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Summary

This research focused on applying vibration-based model updating to estimate the structural properties
of high-rise buildings using a discrete Timoshenko beam model. Previous studies by Moretti et al. [1]
and Taciroglu et al. [2] showed limitations in estimating the structural properties of buildings using
model updating with a uniform Euler-Bernoulli beam model or a uniform Timoshenko beam model.
Both models were not able to describe the third measured bending mode accurately after updating.
Moreover, with the uniform Euler-Bernoulli beam model, when only the lowest two bending modes
were used to fit the model, the estimates of the rotational stiffness of the foundation around the y-axis,
K, ,, showed significant uncertainty after model updating, with a Coefficient of Variation (CV) of 46.9%.
Therefore, this research aimed to improve the accuracy of structural property estimations for high-rise
buildings by using a more detailed model.

The model updating method applied in this research was an indirect vibration-based technique, which
adjusted the input parameters of the chosen model to minimize the difference between the model output
and the measured data. Both the model output and the measured data were in the shape of natural
frequencies and mode shapes. The technique was applied to two high-rise buildings: the residential
tower New Orleans, which is bending-dominant in behavior, and the office tower Delftse Poort, which is
shear-dominant in behavior and exhibits irregular stiffness across its height. The discrete Timoshenko
beam models used to approximate the dynamic behavior of these buildings were created using the Finite
Element (FE) models of the buildings.

The research findings highlighted several key aspects essential for obtaining more accurate estimations
of the structural properties of high-rise buildings. For a more accurate estimation of parameter K, ,, it
is of importance to incorporate shear deformations in the model and to account for irregular stiffness
along the height. For the New Orleans, using the discrete Timoshenko beam model led to estimates
of parameter K, , with low uncertainty, indicated by a Coefficient of Variation of 6.91%. This was an
improvement compared to the study by Moretti et al. [1], which showed a Coefficient of Variation of
46.9% using the uniform Euler-Bernoulli model.

Moreover, obtaining accurate values for the bending stiffness was crucial for achieving more precise
estimations of the structural properties. It was challenging to determine the bending stiffness values
using the FE models. These challenges posed a problem for model updating, as the initial structural
property ratios were maintained for both high-rise buildings. Maintaining these ratios gives weight to
the initial structural property values. These values must be correct. Otherwise, model updating is
limited by the incorrect ratios and will not be able to accurately match the measured modal properties.

For the Delftse Poort, more pure bending modes were needed for better accuracy. The discrete Timo-
shenko beam model was unable to match the measured second bending mode in the y-direction, as it
exhibited twisting, which the model could not represent due to its limitation to pure bending modes.
Furthermore, since the discrete Timoshenko beam model requires a single displacement value per height
but multiple sensors were used to measure displacements, the measurements had to be averaged. This
averaging process may led to a mode shape that deviates from the actual behavior, resulting in an
inaccurate representation of reality.
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Introduction

In structural engineering, Finite Element (FE) models are used for simulations, design, and risk assess-
ment. These models are solved using the Finite Element method, a numerical approach that divides
a system into well-defined components known as elements. By subdividing a system into well-defined
elements, whose behavior is completely understood, it becomes possible to estimate the behavior of
such systems [3].

According to Zienkiewicz and Taylor [4], the FE method is considered the most appropriate tool for
numerical modeling, as it can handle complex structural geometries, large assemblies of structural com-
ponents, and various types of analysis. However, while FE models strive to accurately replicate the
physics of their corresponding structures, discrepancies still exist between the measured and model
output responses. This is due to the presence of measurement and modeling errors [3].

Measurement errors consider the inaccuracies of the measured data and arise from random noise in
the measurements or from the measurement system setup. Modeling errors, on the other hand, con-
sider the inaccuracies of the model prediction and arise from uncertainties in the geometry or boundaries,
inaccurate simplifications or discretization, or uncertainty in the governing physical equations of the
system [4, 5].

Due to awareness of modeling errors, efforts have been made to develop methods that improve models
using measurements. This area is known as system identification and falls under control theory, a field
dealing with the control of dynamical systems in engineering [6]. One technique within this area is
vibration-based model updating, a technique that uses vibration measurements to enhance model accu-
racy. This technique includes several methods, one of which, called the indirect method, adjusts the
model input parameters values to minimize the difference between the model output and the measured
data. Both the model output and the measured data are in the shape of natural frequencies and mode
shapes with this method.

In research, attempts have been made to use this indirect method of vibration-based model updating
to estimate the structural properties of buildings. Moretti et al. [1] applied the technique to estimate
the structural properties of the residential tower New Orleans in Rotterdam, utilizing a uniform Euler-
Bernoulli beam model to approximate the dynamic behavior of the building. Similarly, Taciroglu et al.
[2] applied the technique to estimate the dynamic stiffnesses of the soil foundation of the multi-storey
building Millikan Library in Pasadena, using a uniform Timoshenko beam model to approximate its
dynamic behavior. The structural properties were the input parameters of the models. Both studies
used the lowest three measured bending modes to fit the model.

1.1. Research problem statement

While the study by Moretti et al. [1] showed that the uniform Euler-Bernoulli beam model accurately
describes the lowest two measured bending modes after model updating, it also demonstrated that the
chosen model fails to accurately describe the third measured bending mode after updating.
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Moreover, when only the lowest two bending modes were used to fit the model, the estimates of the
rotational stiffness of the foundation around the y-axis, K, ,, showed large uncertainty after model up-
dating, with a Coefficient of Variation (CV) of 46.9%, which was 6 to 7 times higher than that of other
updating parameters. Similarly, for the Millikan Library building, the study by Taciroglu et al. [2]
showed that the uniform Timoshenko beam model also failed to accurately describe the third measured
bending mode after model updating.

According to Moretti et al. [1], the uniform Euler-Bernoulli beam model did not include all necessary
aspects to accurately describe the third bending mode, limiting the accuracy of the results obtained.
Additionally, they suggested that the large uncertainty in parameter K, , may also be related to the
model choice, as the chosen model assumed uniform stiffness across the height and does not account for
the frequency dependency of the foundation stiffness. Similarly, Taciroglu et al. [2] suggested that the
discrepancy between the estimated and third measured bending mode was due to the modeling choice.

A more detailed model could provide insights into the observed discrepancy in the third bending mode
and offer explanations for the large uncertainty obtained in the estimations of parameter K, ,. There-
fore, this research investigates the effectiveness of vibration-based model updating in estimating the
structural properties of high-rise buildings using a discrete Timoshenko beam model.

1.2. Research objectives
The research has two objectives:

e« Main objective: a more accurate estimation of the structural properties of high-rise buildings
using vibration-based model updating.

e Secondary objective: the application of vibration-based model updating with a discrete Timo-
shenko beam model.

1.3. Research questions
The main question the research aims to answer is:

How can the structural properties of high-rise buildings be more accurately estimated
using vibration-based model updating?

The sub-questions that help answer the main question are:

e What is vibration-based model updating and which methods exist in literature?
o How is vibration-based model updating applied on buildings and what are the findings?

e What are the choices in the settings of the technique, and how do these choices influence the
model updating results?

e What is a Timoshenko beam model and what are important aspects of the model?
e How can the Timoshenko beam model be used to approximate the dynamic behavior of high-rise
buildings?

o How effective is vibration-based model updating in estimating the structural properties of high-rise
buildings using a discrete Timoshenko beam model?

1.4. Significance research

The research provides valuable insights into the impact of a discrete Timoshenko beam model on
the estimation of structural properties for high-rise buildings. Moreover, it expands the application
of vibration-based model updating to high-rise buildings that are shear-dominant and have irregular
stiffnesses across their height.
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1.5. Scope

The research focuses on modeling changes within the superstructure of the beam model. Model updating
is only conducted using bending modes. Torsional and mixed modes are outside the scope of this study.
Nonlinear behavior in modal properties, such as the effects of vibration amplitude or building lifespan
on the natural frequencies, is not considered.

1.6. Limitations

Due to the variability of high-rise building in type and behavior, the results of the research cannot
be universally applied to all high-rise structures. The studies of the research are conducted on two
specific in-situ high-rise buildings: the residential tower New Orleans, which is bending-dominant in
behavior, and the office tower Delftse Poort, which is shear-dominant in behavior and has irregular
stiffness across its height. Therefore, the results can only be applied to high-rise buildings with similar
types and behaviors to those of the New Orleans and Delftse Poort

In addition, the research acknowledges the limitations of the discrete Timoshenko beam model, as
it remains a simplified beam model and therefore may not fully capture the complex behavior of the
high-rise buildings in question. While the model can accurately estimate the overall behavior of the
building, small deviations from the actual behavior are expected. Therefore, the model updating results
of the structural properties should be considered indicative rather than precise.

Furthermore, the research includes studies that investigate the influence of certain settings and un-
certainties in model updating using a discrete Timoshenko beam model. These studies are limited
to examining the effects of model choice, its parameters, the optimization algorithm, the number of
measured modal properties, and measurement uncertainties on the results obtained. The optimization
algorithms are kept at their default settings.

1.7. Organisation research

This report starts with a theoretical background, explaining what vibration-based model updating is and
reviewing the methods available in literature. Chapter 3 discusses its application on buildings. Chapter
4 describes the methodology of the research, including a description of the model updating method
applied and the discrete Timoshenko beam model used. Chapter 5 presents the studies conducted on
the residential tower New Orleans, evaluating the effectiveness of model updating in estimating the
structural properties of a bending-dominant building. Chapter 6 presents the studies conducted on
the office tower Delftse Poort, assessing the effectiveness of model updating in estimating the structural
properties of a shear-dominant building with irregular stiffness across its height. The research concludes
with a discussion and conclusion.



Theoretical background

This chapter explains what vibration-based model updating is and outlines the methods available in the
literature. The chapter begins with Section 2.1, which explains the background of vibration-based model
updating. Next, Section 2.2 explains the key concepts and theories underlying the technique. Section
2.3 explains the type of optimization algorithms which can be applied with the technique. Finally,
Section 2.4 presents the methods of vibration-based model known in literature.

2.1. Background

In structural engineering, Finite Element (FE) models are used for simulations, design, and risk assess-
ments. The models are solved using the Finite Element method, a numerical technique that divides a
system into a finite number of well-defined components called elements. These elements create a FE
mesh, as shown in Figure 2.1. By subdividing a system into well-defined elements, whose behavior is
completely understood, it becomes possible to estimate the behavior of such systems [3].

Figure 2.1: A typical two-dimensional finite element mesh [3].

According to Zienkiewicz and Taylor [4], the FE method is considered the most appropriate tool for
numerical modeling, as it is capable of handling complex structural geometries, large assemblies of
structural components, and different types of analysis. However, while FE models attempt to exactly
replicate the physics of their corresponding structures, discrepancies still exist between the measured
and model output responses. This is due to the presence of measurement and model errors.

Measurement errors consider the inaccuracies of the measured data and are encountered as random
or systematic errors. Random errors arise from random noise in the measurements and are by nature
unpredictable. Systematic errors arise from the measurement system setup and are encountered as [4]:

e Mounting errors, where incorrect mounting of the equipment does not allow accurate modeling of
the system.
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e Mass or stiffening errors, where attachment of equipment to the system causes mass loading and
local stiffening.

The processing of data may also produce errors. Random and systematic errors can never be completely
eliminated. Therefore, ensuring high-quality measurements is essential to minimize these errors. Ac-
cording to Friswell, there is no substitute for high-quality measurements [7].

Modeling errors consider the inaccuracies of the model prediction and are encountered as [5]:

e Model structure errors, which occur when there is uncertainty in the governing physical equations
of the system.

e Model parameter errors, which involve uncertainties in properties and geometry, inaccurate ap-
plication of boundary conditions, or inaccurate simplification of the model.

e Model order errors, which arise due to the discretization of complex systems, resulting in poor
replication of the system.

Due to the awareness of modeling errors, efforts have been made to develop methods that improve mod-
els using measurements. This area is known as system identification and falls under control theory, a
field dealing with the control of dynamical systems in engineering [6]. Vibration-based model updating
falls within this area.

According to Natke, model updating can be seen as an indirect type of system identification, where
‘indirect’” indicates the use of a reference model to represent the system [8]. According to Friswell,
model updating can be seen as a parameter estimation problem, an area within system identification
where vibration measurements are used to correct the parameters of the reference model [7]. Both def-
initions indicate the aim of the technique to improve the accuracy of models using vibration measurents.

The technique includes several methods for updating models. However, before these methods can be
explained, the key concepts and theories need to be explained, as these form the basis of the different
methods known. Therefore, the key concepts and theories are explained in the next Section (Section
2.2). The methods are explained in Section 2.4.

2.2. Key concepts and theories
Within the area of model updating, several key concepts and theories exist that form the basis of model
updating. These key concepts and theories are in detail explained in the sections below.

2.2.1. Parameters
Parameters refer to the variables or factors within a structural model that influence its behavior or out-
put. They are the primary inputs of the system and may include physical parameters, mass matrices,
or stiffness matrices [9].

Physical parameters are intrinsic properties of the system, such as material properties (density, elastic-
ity), geometric properties (dimensions, shapes), or boundary conditions. Stiffness and mass matrices
define the relations between the physical parameters and the model output [9].

Research in this field has primarily focused on updating the physical parameters of the model [9].

2.2.2. Solution space

A solution space refers to an area containing all possible combinations or configurations of parameters
that can be considered when searching for an optimal solution to a problem. It represents the range of
feasible solutions, called candidate solutions, within a given problem domain, as illustrated in Figure 2.2.

The dimensions depend on the number of updated parameters. For example, with two variables, the
search space is two-dimensional (2D). The solution space is unimodal if only one single solution exists
and multimodal if it contains multiple local solutions, with one being the global solution of the given
problem [10].
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Real-world problems often involve complex, multidimensional multimodal solution spaces [10].
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Figure 2.2: The solution space (a) of the variables x and y with several constraints. The top view is indicated with (b).
The axis f(z,y) indicates the fitting of the solutions. The constraints are represented with white shading within the
solution space, indicating infeasible solutions [10].

2.2.3. Parametrization

Parametrization refers to the process of reducing the set of updating parameters in order to help ill-
posedness or ill-conditioning of the problem. Model update problems are often ill-posed, indicating the
absence of a unique solution. Even when the problem is well-posed, it can still be ill-conditioned, as
minor fluctuations in measured data or the initial model state can significantly influence the updating
outcomes [7, 9]. Therefore, parametrization is the key to success in model updating. According to
Friswell and Mottershead, three essential conditions should be satisfied to achieve successful parameter-
ization [5]:

e Limit the number of parameters to avoid ill-posedness
e Choose parameters that address the model uncertainties

e Ensure that the model outputs are sensitive to the chosen parameters

2.2.4. Constraints

There are two types of constraints. Explicit constraints refer to the constraints directly specified in the
problem formulation, indicating the limits of the system (infeasible solutions). They are considered sec-
ondary inputs of the system and depicted as white areas in Figure 2.2. Penalty functions can be applied
to handle these constraints during model updating. An example of a penalty function is illustrated in
Figure 2.3. To ensure that the constraints are not violated, a high penalty (indicated in dark red) is
assigned to these constraints. This ensures that they are not considered as solutions [10].

Implicit constraints, in contrast, are not explicitly defined in the problem formulation. They refer to
the constraints introduced during the optimization process to help the ill-posedness or ill-conditioning
of the problem (regularization) [7, 9].

2.2.5. Regularization

Regularization refers to the process of imposing additional constraints (implicit constraints) to a problem
in order to help the ill-posedness of the problem. Model update problems are often ill-posed, indicating
the absence of a unique solution. Even when the problem is well-posed, it can still be ill-conditioned, as
minor fluctuations in measured data or the initial model state can significantly influence the updating
outcomes. Regularization modifies the problem to make it better conditioned.

It involves adding penalty terms to the objective function being optimized. Objective functions are
explained in Section 2.2.8. These penalty terms ensure that parameters are adjusted minimally during
optimization, guiding the process towards simpler and more stable solutions [7, 9].
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Figure 2.3: The application of the barrier penalty function on the solution space (a). The top view is indicated with
(b). The axis f(z,y) indicates the fitting of the solutions.

2.2.6. Optimization Algorithm

Optimization algorithms refer to the methods or procedures used to search for the global solution within
the solution space of a given problem. The different types of algorithms are explained in Section 2.3.
They initiate the process by generating a random set of candidate solutions (feasible solutions) within
the solution space. They refine these candidate solutions to optimize or improve a certain objective
function until an optimal solution is found. The manner in which these solutions are refined depends
on the type of algorithm applied. [10].

2.2.7. Exploration and exploitation

Exploration and exploitation refer to different strategies used by algorithms to refine the candidate
solutions within the solution space. With exploration, the candidate solutions are adjusted to explore
different regions and to identify promising areas of the solution space. With exploitation, the best
solution found so far is identified within the candidate solutions [10].

2.2.8. Objective function

An objective function refers to a mathematical function that quantifies the difference or discrepancy
between the model output and the observed data. They evaluate the fitting of the candidate solutions.
The aim is to minimize the objective function. The shape of the objective function depends on the
method applied. The methods are explained in Section 2.4.

2.3. Optimization algorithms

This section describes the different types of algorithms which can be applied with the technique. The
algorithms are divided into two categories: individual-based algorithms and population-based algo-
rithms. These categories are explained in Sections 2.3.1 and 2.3.2, including a list of the limitations
and strengths of each group.

2.3.1. Individual-based algorithms
Individual-based algorithms update the model by considering only one candidate solution, which is ad-
justed and evaluated until the objective function is minimized. The limitations and strengths of these
group of algorithm are listed in Table 2.1 [10].

A strength of individual-based algorithms is their minimal need for function evaluations, as only one
solution is considered. This can be advantageous in scenarios where function evaluations are computa-
tionally expensive. However, a limitation is their susceptibility to premature convergence. Real-world
problems often involve complex, multidimensional solution spaces. Consequently, the algorithm may
quickly converge to a local optimum, resulting in suboptimal performance on challenging optimization
problems [10].
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Strengths ‘ Limitations
Minimal need for function | - Premature convergence
evaluations

Table 2.1: The strengths and limits of Individual-based algorithms.

2.3.2. Population-based algorithms

Population-based algorithms update the model by considering a set of candidate solutions, which are
evaluated and adjusted until the objective function is minimized. They are stochastic algorithms and
rely on probabilistic rules. They are categorized into two groups: evolution-based algorithms and
swarm-based algorithms [10].

Evolutionary algorithms mimic natural processes (crossover and mutations) to solve the optimization
problem. The processes are visualized in Figure 2.4. Through crossovers, candidate solutions are com-
bined to exploit the search space. Through mutations, candidate solutions are altered to explore the
solution space [10].

(a) (b)

Parent | | | | | | | | | Parent | | | | | | | | |

solutions: ; | i | i | | | i | | solutions: ; | i | i | i | i | |

chitdeen |1 Children | HEEEEEEN B
NN sotwtions: I ] N

solutions:

Mutations

Figure 2.4: The processes of nature mimicked with evolutionary-based algorithms: (a) illustrates the crossover process,
used to exploit the search. (b) Depicts the mutation process, used to explore the solution space.

Swarm algorithms use position vectors to solve optimization problems. Position vectors denote the
positions of the candidate solutions within the search space. During the updating process, the positions
are updated according to specific movement rules dictating direction and speed.

Initially, the solutions move quickly in diverse directions to explore the search space. As the algo-
rithm progresses through iterations, the magnitude of movement decreases to fine-tune the search and
exploit the best positions discovered during the exploration phase [10]. The limitations and strengths
are listed in Table 2.2.

A strength of population-based algorithms is their lower probability of becoming trapped in local op-
tima: if one solution gets stuck in a local optimum, other solutions can assist in avoiding it in other
iterations. However, a limitation is the requirement for more function evaluations, which increases the
computational expense of these algorithms [10].

Population-based algorithms use both exploration and exploitation to refine candidate solutions. How-
ever, using these algorithms presents a challenge, as it requires a balance between exploration and
exploitation. These two aspects are in conflict: a more exploratory behavior may lead to finding solu-
tions of poor quality, as the algorithm never has a chance to improve solution accuracy. On the other
hand, a more exploitative behavior risks trapping the algorithm in local minima because it does not
sufficiently adapt solutions [10].
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Strengths Limits
Lower probability of entrapment | - More function evaluations needed
in local optima

- The balance between exploration
and exploitation

Table 2.2: The strengths and limits of population-based algorithms.

2.4. Methodologies

This section describes the existing methods for model updating. The methods are divided into three
categories: the direct methods, the indirect methods, and the methods using frequency domain data.
For each group of methods, the limitations and strengths are listed. The details are given in the Sections
below.

2.4.1. The direct methods using modal data

With direct methods, the models themselves (the stiffness and mass matrices) are modified to update
the models. The methods falling into this category are listed in Table 2.3. The limitations and strengths
of these methods are listed in Table 2.4.

Category Methods References

Reference basis methods Baruch and Berman (1978)
Direct methods Matrix mix approa.uch Tk}oren (1972) and Ross (1971)
using modal data Eigenstructure assignment method M%nnas and Inman (1988)

Pole placement method Minnas and Inman (1988)

Inverse eigenvalue methods Glaswell (1986)

Table 2.3: An overview of the direct methods [5].

A strength of these methods is their ability to exactly reproduce the measured modal data. They do
not need iterative refinement or extensive batch processes, which makes them computationally cheaper.
A limitation, however, is the additional requirement for accurate modeling and high-quality measure-
ments. It is unlikely that the measured and numerical data will be exactly equal due to the presence of
measurement and modeling errors [5, 11].

Another limitation is their physical meaning. The updated matrices are generally fully populated,
while the initial matrices contain only non-zero values on their diagonal. Furthermore, the positive
definiteness of the updated mass and stiffness matrices, as well as the connectivity of the nodes, is not
guaranteed [5].

Morover, because lower frequency modes are measured and higher frequency modes contribute most to
the stiffness matrices, interpreting the results becomes complicated [5].

Strengths ‘ Limitations
Able to exactly reproduce the | - Accurate modeling and high-quality
measured modal data measurements needed
Computationally cheaper - Physical meaning updated matrices

- Interpretation updated matrices

Table 2.4: The strengths and limits of the direct methods.
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2.4.2. Indirect methods using modal data
With indirect methods, the input parameter values are adjusted to update the model. These methods
are executed by an algorithm and involve the use of an objective function, denoted as J [1]:

N

N A
J =y S Il S - MaC(e,60) (21)
=1

mn,t 1=1

where index ¢ denotes the mode considered, f,, ; and ¢; denotes the estimated modal properties, and the
fm and éi denotes the measured modal properties. The first term of the objective function J indicates
the mismatch between the obtained and measured frequencies. The second term of the objective function
J indicates the mismatch between the obtained and measured mode shapes. To quantify the mode shape
mismatch, the Modal Assurance Criterion (MAC) is used [1]:

212
MAC(gs, i) = 129 (2.2)
(¢i¢3)(¢i - 03)
The MAC returns a value between 0 and 1, indicating no or complete similarity between the two mode
shapes. The weight factor wy or wg determine the contributions of the terms in the objective function
[1] [5]. The methods falling into this category are listed in Table 2.5. The limitations and strengths of
these methods are listed in Table 2.6.

Category ‘ Methods ‘ References
Iterative methods | Penalty functions methods Friswell and Mottershead
using modal data Minimum Variance methods Collins et al. (1972)

Table 2.5: An overview of the iterative methods of the model updating technique [5].

The strength of these methods lies in the wide choice of parameters and the ability to weigh the terms
of the objective function, which gives them power and versatility. However, it does require complete
understanding which weigh factors to use [5].

Another limitation is the often ill-posed nature of the problem, indicating the potential absence of
a unique solution. Additionally, long computational times can be expected due to the need to evaluate
the model at every iteration [5]. Convergence problems may also arise [7].

Strengths ‘ Limitations
Wide choice of parameters - Understanding which weigh factors to use
Weighing the terms objective function | - Ill-posed nature of the problem

- Long computational times
- Convergence problems

Table 2.6: The strengths and limits of the indirect methods.

Additionally, it is essential for these methods that the model and measured data correspond to the same
mode, which can pose a significant challenge. Simply arranging the natural frequencies in ascending
order of magnitude may not suffice, especially when two modes are closely located in the frequency
domain. Moreover, obtaining accurately measured modes can be problematic, and certain modes may
not be excited during the experiment, resulting in no corresponding measured mode for the analytical
modes [5].

2.4.3. Methods using Frequency Domain Data (FDD)

The last group involves methods that use an objective function directly based on the Frequency Response
Function (FRF) data to update the model. The methods falling within this category are listed in table
2.7. Both methods are based on the equation of motion in the frequency domain for viscous damping:

[~w?M +iwC + Klz(w) = f(w) (2.3)
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The equation error approach minimizes the error in the equation of motion, given as:
€ee = f(W) — [~w?M +iwC + K]z(w) (2.4)

Where z(w) an f(w) are measured quantities. The output error approach minimizes the output error,
defined as the difference between the measured and the estimated response:

€oe = [~WM +iwC + K| 7' f(w) — z(w) (2.5)

Because the Frequency Response Functions (FRFs) are directly used, the force and displacement are
not available individually. Therefore, with both approaches, the force spectrum is assumed to be white
noise, and the displacement is replaced by the FRFs data. The limitations and strengths are listed in
Table 2.8.

Category | Methods | References

Methods using Equation error approach .
FDD Output error approach Friswell and Penny (1992)

Table 2.7: An overview of the iterative methods of the model update technique [5].

Both methods eliminate the need for extracting natural frequencies and mode shapes, which can be
challenging for structures with closely spaced modes or high modal density. Although Frequency Re-
sponse Functions (FRFs) contain more data than the modal model, it should however not be assumed
that they provide a proportionally increased amount of information [5].

However, a significant limitation is that damping must be included in the finite element model. Damp-
ing is important for achieving good correspondence between the measured and predicted FRFs, however,
it is difficult to model accurately. Methods that use modal data do not face this issue, as they can rely
on undamped models. This is possible because natural frequencies and damping ratios can be separated

[5]-

Strengths ‘ Limitations
No need for extraction modal | - The inclusion of damping
properties

Table 2.8: The strengths and limits of the methods using FDD.

2.5. Conclusion

This chapter provided an in-depth explanation of vibration-based model updating, a technique that
improves models using vibration measurements. This technique falls within the domain of system
identification and falls under the control theory, a field dealing with the control dynamic systems in
engineering. The technique uses a model to represent the system and includes several methods:

o Direct methods modify the model themselves (the stiffness and mass matrices) to align the
model output with the measured data. These methods can exactly reproduce the measured
modal data. However, they require accurate modeling and high-quality measurements. Another
limitation is the physical meaning, as the updated matrices are generally fully populated, while
the initial matrices typically contain non-zero values only on their diagonals.

e Indirect methods adjust the input parameter values to minimize the difference between the
model output and the measured data. Both the model output and the measured data are in the
shape of natural frequencies and mode shapes. The strength of these methods lies in the wide
choice of updating parameters, giving them power and versatility. However, the problems are
often ill-posed, meaning there may be no unique solution. Additionally, long computational times
can be expected due to the need to evaluate the model every time a change in the input parameter
values is made.
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e Methods based on Frequency Domain Data utilize an objective function directly based on
the FRF data to update the model. These methods eliminate the need to extract modal properties,
which can be challenging for structures with closely spaced modes or high modal density. However,
a significant limitation is the necessity of including damping in the finite element model. Damping

is crucial for achieving good correspondence between the measured and predicted FRFs, but it is
difficult to model accurately.

While each method for vibration-based model updating offers unique advantages, they also come with

specific challenges and limitations. How vibration-based model updating is applied on buildings is show
in the Chapter 3.



Literature review

This chapter shows how vibration-based model updating is applied on building. It describes two appli-
cations, which both use the technique to estimate the structural properties. The first application is a
study conducted by Moretti et al. [1] on the residential tower New Orleans in Rotterdam, explained in
Section 3.1. The second application is a study on the Millikan Library building in Pasadena conducted
by Taciroglu et al. [2], explained in Section 3.2. Their findings are highlighted at the end.

3.1. The residential tower New Orleans in Rotterdam

The first application involves a study on the residential tower New Orleans in Rotterdam, the Nether-
lands, conducted by Moretti et al. [1]. The high-rise building is shown in Figure 3.1.

Figure 3.1: A picture of the residential tower New Orleans.

High-rise buildings are sensitive to wind-induced vibrations, making these vibrations important for the
design of the serviceability limit state (SLS) and the ultimate limit state (ULS).

The main parameters of these vibrations are the eigenfrequencies and damping ratios. Accurately esti-
mating these parameters during the design phase is difficult, as they depend on factors such as building
mass, building stiffness and foundation stiffness. Therefore, to obtain a better prediction of the dynamic
behavior, a better prediction of these structural properties is needed.

To obtain this, it is important to know the actual values of these structural properties and how they
relate to the design values. Therefore, to obtain this information, an indirect method of vibration-based
model updating is used, explained in Section 2.4.2. The weight factors of the objective function (Equa-
tion 2.1) are set to 1.

13
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The model applied to approximate the dynamic behavior of the New Orleans is a beam model and
is shown in Figure 3.2. The superstructure is modeled as a uniform Euler-Bernoulli beam with bending
stiffnesses EI, and E1,, and a mass per unit length pA. The foundation is modeled as a combination
of rotational (k,, and k. ,) and translational springs (k. and k). Due to the choice of the model,
only bending modes can be considered in the updating process.

The initial input parameter values are given in Table 3.1. The measured modal data applied to fit

the model are listed in Table 3.2, obtained by analyzing vibration measurements on the 15th, 34th, and
44th floors. The measurement setup used to obtain the vibration measurements is shown in Figure 3.3.

Ely, El,, pA

K t.x
Kiy

Figure 3.2: The uniform Euler-Bernoulli beam model (2D) used to approximate the dynamic behavior of the high-rise
building.

Properties [unit]

EI, [Nm?] 3.06¢13
EI, [Nm?] 2.43¢13
K, [Nm/rad] 1.88e12
K, , [Nm/rad] 1.88e12

K¢, [N/m] 00
Ky [N/m] 00
M [kg] 6.50e7
L [m] 155
A [m?] 841
p [keg/m?] 500

Table 3.1: The design values assigned as initial input parameter values for the Euler-Bernoulli beam model [1].

Mode 1 2 3 4 5
Dominant direction X Y Y X Y
Natural frequency [Hz] 0.282 0.291 1.332 1.527 2.771

Modal displacement

Height 1 (51.4 m) —0.30 | —0.29 | —0.90 089 | —0.73
Height 2 (114.6 m) —0.71 | —0.78 019 | —0.23 0.83
Height 3 (147.9 m) ~1.00 1.00 1.00 | —1.00 | —1.00

Table 3.2: The identified pure bending modes in dominant x- or y- direction [1, 12].



3.1.

The residential tower New Orleans in Rotterdam

15

(a)

44" floor (1479 m) _____

45™ floor (151.3 m)
40 floor (134.6 m)
35" floor (118.0 m)
3" floor (101.3 m)
25 floor (84.7 m)
20" floor (68.0 m)
—| 15™floor (51.4 m)
_10™ floor (34.7 m)

5" floor (18.1 m)

'ITI'ITTI'I'I‘

()

:

anl e 1 al

34 floor (permanent)

- -

e

(b)

44" floor

Southwest face

(d)

15 floor

Northwest face

Southeast face

\z

208} 15EIYUION

Figure 3.3: (a) Picture and (b, ¢, d and e) drawings indicating the acceleration sensors positions (green squares) on
the 15th floor, the 34th floor, and the 44th floor. The green arrows indicate the directions of the acceleration sensors [1].

Two scenarios are considered:

e Case 1: model updating with 2 bending modes in x- and y-direction.

e Case 2: model updating with 2 bending modes in x-direction and 3 bending modes in y-direction.

In both cases, the parameters FI,, El,, Kr,, Kry, Kt,;, Kt,, and p are updated. The findings are
given in Tables 3.3 and 3.4.

According to Table 3.3, both Case 1 and Case 2 show alignment with the measured modal data af-
ter updating. However, the accuracy (+o) of Case 2 is lower.

The Modal Assurance Criterion (MAC) in Case 2 indicates that the third bending mode in y-direction
is not properly matched. This suggests that the chosen model is only capable of accurately describing
the lower two bending modes in both directions. According to Moretti et al. [1], with higher bending
modes, other modeling aspects become important, which are not included in the chosen model.

Design | Measured | Case 1 (£o0) | Case 2 (+0) | MAC Case | MAC Case
Mode | [Hz] [Hz] [Hz] [Hz] 1% 2 %
1 (x) 0.166 0.282 0.282 (+ 5e-5) | 0.286 (& 0.03) | 99.84 97.58
2 (y) 0.153 0.291 0.291 (£ 5e-5) | 0.253 (£ 0.02) | 99.73 99.22
4 (y) 0.989 1.322 1.332 (£ 5e-5) | 1.333 (£ 0.04) | 99.90 98.47
5 (x) 1.089 1.527 1.516 (£ 5e-5) | 1.548 (£ 0.08) | 99.70 95.45
7 (y) 2.823 2.771 - 3.111 (£ 0.56) | - 78.11

Table 3.3: The modal properties of the residential tower New Orleans in terms of natural frequencies and MAC [1].

Looking at the results of the structural properties of Case 1 (Table 3.4), it can be observed that, except
for p, the design values of the structural properties fall outside the value ranges obtained with updating.
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The values obtained provide a good basis for making design choices that can lead to better prediction
of the dynamic behavior.

However, this cannot be said for the rotational stiffness K,,. A large uncertainty (46.9%) can be
seen in the obtained results of the rotational stiffness K., which is 6 to 7 times higher than that of
other updating parameters. According to Moretti et al. [1], this may be also related to the choice of
model, as the current model assumes uniform stiffness over the whole height and does not consider the
frequency dependence of the foundation stiffness. A more detailed model could provide insight into the
mismatch of the third bending mode and the observed uncertainty in the estimate for K,,,.

Property | Design Median Lower bound Upper bound Cv
[unit] (%) (%) (%)
El, [Nm?] 3.06e13 9.70e13 8.62e13 (-11.1 %) | 10.8e13 (+11.3 %) | 7.0 %
K, [Nm/rad] | 1.88el12 3.07el2 2.76e12 (-10.1 %) | 3.33e13 (+8.6%) 5.8 %
K, [N/m] 00 2.85e9 2.85€9 (-9.5 %) 3.07el13 (+7.7 %) 5.4 %
El, [Nm?| 2.43e13 6.51el3 5.78¢13 (-11.2 %) | 7.50e13 (+15.2 %) | 7.9 %
K,, [Nm/rad] | 1.88el12 1.11el13 0.64e13 (-42.6 %) | 2.29e13 (+105.8 %) | 46.9 %
K, [N/m] 00 2.20e9 1.98¢9 (-10.3 %) | 2.40e13 (+9.0 %) 5.9 %
p [keg/m?] 500 468.6 432.0 (-7.8 %) 502.9 (+7.3 %) 4.7 %

Table 3.4: The structural properties results of the model update procedure of Case 1. For each property, the median
value, the 90% confidence intervals and the coefficient of variation are computed. The design values are given for
comparison [1].

3.2. The Millikan Library building in Pasadena

The second application is a study on the Millikan Library building at the California Institute of Tech-
nology in Pasadena, conducted by Taciroglu et al. [2]. The multi-storey building is show in Figure 3.4.
This study presents a new approach to estimate the dynamic stiffnesses of soil foundation systems using
model updating.

(a) (b)
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Figure 3.4: A picture (a) and a schematic (b) of the Millikan Library building [2].

The model chosen to approximate the dynamic behavior of the Millikan Library is a beam model and
is shown in Figure 3.5. The superstructure is modeled as a uniform Timoshenko beam with bending
stiffness FI, shear stiffness kGA and a mass per unit length pA. The foundation is modeled as a com-
bination of rotational (k, ., and k,,) and translational springs (k;, and k;,) and includes frequency
dependency. The model takes both bending and shear deformations into account.
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Dimensionless parameters (equations 3.1 and 3.2) are defined through the relation of the input param-

eters: 54
_ pAw=L* EI

b’ EI ° T kGAL? (3.1)
- Kt(wi) N Kr(wi)
ki(w;) = m,kr(wl) = FI/L (3.2)

where w; indicates the frequency dependency of the foundation. The initial input parameter values are
given in table 3.5. The measured natural frequencies, obtained by analyzing vibration measurements
from the 2002 Yorba Linda earthquake [13], are listed in Table 3.5.

EI pA kG

Figure 3.5: The uniform Timoshenko beam model (1D) use to approximate the dynamic behavior of the high-rise
building.

Properties [unit]
EI [Nm?] | 17.75e3

M [kg] 11.95¢6
L [m] 43.28
A [m?] 483

Table 3.5: The structural properties of the Millikan Library building [2].

Mode |1 |2 |3
Natural frequency [Hz] | 1.68 [ 6.64 | 12.48

Table 3.6: The natural frequencies identified from the 2002 Yorba Linda earthquake data [13]

Two scenarios are considered:

e Scenario I: the measurements of the rocking response of the foundation are considered.

e Scenario II: the measurements of the rocking response of the foundation are not considered.

When the measurements of the rocking response are considered (scenario I), an iterative method of
the model updating is applied, which is explained in Section 2.4.2. The dimensionless parameters b, s,
kr(w1) and k¢(wy) are chosen as the updating parameters. Only the lowest measured bending mode is
used to fit the model. The weight factors of the objective function indicated with Equation 2.1 are set
to 1.

After updating the dimensionless parameters, the physical values of the dynamic stiffness of the soil
foundation system are obtained using the Equation 3.3:

KM

K, ML?
h2s2”’

Kt(wl) = b2

Ko (wy) = (3.3)
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When the measurements of the rocking response are not considered (scenario IT), equations 3.4 till 3.9
are used to approximate the stiffness of a rigid rectangular foundation:

Ki(w;) = Kk (wi) (3.4)
Ki(w;) = 2(55;1;5)[6.8(3/1))0-65 +2.4+08(B/D —1)][1+(0.33 + %)(%)0-8} (3.5)
ki (wi) =1 (3.6)
ki (wi) = K2k (wi) (3.7)
s GsD? e 1.6 2e 5
bl =1 - e (3.9)

where k¢ and k¢ are dimensionless parameter representing the frequency dependency, and K; and K
are the static stiffnesses of the foundation. The parameter values are listed in Table 3.7. Functions of
the dimension are listed in Table 3.8.

Property [unit] Value
Gs [N/m] 2.68e8
ps [keg/m?] 2.7e3
0s [] 0.3

B [m] 23

D [m] 21

e [m] 4

Table 3.7: The soil and foundation properties of the Millikan library building. G5 is the soil shear modulus, ps is the
soil mass density and 6 is the Poisson ratio of the soil. B and D represent the dimension foundation and e denotes the
embedment depth of the foundation.

Property [unit] | Function

ao [-] ugjlv?
Vs [m/s] %

Table 3.8: The dimensionless frequency a, and the shear wave velocity of the soil V's.

The findings of the study are given in Table 3.9 and 3.10. To compare the obtained values with a
previous study conducted by Ghahari et al. [13], where the FE model of the Millikan Library is directly
updated using the same measured modal data, the sway and rocking stiffness values are normalized by
Ga and Ga® respectively, where G4 = 2.68e8 N /m denotes the soil shear modulus and a = 13.7 m the
reference foundation length.

According to Table 3.9, the stiffness values obtained using the presented methods are close to the
identified values from the study conducted by Ghahari et al. [13].

Study | Sway [-] | Rocking []
Ghahari et al. [13] | 6.2 3.9
Scenario 1 6.7 4.2
Scenario 11 6.7 4.1

Table 3.9: Normalized sway and rocking soil-foundation stiffnesses.

According to Table 3.10, the first two natural frequencies are close to the identified values. However,
the third natural frequency shows a significant difference from the identified value.
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Measured | FE model [13] | Scenario I

Mode | [13] [Hz] [Hz] [Hz]
1 1.68 1.69 1.68
2 6.64 6.64 6.67
3 12.48 12.53 14.05

Table 3.10: The obtained and identified natural frequencies of the Millikan Library building.

To determine if this discrepancy is due to the choice of foundation, also a scenario with a fixed-base
was considered. The results obtained with a fixed-base are given in Table 3.11.

The third natural frequency from the Timoshenko beam model with a fixed base show a 12% difference

compared to the FE model. This suggests that the error is not solely due to the chosen foundation. A
more detailed model is needed to predict the higher mode responses accurately.

