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Abstract

Generalizing models for new unknown datasets is a common problem in machine
learning. Algorithms that perform well for test instances with the same distribution as
their training dataset often perform severely on new datasets with a different distribu-
tion. This problem is caused by distributional shifts between the training of the model
and applying that model to a test domain. This paper addresses whether and in what
situations Risk Extrapolation (REx) can tackle this problem of Out-Of-Distribution
generalization by exploiting invariant relationships. These relationships are based on
features that are invariant across all domains. By learning these relationships, REx
aims to learn the concept of the problem we are trying to solve. We show in what
situations REx can learn these invariant relationships and when it does not. We trans-
late the definition of an invariant relationship into a homoscedastic synthetic dataset
with either covariate, confounded, anti-causal, or hybrid shift. We expose REx to
experiments in sample complexity, the number of training domains, and the training
domain distance. We show that REx performs better for invariant prediction in situ-
ations with larger sample sizes and training domain distance and that if these criteria
are met, REx performs equivalently in all four distributional shifts. We also com-
pare REx to Invariant- and Empirical Risk Minimization and show that; REx is less
sensitive and thus robust to the shifting of the average distributional variance in the
training domains; REx asymptotically out-performs the methods in the more complex
distributional shifts.

1 Introduction
Machine learning algorithms have seen remarkable success in the past years. They aim to
learn a model of a training dataset in order for it to perform well on new (test) instances
and do this very well. But when applied to a new domain (i.e. dataset) this performance is
not always guaranteed. Beery, van Horn, and Perona (2018) showed that the performance
of these algorithms, when applied in a real world problem such as recognizing cows, often
plummets in new unseen domains. Domain generalization is a principle which aims tackle
this. It tries to learn the concept of a problem in a domain in order for it to generalize well
for instances of an new unseen domain (Wang et al., 2021).This paper addresses the problem
called Out-Of-Domain generalization (OOD), also known as out-of-distribution generaliza-
tion. The OOD generalization problem refers to a setting of domain generalization where
the unknown test distribution shifts from the training distribution. This shift is called dis-
tributional shift. it can be problematic for machine learning algorithms focusing exclusively
on test accuracy in the training domain as a performance metric (Shen et al., 2021).

But how does an algorithm know what features of an instance are important to give
a high weight to succeed on a new unseen domain? In other words, what features does
it need to learn and what features does it need to ignore? Features that do not change
through domains and directly correlate with the correct classification of an instance are
called Invariant Relationships. They are properties that belong to the core concept of what
the method is trying to learn. Properties that help classify an instance in one domain but
have no correlation to the correct label in another domain should not be learned. These
properties are called Spurious Correlations since they seem to correlate to a label in a
domain but do not correlate with the actual concept we are trying to learn.

This can be illustrated using the example of Beery et al. (2018). The goal is to classify
cows in a picture such as a figure 1. The algorithm trained on pictures of cows in a grass
field may correlate grass with the label of a cow. When presented with pictures of cows
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in a different domain, for example, a cow in the desert, the algorithm may not be able to
correctly classify the cow since it may rely on the spurious correlations (scenery) and not
on the invariant relationships (properties of a cow) of the instance.

Figure 1: Left: example of instances in the training domain. Right: example of instances
in the testing domain. Incorrect classification of instances in the testing domain could occur
due to the spurious correlation of the scenery with the class label cow.

Multiple methods to tackle this problem such as Invariant Risk Minimization (IRM)
(Arjovsky, Bottou, Gulrajani, & Lopez-Paz, 2019), Distributionally Robust neural networks
(Sagawa, Wei Koh, Hashimoto, & Liang, 2019) and Risk Extrapolation (REx) (Krueger et
al., 2020) have been proposed. The last one is the method for this research project. It selects
a method that equalizes the training loss over multiple domains to encourage generalization.
This paper will be about understanding how the method behaves in different situations,
what its limits are, and how these affect the implementation in these situations.

The goal of this project is to understand the method of Risk Extrapolation. For this
method, we will try to answer the following question: When is REx able to learn an invariant
relationship in a synthetic dataset, and when does it fail to do so? In order to break this
into smaller steps, these four sub-questions will be answered:

1. What are invariant relationships, and what do REx and similar methods do to find
them?

2. What synthetic datasets that apply to the method of REx capture the essence of how
the method performs in different distributional shifts?

3. What is the influence of the training domains and the number of samples used on the
invariant prediction capabilities of REx?

4. How does the performance of REx compare to that of similar methods?

This paper contributes to the field of OOD generalization and Invariant Relationships
by showing how REx performs on four different domain shifts that capture a wide variety
of datasets found in the real world. This paper shows that we can reduce these real-world
shifts to a more elemental form using y for the regression value of the instance, x1 for the
(Invariant) feature that we are trying to learn and x2 for the (Spurious) feature that does
not correlate to y (figure 2). The idea behind this is that in real-world datasets, it is not
always clear what features are invariant and which are not. More specifically, we show that
REx performs better in situations where it can better capture the model of the dataset, such
as when the number of samples is high, and the difference in the variance of the training
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distributions is larger. We also show that REx, compared to Invariant Risk Minimization
(Arjovsky et al., 2019) and Empirical Risk Minimization (Vapnik, 1999), asymptotically out-
performs similar methods in situations where; the average variance of the training domain
distributions is shifted; more complex distributional shifts occur.

x1 x2y
1 0

Figure 2: Model in which x1 is the invariant relationship between the domains, x2 is the
spurious feature that differs between domains, and y is the regression value. The model
represents the optimal situation where x1 directly relates to the regression value y and x2

does not.

In section 2, the background and relevant work will be explained in more detail. A formal
problem description follows this in section 3 and the main investigation of the research in
section 4. After this, the experiments and results will be discussed in section 5, followed
by the research’s ethics and reproducibility in section 6. In section 7, a summary of the
insights will be given, and finally, a conclusion with possible future directions will be given
in section 8.

2 Related Work
Out-of-domain generalization, invariant relationships and shifts have been the topic of many
research papers in the past years. Nagarajan, Andreassen, and Neyshabur (2020) showed
that spurious correlations in training data could influence the performance of Empirical Risk
Minimization (ERM) so much that the algorithm fails. This even happens in situations that
are easy to learn and where the model was expected to succeed. They also showed that
when in the absence of these correlations, the algorithm performs as it should and does not
fail.

Kamath, Tangella, Sutherland, and Srebro (2021) also showed that IRM, even with
infinite training environments, does not always result in good OOD performance and that
it sometimes even finds a worse predictor than unrestricted ERM. They also show that in
some cases, IRM prefers an invariant predictor with a sub-optimal performance on OOD
generalization.

Ahuja, Wang, Dhurandhar, Shanmugam, and Varshney (2020) introduced a framework
for four common domain shifts: covariate, confounded, anti-causal, and hybrid shift. They
then compare the performance of ERM and IRM on those shifts. This is done by testing the
algorithms’ performance relative to the number of samples per domain. They show that in
the case of covariate shift, ERM and IRM get the same asymptotic solution (when samples
become very large) and have similar performance for a finite amount of samples.

The paper about REx showed that REx outperforms IRM in the case of covariate shift.
They do this using the Colored MNIST dataset (Arjovsky et al., 2019), a dataset with
coloured (red/green) digits. They train the algorithm on a dataset where the distribution
of the colours is different from that of the colour distribution in the test set.

This paper will try to address the gap between the papers mentioned above. More
specifically, the paper will extend the work of Ahuja et al. (2020) and Kamath et al. (2021)
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by comparing REx in a similar setting. The motivation behind this is that Krueger et al.
(2020) compares REx to ERM and IRM. Next to these domain shifts, we will also show
what the influence of the chosen training domains is on the invariant prediction capability
of REx in an OOD setup.

