölle et al., 2021]

segmentation. To understand the effectiveness of the designed graph, we compared
it to using a graph with random connections (with the same number of edges as in
our designed graph). Although these connections may overlap with the edges we
have designed, the presence of randomness significantly reduces the capability of the
network. This is because the random set of edges does not convey the effective features
captured by our carefully designed edges. Besides, the orthogonal edges were also tested
(see Table 4.4), from which we can see that they are less useful than the other types of
edges. This is because the orthogonal relationship is more often incident to man-made
structures within the same object (such as building parts) than between segments from
different objects.

The lower part of Table 4.4 details the ablation analysis of different features. We have
evaluated the importance of each feature by removing it from the experiment and
recording the performance of the semantic segmentation. These experiments show that
the combination of all the features outperforms all degraded features with a margin of
mIoU from 2.4% to 7.8%, which means every feature contributes to the performance. It
is also interesting to notice that the results are more stable without RGB information as
input to PointNet for feature learning, which indicates the low quality (e.g., distortion,
shadow) of mesh textures in our training datasets.
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4.4. Evaluation

Model OA (%) mAcc (%) mIoU (%) ∆mIoU (%)

Graph Edges

No parallelism 92.9 75.3 68.5 ś 1.9 -4.3
No ExMAT 93.1 76.0 69.3 ś 1.3 -3.5
No spatial-proximity 93.1 76.3 69.4 ś 1.9 -3.4
No connecting-ground 93.3 76.3 69.9 ś 1.6 -2.9
Only random 92.5 74.9 67.8 ś 2.3 -5.0
With orthogonal 93.0 75.3 68.9 ś 1.8 -3.9

Features

No All Handcrafted 89.7 75.9 65.0 ś 3.8 -7.8
No Offset 92.4 75.0 67.2 ś 1.5 -5.6
No PointNet 92.8 74.5 68.2 ś 1.3 -4.6
No Eigen 93.0 75.3 68.3 ś 2.3 -4.5
No Color 93.1 75.0 68.9 ś 1.4 -3.9
No Density 93.1 76.4 69.4 ś 2.0 -3.4
No Scale 93.0 76.1 69.7 ś 0.9 -3.1
No Shape 93.2 75.6 69.7 ś 0.8 -3.1
No RGB with PointNet 93.5 76.4 70.4 ś 0.4 -2.4
Ours 93.8 79.2 72.8 ś 2.0 -

Table 4.4: Ablation study of graph edges and features on the SUM dataset [W. Gao et al.,
2021]: PointNet denotes features learned from PointNet [Charles et al., 2017] with
XYZ and RGB as input, and ‘No RGB with PointNet means RGB is not used as
input.

4.4.6. Generalization ability

We have conducted experiments to test the generalization ability of our method and
the competing methods. Such tests can indicate the applicability of models trained by
different methods on practical test datasets. SUM [W. Gao et al., 2021] and H3D [Kölle
et al., 2021] are well qualified for generalization ability tests as they both represent urban
scenes. As the original classes of these two datasets do not match, we merged them
into four common classes that are typical of urban scenarios for testing, i.e., terrain
(including water, low vegetation, impervious surface, soil, and gravel), high-vegetation
(including shrub and tree), building (including roof, facade, and chimney), and vehicle
(including car and boat). For all methods, we trained the model on the SUM dataset and
performed the testing on the H3D dataset. In particular, for training and validation, we
have used the training and validation splits of the SUM dataset as they cover a larger area
than H3D. For testing, we have used training and validation splits of the H3D dataset that
has publicly available ground truth labels. To compare the differences in results, we also
tested the same model in the SUM test area.

As shown in the top eight rows of Table 4.5, the mIoU of all methods has improved
compared to the previous six classes in the SUM test area because the task of
classification has become relatively easy due to the reduction in the number of classes.
The bottom eight records of Table 4.5 demonstrate the generalization ability of different
methods. We can see that our method outperforms all competing methods with a
margin from 5.8% to 49.3% in terms of mIoU. Except for our approach, almost all other
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Methods Terra. H-veg. Build. Vehic. mIoU

SUM

PointNet [Charles et al., 2017] 66.8 13.8 65.7 0.0 36.6
PointNet++ [Qi et al., 2017] 77.7 76.7 86.3 1.3 60.5
SPG [Landrieu and Simonovsky, 2018] 86.0 73.9 88.5 13.9 65.6
RF-MRF [Rouhani et al., 2017] 86.8 86.7 90.5 20.7 71.2
RandLaNet [Q. Hu et al., 2020] 83.0 91.6 90.1 22.0 71.7
KPConv [Thomas et al., 2019] 89.4 84.7 91.5 34.1 75.0
SUM-RF [W. Gao et al., 2021] 88.0 90.2 92.3 30.4 75.2
Ours 89.5 92.0 93.9 33.0 77.1

H3D

PointNet++ [Qi et al., 2017] 0.0 0.0 0.0 1.1 0.3
KPConv [Thomas et al., 2019] 0.0 0.0 0.0 1.1 0.3
SPG [Landrieu and Simonovsky, 2018] 0.0 0.0 18.3 0.0 4.6
RandLaNet [Q. Hu et al., 2020] 0.0 0.0 20.7 0.0 5.2
PointNet [Charles et al., 2017] 56.9 24.1 0.0 0.0 20.3
RF-MRF [Rouhani et al., 2017] 73.9 46.0 40.0 4.7 41.1
SUM-RF [W. Gao et al., 2021] 80.2 44.0 41.6 9.2 43.8
Ours 74.2 66.2 44.5 13.4 49.6

Table 4.5: Generalization ability comparison: all methods are trained on four classes of the
SUM dataset [W. Gao et al., 2021]. The top eight rows show the scores on the
testing area of the SUM dataset, while the bottom eight records show the testing
results on the four classes H3D dataset. Per-class IoU (%) and mean IoU (mIoU,
%) are reported here.

deep learning-based methods (i.e. PointNet++ [Qi et al., 2017], SPG [Landrieu and
Simonovsky, 2018], KPConv [Thomas et al., 2019], and RandLA-Net [Q. Hu et al., 2020])
failed to predict the classes in a new urban scene. This is because these methods all
learn global features by having a large receptive field, and these global features can lead
to overfitting of the model to the training data and result in degradation of
generalization ability. In contrast, the global features of PointNet [Charles et al., 2017]
are based on aggregated local features and do not correspond to a larger receptive field,
which does not have the overfitting problem. In other words, training with only local
features avoids the degradation of model generalization ability, which is better
illustrated by RF-MRF [Rouhani et al., 2017] and SUM-RF [W. Gao et al., 2021] as they
only use features extracted on local segments. Whereas our approach includes global
features derived from local features, our proposed graph is based on the spatial
distribution of the object components in the urban scene, which facilitates the
generalization of the global features.

From Table 4.4 and Table 4.5, we can conclude that compared with features learned by
the neural network, the proposed handcrafted features and edges lead to better semantic
segmentation results and contribute to a stronger generalization ability, especially for
data with domain gaps. In particular, the domain gaps are attributed to the differences
between training data and test data (i.e., different feature distributions), and the reasons
for these differences can be grouped into two main categories: 1) same data acquisition
and processing pipeline, but covering different urban scenarios (e.g., from dense urban
area to rural or forest area); 2) covering the same urban scenarios but with different
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data acquisition (e.g., using different sensors or different parameters for data collection)
and processing pipelines (e.g., using different approaches or parameter configurations
for generating the 3D data). Nevertheless, the features learned by the existing neural
network architectures cannot cope with such differences without adding new training
samples from the test area. Our segment-based handcrafted features and edges capture
the intrinsic characteristics of the object (e.g., the facade is usually perpendicular to the
ground or the surface of the tree is undulating and non-planar) and can better cope with
the variance in feature distribution.

4.4.7. Limitations

Our method is based on the observation that urban scenes consist of objects
demonstrating both planar and non-planar regions and that object boundaries lie in
the connections between the planar and non-planar regions. In special cases where
adjacent objects contain only non-planar regions (e.g., vehicles underneath trees), our
method will not be able to differentiate them. In addition, our approach generates
segments for semantic classification, which reduces memory consumption as well as
the number of samples. Specifically, if the training data covers a small area (e.g.,
H3D [Kölle et al., 2021]) and only a few segments are generated after over-segmentation,
the number of samples may not be sufficient to train a competent model. Possible
solutions include data augmentation of segments and graph connections or adding
more labeled data. Besides, our method requires adjacency information of the mesh for
incremental region growing. Additional preprocessing is necessary for meshes that are
non-manifold or contain duplicated vertices, as they destroy the topological adjacency
information. Potential solutions can be to split non-manifold vertices or to reconstruct
adjacency information of duplicated vertices. In our experiments, the meshes in the
SUM dataset [W. Gao et al., 2021] are 2-manifold, while the meshes in the H3D
dataset [Kölle et al., 2021] are not.

4.5. Conclusion

We have presented a two-stage supervised framework for semantic segmentation of
large-scale urban meshes. Our planarity-sensible over-segmentation algorithm favors
generating segments largely aligned with object boundaries, closer to semantically
meaningful objects, can deliver descriptive features, and can represent urban scenes
with a smaller number of segments. A thorough analysis reveals that our
planarity-sensible over-segmentation plays a key role in achieving superior
performance in semantic segmentation. We have also shown that exploiting multi-scale
contextual information better facilitates semantic segmentation. Furthermore, we have
demonstrated that our proposed approach achieves better generalization abilities in
comparison with other methods, owing to the segment-based local features and unique
connections in graphs. Our proposed new metrics are effective for evaluating mesh
over-segmentation methods dedicated to semantic segmentation. We believe the
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proposed metrics will further stimulate improving other over-segmentation techniques.
In future work, we would like to extend our framework to part-level (e.g., dormers,
balconies, roofs, and facades of buildings) urban mesh segmentation. In addition, we
will also investigate how the semantics learned from multi-view images can be used for
the semantic segmentation of urban meshes.
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Structure-aware interactive

annotation

As we further refine the level of detail in semantic labeling, as discussed in Chapter 3
and Chapter 4, the focus now shifts to acquiring detailed, part-level semantics for urban
textured meshes. Consequently, an innovative annotation framework is introduced,
designed specifically for efficient semantic segmentation of large-scale urban textured
meshes. The framework focuses on reducing manual annotation efforts by integrating
interactive component extraction and structure-aware matching tailored to the
complexities of urban settings. Employing a semi-automatic, unsupervised, and
real-time approach meets the urgent need to accelerate the development of deep learning
methods for analyzing urban scenes. The framework not only significantly reduces the
time and interaction required for precise labeling but also ensures high accuracy in
segmenting detailed urban components. Additionally, we provide a novel part-level
semantic mesh dataset for large-scale urban scenes, where ’part-level’ refers to the
detailed annotation of object components such as building chimneys, windows, or road
markings, etc. This dataset has undergone comprehensive comparison with
state-of-the-art 3D semantic segmentation technologies. The results demonstrate the
practical effectiveness of our method in enhancing the training and refinement of deep
learning methods.
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5.1. Introduction

The growing availability and detail of 3D urban data, particularly point clouds and
textured meshes have paved the way for enhanced rendering and simulation of
large-scale urban environments. Resources such as Google Earth’s 3D imagery [Google,
2012] and Helsinki’s 3D city models [Helsinki, 2019] demonstrate that these datasets
can significantly advance visualization techniques, environmental simulations, and
interactive graphic applications [Kelly et al., 2017; Verdie et al., 2015]. The complexity of
these urban scenes poses challenges to current computer graphics methods, requiring
innovations in efficient data handling, real-time rendering, and detailed texturing
techniques. Recent advancements in semantic understanding of these datasets [Q. Hu
et al., 2022; G. Yang et al., 2023] through computer vision and deep learning not only
refine environmental modeling but also enrich applications directly relevant to spatial
intelligence. These include 3D city modeling, detailed dynamic simulations for video
games, and virtual reality, and realistic scenario creation for AI training in graphic
settings. Enhanced semantic understanding facilitates the creation of more interactive
and responsive graphic environments, capable of dynamically adapting to changes in
urban landscapes [Kolbe and Donaubauer, 2021]. Moreover, these advancements
underpin crucial applications that are integral to the development of smart cities,
facilitating enhanced visualization for urban governance and planning, alongside
detailed simulations that address energy management, microclimate variability,
disaster response, and traffic flow optimization [Biljecki et al., 2015b; Chao et al., 2020;
Garcia-Dorado et al., 2017; Katal et al., 2022; Verykokou et al., 2016].

Semantic segmentation is crucial in understanding urban scenes by accurately
classifying objects within these environments, thus significantly improving data
usability and interpretation. Numerous tools, datasets, and methodologies for semantic
segmentation have been developed, particularly for images and point clouds [Cordts
et al., 2016; Martinovi et al., 2015]. However, research on textured meshes tends to focus
on semantic understanding within small-scale indoor settings [Armeni et al., 2017;
Chang et al., 2017; Dai et al., 2017], with less emphasis on extensive outdoor urban
scenes [Miksik et al., 2015]. Despite some progress in urban mesh object segmentation
by researchers, the segmentation of semantic parts, crucial for detailed semantic
analysis, is often neglected [W. Gao et al., 2021; Rouhani et al., 2017]. Such parts include
detailed components like dormers, windows, chimneys, road markings, etc., which are
essential for comprehensive urban scene interpretation. Complementing these works,
this paper presents a large-scale urban scene benchmark dataset with part-level
semantic labels (see Figure 5.1).

Obtaining ground truth labels for large-scale urban scenes often relies on manual
annotation, which is both time-consuming and expensive [W. Gao et al., 2021].
Although automated methods like weakly supervised [B. Zhou et al., 2016] and transfer
learning [Pan and Q. Yang, 2010] can reduce labour costs, they require extensive
training and frequently introduce errors that necessitate substantial manual revision to
satisfy the accuracy needs of downstream applications. Semi-automatic interactive
annotation tools offer a more efficient alternative for acquiring accurate
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Figure 5.1: Utilizing our proposed structure-aware interactive annotation method, we created
the first part-level semantic textured urban mesh dataset spanning approximately
2.5km2. From left to right, the images correspond to textured triangular meshes,
semantic meshes with face-based labels (comprising 13 classes), and semantic
meshes with texture-based labels (encompassing 21 classes). Specific semantic
classes include unclassified , terrain , high vegetation , water , car , boat
, wall , roof surface , facade surface , chimney , dormer , balcony , roof

installation , window , door , low vegetation , impervious surface , road , road
marking , cycle lane , and sidewalk .

labels [Kontogianni et al., 2023; Q. Liu et al., 2023; Rother et al., 2004]. These tools aim
to provide real-time accuracy with minimal user interactions. Despite advancements in
semi-automatic interactive annotation for both 2D and 3D data, the quality of the
output from these methods, whether traditional energy optimization or newer deep
learning approaches, often requires multiple manual adjustments to reach the desired
level of precision. This issue is particularly pronounced in urban textured meshes with
complex geometries and class distributions, where existing methods lack effective
real-time interactive annotation strategies for mesh triangles and their textures.

This paper presents an interactive, unsupervised, real-time annotation framework for
urban textured meshes to obtain ground truth semantic labels efficiently. The core
of this annotation framework relies on utilizing structure-aware algorithms designed
to analyze and utilize the geometric and textural patterns of user-interacted regions,
thereby facilitating the extraction of components in areas of interest and enabling the
matching of similar structures. The process involves two main steps:

1) Interactive component extraction. For mesh faces, users can extract components in
areas of interest by analyzing the local structural differences between planar areas and
protrusions using a single lasso or a stroke operation. For mesh textures, our method
utilizes local color feature consistency, allowing users to achieve component extraction
with minimal interactions using a specially designed local expansion algorithm.

2) Structure-aware matching. To streamline the annotation of similar structures, we
calculate structural features that enable rapid matching of user-extracted components
with others in the scene, allowing users to annotate multiple similar components in a
single interaction.
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5.2. Related work

Experimental results demonstrate that our method surpasses others in interaction
convenience, efficiency, and accuracy for face-based annotation. For annotation on
the textures, our method also outperforms traditional methods in terms of efficiency
and exceeds deep learning-based methods concerning accuracy. Using our method, we
have created the first part-level semantic textured mesh dataset tailored for large-scale
urban scenes. This dataset encompasses up to 21 categories and covers three urban
areas, totaling approximately 2.5km2, as illustrated in Figure 5.2. Our key contributions
include:

• A semantic annotation framework for urban textured meshes that supports both
triangle and texture annotations;

• A structure-aware interactive selection strategy that facilitates rapid extraction and
matching of 2D and 3D structures;

• A new evaluation paradigm for assessing the performance of 2D and 3D
interactive annotation methods, which effectively demonstrates their
effectiveness in practical applications;

• A part-level benchmark dataset for semantic segmentation of urban textured
meshes, with a detailed analysis of advanced methods on this dataset.

Figure 5.2: Our textured mesh dataset encompasses three major urban areas in Helsinki,
covering a total area of approximately 2.5km2.

5.2. Related work

This section reviews research on interactive segmentation and annotation for both 2D
images and 3D data and also discusses studies concerning benchmark datasets for 3D
semantic urban scenes.
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5.2.1. Interactive image segmentation

Early studies on interactive image segmentation are primarily categorized into four
methods [Ramadan et al., 2020]: region-growing, contour-based, graph-cut, and
random walk. Region-growing methods start with initial seeds and merge similar areas
based on consistency criteria, offering intuitive use and easy adaptability [Bischof and
Adams, 1994; Fan and T. C. Lee, 2015; Ning et al., 2010]; however, they require sufficient
initial user inputs to ensure accuracy, especially in complex images. Contour-based
methods leverage edge features and user inputs to precisely delineate object contours,
but they demand significant user involvement and are time-intensive [Badshah and
K. Chen, 2010; Bresson et al., 2007; Mortensen and Barrett, 1998; T. N. A. Nguyen et al.,
2012]. Graph-cut methods, utilizing energy optimization within a Markov Random
Field (MRF) framework, effectively distinguish between foreground and background by
balancing pixel characteristics with spatial continuity [Blake et al., 2004; Boykov and
Jolly, 2001; Rother et al., 2004; Tang et al., 2013; Veksler, 2008]. Although robust and
precise, these methods are computationally intensive and rely on initial user inputs.
Random walk models, employing graph theory and probability, use local pixel
correlations for accurate segmentation, yet struggle with efficiency in complex textured
or blurred images [X. Dong et al., 2016; Grady, 2006; T. H. Kim et al., 2008]. Our
proposed method integrates superpixel-based region-growing with graph-cut
optimization for efficient and precise segmentation with minimal user input and
computational resources.

Deep learning has significantly advanced interactive image segmentation (IIS).
Convolutional Neural Networks (CNNs) are widely used in this field, and various
models such as DEXTR [Maninis et al., 2018], Deep GrabCut [Xu et al., 2017], and
DeepCut [Rajchl et al., 2017] have enhanced performance over traditional models.
These methods often use complex network architectures like ResNet-101 [K. He et al.,
2016] and SegFormer [Xie et al., 2024], incorporating region, contour, or multi-scale
information to optimize segmentation results. Interactive methods like BRS [Jang and
C.-S. Kim, 2019] and f-BRS [Sofiiuk et al., 2020] enhance segmentation by optimizing
images or distance maps, while FCA-Net [Z. Lin et al., 2020] emphasize the importance
of the first click, as it is often crucial in determining the subject’s position. Advanced
models like FocalClick [X. Chen et al., 2022] and the Segment Anything Model
(SAM) [Kirillov et al., 2023] demonstrate how various inputs, including clicks, text, or
masks, can increase segmentation accuracy and flexibility. They often utilize
sophisticated architectures such as Graph Convolutional Networks (GCN) [Acuna et al.,
2018; Castrejón et al., 2017; Ling et al., 2019] and Vision Transformers (ViT) [Kirillov
et al., 2023; Q. Liu et al., 2023], alongside deep reinforcement learning [K. M. Lee et al.,
2018], to manage more intricate interactions and boost performance. Methods like
RITM [Sofiiuk et al., 2022] use iterative sampling strategies during training to enhance
results. However, these techniques have drawbacks, primarily their poor performance
with new categories not seen in the training set and their dependency on large datasets,
which may restrict their practical use. Despite attempts to mitigate these issues through
dataset expansion and data augmentation, their full integration into sectors like urban
scene understanding remains under development. Our unsupervised, real-time
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interactive textured mesh segmentation method offers substantial generalizability,
contrasting with the limitations of deep learning approaches.

5.2.2. Interactive 3D annotation

Interactive 3D annotation involves various input data types, including images with
camera parameters and depth maps, point clouds, textured meshes, and CAD models.
Research methods in this field include purely manual interaction, graph-cut based
approaches, region-based segmentation, and deep learning methods. Manual methods
involve users selecting objects directly in point clouds or meshes using tools like
brushes or lassos, which can be labor-intensive for large-scale data [Ibrahim et al.,
2021; Pütz et al., 2021a]. Graph-cut methods rely on user interactions to distinguish
between foreground and background in 3D data, using MRF and energy function
optimizations [Jayaraman et al., 2021; K. Liu and Boehm, 2014; Miksik et al., 2015;
Romanoni and Matteucci, 2018; Schmitz et al., 2022; J. Valentin et al., 2015]. These
have been effectively applied in semantic annotation of point clouds, meshes, and CAD
models, though their success depends heavily on the quality of user inputs. Region-
based methods reduce interaction by merging similarly colored or geometric areas
in the data, followed by detailed refinement [W. Gao et al., 2021; D. T. Nguyen et
al., 2018; Steinlechner et al., 2019], but may lead to increased costs due to over- or
under-segmentation issues. Recently, deep learning methods have used advanced
neural networks and attention mechanisms to streamline interactive 3D segmentation,
providing real-time updates to prediction masks [Kontogianni et al., 2023; Lang et al.,
2024; Yue et al., 2024]. However, they require extensive training data and struggle
with accuracy on new, unseen data. In contrast, our approach for interactive mesh
annotation is unsupervised, requiring no prior sample labeling and independent of
original imagery or camera parameters. Users make approximate selections in areas of
interest, enabling precise component annotations. Additionally, our technique employs
structure-aware matching to swiftly locate and annotate similar structures within the
scene, improving both efficiency and accuracy.