Measured | FE model [13] | Scenario I

Mode | [13] [Hz] [Hz] [Hz]
1 2.05 2.07 2.07
2 - 7.51 7.56
3 - 13.96 15.67

Table 3.11: The obtained and identified natural frequencies of the Millikan Library building using a fixed base.

3.3. Conclusion

This chapter shows how vibration-based model updating is applied to estimate the structural properties
of buildings with two applications. The first application is a study on the residential tower New Orleans
by Moretti et al. [1], which used an uniform Euler-Bernoulli beam model to approximate the dynamic
behavior of the residential tower New Orleans. The second application is a study on the Millikan Li-
brary building in Pasadena by Taciroglu et al. [2], which used a uniform Timoshenko beam model to
approximate its dynamic behavior.

The study of Moretti et al. [1] showed that while the uniform Euler-Bernoulli beam model is able
to describe the lowest two bending modes after model updating, it fails to accurately describe the third
measured bending mode after updating. Moreover, when only the lowest two bending modes were used
to fit the model, the estimates of the rotational stiffness of the foundation in the y-direction, K, ,
showed a large uncertainty after model updating, with a coefficient of variation of 46.9 %, which is 6
to 7 times higher than that of other updating parameters. Similary, the study of Taciroglu et al. [2]
showed that the uniform Timoshenko beam after model updating failed to accurately describe the third
measured bending mode.

According to Moretti et al. [1], the uniform Euler-Bernoulli beam model did not include all necessary
aspects to accurately describe the third bending mode, limiting the accuracy of the results obtained.
Additionally, they suggested that the large uncertainty in parameter K, , may also be related to the
model choice, as the chosen model assumed uniform stiffness across the height and does not account for
the frequency dependency of the foundation stiffness. Similarly, Taciroglu et al. [2] suggested that the
discrepancy between the estimated and third measured bending mode was due to the modeling choice.

Applying a more detailed model with vibration-based model updating could provide insights into the
observed discrepancy in the third bending mode and offer explanations for the significant uncertainty
encountered in the estimations of parameter K. ,. Therefore, this research investigates the effectiveness
of vibration-based model updating in estimating the structural properties of high-rise buildings using a
discrete Timoshenko beam model. The methodology of the research is explained in Chapter 4.



Methodology

This chapter explains the research methodology, including a detailed description of the model updating
method applied and the discrete Timoshenko beam model used. Section 4.1 discusses the vibration-
based model updating method applied. Section 4.2 describes the discrete Timoshenko model.

4.1. The model updating method

For this research, an indirect method of vibration-based model updating is chosen, the same method
applied by Moretti et al. [1] and Taciroglu et al. [2]. This method adjusts the input parameter values
of the chosen model to minimize the difference between the model output and the measured data [1]. A
detailed explanation of the chosen method is provided in Section 2.4.2. The chosen model, the discrete
Timoshenko beam model, is described in Section 4.2.

The objective function, which is used to quantify the difference between the model output and the
measured data, is indicated in Equation 2.1. The weight factors of the objective function are set to
1, consistent with the studies by Moretti et al. [1] and Taciroglu et al. [2]. Both the model output
and the measured data are in the form of natural frequencies and mode shapes, referred to as modal
properties. However, compared to the model mode shapes, the measured mode shapes are spatially
incomplete. The number of sensors used to obtain the modal displacements is much smaller than the
degrees of freedom in the chosen model [7]. Only the modal displacements at the measured heights are
known, whereas the model provides the modal displacements at all heights.

Since the mismatch of the mode shapes in the objective function is quantified using the Modal As-
surance Criterion (MAC), as indicated in Equation 2.2, and since the MAC requires that the mode
shapes be of the same dimension, the mode shapes of the model are reduced to match the dimensions
of the measured mode shapes. This is done by considering only the modal displacements of the model
corresponding to the measured heights.

The optimization algorithms used in this research are the Sequential Least Squares Quadratic Pro-
gramming (SLSQP) algorithm, the Differential Evolution (DE) algorithm, and the Particle Swarm
Optimization (PSO) algorithm. SLSQP is an individual-based optimization algorithm that uses the
gradient of the objective function to guide the search in the solution space [10]. DE and PSO are
evolutionary and swarm algorithms, respectively. Details of individual-based optimization algorithms
are found in Section 2.3.1. Details of the evolutionary and swarm optimization algorithms are found in
Section 2.3.2.

4.2. The discrete Timoshenko beam model

The model used to approximate the dynamic behavior of the two high-rise buildings is a discrete Timo-
shenko beam model, as illustrated in Figure 4.1. The superstructure is modeled as a discrete Timoshenko
beam with bending stiffnesses E1, and E1,, shear stiffnesses kG, A and kG A, and masses pA per unit
length.

20
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Figure 4.1: A schematic representation of (a) a high-rise building and (b) the discrete Timoshenko beam model used
to approximate the dynamic behavior of that building.

The foundation is modeled as a combination of rotational (k,, and k;r’y) and translational springs (ki
and k; ). The model accounts for both bending and shear deformations, and considers irregular stiff-
ness across the height. The model derivation can be found in Appendix A. Its verification can be found
in Appendix B. The written Python code can be found in Appendix F.

An important aspect of the model is its frequency spectrum. The frequency spectrum of the discrete
Timoshenko beam model is separated in two parts, by a so-called transition frequency, indicated with

Equation 4.1:
kGA
= _— 4.1
W=\ (4.1)

where the eigenmodes below and above this transition frequency exhibit differences in behaviors. De-
tails of the eigenmodes are described in Appendix A.

In the part of the frequency spectrum above this transition frequency, a phenomenon called "the sec-
ond spectrum of modes” can occur, initially observed by Traill-Nash and Collar [14]. The shapes of
these eigenmodes are identical to those appearing in the first part of the spectrum, however, they are
associated with higher frequencies.

The findings of Traill-Nash and Collar caused various responses: Abbas and Thomas argued that, aside
from a simply supported beam, no second spectrum of modes exists, stating that earlier conclusions
about its existence were misinterpretations [9]. Bhashyam and Prathap provided proof of its existence
for various boundary conditions, and developed a methodology to categorize the different modes [15].
Levinson and Cooke claimed that, even for the simply supported Timoshenko beam, only one spectrum
of modes exists [16].

The ongoing debate may explain why many papers published since 1921 do not provide a complete
solution and often fail to address the potential existence of a second spectrum of modes. Despite this,
the phenomenon is physically significant because the modes in this spectrum share the same wavelength
as the modes of lower frequencies, even if their frequencies differ. This means, for example, that a high-
frequency oscillating force could excite and potentially resonate with these modes. Ignoring them could
lead to overlooking such phenomena. However, for this research, this is not considered a problem, as
the measured modes used are expected to be well below this transition frequency. Details about the
phenomenon can be found in Appendix A.

How exactly the discrete Timoshenko beam model is applied to approximate the dynamic behaviors
of the residential tower the New Orleans and on the office tower the Delftse Poort, is explained per
application in the Chapters 5 and 6.



The residential tower New Orleans

To evaluate the effectiveness of vibration-based model updating in estimating the structural properties
of a bending-dominant building using a discrete Timoshenko beam model, this chapter applies the tech-
nique to the residential tower New Orleans in Rotterdam.

Section 5.1 explains the various studies conducted on the New Orleans. Section 5.2 presents the re-
sults of these studies, along with a comparison to the findings from the study by Moretti et al. [1].
Finally, the main findings are summarized in Section 5.3.

5.1. Studies

The research consists of six studies. The first five studies examine how different settings and uncer-
tainties in the model updating process, using a discrete Timoshenko beam model, influence the results
obtained. The final study applies model updating to estimate the structural properties of the New
Orleans, using the discrete Timoshenko beam model and the measured modal properties. The details
of the studies are explained in Sections 5.1.1 to 5.1.6. Appendix D describes how the measured modal
properties were obtained.

5.1.1. Influence Features Model

The first study is about the features of the Timoshenko beam model. The model incorporates shear de-
formations and accounts for irregular stiffness across its height. To assess the influence of these features
in the beam model, the natural frequencies and mode shapes obtained with this model are compared
with those obtained using the uniform Timoshenko beam and discrete Euler-Bernoulli beam model.

The discrete Timoshenko beam model used in the studies to approximate the dynamic behavior of
the New Orleans is created using the Finite Element (FE) model of the building. This FE model,
shown in Figure 5.1, is divided into five segments (0 till IV). The segments were defined based on
the floor plans. The floors within a segment have the same floor plan in the FE model. Therefore, a
five-segment Timoshenko beam model is used to represent the FE model in Figure 5.1.

The initial structural property values applied in this beam model are shown in Table 5.1. These values
were obtained using the information of the FE model and the floor plans. Details of the approach with
which the structural property values were obtained are described in Appendix C. The second moment
of area around the x-axis is denoted as I,. The rotational stiffness of the foundation around the x-axis
is denoted as K. ;. The translation stiffness of the foundation in x-direction is denoted as K ;.
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Figure 5.1: Pictures of (a) the FE model of the New Orleans, (b) the 5 segments defined for the New Orleans model,
and (c) the five-segment Timoshenko beam model.

Segment 0 I 11 I11 v

L [m] 5.735 11.47 26.640 89.91 26.825
A[m?] 784 784 784 784 784
I, [m* 1444 1500 1393 1389 1293
I, [m%] 1532 1548 2796 2324 760

p [kg/m?] 1933 495 486 440 383

E [N/m?] 38.2e9 38.2e9 38.2e9 38.2e9 32.8e9
v [-] 0.2 0.2 0.2 0.2 0.2

G [N/m?] 15.9e9 15.9e9 15.9e9 15.9¢9 13.7€9
k [-] 0.85 0.85 0.85 0.85 0.85
Boundary

K, , [GNm/rad] | 2625 K, [GN/m] | 4

K, , [GNm/rad] | 2380 K, [GN/m] | 19

Table 5.1: The structural property values obtained with the floor plans and FE model of the New Orleans.

Obtaining the bending stiffnesses of the segments was challenging. Two approaches were applied to
determine the bending stiffness ET; (with s being x or y) per segment.

The first approach calculated the bending stiffness per segment E1, using the elastic modulus E applied
in the FE model and the second moment of area I, calculated using the term %bh3 and the Steiner
rule:

1
EI, = E, (Ebh?’ + bd2> (5.1)

The second approach considered the segments of the FE model. The FE model of the segment was

clamped at the bottom, and a force F' was applied at the top, resulting in a relative displacement A.

The bending stiffness EI; was then determined using this displacement A and Equation C.3:
FL3

El, = A

More information about the applied approaches can be found in Appendix C. The values obtained from

each approach are shown in Table 5.2.

(5.2)
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Additionally, the displacements at the top, using either a five-segment beam model with these bending
stiffnesses or the FE model, are presented, when a force of 10,000 kN is applied and the base of the
model is fixed.

EIL, [Nm?] EI, [Nm?]
Steiner FE segment | Steiner FE segment

0 3.19e13 2.37e13 6.71el3 5.87el3

1 3.31el13 3.62¢13 6.77¢13 3.66e13

11 3.08¢e13 1.04el4 1.22el4 4.76e13

111 3.07e13 8.92¢13 1.04el14 4.59¢e13 FEM
v 2.45e13 2.97e13 2.85e13 2.73e13 Y X
Au [mm] | 887 472 344 613 516 394

Table 5.2: The bending stiffnesses and the total displacements determined with the different approaches.

While both approaches offer ways to determine the bending stiffness EI,, both have limitations in
accurately estimating it. With the Steiner approach, the obtained displacement in the y-direction (A
u = 887 mm) showed significant differences with the displacement of the FE model (A u = 516 mm).
This is suspected to be due to the exclusion of certain columns and walls in the calculation of the second
moment of area I,. These are labeled as C1 and C2 in Figure C.2 and Figure C.3, and as W5 in Figure
C.4, Figure C.5, and Figure C.6. For illustration, Figure C.3 is shown as Figure 5.2. Figure C.5 is
shown as Figure 5.3.

Figure 5.2: The floor plan of segment I.
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Figure 5.3: The floor plan of segment III.

In the Steiner approach, full rigid connections are assumed between the structural elements. Due to
the lack of a rigid connection between the core walls and these elements, it was decided not to include
them in the calculation. However, despite the absence of a rigid connection, it is reasonable to expect
that these elements still contribute partially to the rotational resistance, as they are connected to the
core through the floor. The actual contribution of these elements lies somewhere between the extremes
of full inclusion and exclusion, but this contribution cannot be calculated using Steiner.

With the FE segment approach, as shown in Table 5.2, the bending stiffnesses EI,, vary significantly.
This is unexpected, as the floor plans between the segments do not change substantially. This approach
fails to account for the intermediate relationships between the different segments (0 through IV) of the
building. For example, segments 0 and I have column structures (as shown in Figure 5.2 for segment
I), which exhibit weaker behavior when considered individually than when integrated into the overall
system. This is due to the additional mass from other segments. Therefore, considering these segment
individually will lead to an inaccurate assessment of their bending stiffnesses.

Therefore, the bending stiffnesses of the Steiner approach are applied, with a correction factor included
to account for the displacement differences between the FE model and five-segment beam using these
segment stiffnesses. Since the FE model is stiffer in the y-direction, the segment stiffnesses EI, are
multiplied by &7, Since the FE model is weaker in the x-direction, the segment stiffnesses EI, are
multiplied by %P .

It is assumed that the ratios of the initial structural properties between the segments are well esti-
mated with the Steiner approach. By maintaining these ratios, only one set of parameters of the
superstructure needs to be updated, thereby reducing the total number of parameters that needs to be
updated.
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The uniform Timoshenko beam model and the discrete Euler-Bernoulli beam model used in this study
are shown in Figure 5.4. For the discrete Euler-Bernoulli beam, the same initial structural properties
are applied as those for the five-segment Timoshenko beam model. For the uniform Timoshenko beam
model, the volume weighted averages of these values are used.

(a) (b)
Elg, ELys, pAy
El, El, pA kG, kG, Ely3, Elys, pAs
Elz, Elys, pA;
Kr,x KT,JC Elxln Ebe pAl
Krry Kt,x K’"Jf Kt,x
Kt,y Kt:y

Elo, Elyg, pAg

Figure 5.4: Pictures of (a) the uniform Timoshenko beam model (b) the discrete Euler-Bernoulli beam model.

5.1.2. Influence Parameters

The second study investigate the influence of the input parameters of the model. With model updating,
a decision must be made about which parameters to update. To understand how each input parameter
of the discrete Timoshenko beam influences the modal properties of the model (i.e., natural frequencies
and mode shapes), a sensitivity study is conducted where the values of each input parameter are varied
within a specified range.

The range over which each input parameter is varied corresponds to its initial structural property
value in Table 5.1, scaled by a factor of ten, as shown for the parameter kG in Figure 5.5. This range
is chosen to ensure that a sufficiently broad range is investigated. Parameters A and p, representing
the cross-section and density, respectively, are excluded from this study, as these parameters do not
address the model uncertainties.

5.1.3. Influence Optimization Algorithm

In the third study, the influence of the optimization algorithm on model updating with a discrete
Timoshenko beam model is investigated through a convergence study. The study uses three different
algorithms on the same case: Sequential Least Squares Quadratic Programming (SLSQP), Differential
Evolution (DE), and Particle Swarm Optimization (PSO). For each algorithm, different amounts of
candidate solutions are considered. The updating parameters and the value ranges considered for these
updating parameters are based on the study ”Influence Parameters” in Section 5.1.2.

To conduct this study, measured modal properties of a building with known structural properties
are required. Since such data is not available, as the structural properties of the New Orleans are not
known, a numerical case is created using the structural property values from Table 5.1. Random scalars
are applied to the initial values in Tables 5.1 in both x- and y-direction, creating another model with
known structural and modal properties.

The random scalars applied are listed in Table 5.3. The modal properties of this new model serve
as the measured modal properties for the study. The number of modal properties used to fit this model
aligns with the amount of measured modal properties of the New Orleans building: two bending modes
in the x-direction and three bending modes in the y-direction.
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Figure 5.5: Pictures (a,b) of parameter kG scaled by a factor of 10.

The modal displacements considered are corresponding to the measured heights of the New Orleans
(51.4 m, 114.6 m and 147.9 m).

It should be noted that the random scaling factors are applied exclusively to the parameters selected for
updating. Otherwise, it would be impossible to completely match the model output with the measured
modal properties after model updating.

K | K [ B |1 [, |G
Scalar (-) [ 04 [ 9.0 [ 7.0 [ 1.5 |20 |02

Table 5.3: The random scalar applied on the initial structural properties values of Table 5.1.

5.1.4. Influence Amount of Measured Modal Properties

In the fourth study, the influence of the amount of measured modal properties on model updating with
the discrete Timoshenko beam model is examined. A convergence study is conducted that considers an
increasing number of modes on the same case:

e The first bending mode in the x- and y-direction
e The first two bending modes in the x- and y-direction

e The first two bending modes in the x-direction and the first three bending modes in the y-direction.

Different numbers of candidate solutions are considered. The updating parameters and the value ranges
considered for these updating parameters are based on the study ”Influence Parameters” in Section
5.1.2. The algorithm applied in the model updating process is determined using the study ”Influence
Optimization Algorithm” in Section 5.1.3. Since this study also requires measured modal properties of
a building with known structural properties, the numerical case from the study “Influence Optimization
Algorithm” is also applied here.

5.1.5. Influence Measurements Uncertainties

The fifth study investigates the impact of errors in the measured modal properties (i.e., the measured
natural frequencies and mode shapes) on model updating with the discrete Timoshenko beam model.
The sensitivity study introduces random errors into the measured modal properties to understand how
these uncertainties affect the results obtained. The errors applied to the natural frequencies range up to
10%, and the errors applied to the mode shapes range up to 20%. An example of an error distributions
is illustrated in Figure 5.6 for the first natural frequency and mode shape.
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Figure 5.6: A visualization of the random errors applied on the first natural frequency and mode shape.

The updating parameters and the value ranges considered for these updating parameters are based
on the study "Influence Parameters” in Section 5.1.2. The algorithm applied in the model updating
process is determined using the study "Influence Optimization Algorithm” in Section 5.1.3. The amount
of candidate solutions considered is chosen based on the study "Influence Amount of Measured Modal
Properties” in Section 5.1.4.

Since this study also requires measured modal properties of a building with known structural prop-
erties, the numerical case from the study "Influence Optimization Algorithm” is applied here as well.

5.1.6. Estimating Structural Properties

This study applies model updating on the New Orleans to estimate its structural properties using the
discrete Timoshenko beam model and the measured modal properties. The measured modal properties
of the New Orleans are indicated in Table 5.4.

Mode 1 2 3 4 5
Dominant direction X Y Y X Y
Natural frequency [Hz] 0.282 0.291 1.332 1.527 2.771
Modal Displacement

Height 1 (51.4 m) —0.30 —-0.29 —0.90 0.89 -0.73
Height 2 (114.6 m) —0.71 —0.78 0.19 —0.23 0.83
Height 3 (147.9 m) —1.00 —1.00 1.00 —1.00 —1.00

Table 5.4: The measured natural frequencies and modal displacements of the residential tower New Orleans.

To determine these modal properties, acceleration sensors were installed on the 15th, 34th, and 44th
floors. The positions and orientations of the sensors are illustrated in Figure 5.7. Details of the data
analysis applied to obtain the measured modal properties are described in Appendix D. The updating
parameters and their value ranges considered are based on the study ”"Influence Parameters” in Section
5.1.2. The algorithm applied in the model updating process is determined using the study ”Influence
Optimization Algorithm” in Section 5.1.3. The amount of measured properties from Table 5.4 used to
fit the model and the amount of candidate solution considered are based on the study ”Influence of the
Amount of Measured Properties” in Section 5.1.4.

The model updating process follows the approach described by Moretti et al. [1] and consists of two
parts. In the first part, model updating is carried out using the settings specified above. However, un-
like the method used by Moretti et al. [1], which retains the lowest quantile of the candidate solutions
(i-e., the quantile that best fit the measured modal properties after updating), this study retains the



5.2. Results 29

(a) (b) 44" floor

_4as™ floor (151.3 m) Northwest face

b
a
g

8
=
[y
~
1
[
13
3
i
1
i
1
1
+
t
]
1
1
i
H
H
1
|
+
1
\z

_40™ floor (134.6 m)
35" floor (118.0 m) —r1
30t floor (101.3 m)

25t floor (84.7 m)

20™ floor (68.0 m)

15" floor (51.4 m) . —|_15™floor (51.4 m)

10* floor (34.7 m)

Southwest face
L
|
J .
29e) JSEAYLION

5™ floor (18.1 m)

(©) 34%™ floor (permanent) (d) 15 floor
i . - . .
f x ‘ 4 | X -
| L R | ] Ul
T r:_; I_.f .5m - | T:_.(’ .71 5m
# .5 -'»Jl 1 — Y | ‘ i | ‘ - Y i

Figure 5.7: An schematic (a) of the New Orleans and the positions of the acceleration sensors (green squares) on (b)
the 44th floor, (c) the 34th floor, and (d) the 15th floor. The green arrows indicate the directions of the acceleration
sensors [17, 12].

lowest octile of the candidate solutions. This modification is done because the discrete Timoshenko
beam model is expected to be more complex than the uniform Euler-Bernoulli beam model, resulting
in a more complex solution space for identifying the global minimum. New structural property value
ranges for the updating parameters are defined based on the minimum and maximum values of these
retained solutions. Using these newly refined ranges, another selection and model updating process is
carried out (the second part) in the same manner as the first part. The reasons behind the choices made
in this approach by Moretti et al. [1] are unclear. This approach was chosen for this research to ensure
a fair comparison between the findings of the study conducted by Moretti et al. [1] and this research.

5.2. Results

In this section, the results of the research conducted are presented and discussed. Sections 5.2.1 to
5.2.5 present the results of the studies where the influence of various settings and uncertainties in model
updating with a discrete Timoshenko beam model are investigated. Section 5.2.6 show the results of
applying model updating to estimate the structural properties of the New Orleans.

5.2.1. Influence Features Model

To begin, the results of the first study are presented. The obtained natural frequencies using different
beam models are shown in Tables 5.5 and 5.6. Their mode shapes are illustrated in Figures 5.8 and 5.9.
The modal properties of the Finite Element (FE) model and the measured modal properties are also
shown as reference.

Figures 5.8 and 5.9 show that the mode shapes of the FE model for the two lowest bending modes
in both directions closely resemble the measured ones, indicating a good representation of reality. How-
ever, the mode shape of the third bending mode does not align closely with the measured third bending
mode. The FE model remains a simplified beam model. Factors such as simplifications in boundary
conditions, insufficient mesh refinement, or modeling assumptions can cause the differences observed.
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Tables 5.5 and 5.6 show that the natural frequencies of the FE model tend to differ more from the
measured natural frequencies than those of the discrete Timoshenko beam model. This is unexpected,
as the FE model incorporates more realistic boundary conditions and better captures complex geome-
tries compared to the discrete Timoshenko model. However, it is unlikely that the discrete Timoshenko
beam model provides a more accurate approximation of the high-rise building than the FE model. The
natural frequency of the third bending mode and the mode shapes of the higher bending modes in the
y-direction of this beam model exhibit significant discrepancies from the measured data.

The discrete Timoshenko beam model and the Euler-Bernoulli beam model show similarities in their
natural frequencies, indicating that shear effects have minimal impact on the overall behavior of the
structure. However, Figure 5.8 shows that shear effects are significant in describing the mode shape of
the second bending mode in the x-direction. The uniform Timoshenko beam model shows comparable
results with the discrete Timoshenko beam model. This suggest that the initial values of the parameters
of the different segments are similar. For the second and third bending mode in the y-direction, the
FE model exhibits greater translation at the lower boundary compared to the beam models. Further
investigation is required to identify the cause of this discrepancy.

Discrete Timoshenko

Measured [Hz] FEM beam model
(Ameasured %) [HZ] (A d %) [HZ]
measure
X Y X Y X Y

0.28 0.29 0.23 (—17.9) | 0.20 (—31.0) | 0.25 (—10.7) | 0.23 (—20.7)
1.53 1.33 1.25 (—18.3) | 1.02(—23.3) | 1.48 (=3.3) | 1.43 (+7.5)
2.77 2.14 (—22.7) 3.78 (+36.5)

Table 5.5: The measured natural frequencies, the natural frequencies of the FEM, and the natural frequencies of the
discrete Timoshenko beam model.

Discrete Euler-Bernoulli Uniform Timoshenko
beam model beam model
(Ameasured %) [HZ] (Ameasured %) [HZ]
X Y X Y

0.22 (—21.4) | 0.21 (—27.6) | 0.21 (—25.0) | 0.19 (—34.5)
149 (—2.6) | 1.38 (+3.8) | 1.30 (—15.0) | 1.26 (—5.3)
3.75 (435.4) 3.48 (425.6)

Table 5.6: The natural frequencies of the discrete Euler-Bernoulli beam model and the uniform Timoshenko beam
model.
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Figure 5.8: The measured and model mode shapes in x-direction
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Figure 5.9: The measured and model mode shapes in y-direction

5.2.2. Influence Parameters

This section presents the results of second study, which changed the input parameter values of the dis-
crete Timoshenko beam model to see their influence on the modal properties. The results of parameters
K, and K; in the y-direction are shown in Figures 5.10 and 5.11. The results of parameters E and [
in the y-direction are shown in Figures 5.13 and 5.12. The result of parameter kG in the y-direction is
shown in Figure 5.14. The change in the mode shape is quantified using the MAC (Equation 2.2).

According to Figure 5.10, adjusting the value of parameter K, primarily influence the first natural
frequency. Changes in K, do not affect the mode shapes. In contrast, Figure 5.11 shows that parame-
ter K; only affects the higher bending modes.

Parameters E and I have the same influence on the bending modes. These parameters often occupy
similar positions within the model, leading to comparable influences on the natural frequencies and
mode shapes. Due to these similarities between parameters F and I, it is chosen to consider the up-
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dating results of these parameters together as EI for the rest of the research. Figure 5.14 shows that
parameter kG does not affect the model output. This is in line with the results obtained in Table 5.5
in Section 5.2.1, which indicated that shear effects have minimal impact on the overall behavior of the
New Orleans. Therefore, kG is not selected as an updating parameter.

The results in the x-direction are comparable to the results found in the y-direction. Therefore, only
the results in y-direction are shown. The results in x-direction are shown in Appendix E. Based on the
results, it is chosen to update parameters K,., K;, E, and I in the following studies of the research.

To summarize, it should be noted that parameter K, primarily influence the first natural frequency,
and parameter K; affects the higher bending modes. Parameters E and I exhibit similar influences,
as the parameters often occupy similar positions within the model. Therefore, the results for these
parameters will be considered together as ET for the rest of the research. Parameter kG is not selected,
as the modal properties of the model are insensitive to this parameter.

(@) _ 100 (b) 1ros
<3 —— Mode |
& Y
= 9% — .
= Mode 2y L.00
< 80 —— Mode 3y -~
) s
5 70 g 0.95
g & s
= 2090
E Z
ER B 085
% 5
EREY 2 080
S =1
o 2 o —— Mode ly
% 10 0.75 —— Mode 2y
1]
= —_—
= 0 0o Mode 3y
0.1 1 10 ) 0.1 1 10
Scalar applied on initial value parameter kr (-) Scalar applied on initial value parameter kr (-)
Figure 5.10: The influence of parameter K, on the model output in y-direction.
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Figure 5.11: The influence of parameter K; on the model output (a,b) in y-direction.
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Figure 5.12: The influence of parameter E on the model output (a,b) in y-direction.
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Figure 5.14: The influence of parameter kG on the model output (a,b) in y-direction.

5.2.3. Optimization Algorithm

In this section, the results of the third study are shown, which applied different optimization algorithms
on the same numerical case. The updating parameters were K,., K;, E and I, which were updated at
the same time.

To create this numerical case, random scalars were applied to the initial values of the chosen updating
parameters, indicated in Table 5.1, to generate another model with known structural properties and
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mode shapes. The scalars applied are indicated in Table 5.7. The modal properties of this new model,
indicated in Table 5.8, were selected as measured modal properties for this study.

| K | K | B |1
Scalar (-) |04 [ 9.0 [ 7.0 | 15

Table 5.7: The random scalar applied on the initial structural properties values of Table 5.1.

Mode 1 2 3 4 5
Dominant direction X Y Y X Y
Natural frequency [Hz] 0.226 0.235 3.83 4.345 11.132
Modal Displacement

Height 1 (51.4 m) 0.36 0.36 —0.75 —0.78 0.39
Height 2 (114.6 m) 0.78 0.78 0.10 0.13 —0.57
Height 3 (147.9 m) 1.00 1.00 1.00 1.00 1.00

Table 5.8: The modal properties of the numerical case.

Different amounts of candidate solutions were considered, and for each amount, the candidate solution
that best fitted the measured modal properties after model updating is shown. To maintain the com-
pactness of the results, the results are presented as ratios relative to their initial values in Table 5.1.
For example, a value of 0.8 indicates that after the model updating, the new value of the structural
property is 80% of its initial value. Therefore, if the model updating was successful with the chosen
algorithm, the results should match the scalars listed in Table 5.7. The results of parameters K, and
K are shown in Figures 5.15 and 5.16. The results of parameters E and I are shown together as ET in
Figure 5.17.

According to the Figures, K,, K; and EI are well estimated by all algorithms. The differences be-
tween the algorithms are small. The SLSQP algorithm achieved the most accurate estimation by all
parameters. Therefore, for the following studies, the SLSQP algorithm is selected for model updating.
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Figure 5.15: The influence of the different algorithms on the model updating result of parameter K.
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Figure 5.17: The influence of the different algorithms on the model updating result of the product EI.

5.2.4. Influence Amount of Measured Modal Properties

This section presents the model updating results of the fourth study, which applied different amount of
measured modal properties on the same numerical case. The parameters chosen to update in this study
were K., K;, F and I, which were updated at the same time. The SLSQP was chosen as optimization
algorithm.

This study used the same numerical case described in the study ”Influence Optimization Algorithm” in
Section 5.1.3. Per amount of measured modal properties, different amounts of candidate solutions were
considered, and for each amount of candidate solutions, only the candidate solution that best fitted the
measured modal properties after updating is shown.

The results are presented as ratios relative to their initial values in Table 5.1. Therefore, if model
updating was successful with the amount of measured modal properties, the results should match the
scalars listed in Table 5.7. The results of the parameters K, and K; are shown in Figures 5.18 and 5.19.
The result of ET is shown in Figure 5.20.

Figure 5.18 shows that it is sufficient to estimate parameter K. by considering only the lowest bending
mode in both the x- and y-directions. This is in line with the influence observed in Figure 5.10 in Section
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5.2.2, which indicated that this parameter mainly affects the first natural frequency. However, Figures
5.19 and 5.20 indicate that considering only the lowest bending mode in both the x- and y-directions is
insufficient to estimate K; and FI. For parameter Ky, this is in line with Figure 5.11 in Section 5.2.2,
which shows that parameter K; has a insensitivity to the first bending mode. However, Figures 5.12
and 5.13 shows that parameters E and I do not exhibit insensitivity to the first bending mode. It is
suspected that the first bending mode alone does not provide enough information to estimate parame-
ters E' and I. Higher bending modes, which are more sensitive to the bending stiffness, are needed, as
they provide more comprehensive information.

The difference in the results K, Ky, EI when considering two or three bending modes in y-direction is
small. Therefore, both scenarios are considered in the study ”"Estimating Structural Properties”, using
400 candidate solutions. For the study "Influence Measurement Uncertainties”, 200 candidate solutions
are considered.
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Figure 5.18: The influence of the amount of modal information on the model updating result of parameter K.
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Figure 5.19: The influence of the amount of modal information on the model updating result of parameter K.
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Figure 5.20: The influence of the amount of modal information on the model updating result of ET.

5.2.5. Measurement Uncertainties

This section shows the results of the fifth study, which applied errors to the measured modal properties
to see their influence on the results obtained. The parameters updated in this study were K,., K;, F
and I. These were updated at the same time, using the SLSQP optimization algorithm. The study used
the same numerical case described in the study "Influence Optimization Algorithm” in Section 5.1.3.

Two hundred candidate solution were considered, and only the candidate solution with the lowest ob-
jective function value (i.e., the solution that best fitted the measured modal properties after updating)
is shown. As adding random errors to the measured modal properties and conducting model updating
was repeated ten times, ten solution are shown in total. The results are presented as ratios relative to
the initial values shown in Table 5.1. Therefore, if the model updating was insensitive to the errors
applied, the results should match the scalars listed in Table 5.7.
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Figure 5.21: The influence of measurement uncertainties on the model updating results.
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The results of K., Ky, EI are shown in Figure 5.21. The values of the different parameters that belong
together are connected with grey lines. The red solution indicates the scalars of Table 5.7.

Parameter K, shows limited sensitivity to the uncertainties in the measurements, with values obtained
between 0.40 and 0.47. Parameters K; and E1, however, show significant sensitivity to the uncertain-
ties. The values of parameter K; range between 6.41 and 10.0. EI shows values ranging between 10.29
and 12.28.

5.2.6. Estimating Structural Properties

To conclude, the results using the measured properties of the New Orleans are shown. The parameters
updated in this study were K,, K;, ' and I, using the SLSQP algorithm. Four hundred candidate
solutions were considered, and the lowest octile of these solutions, i.e., the octile with the smallest
objective function values, were retained.

Table 5.9 presents the estimated and measured natural frequencies and the Modal Assurance Crite-
rion (MAC) values between the estimated and measured mode shapes. Case 1 indicates the results of
the model updating using the two lowest bending modes in both x- and y-directions, and Case 2 indi-
cates the results of the model updating using two bending modes in the x-direction and three bending
modes in the y-direction.

Natural frequency [Hz] MAC [-]

Mode A Case 1 . N Case 2 .

-] Design | Measured (Ameasured %) | (Ameasured %) | Measured | Measured
vs. Case 1 | vs. Case 2

1(x) | 0.200 0.282 0.282 (0%) 0.282 (0%) 0.998 0.998

2 (x) | 1.020 1.527 1.527 (0%) 1.527 (0%) 0.999 0.999

1(y) 0230 |0.291 0.291 (0%) 0.241 (-17.2%) | 0.999 0.995

2(y) | 2.140 1.332 1.332 (0%) 1.332 (0%) 1.000 0.963

3(y) | 2.440 2.771 - 2.773 (+0.1%) | - 0.872

Table 5.9: The measured and estimated natural frequencies and MAC values between the measured and estimated
mode shapes.

In Case 1, the median natural frequencies closely match the measured natural frequencies. However,
in Case 2, there are differences in the estimated and measured first natural frequency. Adjustments to
the values of the structural properties to better match the third bending mode negatively affected the
estimation of the first natural frequency. Moreover, the MAC values in Case 2 indicate that the mea-
sured third bending mode shape is not accurately described. Despite incorporating additional features
compared to the model used in the study by Moretti et al. [1], the discrete Timoshenko beam model
is still insufficient for accurately describing the third bending mode. Therefore, the obtained structural
properties values of Case 2 are not considered.

Figures 5.22 and 5.23 illustrate the estimated structural property values in the x- and y-directions
obtained through model updating for Case 1. The results are presented as ratios relative to the initial
values shown in Table 5.1. The values of the different parameters that belong together are connected
with grey lines. For the estimates per parameter, the Coefficient of Variation (CV) is calculated. The
CV shows the relative variability of the estimates:

v = (Z) x 100% (5.3)

where o is the standard deviation and p is the mean. A lower CV indicates less variability relative to
the mean, suggesting more consistency in the estimates. A higher CV indicates greater dispersion in
the estimates. The distributions of K, , and K, , exhibit low Coefficients of Variation (CVs), of 4.54%
and 6.91%, respectively, suggesting that the parameters should remain around their initial values. This
is a improvement compared to the study by Moretti et al. [1], as in that study, the estimations of
the structural property K, , showed high uncertainty (a Coefficient of Variation of 49.6%) after model
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updating. Similarly, the distributions of K, , and K, , exhibit low CVs of 2.27% and 5.87%, respectively.
These distributions suggest that their values should be lower than the design values, although there
is a noticeable magnitude difference in these estimates. The distribution of EI, and EI, show also
low uncertainties, indicated with Coefficients of Variation (CVs) of 5.06% and 15.45% respectively,
suggesting that the bending stiffness should be higher. Based on these results, it can be stated that

estimating the structural parameters of the New Orleans using vibration-based model updating was
effective.
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Figure 5.22: The estimated parameter values of Case 1 in x-direction.
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Figure 5.23: The estimated parameter values of Case 1 in y-direction.
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5.3. Main Findings

With the research, several studies were conducted to evaluate the influence of certain settings and
uncertainties in model updating and to assess the effectiveness of the technique in estimating the
structural properties of a bending-dominant building. The main findings were:

e Setup Models: Obtaining values for the bending stiffness of the segments using the FE model
proved to be difficult. he Steiner approach, which calculated the bending stiffness per segment
using the elastic modulus E and the second moment of inertia I (calculated with %th and the
Steiner rule), assumed fully rigid connections between elements when determining I, making it not
possible to accurately account for the contributions of elements that were not rigidly connected.
The FE approach, which used the relative displacement A of the FE segment to calculate the
bending stiffness, did not account for the intermediate relationships between segments. Segments
0 and I had column structures, which exhibited weaker behavior when considered individually
compared to when they were part of the overall system. This was due to the additional mass
of the other segments. Therefore, considering these segments individually led to an inaccurate
assessment of their bending stiffnesses.

¢ Influence of Parameters: Parameter K, showed primarily influence on the first natural fre-
quency, and parameter K; showed primarly influence on the higher bending modes. Parameters
FE and I exhibited similar influences. Parameter kG showed no influence on the modal properties.

e Influence of Amount of Measured Modal Properties: To estimate parameters K; and E1,
it was insufficient to use only one bending mode in both directions.

e Influence of Measurement Uncertainties: Parameter K, showed limited sensitivity to the
uncertainties in the measurements, with values obtained between 0.40 and 0.47, with a target
value of 0.40. In contrast, parameters K; and EI exhibited significant sensitivity to uncertainties.
The values of parameter K; ranged between 6.41 and 10.0, with a target value of 9.0. For FI, the
values ranged between 10.29 and 12.28, with a target value of 10.5.

o Estimating Structural Properties: Despite incorporating additional features compared to

the model used in the study by Moretti et al. [1], the discrete Timoshenko beam model was not
sufficient for accurately describing the third bending mode. This was indicated by a MAC value
of 0.87.
However, when only the lowest two bending modes were used to fit the model, the estimates of
parameter K, , showed low uncertainty, with a Coefficient of Variation of 6.91%. This was an
improvement compared to the study conducted by Moretti et al. [1], which obtained a Coefficient
of Variation of 46.9% with a uniform Euler-Bernoulli beam model. Based on these results, it
could be stated that estimating the structural parameters of the New Orleans using vibration-
based model updating was effective.



The office tower the Delftse Poort

To evaluate the effectiveness of vibration-based model updating in estimating the structural properties
of a shear-dominant high-rise building, which has irregular stiffness across its heights, using a discrete
Timoshenko beam model, this chapter applied the technique to the office tower the Delftse Poort in
Rotterdam.

Section 6.1 explains the studies conducted on the office tower the Delftse Poort. Section 6.2 shows
the results of these studies. Finally, the main findings of the research are summarized in Section 6.3.

6.1. Studies

The research consists of six studies. The first five studies examine how different settings and uncer-
tainties in the model updating process, using a discrete Timoshenko beam model, influence the results
obtained. The final study applies model updating to estimate the structural properties of the Delfste
Poort, using the discrete Timoshenko beam model and the measured modal properties. The details of
the studies are explained in Sections 6.1.1 to 6.1.6. Appendix D describes how the measured modal
properties were obtained.

6.1.1. Influence Features Model

The first study is about the features of the Timoshenko beam model. The model incorporates shear de-
formations and accounts for irregular stiffness across its height. To assess the influence of these features
in the beam model, the natural frequencies and mode shapes obtained with this model are compared
with those obtained using the uniform Timoshenko beam and discrete Euler-Bernoulli beam model.

The discrete Timoshenko beam model used in the studies to approximate the dynamic behavior of
the Delftse Poort is created using the Finite Element (FE) model of the building. This FE model,
shown in Figure 6.1, is divided into four segments. The segements were defined based on the floorplans.
The floors within a segment have the same floorplan in the FE model. Therefore, a four-segment Tim-
oshenko beam model is used to represent the FE model in Figure 6.1.