3 Measuring invariance in domain shifts
The next subsections will formally define the problem the paper is trying to solve. In the
first subsection, 3.1, a formal definition of the OOD problem will be given. In subsection
3.2, the principle of how you generate invariant relationships in a synthetic dataset will be
discussed, which is followed by subsection 3.3, in which the shifts are formally defined, and
the generation of the dataset is expanded with these shifts. In subsection 3.4, the metrics
will be discussed.

3.1 Out-of-distribution generalization
To understand OOD generalization, we first define X as the input vector of a sample and Y
as the regression value. We follow a similar structure Shen et al. (2021) used. We define a
domain (or environment) as a group of samples with the same joint probability distribution
P (X,Y ). Using this, we can now define the OOD generalization problem:

Definition 1 (OOD). Given an input vector X and regression value Y for a training and
testing domain, out-of-distribution generalization is the setting of domain generalization
where P (X,Y )train ̸= P (X,Y )test and where P (X,Y )test is unknown during the training
time.

Notice that P (X,Y )train can consist of multiple domains D, each with other distributions
P (X,Y ). In this paper, we draw the values of X and Y from a random standard distribution
N (0, 1). We enforce definition 1 by multiplying the distribution of X by a scalar e for each
domain. In essence, since the distribution is centred at a mean of 0, only the variance σ2

of X changes. In this paper, we also aim for a harder OOD generalization problem where
etest ≥ etrain which enforces that the variance of X in the test probability is always larger
than in the training domain(s). Using this, we can now define our harder OOD problem as:

Definition 2 (Hard OOD). Given the training domains Dtrain each with their variance σ2
D

and the testing domain with its variance σ2
test, hard out-of-distribution generalization is the

setting where ∀D ∈ Dtrain, σ2
test ≥ σ2

D holds.

In order to measure how much the training domains differ in their variance σ2 we define the
domain distance (definition 3). It represents the the most significant distance between the
domains (i.e. the domains with the largest difference in distribution).

Definition 3 (Domain distance). Given the domains D with their domain specific scalars
E, the domain distance is max E −min E. I.e. for the domains with the maximal σ2

max and
minimal σ2

min variance in their normal distributions.

For this paper, we are interested in the influence of the distributional shift of X relative to
the invariant prediction capabilities. If we would also multiply Y by our domain-specific
scalar e, we would also introduce a distributional shift in Y . In this case, since we are testing
the methods in a hard OOD (definition 2), we are making Y more difficult to predict (more
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significant errors for larger values of e). This is because distributions with a higher variance
tend to have a higher error margin induced by the wider distribution spread. To isolate this
problem, we assume homoscedasticity:

Assumption 1 (Homoscedasticity). Given the input vector X and regression value Y , we
assume ∀D ∈ Dtrain, P (Y )D = P (Y )test ∧ P (X)D ̸= P (X)test.

Notice that as P (X) still differs between the domains, defintion 1 still holds.

3.2 Invariant relationships in a dataset
We now need to define how the synthetic dataset, described by figure 2, is generated. In the
case of a dataset that contains both invariant features and features that do not correlate to
the regression value Y , this results in equations 1-3. The covariate input vector X = [X1, X2]
of d dimensions is split in 2 so that both X1, X2, and Y have d/2 dimensions.

Xe
1 = e · N (0, 1) (1)

Xe
2 = e · N (0, 1) (2)

Y e = N (0, 1) +X1 ·Wx1→y (3)

Where e is the domain specific scalar, N (0, 1) is a random standard distribution of size d/2,
and Wx1→y represents the edge weight between variable X1 and Y . For this paper we will
aim for a 1 to 1 (assumption 2) correlation between the invariant features and the regression
value (see figure 2). Where I represents the identity (or equivalently 1 if the feature is
one-dimensional).

Assumption 2 (Invariance). Given the invariant features X1, the weight Wx1→y, and the
regression value Y , we assume Wx1→y = I.

3.3 Shifts on datasets
Following the framework of Ahuja et al. (2020), we now categorize four domain shifts for
regression. This paper differs from the framework in that we do not change the distribution
of Y for each environment (assumption 1). Instead, we aim to analyze pure covariate shifts
in these distributions by only changing the distributions of the input variables X1 and X2.
It also differs in the way edge Wx1→y (assumption 2) and edge Wy→x1

(definition 6) are
distributed, the paper uses values drawn from a normal distribution while we aim for a
stronger correlation between variables X1, X2 and Y by setting the edge weights to identity
I. In the definitions below, these shifts will shortly be discussed. The visualization of the
enumerated shifts can be found in 3-6.

Definition 4 (Covariate shift). Given input feature X = [X1, X2], covariate shift (figure
3) is a domain shift where the distribution P (X) is multiplied by a scalar e to introduce a
distributional shift.

This is essentially what is written in equation 1-3 by multiplying the distribution by e. In
this shift, X2 is thus not correlated to the regression value Y . An example of covariate shift
in the case of figure 1 would be the change in size of the cows. Where before larger cows
did not occur, in the new domain they could.
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Figure 3:
Covariate (CS)

X1 X2Y

H

Figure 4:
Confounded (CF)

X1 X2Y

H

Figure 5:
Anti-causal (AC)

X1 X2Y

H

Figure 6:
Hybrid (HB)

Definition 5 (Confounded shift). Given input feature X = [X1, X2], the regression value
Y , and a confounder H, confounded shift (figure 4) is a domain shift where X and Y are
partially caused by a confounder H which is also by multiplied the domain specific scalar e.
For which the weights Wh→x1

, Wh→x2
, and Wh→y are drawn from 1

dN (0, 1). Here d is the
dimension of X and Y .

In this case, the feature X2 is indirectly connected to the regression value Y through their
common confounder H. An example of a confounded shift in the case of figure 1 would be
the change of brightness or lighting in the picture (i.e. pictures taken in a desert might be
brighter due to the sun).

Definition 6 (Anti-causal shift). Given input feature X = [X1, X2], the regression value
Y , anti-causal shift (figure 5) is a domain shift where X2 is caused by Y with Wy→x2

= I.

X2 in this case does not directly influence Y but is strongly correlated to it since Wy→x2 is
equal to 1. An example of confounded shift in the case of figure 1 could be the grass length
in the left figure. The fact that the animal on the picture is a cow (Y ) directly influences
the grass length (X2).

Definition 7 (Hybrid shift). Given confounded shift SCF (definition 5) and anti-causal
shift SAC (definition 6), hybrid shift (figure 6) is a domain shift where SCF ∧ SAC .

Notice that since we are still multiplying the scalar e with the distribution P (X), we are
adding the aforementioned (confounded, anti-causal and hybrid) shifts to covariate shift. We
are thus using covariate shift as a baseline to see how introducing new correlations influences
the performance.

Another way to look at this model is to set the edge weight Wa→b from one variable a
to another variable b to zero 0 when such an edge does not exist and to non-zero when it
does. The representation of the edge weights can then be defined as in table 1. Next to that,
we can now extend the equations 1-3 to fit these four distributional shifts we get equations
4-7. When combining the generative equations with the edge weights in table 1 we can now
generate a dataset for each shift in each domain e. Note that since we are trying to prove
whether the method of REx finds invariant relationships, Wx1→y should always be equal to
the identity (assumption 2).