5.2.3. Semantic 3D urban datasets

3D urban datasets are collected through various technologies such as Terrestrial Laser
Scanning (TLS), Mobile Laser Scanning (MLS), Aerial Laser Scanning (ALS), and aerial
or drone-mounted cameras. The product of semantic 3D urban data mainly consists
of LiDAR point clouds [AHN, 2019; Behley et al., 2019; Hackel et al., 2017; Roynard
et al., 2018; Tan et al., 2020; Varney et al., 2020], photogrammetric point clouds [Can
et al., 2021; Q. Hu et al., 2022; X. Li et al., 2020; G. Yang et al., 2023], textured
meshes [Brostow et al., 2009; J. Chen et al., 2022a; W. Gao et al., 2021], and synthetic
data [M. Chen et al., 2022; Q. Gao et al., 2020; J. Zhou et al., 2024]. Compared
to indoor methods using RGBD cameras and structured light [Armeni et al., 2017;
Chang et al., 2017; Dai et al., 2017; Song et al., 2015], these technologies provide
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broader coverage of urban landscapes. However, datasets established by ground-based
systems like TLS and MLS struggle to capture the upper parts of urban objects such as
rooftops and tree canopies. Meanwhile, despite their extensive urban coverage, point
cloud datasets from ALS and drones often miss details such as building facades and
windows due to occlusion, light reflection, transmission issues, sensor resolution, and
limitations in data processing methods. Although synthetic datasets can capture urban
details and automatically generate semantic labels, their deviation from real scenes
restricts their practical applicability. On the other hand, textured meshes from oblique
photogrammetry offer more comprehensive detail capture and rich potential semantic
information. Most existing 3D semantic urban datasets focus on specific urban objects,
restricting their broader application. Although datasets like DublinCity [Zolanvari et
al., 2019] and Hessigheim3D [Kölle et al., 2021] contain some information about object
parts, their categories and scale are relatively small. This paper introduces the first large-
scale, part-level semantic urban textured mesh benchmark dataset, designed to cover
and depict urban environments’ complexity thoroughly.

5.3. Overview

(a) (b) (c) (d)

Figure 5.3: Semantic textured mesh annotation framework: here, (a) and (b) demonstrate
selections based on mesh faces. (c) and (d) illustrate pixel selections based on
textured planar segments (i.e., the green highlighted area in the bottom left of the
image (c)). In (a), the user employs a lasso tool (green trajectory) to select and
extract protrusions (red faces). (b) shows the automatically matched protrusions
on the same roof (red faces). In (c), a user click (red star) extracts the local region
(red pixels). (d) shows the automatically matched regions (red pixels).

We aim to create ground truth data through interactive semantic annotation of large-
scale urban textured meshes. Our input data consists of triangular meshes and their
texture images, while our output includes triangular meshes with semantic labels and
semantic texture masks. Our labeling targets include mesh triangles and texture pixels
to achieve part-level semantic annotation. Since manually annotating urban textured
meshes containing a large amount of semantic information is very time-consuming, we
propose a semi-automatic annotation framework. This framework supports interactive
selections based on local features and global structure matching (see Figure 5.3). Our
annotation framework includes two main modules: face-based annotation and texture-
based annotation.
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The face-based annotation aims to assign a semantic label to each triangle through the
user’s interactive selection. We provide basic interactive selection tools such as brushes,
lassos, expand/reduce, semantic class selection, and inverse selection options. To
enhance efficiency and reduce the need for user interactions, we introduced interactive
protrusion extraction and a structure-aware matching algorithm. Specifically, we first
overs-segment the input mesh through region growing to obtain planar segments. These
segments enable quick selection of large planar areas, while protrusions can be semi-
automatically selected based on user interactions and local geometric features. Due
to the repetitive nature of urban structures, we calculate structural features from user-
selected planar segments and protrusions to enable global matching, thereby facilitating
rapid selection and annotation.

The objective of interactive annotation for mesh textures is to enable pixel-level
semantic labeling of textures on planar segments. We also offer basic selection tools
such as brushes, rectangles, circles, polygon selections, lassos, semantic class selection,
and inverse selection options. We developed a method that extracts components using
a local expansion strategy coupled with a structure-aware matching algorithm to
enhance semantic annotation efficiency. Initially, we over-segment texture images
derived from planar segments into superpixels, then employ user clicks to acquire seeds
and perform local expansions based on color distribution characteristics. We utilize the
structural features of the expanded areas or the user’s drawn shape for global matching,
recommending regions with high similarity for users to assign semantic labels.

We reduce user input and enhance semantic annotation efficiency for large-scale urban
meshes by computing structural features from interactively extracted components and
applying structure-aware matching. Additionally, our proposed annotation framework
is unsupervised and real-time, and our structure-aware matching method is invariant to
translation, rotation, and scale, adding robustness to the process.

5.4. Face-based annotation

Large-scale urban meshes consist of numerous triangular faces. Manually selecting and
labeling each face is time-consuming. We aim to efficiently select and label geometric
structures within these meshes through user interactions. Our approach comprises
two key components: protrusion extraction and structure-aware matching. We assume
that all geometric structures in the urban mesh are composed of planar segments
and protrusions, with components sharing similar geometric features typically bearing
identical semantic labels. As shown in Figure 5.4, planar segments refer to areas made
up of geometrically flat or nearly flat faces, typically forming the main surfaces of
buildings, grounds, or other structures; protrusions refer to 3D geometric bodies that
are significantly raised from the main planes, such as balconies, chimneys, cars, or trees.
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Figure 5.4: Examples of planar segments and protrusions: planar segments are highlighted in

green in the upper images, with boundaries delineated by blue lines; the lower
images display protrusions, marked in yellow, which significantly bulge from the
main plane and can be broken down into several planar segments.

5.4.1. Protrusion extraction

First, we over-segment the input mesh to derive geometric structures represented by
planar segments. Thus, larger continuous planar areas like the ground and building
facades can be grouped together. Although these segments facilitate direct selection and
labeling and reduce interactions compared to selecting individual triangles [W. Gao et al.,
2021], it still poses three challenges:

• Non-planar areas like trees are represented by several small planar segments,
necessitating significant user judgment and selection.

• Sharp features suffer from under-segmentation, mainly due to the typically over-
smoothed problem in urban textured meshes. Users may need to re-select at the
face level to correct these errors.

• Small-scale structures are divided into multiple smaller planar segments, such as
chimneys and cars, requiring frequent user interactions for accurate selection.

These challenges are inherent in all over-segmentation algorithms for triangular
meshes [W. Gao et al., 2023]. To overcome these, we introduce an interactive protrusion
structure extraction method that allows users to quickly and efficiently select
protrusions at the face level with few interactions, maintaining accurate boundaries.

The core idea of our algorithm is to identify protrusions that are not part of the current
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support plane in a manner akin to how interactive image segmentation differentiates
between the background (analogous to support planes in our context) and the
foreground (corresponding to protrusions) [Rother et al., 2004]. Using tools such as a
lasso or a stroke, users traverse and establish a candidate set of faces, which are
subsequently subjected to binary labeling. Unlike traditional interactive segmentation
methods that necessitate separate inputs for foreground and background, our
approach requires only one user input to extract a collection of protrusion faces
automatically. Our method consists of three main steps: interactive selection, binary
labeling, and boundary refinement.

(a) Input mesh (b) Lasso selected faces (c) Stroke selected faces

(d) Stroke expanded faces (e) Candidate faces (f) Extracted protrusions

Figure 5.5: Interactive selection diagram of protrusions: in (b), the green trajectory represents
the user’s lasso selection, while in (c), the yellow trajectory denotes the user’s
stroke selection. The red area visible from (b) to (f) indicates the selected faces.
Additionally, the blue lines in all images mark the boundaries of the planar segments,
and the black lines represent the edges of the triangles.

1) Interactive selection. Interactive selection aims to produce candidate faces for binary
classification from user inputs. Our system recognizes two input modes: lasso and
stroke. The lasso tool is primarily designed for selecting small-scale protrusions, such
as chimneys and cars, while the stroke tool is intended for easily selecting larger or more
complex protrusions, such as trees, entire buildings, and large cruise ships. We analyze
the user’s drawn path to compute geometric metrics, which help discern whether the
input is a lasso or a stroke. This metric is derived from the ratio of the distance between
the contour endpoints to the diagonal length of the contour’s bounding box, taking a
ratio of less than 0.7 as a lasso, otherwise as a stroke.

Given the fundamental differences between the two selection modes, we implement
distinct processing strategies for each. We aim to ensure that both modes extract the
same candidate faces, as identical candidate faces will yield the same protrusions. If
identified as a lasso, all the planar segments corresponding to the faces within the lasso
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are selected as candidate faces (see Figure 5.5b). If a stroke is identified, expansion is
applied to the neighboring faces of those traversed by the stroke’s trajectory. This
involves calculating the distance from the centers of the faces to the trajectory. The
expansion limit is set based on the farthest distance from the segments corresponding
to the faces crossed by the trajectory to the trajectory itself (see Figure 5.5c
and Figure 5.5d). Then, we select the expanded planar segments as candidate faces
(consistent with Figure 5.5e).

2) Binary labeling. To select surfaces belonging to protrusions from the interactively
chosen candidate faces, we formulate this as a binary labeling problem:
l f = {support plane, protrusion}. We start by arranging the planar segments associated
with the candidate faces { fi }i=1...m in descending order based on their area, selecting
the largest segment to serve as the reference. Next, guided by a predetermined
structural scale ratio sfixed at s = 2 throughout this studywe identify suitable planar

segments {P f
k }k=1...n by comparing their sizes with that of the reference segment. These

selected segments are then utilized to construct support surfaces. Subsequently, we
build a dual graph G f = {ν f ,ξ f } for all candidate faces f = { fi }, with each face fi

representing a node in the graph and connected to adjacent faces by edges.

Next, we define the data term D f to evaluate the likelihood that face fi belongs to a
protrusion, given by:

D f (l f
i ) = η×

{
pi if l f

i = support plane

1−pi if l f
i = protrusion

, (5.1)

where η modulates sensitivity to various geometric characteristics, such as areas with
high noise or inconsistent data quality. Specifically, for outdoor scenes discussed in this
paper, η is set to 1. pi denotes the protrusion score of face fi . We observed that faces
further from the support plane or those with a larger angle to the normal of the support
plane are more likely to be protrusions. Therefore, by measuring the distance and angle

from face fi to support plane P f
k , we define protrusion score pi = di +ωi · θi , where

di = maxt∈{0,1,2}

(
dist(vt ,i ,P f

k )
)

is the maximum Euclidean distance from the vertices vt

of the face fi to the support plane P f
k . The angle weight θi is calculated by measuring the

angle θ̂i = cos−1(ni ·nk ) between the normal ni of face fi and the normal nk of support

planar segment P f
k , defined as:

θi = min(θ̂i ,180◦− θ̂i )

90◦
. (5.2)

The distance weight ωi is defined as follows:

ωi =
{

1 if di > 1

1−di otherwise
, (5.3)

indicating that a smaller di has a greater influence on the angle.
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To measure the geometric
similarity between adjacent faces,
we utilize an internal shrinking sphere
algorithm derived from the 3D medial
axis transform to compute the sphere radii
for each face [Peters, 2018; Sherbrooke
et al., 1996]. In urban mesh scenarios,
larger shrinking balls typically correspond
to major geometric structures such as
the ground or main surfaces of buildings,
whereas smaller balls indicate sharp
structures or protrusions (as shown in the
cross-sectional diagram). Consequently, the size of these spheres can indirectly reflect
the local structural scale, suggesting that adjacent faces within the same geometric
structure should have similar radii. Our smoothness term, V f , is defined as follows:

V f (l f
i , l f

j ) = Ri , j ·1
{l

f
i 6=l

f
j }

, (5.4)

where 1{·} represents the characteristic function. Local geometric similarity is denoted
by

Ri , j = 1−min

(
1,

2|ri − r j |
zmax − zmi n

)
, (5.5)

where zmax and zmi n correspond to the range of z-values of all vertices in { fi }. The mesh
shrinking ball radius can be derived as

r = ‖q1 −q2‖2

2(n f · (q1 −q2))
, (5.6)

where r refers to the radius ri or r j , and n f to the normal ni or n j , of the respective faces
fi or f j ; q1 and q2 are the tangent points on the faces.

We finally define the objective function as a combination of the data term and
smoothness term, as shown below:

E f (l f ) = ∑
i∈ν f

D f (l f
i )+λ f · ∑

{i , j }∈ξ f

V f (l f
i , l f

j ), (5.7)

where l f represents the labels for the candidate faces, and λ f is utilized to adjust the
weight of the smoothing term, thus regulating the impact of geometric similarity in the
surrounding area. The objective function is efficiently minimized using a graph-cut
algorithm [Boykov et al., 2001].

3) Boundary refinement. To address the issue of irregular boundaries (i.e., jagged
edges) resulting from the shapes of triangles during the selection process, we employ
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morphological operations to refine the protrusion boundaries, comprising two phases:
erosion and dilation. Erosion primarily aims to eliminate isolated faces at the
boundaries. The criterion is that if a face is adjacent to other faces and one or none of
these is selected, the face will be removed. Dilation, conversely, aims to identify
unselected faces closely surrounded by selected ones. A face is marked as selected if it
has two or more selected neighbors. Erosion and dilation are in two separate loops until
no more faces can be updated. Figure 5.6 illustrates the visual impact of boundary
refinement before and after.

(a) Without boundary refinement (b) With boundary refinement

Figure 5.6: Examples of protrusion boundary refinement

5.4.2. 3D structure-aware matching

Given the presence of repetitive structures in the scene, we believe that employing
structural matching can significantly reduce the frequency of annotations. We aim to
extract features from the user-selected faces and match them with similar structures
within the scene. We propose two structure-aware matching strategies: segment
matching and protrusion matching.

Segment matching. Planar segments typically cover flat, continuous surface areas
exhibiting significant two-dimensional expansiveness. Based on this characteristic, We
take the user-selected segment P (t ) as a template to match with the set of candidate
segments {P (c)

k }k=1...n′ in the scene. Our matching strategy is based on the feature

similarity between the template P (t ) and the candidate segments P (c)
k . We describe this

similarity by constructing a feature vector F(seg), which includes:

• Geometric homogeneity: The area of a planar segment reflects its local geometric
homogeneity. Typically, planar segments that are geometrically homogeneous

exhibit minor differences in area. This is calculated by ∆A(seg ) =
∣∣area(c)−area(t )

∣∣
area(t ) ,

where area(c) is the area of the candidate segment P (c)
k , and area(t ) is the area of

the template segment P (t ).

• Spatial distribution: We argue that similar components usually have a similar
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vertical distribution in urban scenes. We assess this similarity by comparing the
weighted average heights of the segments, calculated as

∆H (seg ) =
∣∣∣∣∣∑m′

i=1 zi ·ai

area(c) −
∑m′′

j=1 z j ·a j

area(t )

∣∣∣∣∣ . Here, zi and ai represent the z-coordinate and

area of each face fi in the candidate segment P (c)
k , respectively, while z j and a j

denote those in the template segment P (t ).

• Spatial orientation: In urban environments, man-made structures like facades
typically share similar vertical orientations. We quantify this similarity using the
difference in vertical orientation, denoted as ∆R(seg ) = ∣∣∣∣n(c) ·n(z)

∣∣− ∣∣n(t ) ·n(z)
∣∣∣∣ ,

where n(z) is the unit vector along the z-axis, and n(c) and n(t ) are the normals
of segments P (c)

k and P (t ), respectively.

• Shape sphericity: Because we set distance and angle thresholds when generating
planar segments through segmentation, the planar segments exhibit some
distribution variation within the threshold range. This distribution variation can
be represented by sphericity. We believe the sphericity of the segment shape can
be used to assess their similarity. We reflect this through the calculation of

eigen-based sphericity ∆S(seg ) =
∣∣∣λP (c)

3 /λP (c)

1 −λP (t )

3 /λP (t )

1

∣∣∣ computed based on the

eigenvalues λ1 ≥λ2 ≥λ3 ≥ 0 from triangle vertices of the segment P (c)
k and P (t ).

• Photometric coherence: While vegetation and other urban components may lack
notable geometric similarity, they often resemble each other in color. We measure
this resemblance using the average CIELAB [M. R. Luo et al., 2001] color distance
∆C (seg ) = ‖C(c)

k −C(t )‖, and the greenness [McKinnon and Hoff, 2017] difference

∆G (seg ) =
∣∣∣G (c)

k −G (t )
∣∣∣ . Here, C(c)

k and C(t ) denote the CIELAB coordinate vectors of

segments P (c)
k and P (t ), respectively, while G (c)

k and G (t ) indicate their greenness
values. Note that incorporating color information in matching is optional and can
be adjusted based on the presence of vegetation or similar characteristics in the
matching category.

Based on these characteristics, a match between P (c)
k and P (t ) is indicated when

‖F(seg)‖ < ϵ(seg ). The value of ϵ(seg ) depends on the user interactions and the quality of
the input data. An example of segment matching in a large-scale urban scene is shown
in Figure 5.7.

Protrusion matching. Protrusions, with their complex 3D shapes, differ significantly
in features from planar segments. In light of this, our goal in this step is to use the
protrusions extracted by the user in Section 4.1 as templates to match with other similar
structures within the scene. Our matching process is divided into (1) seed matching and
expansion and (2) structural matching.

1) Seed matching and expansion. This step aims to generate candidate regions through
seed matching using template segments and to extract protrusions. We start by
decomposing the template protrusion’s face collection f (t ) = { f (t )

i }i=1...m(t ) into several
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(a) User-selected segment (b) Matched segments

Figure 5.7: Example of segment matching: the red area indicates the selected segment, and
the blue lines represent the boundaries of the planar segment.

planar segments. These segments are then matched with others in the scene to identify
all qualifying initial seed segments {P (e)

k }k=1...n(e) , using the strategy from segment
matching.

Next, we expand these seed segments to their neighboring segments {P (a)
k }k=1...n(a) to

generate candidate regions. Spatial and segment scale constraints are applied to limit
the scope and size of these expansions, respectively. The spatial constraint is given by
the following formula: ∥∥∥O(e)

k −O(a)
j

∥∥∥<p
s ·max

i

∥∥∥O(t ) −O(t )
i

∥∥∥ , (5.8)

where O(e)
k and O(e)

j represent the centers of the seed segment P (e)
k and the face f (a)

j in its

neighboring segment P (a)
k , respectively. O(t ) and O(t )

i denote the centers of the template

face collection f (t ) and its individual face f (t )
i , with s as the structural scale (same as

in subsection 5.4.1). The segment scale constraint is defined by the following formula:

area(a)
k

area(e)
k

< s ·
max j area(t )

j

min j area(t )
j

, (5.9)

where area(e)
k and area(a)

k represent the areas of the seed segment P (e)
k and its neighboring

segment P (a)
k , respectively; area(t )

j denotes the area of the planar segment j that is used

to extract template protrusion.

Additionally, topology constraints based on adjacency relationships are provided to
focus on areas of interest for annotation. We calculate the planar segments of the
template support surface as the neighborhood search space. For instance, topological
constraints can confine the search space to the planar segments of the current facade
for annotations of facade installations. Following seed expansion to generate candidate
regions, the method from subsection 5.4.1 is employed to extract the candidate
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protrusion face collection f (c) and to structurally match the extracted protrusions with
the template protrusions.

2) Structural matching. The purpose of this step is to further filter the protrusions
extracted from step 1), retaining only those that closely resemble the template
protrusion. Similar to segment matching, our strategy is based on the feature
similarities between the template and candidate protrusions, and we construct a
feature vector F(str) to describe these characteristics, which includes:

• Spatial compactness: We quantify the spatial compactness of a protrusion by
measuring its volume. Structurally similar protrusions are expected to exhibit

high spatial compactness similarity, which is defined as ∆V (str ) =
∣∣∣∣ vol(c)

vol(c)
box

− vol(t )

vol(t )
box

∣∣∣∣ ,

where vol(c) and vol(c)
box represent the volume of f (c) and its bounding box volume,

respectively, vol(t ) and vol(t )
box are the corresponding values for f (t ).

• Surface complexity: We consider that more complex 3D shapes typically
decompose into numerous planar segments. We characterize the similarity of
surface complexity by the ratio of the number of planar segments of the template

and candidate protrusions, which is shown as ∆N (str ) =
(

max(n(t ),n(c))
min(n(t ),n(c))

)µ
, where n(t )

and n(c) respectively represent the number of planar segments for the template
and candidate protrusions, and µ= min(n(t ),n(c)).

• Structural features: Measuring the similarity of protrusions involves comparing
their structural features through eigenvalue analysis, such as linearity = (λ1 −
λ2)/λ1, planarity = (λ2 −λ3)/λ1, and sphericity = λ3/λ1. We determine structural
similarity by the L1 feature distance, including differences in linearity ∆L(str ),
planarity ∆P (str ), and sphericity ∆S(str ).

(a) User interaction (b) Extracted protrusion (c) Matched protrusions

Figure 5.8: Example of protrusion matching: the green trajectory indicates the user’s lasso
selection, the yellow trajectory represents the user’s stroke selection, and the red
faces denote the selected area.

88



5. Structure-aware interactive annotation

5

The similarity of photometric coherence ∆C (str ) is based on CIELAB [M. R. Luo et al.,
2001] calculations, an optional feature for users. The matching result between the
template and candidate protrusions depends on ‖F(str)‖ < ϵ(str ), where ϵ(str ) is also
determined by user interaction and data quality. We present two examples of protrusion
matching in Figure 5.8.

5.5. Texture-based annotation

Due to resolution limitations, triangle meshes often fail to capture detailed planar
components and their boundaries, such as doors, windows, and road markings.
Consequently, semantic annotations based on triangle faces fail to describe these
intricate structures adequately. However, mesh textures can more effectively capture
these geometric details. Compared to annotating original multi-view images, choosing
mesh textures as the annotation subject avoids redundant annotation and label
discontinuities caused by image projections and more accurately represents the
structure in 3D space, simplifying the annotation process.

Compared to annotating 2D images, directly annotating the whole continuous texture
images on the surface of 3D models is relatively difficult. This is mainly because
the texture coordinates between the triangular faces are discontinuous and involve
much computation for 3D to 2D space conversion. And the direct annotation of
individual triangular faces lacks context information. Textured segments formed by
texture boundaries are unsuitable for texture annotation due to the presence of texture
seams. These segments have relatively lower geometric accuracy compared to planar
segmentation on meshes. Additionally, without the original images, it is impossible to
arbitrarily re-segment or merge them.

Therefore, we propose a mesh texture annotation strategy based on planar segments.
Our strategy permits users to flexibly split or merge planar segments to adjust the
size of the texture annotation areas. Moreover, using basic selection tools like strokes,
shapes, and lassos for direct pixel-level texture annotation remains time-consuming. To
address this, we have developed an efficient interactive semantic annotation algorithm
that leverages local region extraction and matching. Our selection strategy mainly
includes local region extraction and 2D structure-aware matching for selected textured
planar segments. Our approach assumes that semantic components within textured
planar segments consist of multiple superpixels with uniform local color features, and
components sharing the same semantic label display pronounced similarities in color
and geometric structure.

5.5.1. Local region extraction

We aim to capture the entire region by allowing users to click on the area of interest.
Unlike traditional interactive segmentation methods, our strategy does not require users
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to select negative samples (i.e., background); it operates solely through clicks on positive
samples (i.e., foreground). Our method can be divided into two main steps: 1) Local
expansion and 2) Fine segmentation.

(a) Textured planar segment (b) User’s click selection

(c) Local expansion (d) Fine segmentation

Figure 5.9: Example of local region extraction based on textured planar segments: in (a), the
green area in the upper left represents the textured planar segment selected by the
user; the green star in (b) indicates the user’s click input. Blue lines in (b) and (c)
delineate the boundaries of superpixels; the red areas in (c) and (d) highlight the
selected pixels.