The initial structural property values applied in this beam model are shown in Table 6.1. These values
were obtained using the information of the FE model and the floor plans. Details of the approach with
which the structural property values were obtained are described in Appendix C. The second moment
of area around the x-axis is denoted as I,. The rotational stiffness of the foundation around the x-axis
is denoted as K. ;. The translation stiffness of the foundation in x-direction is denoted as K ;.

41
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(a) (b) 150.57 m (C)

Figure 6.1: Pictures of (a) the FE model of the Delftse Poort, (b) the 4 segments defined for the Delftse Poort model,
and (c) the four-segment Timoshenko beam model.

Segment 0 I 11 111
L [m] 3.15 22.65 46.8 81.27
A[m?] 1320 1320 1320 825
I, [m%] 4312 4312 4744 1402
I, [m?] 34350 34350 35105 10685
p [kg/m?] 5071 552 426 371
E[N/m?] 11e9 11e9 22¢€9 33e9
v [+] 0.2 0.2 0.2 0.2
G [N/m?] 4.6e9 4.6e9 9.2e9 1.38¢9
k [-] 0.85 0.85 0.85 0.85
Boundary

K, , [GNm/rad] | 6486 K, [GN/m|] | 9.22

K, , [GNm/rad] | 50371 K, [GN/m] | 9.22

Table 6.1: The structural property values obtained with the floor plans and FE model of the Delftse Poort.

Obtaining these bending stiffnesses of the segments was challenging. Two approaches were applied to
determine the bending stiffness El; (with s being « or y) per segment. The first approach calculated
the bending stiffness per segment EI, using the elastic modulus E applied in the FE model and the
second moment of area I, calculated using the term 1—12bh3 and the Steiner rule:

1
El,=E (Ebh?’ + bd2) (6.1)

The second approach considered the segments of the FE model. The FE model of the segment was
clamped at the bottom, and a force F' was applied at the top, resulting in a relative displacement A.
The bending stiffness EI; was then determined using this displacement A and Equation 6.2:

FL3
El, = —
RN

More information about the applied approaches can be found in Appendix C. The values obtained
from each approach are shown in Table 6.2. Additionally, the displacements at the top, using either a
four-segment beam model with these bending stiffnesses or the FE model, are presented, when a force
of 10,000 kN is applied and the base of the model is fixed.

(6.2)
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EI, [Nm?] EI, [Nm?]
Steiner FE segment | Steiner FE segment

0 614e12 1.04e12 40e12 0.26e12

I 614e12 6.46e12 40e12 5.53el2

1II 125512 170.84e12 88e12 48.81e12 FEM

II1 573el2 255.56e12 39e12 41.60e12 X Y

Au [mm] | 16 - 236 - 26 199

Table 6.2: The bending stiffnesses and the total displacements determined with the different approaches.

Figure 6.2: The floor plan of segment 0.
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With the FE segment approach, as shown in Table 6.2, the bending stiffnesses in both x- and y-direction
vary significantly. The top segment, which represent the smallest part of the building, shows the largest
bending stiffness value. These differences are not observed with the bending stiffnesses obtained using
the Steiner approach. The displacements obtained with the Steiner approach show similarities with the
displacements obtained using the FEM model.

The FE segment approach fails to account for the intermediate relationships between the different
segments. For example, segments 0 and I have column structures, which exhibit weaker behavior when
considered individually than when integrated into the overall system, due the additional mass from
other segments. The floor plan of segment 0 is given in Figure 6.2. The E-moduli values of the different
segments in the FE model may also contribute to the differences, as the top segment has a E-modulus
value of 33 x 102 N/m?, while the bottom segment has a E-modulus value of 11 x 10° N/m?). However,
it is not expected that this caused the factor of 100 difference between the segment stiffnesses.

Due to the differences in the segment stiffnesses obtained using the FE segment approach, the segment
stiffnesses obtained using the Steiner approach are applied, with a correction factor included to account
for the displacement differences between the FE model and four-segment beam using these segment
stiffnesses. Since the FE model is weaker in the x-direction, the segment stiffnesses £, are multiplied
by ;—g. Since the FE model is stiffer in the y-direction, the segment stiffnesses F I, are multiplied by %.
It is assumed that the ratios of the initial structural properties between the segments are well esti-
mated with the Steiner approach. By maintaining these ratios, only one set of parameters needs to be

updated, thereby reducing the total amount of parameters that needs to be updated.
The uniform Timoshenko beam model and the discrete Euler-Bernoulli beam model used in this study
are shown in Figure 6.3. For the discrete Euler-Bernoulli beam, the same initial structural properties

are applied as those of the four-segment Timoshenko beam model. For the uniform Timoshenko beam
model, the volume weighted averages of these values are used.

(a) (b)

Els, Elys, pAs

El,, EL, pA kG, kG,

EIXZ! EIyZJ pAZ

El.y, Elyy, pAy

KT-J’ Kt,x KTJ’ Kt,x
K K
Y -~ Y

Elyo, Elyg, pAy

Figure 6.3: Pictures of (a) the uniform Timoshenko beam model and (b) the discrete Euler-Bernoulli beam model.

6.1.2. Influence Parameters

The second study investigate the influence of the input parameters of the model. With model updating,
a decision must be made about which parameters to update. To understand how each input parameter
of the discrete Timoshenko beam model influences the modal properties of the model (i.e., natural fre-
quencies and mode shapes), a sensitivity study is conducted where the values of each input parameter
are varied within a specified range.
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The range over which each input parameter is varied corresponds to their initial structural property value
in Table 6.1, scaled by a factor of ten. Parameters A and p, representing the cross-section and density,
respectively, are excluded from this study, as these parameters do not address model uncertainties.

6.1.3. Influence Optimization Algorithm

In the third study, the influence of the optimization algorithm on model updating with a discrete
Timoshenko beam model is investigated through a convergence study. The study uses three different
algorithms on the same case: Sequential Least Squares Quadratic Programming (SLSQP), Differential
Evolution (DE), and Particle Swarm Optimization (PSO). For each algorithm, different amounts of
candidate solutions are considered. The updating parameters and the value ranges considered in this
study are chosen based on the study "Influence Input Parameters” in Section 6.1.2.

To conduct this study, measured modal properties of a building with known structural properties are
required. Since such data is not available, as the structural properties of the Delftse Poort are not
known, a numerical case is created using the structural property values from Table 6.1. Random scalars
are applied to the initial values in Tables 6.1 in both x- and y-direction, creating another model with
known structural and modal properties. The random scalars applied are listed in Table 6.3. The modal
properties of this new model serve as the measured modal properties for the study. The amount of modal
properties applied aligns the amount of measured modal properties of the Delftse Poort: one bending
mode in the x-direction and two bending modes in the y-direction. The modal displacements consid-
ered correspond to the measured heights of the Delftse Poort (—3.0 m, 69.30 m, 108.90 m and 144.51 m).

It should be noted that the random scaling factors are applied exclusively to the parameters selected for
updating. Otherwise, it would be impossible to completely match the model output with the measured
modal properties after model updating.

(K | K [ E |1 |p |kG
Scalar (-) [ 04 [9.0 |70 |15 |20 |02

Table 6.3: The random scalar applied on the initial structural properties values of Table 6.2.

6.1.4. Influence Amount of Measured Modal Properties

In the fourth study, the influence of the amount of measured modal properties on model updating with
the discrete Timoshenko beam model is examined. A convergence study is conducted that considers an
increasing number of modes on the same case:

e The first bending mode in the x- and y-direction

e The first bending mode in the x- and the first two bending modes in y-direction

Different amounts of candidate solutions are considered for each amount of modes. The updating
parameters and the value ranges considered in this study are chosen based on the study ”Influence
Input Parameters” in Section 6.1.2. The optimization algorithm is chosen based on the study "Influence
Optimization Algorithm” in Section 6.1.3. Since this study also requires measured modal properties of
a building with known structural properties, the numerical case from the study "Influence Optimization
Algorithm” is also applied here.

6.1.5. Influence Measurements Uncertainties

In the fifth study, the impact of errors in the measured modal properties (i.e., the measured natural fre-
quencies and mode shapes) on model updating with the discrete Timoshenko beam model is investigated.
The sensitivity study introduces random errors into the measured modal properties to understand how
these uncertainties affect the results obtained. The errors applied to the natural frequencies range up to
10%, and the errors applied to the mode shapes range up to 20%. An example of an error distributions
is illustrated in Figure 6.4 for the first natural frequency and mode shape.
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Figure 6.4: A visualization of the random errors applied on the first natural frequency and mode shape.

The updating parameters and the value ranges considered in this study are chosen based on the study
"Influence Input Parameters” in Section 6.1.2. The optimization algorithm is chosen based on the study
"Influence Optimization Algorithm” in Section 6.1.3. The amount of measured properties from Table 6.4
used to fit the model and the amount of candidate solution considered are based on the study ”Influence
of the Amount of Measured Properties” in Section 6.1.4. Since this study also requires measured modal
properties of a building with known structural properties, the numerical case from the study ”Influence
Optimization Algorithm” is applied here as well.

6.1.6. Estimating Structural Properties
The last study applies model updating on the Delftse Poort to estimate its structural properties using
the discrete Timoshenko beam model and the measured modal properties.

Mode 1 2 3
Dominant direction Y X Y
Natural frequency [Hz] 0.403 0.861 1.624
Modal Displacement

Height 1 (—3.30 m) 0.01 —0.06 0.01
Height 2 (69.30 m) 0.33 -0.49 0.49
Height 3 (108.90 m) 0.66 —0.76 0.12
Height 4 (144.51 m) 0.99 —1.00 —0.56

Table 6.4: The measured natural frequencies and modal displacements of the office tower the Delfste Poort.

The measured modal properties of the Delftse Poort are indicated in Table 6.4. To determine these
modal properties, acceleration sensors were installed on the 1st, 19th, 30th, and 40th floors. The posi-
tions and orientations of the sensors are illustrated in Figure 6.5. Details of the data analysis applied
to obtain the measured modal properties are described in Appendix D.

The updating parameters and the value ranges considered for these updating parameters are based
on the study "Influence Parameters” in Section 6.1.2. The algorithm applied in the model updating
process is determined using the study "Influence Optimization Algorithm” in Section 6.1.3. The amount
of measured properties from Table 6.4 used to fit the model and the amount of candidate solution con-
sidered are based on the study "Influence of the Amount of Measured Properties” in Section 6.1.4.

The model updating in this study follows the approach described by Moretti et al. [1] and consists
of two parts. In the first part, model updating is carried out using the specified settings above. How-
ever, unlike the method used by Moretti et al. [1], which retains the lowest quantile of the candidate
solutions (i.e., the quantile that best fit the measured modal properties after updating), this study
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Figure 6.5: Pictures of (e) the Delfste Poort and the positions of the acceleration sensors (green squares) on (d) floor 1,
on (c) the 19th floor, (b) the 30th floor and (a) the 40th floor. The arrows indicate the directions of the acceleration
Sensors.

retains the lowest octile of the candidate solutions. This modification is done because the discrete Tim-
oshenko beam model is expected to be more complex than the uniform Euler-Bernoulli beam model,
resulting in a more complex solution space for identifying the global minimum. New structural property
value ranges for the updating parameters are defined based on the minimum and maximum values of
these retained solutions. Using these newly refined ranges, another selection and model updating pro-
cess is carried out (the second part) in the same manner as the first part. The reasons behind certain
choices made by Moretti et al. [1] in this procedure are unclear. This approach was chosen for the
Delfste Poort to stay consistent with the research conducted on the New Orleans in Chapter 5.

6.2. Results

In this section, the results of the studies are presented. Sections 6.2.1 to 6.2.5 present the results of the
studies where the influences of certain settings and uncertainties in model updating with the discrete
Timoshenko beam were investigated. Section 6.2.6 shows the results of applying model updating to
estimate the structural properties of the Delftse Poort.

6.2.1. Influence Model

To begin, the results of the first study are presented. The natural frequencies obtained with the different
beam models are shown in Tables 6.5 and 6.6. Their mode shapes are illustrated in Figure 6.6. The
modal properties of the Finite Element (FE) model and the measured modal properties are also shown
as reference.

According to Table 6.5, the discrete Timoshenko beam model is closer to the measured natural fre-
quencies than the FE model. This is unexpected, as the FE model incorporates more realistic boundary
conditions and better captures complex geometries compared to the discrete Timoshenko model. More-
over, the discrete Timoshenko beam model is created using the FE model. Therefore, it is unlikely that
the discrete Timoshenko beam model provides a more accurate approximation of the high-rise building.
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The uniform Timoshenko beam model generally matches the measured natural frequencies less ac-
curately than the discrete Timoshenko beam model. This is expected, as a uniform Timoshenko beam
model is not well-suited for representing buildings with irregular stiffness. A discrete beam model is
needed for accurate representation. In the y-direction, the discrete Euler-Bernoulli beam model shows
closer resembles to the measured natural frequencies than the discrete Timoshenko beam model. This
suggests that excluding shear contributions may be more accurate for this direction.

Figure 6.6 shows that the modes shapes of the beam models and the FE model are comparable to
the measured mode shapes. However, a notable difference is observed in the first bending mode in the
x-direction at lower heights, where the FE model displays more displacement compared to the beam
models. The FE model shows a kink. A thorough analysis of the FE model could provide valuable
insights into the obtained results.

Discrete Timoshenko
FEM
Measured [Hz] (A %) [Hz] beam model
measured /0 (Ameasured %) [HZ]
X Y X Y X Y
0.86 0.40 0.62 (-27.9%) | 0.28 (-30%) 0.76 (-11.6) 0.29 (-27.5)
1.62 1.13 (-28.4%) 1.45 (-10.5%)

Table 6.5: The measured natural frequencies, the natural frequencies of the FE model and the natural frequencies of
the discrete Timoshenko beam model.

Uniform Timoshenko
beam model
(Ameasured %) [HZ]

Discrete Euler-Bernoulli
beam model

(Ameasured %) [HZ]

X (Y X (Y
0.61 (-20.1) | 0.23 (-425) | 0.96 (+11.6) | 0.37 (-7.5)
1.37 (-15.4%) 1.61 (-0.6%)

Table 6.6: The natural frequencies obtained with the uniform Timoshenko and discrete Euler-Bernoulli beam models.
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Figure 6.6: The measured and model mode shapes.
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6.2.2. Influence Parameters

This section presents the results of second study, which changed the input parameter values of the dis-
crete Timoshenko beam model to see their influence on the modal properties. The results of parameters
K, and K are shown in Figures 6.7 and 6.8. The results of parameters E and I are shown in Figures
6.10 and 6.9. The results of parameter kG is shown in Figure 6.11. The change in the mode shape is
quantified using the MAC (Equation 2.2).

According to Figure 6.7, parameter K, primarily has influence on the first natural frequency. It does
not have influence on the mode shapes. Figure 6.8 shows that parameter K; has influence on the first
bending mode in the x-direction and the second bending mode in the y-direction, but have almost no
influence on the first bending mode in the y-direction.

Parameters E and I have the same influence on the bending modes. As stated before with the New Or-
leans, these parameters often occupy similar positions within the model. Due to the similarity between
parameters E and I, also for the Delftse Poort, it is chosen to consider the updating results of these
parameters together as ET for the rest of the research.

Figure 6.11 shows that adjusting the value of the parameter kG has limited effect on the model output.
It is not selected as an updating parameter. This is unexpected, as for the x-direction, the wide side
of the building, a shear-dominant behavior was expected of the high-rise building. However, it should
be noted that only the first bending mode is considered in x-direction. It is suspected that with higher
bending modes, parameter kG shows more influence.

Based on the results, it is chosen to update parameters K,, K;, F, and I in the following studies
of the research.

To summarize, it should be noted that parameter K, primarily influence the first natural frequen-
cies. Parameter K, affects the first bending mode in the x-direction and the second bending mode in
the y-direction, but does not have influence on the first bending mode in the y-direction. Parameters E
and I exhibit similar influences. Therefore, the results for these parameters will be considered together
as ET for the rest of the research. Parameter kG is not selected, as the modal properties of the model
are insensitive to changes in this parameter.
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Figure 6.7: The influence of parameter K, on the model output (a,b).



6.2. Results

50

—_
w0
—

Absolute change natural frequency Agm (|%])

(@)

(@)

Absolute change natural frequency A (|%)])

Absolute change natural frequency Am (/%))

100

100

— Mode Ix
—— Mode ly
+|=—— Mode 2y

0.1 1 10
Scalar applied on initial value parameter kt (-)

o
Nl
R

<
)
=]

o
(=]
T

—— Mode Ix
U —— Mode ly
—— Mode 2y

1 10
Scalar applied on initial value parameter kt (-)

Figure 6.8: The influence of parameter K; on the model output (a,b).

— Mode Ix
—— Mode ly
—— Mode 2y

0.1 1 10
Scalar applied on initial value parameter E (-)

(b) 105

Change mode shape Amac (-)
= [=} o o =) -
) ) oo o ) =
hr) = b P o S

g
=
<

—— Mode Ix
— Mode ly
—— Mode 2y

0.1

1 10
Scalar applied on initial value parameter E (-)

Figure 6.9: The influence of parameter E on the model output (a,b).

—— Mode Ix
—— Mode ly

0.1 1 10
Scalar applied on initial value parameter I (-)

(b) 1os

1.00

4
O
"

0.90

e
®
h

S
)
=]

Change mode shape Amac (<)

ot
0
o

e
O
=

— Mode Ix
— Mode ly
—— Mode 2y

0.1

1 10
Scalar applied on initial value parameter I (-)

Figure 6.10: The influence of parameter I on the model output (a,b).



6.2. Results 51

(a) 100 (b) 105
= %0 — Mode Ix
E —— Mode ly .00
< 80 —— Mode 2y -~
g e
g 70 g 095
= 3
£ © 2. 0.90
— 1]
g 50 =
E L
g 4 E 085
& Y
g ® 2 0s0
5 -
L 20 8] —— Mode Ix
é 0 0.75 —— Mode ly
—?: 0 T —— Mode 2y
0.70
0.1 ) o1 10 0.1 1 10
Scalar applied on initial value parameter kG (-) Scalar applied on initial value parameter kG (-)

Figure 6.11: The influence of parameter kG on the model output (a,b).

6.2.3. Influence Optimization Algorithm

In this section, the results of the third study are shown, which applied different optimization algorithms
on the same numerical case. The updating parameters were K,., K;, F and I, which were updated at
the same time.

To create the numerical case, random scalars were applied to the initial values of the chosen updat-
ing parameters, indicated in Table 6.1, to generate another model with known structural properties and
mode shapes. The scalars applied are indicated in Table 6.7. The modal properties of this new model,
indicated in Table 6.8, were selected as measured modal properties for this study.

K | K |E | I
Scalar (-) |04 [ 9.0 [ 7.0 | 15

Table 6.7: The random scalar applied on the initial structural properties values of Table 6.1.

Mode 1 2 3
Dominant direction Y X Y
Natural frequency [Hz] 0.38 1.02 4.00
Modal Displacement

Height 1 (—3.0 m) 0.00 0.02 —0.16
Height 2 (69.30 m) 0.45 047 | —0.161
Height 2 (108.90 m) 0.74 0.74 —0.02
Height 3 (144.51 m) 1.00 1.00 1.00

Table 6.8: The modal properties of the numerical case.

Different amounts of candidate solutions were considered, and for each amount, the candidate solution
that best fitted the measured modal properties after model updating is shown. To maintain the com-
pactness of the results, the results are presented as ratios relative to their initial values in Table 6.1.
For example, a value of 0.8 indicates that after the model updating, the new value of the structural
property is 80% of its initial value. Therefore, if the model updating was successful with the chosen
algorithm, the results should match the scalars listed in Table 6.7. The results of parameters K, and
K; are shown in Figures 6.12 and 6.13, respectively. The results of parameters F and I are combined
and shown as ET in Figure 6.14.

Figure 5.15 shows that K, is well estimated by all algorithms. However, the optimization algorithms
PSO and DE have difficulty with estimating parameter K;. Increasing the amount of candidate solu-
tions does not improve the estimates. This suggest that more candidate solutions need to be considered
to sufficiently explore the solution space.
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The SLSQP algorithm estimates parameter K; well after 200 candidate solutions, however, small devia-
tions are observed. The algorithm has more difficulty with estimating this parameter. Small deviation
can be expected, as the model updating process stops once a certain convergence threshold is reached,
which may occur earlier for some initiations than others. Therefore, this algorithm is selected for the
following studies.

Figure 6.14 shows that ET is well estimated by all optimization algorithms.
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Figure 6.12: The influence of the different algorithms on the model updating result of parameter K.
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Figure 6.13: The influence of the different algorithms on the model updating result of parameter K.
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Figure 6.14: The influence of the different algorithms on the model updating result of the product EI.

6.2.4. Influence Amount of Measured Modal Properties

This section presents the model updating results of the fourth study, which applied different amount of
measured modal properties on the same numerical case. The parameters chosen to update in this study
were K., K;, E and I, which were updated at the same time. The SLSQP was chosen as optimization
algorithm.

This study used the same numerical case described in the study ”Influence Optimization Algorithm”
in Section 6.2.3. Different amounts of candidate solutions were considered, and for each amount, the
candidate solution that best fitted the measured modal properties after updating is shown. The results
per parameter are shown as ratios relative to their initial values. Therefore, if the model updating was
successful with the amount of measured modal properties, the results should match the scalars listed
in Table 6.7. The results of the parameters K, and K; are shown in Figures 6.15 and 6.16, respectively.
The results of the parameters E and I are shown together as ET in Figure 6.17.

Figure 6.15 shows that it is possible to estimate parameter K, considering only the lowest bending
mode in both x-and y-direction. This also in line with the influences obtained in Figure 6.7 in Section
6.2.2, as it showed that this parameter primarily influence the first natural frequency.

Figures 6.16 and 6.17 show, however, that it is insufficient to estimate K; and FI considering only
the lowest bending mode in the x- and y-direction. According to Figure 6.8 in Section 6.2.2, parameter
K shows only influence on the first bending mode in the x-direction and the second bending mode in
the y-direction. Excluding the second bending mode in the y-direction results in insufficient information
to estimate this parameter.

However, according to 6.9 and 6.10, parameters E and I show sensitivity to the first bending mode. It
is suspected that the first bending mode alone does not provide enough information to estimate these
parameters. Higher bending modes, which are more sensitive to changes in bending stiffness, are needed
to estimate these parameters.

To estimate parameter K;, a minimum of 200 candidate solutions is required. Based on the results,
it is chosen to consider all the measured modal properties listed in Table 6.18 in the study ”Estimat-
ing Structural Properties”, using 400 candidate solutions. For the study "Influence of Measurement
Uncertainties”, 200 candidate solutions are used.
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11.00 -
O linxand liny
—4&— lmxand2iny
10.00 1 z
[E— o 5}
o
—_ n b
bt o o
E 9.00 A ; A/g\ o A
3 N/ lpa” 0 T el 5 T
o
o a 8
8.00 1
o
7.00 -

Amount of candidate solutions (-)

Figure 6.16: The influence of the amount of modal information on the model updating result of parameter K.
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Figure 6.17: The influence of the amount of modal information on the model updating result of EI.
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6.2.5. Measurement Uncertainties

This section shows the results of the fifth study, which applied errors to the measured modal properties
to see their influence on the results obtained. The parameters updated in this study were K., K;, E
and I. These were updated at the same time, using the SLSQP optimization algorithm. The study
used the same numerical case described in the study ”"Influence Optimization Algorithm” in Section
6.2.3. Two hundred candidate solution were considered, but only the candidate solution that best fitted
the measured modal properties is shown. As the procedure of adding random errors, conducting model
updating, and retaining the best-fitted solution was done ten times, ten solutions are shown in total.

The results for each parameter are presented as ratios relative to their initial values. Therefore, if
the model updating was insensitive to the added errors in the measured modal properties, the results
should match the scalars listed in Table 6.7. The results are shown in Figure 6.2.5. The values of the
different parameters for each solution are connected by grey lines. The red solution indicates the scalar
values of Table 6.7.

20 4

Scalar (-)

01 . :
¢ & <
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Figure 6.18: The influence of measurement uncertainties on the model updating results.

Parameter K, shows limited sensitivity to the uncertainties in the measured model properties. The
values of this parameter are between 0.39 and 0.49. K; and EI, however, show significant sensitivity to
the uncertainties. The values of parameter K; range between 7.58 and 10.00. The values of EI range
between 7.93 and 12.38.

6.2.6. Estimating Structural Properties

To end, the estimated structural properties values of the Delftse Poort are shown. The structural param-
eters updated in this study were K,., K;, F and I. The SLSQP algorithm was applied. Four hundred
candidate solutions were considered, and the lowest octile of these solutions, i.e., the octile with the
smallest objective function values, were retained.

Table 6.9 presents the estimated and measured natural frequencies and the Modal Assurance Crite-
rion (MAC) values between the estimated and measured mode shapes. Case 1 indicates the results of
model updating using the measured modal properties of Table 6.4.

The median natural frequency for Case 1 in the x-direction is close to the measured natural frequencies.
However, in the y-direction, the median of the second natural frequency shows differences compared to
the measured second natural frequency.
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Mode [-] Natural frequency [Hz] MAC [-]
(dominant | Design Measured A Case 1 % Measured
direction) (Ameasurea %) vs. Case 1
1 (%) 0.620 0.861 0.861 (0%) 0.999
1 (y) 0.280 0.403 0.403 (0%) 0.999
2 (v) 1.130 1.624 1.803 (+11%) | 0.910

Table 6.9: The measured and estimated natural frequencies and MAC values between the measured and estimated
mode shapes.

Additionally, the MAC values indicate that the second bending mode shape in the y-direction is not
accurately estimated. Therefore, the obtained structural properties values in y-direction are not consid-
ered.
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Figure 6.19: The estimated parameter values of Case 1 in x-direction.

Figure 6.19 shows the estimated structural property values in the x-direction. The values of the different
parameters that belong together are connected with grey lines. For the estimates per parameter, the
Coefficient of Variation (CV) is calculated. The CV shows the relative variability of the estimates:

cv = <;> % 100% (6.3)

where o is the standard deviation and p is the mean. A lower CV indicates less variability relative to
the mean, suggesting more consistency in the estimates. A higher CV indicates greater dispersion in
the estimates. The variability in the distribution of K, , is low, indicated by a coefficient of variation
(CV) of 5.58%. The distribution suggests that the value should be lower than the design value. The
variability of the distribution of K , is also low, indicated by a coefficient of variation (CV) of 9.49%.
The distribution suggests that the value should be higher than the design value.

However, the distribution of the parameter EI, exhibit high uncertainty, as the estimates are scat-
tered across the range. The coefficients of variation is 71.17%. Based on these results, it can be stated
that estimating the structural parameters of the Delftse Poort using vibration-based model updating
was not effective.
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6.3. Main Findings

With the research, several studies were conducted to evaluate the influence of certain settings and
uncertainties in model updating and to assess the effectiveness of the technique in estimating the
structural properties of a shear-dominant building with irregular stiffness across its height. The main
findings were:

Setup model: Obtaining accurate values for bending stiffness using the FE model proved difficult.
The FE approach, which used the relative displacement A of the FE segment to calculate the
bending stiffness, did not account for the intermediate relationships between segments. Segments
0 and I had column structures, which exhibited weaker behavior when considered individually
compared to when they were part of the overall system. This was due to the additional mass
of the other segments. Therefore, considering these segments individually led to an inaccurate
assessment of their bending stiffness. The FE segment approach resulted in bending stiffness
values that differed by a factor of 100.

Influence of Parameters: Parameter K, showed primarily influence on the first natural fre-
quencies. Parameter K; showed influence on the first bending mode in the x-direction and the
second bending mode in the y-direction, but did not show influence on the first bending mode
in the y-direction. Parameters E and I exhibited similar influences. Parameter kG showed no
influence on the modal output.

Influence of Amount of Modal Properties: It was possible to estimate parameter K, con-
sidering only the lowest bending mode in both x- and y-directions. However, this was insufficient
to estimate K; and F1.

Influence of Measurement Uncertainties: Parameter K, showed limited sensitivity to the
uncertainties in the measurements, with values obtained between 0.39 and 0.49, closely aligning
with the expected value of 0.40. In contrast, parameters K; and ET exhibited significant sensitivity
to uncertainties. The values of parameter K; ranged between 7.58 and 10.00, with the expected
value being 9.0. For FI, the values ranged between 7.93 and 12.38, while the expected value was
10.5.

Estimating Structural Properties: The discrete Timoshenko beam model was not able to
match the natural frequency of the measured second bending mode in the y-direction after up-
dating. Additionally, the MAC values indicated that the second bending mode shape in the
y-direction was not accurately estimated.

Moreover, the distribution of the parameters F1, exhibited high uncertainty, as the estimates were
scattered across the range. The coefficient of variation was 71.17%. Based on these results, it can
be stated that estimating the structural parameters of the Delftse Poort using vibration-based
model updating was not effective.



Discussion

In this research, various studies were conducted on the New Orleans and the Delftse Poort to investi-
gate the effectiveness of vibration-based model updating with a discrete Timoshenko beam model in
estimating the structural properties of high-rise buildings. Their findings require explanation, which is
provided in this chapter.

First, the setup of the models need to be discussed. The discrete Timoshenko beam models used
to approximate the dynamic behavior of the New Orleans and the Delftse Poort were created using
their Finite Element (FE) models. However, obtaining values for the bending stiffnesses using the FE
model was challenging.

The Steiner approach, which calculated the bending stiffness per segment using the elastic modulus
E and the second moment of inertia I (calculated with 1—12bh3 and the Steiner rule), assumed fully rigid
connections between elements when determining I, making it not possible to accurately account for the
contributions of elements that were not rigidly connected.

Moreover, the FE approach, which used the relative displacement A of the FE segment to calculate the
bending stiffness per segment, also posed problems, as it did not account for the intermediate relation-
ships between the segments. For both the New Orleans and the Delftse Poort, segments 0 and I had
column structures, which exhibited weaker behavior when considered individually compared to when
they were part of the overall system, due to the additional mass of the other segments. Therefore, con-
sidering these segments individually led to an inaccurate assessment of their bending stiffnesses. This
was particularly evident in the case of the Delftse Poort, where the FE segment approach resulted in
bending stiffness values differing by a factor of 100.

These difficulties in determining the bending stiffness values per segment pose a problem for model
updating, as the ratios of the initial structural properties were maintained for both high-rise building
applications. Due to the superstructure of the discrete Timoshenko beam model, a separate set of
parameters needs to be defined for each segment. By maintaining the ratios of the initial structural
property values, only one set of parameters needs to be updated, thereby reducing the total number
of parameters that need to be updated. However, maintaining these ratios gives weight to the initial
structural property values. These values must be correct. Otherwise, model updating is limited by the
incorrect ratios and will not be able to accurately match the measured modal properties. Therefore, to
obtain a more accurate estimation of the structural properties, it is crucial to obtain accurate values
for the bending stiffness.

Despite these challenges with the bending stiffnesses, applying the discrete Timoshenko beam model
for model updating to estimate the structural properties of the New Orleans has proven to be effective.
When only the lowest two bending modes in both directions were used to fit the model, the estimates
of parameter K,, showed low uncertainty, with a Coefficient of Variation of 6.91%. This is an im-
provement compared to the study conducted by Moretti et al. [1], which obtained a Coefficient of
Variation of 46.9% with the uniform Euler-Bernoulli beam model. Therefore, to obtain a more accurate
estimation of parameter K, ,, it is crucial to incorporate shear deformations into the model and account
for irregular stiffness along the height. However, further investigation is needed to clarify whether the
improved results of the structural property K, , are primarily attributed to the discreteness of the beam,
the added shear or a combination of both.

Despite incorporating additional features compared to the uniform Euler-Bernoulli beam model used in

the study by Moretti et al. [1], the model was not sufficient for accurately describing the third bending
mode.

58
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This is indicated by a Modal Assurance Criterion (MAC) value of 0.87. This suggests that essen-
tial aspects are missing from the model that are crucial for matching the mode shape of the third
bending mode.

Applying model updating with the discrete Timoshenko beam model to estimate the structural proper-
ties of the Delftse Poort was not effective. Parameter E1, exhibits large uncertainty, which is indicated
by a Coefficient of Variation of 71.17%. Several factors could contribute to this discrepancy. One pos-
sible cause might be that the value ranges considered for parameters E and I are too narrow. Errors in
the initial values of these parameters could also be the cause. As previously mentioned, accurately esti-
mating the values for bending stiffness was challenging. As the ratios of the initial structural properties
values were maintained, the model updating may be constrained by incorrect ratios, which prevents it
from accurately matching the measured modal properties. Moreover, only one bending mode in the x-
direction was use to fit the discrete Timoshenko model. It is suspected that the first bending mode alone
does not provide enough information to estimate parameters E and I. Higher bending modes, which
are more sensitive to the bending stiffness, are needed, as they provide more comprehensive information.

However, the need for higher bending modes poses challenges for model updating, as higher bend-
ing modes are more likely to contain errors. For both the New Orleans and the Delftse Poort, K; and
ET show sensitivity to the measurement uncertainties. When errors in the natural frequency of up to
10% and in the mode shapes of up to 20% were applied, the values of K; and EI for the New Orleans
ranged from 6.41 to 10.0 and from 10.29 to 12.28, respectively. For the Delftse Poort, the values of K;
and ET ranged from 7.58 to 10.0 and from 7.93 to 12.38, respectively. The target values for K; and
ET for both cases were 9.0 and 10.5, respectively. Therefore, to achieve a more accurate estimation
of these parameters, it is essential to minimize the errors of the measured modal properties to below
these thresholds. This is not the case for parameter K,.. For both applications, parameter K, did
not exhibit significant sensitivities to measurement uncertainties. For the New Orleans, parameter K.
showed values between 0.40 and 0.47. For the Delftse Poort, parameter K, showed values between 0.39
and 0.49. The target value of this parameter was 0.4.

Furthermore, for the Delftse Poort, the discrete Timoshenko beam model was unable to match the
natural frequency of the measured second bending mode in the y-direction after updating. Addition-
ally, the Modal Assurance Criterion (MAC) values indicated that the second bending mode shape in
the y-direction was not accurately estimated. This result was unexpected, as the discrete Timoshenko
beam model was able to successfully match the second measured bending mode for the New Orleans in
both the x- and y-directions.
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Figure 6.20: The mode shape of the second bending mode in y-direction of the Delftse Poort.
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The measured mode shape is shown in 3D in Figure 6.20. The differences in the magnitude and
direction of the arrows indicate twisting of the building. This twisting cannot be modeled with the
discrete Timoshenko beam model, as it only can model pure bending modes. Furthermore, since the
discrete Timoshenko beam model requires a single value per height, while multiple sensors were used
to measure the displacements, the measurements had to be averaged. This averaging process may have
led to a mode shape that deviates from the actual behavior, resulting in an inaccurate representation
of reality. These issues pose a challenge for model updating with the Delftse Poort, as now only the
first measured bending modes could be accurately applied, which provide alone insufficient information
to estimate the parameters FI and K;. Therefore, more pure bending modes are needed to obtain an
accurate estimation of these parameters.



Conclusion

This research focused on applying vibration-based model updating to estimate the structural properties
of high-rise buildings using a discrete Timoshenko beam model. It provided valuable insights into how
the model affects the accuracy of estimating structural properties for high-rise buildings and expanded
the use of vibration-based model updating to buildings that are shear-dominant in behavior and have
irregular stiffness distributions across their height. The main objective of the research was to achieve a
more accurate estimation of the structural properties of high-rise buildings using vibration-based model
updating. Several key aspects were highlighted as essential to obtaining a more accurate estimation of
these properties using model updating with a discrete Timoshenko beam model :

» Discrete superstructure and shear: For a more accurate estimation of parameter K, ,, it
is of importantce to incorporate shear deformations into the model and account for irregular
stiffness along the height. For the New Orleans, when only the lowest two bending modes in both
directions were used to fit the model, the estimates of parameter K, , showed low uncertainty,
with a Coefficient of Variation of 6.91%. This is an improvement compared to the study conducted
by Moretti et al. [1], which obtained a Coefficient of Variation of 46.9% with the uniform Euler-
Bernoulli beam model. Therefore, it is of importance to incorporate shear deformations into the
model and account for irregular stiffness along the height.

e Bending stiffness values: To obtain a more accurate estimation of the structural properties,
it is crucial to obtain accurate values of the bending stiffness. The discrete Timoshenko beam
models used to approximate the dynamic behavior of the New Orleans and the Delftse Poort
were created using their Finite Element (FE) models. However, obtaining values for the bending
stiffnesses using the FE models proved challenging. The Steiner approach, which calculated the
bending stiffness per segment using the elastic modulus F and the second moment of inertia [
(calculated with %bh3 and the Steiner rule), assumed fully rigid connections between elements
when determining I, making it impossible to accurately account for the contributions of elements
that were not rigidly connected. The FE approach, which used the relative displacement A of the
FE segment to calculate the bending stiffness, did not account for the intermediate relationships
between segments, leading to inaccurate estimation of the segments with column structures. These
segments exhibit weaker behavior when considered individually compared to when they are part
of the overall system due to the additional mass of the other segments.

These challenges in determining bending stiffness values per segment posed a problem for model
updating, as the initial structural property ratios were maintained for both high-rise buildings.
Maintaining these ratios gave weight to the initial structural property values. These values must
be correct. Otherwise, model updating is limited by the incorrect ratios and will not be able to
accurately match the measured modal properties. Therefore, it is crucial to obtain accurate values
of the bending stiffness.

e High-quality measured modal properties: To achieve a more accurate estimation of the
parameters K; and EI, it is of importance to obtain measured natural frequencies with errors
below 10% and measured mode shapes with errors below 20%. For both the New Orleans and the
Delftse Poort, K; and EI showed sensitivity to measurement uncertainties. When errors in the
measured natural frequencies of up to 10% and in the measured mode shapes of up to 20% were
applied, the values of K; and ET for the New Orleans ranged from 6.41 to 10.0 and from 10.29
to 12.28, respectively. For the Delftse Poort, the values of K; and EI ranged from 7.58 to 10.0
and from 7.93 to 12.38, respectively. The target values for K; and EI were for both cases 9.0 and
10.5, respectively. This posed challenges for model updating, as both parameters required higher
bending modes for accurate estimation, which are more prone to errors. Therefore, it is essential
to minimize the errors of the measured modal properties to below these thresholds.

e Lack of pure bending modes: To obtain a more accurate estimation of the parameters ET
and K; for the Delftse Poort, more measured pure bending modes are needed.

61
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The discrete Timoshenko beam model was unable to match the natural frequency of the mea-
sured second bending mode in the y-direction after updating. Additionally, the Modal Assurance
Criterion (MAC) values indicated that the second bending mode shape in the y-direction was
not accurately estimated. The mode shape indicated twisting of the building, which could not
be captured by the discrete Timoshenko beam model, as it is only capable of representing pure
bending modes.

Furthermore, since the discrete Timoshenko beam model requires a single displacement value per
height but multiple sensors were used to measure displacements, the measurements had to be
averaged. This averaging process may have led to a mode shape that deviated from the actual
behavior, resulting in an inaccurate representation of reality. These issues posed a challenge for
model updating with the Delftse Poort, as now only the first measured bending modes in both
direction could be accurately applied, which provided alone insufficient information to estimate
the parameters E1 and K;. More pure bending modes are needed to obtain an accurate estimation
of these parameters.

Based on these findings, several recommendations can be made to improve the accuracy and broaden
the application of vibration-based model updating in estimating the structural properties of high-rise
buildings. The first recommendation addresses the difficulties observed with the discrete superstructure.
Maintaining the ratios gave weight to the initial structural property values, which needed to be correct
for accurate estimations of the structural properties. It is recommended to allow some flexibility in
these ratios, acknowledging that they might not be entirely accurate. Additionally, exploring model
updating without keeping these ratios constant would be valuable. However, given the large number
of parameters involved, this could potentially lead to an overdetermined problem, as independently
adjusting the parameters of a discrete superstructure might result in multiple combinations that fit the
measured modal properties equally well.

The second recommendation involves the improvement of the estimates of parameter K, ,, indicated
with a Coefficient of Variation of 6.91%. It remains uncertain whether the improved results of K, , are
primarily due to the discreteness of the beam, the added shear, or a combination of both. Therefore,
it is recommended to perform model updating using both the uniform Timoshenko and the discrete
Euler-Bernoulli beam model to compare the results obtained with those obtained with the discrete
Timoshenko beam model.