He = e · N (0, 1) (4)

Xe
1 = e · N (0, 1) +He ·Wh→x1 (5)

Y e = N (0, 1) +He ·Wh→y +Xe
1 ·Wx1→y (6)

Xe
2 = e · N (0, 1) +He ·Wh→x2

+ Y e ·Wy→x2
(7)
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Covariate Shift Confounded shift Anti-causal shift Hybrid shift

Wh→x1
0 1

dN (0, 1) 0 1
dN (0, 1)

Wh→x2
0 1

dN (0, 1) 0 1
dN (0, 1)

Wh→y 0 1
dN (0, 1) 0 1

dN (0, 1)

Wy→x2
0 0 I I

Wx1→y I I I I

Table 1: Edge weights of the distributional shifts.

3.4 Metrics
This paper will try to analyze the performance of the in section 3.3 mentioned elemental
forms of shifts for REx. Within the focus on these shifts, this paper will analyze how the
algorithms behave with varying training domains. The tested methods are trained on all
domains except the last one, the test domain. The performance of the method is measured
using the metric of model estimation error:

Definition 8 (Model estimation error). Given the models estimated edge weights Ŵ =
[Ŵx1→y, Ŵx2→y] and the true model edge weights W = [Wx1→y, Wx2→y], the model estima-
tion error is defined as the mean of the squared distances ||Ŵ −W ||2.

Where W is generated by equations 4-7. Since we assume Wx1→y = I (assumption 2),
and Wx2→y = 0 since these features should not correlate to the regression value, we are
essentially comparing if the model converges to a W = [1, 0]. For each method and shift,
this error is split into three; the causal (Ŵx1→y), the non-causal or anti-causal (Ŵx2→y) and
the average of the two. By measuring the causal error, we can see if the model recognizes the
invariant features, and by measuring the anti-causal error, we can see whether the methods
ignore the possibly spurious features. Based on these results, the paper will try to solve the
problem of if and when REx learns invariant relationships.

4 Invariant prediction capabilities of REx
This paper’s contribution is thus to see how REx performs on the shifts as mentioned earlier
in a simple synthetic dataset. This is done by comparing this performance to ERM and IRM
in the same setting. Based on this, and the in section 3.4 mentioned metrics, the learning of
invariant relationships by REx is analyzed. The methods for comparing the aforementioned
shifts all use the same expected loss function for generalization. This function is called the
risk function and is defined as:

Re(θ) =

∫
L(y, fθ(x))dP (x, y) (8)

In this function one needs to find the fθ(x) with the lowest loss for regression value y. This
function takes as its input a value feature x. Here the θ represents the parameters we need
to optimize. The loss function for regression (squared error) for parameter θ can then be
defined as:

L(y, fθ(x)) = (y − fθ(x))
2 (9)
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In cases where the test domain distribution is unknown, a value for P (x, y) in formula 8
should be approximated. The function that does this is called the empirical risk function.
The function takes, for n samples, the mean of the sum of errors (or equivalently, the Mean
Squared Error). When combining this function with equation 9 we get:

Remp(θ) =
1

n

n∑
i=1

Li(y, fθ(x)) =
1

n

n∑
i=1

(y − fθ(xi))
2 (10)

Empirical Risk Minimization (Vapnik, 1999) minimizes the sum of all these empirical risks
and thus tries to minimize the average loss of all instances in all training domains. It is
the standard method used for learning problems and is therefore used as a baseline for the
domain shifts under investigation. For regression, ERM minimizes the loss by minimizing
equation 11. Notice that we use Re for the risk in the environment, or equivalently domain,
e. This does not mean we use equation 8 for calculating this risk, but that we use the
empirical equation 10 for environment e in the range of m domains.

RERM (θ) =

m∑
e=1

Re(θ) (11)

Another method that uses this risk minimization is called Invariant Risk Minimization (Ar-
jovsky et al., 2019). IRM aims to predict well by minimizing the risk while also finding an
invariant predictor in the training domains. The regression function of IRMv1, a practical
version of IRM, defined by Arjovsky et al. (2019) (p. 5) can be found in equation 12. In this
function w = 1 is a fixed scalar (Assumption IRMv1), λ is used a regularizer with values
between 0 and ∞, and ▽ is the gradient that is used to measure the norm penalty of w for
Re(w · θ). In theory, θ now becomes the only invariant predictor since w is fixed.

RIRM (θ) =

m∑
e=1

Re(θ) + λ · || ▽w|w=1.0 Re(w · θ)||2 (12)

This paper is investigating the method of Risk Extrapolation (Krueger et al., 2020). The
method aims to reduce the sum of training risks whilst also increasing the similarity of
training risks. This might seem to contradict at first, but it effectively achieves its goal by
trying to flatten out the risk plane. What is meant by this is that it may sometimes increase
the training risk in the training domains such that the predictive trend line, the line drawn
through points of the training risks, for unseen domains, looks more like a ’flat line’. An
example of this can be found in figure 7. The idea behind this is that if the model has
equivalent risk in the training domains, the risk in the test domain will also be equivalent.
Of course, this is still a prediction, and since we do not know the distribution of the test
domain, it could still be the case that this does not always result in a good performance.
The method of REx has two versions; MM-REx and V-Rex. For this paper, the V-REx
method will be used because it is simpler, more stable and more effective (Krueger et al.,
2020). For regression, with V ar being the function that calculates the variance of risks, the
risk function is defined as:

RREx(θ) = β · V ar({R1(θ), R2(θ) · · ·Rm(θ)}) +
m∑
e=1

Re(θ) (13)

REx is similar to IRM in that they both enforce that the best linear classifier should be
equal across all training domains. IRM specifically aims for Invariant Prediction, this is
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Figure 7: Flattening the risk plane by REx. The graph is plotted with training risks on the
y-axis and the change in distribution or shift on the x-axis. The dots represent measurements
in two different domains. The β in the figure legend is the V-REx penalty; this favours a
flatter risk plane when increased. Figure copied from Krueger et al. (2020)(p. 3).

different from REx which aims to improve robustness for any sort of distributional/domain
shifts (Krueger et al., 2020). Also notice that if β (or V ar) is zero in equation 13 we get
equation 11 and that if we set || ▽w|w=1.0 Re(w · θ)||2 or λ to zero in equation 12 we also
get equation 11. In essence we are thus testing what the influence of

∑m
e=1 Re(θ), and what

influence of the regularizer of REx and IRM are on their invariant prediction capability.

5 Experiments
All the experiments are done with Python 3.9.12 and Pytorch 1.11.0. The code for these ex-
periments can be found at: https://gitlab.com/hofland.jeroen/rex-distributional-shift. Each
experiment is repeated r = 10 times. The results are the mean of these 10 measures. For
each calculation, we also take the standard error, i.e. the standard deviation σ divided by
the square root of the number of repetitions r. The input feature X = [X1, X2] has a dimen-
sion d = 10. This means that there are 5 invariant features and 5 possibly spurious features.
Each method is trained on the training domains Dtrain = [D1, D2, · · ·, Dm] each with their
domain-specific distribution scalar etrain = [e1, e2, · · ·, em] where m is the amount of training
domains. All experiments use a similar domain structure with different parameters changed
for each experiment. This is the same domain configuration Ahuja et al. (2020) used and is
as follows: etest = [0.2, 2.0] and etest = 5.0. The method of ERM is implemented using the
linear regression method of sklearn. IRM and REx are implemented using 50.000 gradient
descent steps with a learning rate of 0.001. They both use the training domain validation
described by Gulrajani and Lopez-Paz (2020) for optimizing their regularizer. After train-
ing, REx and IRM select the best regularizer for the test domain Dtest with domain scalar
etest and return their optimal model. This might not fully capture the concept of OOD
generalization (definition 1) as the regularizer is optimized for the test domain, but it does
give an insight into the optimal behaviour of the method in the test domain. IRM selects
its penalty value from [0, 1e − 5, 1e − 4, 1e − 3, 1e − 2, 1e − 1] and REx selects its β out of
[1, 10, 100, 1000, 10000, 100000]. We perform multiple experiments involving the in section
3.3 mentioned shifts:
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Experiment 1 (Sample complexity). This experiment tests the performance of the methods
relative to the number of samples n. The domains used for this experiment are equal to
those described above. The results are displayed in figures 8a, 8d, 8g, and 8j.