1) Local expansion. Our aim is to expand the seed superpixels selected by user clicks
to encompass the entire area of interest. Initially, we apply the Simple Linear Iterative
Clustering (SLIC) [Achanta et al., 2012] to the input textured planar segments to generate
superpixels that exhibit homogeneous color characteristics. Subsequently, we establish
a topological adjacency matrix for these superpixels to define their spatial relationships.
Seed superpixels are obtained via user clicks, and their first-order neighborhood is used
to establish a local adjacency graph G s = {νs ,ξs }. Each superpixel represents a node
in the graph and is connected through edges to adjacent superpixels. We transform
the local expansion process into a binary labeling problem for adjacent superpixels:
l s = {similar,non-similar}, and use the adjacency graph to initialize an MRF. The labeling
outcomes determine which adjacent superpixels are similar to the first seed S0, and
similar superpixels are then added to the seed queue {Si }i=1...n . Like the region-growing
algorithm, a local adjacency graph is re-established for the expanded superpixels to
conduct the next binary labeling. This expansion process continues until the seed queue
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is empty. It is important to note that during the entire expansion process, the seed
S0 consistently acts as the initial reference for comparisons in each expansion, rather
than the superpixels in the seed queue {Si }i=1...n . The local binary labeling problem is
addressed by defining the data and smoothness terms.

We define the data term D s by measuring the similarity of the pixel value distribution
between the seed superpixel Si and its adjacent superpixels {S j } j=1...n′ . The formula is
given as follows:

D s (l s
j ) =α×

{
1−w j if l j = non-similar

w j if l j = similar
, (5.10)

where the weight α controls data fidelity and is pre-calculated using the local color
difference (CIEDE2000) [M. R. Luo et al., 2001] based on the input textured planar
segment. The term w j , representing the average Wasserstein distance, is used to
quantify the similarity between the Gaussian mixture distributions of two superpixels,
denoted as w j = 1

K

∑K
k=1 W (Gk (S j ),Gk (S0)). Here, K = 3 represents the image’s three

RGB channels, and W (Gk (S j ),Gk (S0)) represents the Wasserstein distance between
superpixels in the k-th channel. Gk denotes the Gaussian mixture model for the
k-th channel, defined as Gk (S) = ∑M

m=1πkmN (x;µkm ,Σkm), where S represents the
superpixel S0 or S j , and x is a pixel sample point of S, and M is the number of
components in GMM (M = 5 in all experiments in this paper). N (s;µ,Σ) denotes the
multivariate normal distribution, with µ representing the mean for superpixels S0 or
S j , and Σ as their respective covariance matrices. To acquire additional contextual
information for the seed superpixel S0, the samples for computing Gk (S0) are taken from
its first-order neighborhood superpixels. Samples for Gk (S j ) are derived from the pixels
within S j .

To measure the similarity between neighboring pixels, we have formulated a smoothness
term V s based on the color differences among neighboring superpixels, defined as
follows:

V s (l s
j , l s

j ′ ) = H j , j ′ ·1{l s
j 6=l s

j ′ }
, (5.11)

where 1{·} represents the characteristic function. Local color similarity is defined as
H j , j ′ = ∑

j , j ′∈{S j } |ρ j − ρ j ′ |, where ρ j = ∆E00(U0,U j ) is the color distance (i.e.,
CIEDE2000 [M. R. Luo et al., 2001]) from the superpixel S j to its seed S0. To more
accurately capture the intrinsic structure and variability within superpixels’ color
distributions, we employ a GMM to compute the average Lab color, represented by
U = ∑M

m=1πmµm , where U could represent U0 or U j , with πm as the mixing weight and
µm as the mean for the m-th Gaussian component in Lab color space. Additionally,
seed samples for U0 are taken from its first-order neighborhood, whereas samples for
U j come from its own pixels.

The energy function E s is defined as the sum of the data term D s and the smoothness
term V s , as follows:

E s (l s ) = ∑
j∈νs

D s (l s
j )+λs · ∑

{ j , j ′}∈ξs
V s (l s

j , l s
j ′ ), (5.12)
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where l s is the label of superpixels, and λs is used to adjust the weight of the smoothness
term to control the impact of neighborhood color similarity. The objective function is
solved using graph cuts [Boykov et al., 2001].

2) Fine segmentation. Given that coarse segmentation results from superpixel
expansion are influenced by superpixel resolution and user inputs, these results tend to
be rough at object boundaries. Thus, this step aims to refine these coarse results. Our
approach, akin to GrabCut [Rother et al., 2004], employs foreground and background
samples for detailed pixel-level segmentation.
However, GrabCut uses
a user-drawn bounding box to identify
the outside region as background, which
may fail for multi-target segmentation
within an image. Therefore, our method
requires only the coarse results from
the previous step as foreground samples,
with background samples generated
automatically via a buffer area around
the coarse results. Specifically, we use the
buffer area extending beyond the optimal
bounding box of the coarsely segmented
object to produce background samples for
detailed segmentation.

5.5.2. 2D structure-aware matching

For texture images based on planar segments, there are still a large number of repetitive
structures, such as windows and road markings. To improve annotation efficiency,
interactive sessions can be reduced by adopting fast matching techniques based on
structural awareness. We propose two matching strategies based on structural
awareness: template matching and region matching.

Template matching. Template matching uses user-defined template structures to find
and select similar structures in the current textured planar segment. This template can
be a user-generated local region or any arbitrary shape drawn by the user. We employ
a common image template traversal strategy for matching, i.e., Normalized Cross-
Correlation (NCC) [Briechle and Hanebeck, 2001], which efficiently identifies potential
candidate areas. To filter matching regions, we utilized an adaptive thresholding
strategy [Bradley and Roth, 2007] based on fine-tuned constants. Once the matching
structures are identified, users can select them using the template shape or apply the
detailed segmentation method described in subsection 5.5.1. However, this strategy
performs poorly when dealing with rotation and scale changes, especially in 3D urban
scenes facing targets with different orientations, such as zebra crossings and lane lines,
where this limitation is particularly evident.
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Region matching. Our objective is to extract structural features from the region R(t )

created by local expansion and match them to similar regions within the textured planar
segments. We first calculate the GMM Gk (R(t )) of the overall region for the set of
superpixels generated through local expansion selected by the user. Next, we use the
Wasserstein distance based on these GMMs to filter candidate superpixels. The criterion
is defined by the formula: W (Gk (R(t )),Gk (S(c)

i )) < ϵseed , where ϵseed represents the

user-adjustable seed matching threshold, and Gk (S(c)
i ) represents the GMM model for

candidate superpixel S(c)
i . We then extract a collection of candidate regions {R(c)

i }i=1...m(c)

from the qualified superpixels using the method described in subsection 5.5.1, and
calculate their similarity to the template region to form a feature vector F(reg), including:

• Shape index: To differentiate the shape similarities across regions, we utilize a
shape index reflecting an object’s elongation or flatness. Defined as r = min(w,h)

max(w,h) ,
where w and h represent the width and height of the object’s bounding box,
respectively. Specifically, we define the formula for calculating the similarity of
shape indices between regions as ∆I (r eg ) = |rc −rt |, where r represents the ratio rc

of the candidate region or rt of the template region.

• Shape regularity: We consider the regularity of a region’s shape also to calculate
the similarity between areas. Similar to structural matching, to demonstrate the
complexity of a shape by assessing how well it fills its bounding box, we describe

the shape’s regularity using compactness, defined as: ∆A(r eg ) =
∣∣∣∣ area(c)

area(c)
box

− area(t )

area(t )
box

∣∣∣∣ ,

where area(c) and area(t ) represent the area of the candidate and template regions,
respectively, and area(c)

box and area(t )
box are the areas of their bounding boxes.

• Contextual features: The contextual information within similar regions should
exhibit similar characteristics, particularly in their internal and external color
distributions. We evaluate these differences using the Wasserstein distance,

calculated as follows: ∆D (r eg ) =
∣∣∣W (Gk (R(c)

i n ),Gk (R(c)
out ))−W (Gk (R(t )

i n ),Gk (R(t )
out ))

∣∣∣ ,

where R(c)
i n and R(c)

out denote the interior and exterior pixel collections of the

candidate region, respectively, and R(t )
i n and R(t )

out for the template region. The
external region Rout includes pixels covered but not selected during local
expansion in subsection 5.5.1.

Based on the above features, we use the formula F(reg) < ϵr eg to filter the matching
areas that meet the criteria, where the value of ϵr eg depends on user input and image
resolution. Additionally, we introduce a scaling range based on the quantity of template

pixels, expressed as s(r ang e) ∈
[

N (R(t ))
s(r eg ) , s(r eg ) ·N (R(t ))

]
, to constrain the scale of the

matching regions. Here, N denotes the number of pixels within the region, and the
scaling threshold s(r eg ) is set to 2 in all experiments. Notably, our method offers
rotational and scale invariance, unlike NCC-based template matching [Briechle and
Hanebeck, 2001] (see Figure 5.10). This allows it to match targets within textured planar
segments that vary in orientation and size.
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(a) User extracted regions (b) Our matched regions (c) NCC matched regions

Figure 5.10: Example of region matching: the extracted regions are highlighted with green
bounding boxes; the top images display optimal bounding boxes, while the bottom
image features vertically aligned bounding boxes. Compared to methods based on
NCC [Briechle and Hanebeck, 2001], it is evident from the top images that our
method possesses rotational invariance, while the bottom images demonstrate its
scale invariance.

5.6. Experimental results

In this section, we detail the part-level semantic textured mesh dataset we have
developed and discuss the performance of state-of-the-art 3D semantic segmentation
methods on this dataset. Additionally, we evaluate the effectiveness of our annotation
tools and discuss their application domains and limitations.

5.6.1. Benchmark dataset

We use the textured mesh of Helsinki city [Helsinki, 2019] as our input, serving as a
benchmark dataset for part-level semantic urban meshes. The textured meshes were
generated using the commercial software ContextCapture [BENTLEY, 2016],
reconstructed from oblique aerial imagery with a ground sampling distance of
approximately 7.5cm and 2D vector maps. Detailed semantic annotations were
conducted on three representative areas in central Helsinki as shown in Figure 5.2,
comprising 40 tiles of 62,500m2 each, covering a total area of approximately 2.5km2.

In the semantic annotation process, we defined two label types: face and pixel labels.
Face labels assign a semantic class to each face of the triangle mesh, encompassing 13
distinct classes listed as follows:

unclassified: Includes elements and objects that do not fit into any specific
predefined categories.

terrain: Includes elements such as roads, cycle lanes, sidewalks, bridges, low
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Figure 5.11: Examples of part-level semantic annotation of urban meshes: the first row displays

the original textured meshes, the second row shows the semantic meshes with face-
based labels (comprising 13 classes), and the third row shows semantic meshes with
texture-based labels (encompassing 21 classes). Semantic classes are represented
by colors, including unclassified , terrain , high vegetation , water , car , boat
, wall , roof surface , facade surface , chimney , dormer , balcony , roof

installation , window , door , low vegetation , impervious surface , road ,
road marking , cycle lane , and sidewalk .

Figure 5.12: Statistical distribution of semantic classes in the entire dataset: the upper chart
illustrates the distribution of face labels weighted by area, while the lower chart
depicts the distribution of pixel-level labels. The colors correspond to the same
semantic classes described in subsection 5.6.1.

vegetation, and impervious surfaces.

high vegetation: Consists of taller plant life such as trees, shrubs, and bushes.

water: Encompasses bodies of water like rivers, seas, and pools.
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car: Covers all types of road vehicles, including cars, buses, and lorries.

boat: Comprises various types of watercraft such as boats, ships, freighters, and
sailboats.

wall: Refers to any vertical barrier, including fences, monuments, bollards,
seawalls, and stone walls.

roof surface: Pertains to the external upper covering of a building.

facade surface: Relates to the exterior front walls of buildings, often facing a street
or open space.

chimney: Includes structures protruding above roofs for venting smoke or
exhaust.

dormer: Refers to a structural element of a building that projects from a sloping
roof.

balcony: Encompasses outdoor platforms on the outside of buildings, enclosed
by walls or balustrades, accessible through an upper-floor door or window.

roof installation: Covers fixtures installed on roofs, such as solar panels, satellite
dishes, and HVAC units.

Based on face labels, we have further defined pixel labels for mesh textures that
encompass part-level details within textured planar areas, introducing 8 new categories:

window: Includes openings in a building that are fitted with glass or transparent
material, allowing light and air to enter.

door: Pertains to movable barriers used to close off entrances, typically swinging
on hinges.

low vegetation: Covers shorter plant life such as grasses, ground covers, and
flowering plants.

impervious surface: Refers to hard surfaces that water cannot penetrate, like
concrete and asphalt.

road: Includes thoroughfares for vehicular travel, excluding paths primarily
meant for walking or cycling.

road marking: Refers to all markings painted or embedded into road surfaces for
regulation and guidance of traffic.

cycle lane: Designated pathways on roads specifically for the use of bicycles.

sidewalk: Pedestrian paths beside roads, usually paved and separated from the
roadway by a curb.
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According to the label definition, we differentiate between two types of scenes: meshes
with only face labels, featuring 12 semantic classes (excluding ’unclassified’), and
meshes with both face and pixel labels, comprising 19 semantic classes (excluding
’unclassified’, and ’terrain’ as these are broken down into more specific pixel labels).
Notably, within datasets that include pixel labels, if an area displays both face and pixel
labels, the pixel labels take precedence. For instance, if an area is labeled as a "facade
surface" for the face but a "window" for the pixel, it is ultimately defined as a "window."
Figure 5.11 shows examples of visualized annotated meshes, while Figure 5.12 presents
the details of the class distribution. To evaluate state-of-the-art 3D semantic
segmentation methods, we divided the entire dataset into three splits by randomly
selecting tiles: 24 for training, 8 for validation, and 8 for testing.

5.6.2. Evaluation of semantic mesh segmentation

In this section, we first explore the impact of mesh sampling strategies on semantic
segmentation. We then examine the performance of existing 3D semantic segmentation
methods on our dataset.

Mesh sampling strategy. Existing research shows that in addition to methods directly
performing semantic segmentation on triangle mesh surfaces, point cloud semantic
segmentation techniques can utilize point clouds generated from mesh surface
sampling as input data [W. Gao et al., 2021; Selvaraju et al., 2021]. This data is then
mapped back to the triangle mesh using the nearest neighbor or voting mechanisms. To
adapt point cloud segmentation techniques for use with triangle meshes, studies
commonly employ Poisson-disk sampling [Cook, 1986] to generate input data.
However, research into the effects of various mesh surface point cloud sampling
techniques on semantic segmentation performance is still limited.

To evaluate the sensitivity and robustness of these methods to different types of point
cloud sampling, we compared four types of mesh sampling strategies: face-centered
sampling, random sampling, Poisson-disk sampling [Cook, 1986], and our proposed
superpixel texture sampling. Face-centered clouds are obtained by calculating the
centroid of each triangular face, nearly equivalent to direct semantic segmentation on
triangle faces, but they are unsuitable for expressing pixel labels. Random and Poisson-
disk sampling [Cook, 1986] are based on a set number of points or density, introducing
challenges in complex urban scenarios because different semantic categories vary in
their sensitivity to the number and density of sampling points. Especially for smaller-
scale part-level semantic classes, fewer sampling points might not capture features
adequately, while excessive points increase the computation load.

To ensure a precise representation of semantic categories with minimal sampling points,
we adopted a novel approach. Initially, we applied the SLIC [Achanta et al., 2012]
algorithm for superpixel-level over-segmentation on the mesh’s entire texture image
(superpixel size set at 5 in all experiments). This process accurately captures the
boundaries of part-level objects based on color information. Subsequently, we compute
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the 3D coordinates of each superpixel center from the texture coordinates of each
triangle, generating a superpixel texture point cloud. This approach ensures data
accuracy and significantly reduces the computational burden, making it particularly
effective for translating pixel labels into point labels. We also provided visual examples
of the four mesh sampling strategies, as shown in Figure 5.13.
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Figure 5.13: Comparison of textured mesh sampling methods: from the top row to the bottom
row, the images demonstrate the original textured meshes, face center point clouds,
random sampled point clouds, Poisson-disk sampled point clouds [Cook, 1986],
and our proposed superpixel texture sampled point clouds.

Benchmark evaluation. We evaluated a range of representative 3D semantic
segmentation methods on our proposed dataset. These methods encompass semantic
segmentation methods designed for triangle mesh, including RF-MRF [Rouhani et al.,
2017], SUM-RF [W. Gao et al., 2021], and PSSNet [W. Gao et al., 2023], along with diverse
point cloud segmentation approaches such as PointNet [Charles et al., 2017],
PointNet++ [Qi et al., 2017], superpoint graphs (SPG) [Landrieu and Simonovsky, 2018],
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SparseConvUnet [Graham et al., 2018], Randla-net [Q. Hu et al., 2020],
KPConv [Thomas et al., 2019], PointNext [Qian et al., 2022], Point transformer V3
(PointTransV3) [X. Wu et al., 2024], and PointVector [Deng et al., 2023]. It is worth noting
that there are currently no semantic segmentation methods specifically designed for
meshes with textured-based pixel labels. These point cloud segmentation methods
were evaluated on both the face and pixel labeling tracks. Here, the face labeling track
refers to semantic labels for faces, encompassing 12 classes (excluding ’unclassified’);
the pixel labeling track pertains to semantic labels for texture pixels, including 19
classes (excluding ’terrain’ and ’unclassified’).

To address class imbalance within the dataset, we applied class weights to each method
tested to ensure fair consideration and evaluation of all categories. Additionally, to
minimize errors resulting from randomness in network predictions, all experimental
results are based on the average outcomes from five trained models.

We used established semantic segmentation evaluation metrics, conducting a detailed
analysis that included Intersection over Union (IoU) per class, overall accuracy (OA),
mean accuracy (mAcc), and mean IoU (mIoU). For the face labeling track, we determine
the final labels of triangles using a voting method based on point cloud prediction results,
with the area of each triangle serving as a weight for semantic evaluation metrics. For
the pixel labeling track, we assign final labels to each pixel in the texture image using the
nearest neighbor method based on point cloud prediction results, applying pixel-level
semantic evaluation metrics.

1) Face labeling track. The face labelling track includes 12 face semantic labels
mentioned in subsection 5.6.1, excluding ’unclassified’. We first evaluated the impact of
four different mesh surface point cloud sampling strategies on the performance of
point cloud semantic segmentation methods, including face-centered, random
sampling, Poisson-disk sampling [Cook, 1986], and superpixel texture sampling point
clouds. To avoid the effects of different point cloud densities or quantities, we set the
number of points for random and Poisson-disk sampled point clouds based on the
number of points in superpixel texture sampled point clouds (totaling 25,169,441
points). The number of points in face-centered point clouds consistently matches the
number of mesh faces (totaling 11,779,034 points).

Table 5.1 shows that most methods achieve optimal performance with face-centered
point cloud inputs, benefitting from adaptability to the geometric characteristics of
triangulated meshes. Specifically, because the density of triangles is lower in flat areas
and higher in non-flat areas, this enables deep learning networks to learn rich geometric
features based on the distribution of triangle density. However, this does not apply
to uniform triangular meshes. This also indicates that the impact of point cloud
sampling density on semantic segmentation is far less significant than the impact of
point cloud distribution. The average mIoU in Table 5.1 also indicates that our proposed
superpixel texture sampling method outperforms other mesh sampling methods (except
for face-centered point clouds). Additionally, the standard deviation results indicate
that SPG [Landrieu and Simonovsky, 2018] is the most robust across different sampling
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Fc. Rd. Po. Sp. Std. (%)

PoinNet 5.1 8.5 5.1 15.1 4.7
PoinNet++ 27.1 17.3 18.4 33.1 7.5
SPG 29.9 29.7 31.5 31.7 1.0
SparseUNet 60.5 47.6 38.6 49.9 9.0
Randla-net 57.4 49.8 49.1 54.4 3.9
KPConv 57.5 56.4 46.5 52.9 5.0
PointNext 65.3 51.3 50.4 47.7 7.9
PointTransV3 59.1 49.5 51.7 54.0 4.1
PointVector 70.0 56.1 52.8 57.1 7.6
Average 48.0 40.7 38.2 44.0 -

Table 5.1: Evaluation of the impact of four mesh sampling methods on semantic segmentation
performance, using mIoU (%) as the evaluation metric: where ’Fc.’ stands for face-
centered, ’Rd.’ for random sampling, ’Po.’ for Poisson-disk sampling [Cook, 1986],
’Sp.’ for superpixel texture sampling, ’Std.’ for standard deviation in mIoU across
different types of sampling, and ’Average’ for the average mIoU of all segmentation
methods. The highest mIoU achieved under different sampling methods for each
approach, the lowest standard deviation among all semantic segmentation methods,
and the average of the highest mIoUs across all sampling methods are highlighted
in bold.

methods. This is due to its over-segmentation method being unaffected by the density
and distribution of the sampled point clouds.

From Table 5.2, it can be observed that among all methods, PointVector [Deng et al.,
2023] performs best overall, with a mIoU of 70.0%, significantly outperforming other
methods. Due to class imbalance, most methods show better performance in categories
with more samples and poorer performance in categories with fewer samples. We also
conducted a qualitative analysis of the top three methods, as shown in the Figure 5.14.

2) Pixel labeling track. The pixel labeling track consists of 19 semantic classes, as
described in subsection 5.6.1, including all semantic labels except for ’terrain’ and
’unclassified’. We evaluated the impact of three sampling methodsrandom, Poisson-disk,
and superpixel texture samplingon semantic segmentation performance. Because face-
centered point clouds cannot represent semantic components with pixel labels, they
were excluded from testing.

The average mIoU in Table 5.3 shows that most methods achieve optimal performance
with our proposed superpixel texture sampling as input, which precisely captures the
boundaries of part-level objects. Additionally, the standard deviation results indicate
that PointNext [Qian et al., 2022] and Point Transformer V3 [X. Wu et al., 2024] perform
robustly across various sampling methods.

Table 5.4 shows that PointVector [Deng et al., 2023] continues to outperform all other
methods, achieving a mIoU of 47.9%, significantly higher than the others.
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(a) Input (b) SpaseUF c. (c) PtNextF c. (d) PtVecF c. (e) Truth

Figure 5.14: Qualitative analysis of semantic segmentation results in face labeling track,
including the three best-performing methods: SparseUNetF c.(SpaseU) [Graham
et al., 2018], PointNextF c.(PtNext) [Qian et al., 2022], and
PointVectorF c.(PtVec) [Deng et al., 2023], where F c. represents the face-
centered sampled point cloud. Semantic classes are distinguished by different
colors (same as in subsection 5.6.1).