The third recommendation involves torsion, a feature not currently accounted for in the discrete Tim-
oshenko beam model. The discrete Timoshenko beam model was unable to accurately capture the
second bending mode in the y-direction for the Delftse Poort, where twisting of the building was ob-
served. This limitation suggests that torsion, which was not included in the current model, could be
significant. Incorporating torsion into the model could address this issue by allowing the model to
capture the twisting of the building more accurately. Moreover, including torsion in the model would
enable the use of measured torsional modes, which could reveal new relationships between input param-
eters and the model output.

The last recommendation emphasizes the importance of obtaining measured data with minimal errors.
It is advised to install additional sensors at various heights to reduce measurement errors. Increasing
the number of sensors helps average out errors, leading to more accurate data.
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Timoshenko beam model

The Timoshenko beam, which was first introduced by Timoshenko in 1921 [18], is a model used to
describe the dynamic behavior of a beam. The beam model, illustrated in Figure A.1, accounts for
both bending and shear deformation [19], and is utilized in many papers published after 1921. Despite
the amount of papers published after 1921, however, discussion regarding its exact definition remain,
especially due to the existence of a so-called ’second spectrum of modes’.

(a) (b) C‘ (©) (d)

ElLpA kG EIL pA kG El pA, kG EI pA, kG

U

Figure A.1: The Timoshenko beam model (1D) with various boundary conditions: (a.) a clamped beam, (b.) a simply
supported beam, (c.) a beam supported by a rotational spring and (d.) a beam supported by a translational spring.

Traill-Nash and Collar were the first to indicate the presence of a second spectrum of modes [14]. Their
findings caused various responses: Abbas and Thomas argued that, aside from a simply supported
beam, no second spectrum of modes exists, stating that earlier conclusions about its existence were
misinterpretations [9]. Bhashyam and Prathap provided proof of its existence for various boundary
conditions, and developed a methodology to categorize the different modes [15]. Levinson and Cooke
claimed that, even for the simply supported Timoshenko beam, only one spectrum of modes exists [16].

The ongoing debate may explain why many papers published since 1921 do not provide a complete
solution and often fail to address the potential existence of a second spectrum of modes. To address
this gap and to provide a more detailed explanation of the model, this appendix presents the com-
plete derivation of a piece-wise Timoshenko beam. It begins with the governing equations of dynamics,
followed by an eigenvalue analysis of the beam model. Additionally, it outlines the boundary and con-
tinuity conditions applied. The appendix concludes with a numerical example to verify the procedure
and illustrate how the phenomenon of the second spectrum of modes appears.
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A.1. The governing equations of dynamics

To start the derivation of the Timoshenko beam, a reference system is needed. The applied reference
system is illustrated in Figure A.2.

(a) (b)

Figure A.2: The sign convention of the Timoshenko beam of the publication "Wave motion in Elastic Solids’ of Karl F.
Graff [20]. This sign convention is used in this Appendix.

In the figure, M represents the bending moment, V' represents the shear force, g(x,t) represents the dis-
tributed force, gy represents the slope of the centroidal axis, vg represents the shear strain at centroidal
axis, and 1 represents the rotation of the plane. The curvature of the plane, denoted as §7 equals to
the first derivative of ¢). The kinematic equations are written as [20]:

8l ay
0=
or
1 _% (A1)
R dx

To relate the kinematic equations with the applied loads, constitutive relations are applied. These
equations are written as [20]:

Q= G/vdA — kG A

o (A.2)

ox

With these relations, «yy is used for the entire cross-section. This, however, may result in differences
compared to the situation when the variable shear stress is integrated across the section. To correct this
difference, a coefficient k, known as the Timoshenko shear coefficient, is introduced. This coefficient
depends on the shape of the cross-section [20].

M = /ya YdA = E— /QdA_ —FEI—

To connect the applied loads with the internal forces and moments, equilibrium equations are applied.
The equilibrium equations in the - and y- directions are written as [20]:

2
Y T=dM - Vdx —pIdxa v
ot?
o2 (A.3)
ZF =dV + q(z,t)de = ma, = pAdx 625?;

Substituting the kinematic and constitutive relations in these equilibrium equations gives the governing
equations for the dynamics of a Timoshenko beam model [20]:

858 (9£E 8t2 (A4)
Py(x,t)  Op(a,t 0%y(x,t '
koA L OUED,) | gy = paTI)

The equations are a system of second-order partial differential equations (PDEs).
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A.2. Eigenvalue problem

To find the eigenvalue problem, the system of second-order partial differential equations is reduced to
one fourth-order partial differential equation using the method separation of variables. To start this
procedure, the governing equations of dynamics are given as a set of homogeneous equations [21]:

BJZ ax 8t2 (A 5)
Py(z,t)  OY(x,t) O%y(z,t) '
RGA(—Gz ~ g ) PAT e 0

In these equations, the term g(z,t) is set to zero, indicating a non-loaded beam. To decouple the set of
equations, the variables (z,t) and ¢(x,t) are decomposed into the product of two unknown functions
and ¢ [21]:

y(z,t) =Y (2)T(t) = Y(x)sin(wt + ¢)

P(z,t) = U (x)T(t) = U(x)sin(wt + ¢) (4.6)

The unknown function 7'(t) is assumed to have a sinusoidal shape sin(wt + ¢). Substituting equations
A6 into equations A.5 yields [21]:

(d (;I;(Zm) kgf(dZ;x) —U(z)) + %\I/(a:)) sin(wt + ¢) =0 .
d?Y(z) d¥(z) pAw? . - )
( de2 dx + LG A Y (z))sin(wt +¢) =0

The time function sin(wt + ¢) is not equal to zero at all times. Therefore, it is required that the term
within brackets is independent of time [21]:
d?*V(z) kGA ,dY(x) plw?
o U(z) =
i " Tap Y@t v =0
d’Y (x)  d¥(z) pAw?

_ Y(z) =
dz? i oAy @ =0

Substituting these equations into each other gives the fourth-order partial differential equation of the
Timoshenko beam model [21], known as the eigenvalue problem:

(A.8)

(@) | L“?(pmw? ~ kGA?)Y (2) =0 (A.9)

EI dx? kGA

Y 2
() | pw

i e (BIA+ RGAI)

A.3. Eigenvalue analysis
To solve the eigenvalue problem indicated above, an eigenvalue analysis is performed. For convenience,
dimensionless parameters are defined to rewrite the equation [2]:

9 EI
2= =
kGAL?
Aw? L4
=L A.10
7 (A.10)
2
9o T
=1
Rewriting equation A.9 with these parameters give A.11:
d'Y (z) 2.2 2 p2 Y () 4.2p2 _ 12\ (4
pEn + (b°s +bR)W+(bsR - b)Y (2) (A.11)

To solve this eigenvalue problem, a general solution is assumed in the form of an exponential function

Y (%) = exp AZ. Implementing this assumption results in the characteristic equation of the system [2]:

M4 (0252 + B2 RH)A? + (bs*R? —b?) =0 (A.12)
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Solving this characteristic equation gives four solutions, referred to as the eigensolutions of the problem

[2]:

\ i\/—(zﬂs? +b2R?) — /(1252 + D2 R%)?Z — 4(b's2R2 — 0?)
1,2 =
: 2

(A.13)

\ j[\/—(19232 +b2R2) + /(b252 + b2R2)2 — 4(b*s2R2 — b?)
34 =
’ 2

The roots A1 2 are always imaginary. The roots Az 4, however, can be real or imaginary, depending
on the frequency value. The change from real to imaginary occurs at a certain point in the frequency

spectrum, known as the transition frequency w.. The transition frequency is equal to w, = kf—IA. Con-

sequently, the frequency spectrum can be seperated into two parts, with a special case at the transition
frequency w, [2]:

kGA
pl
In this case, the roots A3 4 are real, giving the real eigenfunctions as [2]:

Case 1: w<

Y () = Ay sin(pi) + Ag cos(pE) 4+ Az sinh(qZ) + A4 cosh(qz) (A14)
®(Z) = By sin(pi) + By cos(pz) + By sinh(qi) + By cosh(¢i) .

where the p is equal to [Im(\;)| and the ¢ is equal to A3. The coefficients B;, By, B3 and By are related
to the coefficients Ay, Ay, A3 and A4 through the equations of A.8 [2]:

b2 2
By = (—; -HU) Ay
o (A.15)
B3 = ( + Q) Ay
q
b2 2
Bi= (5 va) 4

Tt should be noted that ¥ (#) = Y (z)/L, 0@ = ¥@) &Y@) p _ d¥(@) 5q dVE) /7 V(@) g

dx der ' dx?
Case 2: w = ,/—kGA
pl

In this case, the roots A3 4 are equal to zero, giving the real eigenfunctions A.16 as [2]:

Y (&) = Oy sin(pz) + Cy cos(pi) + C3z + Cy (A16)
(%) = Dy sin(pz) + Dy cos(pi) + b?s?>Dsi + Dy .

where the p is equal to |Im(\;)| and C3 = 0. The coefficients Dy, Do, D3 and Dy are related to Cy, Cs,
C3 and C, through the equations of A.8 [2]:

2 .2
Dl:(bS_p)@
p

b2 g2 .
Dy = (— ; —l—p) Cy (A-17)

D3 =Cy

In this case, the roots A3 4 are imaginary, giving the real eigenfunctions A.18 as [2]:

Y (%) = E, sin(pi) + E5 cos(pz) + Essin(qz) + E4 cos(qZ)

~ A.18
®(2) = Fysin(pz) + Fs cos(pZ) + Fssin(q) + Fy cos(q) ( )
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where the p is equal to [Im(A1)| and the ¢ is equal to |[Im(A3)|. The coefficients Fy, Fy, F3 and Fy are
related to Fy, Eo, E3 and Ej4 through the equations of A.8 [2]:

b2s2
A= (%),
p

b2 2
F, = <S +P) Ey
P (A.19)

A.4. Boundary and continuity conditions

To fit the eigenfunctions to the actual problem, boundary conditions are applied [22]. These conditions,
listed in Table A.1, give information about the geometric character (kinematic boundary conditions) or
the forces (dynamic boundary conditions) of the beam.

Boundary Conditions

Hinged Y (%) =0 d‘fi?) =0

Fixed Y(2) = U(z)=0

Free DI — g U (7) — 2@
Rotational Y (%) = d‘fig) - %(I/(i) =0
Translational U (%) — d};g) + k%A Y(Z)=0 U(zE) =0
Rotational + | W(z) - dydg) + 2L Y () =0 d\ig) — ke U(z) =
Translational ‘ v

Table A.1: The boundary conditions of a Timoshenko beam [21, 2, 19].

With a piece-wise beam model, it is also necessary to consider continuity conditions. These condi-
tions, listed in Table A.2, explain the connection between the intermediate parts of the beam [22].
They represent the continuity of displacement, forces, and the slope of the beam between the parts.

Boundary Conditions

1/l~eft(57) - K:ight(a?)
AYiept(Z) _ dYrignt(Z)
= 22

Continuity _dz T
dq}left(i) — EITight d\I’right (i)
dz T Elest dz N
T, -~ dYLe.ft(i) _ kGAMght T, ~ de‘ght(i)
Viept(2) — =5~ = kGAr. e (Wright(2) — ==5—)

Table A.2: The continuity conditions of a piece-wise Timoshenko beam [22].
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A.5. The eigenvalues and the eigenmodes

To determine the unknown coefficients of the eigenfunctions and thereby obtain the eigenmodes of the
beam, the eigenfunctions are incorporated into the boundary and continuity conditions of the system,
resulting in a system of homogeneous algebraic equations (in matrix formulation) [2]:

ai1 ai2 G133 Aaig4 C1
az1 a2 Ga23 24 C2
Av = ) » > » =0
azi1 asz2 33 a34 C3
g1 QA42 Q43 QA44 Cq

where v is the vector with the unknown coefficients and A is the coefficient matrix. In mathematical
terms, this comes down to determining the eigenvectors. For the piece-wise Timoshenko beam, for each
discrete part, a local coefficient matrix is created, which is then incorporated into a global coefficient

matrix A:
Av=0
_al,l air2 ai3 ai4
a1 dag2 23 0424
as;1 as2 33 aA34 as;s as,e as,7 as,s
Q4,1 Q42 Q43 0A4/4 4.5 4.6 ay4.7 4.8
as5;1 Gas2 G53 0a54 as,5 as.6 as,7 as.8
ae,1 Ge,2 G6,3 0464 ae,s ae,6 ae,7 ag,8
ar.s ar.6 ar7 ar.g
ags age a7 4838
A = ag s ag 6 ag,7 ag s
ai0,5 @io,6 @10,7 @10,8
n—5n—3 Qan—5n—2 An—5n—1 GQan—5n
Gn—4n—-3 QAn—4n—2 An—4n—1 GOn—4n
Gn—-3n—3 an—3n—2 AaAn—-3n—1 0an—-3n
p—2n—-3 an—-2n-2 0apn—-2n—-1 Qan-2n
Up—1mn—-3 On—-1n—2 0an-1mn-1 OGpn-1n
L An n—3 An n—2 Gn,n—1 An . n
~ . -
C2
C3
Cq
Cs
Ce
Cr
Cs
vV =
Cn—6
Cn—5
Cn—4
Cn—3
Cn—1
_Cn_

The index n refers to the amount of unknown coefficients. The set of algebraic equations possesses a
non-trivial solution if the determinant of this coeflicient matrix equals zero [2]:

det(A) =0

This equation is known as the frequency equation. The zero points of the frequency equation repre-
sent the omega values of the system. At these points, the eigenvectors are determined which contain
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the relations between the coefficients using Av = 0. This procedure concludes the derivation of the
Timoshenko beam model [2].

A.6. Numerical example

To verify the procedure and to show the phenomenon of the second spectrum of modes, a numerical
example is applied. The parameters of this examples are shown in Table A.3. The chosen example is
an uniform simply supported beam [19]. A two-piece Timoshenko beam model is used to replicate the
uniform beam.

Segment | I /1II
L [m] 2

B [m] 0.1
]|
E [N/m?] | 260e9
v [-] 0.3

G [N/m?] 100e9
p [ke/m®] | 8000

Table A.3: The parameters (with units) of a uniform simply supported beam [19]. To verify the code, the results of
this beam are reproduced using a two-piece Timoshenko beam. With that beam, each discrete element is given the same
parameters as the uniform beam to obtain the same results as for the uniform beam.

. [kGA
Case 1: w < T

In the first part of the spectrum, 25 eigenvalues are obtained, shown in table A.4. The obtained
eigenvalues with the two-piece Timsohenko beam model show no differences with the article, confirm-
ing the accuracy of the Python code for the first part of the spectrum. In Figures A.3 and A.4, the first
five eigenmodes of the spectrum are shown.

(@ 20 (b) 20
1.6 1.6
1.2 —
- 0.8 i ,'ZGXT‘ \/_( \ / T:_-\\ﬁ/ ‘7\\
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3 5 00 NV W o
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8 w -04 1y ;\ 7 A 15 7
£ 7 \ A 3\ / L
= 0.8 \\ i \ hS ! P 2
- i VA AN NP
| — Mode 1 === V(g
-L27 __. Mode 2 -1.2 — v 7
—-= Mode 3 N 3
~1.6 7 —-- Mode 4 -1.6 —=—==== \".,(5
—-- Mode 5 = V(g
-2.0 T f 1 T T T T T ; -2.0 T T T T T T ™
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
Nermalized length (-) 0O 01 02 03 04 05 06 07 08 09 1

£=xL

Figure A.3: A illustration of the first five mode shapes : (a.) shows the results of Y (z) obtained with the two-piece
Timoshenko beam model and (b.) shows the results of the article [19]. The functions Vi, V2, Va3, V4 and Vs are defined
in article [19].
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(a) 20

Normalized rotation (-)

T T T
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T T T T
06 07 08 09 1.0

Normalized length ()

Figure A.4: A illustration of the first five mode shapes
Timoshenko beam model and (b.) shows the results of the article [19]. The functions ®1, ®2, ®3, 4 and P5 are defined
in article [19].

=

Eigenvalue code

Eigenmode

T

/

\
\/
|

0 01 02 03 04 05 06 07 08 09

Eigenvalue [19]

£=x/L

0O ~J O UL~ W N+

Ne)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

404.35408286
1597.56095701
3524.34808222
6104.92032031
9247.9937426
12861.93645177
16862.12382933
21174.58318127
25736.94980872
30497.85748609
35415.60970542
40456.65008636
45594.10053964
50806.48034954
56076.63514005
61390.86478017
66738.22380619
72109.96464699
77499.09603988
82900.0330413
88308.3193316
93720.40640408
99133.47749818
104545.30677815
109954.14634516

404.3540829
1597.560957
3524.348082
6104.920320
9247.993743
1286.193645
16862.12383
21174.58318
25736.94981
30497.85749
335415.60971
40456.65009
45594.10054
50806.48035
56076.63514
61390.86478
66738.22381
72109.96465
77499.09604
82900.03304
88308.31933
93720.40640
99133.47750
104545.3068
109954.1463

1

: (a.) shows the results of ¢(x) obtained with the two-piece

Table A.4: The eigenvalues (in rad/s) of the first part of the spectrum. The first column contains the results using a

two-piece Timoshenko beam model. The second column contains the results of article [19].

Case 2: w = ,/@
pl

The transition frequency has with this example a value of w, = 111803.399 (rad/s). The frequency is
imposed, not solved. To obtain a non-trivial solution at the transition frequency, the determinant of
the coefficient matrix at the transition frequency has to be equal to zero. In the case of the simply
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supported beam, the determinant of the coefficient matrix is always zero at the transition frequency:

n | Eigenvalue code | Eigenvalue [19]
26 ‘ 111803.398874989 ‘ 111803.3989

Table A.5: The eigenvalues (in rad/s) at the transition frequency. The first column contains the results using a
two-piece Timoshenko beam model. The second column contains the results of article [19].

The mode obtained is a pure shear vibration mode, as shown in blue in Figure A.5 and A.6, where the
transversal displacement is zero. Dependent on the rank of the coefficient matrix, a double eigenvalue
can occur, indicated in red in Figures A.5 and A.6 as an example. This is not a pure shear vibration
mode.

(a) 0.5 (b) 0.5
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Figure A.5: The plotted mode shape at the transition frequency: (a.) shows the result of Y (z) obtained with the
two-piece Timoshenko beam model and (b.) shows the result of the article [19]. A double eigenvalue can occur at the
transition frequency (an example of that is shown in red by the article) [19]. The functions Vag and Vagx are defined in
article [19].

@ ., (®) 42
10 1.0
08 0.8
06 0.6 —
04 0.4 —
= ] N Iy y L] ri il " il | iy " 2 1
g 02 L A N N N R A A S R
L 8 o ittt A L
3 I Y T
3 2 IV YR RV IRYE VIR RV RV (VAR IR Y IRV
g 02 & o2 e
2 w i
04 0.4 —
06 — 0.6 —
08 - -0.8 —
3
-1.0 -1.0 L)
— Mode 26 +4 1 Palé)
-1.2 T T T T T T T T -1.2 LI T T LI . T T T ]
00 01 02 03 04 05 08 07 08 08 10 0 01 02 03 04 05 06 07 08 09 1

Normalized length (-) x/L
§’ =

Figure A.6: The plotted mode shape at the transition frequency: (a.) shows the result of ¥(x) obtained with the
two-piece Timoshenko beam model and (b.) shows the result of the article.A double eigenvalue can occur at the
transition frequency (an example of that is shown in red by the article) [19]. The functions ®2g and Pog* are defined in
article [19].
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Case 3: w >

kGA
pl

In the second part of the spectrum, the first 24 eigenvalues are obtained and given in table A.6. The
obtained eigenvalues with the two-piece Timsohenko beam model show no differences with article [19],

confirming the accuracy of the Python code for the second part of the spectrum.

n

Eigenvalue code

Eigenvalue [19]

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

112275.23826886
113670.65725684
115358.63529931
115933.65622448
118983.24267197
120757.72633166
122726.48603937
126150.62630367
127069.68674956
131536.74802825
131925.76578166
136915.67105325
137217.94847072
142287.10970443
142880.76318863
147650.88700103
148859.47650081
153006.91333603
155108.80982765
158355.1690327
161591.45479719
163695.6900625
168276.65482621
169028.556347

112275.2383
113670.6573
115358.6353
115933.6562
118983.2427
120757.7263
122726.4860
126150.6263
127069.6867
131536.7480
131925.7658
136915.6711
137217.9485
142287.1097
142880.7632
147650.8870
148859.4765
153006.9133
155108.8098
158355.1690
161591.4548
163695.6901
168276.6548
169028.5563

Table A.6: The first 24 eigenvalues (in rad/s) of the second spectrum. The first column contains the results using a

two-piece Timoshenko beam model. The second column contains the results of article [19].

When the first six eigenmodes of the second spectrum are plotted in Figures A.7, A.8, A.9 and A.10,
both low and high wavelengths appear in arbitrary order. The presence of lower wavelengths in the
second part of the spectrum was initially observed by Traill-Nash and Collar [14], and was referred to
as the second spectrum of modes. The shapes of these eigenmodes are identical to those appearing in

the first part of the spectrum, however, they are associated with higher frequencies.
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Figure A.7: The plotted mode shapes of modes 27, 28, 30 and 31: (a.) shows the results of Y'(z) obtained with the

two-piece Timoshenko beam model and (b.) shows the results of the article [19]. The functions Va7, Vag, V3o, V31 are

defined in article [19]. These mode shapes are part of the so-called second spectrum of modes, where the shape of the
eigemode is identical to those appearing at the first part of the spectrum, however, they are associated with higher wave

numbers.
(a) 20 (b) 800
16 _\
600
400 —~— —
- “h ,”
— T ™ [-" e
g 2 200 \\ % g % //
= o . \ SN A
E E - N S A
& ] A NS
g e . N, N\ AN
g 200 - v N - N
i —— (&) Sso _//
12 Mode 27 =400 -t qlzs(’.g)
- _— joae i o
——- Mode 28 600 Dol)
16— ——- Mode 30 ——1{ Dy (&) \
—-- Mode 31 7
20 T \ T T T T T T T -800 T T T LI T
00 01 02 03 04 05 06 O0F 08 09 10

Normalized length (-)

0

01 02 03 04 05 06 07 08 09 1

£=xlL

Figure A.8: The plotted mode shapes of modes 27, 28, 30 and 31: (a.) shows the results of ¥(x) obtained with the
two-piece Timoshenko beam model and (b.) shows the results of the article [19]. The functions @27, ®og, P30, P31 are
defined in article [19]. These mode shapes are part of the so-called second spectrum of modes, where the shape of the

eigemode is identical to those appearing at the first part of the spectrum, however, they are associated with higher wave

numbers.
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Figure A.9: The plotted mode shapes of modes 29 and 32: (a.) shows the results obtained with the two-piece
Timoshenko beam model and (b.) shows the results of the article [19]. They are not part of the second spectrum of

modes as these modes have no equivalent at lower frequencies. The functions Vag, and V32 are defined in article [19].
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Figure A.10: The plotted mode shapes of modes 29 and 32: (a.) shows the results of ¥(z) obtained with the two-piece

Timoshenko beam model and (b.) shows the results of the article [19]. They are not part of the second spectrum of

modes as these modes have no equivalent at lower frequencies. The functions ®29, and @32 are defined in article [19].

A.7. Conclusion

With the Appendix, a thorough analysis of the discrete Timoshenko beam model is provided in the

context of free vibrations, with a particular focus on the simply supported beam. This analysis brought

insights into the nature of the vibration spectrum of a Timoshenko beam model.

Despite numerous

papers published since 1921, a complete solution has often been lacking, therefore failing to address the

potential existence of a second spectrum of modes.

The analysis indicates the presence of a transition frequency, which separate the frequency spectrum

into two parts.



A.7. Conclusion 77

The eigenmodes below and above this transition frequency exhibit difference in behavior.

To end, it should be noted that the second spectrum of modes is physically significant. The modes in
this spectrum share the same wavelength, even if their frequencies differ. This means, for example, that
a high-oscillating force can excite and potentially resonate with these modes. Ignoring these modes
could lead to overlooking such phenomena. Only experimentation or possibly 3D modeling can validate
the physical significance of these modes.



Verification Timoshenko beam model

In this research, the discrete Timoshenko beam model is chosen to approximate the dynamic behavior
of the residential tower New Orleans and the office tower the Delftse Poort. To verify the code written
(shown in Appendix F) and the behavior of the model, in this chapter, two verification studies are
conducted. Section B.1 explains the two studies conducted. Section B.2 discusses the results obtained.
The chapter ends with the conclusion of the results obtained.

B.1. Studies

Two studies are conducted. The first study verifies the code written for the discrete Timoshenko beam
model and is explained in Section B.1.1. The second study verifies the model behavior and is explained
in Section B.1.2.

B.1.1. Verification code model

To verify the discrete Timoshenko beam model, the uniform Timoshenko beam model of the study
conducted by Taciroglu et al. [2] is replicated using the three-piece Timoshenko beam model. The
beam model is shown in Figure B.1. The input parameter values of the uniform Timoshenko beam
model are listed in Table B.1. Taciroglu et al. [2] consideration of the frequency dependency in the
foundation is taken into account for this verification.

(a) (b)
El1, ELyy, pAy, KGyy, kGyy ElLy, ElLyy, pAq
El, Elyp, pAy, kGyy, kGyn El, ElLy,, pA;
x Ely3, ELyz, pAs, KGy3, kG g K El, Elys, pA;g
rXx X
Kr,y K x Kr,y Ki x
Ky Kiy

Figure B.1: The three-piece Timoshenko beam model (a) and the three-piece Euler-Bernoulli beam model (c).

B.1.2. Verification behavior model

To verify the behavior of the chosen model, the natural frequencies obtained with this three-piece
Timoshenko beam model are compared with those obtained with a three-piece Euler-Bernoulli beam
model, considering different values of the shear modulus G. The three-piece Euler-Bernoulli is shown

78
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Properties segments

L [m] 44

A [m?] 843

I [m*] 17750.25
p lkg/m?] | 400

E [N/m?] 6.60e8
G [N/m?] 2.75e8
k [ 0.85
Properties boundary
K, [Nm/rad] | 2.05e12
ki [N/m] 1.84e10
Properties ground
Gs [N/m] 2.68¢e8
ps [kg/m3| 2.7e3

Table B.1: The input parameter values applied by Taciroglu et al. [2].

in Figure B.1. For this model, the same input parameter values (Table B.1) are applied. Taciroglu et

al. [2] consideration of the frequency dependency is not taken into account for this verification.

B.2. Results

The results of the two studies conducted are shown below.

B.2.1. Verification code model
The mode shapes obtained with the three-piece Timoshenko beam model and by Taciroglu et al. [2] are
shown in Figure B.2. The natural frequencies obtained with the three-piece Timoshenko beam model
and by Taciroglu et al. [2] are listed in Table B.2. The modal properties obtained with the three-piece

Timoshenko beam model show similarity to the properties obtained by Taciroglu et al. [2].

(a)

Normalized height (-)

1.0

B8 foerersermnduccecsecns

0.6

00

— Mode |
=== Mode 2
== Mode 3

(b)

Normalized Level

-1.5

-1.0 0.5 0.0 0.5
Normalized displacement (-)

——Mode 1 ===Mode 2 ==-Mode 3

Figure B.2: An illustration of the first three mode shapes: (a) shows the results of transverse displacement obtained
with the three-piece Timoshenko beam model, and (b) shows the results of the transverse displacement obtained by

Taciroglu et al. [2].
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Mode | Identified [Hz] | Values of article [2] [Hz]

1 1.608 1.61
2 6.687 6.68
3 14.234 14.22

Table B.2: The natural frequencies of the first three modes: (a) shows the results obtained with the three-piece
Timoshenko beam model, and (b) shows the results from the article by Taciroglu et al. [2].

B.2.2. Verification behavior model
The natural frequencies obtained with the Timoshenko and Euler-Bernoulli beam models are shown in
Figure B.3.

30
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Figure B.3: The natural frequencies of the two models in question. The black dotted lines represent the natural
frequencies of the Euler-Bernoulli beam model. The dots represent the natural frequencies of the Timoshenko beam
model.

The first natural frequencies show similarities regardless of the value of G. However, differences can be
observed at higher natural frequencies between the Timoshenko beam model and the Euler-Bernoulli
beam model. As the value of the shear modulus G increases, the natural frequencies of the Timoshenko
beam model tend to converge towards those of the Euler-Bernoulli beam model. Nonetheless, a constant
difference remains, with the greatest difference occurring at the highest bending mode.

B.3. Conclusion

The results obtained by replicating the article by Taciroglu et al. [2] verify the code of the discrete Tim-
oshenko beam model, as the results obtained with this model closely resemble the natural frequencies
and mode shapes obtained by Taciroglu et al. [2].

The results obtained by comparing the Timoshenko beam model with the Euler-Bernoulli beam model
verifies the behavior of the discrete Timoshenko beam model. The consistent difference in the natural
frequencies are due to the consideration of rotational inertia. The Timoshenko beam model takes roa-
tional inertia in consideration, while the Euler-Bernoulli beam model does not take that into account.
Rotational inertia measures the resistance to change in rotational motion, which is expected to be
greater at higher modes, as there is more rotation at higher modes. Therefore, it is expected that the
difference between the natural frequencies increases at higher modes. Moreover, as the shear modulus
G increases, the natural frequencies of the Timoshenko beam model tend to converge towards those of
the Euler-Bernoulli beam model. This is also expected, as with the Euler-Bernoulli beam model, no
shear deformation can occur. This means that the Euler-Bernoulli beam model can be seen as having
a shear modulus of co.



Structural Properties

Structural properties refer to intrinsic properties of the system, such as material properties (density,
elasticity), geometric properties (dimensions, shapes), or boundary conditions [9], and form the basis of
the discrete Timoshenko beam models used in this research. However, the values of the structural prop-
erties are not predefined. Therefore, in this appendix, the values are determined using the floor plans
and Finite Element (FE) models of the residential tower New Orleans and the office tower Delfste Poort.

Section C.1 explains how each structural property is determined using the FE models and the floor
plans of the New Orleans and the Delftse Poort. Sections C.2 and C.3 present the results obtained per
building. The appendix ends with a conclusion.

C.1. Function description

With the floor plans of the buildings, the length L and the cross-sectional area A per segment are
directly determined. The mass density of each segment p is calculated by considering the dead load G,
variable load @, and the volume of the segment:

_G+03xQ

= (C.1)

Two approaches are considered to obtain the bending stiffness. The first approach calculates the bending
stiffness per segment El, (with s being x or y) using the elastic modulus E; applied in the FE model
and the second moment of area I, calculated using the term %bh3 and the Steiner rule:

1
El, = E, (12th + bd2> (C.2)

The FE segment approach considered the segments of the FE model. The FE model of the segment is

clamped at the bottom, and a force F' is applied at the top, resulting in a relative displacement A. The

bending stiffness F 1 is then determined using this displacement A and Equation C.3:

FL?

El,= — C.3
3A (C.3)

The value of the shear modulus G is determined using the relationship between the shear modulus G

and the elastic modulus E of the segment:

E,

Gs = 2(1+v)

(C.4)

The Poisson ratio v is set to 0.2, which is typical for in-situ buildings. The shear coefficient k is taken
as 0.85, in line with the study conducted by E. Taciroglu et al. [2]. The results are shown in Sections
C.2 and C.3.

81
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C.2. The residential tower New Orleans

The discrete Timoshenko beam model applied to approximate the dynamic behavior of the New Orleans
is created using the FE model shown in Figure C.1. This FE model is divided into five segments (0 till
IV). The segments were defined based on the floor plans. The floors within a segment have the same
floor plan in the FE model. Therefore, a five-segment Timoshenko beam model is used to represent the
FE model in Figure C.1. The floor plans of the segments are given in Figures C.2, C.3, C.4, C.5, and
C.6.
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Figure C.1: Pictures of (a) the FE model of the New Orleans, (b) the 5 segments defined for the New Orleans model,
and (c) the five-segment Timoshenko beam model.

The calculation of the bending stiffness using the Steiner approach is shown in Sections C.2.1, C.2.2,
C.2.3, C.2.4, and C.2.5. The calculation of the other structural properties is shown in Section C.2.7.
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Figure C.2: The floor plan of segment 0.

For the Steiner approach, the second moment of area needs to be calculated. The second moment of
area around the y-axis is denoted as I, and is provided in Table C.1. The second moment of area
around the x-axis is denoted as I, and is provided in Table C.2. Both values are calculated using the
floor plan shown in Figure C.2. The Steiner approach assumes rigid connection between the elements
when calculating the second moment of area. Due to the lack of a rigid connection between the core and
columns 1 and 2, indicated as C1 and C2 in Figure C.2, these columns are excluded from the calculation
of I,.

In the FEM model, E.ojumns is equal to 210 x 10° N/m2 and E,qus is equal to 38.2 x 10° N/m2.
This gives the bending stiffnesses EI, = 6.71 x 10'* Nm? and EI, = 3.19 x 10'® Nm?.

Using the FE segment approach, the bending stiffnesses EI, = 5.87 x 10'3 Nm? and EI, = 2.73 x 10*3
Nm? are obtained.
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Element N | b [m] h [m] | d[m] +bh® [m*] Steiner [m?] | I, [m?]
Column 1 flange | 8 0.454 0.125 | 11.65 0.000591 61.618 61.619
Column 1 web 4 0.078 0.838 | 11.65 0.0153 35.477 35.492
Column 2 flange | 4 0.454 0.125 4.45 0.000 296 4.495 4.495
Column 2 web 2 0.078 0.838 4.45 0.007 64 2.588 2.596
Column 3 flange | 8 0.454 0.125 | 11.65 0.000 591 61.618 61.619
Column 3 web 4 0.078 0.838 | 11.65 0.0153 35.477 35.492
Column 4 flange | 8 0.454 0.125 | 11.65 0.000 296 61.618 30.809
Column 4 web 4 0.078 0.838 | 11.65 0.007 64 35.477 17.746
Wall 1 2 0.6 8.4 0 59.270 0 59.270
Wall 2 2 1.295 0.6 4.75 0.0466 35.062 35.492
Wall 3 2 10.595 0.6 4.75 0.381 286.859 287.241
‘ Total ‘ 631.489
Table C.1: The second moment of area I of segment 0.

Element N | b [m] h [m] d [m] | 4bb? [m'] | Steiner [m?*] | I, [m’]
Column 3 flange | 8 0.125 0.454 6.6 0.0078 19.776 19.784
Column 3 web 4 0.838 0.078 6.6 0.00013 11.386 11.386
Wall 1 2 8.9 0.6 6.6 0.320 439.221 465.541
Wall 2 2 0.6 1.295 5.803 0.217 52.331 52.548
Wall 3 2 0.6 10.595 1.453 118.933 26.842 145.775
Total 695.035

Table C.2: The second moment of area I, of segment 0.

C.2.2. Segment I
The calculated second moment of area I, is provided in Table C.3. The calculated second moment of
area [, is provided in Table C.4. Both are calculated using the floor plan shown in Figure C.3.

Element N | b [m] h [m] | d [m] 75bh? [m*] Steiner [m'] | I, [m?]
Column 1 flange | 8 0.454 0.125 | 11.65 0.000 591 61.618 61.619
Column 1 web 4 0.078 0.838 | 11.65 0.0153 35.477 35.492
Column 2 flange | 4 0.454 0.125 4.45 0.000 296 4.495 4.495
Column 2 web 2 0.078 0.838 4.45 0.007 64 2.588 2.596
Column 3 flange | 8 0.454 0.125 | 11.65 0.000 591 61.618 61.619
Column 3 web 4 0.078 0.838 | 11.65 0.0153 35.477 35.492
Column 4 flange | 8 0.454 0.125 | 11.65 0.000 296 61.618 30.809
Column 4 web 4 0.078 0.838 | 11.65 0.00764 35.477 17.746
Wall 1 2 0.6 8.4 0 29.635 0 59.270
Wall 2 1 1.295 0.6 4.75 0.0233 17.531 17.554
Wall 3 1 10.595 0.6 4.75 0.191 143.4298 143.621
Wall 4 1 13.2 0.6 4.75 0.238 178.695 178.933

[ Total | 649.246

Table C.3: The second moment of area I, of segment L.

In the FEM model, E.ojumns is equal to 210 x 10° N/m? and Eyqs is equal to 38.2 x 10° N/m?. This
gives the bending stiffnesses E'1,, = 6.77 x 10*® Nm? and EI, = 3.31 x 10'> Nm?. Using the FE segment
approach the bending stiffnesses EI, = 3.66 x 10'3 Nm? and ET, = 3.26 x 10'® Nm? are obtained.
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Figure C.3: The floor plan of segment I.
Element N | b [m] h [m] d [m] -bh® [m?] | Steiner [m’] | I, [m’]
Column 3 flange | 8 0.125 0.454 6.6 0.0078 19.776 19.784
Column 3 web 4 0.838 0.078 6.6 0.00013 11.386 11.386
Wall 1 2 8.9 0.6 6.6 0.320 439.221 465.541
Wall 2 1 0.6 1.295 5.803 0.108 26.165 26.274
Wall 3 1 0.6 10.595 1.453 59.467 13.421 72.888
Wall 4 1 0.6 13.2 0 114.9984 0 131.719
‘ Total ‘ 727.592

Table C.4: The second moment of area I, of segment I.
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C.2.3. Segment II
The calculated second moment of area I, is provided in Table C.5. The calculated second moment of
area [, is provided in Table C.6. Both are calculated using the floor plan shown in Figure C.4.
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Figure C.4: The floor plan of segment II.

In the FEM model, Eoiumns is equal to 210 x 10° N/m? and Ey.ys is equal to 38.2 x 10° N/m?. This
gives the bending stiffnesses E'1,, = 1.22 x 104 Nm? and EI, = 3.08 x 10'® Nm?. Using the FE segment
approach, Besix obtained the bending stiffnesses F1, = 4.76 x 10'* Nm? and EI, = 1.04 x 10'* Nm?.
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Element N | bim] | h[m]| d[m] | ;5bh® [m’] | Steiner [m?] | I, [m?]
Wall 1 2 0.3 1.36 2.041 0.126 3.402 3.528
Wall 2 2 0.3 3.19 1.124 1.629 2.421 4.050
Wall 3 2 0.3 10.59 9.08 59.366 523.815 583.181
Wall 4 2 0.3 12.54 10.121 98.620 770.704 869.324
Wall 5 2 0.3 27.86 0 1081.218 0 1081.218
Wall 6 1 1.295 0.3 4.75 0.003 8.766 8.768
Wall 7 1 7.968 | 0.3 4.75 0.018 54.055 54.073
Wall 8 1 1.295 | 0.3 4.75 0.003 8.766 8.768
Wall 9 1 1.995 | 0.3 4.75 0.004 13.504 13.508
Wall 10 1 6.625 0.3 4.75 0.015 44.843 44.858
Wall 11 1 1.995 0.3 4.75 0.004 13.504 13.508
Wall 12 1 0.3 5.16 9.003 3.425 125.350 128.775
Wall 13 1 0.3 9.66 11.253 22.501 366.784 389.285
|  Total | 3202.844
Table C.5: The second moment of area I, of segment II.
Element N |b[m]| h[m] | d[m] | ;;bh® [m?] | Steiner [m*] | I, [m’]
Wall 1 2 1.36 0.3 6.6 0.0061 35.571 35.577
Wall 2 2 3.19 0.3 6.6 0.0144 83.478 83.493
Wall 3 2 10.59 0.3 6.6 0.0477 276.754 276.802
Wall 4 2 12.54 0.3 6.6 0.0564 327.772 327.828
Wall 6 1 0.3 1.295 5.803 0.0543 13.083 13.137
Wall 7 1 0.3 7.968 0 12.647 0 12.647
Wall 8 1 0.3 1.295 5.803 0.0543 13.083 13.137
Wall 9 1 0.3 1.995 5.453 0.1985 17.797 17.995
Wall 10 1 0.3 6.625 0 7.2694 0 7.2694
Wall 11 1 0.3 1.995 5.453 0.1985 17.797 17.995
Wall 12 1 5.16 0.3 0 0.0116 0 0.012
Wall 13 1 9.66 0.3 0 0.0217 0 0.022
‘ Total | 805.913

C.2.4. Segment III

The calculated second moment of area I, is provided in Table C.7. The calculated second moment of

Table C.6: The second moment of area I, of segment II.

area I, is provided in Table C.8. Both are calculated using the floor plan shown in Figure C.5.