REx performs well when the amount of samples increases. This was expected as the method
learns more about the distribution of the samples when there are more samples to learn from.
In the case of hybrid shift, the most complexly correlated model, the method performs better
than ERM and IRM for larger samples. REx thus performs relatively better in situations
with more (stronger) correlations between the input features and the regression value. This
was expected as REx aims for general robustness to distributional shifts. The results also
show that there is no significant difference between the causal and non-causal errors (see
appendix A.1 and A.4). This implies that REx recognizes the invariant features and ignores
the possibly spurious features.

Experiment 2 (Quantity of training domains). This experiment tests the methods’ per-
formance relative to the number of training domains. The first two training domains
and the test domain are the same as the sample complexity experiment. The domain
scalars added after that are calculated based on the total domains and the two starter
domains. We aim to increment the domain scalar between 0.2 and 2.0 linearly. For a to-
tal of m = 7 training domains, this results in an increment of 0.3 per domain. This is
calculated in this way to increase the number of training domains without changing the
domain distance (emin and emax stay the same). The training domain scalars then become
etrain = [0.2, 2.0, 0.2 + (0.3 · 1), · · ·0.2 + (0.3 · (t− 2)] for the performance of the methods in
t training domains. This means that when a method is tested against 4 training domains
(t = 4) we get etrain = [0.2, 2.0, 0.5, 0.8]. The experiment is run on a dataset with n = 1000
samples per domain D. This amount of samples was chosen since the method’s performance
is relatively stable after n = 1000 in the sample complexity experiment (see figure 8 column
1). By doing so, we are trying to isolate the property (quantity of training domains) we
want to test. The results are displayed in figures 8b, 8e, 8h, and 8k.

For the number of training domains, the method of REx performs better when more domains
are added for covariate and confounded shift. This is also expected as this, just as an
increment in the number of samples per domain, enables the method to better capture the
concept of the model. For the anti-causal and hybrid shift, the method performs better than
IRM and ERM for a larger number of training domains. For REx in the confounded shift,
there is a slight difference between the causal and non-causal error (see appendix A.2). This
visualization can be found in appendix A.4.

Experiment 3 (Domain distance). This experiment tests the methods’ performance rel-
ative to the domain distance between e1 and e2. The domain distance ranges from 0.0 to
1.8 with steps of 0.2. e1 is defined as 0.2. The training domains can then be defined as
etrain = [0.2, 0.2 + distance]. The test domain etest, just as in the previous experiments,
is equal to 5.0. The experiment is ran on a dataset with n = 1000 samples per domain D.
The results are displayed in figures 8c, 8f, 8i, and 8l.

REx performs better when the domain distance increases. Especially for anti-causal and
hybrid shift, where it performs better for more considerable distances and has a steeper
learning curve than IRM. Just as in the sample complexity, there is no significant difference
between the causal and non-causal errors for the method of REx (see appendix A.3 for
details). There is, however, a difference in errors for IRM in this experiment which can be
seen in appendix A.4.
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Notice that if t = 2 in experiment 2 and distance = 1.8 in experiment 3 the domains
are equal to that of experiment 1, and that in these cases REx has an equivalent error in
all distributional shifts (table 2). It also shows the out-performance of REx in the hybrid
distributional shift.

Covariate Shift Confounded shift Anti-causal shift Hybrid shift

REx 0.0006±0.0001 0.0010±0.0002 0.0065±0.0013 0.0051±0.0006
IRM 0.0006±0.0001 0.0010±0.0002 0.0011±0.0002 0.0073±0.0014
ERM 0.0001±0.0000 0.0008±0.0002 0.0089±0.0002 0.0142±0.0012

Table 2: Average model estimation error for REx, IRM, and ERM with n = 2000 samples.

6 Responsible Research
This paper uses publicly available code to generate its results. This means that anyone can
repeat the experiment and get approximately the same results. By doing so, this paper aims
to be robust against manipulation, fabrication, and sloppiness. The experiments have all
been done with 10 repetitions with a mean and standard error to show these experiments
are consistent in their behaviour, conform to the industry standard, and are reproducible.
All data and experiments performed have been included either in the paper itself or in
the appendix to show that the data was not manipulated or trimmed for more favourable
results. In an attempt to rule out mistakes made by human error, all data used in the
experiments (both tables and figures) have been directly generated by Python into LATEX-
code. This paper only uses generated synthetic datasets with no affiliation with external
people or companies. By doing so, it tries to remove any ethical aspects from the equation.
For sources or ideas used in other researchers/papers, a reference or quote has always been
provided to clarify that these ideas are not of our own or adapted.

7 Discussion
Smalller samples. Based on the results, we can conclude that in a simple synthetic dataset
with 10 features, REx performs worse for invariant prediction when the number of samples
is low. For a smaller number of samples, the risk R(θ) is based on a regression function
fθ that cannot capture the actual distribution and correct correlation between features of
input X and regression value Y . When REx increases the similarity of the risks in the best
performing domain, it is, depending on the scale of penalty β, reinforcing this uncertain
correlation of features. It is, in essence, taking a gamble on risk prediction in the test
domain. Note that REx can not choose a β penalty of 0 to turn off this increasing of
similarity. Since ERM is just REX with a β penalty of 0 it is not doing this reinforcing
which results in better invariant prediction capability for the smaller number of samples.
To get a clearer picture of how the equalizing of similarity works for small samples, the β
regularizer could be researched for smaller steps of samples in the future, especially since
the most significant drop in error is between 50 and 200 samples.

Complexity of the distributional shift. When the number of samples increases, the
performance of REx, and equivalently IRM, reaches the same accurate asymptotic solution
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(a) CS for experiment 1 (b) CS for experiment 2 (c) CS for experiment 3

(d) CF for experiment 1 (e) CF for experiment 2 (f) CF for experiment 3

(g) AC for experiment 1 (h) AC for experiment 2 (i) AC for experiment 3

(j) HB for experiment 1 (k) HB for experiment 2 (l) HB for experiment 3

Figure 8: Performance of REx, IRM and ERM for covariate shift (CS), confounded shift
(CF), anti-causal shift (AC), and hybrid shift (HB). The methods are plotted against the
average model estimation error on the y-axis, with the spread representing the standard
error. Left: Sample complexity (experiment 1) with the number of samples on the x-axis.
Center: Quantity of training domain (experiment 2) with the number of training domains
on the x-axis. Right: Domain distance (experiment 3) with domain distance on x-axis.
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as ERM in the case of covariate and confounded shift. REx in these situations does not
perform much better than the other methods because the model of the dataset is relatively
simple. Since we assume homoscedasticity and Wx1→y = I (assumption 2), the correlation
between the feature X1 and Y is constant across the domains. Recognizing which features
in X cause Y is not difficult as X only has 10 features. Minimizing the risk R(θ) for these
features then is enough. When adding confounded shift, the confounder H will also partly
cause Y . Since H and X are correlated through domain scalar e, stimulating similarity to
find invariant relationships decreases the difference between REx and ERM (see table 2).
When replacing the confounded shift with the anti-causal one, we see a slight increment in
the error due to the stronger correlation between X2 and Y with edge Wy→x2 = I. Y causing
X2 here can be observed as X2 causing Y if no counterexample is given. IRM performs better
in this situation since it aims to predict which features are in X1 and X2 and does not try
to optimize its robustness for this distributional shift of Y causing X2. The opposite can
be seen in the hybrid shift. Krueger et al. (2020) showed that "Broadly speaking, REx
optimizes for robustness to the forms of distributional shift that have been observed to have
the largest impact on performance in training domains. This can be a significant advantage
over the more focused (but also limited) robustness that IRM targets." (p. 2). REx here thus
optimizes for any sort of shift that is causing the largest performance drop (Anti-Causal).
This is in contrast with IRM, which is still aiming for invariant prediction.