Rd. Po. Sp. Std. (%)

PoinNet 2.5 5.7 2.6 1.8
PoinNet++ 20.6 19.5 24.7 2.7
SPG 16.0 20.0 19.2 2.1
SparseUNet 34.5 13.3 23.3 10.6
Randla-net 36.9 39.9 42.1 2.6
KPConv 38.9 26.1 42.6 8.7
PointNext 42.9 44.7 43.0 1.0
PointTransV3 38.0 36.1 37.8 1.0
PointVector 44.7 45.1 47.9 1.8
Average 30.6 27.8 31.5 -

Table 5.3: Evaluation of three mesh sampling methods on semantic segmentation performance,
measured by mIoU (%): where Rd. represents random sampling, ’Po.’ represents
Poisson-disk sampling [Cook, 1986], ’Sp.’ represents superpixel texture sampling,
’Std.’ represents the standard deviation of mIoU across different types of sampling,
’Average’ is the average mIoU of all segmentation methods. The highest mIoU
achieved by each method under different sampling conditions, the lowest standard
deviation across all methods, and the average of the highest mIoUs for all sampling
methods are all highlighted in bold.
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5.6. Experimental results

PointVector [Deng et al., 2023] surpasses other methods in all categories, particularly
with pixel labels. However, compared to the categories shared with Table 5.2, the IoU
results for most methods have decreased. This is mainly because the three types of
mesh sampling point clouds are relatively uniform and fail to capture the geometric
density differences reflected by adaptive meshes. Additionally, the increase in the
number of classes has exacerbated the issue of class imbalance. We also performed a
qualitative analysis on the top three methods, as illustrated in the Figure 5.15.

(a) Input (b) KPConSp. (c) PtNextPo. (d) PtVecSp. (e) Truth

Figure 5.15: Qualitative analysis of semantic segmentation results in pixel labeling track,
including the three best-performing methods: KPConvSp.(KPConv) [Thomas
et al., 2019], PointNextPo.(PtNext) [Qian et al., 2022], and
PointVectorSp.(PtVec) [Deng et al., 2023], where Po. represents the Poisson-disk
sampling [Cook, 1986], and Sp. for the superpixel texture sampling. Semantic
classes are distinguished by different colors (same as in subsection 5.6.1).

5.6.3. Evaluation of interactive annotation

This section discusses the performance of existing interactive annotation tools for
triangular meshes and textured images in real-world scenarios. Additionally, we propose
new evaluation criteria for interactive annotations, based on user studies.

Evaluation metrics. To more accurately evaluate interactive annotation efficiency,
we have developed a comprehensive set of evaluation criteria that reflect real-world
effects. Traditional evaluation methods, such as counting the number of clicks required
to achieve a certain Intersection over Union (IoU) or Average Precision (AP), provide
quantifiable metrics, but these do not fully capture the true efficiency of the annotation
process. The main shortcomings of these methods include:
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• Evaluation limitations: Relying solely on IoU or AP as the only evaluation metric
does not accurately reflect the comprehensiveness of annotation. For example,
even if the IoU might have reached 90%, the user may still need to make multiple
adjustments to the boundaries to match the real situation accurately.

• Interaction limitations: Interactions based solely on clicks cannot perfectly
annotate boundaries, often requiring the combination of other tools like lasso or
polygon editing for corrections, hence a single click count assessment does not
fully reflect the actual complexity of interactions. Additionally, traditional
evaluations often standardize user click positions for comparisons. However,
each user’s interaction choices vary, making it challenging to realistically assess
the efficiency of methods in practical applications.

• Efficiency limitations: The average number of clicks does not equate to real
interaction efficiency, as users vary in operational speed. Evaluating total
annotation time offers a more accurate reflection of interaction efficiency.

In response to these issues, we designed a comprehensive evaluation system including
Intersection over Union (IoU), Boundary IoU (BIoU), number of operations (Oper),
annotation time (Time), and the ratio of non-manual interaction usage, i.e., smart
interaction ratio (SR). BIoU specifically assesses the accuracy of boundary annotations.
For image and mesh boundary evaluation, we refer to the works of [Cheng et al., 2021]
and [W. Gao et al., 2023], respectively. Oper counts operations involving mouse clicks
and keyboard keystrokes. Time measures the time needed to complete annotations,
with all experiments in this paper measured in seconds. SR measures the frequency of
non-manual interaction tool use. To assess the usage of different annotation tools in
real scenarios, our evaluation approach is entirely based on user studies. Assuming the
participation of u users across n test scenes, each with c categories, the averages of these
metrics are calculated as follows:

• Evaluating a single scenario. For a given scenario s, annotated by u users across
c categories, mI oU , mB I oU , mOper , mT i me, and mSR, can be obtained by
averaging the I oU , mB I oU , mOper , mT i me, and mSR values across all users
and categories:

mI oU s = 1

u × c

u∑
i=1

c∑
j=1

I oUi , j ,s mB I oU s = 1

u × c

u∑
i=1

c∑
j=1

B I oUi , j ,s

mOper s =
1

u

u∑
i=1

Operi ,s mT i me s = 1

u

u∑
i=1

T i mei ,s

mSR s = 1

u

u∑
i=1

SRi ,s

The formulas above represent the average performance per test scene, aggregated
across multiple users.

• Evaluating multiple scenarios. To obtain M , B , O, T , and S, the averages of for
multiple scenarios, we take the average of each scenarios mI oU , mB I oU , mOper ,
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5.6. Experimental results

mT i me, mSR and then average these values:

M = 1

n

n∑
s=1

mI oU s B = 1

n

n∑
s=1

mB I oU s

O = 1

n

n∑
s=1

mOper s T = 1

n

n∑
s=1

mT i me s

S = 1

n

n∑
s=1

mSR s

The above formulas denote the average performance across all test scenes.

In our interactive testing experiments detailed in this paper, we invited five users
to participate (i.e., u=5), representing diverse backgrounds. The group included two
experts with knowledge in photogrammetry and geoinformation, and three non-experts
without such expertise. To ensure the reliability of the results, all participants received
the same training course prior to the study, providing them with a basic understanding
of the tasks and ensuring a consistent operational standard. We recorded each user’s
annotation progress and interaction count in real-time using a script running in the
background, requiring them to complete at least 95% of the content annotation in each
scene (annotation progress was based on the total surface area of the mesh or the
total number of texture pixels). This evaluation standard is applicable to both 2D and
3D interactive annotations and ensures that our evaluation criteria are practical and
scientifically valid.

Evaluation of interactive mesh annotation. To our knowledge, semantic annotation
methods for mesh faces are currently limited. As detailed in subsection 5.2.2, existing
mesh annotation methods typically annotate only the vertices of dense triangle
meshes [Lang et al., 2024; Selvaraju et al., 2021] or require additional inputs like camera
parameters, original images, and depth maps [Miksik et al., 2015; D. T. Nguyen et al.,
2018; Romanoni and Matteucci, 2018]. Given that our method only requires triangle
mesh surfaces as input, we have chosen to compare it with methods using similar
inputs. These include a manual annotation method [Rouhani et al., 2017] and a
segment-based [W. Gao et al., 2021] interactive annotation method. For evaluation, we
selected four representative scenes: a courtyard complex, a street with vehicles, a park
with trees, and a harbor with ships. All users independently used purely manual
annotation, segment-based interactive annotation, and our method to annotate the
four test samples. Notably, we did not consider any single user’s purely manual
annotation results as the absolute ground truth; instead, we used the cross-validation
average of all users’ purely manual annotation results as the reference standard.

From Table 5.5, it can be observed that our method outperforms both manual
annotation [Rouhani et al., 2017] and segment-based annotation [W. Gao et al., 2021]
across all evaluation metrics. Table 5.6 reveals that, compared to segment-based
annotation [W. Gao et al., 2021], our method slightly excels in the quality of object
region and boundary annotations. Across all four test scenarios, our method
significantly reduces both the number of interactions and the time required for
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M(%) B(%) O T (s) S(%)

Man. - - 6754 4183.2 -
Seg. 91.6 74.7 6119 3565.8 -
Ours 92.2 75.0 2992 2992.1 83.0

Table 5.5: Comprehensive performance evaluation of interactive mesh face annotation methods
across four test scenarios: where Man. stands for manual annotation [Rouhani et al.,
2017], Seg. for segment-based annotation [W. Gao et al., 2021]. The highest values
are given in bold.

Metric Method Cour. Stre. Park. Harb.

mI oU s (%)
Seg 89.1 94.0 92.1 91.1

Ours 89.5 94.2 92.9 92.2

mB I oU s (%)
Seg. 72.7 85.4 70.6 70.3

Man. 72.4 84.5 71.9 71.0

mOper s

Man. 18154 1589 3559 3714
Seg. 17645 1407 2529 2894
Ours 13231 909 1797 1957

mT i me s (s)
Man. 11401.0 969.5 2146.5 2215.8
Seg. 10441.3 757.0 1441.4 1623.7
Ours 9107.2 498.0 1105.9 1257.5

mSR s (%) Ours 66.5 94.9 85.8 84.8

Table 5.6: Detailed performance evaluation of interactive mesh face annotation methods across
four test scenarios: where Cour. stands for courtyard complex, Stre. for the streets
with vehicles, Park. for a park with trees, Harb. for harbor with ships, Man. for
manual annotation [Rouhani et al., 2017], Seg. for segment-based annotation [W.
Gao et al., 2021]. The highest values are given in bold.

annotation compared to other methods. Specifically, our method is about 1.73 times
faster than manual annotation [Rouhani et al., 2017] and 1.32 times faster than
segment-based methods [W. Gao et al., 2021]. Notably, except in the courtyard complex
scenario, our method’s smart interaction usage rate exceeds 80%, indicating that
minimal manual intervention is required for annotations in these scenarios. For the
courtyard complex scenario, due to issues like shadows and obstructions during aerial
photography, the data quality of categories such as facades and ground surfaces within
the courtyard is poor and noisy, thus requiring more manual identification and
annotation. We also provided a qualitative analysis, as shown in the Figure 5.16.

Evaluation of interactive texture annotation. To comprehensively evaluate our
method’s performance, we not only compared it with traditional purely manual
annotation methods but also chose three highly representative interactive image
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(a) Textured mesh (b) Segment-based (c) Ours (d) Manual

Figure 5.16: Comprehensive qualitative analysis of interactive mesh face annotation results: (b)
is based on segment-based annotation [W. Gao et al., 2021], (c) shows our results,
and (d) shows the results based on manual annotation [Rouhani et al., 2017]. In
(b) and (c), the error maps are displayed, where red indicates differences from the
ground truth and green indicates matches with the ground truth. (d) shows the
semantic mesh, with different colors representing the various classes as described
in subsection 5.6.1.

segmentation techniques for comparative analysis. These include the classic
GrabCut [Rother et al., 2004], the Segment anything (SAM) [Kirillov et al., 2023]
model-based interactive annotation, and Simpleclick [Q. Liu et al., 2023], which has
shown excellent performance across multiple interactive image annotation datasets. In
practice, we enhanced GrabCut [Rother et al., 2004] editing by incorporating tools like
lasso, rectangle, circle, and polygon to increase the efficiency of foreground and
background sample selection and to expand the sample set. For SAM [Kirillov et al.,
2023], we utilized a pre-trained Vision Transformer-Huge (ViT-H) model [Dosovitskiy
et al., 2020]. For Simpleclick [Q. Liu et al., 2023], we employed a ViT-H
model [Dosovitskiy et al., 2020] trained on the COCO [T.-Y. Lin et al., 2014] and
LVIS [Gupta et al., 2019] datasets. We selected three typical scenes from our dataset to
annotate textures: facades (×2), parks (×2), and roads (×2), involving six samples in
total for evaluation (n = 6). All test users independently used purely manual annotation,
GrabCut [Rother et al., 2004], SAM [Kirillov et al., 2023], Simpleclick [Q. Liu et al., 2023],
and our method to annotate these six test samples. We used the cross-validation
average of all test users’ purely manual annotation results as the reference standard for
quantitative analysis as shown in Table 5.7 and Table 5.8.

From Table 5.7, it can be observed that our method surpasses deep learning methods
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M(%) B(%) O T (s) S(%)

Man. - - 653 777.1
Gra. 88.1 47.1 711 780.9 30.2
SAM 84.4 29.8 716 640.6 71.7
Sip. 81.4 30.9 252 861.3 -

Ours 87.9 49.3 582 663.3 40.3

Table 5.7: Comprehensive performance evaluation of interactive texture image annotation
methods across six scenarios: where Man. stands for manual annotation, Gra. for
GrabCut [Rother et al., 2004], SAM for Segment anything [Kirillov et al., 2023], and
Sip. for Simpleclick [Q. Liu et al., 2023]. The highest values are given in bold.

in annotation quality and outperforms traditional methods in annotation time, also
comparing favorably with the shortest annotation times of SAM [Kirillov et al., 2023].
Specifically, our method excels in annotation quality over deep learning methods and
compares closely with the traditional GrabCut [Rother et al., 2004] method. In terms
of boundary annotation, our method outperforms all other methods, primarily due to
our fine segmentation and template-matching methods based on structural features.
Regarding the number of interactions, our method performs better than SAM [Kirillov
et al., 2023] and GrabCut [Rother et al., 2004], but is not as good as Simpleclick [Q. Liu
et al., 2023]. This is primarily because Simpleclick lacks tools for manual correction,
offering only functionalities for positive and negative sample clicking. Therefore, when
calculating the smart interaction ratio, we exclude Simpleclick [Q. Liu et al., 2023], which
always has a smart interaction ratio of 100%. While our smart interaction ratio exceeds
that of GrabCut [Rother et al., 2004], it remains lower than that achieved by deep learning
methods such as SAM [Kirillov et al., 2023]. This is primarily because the simplicity of our
interactions does not match the efficiency of deep learning’s pure clicking approaches.

From the Table 5.8, it can be seen that although our method’s M is slightly lower than
GrabCut [Rother et al., 2004], the mI oU s in most scenarios is superior to GrabCut
and other methods. Our method significantly outperforms other methods in boundary
quality across all test scenarios. In terms of interaction count, while our method
does not reach the efficiency of Simpleclick [Q. Liu et al., 2023], it outperforms other
methods in most scenarios. Concerning interaction time, although our method is slower
than SAM [Kirillov et al., 2023], it still outperforms other methods in the majority of
scenarios. In terms of smart interaction ratio, although our method necessitates some
manual corrections, these corrections significantly enhance annotation quality without
overly consuming time. Compared to deep learning methods, which are more efficient,
their shortcomings in boundary annotation accuracy mean that their post-correction
workload is comparable to purely manual annotation (see Figure 5.17 and Figure 5.18).

It is worth noting that for objects with regular shapes, interactive clicking may not be
the optimal method of annotation. For instance, as shown in Figure 5.17
and Figure 5.18, a single click often lacks boundary precision, and multiple clicks do not
significantly improve boundary accuracy. For components with repetitive structures,
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Metric Method Fac1. Fac2. Par1. Par2. Rod1. Rod2.

mI oU s (%)

Gra. 80.2 87.3 94.0 90.4 91.3∗ 85.4
SAM 81.0 86.4 85.3 86.4 86.5 80.7
Sip. 73.7 77.5 87.9 86.2 84.0 79.1

Ours 79.2 88.7 95.0 91.2 91.3 82.1

mB I oU s (%)

Gra. 27.8 45.4 63.7 45.8 49.9 50.1
SAM 24.7 33.9 25.8 23.3 34.1 37.0
Sip. 19.7 26.8 38.0 34.4 31.8 34.6

Ours 28.1 50.5 67.8 48.6 50.5 50.6

mOper s

Man. 515 124 497 297 718 1764
Gra. 717 156 462 243 960 1729
SAM 715 319 363 319 1020 1684
Sip. 297 119 77 78 400 539

Ours 487 105 497 213 720 1468

mT i me s (s)

Man. 816.9 185.6 636.7 280.1 801.7 1941.4
Gra. 920.1 242.6 494.9 270.8 836.3 1920.6
SAM 565.5 150.6 460.9 389.5 800.6 1476.5
Sip. 1128.5 338.9 197.7 230.8 1526.4 1745.5

Ours 631.1 155.8 565.9 189.1 767.9 1670.3

mSR s (%)

Gra. 7.1 11.8 59.3 66.5 9.9 26.7
SAM 94.7 92.8 78.8 78.6 49.2 36.0
Ours 20.3 21.2 51.6 75.8 32.2 40.8

Table 5.8: Detailed performance evaluation of interactive texture image annotation methods
across six scenarios: where Man. stands for manual annotation, Gra. for
GrabCut [Rother et al., 2004], SAM is Segment anything [Kirillov et al., 2023],
and Sip. for Simpleclick [Q. Liu et al., 2023], Fac1. for facade 1, Fac2. for facade 2,
Par1. for park 1, Par2. for park 2, Rod1. for road 1, Rod2. for road 2. ∗GrabCut
on road 1 is 91.29%, slightly lower than our score of 91.31%. The highest values
are given in bold.

frequent clicking significantly increases the annotation burden. In practice, users often
achieve high-precision annotations by simply drawing a rectangle or a polygon (like
windows or doors), reducing the need for frequent interactions. Our method allows
users to efficiently and accurately annotate all similar structures by manually creating a
graphical template just once. In summary, we believe that if the time required for
manual corrections in semi-automatic annotations equals or exceeds the time needed
for fully manual annotations, then this method loses its intended utility.

Sensitivity analysis. We examined the impact of parameter adjustments and data
quality on outcomes through qualitative analysis, demonstrating how these factors
influence the selection results for a specific component.
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(a) Input (b) GrabCut (c) Simclick (d) SAM (e) Ours (f) Manual

Figure 5.17: Comprehensive qualitative analysis of interactive texture annotation results: (b)
shows the results of GrabCut [Rother et al., 2004] annotation, (c) shows
Simpleclick (Simclick) [Q. Liu et al., 2023] annotation, (d) shows SAM [Kirillov
et al., 2023] annotation, and (e) shows our method’s annotation. Semantic classes
are labeled by colors, including facade surface , window , door , low vegetation
, impervious surface , road , road marking , cycle lane , and sidewalk .

(a) Input (b) GrabCut (c) Simclick (d) SAM (e) Ours (f) Manual

Figure 5.18: Qualitative analysis of boundary errors in interactive texture annotation: (b) shows
the error map of GrabCut [Rother et al., 2004] annotation, (c) shows Simpleclick
(Simclick) [Q. Liu et al., 2023] error map, (d) shows SAM [Kirillov et al., 2023]
error map, and (e) shows our method’s error map; from (b) to (e), the red color
indicates differences from the ground truth, and the green color indicates matches
with the ground truth; (f) displays the semantic texture mask, with different colors
representing different classes as described in subsection 5.6.1.

1) Face-based analysis. In testing protrusion extraction, we examined the specific
impact of the balance parameter λ f on the outcomes. As shown in the left column
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of Figure 5.19, increasing λ f clarifies the boundary of the tree. For segment matching,
we investigated the effects of the matching threshold ϵ(seg ) using a forest case, shown in
the middle column of Figure 5.19. As ϵ(seg ) increases, more segments can be matched.
For protrusion matching, we tested the impacts of the structural matching threshold
ϵ(str ). In a harbor scenario, as ϵ(str ) increased, more boats were matched, as shown in
the right column of Figure 5.19.

We further assessed how well our protrusion extraction method performs under various
levels of mesh noise, simulating real-world data scenarios by introducing different
intensities of Gaussian noise to the input mesh. Consistent interactive inputs and
parameters were employed across varying noise levels to maintain result consistency. As
shown in Figure 5.20, our approach demonstrates significant noise tolerance, accurately
extracting protrusions even at σm = 0.4m. Besides, it is important to note that in the
template matching process, the effectiveness of the results predominantly relies on the
quality of protrusion extraction, given the high similarity in Gaussian noise distribution
between the template and the matching data.

2) Texture-based analysis. In local region extraction, we explored how the balance
parameter λs influences the outcomes. As shown in Figure 5.21 (a), a larger λs results in
a smoother local region. In region matching, we discussed the impacts of the thresholds
ϵseed and ϵr eg . Figure 5.21 (b) and (c) show that as ϵseed and ϵr eg increase, more regions
can be matched. However, a large ϵseed value may lead to poor seed selection.

For most scenarios, our default parameters for the tested urban scenes yielded
satisfactory results (i.e., λ f = 0.3, ϵ(seg ) = 30, ϵ(str ) = 20, λs = 0.2, ϵseed = 15, and
ϵr eg = 30). The quantitative analysis of total interaction counts in the evaluation of
interactive annotation also confirmed that users rarely need to adjust parameters.
Furthermore, we believe that methods involving a few interpretable parameter
adjustments typically outperform those relying solely on user clicks with deep learning
methods. For instance, while methods like SAM [Kirillov et al., 2023] and
Simpleclick [Q. Liu et al., 2023] require no parameter adjustments during use, minimal
user input often does not consistently yield high-quality results. This is particularly
evident in handling object boundaries and annotating unknown scenes, which may
require users to make numerous additional interactive clicks, significantly increasing
the annotation burden. Additionally, these models still require extensive parameter
tuning during training.

We also evaluated the impact of local region extraction on handling texture image noise.
Gaussian noise was utilized to mimic the noise typical of real-world images, applying
consistent input positions and parameters across different noise levels. As depicted
in Figure 5.22, our method effectively identifies target regions even in significant noise.
Nevertheless, the extraction accuracy decreases with increased noise levels. Similarly,
due to the uniform distribution of Gaussian noise in the images, the quality of the
template-matching is largely influenced by the outcomes of the local region extraction.

In addition, the spatial location of user interactive inputs has a limited impact on the
results of our method. For face annotation, when selecting segments, we only require
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λ f = 0.0 ϵ(seg ) = 0 ϵ(str ) = 0

λ f = 0.3 ϵ(seg ) = 30 ϵ(str ) = 20

λ f = 0.6 ϵ(seg ) = 80 ϵ(str ) = 80

Figure 5.19: Sensitivity analysis of parameters in interactive mesh face annotation: from left to
right, the images illustrate λ f for protrusion extraction, where the yellow trajectory
denotes user stroke input; ϵ(seg ) for segment matching, indicated by a green star
representing user click input; and ϵ(str ) for protrusion matching, where the green
trajectory signifies user lasso input.

that the user’s click be within the segment, and for protrusion selection, we require
that the user’s lasso or stroke only encompasses the target to be extracted. For texture
annotation, we require that the user ensure the click point is within the target area only.

5.6.4. Applications and limitations

Applications. For the annotation of mesh faces, our interactive annotation method is
also suitable for indoor scenes, despite their relatively high complexity and diversity. In
indoor scenes, items like furniture and decorations are typically considered protrusions,
whereas walls, floors, and ceilings are treated as planar segments. As shown
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Input σm = 0.0m σm = 0.2m σm = 0.4m

Figure 5.20: Sensitivity analysis of mesh quality in protrusion extraction: the red area indicates
the selected area, and σm represents the standard deviation of the Gaussian noise
in the mesh.