Element N | b [m] h [m] d [m] | Lbh® [m?] | Steiner [m*] | I, [m’]
Wall 1 2 0.3 3.495 3.153 2.135 20.847 22.982
Wall 2 2 0.3 3.195 1.198 1.631 2.751 4.382
Wall 3 4 0.3 9.530 9.515 86.552 1035.361 1121.913
Wall 4 2 0.3 5.155 9.003 6.849 250.7 257.550
Wall 5 2 0.3 27.860 0 1081.218 0 1081.218
Wall 6 2 0.3 1.095 4.353 0.066 12.449 12.515
Wall 7 1 1.295 0.3 4.75 0.003 8.766 8.768
Wall 8 1 10.595 0.3 4.75 0.024 71.715 71.739
Wall 9 1 1.995 0.3 4.75 0.004 13.504 13.508
Wall 10 1 9.895 0.3 4.75 0.022 66.977 66.999

‘ Total ‘ 2661.574

Table C.7: The second moment of area I, of segment III.
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Figure C.5: The floor plan of segment III.

In the FEM model, E oiumns is equal to 210 x 10° N/m? and Ey.us is equal to 38.2 x 10° N/m?. This

gives the bending stiffnesses FI, = 1.02 x 10'* Nm? and EI, = 3.07 x 10'3 Nm?.

Using the FE segment approach, Besix obtained the bending stiffnesses EI, = 4.59 x 10'® Nm? and

EI, = 8.92 x 10'3 Nm?.
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Element N | b [m] h [m] d [m] | Lbh® [m?] | Steiner [m*] | I, [m’]
Wall 1 2 3.495 0.3 6.6 0.0157 91.345 91.361
Wall 2 2 3.195 0.3 6.6 0.0144 83.504 83.5189
Wall 3 4 9.530 0.3 9.515 0.0858 498.152 498.238
Wall 4 2 5.155 0.3 9.003 0.0232 0 0.0232
Wall 6 2 1.095 0.3 6.6 0.0049 28.619 28.624
Wall 7 1 0.3 1.295 5.803 0.0543 13.083 13.137
Wall 8 1 0.3 10.595 1.453 29.733 6.710 36.444
Wall 9 1 0.3 1.995 5.453 0.1985 17.797 17.995
Wall 10 1 0.3 9.895 1.803 24.221 9.650 33.870
Total 803.211

C.2.5. Segment IV

Table C.8: The second moment of area I, of segment III.

The calculated second moment of area I, is provided in Table C.7. The calculated second moment of
area I, is provided in Table C.8. Both are calculated using the floor plan shown in Figure C.6.

Element N | b [m] | h[m] d [m] | Lbb?® [m'] | Steiner [m'] | I, [m’]
Wall 1 1 0.3 3.490 5.59 1.063 32.717 33.779
Wall 2 1 0.3 5.561 0 4.299 0 4.2993
Wall 3 2 0.3 6.744 7.216 15.336 210.699 226.035
Wall 4 1 0.3 6.921 4.880 8.288 49.456 57.744
Wall 5 1 0.3 3.194 6.6 0.0072 41.739 41
Wall 6 2 13.2 0.3 4.75 0.0594 178.695 178.754
Wall 7 4 0.3 1.775 | 11.476 0.559 280.494 281.053
Wall 8 2 0.3 1.48 9.849 0.162 86.072 86.233

Total 870.054
Table C.9: The second moment of area I, of segment IV.

Element N | b[m] | h[m]| d[m] | {;bh® [m?] | Steiner [m*] | I, [m*]

Wall 1 1 3.490 0.3 6.6 0.0079 45.607 45.615

Wall 2 1 5.561 0.3 6.6 0.0125 72.671 72.684

Wall 3 2 6.744 | 0.3 9.515 0.0303 176.261 176.292

Wall 4 1 6.921 0.3 6.6 0.0156 90.444 90.459

Wall 5 1 3.194 0.3 6.6 0.0072 41.739 41

Wall 6 2 0.3 13.2 0 114.998 0 114.998

Wall 7 4 1.775 | 0.2 6.6 0.0047 61.855 61.860

Wall 8 2 1.479 | 0.3 6.6 0.0067 38.655 38.662

Total 803.211

Table C.10: The second moment of area I, of segment IV.

In the FEM model, E.ojumns is equal to 210 x 10° N/m? and Eyqus is equal to 32.8 x 10° N/m?2. This
gives the bending stiffnesses EI, = 3.32 x 10'* Nm? and FI, = 2.45 x 10'® Nm?.

Using the FE segment approach, Besix obtained the bending stiffnesses EI, = 2.73 x 10'3 Nm? and

EI, =2.97 x 10'3 Nm?.
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Figure C.6: The floor plan of segment IV.

C.2.6. Bending stiffness

The obtained bending stiffnesses are given in Table C.11. Additionally, the displacements at the top,
using either a five-segment beam model with these bending stiffnesses or the FE model, are presented,
when a force of 10,000 kN is applied and the base of the model is fixed.

The displacement in the y-direction obtained using the bending stiffnesses of Steiner approach EI,
shows significant differences. This could be due to not including columns 1 and 2 and wall 5 in I,.
Even when there is no rigid connection between these structural elements and the core, it can still be
expected that these elements contribute to the rotational resistance. The actual contribution of these
elements lies somewhere between the extremes of full inclusion and exclusion, but this contribution
cannot be calculated using Steiner.
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The displacement of the FE segment approach in the y-direction shows a closer resemblance to the
displacement obtained with the Steiner approach. However, the stiffnesses are not as expected. Since
the floor plans do not change significantly, it is unexpected to have such differences between the bending
stiffnesses of the different segments. This approach fails to account for the intermediate relationships
between the different segments (0 through IV) of the building. Segments 0 and I have column struc-
tures, which exhibit weaker behavior when considered individually than when integrated into the overall
system. This is due to the additional mass from other segments. Therefore, considering these segment
individually will lead to an inaccurate assessment of their bending stiffnesses.

Therefore, the bending stiffnesses of the Steiner approach are applied, with a correction factor in-
cluded to account for the displacement differences between the FE model and five-segment beam using
these segment stiffnesses. Since the FE model is stiffer in the y-direction, the segment stiffnesses E1,

are multiplied by %. Since the FE model is weaker in the x-direction, the segment stiffnesses F'I, are
multiplied by %.
EI, [Nm?] EI, [Nm?]
Steiner FE segment | Steiner FE segment

0 3.19¢13 2.37el3 6.71el13 5.87el13

1 3.31el3 3.62e13 6.77el13 3.66e13

II 3.08¢e13 1.04e14 1.22e14 4.76el13

11 3.07el13 8.92¢e13 1.04e14 4.59¢e13 FEM

v 2.45el13 2.97e13 2.85e13 2.73e13 Y X

Au [mm] | 887 472 344 613 516 394

Table C.11: The bending stiffnesses and the total displacements determined with the different approaches.

C.2.7. Structural properties

The dead load and variable load provided by Besix are shown in Table C.12. The obtained structural
properties are shown in Table C.13. The E modulus of the concrete is used as the E of the segments,
as the building is almost entirely made of concrete. The second moment of area I of each segment is
determined by dividing the bending stiffness by this £ modulus.

Segment | Dead load [kN] Variable load %0.3 [kN]
0 83621 1626

I 42088 1584

I1 95562 3937

III 292545 11787

v 76016 3058

Table C.12: The dead and variable load of the residential tower New Orleans.
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Segment 0 I II III v

L [m)] 5.735 11.47 26.640 89.91 26.825
A[m?] 784 784 784 784 784
I, [m* 1444 1500 1393 1389 1293
I, [m%] 1532 1548 2796 2324 760

p [keg/m?] 1933 495 486 440 383

E [N/m?] 38.2¢9 38.2¢9 38.2¢9 38.2¢9 32.8e9
v [+] 0.2 0.2 0.2 0.2 0.2

G [N/m?] 15.9€9 15.9¢9 15.9¢9 15.9¢9 13.7¢9
k [-] 0.85 0.85 0.85 0.85 0.85
Boundary

K, , [GNm/rad] | 2380 Ky, [GN/m] | 19

K,, [GNm/rad] | 2625 K., [GN/m] | 4

Table C.13: The structural property values obtained with the floor plans and FE model of the New Orleans.

C.3. The office tower the Delfste Poort

The discrete Timoshenko beam model chosen to approximate the dynamic behavior of the Delftse Poort
is created using the Finite Element (FE) model of the building. This FE model, shown in Figure 6.1,
is divided into four segments. The segements were defined based on the floorplans. Therefore, a four-
segment Timoshenko beam model is used to represent the FE model in Figure 6.1. The floor plans
representing the segments are shown in Figures C.8, C.9, and C.10. Since segments 0 and I have many
similarities, the bending stiffness of both segments, determined using the Steiner approach, is calculated
using the same floor plan. This is shown in Sections C.3.1, C.3.2, and C.3.3. The bending stiffness
determined using the FE segment approach is also provided in those sections. The calculation of the
other structural properties is shown in Section C.3.5.

(a) (b) 150.57 m (C)

v

Rl

BIREEMEEEERR

Il II

7290 m
v

K tx
Ky

Figure C.T: Pictures of (a) the FE model of the Delftse Poort, (b) the 4 segments defined for the Delftse Poort model,
and (c) the four-segment Timoshenko beam model.
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C.3.1. Segment 0 and 1

The calculated second moment of area I, is provided in Table C.14. The calculated second moment of
area [, is provided in Table C.15. The percentage indicates the degree of closeness of the wall. The
calculation takes this factor into account. Both are calculated using the floor plan shown in Figure C.8.

Element N |b[m] | h[m]| d[m] | £bh®[m'] | Steiner [m*] | I, [m?]
Wall 1 1 3.2 0.3 11.54 0.072 127.887 127.894
Wall 2 1 3.2 0.3 5.44 0.072 28.430 28.437
Wall 3 1 0.3 5.4 8.69 3.937 122.389 126.326
Wall 4 1 0.3 44 9.19 2.130 111.528 113.658
Wall 5 1 0.5 14.4 3.01 124.416 65.151 189.567
Wall 6 1 0.3 144 3.01 74.645 39.090 113.740
Wall 7 1 0.3 5.4 0.11 3.937 0.019 3.956
Wall 8 1 0.5 14.4 3.01 124.416 65.151 189.567
Wall 9 1 2.62 0.3 0.158 0.006 0.020 0.026
Wall 10 1 0.5 14.4 3.01 124.416 65.151 189.567
Wall 11 (90%) 1 23.0 0.3 4.34 0.047 117.071 117.112
Wall 12 (75%) 1 23.0 0.3 4.36 0.039 98.29 98.33
Wall 13 1 0.3 5.9 1.54 5.134 4.208 9.343
Wall 14 1 0.3 2.6 4.34 0.006 14.705 14.710
Wall 15 1 1.6 0.3 1.208 0.0036 0.701 0.704
Wall 16 1 0.4 4.85 6.97 3.803 94.163 97.966
Wall 17 1 0.4 2.6 2.76 0.586 7.911 8.497
Wall 18 1 0.4 8.5 0.19 20.470 0.125 20.596
Wall 19 1 0.4 13.35 2.67 79.309 37.980 117.289
Wall 20 1 3.1 0.4 2.67 0.017 23.014 23.031
Wall 21 1 3.1 0.4 9.64 0.017 115.278 115.295
Column 1 1 1.24 1.24 2.608 0.197 10.491 10.656
Column 2 1 1.24 1.24 | 10.99 0.197 185.776 185.973
Column 3 1 1.24 1.24 2.608 0.197 10.491 10.656
Column 4 1 1.24 1.24 10.99 0.197 185.776 185.973
Column 5 1 1.24 1.24 2.608 0.197 10.491 10.656
Column 6 1 1.24 1.24 | 10.99 0.197 185.776 185.973
Column 7 1 1.24 1.24 9.81 0.197 147.916 148.113
Column 8 1 1.24 1.24 10.99 0.197 185.776 185.973
Column 9 1 1.24 1.24 9.81 0.197 147.916 148.113
Column 10 1 1.24 1.24 10.99 0.197 185.776 185.973
Column 11 1 1.24 1.24 9.81 0.197 147.916 148.113
Column 12 1 1.24 1.24 3.79 0.197 22.108 22.305
Column 13 1 1.24 1.24 9.81 0.197 147.916 148.113
Column 12 1 1.24 1.24 3.79 0.197 22.108 22.305
Column 15 1 1.24 1.24 9.81 0.197 147.916 148.113
Column 16 1 1.24 1.24 9.81 0.197 147.916 148.113
Total 3600.730

Table C.14: The second moment of area I, of segment 0 and I.
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Element N |b[m] |h[m]| d[m] | Lbh® [m'] | Steiner [m*] I, [m']
Wall 1 1 0.3 3.2 48.66 0.819 2272.864 2273.684
Wall 2 1 0.3 3.2 48.66 0.819 2272.864 2273.684
Wall 3 1 5.4 0.3 50.12 0.012 4067.458 4067.47
Wall 4 1 4.4 0.3 47.21 0.010 2941.702 2941.712
Wall 5 1 14.4 0.5 17.61 0.150 2232.211 2232.361
Wall 6 1 14.4 0.3 8.71 0.032 327.556 327.589
Wall 7 1 5.4 0.3 5.81 0.012 54.641 54.652
Wall 8 1 14.4 0.5 4.21 0.15 127.471 127.621
Wall 9 1 0.3 2.62 2.65 0.450 5.510 5.960
Wall 10 1 14.4 0.5 4.89 0.15 172.333 172.483
Wall 11 (90%) 1 0.3 23.0 6.357 273.758 251.007 524.764
Wall 12 (75%) 1 0.3 23.0 6.357 228.131 209.172 437.303
Wall 13 1 5.9 0.3 34.49 0.013 2105.808 2105.821
Wall 14 1 0.3 2.6 35.64 0.439 990.894 991.334
Wall 15 1 0.3 1.6 36.34 0.102 633.968 634.070
Wall 16 1 4.85 0.4 35.74 0.026 24'78.380 2478.406
Wall 17 1 2.6 0.4 35.74 0.014 1328.616 1328.630
Wall 18 1 8.5 0.4 37.34 0.045 4741.134 4741.179
Wall 19 1 13.35 0.4 38.39 0.071 7871.013 7871.084
Wall 20 1 0.4 3.1 37.04 0.993 1701.448 1702.441
Wall 21 1 0.4 3.1 37.04 0.993 1701.448 1702.441
Column 1 1 1.24 1.24 49.56 0.197 3776.285 3776.482
Column 2 1 1.24 1.24 38.76 0.197 2309.714 2309.911
Column 3 1 1.24 1.24 38.76 0.197 2309.714 2309.911
Column 4 1 1.24 1.24 27.96 0.197 1201.835 1202.032
Column 5 1 1.24 1.24 27.96 0.197 1201.835 1202.032
Column 6 1 1.24 1.24 17.16 0.197 452.646 452.646
Column 7 1 1.24 1.24 17.16 0.197 452.646 452.646
Column 8 1 1.24 1.24 6.36 0.197 62.149 62.346
Column 9 1 1.24 1.24 6.36 0.197 62.149 62.346
Column 10 1 1.24 1.24 4.44 0.197 30.343 30.541
Column 11 1 1.24 1.24 4.44 0.197 30.343 30.541
Column 12 1 1.24 1.24 15.24 0.197 357.229 357.426
Column 13 1 1.24 1.24 15.24 0.197 357.229 357.426
Column 14 1 1.24 1.24 26.04 0.197 1042.806 1042.806
Column 15 1 1.24 1.24 26.04 0.197 1042.806 1042.806
Column 16 1 1.24 1.24 36.84 0.197 2087.075 2087.272
\ Total | 55774.650

Table C.15: The second moment of area I, of segment 0 and I.

In the FEM model, E,q5 is equal to 11 x 10° N/m?2. This gives the bending stiffnesses EI, = 40 x 102
Nm? and FI, = 614 x 10'> Nm?. Using the FE segment approach, the bending stiffnesses FI, =
0.26 x 10'? Nm? and EI, = 1.04 x 10'2 Nm? are obtained.
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Figure C.8: The floorplan of segment 0 and I.
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C.3.2. Segment 11

The calculated second moment of area I, is provided in Table C.16. The calculated second moment of

area [, is provided in Table C.17. The percentage indicates the degree of closeness of the wall. The
calculation takes this factor into account. Both are calculated using the floor plan shown in Figure C.9.

Element N | b[m] | h[m]|d[m]| 5bh® [m'] | Steiner [m*] | I, [m*]
Wall 1 (45%) 1 32.3 0.3 3.50 0.033 53.367 53.399
Wall 2 (45%) 1 55.3 0.3 11.20 0.056 936.746 936.801
Wall 3 1 0.3 14.4 3.85 74.650 64.088 138.737
Wall 4 1 0.3 5.4 8.35 3.937 112.995 116.931
Wall 5 (90%) 1 0.5 21.9 0.10 393.878 0.102 393.982
Wall 6 (60%) 1 22.0 0.3 10.70 0.030 453.242 453.272
Wall 7 (45%) 1 32.9 0.4 10.65 0.079 671.482 671.561
Wall 8 (75%) 1 22.0 0.3 4.00 0.037 79.265 79.302
Wall 9 (45%) 1 32.0 0.3 4.00 0.032 69.177 69.209
Wall 10 (75%) 1 22.0 0.3 4.70 0.037 109.270 109.307
Wall 11 1 2.62 0.3 1.85 0.006 2.685 2.691
Wall 12 (85%) 1 0.5 14.6 3.35 105.754 68.615 174.368
Wall 13 (90%) 1 0.5 21.6 0.25 377.914 0.615 378.529
Wall 14 1 0.3 5.5 1.10 4.159 2.002 6.162
Wall 15 1 0.4 14.3 3.30 97.474 62.229 159.703
Wall 16 1 0.4 4.3 6.45 2.650 71.593 74.243
Wall 17 1 0.4 13.0 2.10 73.233 22.968 96.201
Wall 18 1 0.7 0.4 4.15 0.003 4.819 4.822
Wall 19 1 2.3 0.4 8.40 0.012 64.940 64.953

[ Total | 3084.172

Table C.16: The second moment of area I, of segment II.
Element N | b[m] | h[m] | d [m] 1—12bh3 [m*] | Steiner [m*] I, [m"]
Wall 1 (45%) 1 0.3 32.3 33.39 379.106 4862.781 5241.886
Wall 2 (45%) 1 0.3 55.3 21.89 1902.514 3578.712 5481.226
Wall 3 1 14.4 0.3 49.39 0.032 10539.980 10540.020
Wall 4 1 5.4 0.3 46.49 0.012 3502.008 3502.020
Wall 5 (90%) 1 21.9 0.5 16.89 0.205 2812.836 2813.041
Wall 6 (60%) 1 0.2 22.0 5.64 159.72 126.165 285.885
Wall 7 (45%) 1 0.4 32.9 21.81 534.169 2815.806 3349.976
Wall 8 (75%) 1 0.3 22.0 5.64 199.650 157.706 357.356
Wall 9 (45%) 1 0.3 32.0 21.86 368.64 2063.514 2432.154
Wall 10 (75%) 1 0.3 22.0 5.64 199.650 157.706 357.356
Wall 11 1 0.3 2.62 1.93 0.450 2.941 3.391
Wall 12 (85%) 1 144 0.5 3.49 0.128 74.732 74.860
Wall 13 (90%) 1 21.6 0.5 5.61 0.203 305.425 305.627
Wall 14 1 5.5 0.3 35.11 0.012 2033.460 2033.473
Wall 15 1 14.3 0.4 38.056 0.076 8283.849 8283.926
Wall 16 1 4.3 0.4 36.406 0.023 2279.627 2279.650
Wall 17 1 13.0 0.4 39.16 0.069 7972.420 7972.489
Wall 18 1 0.4 0.7 38.61 0.011 417.309 417.320
Wall 19 1 0.4 2.3 37.76 0.406 1311.444 1311.849
[ Total | 57043499
Table C.17: The second moment of area I, of segment II.
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In the FEM model, E, 415 is equal to 22 x 10 N/m?2. This gives the bending stiffnesses EI, = 88 x 102
Nm? and EI, = 1255 x 10" Nm?. Using the FE segment approach, the bending stiffnesses EI, =
48.81 x 10'2 Nm? and ET, =170.84 x 10'2 Nm? are obtained.

C.3.3. Segment 111

The calculated second moment of area I, is provided in Table C.18. The calculated second moment of
area I, is provided in Table C.19. The percentage indicates the degree of closeness of the wall. The
calculation takes this factor into account. Both are calculated using the floor plan shown in Figure C.10.

Element N |b[m] | h[m] | d[m] | 4bh® [m'] | Steiner [m?] | I, [m]
Wall 1 (45%) 1 54.9 0.3 7.60 0.056 427.885 427.941
Wall 2 (50%) 1 54.9 0.3 6.30 0.062 327.034 327.096
Wall 3 1 0.5 15.0 0.25 140.625 0.462 141.087
Wall 4 (75%) 1 12.9 0.3 1.60 0.022 7.414 7.435
Wall 5 1 0.3 8.4 2.75 14.818 19.083 33.900
Wall 6 (85%) 1 0.5 14.4 0.25 105.754 0.377 106.131
Wall 7 1 0.3 5.9 4.202 4.159 29.131 33.290
Wall 8 1 0.4 14.4 0.45 99.533 0.355 99.888
Total 1176.768
Table C.18: The second moment of area I of segment III.

Element N | b[m] | h[m] | d[m]| ;bh® [m"] | Steiner [m*] I, [m*]
Wall 1 (45%) 1 0.3 54.9 4.90 1861.528 177.954 2039.482
Wall 2 (50%) 1 0.3 54.9 4.90 2068.364 197.727 2266.091
Wall 3 1 15.0 0.5 22.80 0.156 3898.781 3898.937
Wall 4 (75%) 1 0.3 12.9 16.10 40.250 752.352 792.602
Wall 5 1 8.4 0.3 13.80 0.019 479.905 479.924
Wall 6 (85%) 1 14.4 0.5 9.40 0.128 540.757 540.884
Wall 7 1 5.9 0.3 29.20 0.012 1406.861 1406.874
Wall 8 1 14.4 0.4 32.15 0.077 5953.687 5953.764
‘ Total 17378.560

Table C.19: The second moment of area I, of segment III.

In the FEM model, E, 45 is equal to 33 x 10° N/m?2. This gives the bending stiffnesses EI, = 39 x 102
Nm? and FI, = 573 x 10'* Nm?. Using the FE segment approach, the bending stiffnesses FI, =
41.60 x 10'2 Nm? and ET, = 255.56 x 10'2 Nm? are obtained.
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C.3.4. Bending stiffness

The obtained bending stiffnesses are given in Table C.20. Additionally, the displacements at the top,
using either a four-segment beam model with these bending stiffnesses or the FE model, are presented,
when a force of 10,000 kN is applied and the base of the model is fixed.

With the FE segment approach, the bending stiffnesses vary significantly. The top segment, which
represent the smallest part of the building, shows larger bending stiffness values then the bottom seg-
ments. These differences are not observed with the bending stiffnesses obtained using the Steiner
approach. The displacements obtained with the Steiner approach show similarities with the displace-
ments obtained using the FEM model.

The FE segment approach fails to account for the intermediate relationships between the different
segments. For example, segments 0 and I have column structures, which exhibit weaker behavior when
considered individually than when integrated into the overall system. This is due the additional mass
from other segments. The E-moduli values of the different segments in the FE model may also con-
tribute to the differences, as the top segment has a E-modulus value of 33 x 10° N/m?), while the
bottom segment has a E-modulus value of 11 x 10° N/m?). However, it is not expected that this caused
the factor of 100 difference between the segment stiffnesses.

Due to the differences in the segment stiffnesses obtained using the FE segment approach, the seg-
ment stiffnesses obtained using the Steiner approach are applied, with a correction factor included to
account for the displacement differences between the FE model and four-segment beam using these
segment stiffnesses. Since the FE model is weaker in the x-direction, the segment stiffnesses EI, are
multiplied by %—g. Since the FE model is stiffer in the y-direction, the segment stiffnesses EI, are mul-

tiplied by %.

EI, [Nm?] EI, [Nm?]
Steiner FE segment | Steiner FE segment
0 614e12 1.04e12 40e12 0.26e12
I 614el12 6.46e12 40e12 5.53el12
11 1255e12 170.84e12 88el2 48.81e12 FEM
111 573el2 255.56e12 39e12 41.60e12 X Y
Au [mm] | 16 - 236 - 26 199

Table C.20: The bending stiffnesses and displacements determined with the different approaches.

C.3.5. Structural properties
The dead load and variable load provided by Aronsohn are shown in Table C.21. The obtained structural
properties are shown in Table C.22.

Segment | Dead load [kN]

| Variable load *0.3 [kN]

0 202190 4641
I 154104 7811
IT 241647 16538
11 228309 15722

Table C.21: The dead and variable load of the office tower the Delfste Poort.
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Segment 0 I 11 111
L [m] 3.15 22.65 46.8 81.27
Am?] 1320 1320 1320 825
I [m] 4312 4312 4744 1402
I, [m4] 34350 34350 35105 10685
p [keg/m?] 5071 552 426 371
E[N/m?] 11e9 11e9 22¢9 33¢e9
v [ 0.2 0.2 0.2 0.2

G [N/m?] 4.6e9 4.6e9 9.2e9 1.38¢9
k[ 0.85 0.85 0.85 0.85
Boundary

K, [GNm/rad] | 6486 K, [GN/m] | 9.22

K, , [GNm/rad] | 50371 K, [GN/m] | 9.22

Table C.22: The structural property values obtained with the floor plans and FE model of the Delftse Poort.

C.4. Conclusion

With this appendix, the analysis of obtaining the structural property values of the residential tower New
Orleans and the office tower the Delftse Poort is provided. The analysis offers insights into how the
translation from the FE (Finite Element) model to the discrete Timoshenko beam model is performed
and how the different approaches affect the results obtained.

The analysis indicates difficulties obtaining values for the bending stiffness per segment. The Steiner
approach, which calculated the bending stiffness per segment using the elastic modulus E and the sec-
ond moment of area I (calculated with ﬁth and the Steiner rule), assumed fully rigid connections
between elements when determining I, making it impossible to accurately account for the contributions
of elements that were not rigidly connected.

The FE approach, which used the relative displacement A of the FE segment to calculate the bending
stiffness, did not account for the intermediate relationships between segments, leading to inaccurate es-
timation of segments with column structures. These segments exhibit weaker behavior when considered
individually compared to when they were part of the overall system. This is due to the additional mass
of the other segments.

Finally, it should be noted that the FE model also simplifies reality, and differences in behavior should
be expected. The discrete Timoshenko beam model is more simplified then the FE model.
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Figure C.9: The floor plan of segment II.
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Figure C.10: The floor plan of segment III.



Measured modal properties

Modal properties refer to the characteristics of a physical system that describe its natural modes of vi-
bration. These properties are important for understanding how a structure responds to dynamic loads
and form the basis of the model update method applied in this research. However, these properties
need to be determined first from vibration measurements.

Therefore, this appendix explains how the modal properties are determined from vibration measure-
ments. It describes the measurement setup for the New Orleans and the Delftse Poort to obtain the
vibration measurements and explains the data analysis used to determine the measured modal proper-
ties. The results are presented at the end.

D.1. Measurement setup the New Orleans

Since 2011, vibration measurements have been conducted on the residential tower New Orleans in
Rotterdam, as shown in Figure D.1. The vibrations were monitored on the 34th floor using a permanent
monitoring system. The system consisted of four acceleration sensors and was part of a research project

focusing on local wind loads on facade elements and the influence of pressure equalization on these loads
[17, 12].

Figure D.1: An picture of the residential tower New Orleans.

To determine the mode shapes of the building, for several months, additional acceleration sensors were
installed on the 15th and 44th floors. The positions and orientations of the sensors are illustrated in
Figure D.2 [17, 12].
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Figure D.2: Pictures of (a) the New Orleans and the positions of the acceleration sensors (green squares) on (b) the
44th floor, (c) the 34th floor, and (d) the 15th floor. The green arrows indicate the directions of the acceleration sensors.

D.2. Measurement setup the Delfste Poort
Vibration measurements are also conducted on the office tower the Delfste Poort, as shown in Figure
D.3.

Figure D.3: An picture of the office tower the Delfste Poort.

The system consisted of two or three acceleration sensors on the 19th, 30th and 40th floor and floor 1.
The positions and orientations of the sensors are illustrated in Figure D.4.
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Figure D.4: Pictures of (e) the Delfste Poort and the positions of the acceleration sensors (green squares) on (d) floor
1, on (c) the 19th floor, (b) the 30th floor and (a) the 40th floor. The arrows indicate the directions of the acceleration
Sensors.

D.3. Data analysis
For the data analysis, the technique Frequency Domain Decomposition (FDD) is applied. The technique
uses the relationship between the inputs x(t) and the measured responses y(t) , expressed as [23]:

Gyy(jw) = ﬁ(jw)Gm(jw)H(jw)T

where the Gy, (jw) is the (r « ) Power Spectral Density (PSD) matrix of the input, r is the number of
inputs, Gy, (jw) is the (m z r) PSD of the responses, m is the number of responses and H (jw) is the
frequency response function. The overbar and superscript T' respectively denote the complex conjugate
and transpose of the frequency response function [23].

The inputs z(t) are unknown. Therefore, to estimate the PSD matrix of the measured responses
y(t), white noise is assumed as input, which has a constant PSD matrix G, (jw) = C [23]:

Gy (jw) = H(jw)C(jw)H (jw)T

The obtained estimate of the PSD ny is then decomposed at the each known frequency w = w; using
Singular Value Decomposition: .

Where the matrix U; is the unitary matrix containing the singular vectors u;; and .S; is the diagonal
matrix containing the scalars singular values s;; at each frequency instance w [23]. The singular vectors
u;; can be associated with the mode shapes of the tested structure. The obtained mode shapes ¢; from
the matrix U at the identified natural frequencies are scaled using Degree Of Freedom (DOF) scaling,
defined as [12]:

i

B ¢i,Dn

where ¢; py, is the DOF with the largest component [24].

®i,D
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To see if the correlation between the obtained mode shapes is low (i.e if the obtained mode shapes
are orthogonal), the Modal Assurance Criteria is applied, defined as:

|(Abi : éi|2A
(¢idi)(bi - 1)

where ¢; and QASl are the compared mode shapes. If the MAC is high (larger than 35%), it can mean
two things [24]:

MAC(¢i, b)) =

o The modes are at close frequencies, indicating that the two modes are actually the same mode.

e The modes are at distance frequencies, indicating that the number of sensor positions is not
sufficient to differentiate between the two modes.

The mode shapes that have a high MAC value are eliminated. The results of this analysis are given in
Section D.4.

D.4. Results data analysis

The data applied of the New Orleans was recorded on 29/03/2020. A total of 129 10-minute records
were used, which were sampled with 20 Hz [24]. The dimensionless spectrum of the first singular value
is given in Figure D.5. The obtained modes are listed in Tables D.1 and D.2. The MAC values are
given in Table D.3.
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Figure D.5: The dimensionless spectrum of the first singular value. The green dots indicate the natural frequencies of
the residential tower New Orleans [24].

According to Tables D.1 and D.2, for modes 1, 2, 3, 4, 5, 6, 7, and 9, a clear dominant direction is
found. For the bending modes, relatively small modal displacements are found in the non-dominant
direction. For modes 8, 10, and 11, however, no clear dominant direction can be determined from the
modal displacements [24].

Table D.3 shows that modes 1, 2, 4, 5, 7, and 8 have MAC values lower than 35%. This indicates
that the applied measurement setup is sufficient to observe these modes. Additionally, the table indi-
cates the orthogonality of these modes [24].

Modes 3, 6, 9, 10, and 11 have more than 35% correlation with other modes. This indicates that the
sensor setup is not sufficient to properly distinguish the mode shapes of these modes from the mode
shapes of lower modes. However, it should be noted that when mode 3 is not considered, mode 6 does
meet the 35% correlation criterion [24].
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Mode 1 2 3 4 5 6
Dominant direction X Y S} Y X )
Natural frequency [Hz] 0.282 0.291 0.638 1.332 1.527 2.054
Modal displacement
Sensor 5 (51.4 m) —0.30 —0.05 —0.13 —0.00 0.89 0.29
Sensor 6 (51.4 m) —0.02 —-0.29 —0.15 —-0.90 0.05 0.50
Sensor 1 (114.6 m) —0.71 —0.10 —1.00 —0.02 —0.23 —1.00
Sensor 2 (114.6 m) —0.03 —0.78 —0.43 —0.19 —0.02 —0.45
Sensor 3 (114.6 m) —0.67 —0.11 —0.28 —0.00 —0.06 —-0.24
Sensor 4 (114.6 m) —0.03 —0.76 —0.30 —0.06 —0.02 —0.21
Sensor 7 (147.9 m) —1.00 —0.12 —0.23 —0.04 —1.00 —0.25
Sensor 8 (147.9 m) —0.09 —1.00 —0.38 1.00 —-0.11 —0.61

Table D.1: The identified measured modes (1-6) of the residential tower New Orleans (normalized).

Mode 7 8 9 10 11

Dominant direction Y Y

Natural frequency [Hz] 2.771 3.560 4.155 5.300 7.250

Modal displacement

Sensor 5 (51.4 m) 0.02 0.33 0.03 0.08 —0.16

Sensor 6 (51.4 m) —0.73 0.22 0.18 —0.03 —0.06

Sensor 1 (114.6 m) —0.11 —1.00 —0.12 —1.00 —1.00

Sensor 2 (114.6 m) 0.83 0.11 1.00 0.15 0.20

Sensor 3 (114.6 m) —0.06 —0.80 —0.08 —0.58 —0.51

Sensor 4 (114.6 m) 0.99 —0.38 0.95 -0.29 —0.13

Sensor 7 (147.9 m) 0.01 0.41 —0.06 0.16 0.16

Sensor 8 (147.9 m) —1.00 0.39 0.35 0.14 0.11

Table D.2: The identified measured modes (7-11) of the residential tower New Orleans (normalized).
Mode | 1 2 3 4 5 6 7 8 9 10 11
1 1.00

2 0.04 | 1.00

3 0.44 0.06 @ 1.00

4 0.00 0.20 0.01 @ 1.00

5 0.24 0.01 0.06 0.00 1.00

6 0.27 0.03 069 024 0.19 @ 1.00

7 0.00 0.00 0.09 0.00 0.00 0.04 @ 1.00

8 0.11 0.00 032 0.01 0.00 0.30 0.06 | 1.00

9 0.00 0.73 0.01 0.05 0.00 0.02 0.26 0.00 1.00

10 0.27 0.00 063 0.01 0.01 043 0.00 088 0.00 1.00

11 0.30 0.00 068 0.02 0.00 0.39 0.00 074 0.02 094 1.00

Table D.3: The MAC of the bending modes of Tables D.1 and D.2. The MAC values higher then 0.35 are indicated in
lightsteelblue.

The obtained modes for the office tower the Delfste Poort are listed in Tables D.4 and D.5. The MAC
values are given in Table D.6. According to Tables D.4 and D.5, for modes 1, 2, 3, 4, 5, 6, 7, 8, 9 and
10, a clear dominant direction is found.

For the bending modes, relatively small modal displacements are found in the non-dominant direction.
For mode 11, however, no clear dominant can be determined from the modal displacements.

Table D.6 shows that modes 1, 2, 3, and 4 have MAC values below 35%. The applied measurements
setup is sufficient to observe these modes. The orthogonality of these modes is also proven with this
table. Modes 5, 6, 7, 8, 9, 10 and 11 have more than 35% correlations with other modes, indicating
that the sensor setup is not sufficient to properly distinguish the mode shapes of these modes from the
modes shapes of lower modes.
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Mode 1 2 3 4 5 6
Dominant direction Y X S} Y X )
Natural frequency [Hz] 0.403 0.861 1.165 1.624 2.027 2.454
Modal displacement
Sensor 4 (—3.30 m) 0.00 —0.06 —0.05 0.02 0.28 —0.01
Sensor 4 (—3.30 m) 0.01 0.00 —0.03 0.01 0.02 —0.02
Sensor 3 (69.30 m) —0.02 —0.48 0.00 0.03 0.48 0.01
Sensor 3 (69.30 m ) 0.33 0.01 —0.51 0.37 —0.12 0.05
Sensor 7 (69.30 m) —0.02 —0.49 0.13 0.04 0.44 0.06
Sensor 7 (69.30 m) 0.34 0.00 0.36 0.61 —0.19 0.39
Sensor 2 (108.90 m) —0.02 -0.77 0.03 —0.05 —0.26 0.01
Sensor 2 (108.90 m) 0.65 0.00 —0.65 —0.19 —0.19 0.37
Sensor 6 (108.90 m) —0.02 —0.75 0.23 0.03 -0.18 —0.09
Sensor 6 (108.90 m) 0.66 | —0.03 0.71 0.42 0.12 | —0.16
Sensor 1 (144.51 m) —0.02 —1.00 0.06 —0.11 —1.00 —0.04
Sensor 1 (144.51 m) 0.96 —0.01 —0.68 —1.00 —0.01 0.55
Sensor 5 (144.51 m) —0.06 —1.00 0.12 —0.05 —-0.99 —-0.09
Sensor 5 (144.51 m) 1.00 —0.10 1.00 —0.21 0.41 —1.00
Sensor 9 (144.51 m) —0.03 —1.00 0.11 —0.08 —-0.97 —0.09
Sensor 9 (144.51 m) 0.99 | —0.06 0.58 | —0.46 033 | —0.59

Table D.4: The identified measured modes (1-5) of the office tower the Delfste Poort (normalized).

Mode 7 8 9 10 11
Dominant direction X Y (C] X

Natural frequency [Hz] 2.962 3.749 4.493 4.939 5.844
Modal displacement

Sensor 4 (—3.30 m) 0.02 —0.03 0.01 0.07 —0.14
Sensor 4 (—3.30 m) 0.01 —0.01 0.03 0.00 —-0.21
Sensor 3 (69.30 m) 0.29 0.07 —0.03 0.63 0.13
Sensor 3 (69.30 m) —0.05 0.18 0.58 —0.15 0.14
Sensor 7 (69.30 m) 0.29 0.06 —0.25 0.71 0.27
Sensor 7 (69.30 m) 0.06 —0.36 —0.70 0.44 0.35
Sensor 2 (108.90 m) —0.52 0.03 0.05 0.74 0.78
Sensor 2 (108.90 m) 0.04 0.67 0.21 —0.03 —0.02
Sensor 6 (108.90 m) —0.48 —0.10 —0.05 0.92 1.00
Sensor 6 (108.90 m) —0.17 0.92 —0.62 0.08 —0.07
Sensor 1 (144.51 m) —0.85 —0.06 —0.05 —0.95 —0.81
Sensor 1 (144.51 m) 0.27 —0.90 —0.60 0.37 0.14
Sensor 5 (144.51 m) —1.00 —0.02 —0.03 —1.00 —0.89
Sensor 5 (144.51 m) —0.19 —0.67 1.00 —0.20 0.19
Sensor 9 (144.51 m) —0.98 —0.06 —0.01 —0.99 —0.85
Sensor 9 (144.51 m) —0.08 —1.00 0.60 —0.01 0.28
Table D.5: The identified measured modes (7-11) of the office tower the Delfste Poort (normalized).
Mode | 1 2 3 4 5 6 7 8 9 10 11
1 1.00

2 0.00 ' 1.00

3 0.06 0.03 = 1.00

4 0.16 0.01 0.06 = 1.00

5 0.03 042 0.02 0.00 ' 1.00

6 0.07 0.02 062 0.00 0.03 @ 1.00

7 0.00 ' 0.68 0.07 0.00 0.72 0.07  1.00

8 0.16 0.00 0.04 035 0.01 0.08 0.00 1.00

9 0.04 0.00 0.03 0.03 0.02 051 001 0.06 @ 1.00

10 0.00 0.04 0.00 0.00 042 0.05 032 0.00 0.06 @ 1.00
11 0.03 0.05 0.01 0.00 0.34 0.00 0.18 0.03 0.00 082 1.00

Table D.6: The MAC of the modes of Tables D.4 and D.5. The MAC values higher then 0.35 are indicated in
lightsteelblue.
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D.5. Conclusion

With this appendix, the analysis of obtaining the measured modal properties for the New Orleans and
the Delftse Poort is provided, including a verification of the obtained mode shapes. For both buildings,
a measurement setup consisting of different acceleration sensors at various heights was used, which
successfully identified different modes of the buildings.