Domain distance. Based on the results of the domain distance experiment, we can
conclude that the performance of REx is optimal when the domain distance increases. We
assume that this is caused by the increased similarity of the distributions of D2 and Dtest

and increased dissimilarity between the distributions D1 and D2. By increasing the dis-
similarities, the domain shifts are magnified and easier to detect when compared to the
similarity of the risk. By increasing the similarities of the distributions D2 and Dtest, we
are solving a problem that is more similar to the distribution on which the edge weights
are based. It would be interesting to see if the performance changes when we change the
distance between X2 and Xtest relative to the distance of X1 and X2. By doing so, we
can isolate if the similarity to the test distribution is the largest influence or if the domain
distance is.

Quantity of training domains. For all domain shifts, the performance of REx stays
relatively the same1 when adding more domains between e1 = 0.2 and e2 = 2.0. Distribu-
tions that cause the domain distance thus have the most influence on equalizing the risk
since the smallest risk is increased until it looks more like the highest risk. When new do-
mains are introduced with a distribution that lies within the already known distributions,
the risks will be close to the line (figure 7) drawn through the domains that cause the domain
distance. REx now does not need to increase the similarity since they are already similar
and on the predictive trend line. We conclude that the first part of equation 13 (equalizing
risk) is mostly based on the domains with the most significant domain distance and that,
when adding more domains that do not change the domain distance, the performance does
not drastically change. This is in contrast to IRM and ERM, which perform worse when the
average distribution variance is shifted. To extend this experiment, the addition of training
domains outside the domains that cause the domain distance could be researched.

Due to computation power constraints, the experiments are performed on 10-dimensional
features to reduce the number of iterations required to achieve a satisfactory result. For the
same reason, the number of repetitions n = 10 was chosen instead of higher repetitions.

1In the case of covariate and confounded shift, there is an increment in error, but since the difference is
so small, we consider this as equal.
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8 Conclusions
This paper has presented a synthetic dataset with four different domain shifts containing
invariant and spurious features. This dataset was tested on the sample complexity, quantity
of training domains, and domain distance to answer the question: When is REx able to
learn an invariant relationship in a synthetic dataset, and when does it fail to do so?

This was done by first explaining invariant relationships and how they can be modeled
using the generative equations 1-3. Based on this model, four datasets were created that
implement either Covariate, Confounded, Anti-Causal or Hybrid shift. We showed that
REx’s absolute performance (smaller model estimation error) is better when covariate and
confounded shift occurs. In the situations where anti-causal and hybrid shifts occur, REx
performs better with respect to IRM and ERM. The paper also showed that for REx to find
invariant relationships, the number of samples and domain distance should be large. In which
the latter is the most significant one. The quantity of training domains experiment showed
that the performance of REx is based on the two domains with the most significant domain
distance. It showed that adding more domains that do not increase this distance does not
change the invariant prediction capabilities of REx. This contrasts with the methods of IRM
and ERM, whose performance decreases when these domains are added to the anti-causal
and hybrid shifts.

In the future, it would be interesting to see how the performance of these methods and
experiments differs when we in- or decrease the number of dimensions of X. We expect
that REx will out-perform in the task of invariant prediction relative to ERM and IRM,
even more so than in our experiments since the model becomes more complex when more
dimensions are added. Another thing to look into would be to see how the performance
changes when we do not determine the regularizers of REx and IRM on the testing domain
but on the training domains. It could also be interesting to see how the performance of
IRM and REx relate to each other in a heteroscedastic setting (i.e. where some domains
are harder than others) with these domain shifts as IRM should out-perform REx in these
situations (Krueger et al., 2020).
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A Appendix

A.1 Sample complexity results

Method Number of samples Average Causal Non-causal
ERM 50 0.0043±0.0006 0.0044±0.0009 0.0043±0.0009
IRM 50 0.0272±0.0038 0.0272±0.0052 0.0273±0.0059
REX 50 0.0273±0.0038 0.0295±0.0049 0.0252±0.0058
ERM 200 0.0007±0.0001 0.0007±0.0001 0.0007±0.0001
IRM 200 0.0055±0.0010 0.0051±0.0016 0.0059±0.0012
REX 200 0.0056±0.0010 0.0050±0.0016 0.0061±0.0013
ERM 500 0.0003±0.0000 0.0003±0.0001 0.0003±0.0001
IRM 500 0.0019±0.0003 0.0020±0.0003 0.0018±0.0005
REX 500 0.0019±0.0003 0.0020±0.0002 0.0018±0.0005
ERM 1000 0.0002±0.0000 0.0001±0.0000 0.0002±0.0000
IRM 1000 0.0012±0.0002 0.0009±0.0002 0.0015±0.0003
REX 1000 0.0012±0.0002 0.0010±0.0002 0.0015±0.0003
ERM 1500 0.0001±0.0000 0.0001±0.0000 0.0001±0.0000
IRM 1500 0.0007±0.0001 0.0008±0.0002 0.0007±0.0001
REX 1500 0.0007±0.0001 0.0008±0.0002 0.0007±0.0001
ERM 2000 0.0001±0.0000 0.0001±0.0000 0.0001±0.0000
IRM 2000 0.0006±0.0001 0.0005±0.0001 0.0006±0.0001
REX 2000 0.0006±0.0001 0.0006±0.0001 0.0006±0.0001

Table 3: Sample complexity of covariate shift with the errors displayed being the model
estimation error ± standard error.

Method Number of samples Average Causal Non-causal
ERM 50 0.0075±0.0011 0.0076±0.0013 0.0075±0.0019
IRM 50 0.0313±0.0037 0.0382±0.0064 0.0244±0.0027
REX 50 0.0342±0.0045 0.0370±0.0066 0.0313±0.0064
ERM 200 0.0017±0.0003 0.0013±0.0004 0.0022±0.0003
IRM 200 0.0075±0.0013 0.0079±0.0025 0.0072±0.0011
REX 200 0.0076±0.0013 0.0077±0.0023 0.0075±0.0012
ERM 500 0.0013±0.0002 0.0007±0.0001 0.0018±0.0004
IRM 500 0.0030±0.0004 0.0028±0.0005 0.0032±0.0007
REX 500 0.0030±0.0005 0.0026±0.0006 0.0035±0.0008
ERM 1000 0.0012±0.0003 0.0004±0.0001 0.0021±0.0005
IRM 1000 0.0028±0.0006 0.0017±0.0005 0.0039±0.0011
REX 1000 0.0028±0.0006 0.0016±0.0005 0.0039±0.0011
ERM 1500 0.0013±0.0004 0.0002±0.0000 0.0025±0.0007
IRM 1500 0.0021±0.0003 0.0012±0.0002 0.0030±0.0006
REX 1500 0.0021±0.0004 0.0012±0.0002 0.0030±0.0006
ERM 2000 0.0008±0.0002 0.0002±0.0000 0.0014±0.0003
IRM 2000 0.0010±0.0002 0.0005±0.0000 0.0015±0.0003
REX 2000 0.0010±0.0002 0.0005±0.0000 0.0016±0.0003