λs = 0.0 ϵ(seed) = 0 ϵ(r eg ) = 0

λs = 0.2 ϵ(seed) = 15 ϵ(r eg ) = 30

λs = 0.4 ϵ(seed) = 30 ϵ(r eg ) = 60

Figure 5.21: Sensitivity analysis of parameters in interactive texture annotation: from left to
right, the images depict λs for region extraction, ϵ(seed) for seed matching, and
ϵ(r eg ) for region matching, with the green star indicating user click input.

in Figure 5.23 top row, our method efficiently extracts and matches different objects in
S3DIS [Armeni et al., 2017] indoor meshes. Additionally, our method is equally
applicable to the semantic annotation of manually reconstructed models, such as 3D
building models. Given that these models typically contain minimal noise, our method
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Input σt = 0 σt = 1 σt = 3

Figure 5.22: Sensitivity analysis of texture image quality in local region extraction: the red
area indicates the selected area, and σt represents the standard deviation of the
Gaussian noise in the texture image.

can achieve more accurate structure extraction and matching. As demonstrated
in Figure 5.23 bottom row, our method facilitates rapid structural extraction and
selection in CityGML LoD2 [Gröger and Plümer, 2012; OGC, 2012] building models.

For interactive texture annotation, our method can also be extended to semantic
annotation of images. Our method is particularly suitable for scenes containing objects
with high color and structural consistency. As shown in Figure 5.24, the method can
effectively and rapidly extract, segment, and match multiple similar components within
an image.

Limitations. Our method cannot process triangular meshes with topological errors, as
these errors prevent the correct extraction of neighborhood information. Our method
may also be ineffective for some natural scenes that do not fit the assumptions of
planar segments and protrusions, such as mountains, riverbeds, and forests, or spaces
with complex internal structures like palaces and churches. Additionally, our method’s
performance may suffer if the mesh resolution is too low or the results from plane-based
over-segmentation are poor. This limitation arises mainly because our method relies on
geometric precision and structural clarity.

As for the limitations of texture annotation, our method may struggle with textured
segments or images with complex textures or cluttered backgrounds because these do
not meet our basic assumptions. Additionally, the size of the superpixels can affect
performance; superpixels that are too small may lead to increased processing time,
while superpixels that are too large may cause under-segmentation, affecting accurate
object boundary extraction or incorrectly extracting background areas. Furthermore,
our method may underperform in shadowed areas or regions with minimal color
differentiation.
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Lasso selection Extracted protrusions Selected segment Matched segments

Stroke selection Matched protrusions Selected segment Matched segments

Figure 5.23: Extension of mesh face annotation applications: the first row displays the use of
S3DIS meshes [Armeni et al., 2017] for indoor object extraction with our method
(the green trajectory indicates user lasso input) and segment-matching results
(the green star indicates user click input). To address the presence of high noise
in indoor scenes, the geometric sensitivity term η, as described in Equation 5.1,
has been increased to 2. The second row illustrates component extraction from
CityGML LoD2 [Gröger and Plümer, 2012; OGC, 2012] building models (the yellow
trajectory denotes user stroke input) and their matching results (the green star
indicates user click input), where the red faces indicate the selected protrusions or
segments.

5.7. Conclusion

This paper has introduced a novel interactive annotation framework for semantic
segmentation of large-scale urban textured meshes. Our framework, designed for
minimal user interaction, enables efficient semantic labeling through two primary
techniques: interactive component extraction that capitalizes on local feature
differences and structure-aware matching for rapid annotation of similar structures.
Experimental results confirm that our method outperforms existing frameworks
regarding interaction convenience, efficiency, and accuracy. Additionally, we have
developed the first part-level semantic mesh dataset for large-scale urban scenes,
providing a comprehensive evaluation against state-of-the-art 3D semantic
segmentation methods. Our research paves the way for further advancements in
semantic understanding of urban environments.

There are several promising directions for future research. One area is the integration
of pre-trained models as prior probabilities, combined with local scene features, to
enhance interactive annotation. This approach can optimize annotation, especially
for components with regular geometries and intricate boundaries. Another research
gap is the development of end-to-end networks that can directly perform semantic
segmentation on mesh triangles and their textures, eliminating the need for point
cloud sampling. This would simplify the process and improve efficiency. Additionally,
new feature-aware modules are needed to effectively capture local geometric density
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(a) User extracted regions (b) Matched regions

(c) Local expanded region (d) Fine segmented region

Figure 5.24: Extension of texture image annotation applications: the first row demonstrates
local region extraction and matching of a facade image using our method; the
second row depicts region extraction from an indoor scene image using our method.
The green stars indicate the user clicks, and the red areas indicate the selected
pixels.

variations. Exploring these modules could lead to better handling of complex urban
scenes. Addressing these gaps will significantly advance the field and improve the
accuracy and efficiency of semantic segmentation for urban textured meshes.
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Lightweight 3D city model

reconstruction

From Chapter 3 to Chapter 5, we have explored methods for extracting semantic
information from urban textured meshes. This chapter shifts the focus towards applying
this semantic information in practical scenarios. It introduces a framework for
reconstructing lightweight 3D city models using semantic textured meshes, emphasizing
geometric integrity, surface continuity, and semantic retention. The framework comprises
algorithms for semantic-based 3D reconstruction and surface simplification.
Experiments on the SUM and SUM-Parts datasets demonstrate the framework’s
effectiveness in reconstructing large-scale 3D city models, with our semantic-based 3D
reconstruction methods surpassing other approaches in efficiency and accuracy. The
resulting lightweight city models, ranging from LoD2 to LoD3, significantly enhance
semantic-based urban applications by improving automation in measurements, spatial
computations, and the realism of physical simulations.
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6.1. Introduction

With the extensive use of airborne LiDAR and aerial imaging technologies, we are
now capable of collecting and generating large-scale urban point clouds [AHN, 2019]
and textured meshes [Google, 2012; Helsinki, 2019]. To effectively apply these data
in downstream applications, semantic segmentation, and lightweight reconstruction
become crucial [Lafarge and Mallet, 2011; Verdie et al., 2015; Xiang et al., 2024]. Despite
considerable research into the semantic segmentation of 3D data [Charles et al., 2017;
Q. Hu et al., 2020; Thomas et al., 2019], further utilization of this semantically enriched
data, especially textured meshes with object and part-level semantic labels [W. Gao et al.,
2021; Rouhani et al., 2017; Verdie et al., 2015], remains largely underexplored. Textured
meshes, due to their rich inherent semantic information, are theoretically suitable for
constructing detailed, multi-level 3D city models.

Figure 6.1: Building model reconstruction based on semantic urban texture meshes: the figure
above shows, from left to right, input textured building mesh, semantically labeled
mesh, reconstructed LoD2 building model, LoD3 building model, and building model
displayed in CityJSON format with attributes. The semantic classes shown in the
figure include roof surface , facade surface , chimney , roof installation , and
window .

Point cloud and textured mesh data, containing numerous points or triangles, demand
substantial storage and increased computational costs for data processing and analysis.
To reduce the storage redundancy of these raw data and meet efficiency requirements
for downstream applications, a lightweight reconstruction strategy is often adopted,
representing the original data with simplified polygons [Verdie et al., 2015; Xiang et al.,
2024]. Most current research on city model lightweight reconstruction focuses primarily
on buildings [Bouzas et al., 2020; Z. Chen et al., 2022; J. Huang et al., 2022; Peters et
al., 2022; Zhu et al., 2017], with many details confined to the Level of Detail 2 (LoD2)
standard of CityGML [Gröger and Plümer, 2012; OGC, 2012]. High-accuracy Level of
Detail 3 (LoD3) reconstruction methods are scarce [Gruen et al., 2020; Nan et al., 2015;
Pantoja-Rosero et al., 2022; L. Wang et al., 2024], and often require additional street-
view images or TLS/MLS point clouds with part-level semantic labels to reconstruct
semantic elements such as building windows and doors. However, these methods do
not guarantee the watertightness and two-manifold nature of the reconstructions, which
are generally limited to single buildings and pose challenges when applied in large-scale
urban settings. In contrast, our method can reconstruct building models from texture
meshes with semantic information ranging from LoD2 to LoD3. These models can then
be converted into CityGMLL [Gröger and Plümer, 2012; OGC, 2012] or CityJSON [Ledoux
et al., 2019] formats suitable for various 3D urban applications (see Figure 6.1). Research
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on lightweight reconstruction for other urban objects is also lacking, and existing studies
fail to meet the practical application needs [Du et al., 2019; Verdie et al., 2015].

Figure 6.2: Example of a large-scale, lightweight, semantic 3D city model reconstructed from
texture meshes: the top images show the texture meshes used as input data, while
the bottom images show the output of our method - a semantically enhanced,
lightweight city model. The semantic categories depicted in the above figure include
high vegetation , water , car , boat , roof surface , facade surface , chimney
, dormer , balcony , roof installation , window , door , low vegetation ,

impervious surface , road , road marking , cycle lane , and sidewalk .

As shown in Figure 6.2, our approach uniquely uses the urban texture mesh as input
data. By exploiting the extracted semantic information, it automatically performs a
lightweight reconstruction of various urban objects, achieving a large-scale, city-level
3D semantic city reconstruction from LoD2 to LoD3. We believe that lightweight 3D city
models should meet the following three criteria:

• Geometric integrity: The simplified 3D solid model should be watertight and two-
manifold, using as few polygons as possible while retaining the original geometric
structure.

• Surface continuity: Surfaces that cannot be constructed as solid models, such as
roads, should be represented as continuous and two-manifold simplified
polygons.

• Semantic retention: All lightweight output results should retain the semantic
information of the original data.

However, existing methods primarily focus on lightweight reconstruction of geometric
solids [Bauchet and Lafarge, 2020; Nan and Wonka, 2017], often neglecting the
simplification of non-solid surfaces and effective semantic information transmission.
To address this issue, we propose a lightweight 3D city model reconstruction framework
based on semantic textured meshes. Our specific contributions include: 1) A framework
for lightweight 3D city modeling that includes semantic-based 3D reconstruction and
surface simplification. 2) A semantic transmission algorithm designed to preserve the
semantic labels of lightweight city models derived from the input data. 3) The first
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automatically reconstructed large-scale lightweight city model dataset with multi-level
detailed semantic information derived from semantically annotated urban textured
meshes. 4) An in-depth discussion of potential applications for large-scale 3D city
models with rich semantic information, offering new perspectives for future research
directions.

6.2. Related work

With extensive research into lightweight city model reconstruction, this section focuses
on fully automatic reconstruction methods using 3D data (point clouds and meshes),
excluding image-based, generative, manual, and semi-automatic approaches. Fully
automatic lightweight reconstruction methods fall into four main categories: primitive
fitting, spatial partitioning, mesh simplification, and deep learning-based approaches.

The method of primitive fitting employs predefined geometric models (such as planes,
cubes, cones, spheres, or roof primitives) to fit the input 3D data using a cost function [Z.
He et al., 2021; J. Jiang et al., 2023; Lafarge and Mallet, 2011; Nan et al., 2010; Nan
and Wonka, 2017; Xiong et al., 2015; W. Zhang et al., 2021]. It efficiently reconstructs
watertight and manifold models, ideally suited for buildings or trees and applicable
to large-scale reconstructions. However, its generalization ability is limited due to the
reliance on predefined geometric shapes, making it unsuitable for complex geometries
or tasks demanding high geometric precision.

The spatial partitioning approach can be further divided into 2D and 3D spatial
partitioning. 2D methods often handle aerial point clouds or meshes by projecting
them onto a 2D plane and constructing 2D grids or planar partitions, and then
extruding these into 2.5D models [J. Han et al., 2021; Kelly et al., 2017; Peters et al., 2022;
Sui et al., 2016; Zhu et al., 2018; Zhu et al., 2017]. 3D methods utilize planar primitives
or profiles for partitioning, ideal for constructing models with complex geometries and
ensuring their watertightness via topological constraints [Bauchet and Lafarge, 2020;
Chauve et al., 2010; Haala et al., 2007; Kada and Wichmann, 2013; Verdie et al., 2015].
However, as the complexity of the input data increases, the time required to solve the
cost function for these methods may become excessively long, making them unsuitable
for large-scale, high-precision 3D reconstructions.

The mesh simplification method targets triangular meshes, reducing mesh facets by
merging or reconstructing uniformly distributed triangles [Bouzas et al., 2020; X. Gao et
al., 2022; M. Li and Nan, 2021; Y. Liu et al., 2022a; Salinas et al., 2015]. Although effective
in simplifying models, this method requires topologically correct and continuous input
meshes. However, it may lose important geometric details due to excessive smoothing,
making it unsuitable for most large-scale urban scenes. Furthermore, this method
performs poorly in preserving unique architectural features, such as chimneys and
decorative details, limiting its application in high-fidelity modeling.

Deep learning-based methods heavily rely on large-scale manually reconstructed
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models as training data, learning implicit fields’ predictions [Z. Chen et al., 2022;
Z. Chen et al., 2023] or the geometric structures (such as vertices and edges) and their
topological relationships [S. Huang et al., 2024; L. Li et al., 2022; Y. Liu et al., 2024].
Although their generated models depend on the accuracy of the predictions, these
methods have poor generalization abilities and perform poorly in processing complex
models or unseen scenes, and cannot guarantee both the two-manifold nature and
watertightness of the models.

Despite the advantages of these methods, they are generally unsuitable for
reconstructing large-scale, lightweight city models with comprehensive and high-level
semantic details, as most are only suitable for building models. In contrast, our
proposed framework utilizes the semantic information of textured meshes to
reconstruct various types of urban objects and their parts, producing lightweight
large-scale city models that are two-manifold, watertight (except semantic surfaces),
highly detailed, and rich in semantic information.

6.3. Overview

Our goal is to utilize semantic information to simplify urban textured meshes, aiming to
replace the numerous triangles with a smaller number of simplified polygons. Notably,
polygonization is mainly suitable for 3D objects that can be divided into planar
segments, such as buildings and vegetation, or surfaces with regular boundaries, like
roads, but not for irregular surfaces, such as terrain, grassland, or water. Our framework
processes textured meshes enriched with semantic information by reconstructing or
simplifying each semantic category individually, then merging them and accordingly
transferring the semantic labels. We divide semantic-based lightweight reconstruction
into two main types: semantic-based 3D reconstruction and surface simplification.

Semantic-based 3D reconstruction aims to convert 3D objects, composed of point
clouds sampled from the meshes, into boundary representations (see from Figure 6.3
and Figure 6.4). This is mainly used for objects requiring watertightness, such as
buildings and their semantic parts, trees, and vehicles. Using semantic information, we
identify and extract connected components, not instances, of the same semantic class
within the urban textured mesh. We then conduct individual semantic-based 3D
reconstructions on these connected components using the PolyFit algorithm [Nan and
Wonka, 2017] to achieve polygonization. For complex objects with multiple semantic
parts, each is independently reconstructed and eventually merged with others,
maintaining the semantic labels of the original mesh. The advantage of using semantic
information lies in reducing the number of variables handled in surface extraction,
particularly the number of planar segments. Additionally, 3D reconstruction methods
that use uniform parameters for planar partition often overlook small or geometrically
minor components, such as windows or chimneys, resulting in ineffective
reconstructions [Bauchet and Lafarge, 2020; Nan and Wonka, 2017]. By using different
parameters for planar partition across various semantic classes, the reconstruction
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Figure 6.3: LoD2 model reconstruction pipeline: first, we semantically label ( ) the triangular
faces of the input textured mesh, followed by surface point cloud sampling ( );
we then spatially partition ( ) the sampled point cloud and reconstruct ( ) each
segmented sub-cloud; finally, we use Boolean operations ( ) to fuse the results and
add semantic information ( ) to the lightweight model. #F denotes the number of
faces in the current model.

results can be more complete and accurate.

The goal of surface simplification is to geometrically simplify objects with non-closed
continuous surfaces, using fewer polygons or triangles, mainly applicable to terrain,
water, grasslands, and roads (see Figure 6.5). Based on the semantic information,
we employ two simplification strategies: planar surface simplification and triangular
mesh simplification. Planar surface simplification is suitable for objects that can be
represented by continuous planar surfaces with regular boundaries, such as roads and
cycle lanes. Triangular mesh simplification, on the other hand, is suitable for irregular
surfaces better represented by a mesh of triangles, such as terrain, water, or grasslands.
Using semantic information, we extract and simplify connected surfaces within the same
semantic class. Compared to traditional methods that primarily focus on terrain mesh
simplification [K. Kumar et al., 2018; Ledoux et al., 2023], the use of semantic information
allows for the adoption of appropriate simplification methods for different types of
ground surfaces, thus achieving further simplification of urban meshes.

It should be noted that textured meshes are not ideally suited for direct use in lightweight
3D city model reconstructions due to potential issues like mesh tiling and topological
errors. In the post-process of constructing large-scale urban meshes, splitting the
mesh into tiles for easier manipulation often disrupts the topological continuity, posing
challenges in reassembling tiles with preserved texture and topology. Furthermore,
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Figure 6.4: LoD3 building model reconstruction pipeline: initially, we semantically label ( ) the
triangular faces of the input mesh and its mapped ( ) texture images, followed
by surface point cloud sampling ( ); we then divide ( ) the point cloud into
different components based on spatial and semantic criteria and reconstruct ( )
each component; finally, we merge these components using Boolean operations
( ), transferring the semantic labels ( ) to the reconstructed building model. #F
denotes the number of faces in the current model.

Figure 6.5: Surface simplification pipeline: first, we semantically label ( ) the triangular faces
of the input mesh and the mapped texture pixels, followed by surface point cloud
sampling ( ); we then project regular features such as roads onto a plane to extract
polygons ( ) and simplify ( ) the terrain through irregular surface triangulation. #F
denotes the number of faces in the current surface.

such meshes may exhibit topological errors [Attene et al., 2013], such as non-manifold
vertices and self-intersecting faces, which impede accurate model reconstruction. In
contrast, point cloud-based methods, which avoid these topology-related issues, are
most suitable for reconstructing the geometric structure of lightweight city models
(see Figure 6.6a and Figure 6.6b).

Despite this, we believe that urban meshes are ideal carriers for semantic information
due to their continuous surfaces made of triangles that can approximate any object’s
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(a) Mesh tiles (b) Sampled points (c) Semantic meshes (d) Semantic points

Figure 6.6: Mesh vs. point cloud: (a) shows the mesh tiles, with the green line indicating the
mesh boundary; (b) shows the point cloud after sampling the mesh surface; (c)
shows the semantic texture mesh, where the semantic information is stored on the
mesh faces and the texture masks, respectively. The binary storage of the data
in the figure occupies a total space of about 1.3 Mb; (d) denotes the semantic
dense point cloud, each point of which corresponds to a semantic label. The binary
storage of the data in the figure occupies a total space of about 69.3 Mb.

geometry and their textured images, which contain rich semantic details. Compared to
point clouds and images with semantic labels, meshes that store semantic information
through face labels and texture masks require the least storage space and are easier to
handle (see Figure 6.6c and Figure 6.6d). Obtaining ground-truth semantic labels is
simpler with textured meshes than with point clouds and images [W. Gao et al., 2021],
and they can be freely converted between these formats. Overall, textured meshes are
best suited for reconstructing semantic details of large-scale city models, offering both
the convenience of semantic annotation and flexibility in format conversion, making
them ideal for lightweight semantic 3D city model reconstruction.

6.4. Semantic-based 3D reconstruction

Our objective is to perform 3D model reconstruction from semantic textured meshes,
aiming to create watertight, 2-manifold polygonized models with semantic labels. Our
method is divided into four main steps: 1) semantic subdivision, 2) 3D model
reconstruction, 3) texture parts reconstruction, and 4) integration.

1) Semantic subdivision. In this step, we first subdivide the input textured meshes into
3D mesh objects and 2D texture parts using semantic information. For 3D mesh objects,
we further subdivide them into main structures, such as the building’s main body, and
3D semantic parts, including chimneys and dormers. After subdivision, the connection
regions may be missing. We then fill any holes in their connection regions to ensure
geometric integrity (see Figure 6.7). Next, we randomly sample the mesh surfaces to
generate semantic point clouds for subsequent 3D model reconstruction.

For texture parts such as the doors and windows of buildings, we directly extract them
from the semantic textured masks and transform them into 3D point clouds using
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Figure 6.7: Semantic subdivision and hole filling: based on semantic labels, the mesh is divided
into a main structure and 3D semantic parts. The holes in the connected regions
are filled after the division, and the red lines indicate the hole boundaries.

texture coordinates. This ensures that the geometric characteristics of texture parts
remain consistent during their reconstruction.

It is important to note that directly simplifying the mesh could introduce complex
problems due to potential topological errors, including non-manifold vertices or edges,
duplicate vertices, and gaps caused by tiling (see Figure 6.6). Therefore, we opt for
point cloud-based 3D reconstruction, a strategy that avoids problems associated with
topological errors and enhances the robustness of the reconstruction process.

2) 3D model reconstruction. This step concentrates on reconstructing solid models
from sampled point clouds of 3D mesh objects created in the initial phase. It produces
watertight polygonal models that conform to the 2-manifold requirement. Initially, we
perform over-segmentation of the main structures and their 3D semantic part point
clouds to identify various planar segments. After regularizing these segments [Verdie et
al., 2015], we apply the PolyFit algorithm [Nan and Wonka, 2017] for surface extraction.

Figure 6.8: Completion of the mesh-sampled point cloud: from left to right are the incomplete
point cloud, the projected ground point cloud, the mesh boundary interpolated
vertical surface point cloud, and the complete downsampled point cloud.
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To enhance the efficiency and completeness of the reconstruction process, we perform
additional processing on the main structures and their 3D semantic parts. The main
issues with the 3D main structure point clouds may include missing point clouds
and excessive planar segments. Missing point clouds, especially large-scale structural
absences caused by obstructions like missing ground and facade of buildings due to
occlusion or mesh tiling, can result in the inability to reconstruct complete models.
As depicted in Figure 6.8, we complete the ground by projecting the point clouds to
the lowest horizontal plane. Vertical absences are addressed by downward vertical
interpolation of the mesh boundaries. Compared to the vertical surface completion of
aerial point clouds in City3D [J. Huang et al., 2022], which involves extracting polylines
from projected points and extruding them using a height map, our method is more
intuitive and direct. This advantage is due to the topological properties of the mesh,
which make it easier to extract mesh boundaries. The process of our approach involves
calculating the elevation difference ∆zi = zi − zmin for each point (xi , yi , zi ) along the
mesh border. Interpolation is performed only when ∆zi exceeds the minimum threshold
emi n , which is set to 1.0 meter for all experiments in this paper. The number of

interpolated points ni is determined by ni =
⌊
∆zi
δ

⌋
, where δ is the constant vertical

interval, set to 0.2 meters across all experiments. Each interpolated point qi j is given
by qi j = (xi , yi , zi − j ·δ) for j = 0,1, . . . ,ni −1. This sequence generates a set of vertically
interpolated points Q, effectively filling the vertical gaps along the mesh boundary.