The MAC (Modal Assurance Criterion) was used to determine if the obtained mode shapes are or-
thogonal. For the identified modes 1, 2, 4, 5, 7, and 8 of the residential tower New Orleans, and modes
1, 2, 3, and 4 of the office tower the Delftse Poort, a MAC value lower then 35% was found, indicating
that the sensor setup was sufficient to properly distinguish the mode shapes of these modes.

For the identified modes 3, 6, 9, and 10 of the residential tower New Orleans, and modes 5, 6, 7,
8,9, 10, and 11 of the office tower the Delftse Poort, a MAC value equal or higher then 35% was found,
indicating that the sensor setup was not sufficient to properly distinguish the mode shapes of these
modes. This suggests that more sensors are needed at different heights, particularly for the office tower
the Delfste Poort.



Influence of parameters

In this chapter, the results of the residential tower New Orleans of the study "Influence Parameters” in
x-direction are given.
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Figure E.1: The influence of parameter K, on the model output (a,b) in x-direction.
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Figure E.2: The influence of parameter K; on the model output (a,b) in x-direction.
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Python

In this appendix, the Python code used is presented, including the models, model updating procedures,
and various studies conducted. Since the studies involve two case studies using the same code, only the
code for one case study is shown.

The discrete Timoshenko beam model (model and model updating)

from abc import ABC, abstractmethod

from copy import deepcopy

from dataclasses import dataclass

from typing import List, Union, Tuple, Dict, Optional, Any

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

import cmath as cm

from scipy.optimize import brentq

from utils.beam_utils import nullspace

from utils.modal_analysis import mac

from functools import partial

from scipy.stats import uniform

from tqdm import tqdm

from skopt import gp_minimize, forest_minimize
from scipy.optimize import Bounds, minimize
from enum import Enum

class UpdatingMethod (Enum) :

CMC = "Crude_ MonteCarlo"

MCMC = "Markov-chain MonteCarlo"
GA = "Geneticyalgorithm"

DE = "Differential evolution"

PSO = "Partical,swarmgoptimsation"
GP = "Gaussian process"

ParamType = Union[dict, list, np.ndarray]
import matplotlib

matplotlib.use ("TkAgg")

—————————————————————————————————— Hecel Corle —oocoosooooooooooonoooooooooooosooooo0ooooo0
@dataclass
class BeamiD (ABC):

params: Dict[str, float]

height: Union[float, int]

bc: Optional [Tuplel[str, str]] = ("fixed", "free")

bounds: dict = None

scales: dict = None

description: str = ""

Q@abstractmethod
def boundaries(
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pass

self,

omega: float,
factor_m: float,
factor_v: float,

kr: float,
p: float,
q: float,

z: Union[np.ndarray, floatl],
flag: str

Q@abstractmethod
def roots(self,

pass

Q@dataclass
class Timo (BeamlD):

def

def

def

def

__in
self
self
self
self
self

mode
pass

root
s2 =

b2 =

r2 =

[«
d

ml =
p =

if omega < np.sqrt((self.params["kG"] * self.params["A"]) /
(self.params["rho"] * self.params["I"])):
m3 = np.sqrt((-b + np.sqrt(d)) / 2)

q = m3
elif omega == np.sqrt((self.params["kG"] * self.params["A"]) /
(self.params["rho"] * self.params["I"])):

q=20
else:

retu

w(se

elif

omega: float) -> float:

it__(self, params, height):
.params = deepcopy(params)
.orig_params = deepcopy(params)

.fn: Union[Dict([str, Anyl, np.ndarrayl
.phi: Union[Dict[str, Anyl, np.ndarrayl

.height = height

_shapes (self):

s(self, omega: float):

(self .params["E"] * self.params["I"]) / (self.params["kG"] *
self.params["A"] * (self.params["L"]
(self .params["rho"] * self.params["A"] * (omega ** 2) *
(self.params["L"] ** 4)) / (self.params["E"] * self.params["I"])
(self.params["I"] / self.params["A"]) / self.params["L"] *x*x 2

b2 * s2 + b2 * r2
(b2 ** 2) * s2 * r2 - b2
(b **x 2) - 4 x ¢

cm.sqrt ((-b - np.sqrt(d)) / 2)
abs(ml.imag)

m3 = cm.sqrt((-b + np.sqrt(d)) / 2)

q = abs(m3.imag)

rm p, q

1f, p, q, omega: float, z: Union[float, np.ndarray], dz:
if omega < np.sqrt((self.params["kG"] * self.params["A"]) /
(self.params["rho"] * self.params["I"])):

if dz ==

return np.array([np.sin(p * z), np.cos(p * z),
np.sinh(q * z), np.cosh(q * z)])

elif dz == 1:

return np.array([p * np.cos(p * z), -p * np.sin(p * z),

dict ()
dict ()

q * np.cosh(q * z), q * np.sinh(q * z)])

omega == np.sqrt((self.params["kG"] * self.params["A"]) /
(self.params["rho"] * self.params["I"])):
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if dz ==
return np.array([np.sin(p * z), np.cos(p * z), 0, 1])
elif dz == 1:
return np.array([p * np.cos(p * z), -p * np.sin(p * z), 0, 0])
else:
if dz ==
return np.array([np.sin(p * z), np.cos(p * z),
np.sin(q * z), np.cos(q * z)])
elif dz == 1:

return np.array([p * np.cos(p * z), -p * np.sin(p * z),
q * np.cos(q * z), -q * np.sin(q * z)])

def phi(self, p, q, omega: float, z: Union[float, np.ndarray], dz: int = 0):
s2 = (self.params["E"] * self.params["I"]) /
(self.params["kG"] * self.params["A"] * (self.params["L"] ** 2))
b2 = (self.params["rho"] * self.params["A"] * (omega ** 2) *
self .params["L"] ** 4)) / (self.params["E"] * self.params["I"])

if omega < np.sqrt((self.params["kG"] * self.params["A"]) /
(self.params["rho"] * self.params["I"])):

11 = b2 * s2 / p - p

12 = -b2 * s2 / p + p

13 = b2 x s2 / q + q

14 = 13

if dz ==
return np.array([12 * np.cos(p * z), 11 * np.sin(p * z),
14 * np.cosh(q * z), 13 * np.sinh(q * 2z)])

elif dz == 1:
return np.array([-12 * p * np.sin(p * z), 11 * p * np.cos(p * z),
14 * q * np.sinh(q * z), 13 * q * np.cosh(q * z)])

elif omega == np.sqrt((self.params["kG"] * self.params["A"]) /
(self.params["rho"] * self.params["I"])):

11 = b2 * s2 / p - p

12 = -b2 * s2 / p + p

if dz ==
return np.array([1l2 * np.cos(p * z), 11 * np.sin(p * z),
1, b2 * s2 * z])

elif dz ==
return np.array([-12 * p * np.sin(p * z), 11 * p * np.cos(p * z),
0, b2 * s2])

else:

11 = (b2 * s2 / p) - p

12 = -(b2 * s2 / p) + p

13 = (b2 * s2 / q) - q

14 = -(b2 * s2 / q) + q

if dz ==
return np.array([12 * np.cos(p * z), 11 * np.sin(p * z),
14 * np.cos(q * z), 13 * np.sin(q * z)])

elif dz == 1:

return np.array([-12 * p * np.sin(p * z), 11 * p * np.cos(p * z),
-14 * q * np.sin(q * z), 13 * q * np.cos(q * z)])

def factor_continuity(self):

factor_
factor_

m = 1 / (self.params["E"] * self.params["I"])
v =1 / (self.params["kG"] * self.params["A"])

return factor_m, factor_v

# Remove this if frequency dependency is not taken into account of this parameter! This
is for the article.

def kr(self, omega):
Vs = np.sqrt(self.params["Gs"] / self.params["rhos"])
a0 = (omega * self.params["D"]) / (2 x Vs)

b

2.4 - 0.4 / (self.params["B"] / self.params["D"])**3

d = 0.55 + 0.01 * np.sqrt((self.params["B"] / self.params["D"]) - 1)
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krd = 1 - (d * a0*x2)/(b + a0x*2)
kr = self.params["kr"] * krd
return kr

# Remove kr: float and change kr to self.params["kr"]

parameter is not taken into account

def boundaries(

self,

omega: float,

factor_m: float,

factor_v: float,

kr: float,

p: float,

q: float,

z: Union[np.ndarray, floatl],
flag: str

if flag.lower() ==

mm = np.zeros ([4, 4])
else:

mm = np.zeros([2, 4])

if flag.lower () == "fixed":
mm[0, :] = Timo.w(self, omega=omega, p=p, q=q,

if the frequency dependency of this

"continuity+" or flag.lower() == "continuity-":

z=z)

mm[1, :] = Timo.phi(self, omega=omega, p=p, q=q, z=2)

elif flag.lower() == "hinged":

mm[0, :] = Timo.phi(self, omega=omega, p=p, q=q, z=z, dz=1)

mm[1, :] = Timo.w(self, omega=omega, p=p, 9=9,

elif flag.lower () == "rot+transl":

mm [0, :] = Timo.phi(self, omega=omega, p=p, q=

(kr / (self.params["E"] * self.params["I"]
/ self.params["L"])) *
Timo.phi(self, omega=omega, p=p, q=q, z=2)

mm[1, :] = Timo.phi(self, omega=omega, p=p, q=

Timo.w(self, omega=omega, p=p, 9=q, z=z, dz=1)

z=z)

q, z=z, dz=1) -

q, z=z) -
+

(self .params["kt"] / ((self.params["A"] * self.params["kG"])
/ self.params["L"])) * Timo.w(self, omega=omega, p=p, q=q, z=z)

elif flag.lower() == "rot":

mm[0, :] = Timo.phi(self, omega=omega, p=p, 9=

(kr / (self.params["E"] *

self .params["I"] / self.params["L"])) *
Timo.phi(self, omega=omega, p=p, q=q, z=2)
mm[1, :] = Timo.w(self, omega=omega, p=p, 9=9,

elif flag.lower() == "transl":

mm[0, :] = Timo.phi(self, omega=omega, p=p, 9=
mm[1, :] = Timo.phi(self, omega=omega, p=p, q=

Timo.w(self, omega=omega, p=p, 9q=q, z=z, dz=1)

q, z=z, dz=1) -

z=z)

q, z=z)
q, z=z) -
.

(self .params["kt"] / ((self.params["A"] * self.params["kG"]) /

self .params["L"])) * Timo.w(self, omega=omega,

elif flag.lower() == "free":

mm[0, :] = Timo.phi(self, omega=omega, p=p, 9=
mm[1, :] = Timo.phi(self, omega=omega, p=p, q=

Timo.w(self, omega=omega, p=p, 9=q, z=z, dz=1)

elif flag.lower() == "continuity+":

P=P, 9=9,2z=z)

q, z=z, dz=1)
q, z=z) -

fm = factor_m * self.params["E"] * self.params["I"]
fv = factor_v * self.params["kG"] #* self.params["A"]

mm[0, :] = Timo.w(self, omega=omega, p=p, q=q,
mm[1, :] = Timo.w(self, omega=omega, p=p, q=q,

mm[2, :] = Timo.phi(self, omega=omega, p=p, 9=

z=z)
z=z, dz=1)
q, z=z, dz=1) * fm

mm[3, :] = (Timo.phi(self, omega=omega, p=p, q=q, z=z) -

Timo.w(self, omega=omega, p=p, 9=q, z=z, dz=1)) * fv
elif flag.lower() == "continuity-":
mm[0, :] = -Timo.w(self, omega=omega, p=p, q=q, z=z)

mm[1, :] = -Timo.w(self, omega=omega, p=p, 9q=q, z=z, dz=1)
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mm[2, :] = -Timo.phi(self, omega=omega, p=p, 9=q, z=z, dz=1)
mm[3, :] = -(Timo.phi(self, omega=omega, p=p, q=q, z=z) -
Timo.w(self, omega=omega, p=p, 9=9, z=z, dz=1))

return mm

@dataclass
class TimoPieceWiseBeamlD:

beams: List[BeamiD]
bc: tuple
beam = Timo

def init__(self, beams, bc):

self .beams = beams

self .params = {k: beam.params[k] for beam in beams for k in beam.params}
self.bc = bc

self.orig_params = deepcopy(self.params)

def update_dict(self, attr: str, new_dict: dict):
for ix, beam in enumerate(self.beams):
getattr(self, attr).update(new_dict)

def scale_parms(self, scalers: dict):
for ix, beam in enumerate(self.beams):
for k, val in scalers.items():
beam.params[k] = beam.orig_params[k] * val

def update_params(self, updated_params: dict):
for ix, beam in enumerate(self.beams):
for k, val in updated_params.items():
beam.params[k] = val

def update_originals(self, updated_params):
for k, val in updated_params.items():
self.orig_params[k] = val

def set_dict(self, attr: str, new_dict: dict):
setattr(self, attr, new_dict)

def modeshapes (
self,
min_fn: float = 0.002,
max_fn: float = 100,
pts: Union[np.ndarray, int] = 500,
n_intervals: int = 100,
n_modes: int = 3):

n_b = len(self.beams)

heights = np.cumsum([0] + [beam.height for beam in self.beams])

min_omega, max_omega = min_fn * 2 * np.pi, max_fn * 2 * np.pi

omega_vec = np.logspace(np.loglO(min_omega), np.loglO(max_omega), n_intervals)
omega_critical = np.sqrt((self.params["kG"] * self.params["A"]) /
(self.params["rho"] * self.params["I"]))

print ("Thecritical frequencyof the Timoshenko beam model is:")

print (omega_critical/ (2 * np.pi))

omega_part_1 = omega_vec[omega_vec < omega_criticall

omega_part_3 = omega_vec[omega_vec > omega_criticall

omega_part_1 = np.append(omega_part_1, omega_critical - 0.00000001)
omega_part_3 = np.insert(omega_part_3, 0O, omega_critical + 0.00000001)

fun_v_1 = np.array([self.determinant (omega=om_ii, z=heights) for om_ii in
omega_part_1])
fun_v_3 = np.array([self.determinant (omega=om_iii, z=heights) for om_iii in

omega_part_3])

idx_change_1 = np.where(np.diff(np.sign(fun_v_1)) != 0) [0]
nsol = len(idx_change_1)

if nsol < n_modes:
fun_v_2 = self.determinant (omega=omega_critical, z=heights)
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if fun_v_2 == 0:
nsol += 1
idx_change_3 = np.where(np.diff(np.sign(fun_v_3)) != 0) [0]

nsol += len(idx_change_3)

omega_sol = np.empty (0)

for ii in idx_change_1:

if len(omega_sol) == n_modes:
break
sol = brentq(self.determinant, omega_part_1[ii], omega_part_1[ii + 1], args=(
heights,))
omega_sol = np.append(omega_sol, sol)
if len(omega_sol) != n_modes and fun_v_2 == 0:
omega_sol = np.append(omega_sol, omega_critical)

for iii in idx_change_3:

if len(omega_sol) == n_modes:
break
sol = brentq(self.determinant, omega_part_3[iii], omega_part_3[iii + 1], args=(

heights,))

omega_sol = np.append(omega_sol, sol)

if len(omega_sol) <

n_modes:

print ("Solution are less than,required number of modes. Try,a larger interval ory
larger bounds.")

if len(omega_sol) == 0:
print ("Failed,in obtaining;solutions!!")
omega = omega_sol

fn = omega / (2 * np.pi)

if isinstance(pts, int):

pts_pieces = np.

linspace (heights[:-1], heights[1:], pts, endpoint=False).T

pts = np.insert(pts_pieces.ravel(), len(pts_pieces.ravel()), heights[-1])

phi = np.zeros((len(pts), len(omega)))

pts pts.flatten()

coeff = np.zeros((n_b * 4, 1))

for aa, om_aa in enumerate (omega):
mm = self.determinant (omega=om_aa, z=heights, build=True)

rtol = 0.1
not_converge =

True

while not_converge:
coeff = nullspace(mm, atol=0, rtol=rtol).reshape(-1, 1)

if coeff.shape == (0, 1) or coeff.shape[0] > 4 * n_b:
rtol /= 10

else:
not_converge = False

for ix, beam in

enumerate (self.beams) :

idx_z = (pts >= heights[ix]) & (pts <= heights[ix + 1])

P_, 9_ = beam.roots(omega=om_aa)

z_ix = pts[idx_z]

if om_aa !'=

omega_critical:

philidx_z, aal = np.sum(
np.real(beam.w(p=p_, 9q=q_, omega=om_aa, z=z_ix) * coeff[4 * ix:(4 *

if om_aa ==
print(

ix + 4)]1), axis=0)

omega_critical and np.linalg.matrix_rank(mm) < 3:
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phi

self
self
retu

def dete

n_b
mm =
bc_s

f__v =

f__m

for

'Warning,_ theregisga_ double eigenvalue, pleasecheck withyplotsyify
the procedure goes as intended!"')

/= philnp.argmax(np.abs(phi), axis=0), np.arange(phi.shape[1])]
.fn = fn

.phi = phi

rn fn, phi, pts

rminant (

self,

omega: float,

z: np.ndarray,
build: bool = False,

= len(self.beams)

np.zeros((4 * n_b, 4 * n_b))

, bc_e = self.bc

[1

= [

ix, beam in enumerate(self.beams):
fv = beam.factor_continuity () [1]
fm = beam.factor_continuity () [0]
f__v.append(fv)

f__m.append(£fm)

if ix == O0:

f__m[0]

£f__v[o]

Hh Hh
< B
non

m = f__m[ix - 1]
v = f__v[ix - 1]

bc_s_ix = (bc_s if ix == 0 else "continuity+")
bc_e_ix = (bc_e if ix == (n_b - 1) else "continuity-")

_p = beam.roots(omega=omega) [0]
_q beam.roots (omega=omega) [1]

_kr = beam.kr (omega=omega)

_mm_s = beam.boundaries (omega=omega, factor_m=f_m, factor_v=f_v, kr=_kr, p=_p, q=
_q, z=z[ix], flag=bc_s_ix)

_mm_e = beam.boundaries (omega=omega, factor_m=f_m, factor_v=f_v, kr=_kr, p=_p, q=
_q, z=z[ix + 1], flag=bc_e_ix)

c_ix = np.arange(4 * ix, (4 * ix + 4))
r_st = (ix if ix == 0 else 4 * ix - 2)

_mm = np.vstack([_mm_s, _mm_e])
r_ix = np.arange(r_st, r_st + _mm.shape[0])
mm[np.ix_(r_ix, c_ix)] = _mm

if build:

else

@dataclass

class TimoPi
beams_x:
beams_y:
bc: tupl

return mm

return np.linalg.det (mm)

eceWiseBeam2D:
List [BeamiD]
List [BeamiD]
e

def __init__(self, beams_x, beams_y, bc):

self
self
self
self
self

self.
self.

.beams_x = beams_x

.beams_y = beams_y

.params_x = {k: beam.params[k] for beam in beams_x for k in beam.params}
.params_y = {k: beam.params[k] for beam in beams_y for k in beam.params}
.bc = bc

orig_params_x = deepcopy(self.params_x)

orig_params_y = deepcopy(self.params_y)
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def update_dict(self, attr: str, new_dict_x: dict, new_dict_y: dict):
for beam in self.beams_x:

getattr (beam, attr).update(new_dict_x)
for beam in self.beams_y:

getattr (beam, attr).update(new_dict_y)

def

def

def

def

def

scale_params(self, scalers: dict):
for k, val in scalers.items():

for beam
beam
for beam

beam.

in self.beams_x:

.params [k] = beam.orig_params[k] * val

in self.beams_y:
params [k] = beam.orig_params[k] * val

update_params (self, updated_params_x: dict, updated_params_y: dict):
for k, val in updated_params_x.items():

for beam

beam.

in self.beams_x:
params [k] = val

for k, val in updated_params_y.items():

for beam

beam.

in self.beams_y:
params [k] = val

update_originals(self, updated_params_x, updated_params_y):

for k, val in updated_params_x.items():
self.orig_params_x[k] = val

for k, val in updated_params_y.items():
self.orig_params_y[k] = val

set_dict(self, attr: str, new_dict_x: dict, new_dict_y:

for beam in self.beams_x:
setattr(beam, attr, new_dict_x)

for beam in self.beams_y:
setattr(beam, attr, new_dict_y)

modeshapes (
self,
min_fn:
max_fn:

float = 0.002,
float = 40000,

pts: Union[np.ndarray, int] = 500,
n_intervals: int = 10000,

n_modes_x: int =
n_modes_y: int =

fn_x, phi_x,
max_£fn,
fn_y, phi_y,

w w |

pts_x = TimoPieceWiseBeamlD(self.beams_x,

pts, n_intervals, n_modes_x)

pts_y = TimoPieceWiseBeamiD(self.beams_y,

max_fn, pts, n_intervals, n_modes_y)

self.fn_x =
self.phi_x =
self.fn_y =
self.phi_y =

return fn_x,

fn_x

phi_x

fn_y

phi_y

fn_y, phi_x, phi_y, pts_x, pts_y

dict):

self.bc) .modeshapes (min_£fn,

self.bc) .modeshapes (min_£fn,

—————————————————————————————— Model Updating Code --------------—-----—-——-—————————~————~—————

def

sample_start_points(bounds: ParamType, npts: int, seed: int

np.random.seed (seed=seed)
st_pts = np.zeros((npts, len(bounds)))
ii, _bb in enumerate (bounds):

for

st_pts[:, ii]

return st_pts

= uniform.rvs(_bb[0], _bb[1], size=npts)

assemble_boundaries(
parameters_to_update: ParamType,

a:
b:

float = 0.1,
float = 10,

logscale: bool =

False,
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def

def

if isinstance(parameters_to_update, (list, np.ndarray)):
bounds = [(a, b)] * len(parameters_to_update)

elif isinstance(parameters_to_update, dict):
bounds = []
for pp, bb in parameters_to_update.items():
if bb is None:
bounds.append ((a, b))
else:
bounds.append ((bb[0], bb[1]))
else:
raise TypeError

if logscale:
bounds = [(np.log(a), np.log(b)) for (a, b) in bounds]
return bounds

adjust_modes (phi_hat, phi):
rmse_plus = np.sqrt(np.mean((phi_hat - phi) ** 2, axis=0))
rmse_minus = np.sqrt(np.mean((phi_hat + phi) #** 2, axis=0))

flip = np.ones(len(rmse_plus))
flip[rmse_plus > rmse_minus] = -1
phi_flip = phi_hat * flip

return phi_flip

cost_funciD(

theta,

model,

y_hat,

parameters_to_update,
logscale,

regularisation: float = None,
symmetry: float=None

fn = y_hat["fn"]
n_modes = len(fn)

if logscale:
theta = np.array([np.exp(aa) for aa in thetal)

if isinstance(parameters_to_update, (np.ndarray, list)):
parms_names = parameters_to_update
elif isinstance(parameters_to_update, dict):
parms_names = list(parameters_to_update.keys())
else:
raise TypeError
new_parms = {k: th for k, th in zip(parms_names, theta)l}
model.scale_parms(scalers=new_parms)
model .modeshapes (n_modes=n_modes, pts=y_hat["z"])
cost_fn = np.sum(np.abs(fn - model.fn) / model.fn)

if fn.shape != model.fn.shape:
print ("Error,in,shape of modes (x)")

if regularisation is not None:

current_params = np.array([model.params[vv] for vv in parms_names])
orig_params = np.array([model.orig_params[vv] for vv in parms_names])
delta_props = ((current_params - orig_params) / orig_params) *x 2

cost_fn += regularisation * delta_props.sum()

if "modes" in list(y_hat.keys()):
phi = np.atleast_2d(y_hat["modes"])
phi_hat = adjust_modes(model.phi, phi)
mac_ph_p = np.diag(mac(phi_hat, phi))
cost_modes = np.sum((1 - mac_ph_p))
return cost_fn + cost_modes

else:
return cost_£fn
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def

def

cost_func2D (
theta,
model: TimoPieceWiseBeam2D,
y_hat,
parameters_to_update,
logscale,
regularisation: float = None,
symmetry: float = None,

fn_x = y_hat["fn_x"]
fn_y = y_hat["fn_y"]
n_modes_x = len(fn_x)
n_modes_y = len(fn_y)

if logscale:
theta = np.array([np.exp(aa) for aa in thetal)

if isinstance(parameters_to_update, (np.ndarray, list)):
parms_names = parameters_to_update
elif isinstance(parameters_to_update, dict):
parms_names = list(parameters_to_update.keys())
else:
raise TypeError
new_parms = {k: th for k, th in zip(parms_names, theta)l}
model.scale_params (scalers=new_parms)

model.modeshapes(n_modes_x= n_modes_x, n_modes_y=n_modes_y, pts=y_hat["z"])

cost_fn = np.sum(np.abs(fn_x - model.fn_x) / model.fn_x)
if fn_x.shape != model.fn_x.shape:

print ("Error,in shape of modes (x)")
cost_fn += np.sum(np.abs(fn_y - model.fn_y) / model.fn_y)
if fn_y.shape != model.fn_y.shape:

print ("Error,in,shape of modes (y)")

if regularisation is not None:

current_params = np.array([model.params[vv] for vv in parms_names])
orig_params = np.array([model.orig_params[vv] for vv in parms_names])
delta_props = ((current_params - orig_params) / orig_params) *x 2

cost_fn += regularisation * delta_props.sum()

if symmetry is not None:
npr = len(theta) // 2
ratios = np.array([theta[ii]/thetal[npr+ii] for ii in range(npr)])
cost_fn += symmetry * np.abs(np.log(ratios)).sum()

if "modes_x" in list(y_hat.keys()):
phi_x = np.atleast_2d(y_hat["modes_x"])
phi_hat_x = adjust_modes(model.phi_x, phi_x)
mac_ph_p_x = np.diag(mac(phi_hat_x, phi_x))
cost_modes_x = np.sum((1 - mac_ph_p_x))
cost_fn += cost_modes_x

if "modes_y" in list(y_hat.keys()):
phi_y = np.atleast_2d(y_hat["modes_y"])
phi_hat_y = adjust_modes(model.phi_y, phi_y)
mac_ph_p_y = np.diag(mac(phi_hat_y, phi_y))
cost_modes_y = np.sum((1 - mac_ph_p_y))
cost_fn += cost_modes_y

return cost_£fn

update_model (
model: TimoPieceWiseBeamilD,
parameters_to_update: ParamType,
cost_func,
y_hat: dict,
npts: int = 100,
sim_type: UpdatingMethod = UpdatingMethod.CMC,
optim_method: str = "SLSQP",
seed: int = 42,
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verbose: bool = False,
logscale: bool = False,
regularisation: float = None,
symmetry: float = None,
kwargs_optimizer: dict = None,

if kwargs_optimizer is None:

kwargs_optimizer = {}
bounds = assemble_boundaries(
parameters_to_update=parameters_to_update, logscale=logscale
)
x1 = [bb[0] for bb in bounds]
xu = [bb[1] for bb in bounds]

if isinstance(parameters_to_update, (np.ndarray, list)):

parms_names = parameters_to_update
elif isinstance(parameters_to_update, dict):
parms_names = list(parameters_to_update.keys())
params_opt = np.array([prm + "_opt" for prm in parms_names])
params_st = np.array([prm + "_st" for prm in parms_names])
args_cf = (model, y_hat, parameters_to_update, logscale, regularisation)
solutions = []
convergence = []
objective = partial(

cost_func,

model=model,

y_hat=y_hat,

logscale=logscale,
parameters_to_update=parameters_to_update,
regularisation=regularisation,
symmetry=symmetry

)
if sim_type == UpdatingMethod.CMC:
st_pts = sample_start_points(bounds=bounds, npts=npts, seed=seed)
iterations_per_start_point = []
number_function_evaluations = []
for ii in tqdm(range(npts)):
min_kwargs = dict(
x0=st_pts[ii, :], method=optim_method, bounds=bounds
)
sol = minimize (objective, **min_kwargs)
solutions.append(sol.x)
convergence.append(sol.fun)
iterations_per_start_point.append(sol.nit)
number_function_evaluations.append(sol.nfev)
#print (iterations_per_start_point)
#print (number_function_evaluations)
elif sim_type == UpdatingMethod.GP:
sol = gp_minimize (
objective,
bounds,

initial_point_generator="1lhs",
n_initial_points=npts,
n_calls=30,
verbose=verbose,
)
solutions.append(sol.x)
convergence.append (sol.fun)
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The discrete Euler-Bernoulli beam model (model only)

from
from
from
from

elif sim_type in [UpdatingMethod.DE, UpdatingMethod.GA, UpdatingMethod.PS0]:
from pymoo.core.problem import ElementwiseProblem

import pymoo.optimize as opt
import importlib

algorithm_class = getattr(
importlib.import_module (

f"pymoo.algorithms.soo.nonconvex.{sim_type.name.lower ()}"
# Here is the difference made between updating methods

) g
sim_type.name,
)
n_var = len(parameters_to_update)

class MoProblem(ElementwiseProblem):
def __init__(self):

super () . __init__(n_var=n_var, n_obj=1, xl=x1, xu=xu)

def _evaluate(self, x, out, *args, *x*xkwargs):

out ["F"] = objective(x)

problem = MoProblem()
algorithm =
res = opt.minimize(problem, algorithm
solutions = [ind.x for ind in res.pop
convergence =
st_pts = np.ones((npts, n_var))

sols =
convergence =

np.vstack(solutions)

df _data =
cols =
df _opt = pd.DataFrame(data=df_data,

return df_opt

abc import ABC, abstractmethod
copy import deepcopy
dataclasses import dataclass

typing import List, Union, Tuple, Dict,

import numpy as np

from

from

def

scipy.optimize import brentq

utils.beam_utils import nullspace

w_z(beta, z:
if dz == 0:
return np.array(
[np.cosh(beta * z), np.sinh(beta
)
elif dz == 1:
return beta * np.array(
[np.sinh(beta * z), np.cosh(beta
)
elif dz == 2:
return beta ** 2 * np.array(
[np.cosh(beta * z), np.sinh(beta
)
elif dz == 3:
return beta ** 3 * np.array(
[np.sinh(beta * z), np.cosh(beta
)

Union[float, np.ndarrayl, dz:

]

[ind.f for ind in res.popl]

np.array (convergence) .reshape (-1,

algorithm_class (pop_size=npts, **kwargs_optimizer)
, Seed=seed,

verbose=verbose)

1)

np.concatenate ([convergence, st_pts, sols], axis=1)
np.concatenate ([np.array(["Convergence"]), params_st, params_opt])
columns=cols)

Optional

int

= 0):

np.cos(beta * z), np.sin(beta * z)]

-np.sin(beta * z), np.cos(beta * z)]

-np.cos(beta * z), -np.sin(beta * z)]

np.sin(beta * z), -np.cos(beta * z)]
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31 Q@dataclass
32 class Beaml1D(ABC):

33 params: Dict[str, float]

34 height: Union[float, int]

35 bc: Optional [Tuplel[str, str]] = ("fixed", "free")
36

37 Q@abstractmethod

38 def evaluate_bc(

39 self,

40 beta: float,

41 factor: float,

12 z: Union[np.ndarray, float],
43 flag: str

44 )

45 pass

46

47 Qabstractmethod

48 def get_beta(self,

49 omega: float) -> float:
50 pass

53 Q@dataclass
54 class BernulliBeam(BeamlD):

56 def mode_shapes(self):

57 pass

58

59 def determinant_boundary_cond (

60 self,

61 beta: float,

62 z_e: float,

63 z_s: float = 0.,

64 build: bool = False,

65 )

66 mm = np.zeros((4, 4))

67

68 bc_s, bc_e = self.bc

69

70 mm[:2, :] = self.evaluate_bc(beta=beta, z=z_s, flag=bc_s)
71 mm[2:, :] = self.evaluate_bc(beta=beta, z=z_e, flag=bc_e)
72

73 mm /= np.max(np.abs(mm), axis=1).reshape(-1, 1)

74

75 if build:

76 return mm

77 else:

78 return np.linalg.det (mm)

79

80 def get_beta(self, omega: float):

81 return np.real ((omega ** 2 * self.params["rho"] * self.params["A"] *
82 self.params ["L"]1*x4) / self.params["ei"]) **x (1 / 4)
83

84 def factor_continuity(self):

85 factor = 1 / (self.params["ei"])

86 return factor

87

88 def evaluate_bc(

89 self,

90 beta: float,

91 factor: float,

92 z: Union[np.ndarray, float],

93 flag: str

94 )8

95 if flag.lower() == "continuity+" or flag.lower() == "continuity-":
96 mm = np.zeros([4, 4])

97 else:

98 mm = np.zeros([2, 4])

99 if flag.lower() == "fixed":

100 mm[0, :] = w_z(beta, z=z)

mm[1, :] = w_z(beta, z=z,

dz=1)
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elif flag.lower () == "hinged":
mm [0, :] = w_z(beta, z=z)
mm[1, :] = w_z(beta, z=z, dz=2)
elif flag.lower() == "rot+transl":
mm[0, :] = w_z(beta, z=z, dz=2) - ((self.params["kr"] x*
self .params["L"]) / self.params["ei"]) =*
w_z(beta, z=z, dz=1)
mm[1, :] = w_z(beta, z=z, dz=3) + (self.params["kt"] *
self.params["L"]**3 / self.params["ei"]) =*
w_z(beta, z=z)
elif flag.lower() == "rot":
mm[0, :] = w_z(beta, z=z, dz=2) -
(self .params["kr"] /
(self .params["ei"] / self.params["L"])) *
w_z(beta, z=z, dz=1)
mm[1, :] = w_z(beta, z=2z)
elif flag.lower () == "transl":
mm[0, :] = w_z(beta, z=z, dz=1)
mm[1, :] = w_z(beta, z=z, dz=3) +
(self .params["kt"] * self.params["L"]x*x3 /
self .params["ei"]) * w_z(beta, z=z)
elif flag.lower () == "free":
mm[0, :] = w_z(beta, z=z, dz=2)
mm[1, :] = w_z(beta, z=z, dz=3)
elif flag.lower () == "continuity+":
mm [0, :] = w_z(beta, z=z)
mm[1, :] = w_z(beta, z=z, dz=1)
mm[2, :] = w_z(beta, z=z, dz=2)
mm[3, :] = w_z(beta, z=z, dz=3)
elif flag.lower () == "continuity-":
mm [0, :] = -w_z(beta, z=z)
mm[1, :] = -w_z(beta, z=z, dz=1)
mm[2, :] = -w_z(beta, z=z, dz=2) * self.params["ei"] * factor
mm[3, :] = -w_z(beta, z=z, dz=3) * self.params["ei"] * factor
return mm
@dataclass
class Model:

def update_dict(self, attr: str, new_dict: dict):

for k, val in new_dict.items():
getattr(self, attr).updatel[k] = val

def set_dict(self, attr: str, new_dict: dict):
setattr(self, attr, new_dict)

def update_model(self):
pass

@dataclass

class PieceWiseBeamlD:

(NIRRT}

beams: List[BeamiD]
bc: tuple

def initialize_beams(self):
beam = BernulliBeam

def mode_shapes (
self,
min_fn: float = 0.002,
max_fn: float = 100,
pts: Union[np.ndarray, int] = 100,
n_intervals: int = 100,
n_modes: int = 3

n_b = len(self.beams)
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heights = np.cumsum([0] + [beam.height for beam in self.beams])

min_omega, max_omega = (min_fn * 2 * np.pi, max_fn * 2 * np.pi)

omega_vec = np.logspace(np.loglO(min_omega), np.loglO(max_omega), n_intervals)
fun_v = np.zeros(omega_vec.shape)

nsol = 0

idx_change = []
for ii, om_ii in enumerate (omega_vec):

fun_v[ii] = self.determinant_boundary_cond(omega=om_ii, z=heights)

if ii > O and np.sign(fun_v[ii]) != np.sign(fun_v[ii - 1]):

nsol += 1
idx_change.append(ii - 1)

if nsol == n_modes:
break
omega_sol = []

for ii in idx_change:
if len(omega_sol) == n_modes:
break
sol = brentq(

f=self.determinant_boundary_cond, a=omega_vec[ii], b=omega_vec[ii + 1],

args=(heights)
)

omega_sol.append(sol)

if len(omega_sol) < n_modes:
print(
"Solution areyless than,required_ number of modes."
"uTryyapylargeryinterval or,larger bounds."

)
if len(omega_sol) == O0:
print ("Failed,in obtaining;solutions!!")

omega = np.array(omega_sol)
fn = omega / (2 * np.pi)

if isinstance(pts, int):

pts_pieces = np.linspace(heights[:-1], heights[1:], pts, endpoint=False).T

pts = pts_pieces.ravel()
pts = np.insert(pts, len(pts), heights[-1])

phi = np.zeros((len(pts), len(omega)))
pts = np.asarray(pts)
pts = pts.flatten()

coeff = np.zeros(((n_b * 4), 1))
for ii, om_ii in enumerate(omega):

mm = self.determinant_boundary_cond(
omega=om_ii, z=heights, build=True

)
rtol = 0.1
not_converge = True

while not_converge:

coeff = nullspace(mm, atol=0, rtol=rtol).reshape(-1, 1)

if coeff.shape == (0, 1) or coeff.shape[0] > 4 * len(self.beams):
rtol /= 10

else:
not_converge = False

for ix, beam in enumerate(self.beams):

idx_z = (pts >= heights[ix]) & (pts <= heights[ix + 1])

beta_ = beam.get_beta(omega=om_ii)
z_ix = ptsl[idx_z]
phi[idx_z, ii] = np.sum(np.real(

w_z(beta_, z=z_ix) * coeff[4 * ix:(4 * ix + 4)]1),

)
phi_ix = phil[idx_z, ii]

axis=0
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phi /= philnp.argmax(np.abs(phi), axis=0), np.arange (phi.shape[1])]

self.fn = fn
self.phi = phi

return fn, phi, pts

def determinant_boundary_cond (
self,
omega: float,
z: np.ndarray,
build: bool = False,

n_b = len(self.beams)

mm = np.zeros((4 * n_b, 4 * n_b))

bc_s, bc_e = self.bc

f__ =[]
for ix, beam in enumerate(self.beams):
f = beam.factor_continuity ()
f__.append(f)
if ix == O0:
f_ = f__[ix]
else:
f_ = f__[ix - 1]
bc_s_ix = (bc_s if ix == 0 else "continuity+")
bc_e_ix = (bc_e if ix == (n_b - 1) else "continuity-")
_beta = beam.get_beta(omega=omega)
_mm_s = beam.evaluate_bc(beta=_beta, factor=f_, z=z[ix], flag=bc_s_ix)
_mm_e = beam.evaluate_bc(beta=_beta, factor=f_, z=z[ix + 1], flag=bc_e_ix)

c_ix = np.arange(4 * ix, (4 * ix + 4))
r_st = (ix if ix == 0 else 4 * ix - 2)

_mm = np.vstack([_mm_s, _mm_e])

r_ix = np.arange(r_st, r_st + _mm.shapel[0])

mm[np.ix_(r_ix, c_ix)] =

mm /= np.max(np.abs(mm), axis=1).reshape(-1, 1)

if build:
return mm
else:
return np.linalg.det (mm)

Replication of the article by Taciroglu et al. [2]

%load_ext autoreload
%autoreload 2
from copy import deepcopy

from pyvibe.models.Timoshenko_verification_article import Timo, TimoPieceWiseBeamlD

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

# Verification study Timoshenko beam model
In this notebook, a verification study is conducted to check the Timoshenko code written.

The

article "Efficient model_updating of a multi-storey frame and its foundation stiffnessg
fromyearthquakerecords usinga timoshenko beam model" is replicated.