Table 4: Sample complexity of confounded shift with the errors displayed being the model
estimation error ± standard error.
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Method Number of samples Average Causal Non-causal
ERM 50 0.0145±0.0014 0.0157±0.0025 0.0133±0.0014
IRM 50 0.0411±0.0096 0.0546±0.0182 0.0276±0.0043
REX 50 0.0507±0.0055 0.0503±0.0076 0.0511±0.0083
ERM 200 0.0085±0.0003 0.0085±0.0005 0.0085±0.0005
IRM 200 0.0127±0.0016 0.0145±0.0030 0.0110±0.0013
REX 200 0.0183±0.0027 0.0193±0.0037 0.0172±0.0041
ERM 500 0.0100±0.0005 0.0105±0.0008 0.0095±0.0007
IRM 500 0.0034±0.0006 0.0039±0.0009 0.0028±0.0008
REX 500 0.0107±0.0016 0.0115±0.0025 0.0099±0.0021
ERM 1000 0.0096±0.0002 0.0096±0.0004 0.0096±0.0002
IRM 1000 0.0024±0.0004 0.0029±0.0008 0.0019±0.0003
REX 1000 0.0082±0.0015 0.0084±0.0023 0.0081±0.0022
ERM 1500 0.0088±0.0002 0.0091±0.0003 0.0085±0.0003
IRM 1500 0.0018±0.0003 0.0025±0.0004 0.0011±0.0002
REX 1500 0.0077±0.0014 0.0085±0.0020 0.0069±0.0021
ERM 2000 0.0089±0.0002 0.0089±0.0002 0.0090±0.0003
IRM 2000 0.0011±0.0002 0.0014±0.0004 0.0008±0.0002
REX 2000 0.0065±0.0013 0.0068±0.0020 0.0063±0.0018

Table 5: Sample complexity of anti-causal shift with the errors displayed being the model
estimation error ± standard error.

Method Number of samples Average Causal Non-causal
ERM 50 0.0243±0.0031 0.0262±0.0050 0.0225±0.0038
IRM 50 0.0822±0.0109 0.1021±0.0165 0.0623±0.0118
REX 50 0.0874±0.0079 0.1032±0.0097 0.0716±0.0107
ERM 200 0.0149±0.0012 0.0155±0.0022 0.0143±0.0013
IRM 200 0.0176±0.0022 0.0209±0.0033 0.0143±0.0028
REX 200 0.0251±0.0037 0.0294±0.0050 0.0209±0.0052
ERM 500 0.0171±0.0013 0.0177±0.0022 0.0166±0.0016
IRM 500 0.0151±0.0020 0.0158±0.0030 0.0145±0.0028
REX 500 0.0170±0.0031 0.0192±0.0050 0.0148±0.0037
ERM 1000 0.0185±0.0016 0.0183±0.0023 0.0187±0.0024
IRM 1000 0.0142±0.0017 0.0137±0.0025 0.0148±0.0025
REX 1000 0.0098±0.0010 0.0100±0.0014 0.0096±0.0015
ERM 1500 0.0210±0.0012 0.0213±0.0017 0.0207±0.0018
IRM 1500 0.0145±0.0015 0.0143±0.0020 0.0148±0.0023
REX 1500 0.0125±0.0013 0.0135±0.0021 0.0114±0.0015
ERM 2000 0.0142±0.0012 0.0141±0.0019 0.0144±0.0017
IRM 2000 0.0073±0.0014 0.0067±0.0018 0.0079±0.0023
REX 2000 0.0051±0.0006 0.0053±0.0009 0.0050±0.0010

Table 6: Sample complexity of hybrid shift with the errors displayed being the model esti-
mation error ± standard error.
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A.2 Quantity of training domains results

Method Number of training domains Average Causal Non-causal
ERM 2 0.0002±0.0000 0.0001±0.0000 0.0002±0.0000
IRM 2 0.0012±0.0002 0.0009±0.0002 0.0015±0.0003
REX 2 0.0012±0.0002 0.0010±0.0002 0.0015±0.0003
ERM 3 0.0001±0.0000 0.0001±0.0000 0.0001±0.0000
IRM 3 0.0010±0.0001 0.0008±0.0002 0.0013±0.0002
REX 3 0.0011±0.0002 0.0009±0.0002 0.0013±0.0003
ERM 4 0.0002±0.0000 0.0002±0.0000 0.0002±0.0000
IRM 4 0.0009±0.0002 0.0009±0.0001 0.0010±0.0003
REX 4 0.0009±0.0002 0.0008±0.0001 0.0010±0.0003
ERM 5 0.0001±0.0000 0.0001±0.0000 0.0002±0.0000
IRM 5 0.0009±0.0001 0.0008±0.0001 0.0011±0.0003
REX 5 0.0009±0.0001 0.0007±0.0001 0.0011±0.0002
ERM 6 0.0002±0.0000 0.0002±0.0000 0.0002±0.0000
IRM 6 0.0006±0.0001 0.0005±0.0001 0.0007±0.0001
REX 6 0.0006±0.0001 0.0005±0.0001 0.0008±0.0001
ERM 7 0.0001±0.0000 0.0001±0.0000 0.0002±0.0000
IRM 7 0.0006±0.0001 0.0005±0.0000 0.0007±0.0001
REX 7 0.0006±0.0001 0.0005±0.0000 0.0007±0.0001

Table 7: Quantity of training domains for covariate shift with the errors displayed being the
model estimation error ± standard error.

Method Number of training domains Average Causal Non-causal
ERM 2 0.0012±0.0003 0.0004±0.0001 0.0021±0.0005
IRM 2 0.0028±0.0006 0.0017±0.0005 0.0039±0.0011
REX 2 0.0028±0.0006 0.0016±0.0005 0.0039±0.0011
ERM 3 0.0016±0.0003 0.0004±0.0001 0.0027±0.0004
IRM 3 0.0025±0.0004 0.0014±0.0002 0.0036±0.0005
REX 3 0.0025±0.0003 0.0014±0.0002 0.0036±0.0005
ERM 4 0.0016±0.0006 0.0004±0.0001 0.0029±0.0011
IRM 4 0.0024±0.0007 0.0011±0.0002 0.0037±0.0013
REX 4 0.0023±0.0007 0.0011±0.0002 0.0036±0.0013
ERM 5 0.0014±0.0004 0.0004±0.0001 0.0023±0.0007
IRM 5 0.0022±0.0006 0.0010±0.0002 0.0034±0.0012
REX 5 0.0022±0.0007 0.0010±0.0002 0.0035±0.0013
ERM 6 0.0021±0.0007 0.0003±0.0001 0.0038±0.0013
IRM 6 0.0025±0.0008 0.0009±0.0001 0.0041±0.0014
REX 6 0.0025±0.0008 0.0007±0.0001 0.0042±0.0013
ERM 7 0.0010±0.0003 0.0003±0.0000 0.0018±0.0004
IRM 7 0.0013±0.0003 0.0005±0.0001 0.0021±0.0004
REX 7 0.0011±0.0003 0.0004±0.0001 0.0019±0.0004

Table 8: Quantity of training domains for confounded shift with the errors displayed being
the model estimation error ± standard error.
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Method Number of training domains Average Causal Non-causal
ERM 2 0.0096±0.0002 0.0096±0.0004 0.0096±0.0002
IRM 2 0.0024±0.0004 0.0029±0.0008 0.0019±0.0003
REX 2 0.0082±0.0015 0.0084±0.0023 0.0081±0.0022
ERM 3 0.0137±0.0003 0.0135±0.0005 0.0139±0.0004
IRM 3 0.0022±0.0005 0.0026±0.0007 0.0019±0.0006
REX 3 0.0092±0.0018 0.0092±0.0026 0.0093±0.0027
ERM 4 0.0203±0.0007 0.0201±0.0012 0.0205±0.0009
IRM 4 0.0138±0.0053 0.0162±0.0097 0.0115±0.0049
REX 4 0.0083±0.0016 0.0078±0.0022 0.0088±0.0024
ERM 5 0.0257±0.0005 0.0255±0.0008 0.0259±0.0007
IRM 5 0.0326±0.0078 0.0344±0.0126 0.0308±0.0100
REX 5 0.0130±0.0019 0.0141±0.0030 0.0118±0.0023
ERM 6 0.0321±0.0008 0.0324±0.0014 0.0317±0.0009
IRM 6 0.0239±0.0045 0.0236±0.0063 0.0242±0.0069
REX 6 0.0122±0.0011 0.0122±0.0019 0.0123±0.0012
ERM 7 0.0324±0.0005 0.0322±0.0009 0.0325±0.0006
IRM 7 0.0185±0.0025 0.0192±0.0041 0.0178±0.0030
REX 7 0.0120±0.0013 0.0127±0.0023 0.0113±0.0015

Table 9: Quantity of training domains for anti-causal shift with the errors displayed being
the model estimation error ± standard error.