For geometrically complex objects like courtyard complexes and trees, an excessive
number of planar segments can significantly reduce the computational efficiency
during PolyFit surface extraction [Nan and Wonka, 2017]. We employ a
divide-and-conquer strategy inspired by Bauchet and Lafarge, (2020), using spatial
subdivision to divide the main structure Smai n into different sub-point clouds Ssub .
This approach effectively reduces the number of planar segments required for each
individual reconstruction. Subsequently, each sub-point cloud is processed with the
PolyFit algorithm [Nan and Wonka, 2017] and integrated into a coherent whole model
through mesh union operations (as illustrated in Figure 6.3, Figure 6.4,
and Algorithm 6.1).

For point clouds representing 3D semantic parts Spar t s of the main structure, as well
as for sub-point clouds derived from the main structure, their reduced scale and fewer
inliers may lead to a failure in detecting sufficient planar segments, which can hinder
effective 3D reconstruction. Therefore, we adopt an adaptive reconstruction approach
(depicted in Algorithm 6.1), initially using predefined over-segmentation parameters
for trial reconstructions. If the initial reconstruction does not meet the preset volume
ratio compared to the original mesh, we adjust the over-segmentation parameters and
retry. This process is repeated until the conditions are met or the maximum number of
attempts is reached. This method allows us to adjust the reconstruction strategy while
maintaining the original geometric shape, ensuring the model Mmai n closely matches
the true structure of the original data.

Algorithm 6.1 details the divide-and-conquer algorithm for 3D model reconstruction.
Lines 1 to 2 represent the divide phase, encompassing semantic and spatial subdivisions.
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Algorithm 6.1 Divide and Conquer with Adaptive Reconstruction

1: Input: Ssemanti c_poi nt_cl oud

2: Output: Mmai n , Mpar t s

3: {Smai n ,Spar t s } ← semantic_subdivision(Ssemanti c_poi nt_cl oud ) ▷ Start divide
4: Ssub ← spatial_subdivision(Smai n)
5: Mpar t s ←;, Msub ←; ▷ Start adaptive reconstruction
6: Nat tempt s ← 3, rmi n ← 50, dmax ← 0.5, θmax ← 25.0
7: ∆r ← rmi n/Nat tempt s

8: ∆d ← dmax /Nat tempt s

9: ∆θ ← θmax /Nat tempt s

10: for p ∈ {Spar t s ,Ssub} do
11: to_stop ← false
12: Vmin ←αvol ×volume(optimal_bounding_box(p))
13: while not to_stop do
14: planar_segments_detection(p,rmi n ,dmax ,θmax )
15: mi ← polyfit(p)
16: if is_closed(mi )∧volume(mi ) ≥Vmin then
17: Mpar t s .append(mi ) or Msub .append(mi )
18: to_stop ← true
19: else
20: if is_empty(mi ) then
21: rmi n ← rmi n −∆r

22: dmax ← dmax −∆d

23: θmax ← θmax −∆θ

24: else
25: rmi n ← rmi n +∆r

26: dmax ← dmax +∆d

27: θmax ← θmax +∆θ

28: end if
29: end if
30: end while
31: end for
32: Mmai n ← Msub[0] ▷ Start conquer
33: for i = 1 to size(Msub) do
34: union(Mmai n , Msub[i ])
35: end for

Lines 3 to 29 elaborate on our proposed adaptive reconstruction algorithm. In this
phase, Mpar t s and Msub are the collections of models reconstructed from Spar t s and
Ssub , respectively. The parameters rmi n , dmax , and θmax signify the minimum number
of points per planar segment, the maximum distance from points to a plane, and
the maximum angle between point normals and the plane, respectively. Nat tempt s

specifies the number of attempts at reconstruction, while ∆r , ∆d , and ∆θ are the update
values for the number of points, distance, and angle with each attempt. Vmin denotes
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the minimum acceptable volume for the reconstructed models, which is derived from
multiplying a predefined volume ratio αvol = 0.3 by the volume of the optimal bounding
box of the input point cloud. Lines 30 to 33 depict the conquer phase, where Mmai n

corresponds to the model reconstructed from Smai n . In subsequent processes, Mpar t s

will be integrated through a Boolean operation binary tree. Note that we use the default
settings of the PolyFit [Nan and Wonka, 2017] parameters as stated in the paper, and we
do not update them during adaptive reconstruction to ensure robust results. The default
values for these parameters are the same across all experiments in this study.

3) Texture parts reconstruction. This step aims to reconstruct 3D models from the
point clouds of textured parts, such as windows or doors in the texture masks, and
consists of two main processes: regularization and extrusion. Texture parts
regularization comprises three processing modules: global regularization, boundary
regularization, and local regularization. Global regularization groups each part and
matches it with corresponding main structure planar segments, aligning the parts
segments with the main structure plane (see Algorithm 6.2).

Algorithm 6.2 Texture Part Global Regularization

1: Input: {pl anei }i=1...Ntex

2: Output: {pl ane
′
i }i=1...Ntex

3: dmax ← 1.0, θmax ← 25.0
4: for i = 0 to Ntex do
5: countmax = 0
6: for j = 0 to Nmain do
7: if dist(Ci , pl ane j ) < dmax and cos−1(ni ·n j ) < θmax then
8: count ← 0
9: for p in Pi do

10: ppr o j ← projection(p, pl ane j )
11: if point_in_polygon(ppr o j , pol y g on j ) then
12: count ← count +1
13: end if
14: end for
15: if count > countmax then
16: countmax ← count
17: pl anematch ← pl ane j

18: end if
19: end if
20: end for
21: pl ane

′
i = pl anematch

22: end for

In Algorithm 6.2, {pl anei } and {pl ane
′
i } are the input and output planes of the texture

part point cloud. dmax and θmax respectively denote the maximum distance from a
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point to a plane and the maximum angle between their normal vectors. Ntex represents
the number of texture part point clouds, while Nmain indicates the number of planar
segments in the main structure. Ci and n j correspond to the center point of a texture
part and the normal vector of its fitted plane, respectively. pl ane j and n j represent
the plane and its normal vector for the j th planar segment of the main structure, and
pl anematch denotes the plane of the main structure that matches with texture part i .
The default values for these parameters remain consistent throughout all experiments
in this study.

Boundary regularization uses a convex hull algorithm [Bykat, 1978] to identify and
extract boundaries of part point clouds. These boundaries are then simplified using a
Euclidean distance-based cost function and subjected to multi-angle and offset
regularization to ensure regularity and accuracy [Bauchet and Lafarge, 2018]. Local
regularization uniformly applies angle and offset treatments to all closed boundaries
within the same global regularization group, ensuring parallelism and consistent
offsets [Bauchet and Lafarge, 2018]. We illustrate the differences between unregularized
and regularized texture part models in Figure 6.9.

(a) Before regularization (b) After regularization

Figure 6.9: Texture parts regularization

The extrusion stage follows the regularization processes, first using the extracted
boundaries to construct a planar mesh using constrained Delaunay
triangulation [D.-T. Lee and Schachter, 1980]. The planar mesh is then extruded along
the normal direction of the textured parts and in the opposite direction, forming 3D
structures. The length of the extrusion is determined by the semantic class (e.g., 10 cm
for the window).

4) Integration. This step involves integrating solid models with their parts and
semantics to create a polygonal surface model that preserves the original semantic
information. It ensures the final model is watertight and adheres to the two-manifold
requirement.
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Solid model integration aims to merge the reconstructed 3D main structure models,
3D semantic part models, and the texture part extruded models into a unified polygon
surface model. To achieve this, we construct a Boolean operation [Q. Zhou et al., 2016]
binary tree for solid geometric integration, as shown in Figure 6.10. The 3D parts are
classified as internal or external, depending on their relationship with the 3D main
structure. We embed the texture part model by subtracting their extruded models from
the corresponding 3D semantic part models. Subsequently, internal 3D semantic parts
are subtracted from the main structure to reveal embedded surfaces. Finally, a Boolean
union merges the 3D main structure with its part models into a coherent surface model.

Figure 6.10: Boolean binary tree for solid model integration: we first use 3D main structure
models and 3D semantic part models, respectively, to embed geometric information
of texture part extruded models into their corresponding models using Boolean
subtraction operation; then we perform Boolean union of the obtained results to
obtain the final watertight surface model.

Semantic integration aims to effectively transfer the labels of the original textured mesh
to the integrated geometric model. This process begins with a semantic initialization of
the main structure using a semantically down-sampled point cloud. The solid model is
initially partitioned into different planar segments through over-segmentation.
Subsequently, the semantic point cloud is assigned to the corresponding planar
segments. Similar to the method outlined in Algorithm 6.2, we coarsely match each
point from the semantic point cloud to the planar segments by considering both the
point-to-plane distance and the angle between the normals of the points and the planar
segments. For points belonging to a specific planar segment, we use a voting
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mechanism to decide the final labels.

(a) (b) (c) (d) (e)

Figure 6.11: Example of semantic integration: where (a) shows the result of the mixing between
the semantic point cloud (in color) and the reconstructed model (in grey), which
can be seen to have varying degrees of geometrical deviation from the original
point cloud to the reconstructed model; (b) shows the result of the semantic
initialization of the 3D main structure; (c) shows the result after integrating the
texture part models; (d) shows the result after integrating the 3D semantic part
models; (e) shows the results after semantic label voting using a traditional KNN
approach.

Given the potential geometric deviations between the reconstructed model and the
original mesh (or the sampled point cloud), especially in 3D parts and texture parts,
semantic transfer based on nearest neighbors might lead to significant errors. To reduce
these errors, we propose a Boolean operation-based semantic transfer optimization
strategy (see Figure 6.11). This strategy establishes a correspondence between each
face in the merged model and part models from previous steps, effectively assigning
semantic labels (see Figure 6.11). After transferring semantic labels to the merged model,
we create a fully semantically informed solid model.

6.5. Semantic-based surface simplification

The objective of this step is to use semantic information to geometrically simplify
surfaces that cannot be utilized for 3D model reconstruction. This involves planar
surface simplification and triangular mesh simplification. To ensure the accuracy
of the simplification process and avoid the effects of topological errors and detail
reconstruction errors, we use semantic point clouds obtained through mesh sampling
as the input data for surface simplification.

Planar surface simplification is primarily applied to surfaces with regular boundaries,
including roads, sidewalks, cycle lanes, road markings, etc. We first identify and extract
these point clouds’ connected components based on semantics. Due to occlusion,
these surfaces may contain holes or missing parts. For instance, parts of the road
occupied by cars will have gaps after the cars are removed. To address this issue, we
first establish a semantic hierarchy of containment, where the road is the parent class
and cars are the child class. When constructing the surface of the semantic parent
class, all adjacent connected child class point clouds are projected onto the plane of the
parent class to fill the missing parts. Next, for each type of connected component, we
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acquire planar segments via over-segmentation and then project the point clouds onto
the corresponding planes. We then use the Alpha Shape algorithm [Bernardini and Bajaj,
1997] to extract boundaries and construct planar polygons (see Figure 6.5).

Triangular mesh simplification targets surfaces with irregular boundaries or uneven
surfaces, such as terrain, water, and grasslands. In this process, we first simplify
the sampling points uniformly. Then, utilizing the Delaunay triangulation [D.-T. Lee
and Schachter, 1980] method, we construct a triangular mesh, which sets the stage
for subsequent simplification steps. After obtaining the initial triangular mesh, the
Lindstrom-Turk cost [Lindstrom and Turk, 1998; Lindstrom and Turk, 1999] and position
strategy are applied to further refine the mesh, optimizing its quality and performance
(see Figure 6.5).

Through these two simplification methods, we can effectively handle various types of
urban mesh surfaces, whether regular or irregular, achieving geometric simplification
through appropriate strategies.

6.6. Experiments

6.6.1. Dataset and evaluation metrics

We selected the SUM dataset [W. Gao et al., 2021] to test our methods, which is currently
the most extensive known semantic textured mesh dataset (see Chapter 3). Semantic
labels in this dataset are primarily based on mesh faces and include categories such
as terrain, buildings, water bodies, tall vegetation, vehicles, and boats. Additionally,
we developed SUM-Parts (see Chapter 5), an extension of SUM, which includes both
mesh face and texture labels like terrain, high vegetation, water, cars, boats, walls,
roof surfaces, facade surfaces, chimneys, dormer windows, balconies, roof installations,
windows, doors, low vegetation, impervious surfaces, roads, road markings, cycle lanes,
and sidewalks. We conducted tests over an area of 1.5 km2 that overlaps with SUM and
SUM-Parts, using our proposed framework to perform lightweight reconstructions for
all semantic categories.

The lightweight reconstruction results were evaluated based on four criteria:
compression degree, efficiency, geometric accuracy, and semantic accuracy. The
compression ratio is measured by the difference in the number of facets before and
after reconstruction. The efficiency is quantified by the time (in seconds) required to
complete the task. Geometric accuracy is evaluated using symmetric mean Hausdorff
distance (H-dis), Chamfer distance (C-dis), and root-mean-square error (RMSE). Note
that the evaluation metric of geometric accuracy is based on point clouds sampled from
the reconstructed model surface (with a random sampling density of 10 points per m2).
Semantic accuracy is quantified by the mean intersection over Union (mIoU) and mean
accuracy (mAcc) based on the manually annotated reconstructed models.
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6.6.2. Implementation details

Our test environment utilizes a computer equipped with an Intel Core i7-7700HQ CPU
(4 cores, 2.8 GHz) and 32GB of RAM. We build our software using C++ and open-source
libraries such as Boost, CGAL [The CGAL Project, 2024], and Easy3D [Nan, 2021a]. For
PolyFit surface extraction, we employ the Gurobi 11.0 solver.

6.6.3. Results

We conducted quantitative (see Table 6.1) and qualitative (see Figure 6.12) evaluations
of our method on the SUM [W. Gao et al., 2021] and SUM-Parts datasets. For the SUM
dataset, we performed LoD2 model reconstructions of buildings, vegetation, cars, and
ships. Meanwhile, we applied mesh simplification to the terrain and water. For the
SUM-Parts dataset, we performed LoD3 model reconstructions of buildings and planar
surface simplification of roads and their markings, cycle lanes, sidewalks, low vegetation,
and impervious surfaces, producing LoD3 surface models. The approach to processing
terrain, water, vegetation, cars, and ships was consistent with that on the SUM dataset.

B-LoD2. B-LoD3. H-veg. Car Boat Road L-veg. Imp. Water Terr.

C. / A. (km2) 147 147 682 1547 273 0.32 0.08 0.24 0.46 1.58
Fdi-N. (k) 2711 2711 1223 168 177 873 873 873 103 873
Fdo-N. (k) 37 802 57 38 6 54 75 162 5 175

C −di s. 1.18 0.97 0.74 0.49 0.92 9.98 4.25 3.60 0.31 4.44

H −di s. 1.76 1.32 0.90 1.17 1.18 17.37 8.40 6.88 0.32 8.43
RMS. (%) 4.70 4.15 6.10 6.90 5.25 2.78 0.03 0.16 0.03 2.90

Time-P. (h) 4.6 18.2 3.52 0.56 0.19 - - - - -
Time-A. (h) 14.53 69.63 6.82 0.98 0.28 2.57 0.22 0.76 0.15 0.17

Table 6.1: Quantitative analysis of lightweight reconstruction in the SUM and SUM-Parts
datasets: where C. represents the total number of connected components for
category counting in the middle column; A. indicates the total surface area in
square kilometers for category counting in the right column; Fdi-N. denotes the
total number of input triangular faces in thousands (k); Fdo-N. represents the total
number of output polygonal faces, also in thousands (k); C −di s. refers to the
average Chamfer distance; H −di s. refers to the average Hausdorff distance; RMS.
is the average RMSE, calculated as a percentage of the optimal bounding box length
per object or surface; Tim-P. indicates total time spent on parallel processing using
a quad-core CPU, while Tim-A. denotes cumulative reconstruction time per object,
both in hours (h); B-LoD2 and B-LoD3 designate LoD2 and LoD3 building models,
respectively; H-veg. signifies high vegetation; L-veg. denotes low vegetation; Imp.
stands for impervious surfaces; Terr. refers to the terrain.

Due to the inclusion of only semantic segmentation and not instance segmentation
labels in SUM and SUM-Parts, the input data for Table 6.1 middle column, which
includes buildings, high vegetation, cars, and boats, primarily consists of connected
components. Compared to instance segmentation as input data, connected
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(a) Textured mesh (b) Semantic mesh (c) Semantic textured mesh

(d) SUM results (e) SUM-Parts results

Figure 6.12: Lightweight 3D semantic city model reconstruction results: where (a) shows
the input textured meshes; (b) shows the semantic mesh with face labels; (c)
shows the semantic mesh with both face and texture labels; (d) shows the SUM
reconstructed models at LoD2; (e) shows the SUM-Parts reconstructed models
with LoD3 building and road models. The semantic classes shown in the figure
include high vegetation , water , car , boat , roof surface , facade surface ,
chimney , dormer , balcony , roof installation , window , door , low vegetation
, impervious surface , road , road marking , cycle lane , and sidewalk .

components typically include larger-scale and more geometrically complex objects
such as building blocks and interconnected groups of trees, which pose significant
challenges to reconstruction algorithms in terms of efficiency.

From the middle column of Table 6.1, it is evident that our algorithm reduces the
number of faces by approximately 70% to 98% (Fdi-N. indicates the number of input
faces, and Fdo-N. indicates the number of output faces, both in thousands). The
highest compression is observed in LoD2 buildings, high vegetation, and boats, whereas
the compression is lower for LoD3 building models with rich semantic details and
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vehicles with lower geometric precision. Furthermore, from the comparison of LoD2
and LoD3 results, we find that semantic information enhances the geometric accuracy of
reconstructed models, largely thanks to our proposed adaptive reconstruction strategy.
Regarding reconstruction efficiency, we have calculated the total time (Time-P.) spent
(based on parallel processing on our quad-core CPU) and the cumulative time (Time-
A.) for individual object reconstruction. It is apparent that although buildings are the
least numerous, their complex geometric structures result in longer processing times
compared to other categories.

For the surface reconstruction detailed in the right column of Table 6.1, all categories
except water and terrain utilize texture-level semantic labels. Therefore, we use terrain
meshes and their corresponding texture images to extract roads, low vegetation, and
impervious surfaces. Our algorithm significantly reduces the face numbers by
approximately 80% to 95%. In terms of geometric accuracy, except for water, these
surfaces display notably high average Hausdorff and Chamfer distances, particularly
roads. This primarily results from our approach of using a uniform plane projection to
maintain surface coherence and extract polygons. Moreover, surface simplification is
notably more time-efficient compared to object reconstruction.

6.6.4. Comparisions

To conduct a more detailed evaluation of our proposed semantic-based 3D
reconstruction method, we compared it against other methods in terms of geometric
accuracy and semantic accuracy.

Geometry-based comparisons. In terms of geometric accuracy, we compared three
lightweight model reconstruction methods2.5D Contour [Q.-Y. Zhou and U. Neumann,
2010], PolyFit (with Gurobi 11.0 solver) [Nan and Wonka, 2017], and KSR [Bauchet
and Lafarge, 2020]. Additionally, we evaluated three mesh simplification methods:
Spred [Salinas et al., 2015], MeshPoly [Bouzas et al., 2020], and LowPoly [X. Gao et al.,
2022]. Since the competing methods do not process semantic information, we ensured
a fair comparison by utilizing only the spatial subdivision aspect of our reconstruction
pipeline. We selected in total 12 test samples from the SUM dataset across four semantic
categories: buildings, trees, cars, and ships. To ensure the integrity of the reconstruction
results, we completed all missing parts in the test data, including point cloud and
mesh completion. We optimized the parameters of each method to ensure the best
performance. We set a processing time limit of three hours; if no results are produced
within this period, we categorize it as a failure to produce results. Notably, we also
attempted to compare our approach with City3D [J. Huang et al., 2022] using extracted
roof surfaces. However, the complexity of our building components and the extensive
number of vertical planes introduced by City3D prevented the program from delivering
results within a reasonable timeframe.

We present the quantitative and qualitative analysis of these methods in Table 6.2
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Mod-N. Fdo-N. C −di s. H −di s. RMS.(%) 2-mani. Wat. Sem. T i m.(s)

PolyFit 3 23 0.88 1.27 4.51 3 3 No 4.1
MeshPoly 10 232 2.44 3.61 1.95 1 3 No 1810.0
LowPoly 11 248 1.20 1.38 2.56 10 1 No 705.5

2.5D Con. 12 1912 0.99 1.22 3.50 6 0 No 2.4
KSR 12 488 0.90 1.23 2.22 1 12 No 1170.2

Spred 12 1749 0.31 0.34 0.69 2 0 No 150.1
Ours 12 497 1.01 1.38 2.34 12 12 Yes 316.2

Table 6.2: Quantitative comparison of lightweight city modeling methods: this includes
PolyFit [Nan and Wonka, 2017], MeshPoly [Bouzas et al., 2020], LowPoly [X. Gao
et al., 2022], 2.5D Contour [Q.-Y. Zhou and U. Neumann, 2010], KSR [Bauchet and
Lafarge, 2020], and Spred [Salinas et al., 2015]. Mod-N. indicates the number of
models successfully reconstructed; Fdo-N. is the average number of output polygonal
faces across all samples; C −di s. and H −di s. represent the average Chamfer
and Hausdorff distances, respectively; RMS. is the average RMSE, calculated as
a percentage of the optimal bounding box length per object or surface; 2-Mani
shows the number of models meeting the 2-manifolds condition; Wat. indicates
watertight models; Sem. notes the inclusion of semantic information; T i m. lists the
average reconstruction time per object in seconds. The average input model has
approximately 33,552 faces and 140 planes.

and Figure 6.13 to Figure 6.15, respectively. For qualitative analysis, we classified
the results into three categories based on complexity: simple (less than 50 detected
planes), moderate (50 to 150 detected planes), and complex (more than 150 detected
planes), with RMSE represented by color scales. Table Table 6.2 shows that PolyFit [Nan
and Wonka, 2017], MeshPoly [Bouzas et al., 2020], and LowPoly [X. Gao et al., 2022]
were unable to reconstruct all results within the time limit due to the large number
of input faces. Figure Figure 6.13 indicates that PolyFit [Nan and Wonka, 2017] and
MeshPoly [Bouzas et al., 2020] failed to produce correct results when the number of
extracted planes was insufficient. Additionally, despite multiple parameter adjustments,
MeshPoly [Bouzas et al., 2020] consistently failed to produce complete results for our
test data, likely due to mesh tile discontinuities. Among all methods, Spred [Salinas
et al., 2015] achieved the highest geometric accuracy for simplified models but also
resulted in high output face numbers. The 2.5D Contour [Q.-Y. Zhou and U. Neumann,
2010] method is the fastest but retained the most faces and could not ensure model
watertightness. KSR [Bauchet and Lafarge, 2020] maintained high geometric accuracy
with the fewest faces, but most models did not satisfy the 2-manifolds condition. In
contrast, our method ensured manifold and watertight models, preserved semantic
information, and achieved model simplification and geometric accuracy comparable to
KSR [Bauchet and Lafarge, 2020], while being far more time-efficient. Figures Figure 6.13
to Figure 6.15 show that both our method and KSR [Bauchet and Lafarge, 2020] produced
similar results, capable of reconstructing relatively complete and regularized models.