## Parameters

# Dimension Parameters:

L = 44 #[m]

Lt = np.array([11,11,11,11]) #[m]
B = 23 #[m]

D = 21 #[m]
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A =B * D #[m2]
I = 1/12 * B * D#**3 #[m4]
H = Lt/L #[-]

# Material properties:
rho = np.array([400,400,400,400]) #[kg/m3]

E = np.array([6.6e8,6.6e8,6.6e8,6.6e8]) #[N/m2]

G = np.array([2.75e8,2.75e8,2.75e8,2.75e8]) #[N/m2]
k = 0.85 #[-]

# Springs:

kr = 2.048el12 #[Nm/rad]
kt = 1.841e10 #[N/m]

# Boundary conditions:
bc = ("rot+transl", "free")

#Ground propertiesGs
Gs = 2.68e8 #[N/m]
rhos = 2.7e3 #[kg/m3]
modes = 3

## Procedure

timoshenko = []
for ix in range(len(H)):

timoshenko.append(Timo (params = {"E": E[ix], "I":
"rhos":rhos,
"B": B, "D": D,"kr": kr, "kt": kt},height= H[ix]))

"rho": rho[ix], "A": A, "kG": k*G[ix], "Gs":Gs,

pb = TimoPieceWiseBeamlD (beams=timoshenko, bc=bc)
fn, phi, pts = pb.modeshapes(n_modes=modes)

normalization_factors = phil[-1, :]
phi = phi / normalization_factors
## Results

print ("The,first three natural frequencies  (in Hz) of the Timoshenko beam are:")

for ii in range(3):
print (£f"Mode {ii +,1},:", fnl[ii])

print (fn)
plt.figure(figsize=(4, 6))

# Plot mode shapes

plt.plot(phi[:,0], pts, color='black', label='Mode,1l', linewidth=1.8)
plt.plot(phil[:,1], pts, '--', color='firebrick', label='Mode 2',
plt.plot(phil[:,2], pts, '-.', color='mediumblue', label='Mode 3",

# Set limits and labels

plt.xlim(-1.5, 1.5)

plt.ylim(0, 1.1)

plt.xlabel('Normalized displacement(-)"')
plt.ylabel ('Normalized height(-)"')

# Add legend and customize grid
plt.legend ()

plt.grid(True, which='both', color='grey', linestyle=':
plt.gca().set_axisbelow(True) # Ensure grid is behind other plot elements

plt.gca() .spines['top'].set_linewidth(0.5)
plt.gca() .spines['top'].set_color('black')
plt.gca() .spines['right'].set_linewidth(0.5)
plt.gca() .spines['right'].set_color('black')
plt.gca() .spines['bottom'].set_linewidth(0.5)
plt.gca() .spines['bottom'].set_color('black')
plt.gca() .spines['left'].set_linewidth(0.5)
plt.gca() .spines['left'].set_color('black')
plt.show ()

linewidth=1.8)
linewidth=1.8)

linewidth=1) # Customize grid
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Comparison with an Euler-Bernoulli beam

%load_ext autoreload
%autoreload 2

from pyvibe.models.Timoshenko import Timo, TimoPieceWiseBeamlD

import numpy as np

from pyvibe.models.Euler_Bernoulli import PieceWiseBeamilD,

from pyvibe.models.Shear import Shear1D, Shear

%matplotlib inline
# Dimension Parameters:

L = 44 #[m]

Lt = np.array([11,11,11,11]) #[m]

B = 23 #[m]

D = 21 #[m]

A =B * D #[m2]

I = 1/12 % B * D**3

H = Lt/L

# Material properties:

rho = np.array([400,400,400,400]) #[kg/m3]

E = np.array([6.6e8,6.6e8,6.6e8,6.6e8]) #[N/m2]
G = np.array([2.75e8,2.75e8,2.75e8,2.75e8]) #[N/m2]
k = 0.85 #[-]

# Springs

kr = 2.048el12 #[Nm/rad]
kt = 1.841e10 #[N/m]

# Boundary conditions:
bc = ("rot+transl", "free")

# Scalar boundaries

amount_points = 50
left = 1

right = 100

# MAC

def adjust_modes(phil, phi2):
rmse_plus = np.sqrt(np.mean((phil - phi2) *x* 2))
rmse_minus = np.sqrt(np.mean((phil + phi2) ** 2))
flip = np.ones_like(phi2)
flip[rmse_plus > rmse_minus] = -1
phi_f1lip = phil * flip
return phi_flip

def modal_assurance_criterion(phil, phi2):
phi2 = adjust_modes(phi2, phil)
mac = np.abs(np.conj(phil).dot(phi2))**2 / \

BernulliBeam

(np.conj(phil) .dot(phil) * np.conj(phi2).dot (phi2))

return mac

timoshenko = []

for ix in range(len(H)):
timoshenko.append (Timo (params={"E": E[ix], "I": I,

"rho": rho[ix], "A": A , "kG": k * G[ix], "kr": kr,

model = TimoPieceWiseBeamlD (beams=timoshenko, bc = bc)
fn, phi, pts = model.modeshapes()

change = np.logspace(np.loglO(left), np.loglO(right),
euler = []

for ix in range(len(H)):

euler.append(BernulliBeam(params={"ei": E[ix]*I, "L":

ngkgM,

L,

amount_points)

L,

"rho": rho[ix], "A": A , "kr": kr, "kt": kt}, height=H[ix]))

model = PieceWiseBeamlD(beams=euler, bc = bc)
fn_e, phi_e, pts_e = model.mode_shapes()

def change_kG(change, E, I, L, rho, A, k, G, kr, kt, H,

bc):
f1 = []
£2 = []

£3 = []

kt}, height=H[ix]))
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ml
m2

m3 =

(1
(1
(1

for value in change:

timoshenko = []

for ix in range(len(H)):
timoshenko.append(Timo (params={"E": E[ix], "I": I,"L": L,
"rho": rho[ix], "A": A , "kG": k * G[ix] * value, "kr": kr,
"kt": kt}, height=H[ix]))

model = TimoPieceWiseBeamlD (beams=timoshenko, bc = bc)

fn, phi, pts = model.modeshapes ()

f1.append (fn[0])
£2.append (fn[1])
£3.append (fn[2])
ml.append(modal_assurance_criterion(phi_e[:, 0], phil:, 0]))
m2.append (modal_assurance_criterion(phi_e[:, 1], phil:, 11))
m3.append (modal_assurance_criterion(phi_e[:, 2], phil[:, 2]))

return f1, f2, £f3,ml1,m2,m3

f1_kG, f2_kG, f3_kG, ml_kG, m2_kG, m3_kG = change_kG(change, E, I, L, rho, A, k, G, kr,

kt, H, bc)

import numpy as np
import matplotlib.pyplot as plt

def plot_elements(f1l_kG, f2_kG, f3_kG, change, fn_e, t):

plt.

figure(figsize=(7, 5))

fn_e_O_array = np.full_like(change, fn_e[0])

fn_e_1_array

np.full_like(change, fn_e[1])

fn_e_2_array = np.full_like(change, fn_e[2])

plt
plt

plt

plt
plt

plt

plt.

.plot(change, fn_e_O_array, color='black', linestyle='dotted', linewidth=1.3, zorder

=1)

.plot(change, fn_e_1_array, color='black', linestyle='dotted', linewidth=1.3, zorder

=1)

.plot(change, fn_e_2_array, color='black', linestyle='dotted', linewidth=1.3, zorder

=1)

.text (change[0], fn_e_O_array[0] + 1, f'Euler $\omega_1$,: {fn_e[0]:.2f} Hz', fontsize

=10, color='black', zorder=2, fontname='Arial')

.text (change[0], fn_e_1_array[0] + 1, f'Euler $\omega_2$: {fn_e[1]:.2f} Hz', fontsize

=10, color='black', zorder=2, fontname='Arial')

.text (change[0], fn_e_2_array[0] + 1, f'Euler $\omega_3$: {fn_e[2]:.2f} Hz', fontsize

=10, color='black', zorder=2, fontname='Arial')

scatter (change, f1_kG, color='black', linewidth=1.3,

label='Timoshenko $\omega_{1}$', s=9)

plt.

scatter (change, f2_kG, color='firebrick', linewidth=1.3,

label="'Timoshenko $\omega_{2}$', s=9)

plt.

scatter (change, £3_kG, color="'mediumblue', linewidth=1.3,

label='Timoshenko_ $\omega_{3}$', s=9)

plt

plt
plt
plt
plt
plt
plt

.xlabel('Scalar applied on, the initialvalue 0f parameter $G$,(-)"', fontsize=12,

fontname="'Arial')

.ylabel ('Natural,frequency $f_n$,,(Hz)', fontsize=12, fontname='Arial')
.ylim(-1, 30)

.x1im (0.9, 110)

.gca() .set_facecolor('white')

.grid(True, which='both', color='grey', linestyle=':', linewidth=0.5)
.xscale('log')

[

#plt.title('Model output Timoshenko and Euler-Bernoulli beam model', fontsize=14,

plt.
.gca() .spines['top'].set_linewidth(0.5)
.gca() .spines['top'].set_color('black')
.gca() .spines['right'].set_linewidth(0.5)
.gca() .spines['right'].set_color('black')

plt
plt
plt
plt

fontname="'Arial')
legend(fontsize=10, prop={'family': 'Arial'})
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plt.gca() .spines['bottom'].set_linewidth(0.5)
plt.gca() .spines['bottom'].set_color('black')
plt.gca() .spines['left'].set_linewidth(0.5)
plt.gca() .spines['left'].set_color('black')
plt.gca().set_xticks([1, 10, 100])

plt.gca() .set_xticklabels(['1', '10', '100'], fontname='Arial')
plt.show ()
plot_elements (f1_kG, f2_kG, £3_kG, change, fn_e, 2)

Models

%load_ext autoreload

%autoreload 2

from copy import deepcopy

from pyvibe.models.Timoshenko import Timo, TimoPieceWiseBeamlD, TimoPieceWiseBeam2D,
UpdatingMethod, cost_funcliD, cost_func2D,update_model

import numpy as np

from pyvibe.models.Euler_Bernoulli import PieceWiseBeamlD, BernulliBeam

import matplotlib.pyplot as plt

%matplotlib inline

## Parameters

# Dimension Parameters:

L = 160.58 #[m]

Lt = np.array([5.735, 11.47, 26.640, 89.91, 26.825]) #[m]

B 28 #[m]

D 28 #[m]

A =B % D #[m2]

#I_x = np.array([619.21, 948.47, 2727.22, 2335.82, 905.52]) #[m4]
#I_y = np.array([1536.25, 959.01, 1245.46, 1202.07, 831.57]) #[m4]
I_yy = np.array([1444,1500,1393,1389,1293]) #[m4]

I_xx = np.array([1532,1548,2796,2324,760]) #[m4]

H = Lt/L #[-]

# Material properties:
rho = np.array([1933, 495, 486, 440, 383]) #[kg/m3]

E = np.array([38.2e9, 38.2e9, 38.2e9, 38.2e9, 32.8e9]) #[N/m2]
v = 0.2 #[-]

G = E/(2x(1+v)) #[N/m~2]

k = 0.85 #[-]

# Springs:

kr_x = 2380e9 #[Nm/rad]

kr_y = 2625e9 #[Nm/rad]
kt_y = 19e9 #[N/m]
Kt x = 4e9 #[N/m]

#boudary conditions:
bc = ("rot+transl", "free")

## Procedure

timoshenko_x = []
for ix in range(len(H)):
timoshenko_x.append(Timo (params={"E": E[ix], "I": I_xx[ix],"L": L,"rho": rho[ix], "A": A
, "kG": k * G[ix], "kr": kr_x, "kt": kt_x}, height=H[ix]))
timoshenko_y = []
for ix in range(len(H)):
timoshenko_y.append(Timo (params={"E": E[ix], "I": I_yy[ix],"L": L,"rho": rho[ix], "A": A
, "kG": k * G[ix], "kr": kr_y, "kt": kt_y}, height=H[ix]))
model2D = TimoPieceWiseBeam2D (beams_x=timoshenko_x, beams_y=timoshenko_y, bc = bc)
fn_x, fn_y, phi_x, phi_y, pts_x, pts_y = model2D.modeshapes()

print ("The,first, two natural frequencies  (in Hz) in ,x-direction are:")
for ii in range(2):
print (f"Mode  {ii +,1},:", fn_x[iil)

print ("The,first three natural frequencies (in Hz)_ in y-direction are:")
for ii in range(3):
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print (£"Mode{ii +,1}y:", fn_y[iil)

euler_x = []
for ix in range(len(H)):
euler_x.append(BernulliBeam(params={"ei": E[ix]*I_xx[ix], "L": L,"rho": rho[ix], "A": A ,
"kr": kr_x, "kt": kt_x}, height=H[ix]))
model_x = PieceWiseBeamlD (beams=euler_x, bc = bc)
fn_xe, phi_xe, pts_xe = model_x.mode_shapes ()
euler_y = []
for ix in range(len(H)):
euler_y.append(BernulliBeam(params={"ei": E[ix]*I_yy[ix], "L": L,"rho": rho[ix], "A": A ,
"kr": kr_y, "kt": kt_yl}, height=H[ix]))
model_y = PieceWiseBeamilD(beams=euler_y, bc = bc)
fn_ye, phi_yie, pts_ye = model_y.mode_shapes()

print ("The,first, two natural frequencies (in Hz) ,in, ,x-directiongare:")
for ii in range(2):
print (f"Mode{ii +,1},:", fn_xe[iil)

print ("The,first,three natural, frequenciesy (in Hz)_ in, y-direction are:")
for ii in range(3):
print (f"Mode{ii +,1},:", fn_yel[iil)

# Dimension Parameters:

L = 160.58 #[m]

Lt = np.array([160.58]) #[m]
B = 28 #[m]

D = 28 #[m]

A =B * D #[m2]

I_yy = np.array([1384]) #[m4]
I_xx = np.array([2057]) #[m4]
H = Lt/L #[-]

# Material properties:
rho = np.array([5645]) #[kg/m3]

E = np.array([37.3e9]) #[N/m2]
v = 0.2 #[-]

G = E/(2x(1+v)) #[N/m~2]

k = 0.85 #[-]

# Springs:

kr_x = 2380e9 #[Nm/rad]

kr_y = 2625e9 #[Nm/rad]
kt_y = 19e9 #[N/m]
Kt _x = 4e9 #[N/m]

#boudary conditions:
bc = ("rot+transl", "free")

timoshenko_xu = []
for ix in range(len(H)):
timoshenko_xu.append(Timo(params={"E": E[ix], "I": I_xx[ix],"L": L,"rho": rhol[ix], "A": A
, "kG": k * G[ix], "kr": kr_x, "kt": kt_x}, height=H[ix]))
timoshenko_yu = []
for ix in range(len(H)):
timoshenko_yu.append(Timo(params={"E": E[ix], "I": I_yy[ix],"L": L,"rho": rho[ix], "A": A
, "kG": k * G[ix], "kr": kr_y, "kt": kt_y}, height=H[ix]))
model2D = TimoPieceWiseBeam2D (beams_x=timoshenko_xu, beams_y=timoshenko_yu, bc = bc)
fn_xu, fn_yu, phi_xu, phi_yu, pts_xu, pts_yu = model2D.modeshapes ()
print (timoshenko_yu)
print ("The,first twoynatural frequencies (in Hz) in x-directiongare:")
for ii in range(2):
print (f"Mode {ii +,1},:", fn_xuliil])

print ("The,first, three_ natural frequencies,(in_ Hz)_ in y-direction are:")
for ii in range(3):
print (f"Mode {ii +,1},:", fn_yuliil])
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Input Parameters

1 from pyvibe.models.Timoshenko import Timo, TimoPieceWiseBeamilD,
UpdatingMethod, cost_funcliD, cost_func2D,update_model

TimoPieceWiseBeam2D,

2 import numpy as np

3 import matplotlib.pyplot as plt

4

5 # MAC

6 def adjust_modes(phil, phi2):

7 rmse_plus = np.sqrt(np.mean((phil - phi2) *x 2))
8 rmse_minus = np.sqrt(np.mean((phil + phi2) *x* 2))
9 flip = np.ones_like(phi2)

10 flip[rmse_plus > rmse_minus] = -1

11 phi_flip = phil * flip

12 return phi_flip

13

14 def modal_assurance_criterion(phil, phi2):

15 phi2 = adjust_modes(phi2, phil)

16 mac = np.abs(np.conj(phil).dot(phi2))**2 / \

17 (np.conj(phil) .dot(phil) * np.conj(phi2).dot(phi2))
18 return mac

19 #

20 # Parameter kr
21 def change_kr(change, fn_x, fn_y, phi_x, phi_y, E_x, E_.y, I_x, I_y, L, rho, A, k, G_x, G_y,

kr_x, kr_y, kt_x, kt_y, H,

22 bc):

23 Change_f1_x = []

24 Change_£f2_x = []

25 Change_f3_x = []

26 Change_f1_y = []

27 Change_f2_y = []

28 Change_£f3_y = []

29 Change_ml_x = []

30 Change_m2_x = []

31 Change_m3_x = []

32 Change_mi_y = []

33 Change_m2_y = []

34 Change_m3_y = []

35

36 for value in change:

37 kr_new_x = kr_x * value

38 kr_new_y = kr_y * value

39 timoshenko_x = []

40 for ix in range(len(H)):

41 timoshenko_x.append (Timo (

42 params={"E": E_x[ix], "I": I_x[ix], "L": L, "rho": rhol[ix], "A": A[ix], "kG":
k * G_x[ix], "kr": kr_new_x,

43 "kt": kt_x}, height=H[ix]))

44 timoshenko_y = []

45 for ix in range(len(H)):

46 timoshenko_y.append (Timo (

a7 params={"E": E_y[ix], "I": I_y[ix], "L": L, "rho": rhol[ix], "A": A[ix], "kG":
k * G_y[ix], "kr": kr_new_y,

48 "kt": kt_y}, height=H[ix]))

49

50 model2D = TimoPieceWiseBeam2D (beams_x=timoshenko_x, beams_y=timoshenko_y, bc=bc)

51 fn_x_kr, fn_y_kr, phi_x_kr, phi_y_kr, pts_x_kr, pts_y_kr = model2D.modeshapes ()

52

53 Change_f1_x.append (((fn_x_kr [0] - fn_x[0]) / fn_x[0]) * 100)

54 Change_f2_x.append (((fn_x_kr[1] - fn_x[1]) / fn_x[1]) * 100)

55 Change_f3_x.append (((fn_x_kr[2] - fn_x[2]) / fn_x[2]) * 100)

56 Change_f1_y.append (((fn_y_kr[0] - fn_y[0]) / fn_y[0]) * 100)

57 Change_f2_y.append (((fn_y_kr[1] - £fn_y[11) / £fn_y[11) * 100)

58 Change_£f3_y.append (((fn_y_kr[2] - fn_y[2]) / fn_y[2]) = 100)

59

60 Change_ml_x.append(modal_assurance_criterion(phi_x[:, 0], phi_x_kr[:, 0]))

Change_m2_x.
Change_m3_x.

append (modal_assurance_criterion(phi_x[:,
append (modal _assurance_criterion(phi_x[:,

1], phi_x_kr[:, 1]1))
2], phi_x_kr[:, 21))
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Change_ml_y.append(modal_assurance_criterion(phi_y[:, 0], phi_y_kr[:, 0]))

Change_m2_y.append(modal_assurance_criterion(phi_yl[:,

1], phi_y_krl[:,

11))

Change_m3_y.append(modal_assurance_criterion(phi_y[:, 2], phi_y_kr[:, 2]))

return Change_f1_x,
Change_mil_x,

Change_f2_x, Change_f3_x,
Change_m2_x, Change_m3_x, Change_ml_y,

# Parameter kt
def change_kt(change, fn_x, fn_y, phi_x, phi_y, E_x, E_.y, I_x, I_y, L, rho, A, k, G_x, G_y,

kr_x, kr_y, kt_x,
bc):

Change_f1_x = []

Change_£f2_x = []

Change_f3_x
Change_f1_y = []
Change_f2_y = []
Change_f3_y = []
Change_ml_x = []
Change_m2_x = []
Change_m3_x = []
Change_ml_y = []
Change_m2_y = []
Change_m3_y = []

kt_y, H,

]
—
—

for value in change:

kt_new_x = kt_x * value
kt_new_y = kt_y * value
timoshenko_x = []

for ix in range(len(H)):
timoshenko_x.append (Timo (

kr_x, kr_y, kt_x,
bec):
Change_f1_x = []
Change_f2_x = []
Change_£3_x = []
Change_f1_y = []
Change_f2_y = []
Change_f3_y = []
Change_mi_x = []
Change_m2_x = []
Change_m3_x = []

kt_y, H,

Change_£f1_y,
Change_m2_y,

Change_£f2_y,

Change_£f3_y,

Change_m3_y

params={"E": E_x[ix], "I": I_x[ix], "L": L, "rho": rhol[ix], "A": A[ix], "kG":
k * G_x[ix], "kr": kr_x,
"kt": kt_new_x}, height=H[ix]))
timoshenko_y = []
for ix in range(len(H)):
timoshenko_y.append (Timo (
params={"E": E_y[ix], "I": I_y[ix], "L": L, "rho": rholix], "A": A[ix], "kG":
k x G_y[ix], "kr": kr_y,
"kt": kt_new_y}, height=H[ix]))
model2D = TimoPieceWiseBeam2D (beams_x=timoshenko_x, beams_y=timoshenko_y, bc=bc)
fn_x_kt, fn_y_kt, phi_x_kt, phi_y_kt, pts_x_kt, pts_y_kt = model2D.modeshapes()
Change_f1_x.append (((fn_x_kt[0] - fn_x[0]) / fn_x[0]) * 100)
Change_f2_x.append (((fn_x_kt[1] - fn_x[1]) / fn_x[1]) * 100)
Change_£3_x.append (((fn_x_kt[2] - fn_x[2]) / fn_x[2]) * 100)
Change_f1_y.append (((fn_y_kt[0] - fn_y[0]) / fn_y[0]) * 100)
Change_f2_y.append (((fn_y_kt[1] - fn_y[1]1) / £n_y[1]) * 100)
Change_f3_y.append (((fn_y_kt[2] - fn_y[2]) / fn_y[2]) * 100)
Change_ml_x.append(modal_assurance_criterion(phi_x[:, 0], phi_x_kt[:, 0]))
Change_m2_x.append(modal_assurance_criterion(phi_x[:, 1], phi_x_kt[:, 1]))
Change_m3_x.append(modal_assurance_criterion(phi_x[:, 2], phi_x_kt[:, 2]))
Change_ml_y.append(modal_assurance_criterion(phi_y[:, 0], phi_y_kt[:, 0]))
Change_m2_y.append(modal_assurance_criterion(phi_y[:, 1], phi_y_kt[:, 1]1))
Change_m3_y.append(modal_assurance_criterion(phi_yl[:, 2], phi_y_kt[:, 2]))
return Change_f1_x, Change_f2_x, Change_f3_x, Change_f1_y, Change_f2_y, Change_f3_y,
Change_ml_x, Change_m2_x, Change_m3_x, Change_ml_y, Change_m2_y, Change_m3_y
# Parameter I
def change_I(change, fn_x, fn_y, phi_x, phi_y, E_x, E_y, I_x, I_y, L, rho, A, k, G_x, G_y,
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Change _mi_y = []
Change_m2_y = []
Change _m3_y = []

for value in change:
print (value)

I_new_x = I_x * value
I_new_y = I_y * value
timoshenko_x = []

for ix in range(len(H)):
timoshenko_x.append (Timo (

params={"E": E_x[ix], "I": I_new_x[ix], "L": L, "rho": rhol[ix], "A": A[ix],
kG": k * G_x[ix], "kr": kr_x,
"kt": kt_x}, height=H[ix]))
timoshenko_y = []
for ix in range(len(H)):
timoshenko_y.append (Timo (
params={"E": E_y[ix], "I": I_new_yl[ix], "L": L, "rho": rho[ix], "A": A[ix],
kG": k * G_y[ix], "kr": kr_y,
"kt": kt_y}, height=H[ix]))
model2D = TimoPieceWiseBeam2D (beams_x=timoshenko_x, beams_y=timoshenko_y, bc=bc)
fn_x_I, fn_y_ I, phi_x_I, phi_y_ I, pts_x_I, pts_y_I = model2D.modeshapes()
print (fn_x_I)
Change_f1_x.append(((fn_x_I[0] - fn_x[0]) / fn_x[0]) * 100)
Change_f2_x.append (((fn_x_I[1] - fn_x[1]) / fn_x[1]) * 100)
Change_£f3_x.append (((fn_x_I[2] - fn_x[2]) / fn_x[2]) = 100)
Change_f1_y.append (((fn_y_I[0] - fn_y[0]) / £fn_y[0]) = 100)
Change_f2_y.append (((fn_y_I[1] - fn_y[1]) / £fn_y[1]1) = 100)
Change_f3_y.append (((fn_y_I[2] - fn_y[2]) / fn_y[2]) = 100)
Change_ml_x.append(modal_assurance_criterion(phi_x[:, 0], phi_x_I[:, 0]))
Change_m2_x.append(modal_assurance_criterion(phi_x[:, 1], phi_x_I[:, 1]1))
Change_m3_x.append(modal_assurance_criterion(phi_x[:, 2], phi_x_I[:, 2]))
Change_ml_y.append(modal_assurance_criterion(phi_y[:, 0], phi_y_I[:, 01))
Change_m2_y.append(modal_assurance_criterion(phi_y[:, 1], phi_y_I[:, 1]))
Change_m3_y.append(modal_assurance_criterion(phi_y[:, 2], phi_y_I[:, 21))

return Change_f1_x, Change_f2_x, Change_f3_x, Change_f1l_y,
Change_mil_x, Change_m2_x, Change_m3_x, Change_ml_y, Change_m2_y,

Change_£f2_y,

# Parameter E

Change_£f3_y,
Change_m3_y

def change_E(change, fn_x, fn_y, phi_x, phi_y, E_x, E_y, I_x, I_y, L, rho, A, k, G_x, G_y,

kr_x, kr_y, kt_x,
be):
Change_f1_x = []
Change_£f2_x = []
Change_f3_x = []
Change_f1_y = []
Change_f2_y = []
Change_£3_y = []
Change_ml_x = []
Change_m2_x = []
Change_m3_x = []
Change_mi_y = []
Change_m2_y = []
Change_m3_y = []

kt_y, H,

for value in change:

E_new_x = E_x * value
E_new_y = E_y * value
timoshenko_x = []

for ix in range(len(H)):

timoshenko_x.append (Timo (

params={"E": E_new_x[ix], "I": I_x[ix],
kG": k * G_x[ix], "kr": kr_x,
"kt": kt_x}, height=H[ix]))

timoshenko_y = []
for ix in range(len(H)):

timoshenko_y.append (Timo (

"L': L, "rho":

rho[ix],

npn .

Alix],
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params={"E": E_new_y[ix],
n kr n B
kt_y}, height=H[ix]))

model2D =
fn_x_E, fn_y
Change_f1_x.
Change_f2_x.
Change_f3_x.
Change_f1_y.
Change_f2_y.
Change_£f3_y.

Change_mil_x.
Change_m2_x.
Change_m3_x.
Change_ml_y.
Change_m2_y.
Change_m3_y.

return Change_f1_x,

Change_ml_x,

# Parameter kG
def change_kG(change, fn_x, fn_y, phi_x, phi_y, E_x, E_y, I_x

_E,

kG": k * G_ylix],
n kt n :

phi_x_E,

append (((fn_x_E[0]
append (((fn_x_E[1]
append (((fn_x_E[2]
append (((fn_y_E[0]
append (((fn_y_E[1]
append (((fn_y_E[2]

wgn .
kr_y,

pts_x_E,

fn_x[0])
fn_x[1])
fn_x[2])
fn_y [0])
fn_y[1])
fn_y[2])

NN N NN NN

I_ylix],

TimoPieceWiseBeam2D (beams_x=timoshenko_x,
phi_y_ E,

p

nyn .

ts_y_E =

fn_x[0])
fn_x[1])
fn_x[2])
fn_y [0])
fn_y[1])
fn_y[2])

append (modal_assurance_criterion(phi_x[:,
append (modal_assurance_criterion(phi_x[:,
append (modal_assurance_criterion(phi_x[:,
append (modal_assurance_criterion(phi_y[:,
append(modal_assurance_criterion(phi_y[:,
append (modal_assurance_criterion(phi_y[:,
Change_f£f1_y,

Change_£f2_x,
Change_m2_x,

kr_x, kr_y, kt_x, kt_y, H,
be) :

Change_f1_x = []
Change_£f2_x = []
Change_f3_x 1
Change_f1_y []
Change_f2_y (1
Change_f3_y [1
Change_ml_x [1
Change _m2_x 1
Change_m3_x 1
Change_mil_y (1
Change_m2_y []
Change_m3_y (]

for value in change:

kG_new_x = k
kG_new_y = k
timoshenko_x
for ix in ra

timoshen

params={"E": E_x[ix],

timoshenko_y
for ix in ra
timoshen

params={"E": E_yl[ix],

model2D =
fn_x_kG, fn_
Change_f1_x.
Change_f2_x.
Change_f3_x.
Change_f1_y.
Change_f2_y.
Change_£f3_y.

Change_ml_x.
Change_m2_x.
Change_m3_x.
Change_ml_y.
Change_m2_y.

* G_x * value

* G_y * value

= [
nge (len(H)):
ko_x.append (Timo (

kG_new_x[ix],
s g
=[]
nge(len(H)):
ko_y.append (Timo (

kG_new_y [ix],
"kt n :

y_kG, phi_x_kG,

append (((fn_x_kG[0]
append (((fn_x_kG[1]
append (((fn_x_kG[2]
append (((fn_y_kG[0]
append (((fn_y_kG[1]
append (((fn_y_kG[2]

wpw.
n kr n :
kt_x}, height=H[ix]))

"I":
Wit
kt_y}, height=H[ix]))

Change_£3_x,
Change_m3_x,

I_x[ix]
kr_x,

I_yl[ix]
kr_y,

fn_x[0])
fn_x[1])
fn_x[2])
fn_y [0])
fn_y[1])
fn_y[2])

3

>

Change_ml_y,

TimoPieceWiseBeam2D (beams_x=timoshenko_x,

NN NN NN

npn oL, "

"L": L,

* X X X X *

L,

o],
11,
21,
o],
11,
21,

Change_m2_y,

phi_y_kG, pts_x_kG, pts_y_kG =

"rho'":

beams_y=timoshenko_y,
model2D.modeshapes ()

100)
100)
100)
100)
100)
100)

phi_x_E[:
phi_x_EL[:
phi_x_E[:
phi_y_EL[:
phi_y_E[:
phi_y_EL[:
Change_£f2_y,

, I_.y, L, rho,
rho": rholix],
"rho": rhol[ix],

beams_y=timoshenko_y,
model2D.modeshapes ()

fn_x[0]) * 100)

fn_x[1])
fn_x[2])
fn_y [0])
fn_y[1])
fn_y[2])

append (modal_assurance_criterion(phi_x[:,
append(modal_assurance_criterion(phi_x[:,
append (modal_assurance_criterion(phi_x[:,
append (modal_assurance_criterion(phi_y[:,
append (modal_assurance_criterion(phi_y[:,

*

* % ¥

0
1
2
0
1

100)
100)
100)
100)
100)

] s
P
1,
1,
1,

rho[ix],

phi_x_kG[:
phi_x_kGI[:
phi_x_kG[:
phi_y_kG[:
phi_y_kGI[:

nAn .

bc=bc)

01))

11))

21))

01))

11))

21))
Change_£3_y,

Change_m3_y

A, k, G_x,

"A": A[ix],

"A": A[ix],
bc=bc)

, 01))
, 11))
, 21))
, 01))
, 11))

Alix], "

G_y,

[ e

"RGE" .
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260 Change_m3_y.append(modal_assurance_criterion(phi_y[:, 2], phi_y_kG[:, 2]))
261 return Change_f1_x, Change_f2_x, Change_f3_x, Change_f1l_y, Change_f2_y, Change_f3_y,
Change_ml_x, Change_m2_x, Change_m3_x, Change_ml_y, Change_m2_y, Change_m3_y

262

263 # Parameter rho

264 def change_rho(change, fn_x, fn_y, phi_x, phi_y, E_x, E_y, I_x, I_y, L, rho, A, k, G_x, G_y,
kr_x, kr_y, kt_x, kt_y, H,

265 bc):

266 Change_f1_x = []

267 Change_£f2_x = []

268 Change_f3_x = []

269 Change_f1_y = []

270 Change_f2_y = []

271 Change_£f3_y = []

272 Change_ml_x = []

273 Change_m2_x = []

274 Change_m3_x = []

275 Change_mi_y = []

276 Change_m2_y = []

277 Change_m3_y = []

278

279 for value in change:

280 rho_new = rho * value

281 timoshenko_x = []

282 for ix in range(len(H)):

283 timoshenko_x.append (Timo (

284 params={"E": E_x[ix], "I": I_x[ix], "L": L, "rho": rho_new[ix], "A": A[ix], "

kG": k * G_x[ix], "kr": kr_x,

285 "kt": kt_x}, height=H[ix]))

286 timoshenko_y = []

287 for ix in range(len(H)):

288 timoshenko_y.append (Timo (

289 params={"E": E_y[ix], "I": I_y[ix], "L": L, "rho": rho_new[ix], "A": A[ix], "

kG": k * G_y[ix], "kr": kr_y,

290 "kt": kt_y}, height=H[ix]))

291

292 model2D = TimoPieceWiseBeam2D (beams_x=timoshenko_x, beams_y=timoshenko_y, bc=bc)

293 fn_x_rho, fn_y_rho, phi_x_rho, phi_y_rho, pts_x_rho, pts_y_rho = model2D.modeshapes ()

294

295 Change_f1_x.append (((fn_x_rho[0] - fn_x[0]) / fn_x[0]) * 100)

296 Change_f2_x.append (((fn_x_rho[1] - fn_x[1]) / fn_x[1]) * 100)

297 Change_£3_x.append (((fn_x_rho[2] - fn_x[2]) / fn_x[2]) * 100)

298 Change_f1_y.append (((fn_y_rho[0] - fn_y[0]) / fn_y[0]) * 100)

299 Change_f2_y.append (((fn_y_rho[1] - fn_y[1]) / £fn_y[1]) * 100)

300 Change_£3_y.append (((fn_y_rho[2] - fn_y[2]) / fn_y[2]) * 100)

301

302 Change_ml_x.append(modal_assurance_criterion(phi_x[:, 0], phi_x_rhol[:, 0]))

303 Change_m2_x.append(modal_assurance_criterion(phi_x[:, 1], phi_x_rhol[:, 1]))

304 Change_m3_x.append(modal_assurance_criterion(phi_x[:, 2], phi_x_rhol[:, 2]))

305 Change_ml_y.append(modal_assurance_criterion(phi_y[:, 0], phi_y_rhol[:, 0]))

306 Change_m2_y.append(modal_assurance_criterion(phi_y[:, 1], phi_y_rhol[:, 1]))

307 Change_m3_y.append(modal_assurance_criterion(phi_y[:, 2], phi_y_rhol[:, 2]))

308 return Change_f1_x, Change_f2_x, Change_f3_x, Change_f1_y, Change_f2_y, Change_f3_y,

Change_ml_x, Change_m2_x, Change_m3_x, Change_ml_y, Change_m2_y, Change_m3_y

309

310 [FEEEEe s o e o o e e e e oo s o e e s S e e e e e e e e e o o e e e e e e e oo oo ===

311

312 import matplotlib.pyplot as plt

313

314 import matplotlib.pyplot as plt

315 import numpy as np

316

317 def plot_per_parameter_influence(type, parameter, direction, parameter_change, *data):

318 plt.rcParams['font.family'] = 'Arial'

319

320 plt.figure(figsize=(7, 5))

321 colors = ['black', 'firebrick', 'steelblue'l]

322 linestyles = ['-', '-', '-']

323 mode = ['Mode,1x', 'Modeyly', 'Mode2y'l]

324 for mod, color, linestyle, data_array in zip(mode, colors, linestyles, data):

325 if type == 'frequency':
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plt
if

els

plt
plt
plt
plt
plt
plt
plt
plt
plt
plt
plt
plt

plt.

if isinstance(data_array[0], (list, np.ndarray)):
abs_data_array = [[abs(val) for val in sublist] for sublist in data_array]
else:
abs_data_array = [abs(val) for val in data_array]
plt.plot(parameter_change, abs_data_array, label=mod, color=color, linestyle=
linestyle, linewidth=1.2)
else:
plt.plot(parameter_change, data_array, label=mod, color=color, linestyle=
linestyle, linewidth=1.2)
.xlabel (f'Scalar appliedon,initial,;value parameter {parameter} (-)', fontsize=12)
type == 'frequency':
plt.ylabel('Absolutechange natural frequencyy $_{{fn}}$,(1%I)"', fontsize=12)
plt.ylim(-1.5, 100)
plt.yticks(np.arange(0, 110, 10))
plt.legend(loc="'upper right')
e:
plt.ylabel ('Change mode shape, $_{{MAC}}$,(-)', fontsize=12)
plt.ylim(0.70, 1.01)
plt.yticks(np.arange(0.70, 1.05, 0.05))
plt.legend(loc="'loweryright')
.gca() .spines['top'].set_linewidth(0.5)
.gca() .spines['top'].set_color('black')
.gca() .spines['right'].set_linewidth(0.5)
.gca() .spines['right'].set_color('black')
.gca() .spines['bottom'].set_linewidth(0.5)
.gca() .spines['bottom'].set_color('black')
.gca() .spines['left'].set_linewidth(0.5)
.gca() .spines['left'].set_color('black"')
.xscale('log')
.gca() .set_xticks([0.1, 1, 10])
.gca() .set_xticklabels(['0O.1', '1', '10'])
.grid(True, color='grey', linestyle=':"')
show ()

%load_ext autoreload

%autoreload 2

from pyvibe.models.Timoshenko import Timo, TimoPieceWiseBeam2D
from pyvibe.studies.influence_parameters import change_E, change_rho, change_kG, change_kr,
change_I, change_kt, plot_per_parameter_influence
import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

## Parameters

# Dimension Parameters:
160.58 #[m]
np.array([5.735, 11.47, 26.640, 89.91, 26.825]) #[m]

L =
Lt =
B
D
A =
#I_x
#I1_y
I_yy
I_xx
H =

28
28
B *

#[m]
#[m]
D #[m2]

= np.array([619.21, 948.47, 2727.22, 2335.82, 905.52]) #[m4]

Lt/

= np.array([1536.25, 959.01, 1245.46, 1202.07, 831.57]) #[m4]

np.array([1444,1500,1393,1389,1293]) #[m4]
np.array ([1532,1548,2796,2324,760]) #[m4]
L #[-]

# Material properties:

rho = np.array([1933, 495, 486, 440, 383]) #[kg/m3]

E = np.array([38.2e9, 38.2e9, 38.2e9, 38.2e9, 32.8e9]) #[N/m2]
v = 0.2 #[-]

G = E/(2%(1+v)) #[N/m~2]

k = 0.85 #[-]

# Springs:

kr_x = 2380e9 #[Nm/rad]

kr_y = 2625e9 #[Nm/radl]

kt_y = 19e9 #[N/m]

kt_x = 4e9 #[N/m]
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#boudary conditions:
bc = ("rot+transl", "free")

# Scalar boundaries

amount_points = 300
left = 0.1
right = 10

## Procedure

timoshenko_x = []
for ix in range(len(H)):
timoshenko_x.append(Timo (params={"E": E[ix], "I": I_xx[ix],"L": L,
, "kG": k * G[ix], "kr": kr_x, "kt": kt_x}, height=H[ix]))
timoshenko_y = []
for ix in range(len(H)):
timoshenko_y.append(Timo (params={"E": E[ix], "I": I_yy[ix],"L": L,"rho": rho[ix], "A": A
"kG": k * G[ix], "kr": kr_y, "kt": kt_y}, height=H[ix]))
model2D = TimoPieceWiseBeam2D (beams_x=timoshenko_x, beams_y=timoshenko_y, bc = bc)
fn_x, fn_y, phi_x, phi_y, pts_x, pts_y = model2D.modeshapes ()
change = np.logspace(np.loglO(left), np.loglO(right), amount_points)

"rho": rho[ix], "A": A

Change_f1_x_kr, Change_f2_x_kr, Change_f3_x_kr, Change_f1_y_kr, Change_f2_y_kr,
Change_f3_y_kr, Change_ml_x_kr, Change_m2_x_kr, Change_m3_x_kr, Change_mil_y_kr,
Change_m2_y_kr, Change_m3_y_kr = change_kr(change, fn_x, fn_y, phi_x, phi_y, E, E, I_xx,
I_yy, L, rho, A, k, G, G, kr_x, kr_y, kt_x, kt_y, H, bc)

Change_f1_x_kt, Change_f2_x_kt, Change_f3_x_kt, Change_f1_y_kt, Change_f2_y_kt,
Change_f3_y_kt, Change_ml_x_kt, Change_m2_x_kt, Change_m3_x_kt, Change_ml_y_kt,
Change_m2_y_kt, Change_m3_y_kt = change_kt(change, fn_x, fn_y, phi_x, phi_y, E, E, I_xx,
I_yy, L, rho, A, k, G, G, kr_x, kr_y, kt_x, kt_y, H, bc)