Method Number of training domains Average Causal Non-causal
ERM 2 0.0185±0.0016 0.0183±0.0023 0.0187±0.0024
IRM 2 0.0142±0.0017 0.0137±0.0025 0.0148±0.0025
REX 2 0.0098±0.0010 0.0100±0.0014 0.0096±0.0015
ERM 3 0.0263±0.0016 0.0262±0.0024 0.0263±0.0023
IRM 3 0.0119±0.0023 0.0133±0.0037 0.0105±0.0028
REX 3 0.0116±0.0008 0.0127±0.0011 0.0104±0.0010
ERM 4 0.0323±0.0019 0.0326±0.0027 0.0319±0.0029
IRM 4 0.0291±0.0075 0.0325±0.0121 0.0257±0.0092
REX 4 0.0129±0.0015 0.0142±0.0022 0.0116±0.0021
ERM 5 0.0400±0.0032 0.0409±0.0046 0.0390±0.0048
IRM 5 0.0484±0.0079 0.0543±0.0129 0.0424±0.0096
REX 5 0.0176±0.0025 0.0192±0.0040 0.0160±0.0031
ERM 6 0.0430±0.0027 0.0441±0.0043 0.0419±0.0033
IRM 6 0.0499±0.0083 0.0582±0.0136 0.0417±0.0094
REX 6 0.0143±0.0021 0.0161±0.0036 0.0125±0.0023
ERM 7 0.0463±0.0024 0.0472±0.0033 0.0454±0.0036
IRM 7 0.0437±0.0062 0.0451±0.0100 0.0422±0.0081
REX 7 0.0143±0.0020 0.0154±0.0032 0.0132±0.0025

Table 10: Quantity of training domains for hybrid shift with the errors displayed being the
model estimation error ± standard error.
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A.3 Domain distance results

Method Domain distance Average Causal Non-causal
ERM 0 0.0002±0.0000 0.0002±0.0000 0.0002±0.0000
IRM 0 0.0661±0.0099 0.0695±0.0130 0.0627±0.0155
REX 0 0.0658±0.0100 0.0675±0.0131 0.0641±0.0157
ERM 0.2 0.0002±0.0000 0.0002±0.0000 0.0002±0.0000
IRM 0.2 0.0271±0.0038 0.0264±0.0050 0.0279±0.0059
REX 0.2 0.0262±0.0040 0.0248±0.0056 0.0275±0.0059
ERM 0.4 0.0002±0.0000 0.0002±0.0000 0.0002±0.0000
IRM 0.4 0.0131±0.0018 0.0118±0.0024 0.0144±0.0029
REX 0.4 0.0129±0.0019 0.0115±0.0025 0.0144±0.0028
ERM 0.6 0.0002±0.0000 0.0002±0.0000 0.0002±0.0000
IRM 0.6 0.0075±0.0011 0.0066±0.0014 0.0084±0.0017
REX 0.6 0.0075±0.0011 0.0064±0.0014 0.0086±0.0017
ERM 0.8 0.0002±0.0000 0.0002±0.0000 0.0002±0.0000
IRM 0.8 0.0048±0.0007 0.0039±0.0007 0.0058±0.0012
REX 0.8 0.0049±0.0007 0.0041±0.0009 0.0056±0.0011
ERM 1 0.0002±0.0000 0.0002±0.0000 0.0002±0.0000
IRM 1 0.0033±0.0005 0.0027±0.0005 0.0040±0.0008
REX 1 0.0034±0.0005 0.0028±0.0006 0.0040±0.0007
ERM 1.2 0.0002±0.0000 0.0002±0.0000 0.0002±0.0000
IRM 1.2 0.0024±0.0004 0.0020±0.0004 0.0029±0.0006
REX 1.2 0.0025±0.0004 0.0020±0.0004 0.0030±0.0006
ERM 1.4 0.0002±0.0000 0.0002±0.0000 0.0002±0.0000
IRM 1.4 0.0019±0.0003 0.0015±0.0003 0.0023±0.0004
REX 1.4 0.0019±0.0003 0.0015±0.0003 0.0023±0.0004
ERM 1.6 0.0002±0.0000 0.0001±0.0000 0.0002±0.0000
IRM 1.6 0.0015±0.0002 0.0011±0.0002 0.0018±0.0004
REX 1.6 0.0015±0.0002 0.0012±0.0002 0.0018±0.0003
ERM 1.8 0.0002±0.0000 0.0001±0.0000 0.0002±0.0000
IRM 1.8 0.0012±0.0002 0.0009±0.0002 0.0015±0.0003
REX 1.8 0.0012±0.0002 0.0010±0.0002 0.0015±0.0003

Table 11: Domain distance for covariate shift with the errors displayed being the model
estimation error ± standard error.
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Method Domain distance Average Causal Non-causal
ERM 0 0.0013±0.0003 0.0004±0.0001 0.0021±0.0005
IRM 0 0.0651±0.0095 0.0727±0.0166 0.0574±0.0098
REX 0 0.0669±0.0084 0.0751±0.0136 0.0587±0.0097
ERM 0.2 0.0013±0.0003 0.0004±0.0001 0.0021±0.0005
IRM 0.2 0.0280±0.0044 0.0287±0.0073 0.0274±0.0054
REX 0.2 0.0295±0.0047 0.0320±0.0080 0.0270±0.0051
ERM 0.4 0.0013±0.0003 0.0004±0.0001 0.0021±0.0005
IRM 0.4 0.0150±0.0023 0.0145±0.0035 0.0155±0.0032
REX 0.4 0.0157±0.0026 0.0160±0.0042 0.0154±0.0032
ERM 0.6 0.0013±0.0003 0.0004±0.0001 0.0021±0.0005
IRM 0.6 0.0095±0.0015 0.0088±0.0021 0.0102±0.0022
REX 0.6 0.0098±0.0016 0.0095±0.0025 0.0101±0.0021
ERM 0.8 0.0013±0.0003 0.0004±0.0001 0.0021±0.0005
IRM 0.8 0.0067±0.0011 0.0057±0.0014 0.0077±0.0017
REX 0.8 0.0068±0.0012 0.0059±0.0015 0.0077±0.0018
ERM 1 0.0013±0.0003 0.0004±0.0001 0.0021±0.0005
IRM 1 0.0051±0.0009 0.0041±0.0010 0.0061±0.0015
REX 1 0.0052±0.0009 0.0041±0.0011 0.0063±0.0015
ERM 1.2 0.0012±0.0003 0.0004±0.0001 0.0021±0.0005
IRM 1.2 0.0042±0.0008 0.0032±0.0009 0.0052±0.0013
REX 1.2 0.0042±0.0008 0.0031±0.0009 0.0054±0.0013
ERM 1.4 0.0012±0.0003 0.0004±0.0001 0.0021±0.0005
IRM 1.4 0.0036±0.0007 0.0023±0.0007 0.0048±0.0013
REX 1.4 0.0036±0.0007 0.0024±0.0007 0.0047±0.0012
ERM 1.6 0.0012±0.0003 0.0004±0.0001 0.0021±0.0005
IRM 1.6 0.0031±0.0007 0.0019±0.0005 0.0043±0.0012
REX 1.6 0.0031±0.0007 0.0020±0.0006 0.0043±0.0011
ERM 1.8 0.0012±0.0003 0.0004±0.0001 0.0021±0.0005
IRM 1.8 0.0028±0.0006 0.0017±0.0005 0.0039±0.0011
REX 1.8 0.0028±0.0006 0.0016±0.0005 0.0039±0.0011