We further explored the reconstruction performance for buildings in Table 6.3
and Figure 6.16. Table 6.3 shows that our LoD2 method achieves similar output plane

138



6. Lightweight 3D city model reconstruction

6

No results

No results

Input PolyFit MeshPoly LowPoly 2.5D KSR Spred Ours

Figure 6.13: Comparative qualitative analysis of different model reconstruction methods for
simple cases (less than 50 detected planes), including PolyFit [Nan and Wonka,
2017], MeshPoly [Bouzas et al., 2020], LowPoly [X. Gao et al., 2022], 2.5D
Contour [Q.-Y. Zhou and U. Neumann, 2010], KSR [Bauchet and Lafarge, 2020],
Spred [Salinas et al., 2015], and ours. We performed point cloud sampling on
the models reconstructed by each method and calculated their RMSE (%) using
the length of the optimal bounding box as a baseline. RMSE values are visually
represented by a gradient from blue to red , indicating a range from 0% to
10%. From top to bottom, the image shows a building, a car, and trees.

counts and geometric accuracy as KSR [Bauchet and Lafarge, 2020], but with greater
time efficiency. Introducing semantic information has significantly improved geometric
accuracy while also increasing both the output face count and processing time.
Figure 6.16 demonstrates that our approach effectively reconstructs both the geometric
structure and semantic information of models.

Semantic-based comparisons. To evaluate the accuracy of automatic semantic
labeling, we compared our method with traditional K -Nearest Neighbors (KNN)-based
semantic voting techniques. We manually annotated three building models
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Input MeshPoly LowPoly 2.5D KSR Spred Ours

Figure 6.14: Comparative qualitative analysis of different model reconstruction methods for
moderate cases (50 to 150 detected planes), including MeshPoly [Bouzas et al.,
2020], LowPoly [X. Gao et al., 2022], 2.5D Contour [Q.-Y. Zhou and U. Neumann,
2010], KSR [Bauchet and Lafarge, 2020], Spred [Salinas et al., 2015] and ours.
We performed point cloud sampling on the models reconstructed by each method
and calculated their RMSE (%) using the length of the optimal bounding box
as a baseline. RMSE values are visually represented by a gradient from blue to
red , indicating a range from 0% to 10%. From top to bottom, the image
shows a building block, cars, and a tree.

reconstructed from LoD2 to LoD3 using our methods (see Figure 6.16) and used these
as ground truth. As indicated in Table 6.4, our method greatly outperformed traditional
KNN approaches in preserving the semantic accuracy of objects and their components.
Consequently, users spend less time correcting semantic errors in our reconstructed
models for further applications than with KNN methods.

6.6.5. Limitations

Similar to vectorization methods used in 2D mapping, our semantic-based 3D
reconstruction and surface simplification methods also rely on accurate ground truth
semantic information for fully automatic lightweight reconstruction. When using
semantic labels predicted by learning-based methods, uncorrected errors in these
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Input MeshPoly LowPoly 2.5D KSR Spred Ours

Figure 6.15: Comparative qualitative analysis of different model reconstruction methods for
complex cases (more than 150 detected planes), including MeshPoly [Bouzas et al.,
2020], LowPoly [X. Gao et al., 2022], 2.5D Contour [Q.-Y. Zhou and U. Neumann,
2010], KSR [Bauchet and Lafarge, 2020], Spred [Salinas et al., 2015] and ours.
We performed point cloud sampling on the models reconstructed by each method
and calculated their RMSE (%) using the length of the optimal bounding box
as a baseline. RMSE values are visually represented by a gradient from blue to
red , indicating a range from 0% to 10%. From top to bottom, the image
shows a building block, a cruise ship, and trees.

Build-1. (#F: 11946, #P: 94) Build-2. (#F: 33483, #P: 110) Build-3. (#F: 71550, #P: 226)
Fdo-N. H-dis. Time (s) Fdo-N. H-dis. Time (s) Fdo-N. H-dis. Time (s)

KSR 55 2.22 5.0 201 1.40 136.0 447 1.70 4205.5
Spred 3364 0.29 5.2 514 0.41 10.2 2516 0.35 39.5
LoD2 62 2.23 17.4 222 1.60 99.5 659 1.85 282.8
LoD3 3356 1.58 57.4 9273 0.95 253.6 22808 1.02 4258.7

Table 6.3: Comparison of building model reconstruction results, including KSR [Bauchet and
Lafarge, 2020] with better overall performance, Spred [Salinas et al., 2015] with the
highest geometric accuracy, and our LoD2 and semantic-based LoD3 reconstruction
methods. #F indicates the number of input faces, #P denotes the number of input
planes, Fdo-N. reflects the total number of output polygon faces, H-dis measures
the Hausdorff distance, and Time quantifies the reconstruction time.

labels often fail to meet our input requirements. Additionally, our 3D reconstruction
involves surface extraction based on planar segments generated through
over-segmentation. Poor quality over-segmentation directly reduces the accuracy and
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Figure 6.16: Building model reconstruction results of our methods, showing from left to
right the input texture mesh, the manually labeled semantic mesh, the LoD2
reconstruction results, and the LoD3 reconstruction results. The semantic classes
shown in the figure include roof surface , facade surface , chimney , roof
installation , dormer , balcony , window , and door .

Build-1. Build-2. Build-3. Average
mIoU (%) mAcc (%) mIoU (%) mAcc (%) mIoU (%) mAcc (%) mIoU (%) mAcc (%)

KNN LoD2 52.64 96.14 51.59 90.01 49.71 90.04 51.31 92.06
Ours LoD2 100.00 100.00 94.10 98.90 93.51 99.21 95.87 99.37

KNN LoD3 54.29 79.88 47.70 68.20 52.12 73.66 51.37 73.91
Ours LoD3 99.95 99.96 99.01 99.52 89.61 99.52 96.19 99.66

Table 6.4: Quantitative analysis of automatic semantic labeling results for reconstructed
building models, ranging from LoD2 to LoD3

quality of the reconstruction, affecting the final integration of geometric models and
semantic integration.

In semantic-based surface simplification, objects such as roads, sidewalks, and cycle
lanes are projected onto the same horizontal plane for simplification. This implies that
our methods work well in relatively flat areas but struggle in hilly regions. Currently,
we cannot individually reconstruct them based on local planes and establish their
topological relationships. Furthermore, our current method treats road markings as
a floating layer instead of embedding them geometrically into the roads, potentially
impacting subsequent applications.
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6.7. Potential applications

We aim to explore how semantic information at different levels of detail can be applied
to scenarios involving 3D city models. We believe that although textured meshes with
semantic information can support a range of applications, such as displaying urban
object attributes or performing semantic-based automatic measurements like areas of
roofs and windows, and widths and lengths of roads, this approach has some
limitations. Since semantic information in triangular meshes and texture images
attaches to the model surface in different formstriangular facets and texture masksthis
structural complexity increases the burden of reading, writing, and computing for
various applications. In contrast, lightweight semantic city models show more
advantages in data reading, writing, storage, and computational processing. To better
meet the storage and format requirements of different applications, we recommend
first converting the reconstructed lightweight models into CityGML [Gröger and
Plümer, 2012; OGC, 2012] or CityJSON [Ledoux et al., 2019] formats, which not only
enhances processing efficiency but also improves model usability and interoperability.

We believe that lightweight 3D city models enhanced with semantic data have
wide-ranging applications, as illustrated in Figure 6.17. We categorize applications of
semantic-based city models into four types: automatic geometric measurements,
interactive spatial computations, spatial analysis based on external data, and
environment simulation based on physical engines.

(a) (b) (c)

Figure 6.17: Examples of applications for semantic-based 3D city models: (a) shows automated
measurements and statistics of building windows using semantic information; (b)
depicts high-precision pedestrian navigation using a 3D semantic map, including
detailed path planning via recognized sidewalks and crosswalks; (c) illustrates
damage assessment of buildings using 3D semantic information.

Automatic geometric measurements. These applications automatically measure
geometric parameters of city model elements, like building height (number of stories),
area, volume, and the areas and volumes of features such as doors, windows, roads, and
vegetation. With semantic information, geometric calculations can shift from manual
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to fully automated processes, thus enhancing efficiency and accuracy. The level of
detail in the semantic information directly influences automation, with precise
information crucial for measuring dimensions such as facade area and window
area [Catita et al., 2014; Panagiotidou et al., 2021].

Interactive spatial computations. These are spatial computations within 3D city
models based on user interactions. Examples include calculating the shortest paths for
pedestrians [Sun et al., 2019], vehicles [S. H. Park et al., 2019], robots [Pütz et al., 2021b],
or drones [Y. Liu et al., 2022b] from user-specified starting points, displaying urban
landscapes from specific building windows [Kent and Schiavon, 2020], and interactive
editing and design using selected semantic objects [Arikan et al., 2013; . Demir et al.,
2016]. Semantic information outlines the 3D spaces or surfaces used for these
computations, with higher levels of detail enabling a more precise partition of the
space.

Spatial analysis based on external data. 3D semantic city models serve as base maps,
merged with external data for spatial analysis and property display. For instance,
combining sunlight data to estimate potential electricity from rooftop solar panels
requires knowing the rooftop area and distribution of roof
superstructures [Sánchez-Aparicio et al., 2021]; using wind monitoring data to estimate
the range of air pollution generated by buildings necessitates locating the positions and
sizes of chimneys [Cichowicz and Dobrzaski, 2021]; analyzing the noise pollution range
of highways needs information on road materials and traffic volume [Puyana-Romero
et al., 2020]. Semantic information provides the necessary geometric properties and
spatial positioning for these external data.

Environment simulation based on physical engines. Utilizes the geometric structure
and semantic information of 3D city models to simulate physical state changes in the
environment. With precise semantic information, physical engines can realistically
simulate the responses of buildings to forces, such as impacts, destruction, or
collapse [Ferworn et al., 2013]. In disaster simulations, semantic information aids in
more accurately simulating the physical effects of earthquakes [R. Sinha et al., 2012] or
floods [Rong et al., 2020; Schröter et al., 2018] on different types of ground surfaces. In
autonomous driving simulations, semantic information helps vehicles understand and
predict environmental elements such as traffic signs and road markings to make
appropriate driving decisions [Schwab et al., 2020]. In CFD wind simulations, the
detailed modeling of building facades and openings allows for a nuanced analysis of
wind flow patterns around and through structures, which is crucial for assessing wind
loads and ventilation effectiveness [García-Sánchez et al., 2021; Paen et al., 2022]. Finer
semantic details significantly enhance the realism and accuracy of physical simulations.

These applications highlight the extensive potential of semantic-based 3D city models to
address real-world challenges, underscoring the significance of detailed semantic levels
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in boosting the efficiency and precision of these applications.

6.8. Conclusions

This chapter addresses critical challenges in reconstructing lightweight 3D city models
from large-scale urban textured meshes, focusing on semantic-based approaches. Our
framework efficiently creates lightweight, geometrically precise, and semantically
enriched city models. By leveraging semantic information, it significantly enhances the
efficiency and accuracy of 3D model reconstruction for objects and parts, while
ensuring precise semantic labels for both solid models and simplified surfaces.
Experimental evaluations on the SUM and SUM-Parts datasets demonstrate significant
enhancements in data compression, processing speed, and accuracy over competing
methods. The resulting large-scale city models can be applied to various practical
applications, ranging from automatic geometric measurements to environmental
simulations. Future research will refine these methods and further integrate a broader
range of semantic categories into urban analysis tools and simulations, thereby
enhancing the real-world applicability of semantic 3D city models.
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7
Conclusions and future work

This chapter outlines the contributions and key findings of the thesis on the semantic
understanding of urban scenes from textured meshes. It delves into the creation of a large-
scale semantic urban mesh dataset, the development of an interactive 3D annotation tool,
and the design of a deep learning framework for semantic segmentation tailored to urban
meshes. This research not only addresses the challenges in efficient semantic annotation
and segmentation of urban textured meshes but also integrates these advancements into
practical applications like lightweight city modeling. Furthermore, this work pioneers
the application of semantic information in urban mesh data, setting a foundation for
future research to expand on semantic segmentation methods and their application in
real-world city modeling scenarios.
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7.1. Contributions and key findings

Large-scale urban textured mesh datasets are rich in semantic information. However,
research on efficiently extracting and applying this information is still scarce. To address
this research gap, this thesis comprehensively has explored the semantic segmentation
of urban textured meshes, including creating benchmark data, semantic annotation,
semantic segmentation, and the practical application of semantic information. This
thesis has detailed the strategies, technical methods, and practical applications used.
Specifically, this study has reconstructed a large-scale urban textured mesh dataset at
the object and part levels for the first time to meet the demand for extensive training data
required by learning-based 3D semantic segmentation methods, significantly enhancing
the usability of urban mesh data.

Additionally, the interactive 3D annotation tool we have developed addresses the
deficiencies in efficient semantic annotation methods for urban textured meshes,
achieving efficient and accurate semantic annotation of mesh faces and textures. This
thesis not only proposes the first deep learning-based semantic segmentation
framework specifically designed for urban meshes but also integrates semantic
information into practical applications such as lightweight city modeling, providing
innovative solutions for understanding and modeling 3D urban scenes. In subsequent
sections, I will elaborate in detail on the core contributions to the research objectives
and the key findings regarding research questions based on the relevant literature and
the content of each chapter of this thesis.

I. Semantic urban mesh benchmark dataset

• Contributions: Developed a comprehensive benchmark dataset of large-scale
semantic urban meshes featuring both object-level and part-level semantics.
This dataset is critical for evaluating and advancing state-of-the-art 3D semantic
segmentation methods.

• Key findings:

1. Which semantic objects and parts can be precisely identified by humans and
computers from the triangular facets and texture images in urban textured
meshes?

We believe that the semantic objects or parts that can be recognized by
humans or machines in an urban textured mesh largely depend on its quality.
Specifically, the higher the quality of the mesh, the more recognizable the
semantic classes. The quality of the mesh mainly involves two aspects:
geometry and color. The geometric quality is primarily determined by the
quality of the multi-view images (including color, resolution, coverage, and
viewing angles) and the robustness of the reconstruction algorithm; the color
quality depends not only on the quality of the multi-view images but also on
the effectiveness of the texture generation algorithm.
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The Helsinki mesh [Helsinki, 2019], highlighted in this thesis, employs the
UltraCam Osprey Prime II five-lens imaging system [VexcelImaging, 2016]. It
features a ground sampling distance of 7.5 cm, with 60% side coverage and
80% length coverage [KIGA-digi, 2019]. At the mesh face level, identifiable
semantic objects encompass terrain, high vegetation, buildings, cars, boats,
and water, with parts such as roof surfaces, facade surfaces, chimneys,
dormers, balconies, roof installations, and walls. At the texture pixel level,
recognizable objects include low vegetation, roads, cycle lanes, and
sidewalks alongside parts like windows, doors, and road markings.
Unidentifiable objects at the mesh face level, such as utility poles, flagpoles,
awnings, streetlights, trash bins, and fences, are mainly due to insufficient
resolution and algorithmic constraints that fail to reconstruct their
geometric structures. Semantic classes that remain unidentifiable at the
texture pixel level (such as window frames, door handles, small billboards,
manhole covers, and building materials.) are primarily limited by image
resolution.

2. What 3D semantic segmentation methods are suitable for performance
evaluation in urban semantic meshes?

We find that both mesh-based and point cloud-based 3D semantic
segmentation methods can be used to evaluate the semantic segmentation
performance of urban meshes. This is mainly attributed to the highly
consistent 3D spatial characteristics of large-scale urban meshes and point
clouds. Specifically, whether using manually extracted features or deep
learning methods, it is necessary to integrate contextual information from
their respective neighborhoods. On mesh surfaces, calculating geodesic
distances instead of Euclidean distances to gather contextual information
has a significant impact on the accuracy required for small-scale indoor
scenes [Z. Hu et al., 2021; Schult et al., 2020]; however, this difference is not
significant in large-scale urban meshes. This is because urban meshes often
suffer from oversmoothing and low precision [W. Gao et al., 2021], and when
objects are close in Euclidean distance, their geodesic distances are also
often close, such as trees near buildings whose surfaces are often connected.

Additionally, some mesh segmentation methods suitable for indoor or small
object meshes are not applicable to large-scale urban meshes. These
methods involve convolutions and pooling on the faces [S.-M. Hu et al.,
2022], edges [Hanocka et al., 2019], or vertices [Schult et al., 2020] of the
mesh, which consume substantial memory and require the topology of the
input mesh to be flawless. To address this challenge, this thesis proposes
over-segmenting the mesh, using planar and non-planar segments to
replace large numbers of triangular faces, thereby significantly reducing the
computational load during the feature extraction phase.

Point cloud-based 3D semantic segmentation methods involve sampling
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from mesh surfaces as inputs [W. Gao et al., 2021; W. Gao et al., 2023]. Point
cloud processing is flexible [Charles et al., 2017; Deng et al., 2023; Q. Hu et
al., 2020; Qian et al., 2022; Thomas et al., 2019], allowing arbitrary splitting,
downsampling and multi-scale neighborhood searches, effectively avoiding
issues caused by mesh topology errors. However, these methods are less
effective at recognizing small-scale object parts (such as windows and road
markings), and overly small sub-point clouds (from splitting) may result in
the loss of critical contextual information.

Overall, although these methods are applicable to the semantic
segmentation tasks of urban meshes, their performance still needs further
improvement.

II. Urban textured mesh annotation framework

• Contributions: Designed and developed an interactive 3D annotation tool that
facilitates semi-automatic semantic labeling of mesh facets and textures. This tool
enables the creation of extensively labeled semantic urban meshes and assists in
correcting prediction errors from learning-based methods.

• Key findings:

1. How can an interactive annotation user interface be designed for urban
textured meshes?

We believe that designing an interactive user interface for annotating urban
textured meshes should adhere to three critical core principles: freedom in
viewpoint selection, diversity in the selection of objects and methods, and
varied rendering and display modes.

Firstly, the functionality of freely choosing viewpoints is intended to allow
users to view any part of the 3D model. This is achieved by enabling users
to freely choose different viewpoints in a 3D scene, for which we have
developed operations such as translating, zooming, rotating, and setting new
observation pivots to enhance users’ ability to explore space freely.

Secondly, the functionality of selecting objects primarily serves the
annotation task. We provide a variety of selectable elements and their
combinations, including triangular faces, segments, texture pixels, and
superpixels. To accommodate different selection needs, we have designed
various 2D and 3D selection methods such as brush, lasso, stroke, basic
shapes, polygons, expansion and reduce, select all and deselect, and
semantically based selection, enabling users to adopt the most suitable
selection strategy according to different scenarios.

Finally, the design of various rendering and display modes aims to assist
users in effectively viewing and understanding the information provided by
the semantic textured mesh. This includes texture rendering (displaying the
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true colors of objects), flat shading (showing the semantic colors of faces),
texture mask rendering (displaying semantic colors based on textures),
various translucent blending renderings (overlaying different types of
semantic and color information), and Gouraud shading [Gouraud, 1971] of
faces (assisting in the selection of texture segments); display modes cover
showing triangle edges (selecting triangular faces), showing segment
boundaries (selecting segments), and displaying texture segments (selecting
texture pixels).

These core design principles establish an efficient, flexible, and user-friendly
interactive environment that significantly improves the labeling efficiency
and accuracy of urban textured meshes.

2. How can we develop a semi-automatic annotation framework that leverages
existing annotated data to predict and correct unannotated regions?

We have designed a semi-automatic urban textured mesh annotation
framework, where the core mechanism involves using labeled data to
predict unlabeled data. Errors in the predictions are then corrected using
annotation tools, and the corrected data are fed back into the model as
newly labeled data. This cycle continues until all data are annotated. This
method offers the advantage of significantly reducing the time required to
correct prediction errors compared to manually re-annotating the entire
dataset. This approach places higher demands on semantic segmentation,
requiring the training of high-accuracy models with only limited labeled
data. Traditional deep learning methods often rely on large amounts of
training data or on transfer learning, which is difficult to achieve in the
initial stages of annotating urban textured meshes. Therefore, we employed
a combination of handcrafted features based on planar segments and the
random forest algorithm, achieving the goal of automatically classifying
unlabeled mesh faces with minimal training data and obtaining
high-accuracy prediction results. Additionally, we introduced a feature
discrepancy analysis mechanism by selecting data rich in semantic
information from the prediction results for label correction to further
enhance the model’s predictive accuracy. Experiments have shown that,
compared to full manual annotation, our method significantly reduces
annotation time.

3. How can we achieve an efficient selection of 3D objects and parts in urban
textured meshes with minimal user interaction?

We propose that objects with similar structures in urban meshes typically
share the same semantic labels. Building on this assumption, we designed a
structure-aware matching selection strategy. Moreover, we’ve incorporated
interactive approaches for selecting planar segments and protrusions,
facilitating fast and efficient selection of 3D objects and parts within the
mesh. To ease user interaction, we initially apply plane-based
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over-segmentation to the mesh, utilizing these planar segments for fast
selection and structural matching. To ensure precise object boundary
selection, we calculate local features from the selected area provided during
a single user interaction, extracting protrusions based on triangular faces.
These protrusions are then used as templates to match with other similar
structures, enabling rapid structural selection with minimal user
interactions. Experimental results indicate that this approach not only
considerably reduces user interactions but also significantly decreases the
time required for labeling, thus boosting overall productivity.

4. How can regions of interest be efficiently selected in the mesh textures?

To achieve efficient annotation of mesh texture images, we have developed
an interactive region selection strategy based on planar texture segments.
Our strategy is based on a core assumption: regions in the texture image
with similar colors usually have the same semantic labels. Based on this
assumption, we designed a selection method that expands a local area via
user clicks, allowing users to quickly and precisely define regions of interest.
Additionally, we calculated the structural features of these areas, which are
used to match and identify other areas in the image with similar structures.
Experimental tests have shown that our method significantly outperforms
traditional annotation methods in terms of efficiency and surpasses existing
deep learning techniques in accuracy. This strategy not only enhances the
speed of annotation but also improves the accuracy of the results,
demonstrating its practical value in the field of 2D semantic annotation.

III. Semantic segmentation of large-scale urban textured meshes

• Contributions: Developed a fully automatic semantic mesh segmentation
algorithm tailored for large-scale urban scenes. This algorithm demonstrates
superior generalization capabilities compared to existing methods and is
sufficient enough to be applied to other datasets, bridging domain gaps
effectively.

• Key findings:

1. How can a deep learning framework be developed for semantic segmentation
of large-scale urban meshes?

When applying deep learning to semantic segmentation of large-scale urban
textured meshes, we encounter challenges like managing numerous irregular
triangular faces and complex mesh structures. Traditional convolutional
neural networks and multilayer perceptron-based networks often struggle
with memory limitations and high data throughput when processing large-
scale mesh datasets. Unlike point clouds, manipulating mesh data through
downsampling, upsampling, or arbitrary splitting can affect its topological
structure and texture mapping. Furthermore, potential topological defects
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might hinder effective feature extraction.

To tackle these challenges, we developed a planarity-sensible graph neural
network tailored for face-level semantic segmentation of meshes. This
method significantly reduces computational demands by over-segmenting
the mesh into planar and non-planar segments, effectively maintaining both
local and global mesh features. Additionally, we innovatively established
short-range and long-range segment connections that effectively substitute
for the mesh’s complex topological connections, enhancing the network’s
ability to capture contextual features.

Our method has been experimentally validated to effectively handle
large-scale urban mesh data, greatly improving the efficiency and accuracy
of semantic segmentation. This advancement not only optimizes the data
processing workflow but also opens new avenues for deep learning
applications in urban textured meshes.

2. How can the generalizability of deep learning be enhanced for 3D semantic
segmentation tasks?

Compared to traditional machine learning methods, deep learning often
performs poorly in terms of generalization [W. Gao et al., 2023; Q. Hu et al.,
2022]. Although adding a large variety of training data can enhance the
generalization capability of deep learning models, this approach is not
suitable for all scenarios, especially when training data is scarce. To address
this issue, we adopted an innovative strategy: integrating robust
generalizable handcrafted features with deep learning features to enhance
the network’s generalization ability. A series of experiments have confirmed
that our method significantly outperforms traditional machine learning and
purely deep learning-based methods in terms of generalization. This
integration strategy not only improves the adaptability of the model but also
provides an effective solution for complex application scenarios with
insufficient data.

3. How to obtain sufficient contextual information for semantic segmentation?

Contextual features are vital in semantic segmentation, greatly affecting its
performance. Common methods for gathering contextual information
include global pooling, multi-scale feature extraction, attention
mechanisms, graph neural networks, and recurrent neural networks.
Nonetheless, the application and study of these approaches in urban mesh
semantic segmentation remain limited.

To address this research gap, we have developed a novel approach by
over-segmenting the textured mesh and using the segments to extract local
contextual features. Furthermore, we have constructed a graph based on the
geometric relationships between segments to capture global contextual
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information. Graph neural networks [Y. Li et al., 2017] are used to integrate
these local and global contextual features, enhancing the model’s capability
to comprehensively understand and process complex urban mesh data.

Following extensive experimental testing, our method outperforms existing
methods in object-level urban mesh semantic segmentation tasks. This
success not only boosts the accuracy of semantic segmentation but also
offers a more effective approach for analyzing urban meshes.

IV. Applications of the semantic urban meshes

• Contributions: Established a semantic-based framework for lightweight city
model reconstruction from textured meshes and explored its integration into
various practical applications. This framework enhances the utility of lightweight
semantic city models across multiple real-world applications, demonstrating
significant practical benefits.

• Key findings:

1. How can semantic information from textured meshes be utilized for
lightweight reconstruction of 3D city models?

Existing methods for lightweight 3D city modeling often overlook the crucial
role of semantic information in model reconstruction. We believe that
incorporating semantic information not only enhances the efficiency of
model reconstruction but also significantly improves the geometric
precision and detail representation of the reconstructed results. Based on
this concept, we propose a novel semantic-based 3D reconstruction and
surface simplification framework based on semantic textured meshes.

We start by separately reconstructing objects and their parts using semantic
labels, then combine them into a sealed polygon model. In addition, we
perform targeted simplifications on surfaces of different semantic types
aimed at maintaining the geometric and semantic properties of the surface
while reducing data volume. We have also developed an efficient semantic
label transfer strategy that preserves rich semantic information throughout
the lightweight construction process of the city model.

After experimental validation, our method has proven effective in creating
large-scale, semantically detailed 3D city models ranging from LoD2 to
LoD3. This approach not only optimizes processing speed and storage
requirements but also enhances the practicality and application value of the
models.

2. What applications can be developed using urban meshes and lightweight
models equipped with object and part-level semantics?

We observed that urban meshes carrying rich objects and part-level
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semantics are relatively limited in practical applications. This is primarily
due to the complex nature of semantic information in triangular meshes
and texture images, which increases the difficulty of reading, writing, and
computing in application development. In contrast, we believe that
lightweight 3D semantic city models have broader application potential,
particularly when converted to CityGML [Gröger and Plümer, 2012; OGC,
2012; OGC, 2021] or CityJSON [Ledoux et al., 2019] formats. These models
are especially useful in the following four areas: automatic geometric
measurements, interactive spatial computations, spatial analysis based on
external data, and environment simulation based on physical engines.

The effectiveness of these applications is significantly influenced by the
level of semantic detail. Specifically, the richness of semantic information
can enhance the automation level of applications, improve the precision of
space partition, improve the accuracy of spatial positioning and geometric
information, and increase the realism and precision of physical simulations.
By integrating these detailed semantics, lightweight 3D city models not only
simplify processing workflows but also provide more accurate and practical
analysis tools, offering strong technical support for urban planning and
management.

7.2. Reflections

This thesis primarily explores methods for acquiring semantic information from
textured meshes and their applications. By thoroughly analyzing the content
in Section 7.1, we have reached a key conclusion: using urban textured meshes as input,
along with efficient feature extraction methods, can effectively achieve interactive
semantic annotation and automatic semantic segmentation of these meshes.
Extracting and applying semantic information provides strong support for large-scale
3D city modeling.

In addition to these results, this paper will also delve into and reflect on some key issues
and challenges encountered in the research, which I outline as follows:

Semantic 3D urban annotation and segmentation. For 3D semantic segmentation of
urban scenes, in addition to the textured meshes used in this research, LiDAR point
clouds, MVS dense point clouds, and multi-view images can also be used as data sources.

LiDAR point clouds can be categorized based on the data collection method into
Terrestrial Laser Scanning (TLS), Mobile Laser Scanning (MLS), and Aerial Laser
Scanning (ALS) point clouds. Although point cloud data have advantages in precision,
they face more challenges in annotation and semantic segmentation compared to
textured meshes, including:
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• Lack of color information: LiDAR point clouds typically lack color information,
which is crucial for distinguishing certain semantic categories like billboards
versus building surfaces or sidewalks versus parking lots. Although color can be
added through image projection, this process increases the costs of data collection
and processing.

• Resolution and data integrity issues: LiDAR point clouds have lower resolution,
with a limited number of points per unit area, which may result in small-scale
objects being represented by only a few points and, thus, difficult to accurately
capture certain geometric structures and, boundaries of these objects.
Additionally, issues like occlusion, signal absorption, and reflection may lead to
large gaps [Fei et al., 2022], such as missing building facades in ALS point clouds.
While resolution and data completeness can be improved through point cloud
completion networks, increasing scanning frequency, or integrating other point
clouds, this increases computational demands.

• Large data volume: Compared to textured meshes, LiDAR point clouds contain
significantly more data, but this does not necessarily mean they contain more
information. The larger data volume implies longer times needed for reading,
writing, computing, and rendering in annotation and semantic segmentation
tasks, as well as more storage space being occupied.

MVS dense point clouds and point clouds sampled from mesh surfaces, while slightly
less precise, contain color information and have higher resolution. However, their data
volumes are similarly large, which increases the storage and computational burden
during semantic segmentation and data annotation.

Multi-view images are the foundational input data for constructing textured meshes. By
annotating these images and performing semantic segmentation, along with
considering the camera’s intrinsic and extrinsic parameters, semantic labels can be
effectively projected onto the textured mesh, thus creating 3D models with semantic
information [Blaha et al., 2017; Riemenschneider et al., 2014; Romanoni et al., 2017;
J. C. Valentin et al., 2013; Y. Zhou et al., 2018]. The main advantage is that annotating
two-dimensional images is relatively simple, and existing image semantic segmentation
techniques are very mature, effectively avoiding precision loss and error impacts caused
by 3D reconstruction algorithms. However, this method still faces several challenges:

• Repetitiveness of image annotations: The same object may need to be repeatedly
annotated in images from different perspectives, reducing overall annotation
efficiency.

• Label consistency issues: Annotations of the same object in images from different
perspectives may be inconsistent, especially around the object’s edges, which can
lead to significant errors in projected annotations.

• Resolution and coverage challenges: Aerial oblique photography, often used to
build large-scale urban scene 3D models, offers high resolution and wide coverage
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but complicates semantic segmentation and annotation of small-scale objects.

• Geometric distortion issues: Due to perspective, objects may appear
geometrically distorted in images, like windows appearing as severely
compressed parallelograms, increasing annotation difficulty and potentially
reducing semantic segmentation accuracy.

• Color limitations: Variations in lighting conditions across different perspectives
make distinguishing consistently colored objects in images more challenging.

Although these problems can be alleviated by designing new algorithms and improving
data collection and processing methods, these solutions are often complex and costly.
In contrast, direct annotation and semantic segmentation of textured meshes are not
only more intuitive but also more convenient. Textured meshes show irreplaceable
advantages in data storage, reading, writing, rendering, annotating, and semantic
segmentation.

Taking the SUM dataset proposed in Chapter 3 of this thesis as an example, as of
August 2024, it has been cited by 42 related studies. These references span several areas,
including semantic or instance segmentation methods for urban meshes [J. Chen et al.,
2022b; X. Liu et al., 2024; Yoo et al., 2023], lightweight generation and reconstruction of
3D city models [W. Han et al., 2024; Pang and Biljecki, 2022; S. Wang et al., 2023], and the
extension of semantic 3D urban datasets [Gabara and Sawicki, 2023; T. Jiang et al., 2024;
J. Luo et al., 2022]. The growing body of research underscores the rising importance of
textured meshes in understanding 3D urban environments.

In conclusion, although various types of data can be used for the 3D semantic
segmentation of urban scenes, each has its unique advantages and challenges. A deep
understanding and appropriate handling of these data sources are crucial for improving
the accuracy and efficiency of semantic segmentation.

Large-scale lightweight 3D city modeling. We examine various strategies for creating
large-scale lightweight 3D city models, analyzing their strengths and weaknesses from
the perspectives of reconstruction methods and data sources.

From the perspective of reconstruction methods, this thesis primarily uses sampled
point clouds from mesh surfaces as input, employing lightweight reconstruction to
build solid models and simplify surfaces. We have found that in practical applications,
texture meshes are not entirely suitable as direct input data for lightweight 3D city
model reconstruction. This is mainly due to the potential adverse effects of mesh
tiling and topological errors. In the post-process of constructing large-scale urban
texture meshes, it is common to split the mesh into tiles for easier storage, reading,
writing, and rendering. This approach may result in the same building being split
into different tiles, thereby losing topological connections. Reassembling these tiles
while preserving texture information and recovering topological connections poses a
significant challenge. Additionally, such meshes may contain topological errors [Attene
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et al., 2013] like non-manifold vertices or edges, duplicate points, degenerate faces,
self-intersecting faces, and holes, which directly impact the ability to accurately obtain
topological information, thereby hindering the correct reconstruction of solid models
and effective surface simplification. In contrast, lightweight reconstruction methods
based on point clouds can entirely avoid the problems caused by mesh topological errors.
Our approach starts with point cloud data sampled from the mesh, which is more flexible
and robust, making it particularly suitable for handling large-scale urban scene data and
ensuring that the final 3D models are both lightweight and accurate. In addition, mesh
textures are utilized to identify and reconstruct semantic parts, such as windows and
doors, which lack distinct geometric features in low-resolution meshes.

In the context of data sources for 3D city modeling, apart from the semantic texture
meshes used in this thesis, LiDAR point clouds, SfM (Structure from Motion) sparse
point clouds, MVS (Multi-View Stereo) dense point clouds, remote sensing satellite
images, aerial images, and street view images can also serve as input data. LiDAR point
clouds are favored for their high precision and large-area coverage of urban scenes, but
they lack color information and suffer from data gaps. Typically, aerial laser scanning
(ALS) can only reconstruct 2.5D LoD2 building models [Bauchet and Lafarge, 2020; J.
Huang et al., 2022]. MLS and TLS point clouds are more suited to reconstructing building
facades, vegetation, and roads [Du et al., 2019; Z. Li et al., 2017; W. Liu et al., 2023;
Wysocki et al., 2022]. A more detailed model reconstruction usually requires integrating
additional image data or combining multiple sources of point clouds. SfM sparse point
clouds and MVS dense point clouds both are reconstructed from multi-view images.
Their advantage is that they contain color information; however, SfM point clouds are
too sparse for high-precision and detailed model reconstruction [Pantoja-Rosero et al.,
2022]. MVS dense point clouds, although detailed, also suffer from data gaps, such as in
building facades, and require substantial computational resources [M. Li et al., 2016b].

Remote sensing satellite images excel in wide coverage and high temporal resolution but
are generally only suitable for reconstructing city models with lower precision and detail,
such as LoD1 or LoD2 building models [Gui et al., 2022; Lussange et al., 2023]. Aerial
images (including UAV images) offer higher resolution than satellite images and are
commonly used for constructing large-scale urban texture mesh models. When building
lightweight city models, it is often necessary to create MVS point clouds to extract 3D
features [M. Li et al., 2016a] or use true ortho-photos to extract planar structures (like for
roofs) [Schuegraf et al., 2023] and use elevation data to generate 2.5D models. Directly
extracting and recovering key 3D features (like 3D vertices and edges or topological
relationships) from 2D images is relatively difficult, and research in this area is still
limited. Street view images are typically employed to individually reconstruct building
facades or supplement data for evolving LoD2 into more detailed LoD3 models [Nan
et al., 2015; Ogawa et al., 2024; C. Zhang et al., 2021]. Their high resolution is ideal for
creating highly detailed models. However, they fall short of capturing complete urban
data, such as rooftops and interiors of courtyard-style buildings.

Compared to other input data for 3D city modeling, semantic textured meshes offer the
greatest amount of information with the least data volume and can be flexibly converted
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into point cloud or image data, making them highly suitable for constructing detailed,
large-scale, lightweight semantic 3D city models.

7.3. Future prospects

This section examines the current state and future directions for the semantic
understanding of urban texture meshes, focusing on segmentation and interactive
annotation, as well as dataset extension, given the research limitations identified in this
thesis.

Urban textured mesh segmentation. Urban textured mesh segmentation primarily
includes object-level and part-level semantic segmentation [Rouhani et al., 2017; Verdie
et al., 2015], as well as instance segmentation [J. Chen et al., 2022a; M. Dong et al.,
2024]. This thesis has focused on semantic segmentation, leaving instance segmentation
unexplored. For semantic segmentation, our proposed deep learning framework for
urban meshes is primarily limited to handling object and part-level semantic labels
of mesh faces and does not include semantic segmentation of the mesh textures.
In practice, we evaluate 3D semantic segmentation methods based on point clouds
sampled from meshes, which generally perform poorly. For instance, the most effective
method [Deng et al., 2023] reached only a 47.9% mean IoU across SUM-Parts’ 19
classes. These methods particularly fail with imbalanced classes and regular objects like
building doors, windows, and road markings, often missing precise boundaries due to
the inherent information loss in point cloud sampling. Directly utilizing texture meshes
could circumvent these limitations.

Currently, to the best of our knowledge, there is no deep learning method suitable for
large-scale urban scenes that applies to both meshes and textures, marking a potential
future research direction. Moreover, instance segmentation is equally important in
interpreting textured meshes, but current research is limited [J. Chen et al., 2022a; M.
Dong et al., 2024], mainly focusing on buildings and rarely covering other urban features
like trees, vehicles, and building part-level instances.

In summary, future research needs to develop higher precision, end-to-end 3D semantic
and instance segmentation methods that meet industrial production requirements for
automatic segmentation and interpretation of urban textured meshes.

Interactive urban mesh annotation and extended datasets. This thesis primarily
explores interactive semantic annotation methods for mesh faces and textures but does
not cover instance annotation methods. Compared to semantic annotation, instance
annotation of texture meshes poses greater challenges primarily because the mesh
represents a continuous surface where instance boundaries are often unclear. Therefore,
developing efficient interactive instance segmentation methods for texture meshes
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and constructing corresponding benchmark datasets are important future research
directions.

For 2D texture image annotation, the predominant method currently involves
combining models trained on large-scale data sets, such as SAM [Kirillov et al., 2023],
with user interaction inputs to achieve precise segmentation of areas of interest.
Although these methods are fast and accurate [X. Chen et al., 2022; Kirillov et al., 2023;
Q. Liu et al., 2023], they often perform poorly in unseen scenarios and at delineating
regular object boundaries, and precise boundaries are difficult to achieve through
repeated interactions. Future research could explore incorporating prior information or
regularization to improve the accuracy of urban texture image annotation.

For 3D interactive annotation, the methods proposed in this thesis are primarily
unsupervised and based on local features, not yet fully utilizing the characteristics of
labeled data. As the volume of semantic annotation data for urban meshes continues to
grow, future research should more fully leverage these data to aid interactive 3D
annotation of unknown data.

Additionally, apart from the object and part-level semantic labels proposed in this
thesis, semantic annotation of urban textured meshes could be extended to include
labels for man-made object materials and detailed categories of vegetation. Labels for
materials of man-made objects, such as building materials and road materials, are
crucial for applications such as physical environment simulations and energy
estimations. Detailed labels for specific types of vegetation, like distinguishing poplars
from willows or large-leaved lindens, are important for applications in simulating
ecological environments and urban greening projects. Additionally, I believe that
enhancing the reconstruction quality of textured meshes is essential for better semantic
segmentation in urban scenes. This can be achieved by using drones closer to the
ground, designing flight paths with higher photo overlap rates, using higher-resolution
cameras, integrating multispectral or LiDAR sensors, and improving the precision and
robustness of texture mesh reconstruction algorithms.
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Summary

The thesis explores the semantic understanding of urban textured meshes derived from
photogrammetric methods. It primarily addresses three aspects with regard to urban
textured meshes: 1) semantic annotation and the creation of benchmark datasets, 2)
semantic segmentation, and 3) the automation of lightweight 3D city modeling using
semantic information.

The first focus of the thesis is the development of a benchmark dataset to evaluate the
performance of advanced 3D semantic segmentation methods in urban settings. An
interactive 3D annotation framework has been proposed to assign ground truth labels
to the urban meshes’ triangle faces and texture pixels. This framework achieves efficient
and accurate semi-automatic annotation through segment classification and structure-
aware interactive selection. In the center of Helsinki, Finland, object-level annotations
were made over approximately 4 km2 (including buildings, vegetation, and vehicles,
etc.), and part-level annotations over about 2.5 km2 (including building parts like doors,
windows, and road markings, etc.). The design of the annotation tools improves user
operation and enables quick annotation of large scenes, while the resulting datasets
allow researchers to refine their deep learning models for urban analysis.

Another research focus is on mesh segmentation algorithms. A novel semantic mesh
segmentation algorithm has been introduced for large-scale urban environments,
employing plane-sensitive over-segmentation combined with graph-based methods for
contextual data integration. This approach, which utilizes graph convolutional
networks for classification, significantly improves performance over traditional
techniques based on our proposed benchmark datasets.

Finally, leveraging this semantic information, a pipeline for reconstructing lightweight
3D city models has been designed. This facilitates the automated reconstruction
of CityGML-based LoD2 and LoD3 city models, ensuring high fidelity in geometric
detail and semantic accuracy. The reconstructed large-scale, lightweight, and semantic
city models significantly broaden applications in urban spatial intelligence, including
automatic geometric measurements, interactive spatial computations, spatial analysis
based on external data, and environment simulation using physical engines.

This thesis enhances the practicality of 3D data in real-world applications by utilizing
semantic parsing of urban textured meshes to generate lightweight 3D urban semantic
models, greatly enriching their usability. It also lays a solid foundation for future progress
in understanding, modeling, and analyzing 3D urban scenes.
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Samenvatting

Dit proefschrift onderzoekt het semantisch begrip van stedelijke getextureerde meshes
die zijn afgeleid van fotogrammetrische methoden. Het richt zich voornamelijk op
drie aspecten met betrekking tot stedelijke getextureerde meshes: 1) semantische
annotatie en het creëren van benchmark datasets, 2) semantische segmentatie, en 3)
de automatisering van compacte 3D-stadsmodellering met gebruik van semantische
informatie.

De eerste focus van de thesis is de ontwikkeling van een benchmarkdataset om de
prestaties van geavanceerde 3D semantische segmentatiemethoden in stedelijke
omgevingen te evalueren. Er wordt een interactieve 3D-annotatiemethodiek
voorgesteld om grondwaarheidslabels toe te wijzen aan de driehoekige vlakken en
textuurpixels van de stedelijke meshes. Deze methodiek bereikt efficiënte en
nauwkeurige semi-automatische annotatie door middel van segmentclassificatie en
structuurbewuste interactieve selectie. Voor het centrum van Helsinki, Finland, zijn
objectniveau-annotaties gemaakt over ongeveer 4 km2 (inclusief gebouwen, vegetatie
en voertuigen, enz.), en deel-niveau-annotaties over ongeveer 2,5 km2 (inclusief
bouwdelen zoals deuren, ramen en wegmarkeringen, enz.). Het ontwerp van de
annotatiehulpmiddelen vergemakkelijkt de bediening door gebruikers, maakt
uitgebreide stedelijke scène-annotaties mogelijk, en is daarmee essentieel voor het
verfijnen van deep learning modellen gericht op stedelijke analyse.

De tweede onderzoeksfocus ligt op meshsegmentatie-algoritmen. Een nieuw
semantisch mesh segmentatie-algoritme wordt geïntroduceerd voor grootschalige
stedelijke omgevingen, gebruikmakend van vlakgevoelige over-segmentatie
gecombineerd met op grafen gebaseerde methoden voor contextuele data-integratie.
Deze aanpak, die gebruik maakt van graafconvolutienetwerken voor classificatie,
verbetert de prestaties aanzienlijk ten opzichte van traditionele technieken, gebaseerd
op onze voorgestelde benchmark datasets.

Tot slot is, door gebruik te maken van deze semantische informatie, een pijplijn
ontworpen voor het reconstrueren van compacte 3D-stadsmodellen. Dit
vergemakkelijkt de geautomatiseerde reconstructie van CityGML-gebaseerde LoD2 en
LoD3 stadsmodellen, waarbij een hoge getrouwheid in geometrische details en
semantische nauwkeurigheid wordt gewaarborgd. De gereconstrueerde grootschalige,
lichtgewicht en semantische stadsmodellen verbreden de toepassingen in stedelijke
ruimtelijke intelligentie aanzienlijk, inclusief automatische geometrische metingen,
interactieve ruimtelijke berekeningen, ruimtelijke analyses op basis van externe
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gegevens, en omgevingssimulaties met behulp van fysieke motoren.

Deze thesis verbetert de praktische bruikbaarheid van 3D-gegevens in toepassingen op
de fysieke wereld door semantische verwerking van stedelijke getextureerde meshes in
te zetten om compacte 3D stedelijke semantische modellen te genereren, waardoor hun
bruikbaarheid en relevantie aanzienlijk toeneemt. Het legt ook een solide basis voor
toekomstige vooruitgang in het begrijpen, modelleren en analyseren van stedelijke 3D
scènes.
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