Table 12: Domain distance for confounded shift with the errors displayed being the model
estimation error ± standard error.
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Method Domain distance Average Causal Non-causal
ERM 0 0.0127±0.0003 0.0128±0.0007 0.0125±0.0003
IRM 0 0.9253±0.0042 0.9244±0.0082 0.9263±0.0026
REX 0 0.9113±0.0108 0.9000±0.0213 0.9227±0.0037
ERM 0.2 0.0126±0.0003 0.0127±0.0006 0.0124±0.0003
IRM 0.2 0.7743±0.0633 0.9506±0.0522 0.5979±0.0852
REX 0.2 0.3173±0.0256 0.3196±0.0345 0.3151±0.0396
ERM 0.4 0.0124±0.0003 0.0125±0.0006 0.0123±0.0003
IRM 0.4 0.6254±0.0598 0.8445±0.0451 0.4063±0.0489
REX 0.4 0.1062±0.0102 0.1047±0.0149 0.1078±0.0148
ERM 0.6 0.0121±0.0003 0.0122±0.0006 0.0120±0.0003
IRM 0.6 0.5075±0.0414 0.6719±0.0168 0.3431±0.0309
REX 0.6 0.0533±0.0071 0.0530±0.0106 0.0535±0.0100
ERM 0.8 0.0118±0.0003 0.0119±0.0005 0.0117±0.0002
IRM 0.8 0.2300±0.0454 0.2916±0.0767 0.1684±0.0445
REX 0.8 0.0319±0.0052 0.0320±0.0077 0.0318±0.0074
ERM 1 0.0114±0.0003 0.0115±0.0005 0.0114±0.0002
IRM 1 0.0094±0.0015 0.0111±0.0026 0.0077±0.0013
REX 1 0.0217±0.0039 0.0219±0.0057 0.0215±0.0055
ERM 1.2 0.0110±0.0003 0.0111±0.0005 0.0110±0.0002
IRM 1.2 0.0059±0.0010 0.0071±0.0018 0.0048±0.0008
REX 1.2 0.0163±0.0029 0.0162±0.0043 0.0163±0.0041
ERM 1.4 0.0106±0.0002 0.0106±0.0004 0.0105±0.0002
IRM 1.4 0.0041±0.0007 0.0050±0.0013 0.0033±0.0006
REX 1.4 0.0122±0.0023 0.0122±0.0035 0.0122±0.0033
ERM 1.6 0.0101±0.0002 0.0101±0.0004 0.0101±0.0002
IRM 1.6 0.0031±0.0005 0.0037±0.0010 0.0024±0.0004
REX 1.6 0.0095±0.0019 0.0096±0.0029 0.0095±0.0028
ERM 1.8 0.0096±0.0002 0.0096±0.0004 0.0096±0.0002
IRM 1.8 0.0024±0.0004 0.0029±0.0008 0.0019±0.0003
REX 1.8 0.0082±0.0015 0.0084±0.0023 0.0081±0.0022

Table 13: Domain distance for anti-causal shift with the errors displayed being the model
estimation error ± standard error.
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Method Domain distance Average Causal Non-causal
ERM 0 0.0216±0.0019 0.0215±0.0027 0.0218±0.0027
IRM 0 0.9166±0.0064 0.9078±0.0123 0.9254±0.0025
REX 0 0.9117±0.0072 0.9055±0.0131 0.9179±0.0064
ERM 0.2 0.0215±0.0019 0.0213±0.0027 0.0217±0.0027
IRM 0.2 0.7615±0.0704 1.0172±0.0530 0.5058±0.0597
REX 0.2 0.2534±0.0205 0.2564±0.0320 0.2504±0.0274
ERM 0.4 0.0213±0.0018 0.0212±0.0027 0.0215±0.0027
IRM 0.4 0.5548±0.0547 0.7563±0.0416 0.3533±0.0433
REX 0.4 0.1015±0.0101 0.1044±0.0156 0.0987±0.0135
ERM 0.6 0.0211±0.0018 0.0209±0.0026 0.0212±0.0026
IRM 0.6 0.4568±0.0386 0.5944±0.0268 0.3192±0.0368
REX 0.6 0.0489±0.0052 0.0508±0.0085 0.0471±0.0065
ERM 0.8 0.0207±0.0018 0.0206±0.0026 0.0209±0.0026
IRM 0.8 0.2350±0.0465 0.2894±0.0771 0.1806±0.0503
REX 0.8 0.0275±0.0027 0.0288±0.0046 0.0261±0.0031
ERM 1 0.0204±0.0018 0.0202±0.0025 0.0205±0.0026
IRM 1 0.0140±0.0021 0.0161±0.0032 0.0120±0.0028
REX 1 0.0199±0.0020 0.0206±0.0032 0.0191±0.0027
ERM 1.2 0.0199±0.0017 0.0198±0.0025 0.0201±0.0025
IRM 1.2 0.0103±0.0015 0.0116±0.0021 0.0089±0.0022
REX 1.2 0.0173±0.0021 0.0177±0.0034 0.0168±0.0028
ERM 1.4 0.0195±0.0017 0.0193±0.0024 0.0197±0.0025
IRM 1.4 0.0114±0.0022 0.0122±0.0033 0.0106±0.0029
REX 1.4 0.0130±0.0014 0.0134±0.0022 0.0126±0.0019
ERM 1.6 0.0190±0.0016 0.0188±0.0024 0.0192±0.0024
IRM 1.6 0.0111±0.0015 0.0109±0.0020 0.0112±0.0023
REX 1.6 0.0109±0.0011 0.0112±0.0016 0.0106±0.0016
ERM 1.8 0.0185±0.0016 0.0183±0.0023 0.0187±0.0024
IRM 1.8 0.0142±0.0017 0.0137±0.0025 0.0148±0.0025
REX 1.8 0.0098±0.0010 0.0100±0.0014 0.0096±0.0015

Table 14: Domain distance for hybrid shift with the errors displayed being the model esti-
mation error ± standard error.
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A.4 Confounded shift for quantity of training domains experiment

25



(a) CS for experiment 1 (b) CS for experiment 2 (c) CS for experiment 3

(d) CF for experiment 1 (e) CF for experiment 2 (f) CF for experiment 3

(g) AC for experiment 1 (h) AC for experiment 2 (i) AC for experiment 3

(j) HB for experiment 1 (k) HB for experiment 2 (l) HB for experiment 3

Figure 9: Performance of REx, IRM and ERM for: covariate shift (CS), confounded shift
(CF), anti-causal shift (AC), and hybrid shift (HB). The methods are plotted against the
average model estimation error on the y-axis where the spread represents the causal and
non-causal error. Left: Sample complexity (experiment 1) with the number of samples
on the x-axis. Center: Quantity of training domain (experiment 2) with the amount
of training samples on the x-axis. Right: Domain distance (experiment 3) with domain
distance plotted on the x-axis.
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