Change_f1_x_I, Change_f2_x_I, Change_f3_x_I, Change_f1_y_I, Change_f2_y_I, Change f3_y_I,
Change_ml_x_I, Change_m2_x_I, Change_m3_x_I, Change_ml_y_I, Change _m2_y_I, Change_m3_y_I
= change_I(change, fn_x, fn_y, phi_x, phi_y, E, E, I_xx, I_yy, L, rho, A, k, G, G, kr_x,
kr_y, kt_x, kt_y, H, bc)

Change_f1_x_E, Change_f2_x_E, Change_f3_x_E, Change_f1_y_E, Change_f2_y_E, Change_f3_y_E,
Change_ml_x_E, Change_m2_x_E, Change_m3_x_E, Change_ml_y_E, Change _m2_y_E, Change_m3_y_E
= change_E(change, fn_x, fn_y, phi_x, phi_y, E, E, I_xx, I_yy, L, rho, A, k, G, G, kr_x,
kr_y, kt_x, kt_y, H, bc)

Change_f1_x_kG, Change_f2_x_kG, Change_f3_x_kG, Change_f1_y_kG, Change_f2_y_kG,
Change_f3_y_kG, Change_ml_x_kG, Change_m2_x_kG, Change_m3_x_kG, Change_ml_y_kG,
Change_m2_y_kG, Change_m3_y_kG = change_kG(change, fn_x, fn_y, phi_x, phi_y, E, E, I_xx,
I_yy, L, rho, A, k, G, G, kr_x, kr_y, kt_x, kt_y, H, bc)

Change_f1_x_rho, Change_f2_x_rho, Change_f3_x_rho, Change_f1_y_rho, Change_f2_y_rho,
Change_f3_y_rho, Change_ml_x_rho, Change_m2_x_rho, Change_m3_x_rho, Change_ml_y_rho,
Change_m2_y_rho, Change_m3_y_rho = change_rho(change, fn_x, fn_y, phi_x, phi_y, E, E,
I_xx, I_yy, L, rho, A, k, G, G, kr_x, kr_y, kt_x, kt_y, H, bc)

## Results per parameter

plot_per_parameter_influence('frequency','kr','x', change, Change_f1_x_kr, Change_f2_x_kr)

plot_per_parameter_influence('mode','kr','x', change, Change_ml_x_kr, Change_m2_x_kr)

plot_per_parameter_influence('frequency','kr','y', change, Change_f1_y_kr, Change_f2_y_kr,
Change_f£3_y_kr)

plot_per_parameter_influence('mode','kr','y', change, Change_ml_y_kr, Change_m2_y_kr,
Change_m3_y_kr)

plot_per_parameter_influence('frequency','kt', 'x', change, Change_f1_x_kt, Change_f2_x_kt)

plot_per_parameter_influence('mode','kt', 'x', change, Change_ml_x_kt, Change_m2_x_kt)

plot_per_parameter_influence('frequency','kt', 'y', change, Change_f1_y_kt, Change_f2_y_kt,
Change_£f3_y_kt)

plot_per_parameter_influence('mode','kt', 'y', change, Change_ml_y_kt, Change_m2_y_kt,

Change_m3_y_kt)

plot_per_parameter_influence('frequency','I', 'x', change, Change_f1_x_I, Change_f2_x_I)
plot_per_parameter_influence('mode','I', 'x', change, Change_ml_x_I, Change _m2_x_I)
plot_per_parameter_influence('frequency','I', 'y', change, Change_f1_y_I, Change_f2_y_I,
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Change_f3_y_I)

plot_per_parameter_influence('mode','I', 'y', change, Change_ml_y_I, Change_m2_y_I,
Change_m3_y_I)

plot_per_parameter_influence('frequency','E','x', change, Change_f1_x_E, Change_f2_x_E)

plot_per_parameter_influence('mode','E','x', change, Change_ml_x_E, Change_m2_x_E)

plot_per_parameter_influence('frequency','E','y', change, Change_f1_y_E, Change_f2_y_E,
Change_f3_y_E)

plot_per_parameter_influence('mode','E','y', change, Change_ml_y_E, Change_m2_y_E,
Change_m3_y_E)

plot_per_parameter_influence('frequency','kG','x', change, Change_f1_x_kG, Change_f2_x_kG)

plot_per_parameter_influence('mode','kG','x"' change, Change_mi_x_kG, Change_m2_x_kG)

plot_per_parameter_influence('frequency','kG','y', change, Change_f1_y_kG, Change_f2_y_kG,
Change_£3_y_kG)

plot_per_parameter_influence('mode','kG','y', change, Change_ml_y_kG, Change_m2_y_kG,
Change_m3_y_kG)

plot_per_parameter_influence('frequency','rho', 'x', change, Change_f1_x_rho, Change_£f2_x_rho
)

plot_per_parameter_influence('mode','rho', 'x', change, Change_ml_x_rho, Change_m2_x_rho)

plot_per_parameter_influence('frequency','rho', 'y', change, Change_f1_y_rho, Change_£f2_y_rho
, Change_£f3_y_rho)

plot_per_parameter_influence('mode','rho', 'y', change, Change_ml_y_rho, Change_m2_y_rho,

Change_m3_y_rho)

Optimization Algorithm

%load_ext autoreload

%autoreload 2

from copy import deepcopy

from pyvibe.models.Timoshenko import Timo,
update_model

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

%matplotlib inline

import pandas as pd

## Parameters

# Dimension Parameters:

L = 153.87 #[m]

Lt = np.array([3.15, 22.65, 46.8, 81.27]) #[m]
A = np.array([1320, 1320, 1320, 825]) #[m]

TimoPieceWiseBeam2D,

UpdatingMethod, cost_func2D,

I_yy = np.array([4312, 4312, 4744, 1402]) #[m4]
I_xx = np.array([34350, 34350, 35105, 10685]) #[m4]
H = Lt/L #[-]

# Material properties:

rho = np.array([5070, 552, 426, 371]) #[kg/m3]
E = np.array([11e9, 11e9, 22e9, 33e9]) #[N/m2]
v = 0.2 #[-]

G = E/(2%(1+v))#[N/m~2]

k = 0.85 #[-]

# Springs:

kr_y = 6486e9 #[Nm/rad]

kr_x = 50371e9 #[Nm/rad]

kt_x = 9.22e9 #[N/m]

kt_y = 9.22e9 #[N/m]

#boudary conditions:

bc = ("rot+transl", "free")

scaler = {"kr":0.4, "kt":9.0, "I":1.5, "E":7.0,
the conclusion of sensitivity study 2

zz_trgt = np.array([0, 69, 108.60, 144.60])
measurements taken of the New Orleans

z_trgt = zz_trgt/L

## Procedure

"rho":2.0} #The parameters chosen are from

#The three locations where there are
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timoshenko_x = []
for ix in range(len(H)):

timoshenko_x.append(Timo (params={"E":

ix] , "kG": k * G[ix], "kr":

timoshenko_y = []
for ix in range(len(H)):
timoshenko_y.append(Timo (params={"E": E[ix], "I": I_yy[ix],"L": L,"rho": rhol[ix],

model = TimoPieceWiseBeam2D (beams_x=timoshenko_x, beams_y=timoshenko_y, bc = bc)

ix]l , "kG": k * G[ix], "kr":

model.scale_params(scalers=scaler)

fn_x,

y_hat = {"z": z_trgt, "fn_x": deepcopy(model.fn_x),
deepcopy (model.phi_x), "modes_y":

n_modes_y = 2)

kr_x, "kt": kt_x}, height=H[ix]))

kr_y, "kt": kt_y}, height=H[ix]))

fn_y, phi_x, phi_y, pts_x, pts_y = model.modeshapes(pts=z_trgt, n_modes_x

deepcopy (model.phi_y)}

parameters_to_update = {p:[1/10, 9.8] for p in list(scaler.keys())}
logscale = False

print (parameters_to_update)

def process_iteration(npts):

results = update_model(
model=model,
cost_func=cost_func2D,

parameters_to_update=parameters_to_update,

y_hat=y_hat,

npts=npts,
sim_type=UpdatingMethod.CMC,
verbose=False,
logscale=logscale)

parameters_columns = [cc for cc in results.columns if "_st" in cc or "_opt"

plot_cols = [a + "_opt" for a in

parameters_to_update.keys ()]

"fn_y": deepcopy(model.fn_y),

E[ix], "I": I_xx[ix],"L": L,"rho": rhol[ix],

=1,

in cc]

map_opt2name = {pcl: k for k, pcl in zip(parameters_to_update.keys(), plot_cols)}

df _opt = results.copy()
df _opt.dropna(inplace=True)

if logscale:
df _opt[parameters_columns] =

df _opt [parameters_columns].apply(np.exp)

top_lowest_convergence = df_opt.sort_values(by='Convergence') .head (1)

return (npts,

top_lowest_convergence ["kr_opt"].iloc[0],
top_lowest_convergence["kt_opt"].iloc[0],
top_lowest_convergence["I_opt"].iloc[0],
top_lowest_convergence ["E_opt"].iloc[0],
top_lowest_convergence ["Convergence"].iloc[0],
top_lowest_convergence["rho_opt"].iloc[0])

kr = []
kt = []
I1=10
E =[]
rho =[]
convergence = []
startpoints = []

npts_values = range (25, 525, 25)

for

npts in npts_values:

result = process_iteration(npts)
startpoints.append(result [0])
kr.append(result[1])

kt.append (result[2])
I.append(result [3])
E.append(result [4])
convergence.append (result [5])
rho.append(result [6])

106 import os

npn .

npn .

AL

Al

"modes_x":
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import pandas as pd
directory = r'C:\Users\ritfeldis\OneDrive -, TNO\Documents\Master thesis Isa Ritfeld,(4892534)
\5._ Python\5.3 Results\Delfste Poort'
os.makedirs(directory, exist_ok=True)
file_names = [
'CMC_3r_I.csv',
'CMC_3r_E.csv',
'CMC_3r_kr.csv',
'CMC_3r_kt.csv',
'CMC_3r_convergence.csv',
'CMC_3r_startpoints.csv',
'CMC_3r_rho.csv'

]
data_lists = [I, E, kr, kt, convergence, startpoints, rhol
parameter_names = ['I', 'E', 'kr', 'kt', 'convergence', 'startpoints', 'rho'l]

for file_name, data, parameter in zip(file_names, data_lists, parameter_names):
df = pd.DataFrame ({f'value of {parameter}': datal})
file_path = os.path.join(directory, file_name)
df .to_csv(file_path, index=False)

directory = r'C:\Users\ritfeldis\OneDrive -, TNO\Documents\Master thesis Isa_ Ritfeld,(4892534)
\5.,Python\5.3 Results\Delfste Poort'

file_names = [
'combined_PSO0_3_startpoints.csv',
'combined_PS0_3_I.csv', #1
'combined_PS0O_3_E.csv', #2
'combined_PS0_3_kr.csv', #3
'combined_PS0_3_kt.csv', #4
'combined_PS0_3_convergence.csv', #5
'combined_DE_3_I.csv', #6
'combined_DE_3_E.csv', #7
'combined_DE_3_kr.csv',6 #8
'combined_DE_3_kt.csv', #9
'combined_DE_3_convergence.csv', #10
'combined_GA_3_I.csv', #11
'combined_GA_3_E.csv', #12
'combined_GA_3_kr.csv', #13
'combined_GA_3_kt.csv', #14
'combined_GA_3_convergence.csv', #15
'combined_CMC_3_I.csv', #16
'combined_CMC_3_E.csv', #17
'combined_CMC_3_kr.csv', #18
'combined_CMC_3_kt.csv', #19
'combined_CMC_3_convergence.csv', #20
'combined_CMC_3r_I.csv', #21
'combined_CMC_3r_E.csv', #22
'combined_CMC_3r_kr.csv', #23
'combined_CMC_3r_kt.csv', #24
'combined_CMC_3r_convergence.csv', #25

dfs = []

for file_name in file_names:
file_path = os.path.join(directory, file_name)
df = pd.read_csv(file_path)
dfs.append (df)

productPS0 = dfs[1]['valueyof I'] * dfs[2]['value of E']
productGA = dfs[11]['value of I'] * dfs[12]['value of E']
productDE = dfs[6]['valueof ,I'] * dfs[7]['value 0f E']
productCMC = dfs[16] ['valueyof I'] * dfs[17]['valueof E']
productCMCr = dfs[21]['valueof I'] * dfs[22]['value of E']

plt.figure(figsize=(7, 5))

plt.plot(dfs[0], productPSO, color='lightsteelblue', label = 'PSO',marker='s', markersize
=4.5,markeredgewidth=0.5, markeredgecolor='black', linewidth=1, linestyle='-"')

#plt.plot (dfs[0], productGA, color='steelblue', label = 'GA',marker='o', markersize=5,
linewidth=0.8,markeredgewidth=0.5, markeredgecolor='black', linestyle='-")

plt.plot(dfs[0], productDE, color='black', label = 'DE',marker='v', markersize=6, linewidth
=0.8, markeredgewidth=0.5, markeredgecolor='black', markerfacecolor='white', linestyle='-
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D)

plt.plot(dfs[0], productCMC, color='firebrick', label = 'CMC',marker='""', markersize=6,
linewidth=0.8,markeredgewidth=0.5, markeredgecolor='black', zorder=3)

plt.plot(dfs[0], productCMCr, color='goldenrod', label='CMC_ with_ $\\rho$', marker='D',
markersize=4, markeredgewidth=0.5, markeredgecolor='black', linewidth=0.8, linestyle='-"',
zorder =1)

# Customize the grid and spines
plt.grid(True, which='both', linestyle=':', linewidth='0.5', color='white')
ax = plt.gca()
ax.spines['top'].set_linewidth(0.5)
ax.spines['top'].set_color('white')
ax.spines['right'].set_linewidth(0.5)
ax.spines['right'].set_color('white')
ax.spines['bottom'].set_linewidth(0.5)
ax.spines['bottom'].set_color('black"')
ax.spines['left'].set_linewidth(0.5)
ax.spines['left'].set_color('black')

# Set tick positions and limits
plt.xticks(np.arange(0, 501, 100), fontname='Arial')

plt.ylim(7.5,13.5)

plt.yticks(np.arange(7.5, 13.6, 1.5), fontname='Arial')
ax.yaxis.set_major_formatter (plt.FormatStrFormatter ('%.2f'))
# Set the y-axis height for the bottom spine

y_axis_height = 10.5
ax.spines['bottom'].set_position(('data', y_axis_height))

# Manually adjust x-axis label position
ax.xaxis.set_label_coords(-0.5, 0.0) # Adjust x-axis label position

# Ensure a tick mark at the end of x-axis without a corresponding value

xticks = np.arange (100, 501, 100)

plt.x1lim (15, 525)

xticks = np.append(xticks, 525) # Add the endpoint where you want the tick without a label

ax.set_xticks(xticks)

ax.set_xticklabels([str(int(x)) if x != 525 else '' for x in xticks]) # Set labels; use ''
for the endpoint

# Customize the ticks

plt.tick_params(axis='y', which='major', direction='out', length=2, width=1, colors='black')
plt.tick_params(axis='x', which='major', direction='out', length=2, width=1, colors='black')
plt.gca().yaxis.set_ticks_position('left')

plt.gca() .xaxis.set_ticks_position('bottom')# Ensure ticks are on the left side of the plot

plt.tick_params(axis='y', which='major', direction='out', length=2, width=1, colors='black')
plt.tick_params(axis='x', which='major', direction='inout', length=4, width=1, colors='black'
)

# Set labels and legend

plt.ylabel('Scalar,(-)', fontsize=10, fontname='Arial')

plt.xlabel ('Amount of ,candidate solutions,(-)', fontsize=10, fontname='Arial')
plt.legend(prop={'family': 'Arial'}, loc='upper right')

# Show the plot
plt.show()

## Results

import matplotlib.pyplot as plt
import numpy as np

plt.figure(figsize=(7, 5))

# Plot the data

plt.plot(dfs[0], dfs[1], color='lightsteelblue', label='PS0', marker='s', markersize=4.5,
markeredgewidth=0.5, markeredgecolor='black', linewidth=1, linestyle='-"')

#plt.plot(dfs[0], dfs[11], color='steelblue', label='GA', marker='o', markersize=5, linewidth
=0.8, markeredgewidth=0.5, markeredgecolor='black', linestyle='-"')

plt.plot(dfs[0], dfs[6], color='black', label='DE', marker='v', markersize=6, linewidth=0.8,
markeredgewidth=0.5, markeredgecolor='black', markerfacecolor='white', linestyle='-"')

plt.plot(dfs[0], dfs[16], color='firebrick', label='CMC', marker='"', markersize=6, linewidth
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=0.8, markeredgewidth=0.5, markeredgecolor='black', zorder=3)
plt.plot(dfs[0], dfs[21], color='goldenrod', label='CMC_with_ $\\rho$', marker='D', markersize
=4, markeredgewidth=0.5, markeredgecolor='black', linewidth=0.8, linestyle='-"')

# Customize the grid and spines

plt.grid(True, which='both', linestyle=':', linewidth='0.5', color='white')
ax = plt.gca()

ax.spines['top'].set_linewidth(0.5)
ax.spines['top'].set_color('white')
ax.spines['right'].set_linewidth(0.5)
ax.spines['right'].set_color('white')
ax.spines['bottom'].set_linewidth(0.5)
ax.spines['bottom'].set_color('black')
ax.spines['left'].set_linewidth(0.5)
ax.spines['left'].set_color('black')
ax.yaxis.set_major_formatter (plt.FormatStrFormatter('%.2f'))
# Set tick positions and limits

plt.xticks(np.arange(0, 501, 100), fontname='Arial')

plt.yticks(np.arange(0, 6.01, 1.5), fontname='Arial')
plt.ylim(0, 6.0)

# Set the y-axis height for the bottom spine
y_axis_height = 1.5
ax.spines['bottom'].set_position(('data', y_axis_height))

# Manually adjust x-axis label position
ax.xaxis.set_label_coords(-0.5, 0.01) # Adjust x-axis label position

# Ensure a tick mark at the end of x-axis without a corresponding value

xticks = np.arange (100, 501, 100)

plt.x1lim (15, 525)

xticks = np.append(xticks, 525) # Add the endpoint where you want the tick without a label

ax.set_xticks (xticks)

ax.set_xticklabels([str(int(x)) if x != 525 else '' for x in xticks]) # Set labels; use ''
for the endpoint

# Customize the ticks

plt.tick_params(axis='y', which='major', direction='out', length=2, width=1, colors='black')

plt.tick_params(axis='x', which='major', direction='out', length=2, width=1, colors='black')

plt.gca() .yaxis.set_ticks_position('left')

plt.gca() .xaxis.set_ticks_position('bottom')# Ensure ticks are on the left side of the plot

plt.tick_params(axis='y', which='major', direction='out', length=2, width=1, colors='black')

plt.tick_params(axis='x', which='major', direction='inout', length=4, width=1, colors='black'
)

# Set labels and legend

plt.ylabel('Scalar,,(-)', fontsize=10, fontname='Arial')

plt.xlabel ('Amount of ,candidatesolutions,(-)', fontsize=10, fontname='Arial')

plt.legend(prop={'family': 'Arial'}, loc='upper right')

# Show the plot
plt.show ()

import matplotlib.pyplot as plt
import numpy as np

plt.figure(figsize=(7, 5))

# Plot the data

plt.plot(dfs[0], dfs[2], color='lightsteelblue', label='PS0', marker='s', markersize=4.5,
markeredgewidth=0.5, markeredgecolor='black', linewidth=1, linestyle='-"')

#plt.plot(dfs[0], dfs[12], color='steelblue', label='GA', marker='o', markersize=5, linewidth
=0.8, markeredgewidth=0.5, markeredgecolor='black', linestyle='-"')

plt.plot(dfs[0], dfs[7], color='black', label='DE', marker='v', markersize=6, linewidth=0.8,
markeredgewidth=0.5, markeredgecolor='black', markerfacecolor='white', linestyle='-"')

plt.plot(dfs[0], dfs[17], color='firebrick', label='CMC', marker='""', markersize=6, linewidth
=0.8, markeredgewidth=0.5, markeredgecolor='black', zorder=3)

plt.plot(dfs[0], dfs[22], color='goldenrod', label='CMC,with_ $\\rho$', marker='D', markersize
=4, markeredgewidth=0.5, markeredgecolor='black', linewidth=0.8, linestyle='-"')

# Customize the grid and spines
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plt.grid(True, which='both', linestyle=':', linewidth='0.5', color='white')
ax = plt.gca()

ax.spines['top'].set_linewidth(0.5)
ax.spines['top'].set_color('white')
ax.spines['right'].set_linewidth(0.5)
ax.spines['right'].set_color('white')
ax.spines['bottom'].set_linewidth(0.5)
ax.spines['bottom'].set_color('black')
ax.spines['left'].set_linewidth(0.5)
ax.spines['left'].set_color('black')
ax.yaxis.set_major_formatter (plt.FormatStrFormatter ('%.2f'))
# Set tick positions and limits

plt.xticks(np.arange (0, 501, 100), fontname='Arial')

plt.yticks(np.arange(1, 11.01, 2), fontname='Arial')
plt.ylim(1, 11.0)

# Set the y-axis height for the bottom spine
y_axis_height = 7.0
ax.spines['bottom'].set_position(('data', y_axis_height))

# Manually adjust x-axis label position
ax.xaxis.set_label_coords(-0.5, 0.01) # Adjust x-axis label position

# Ensure a tick mark at the end of x-axis without a corresponding value

xticks = np.arange (100, 501, 100)

plt.x1lim (15, 525)

xticks = np.append(xticks, 525) # Add the endpoint where you want the tick without a label

ax.set_xticks(xticks)

ax.set_xticklabels([str(int(x)) if x != 525 else '' for x in xticks]) # Set labels; use ''
for the endpoint

# Customize the ticks

plt.tick_params(axis='y', which='major', direction='out', length=2, width=1, colors='black')
plt.tick_params(axis='x', which='major', direction='out', length=2, width=1, colors='black')
plt.gca() .yaxis.set_ticks_position('left')

plt.gca() .xaxis.set_ticks_position('bottom')# Ensure ticks are on the left side of the plot
plt.tick_params(axis='y', which='major', direction='out', length=2, width=1, colors='black')
plt.tick_params(axis='x', which='major', direction='out', length=2, width=1, colors='black')
# Set labels and legend

plt.ylabel('Scalar,(-)', fontsize=10, fontname='Arial')

plt.xlabel ('Amount of ,candidate solutions,(-)', fontsize=10, fontname='Arial')
plt.legend(prop={'family': 'Arial'}, loc='upper,right')

# Show the plot
plt.show ()

plt.figure(figsize=(7, 5))

plt.plot(dfs[0], dfs[3], color='lightsteelblue', label = 'PSO',marker='s', markersize=4.5,
markeredgewidth=0.5, markeredgecolor='black', linewidth=1, linestyle='-"')

#plt.plot (dfs[0], productGA, color='steelblue', label = 'GA',marker='o', markersize=5,
linewidth=0.8,markeredgewidth=0.5, markeredgecolor='black', 1linestyle='-"')

plt.plot(dfs[0], dfs[8], color='black', label = 'DE',marker='v', markersize=6, linewidth=0.8,
markeredgewidth=0.5, markeredgecolor='black', markerfacecolor='white', linestyle='-"')

plt.plot(dfs[0], dfs[18], color='firebrick', label = 'CMC',marker='"', markersize=6,

linewidth=0.8,markeredgewidth=0.5, markeredgecolor='black', zorder=3)
plt.plot(dfs[0], dfs[23], color='goldenrod', label='CMC,with_ $\\rho$', marker='D', markersize
=4, markeredgewidth=0.5, markeredgecolor='black', linewidth=0.8, linestyle='-',zorder =1)

# Customize the grid and spines

plt.grid(True, which='both', linestyle=':', linewidth='0.5', color='white')
ax = plt.gca()

ax.spines['top'].set_linewidth(0.5)

ax.spines['top'].set_color('white')

; ax.spines['right'].set_linewidth(0.5)

ax.spines['right'].set_color('white')
ax.spines['bottom'].set_linewidth(0.5)
ax.spines['bottom'].set_color('black"')
ax.spines['left'].set_linewidth(0.5)
ax.spines['left'].set_color('black')
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# Set tick positions and limits
plt.xticks(np.arange (0, 501, 100), fontname='Arial')

plt.ylim(0.32,0.42)
plt.yticks(np.arange(0.32, 0.421, 0.02), fontname='Arial')

# Set the y-axis height for the bottom spine
y_axis_height = 0.4
ax.spines['bottom'].set_position(('data', y_axis_height))

# Manually adjust x-axis label position
ax.xaxis.set_label_coords(-0.5, 0.01) # Adjust x-axis label position

# Ensure a tick mark at the end of x-axis without a corresponding value

xticks = np.arange (100, 501, 100)

plt.x1im (15, 525)

xticks = np.append(xticks, 525) # Add the endpoint where you want the tick without a label

ax.set_xticks(xticks)

ax.set_xticklabels ([str(int(x)) if x != 525 else '' for x in xticks]) # Set labels; use ''
for the endpoint

# Customize the ticks

plt.tick_params(axis='y', which='major', direction='out', length=2, width=1, colors='black')
plt.tick_params(axis='x', which='major', direction='out', length=2, width=1, colors='black')
plt.gca() .yaxis.set_ticks_position('left"')

plt.gca() .xaxis.set_ticks_position('bottom')# Ensure ticks are on the left side of the plot

plt.tick_params(axis='y', which='major', direction='out', length=2, width=1, colors='black')
plt.tick_params(axis='x', which='major', direction='inout', length=4, width=1, colors='black'
)

# Set labels and legend

plt.ylabel('Scalar,(-)', fontsize=10, fontname='Arial')

plt.xlabel ('Amount of candidate solutions (-)', fontsize=10, fontname='Arial')
plt.legend(prop={'family': 'Arial'}, loc='lower,right')

# Show the plot
plt.show ()

plt.figure(figsize=(7, 5))

plt.plot(dfs[0], dfs[4], color='lightsteelblue', label = 'PSO',marker='s', markersize=4.5,
markeredgewidth=0.5, markeredgecolor='black', linewidth=1, linestyle='-"')

#plt.plot (dfs[0], productGA, color='steelblue', label = 'GA',marker='o', markersize=5,
linewidth=0.8,markeredgewidth=0.5, markeredgecolor='black', 1linestyle='-"')

plt.plot(dfs[0], dfs[9], color='black', label = 'DE',marker='v', markersize=6, linewidth=0.8,
markeredgewidth=0.5, markeredgecolor='black', markerfacecolor='white', linestyle='-"')

plt.plot(dfs[0], dfs[19], color='firebrick', label = 'CMC',marker='""', markersize=6,

linewidth=0.8,markeredgewidth=0.5, markeredgecolor='black', zorder=3)
plt.plot(dfs[0], dfs[24], color='goldenrod', label='CMC,with $\\rho$', marker='D', markersize
=4, markeredgewidth=0.5, markeredgecolor='black', linewidth=0.8, linestyle='-',6zorder =1)

; # Customize the grid and spines

plt.grid(True, which='both', linestyle=':', linewidth='0.5', color='white')
ax = plt.gca()

ax.spines['top'].set_linewidth(0.5)

ax.spines['top'].set_color('white')

ax.spines['right'].set_linewidth(0.5)

ax.spines['right'].set_color('white')
ax.spines['bottom'].set_linewidth(0.5)
ax.spines['bottom'].set_color('black"')

ax.spines['left'].set_linewidth(0.5)

ax.spines['left'].set_color('black')

# Set tick positions and limits
plt.xticks(np.arange(0, 501, 100), fontname='Arial')

plt.ylim(7.5,9.9)
plt.yticks(np.arange(7.5, 10.01, 0.5), fontname='Arial')

# Set the y-axis height for the bottom spine
y_axis_height = 9.0
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ax.spines['bottom'].set_position(('data', y_axis_height))
ax.yaxis.set_major_formatter (plt.FormatStrFormatter ('%.2f'))

# Manually adjust x-axis label position
ax.xaxis.set_label_coords(-0.5, 0.01) # Adjust x-axis label position

# Ensure a tick mark at the end of x-axis without a corresponding value

xticks = np.arange (100, 501, 100)

plt.x1im (15, 525)

xticks = np.append(xticks, 525) # Add the endpoint where you want the tick without a label

ax.set_xticks(xticks)

ax.set_xticklabels ([str(int(x)) if x != 525 else '' for x in xticks]) # Set labels; use ''
for the endpoint

# Customize the ticks

plt.tick_params(axis='y', which='major', direction='out', length=2, width=1, colors='black')
plt.tick_params(axis='x', which='major', direction='out', length=2, width=1, colors='black')
plt.gca() .yaxis.set_ticks_position('left')

plt.gca() .xaxis.set_ticks_position('bottom')# Ensure ticks are on the left side of the plot

plt.tick_params(axis='y', which='major', direction='out', length=2, width=1, colors='black')

plt.tick_params(axis='x', which='major', direction='inout', length=4, width=1, colors='black'
)

# Set labels and legend

plt.ylabel('Scalar,,(-)', fontsize=10, fontname='Arial')

plt.xlabel ('Amount of candidate solutions (-)', fontsize=10, fontname='Arial')
plt.legend(prop={'family': 'Arial'}, loc='lower right')

# Show the plot
plt.show()

Amount of Measured Modal Properties

%load_ext autoreload

%autoreload 2

from copy import deepcopy

from pyvibe.models.Timoshenko import Timo, TimoPieceWiseBeam2D, UpdatingMethod, cost_func2D,
update_model

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

%matplotlib inline

import pandas as pd

## Parameters

# Dimension Parameters:

L = 153.87 #[m]

Lt = np.array([3.15, 22.65, 46.8, 81.27]) #[m]

A = np.array([1320, 1320, 1320, 825]) #[m]

I_yy = np.array([4312, 4312, 4744, 1402]) #[m4]
I_xx = np.array([34350, 34350, 35105, 10685]) #[m4]
H = Lt/L #[-]

# Material properties:

rho = np.array([5070, 552, 426, 371]) #[kg/m3]

E = np.array([11e9, 11e9, 22e9, 33e9]) #[N/m2]
v = 0.2 #[-]

G = E/(2x(1+v))#[N/m~2]

k = 0.85 #[-]

# Springs:

kr_y = 6486e9 #[Nm/rad]
kr_x = 50371e9 #[Nm/rad]
kt_x 9.22e9 #[N/m]
kt_y = 9.22e9 #[N/m]

#boudary conditions:

bc = ("rot+transl", "free")

scaler = {"kr":0.4, "kt":9.0, "I":1.5, "E":7.0}
zz_trgt = np.array ([0, 69, 108.60, 144.60])
z_trgt = zz_trgt/L
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## Procedure

timoshenko_x = []
for ix in range(len(H)):
timoshenko_x.append(Timo (params={"E": E[ix], "I": I_xx[ix],"L": L,"rho": rhol[ix], "A": A[
ix] , "kG": k * G[ix], "kr": kr_x, "kt": kt_x}, height=H[ix]))
timoshenko_y = []
for ix in range(len(H)):
timoshenko_y.append(Timo (params={"E": E[ix], "I": I_yy[ix],"L": L,"rho": rholix], "A": A[
ix] , "kG": k * G[ix], "kr": kr_y, "kt": kt_yl}, height=H[ix]))
model = TimoPieceWiseBeam2D (beams_x=timoshenko_x, beams_y=timoshenko_y, bc = bc)

model.scale_params(scalers=scaler)

fn_x, fn_y, phi_x, phi_y, pts_x, pts_y = model.modeshapes(pts=z_trgt, n_modes_x = 1,
n_modes_y = 1)

y_hat = {"z": z_trgt, "fn_x": deepcopy(model.fn_x), "fn_y": deepcopy(model.fn_y), "modes_x":
deepcopy(model.phi_x), "modes_y": deepcopy(model.phi_y)}

parameters_to_update = {p:[1/10, 9.8] for p in list(scaler.keys())}
logscale = False

print (parameters_to_update)

def process_iteration(npts):
results = update_model(

model=model,
cost_func=cost_func2D,
parameters_to_update=parameters_to_update,
y_hat=y_hat,
npts=npts,
sim_type=UpdatingMethod.CMC,
verbose=False,
logscale=logscale)

parameters_columns = [cc for cc in results.columns if "_st" in cc or "_opt" in cc]
plot_cols = [a + "_opt" for a in parameters_to_update.keys ()]

map_opt2name = {pcl: k for k, pcl in zip(parameters_to_update.keys(), plot_cols)}
df _opt = results.copy()

df _opt.dropna(inplace=True)

if logscale:
df _opt [parameters_columns] = df_opt[parameters_columns].apply(np.exp)

top_lowest_convergence = df_opt.sort_values(by='Convergence') .head (1)
return (npts,
top_lowest_convergence["kr_opt"].iloc[0],
top_lowest_convergence["kt_opt"].iloc[0],
top_lowest_convergence["I_opt"].iloc[0],
top_lowest_convergence ["E_opt"].iloc[0],
top_lowest_convergence ["Convergence"].iloc[0])

kr = []
kt = []
I1=10
E =[]
convergence = []
startpoints = []

npts_values = range(25, 525, 25)

for npts in npts_values:
result = process_iteration(npts)
startpoints.append(result [0])
kr.append (result [1])
kt.append(result[2])
I.append(result[3])
E.append (result [4])
convergence.append (result [5])

import os
import pandas as pd
directory = r'C:\Users\ritfeldis\OneDrive, -, TNO\Documents\Master thesis_ Isa Ritfeld,(4892534)
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\5._ Python\5.3_ Results\Delfste Poort'
os.makedirs (directory, exist_ok=True)
file_names = [

'CMC_1_I.csv',

'CMC_1_E.csv',

'CMC_1_kr.csv',

'CMC_1_kt.csv',

'CMC_1_convergence.csv',

'CMC_1_startpoints.csv'

]
data_lists = [I, E, kr, kt, convergence, startpoints]
parameter_names = ['I', 'E', 'kr', 'kt', 'convergence', 'startpoints']

for file_name, data, parameter in zip(file_names, data_lists, parameter_names):
df = pd.DataFrame ({f'value of {parameter}': datal})
file_path = os.path.join(directory, file_name)
df .to_csv(file_path, index=False)

%load_ext autoreload

%autoreload 2

from copy import deepcopy

from pyvibe.models.Timoshenko import Timo, TimoPieceWiseBeam2D, UpdatingMethod, cost_func2D,
update_model

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

import pandas as pd

import os

%matplotlib inline

## Parameters

directory = r'C:\Users\ritfeldis\OneDrive,-, TNO\Documents\Master thesis Isa_ Ritfeld(4892534)
\5._,Python\5.3_ Results\Delfste Poort"'

file_names = [
'combined_CMC_1_startpoints.csv',#0
'combined_CMC_1_TI.csv', #1

'combined_CMC_1_E.csv', #2
'combined_CMC_1_kr.csv', #3
'combined_CMC_1_kt.csv', #4
'combined_CMC_1_convergence.csv', #5
'combined_CMC_3_TI.csv', #6
'combined_CMC_3_E.csv', #7
'combined_CMC_3_kr.csv', #8
'combined_CMC_3_kt.csv', #9
'combined_CMC_3_convergence.csv', #10

]

dfs = []

for file_name in file_names:
file_path = os.path.join(directory, file_name)
df = pd.read_csv(file_path)
dfs.append (df)

productCMC1
productCMC3

dfs[1]['valueof ,I'] * dfs[2]['value of E']
dfs[6]['valueyof ,I'] * dfs[7]['value of E']

plt.figure(figsize=(7, 5))

plt.plot(dfs[0], productCMCl, color='lightsteelblue', label = '1,in_x,and,1,in,y',marker="'s"'

markersize=4.5,markeredgewidth=0.5, markeredgecolor='black', linewidth=1, linestyle='-"')

#plt.plot (dfs [0], productGA, color='steelblue', label = 'GA',marker='o', markersize=5,
linewidth=0.8,markeredgewidth=0.5, markeredgecolor='black', linestyle='-")

#plt.plot (dfs[0], productCMC2, color='black', label = '2 in x and 2 in y',marker='v',
markersize=6, linewidth=0.8, markeredgewidth=0.5, markeredgecolor='black',
markerfacecolor="'white', linestyle='-")

plt.plot(dfs[0], productCMC3, color='firebrick', label = '1,in_x,and,2,in,y',marker="'"",
markersize=6, linewidth=0.8,markeredgewidth=0.5, markeredgecolor='black', zorder=3)

#plt.plot (dfs[0], productCMCr, color='goldenrod', label='CMC with $\\rho$', marker='D"',
markersize=4, markeredgewidth=0.5, markeredgecolor='black', linewidth=0.8, linestyle='-"',

zorder =1)
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# Customize the grid and spines
plt.grid(True, which='both', linestyle=':', linewidth='0.5', color='white')
ax = plt.gca()
ax.spines['top'].set_linewidth(0.5)
ax.spines['top'].set_color('white"')
ax.spines['right'].set_linewidth(0.5)
ax.spines['right'].set_color('white')
ax.spines['bottom'].set_linewidth(0.5)
ax.spines['bottom'].set_color('black"')
ax.spines['left'].set_linewidth(0.5)
ax.spines['left'].set_color('black')

# Set tick positions and limits
plt.xticks(np.arange(0, 501, 100), fontname='Arial')

#plt.ylim(9.80,10.6)

plt.yticks(np.arange(4.5, 19.6, 3), fontname='Arial')
ax.yaxis.set_major_formatter (plt.FormatStrFormatter ('%.2f'))
# Set the y-axis height for the bottom spine

y_axis_height = 10.5
ax.spines['bottom'].set_position(('data', y_axis_height))

# Manually adjust x-axis label position
ax.xaxis.set_label_coords(-0.5, 0.0) # Adjust x-axis label position

# Ensure a tick mark at the end of x-axis without a corresponding value

xticks = np.arange (100, 501, 100)

plt.x1im(15, 525)

xticks = np.append(xticks, 525) # Add the endpoint where you want the tick without a label

ax.set_xticks(xticks)

ax.set_xticklabels([str(int(x)) if x != 525 else '' for x in xticks]) # Set labels; use ''
for the endpoint

# Customize the ticks

plt.tick_params(axis='y', which='major', direction='out', length=2, width=1, colors='black')

plt.tick_params(axis='x', which='major', direction='out', length=2, width=1, colors='black')

plt.gca().yaxis.set_ticks_position('left')

plt.gca() .xaxis.set_ticks_position('bottom')# Ensure ticks are on the left side of the plot

plt.tick_params(axis='y', which='major', direction='out', length=2, width=1, colors='black')

plt.tick_params(axis='x', which='major', direction='inout', length=4, width=1, colors='black'
)

# Set labels and legend

plt.ylabel('Scalar,(-)', fontsize=10, fontname='Arial')

plt.xlabel ('Amount of ,candidate solutions,(-)', fontsize=10, fontname='Arial')

plt.legend(prop={'family': 'Arial'}, loc='lower right')

# Show the plot
plt.show()

plt.figure(figsize=(7, 5))

; plt.plot(dfs[0], dfs[1], color='lightsteelblue', label = '1,in x,and,l,in, y',marker="s"'

markersize=4.5,markeredgewidth=0.5, markeredgecolor='black', linewidth=1, linestyle='-"')

#plt.plot (dfs [0], productGA, color='steelblue', label = 'GA',marker='o', markersize=5,
linewidth=0.8,markeredgewidth=0.5, markeredgecolor='black', 1linestyle='-"')

#plt.plot (dfs[0], dfs[6], color='black', label = '2 in x and 2 in y',marker='v', markersize
=6, linewidth=0.8, markeredgewidth=0.5, markeredgecolor='black', markerfacecolor='white',

linestyle='-")
plt.plot(dfs[0], dfs[6], color='firebrick', label = '1,ingx,and,2,in,y',marker="'"",

markersize=6, linewidth=0.8,markeredgewidth=0.5, markeredgecolor='black', zorder=3)

#plt.plot (dfs[0], productCMCr, color='goldenrod', label='CMC with $\\rho$', marker='D"',
markersize=4, markeredgewidth=0.5, markeredgecolor='black', linewidth=0.8, linestyle='-"',
zorder =1)

# Customize the grid and spines

plt.grid(True, which='both', linestyle=':', linewidth='0.5', color='white')

ax = plt.gca()

ax.spines['top'].set_linewidth(0.5)

ax.spines['top'].set_color('white')

ax.spines['right'].set_linewidth(0.5)

ax.spines['right'].set_color('white')

ax.spines['bottom'].set_linewidth(0.5)
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ax.spines['bottom'].set_color('black')
ax.spines['left'].set_linewidth(0.5)
ax.spines['left'].set_color('black')
ax.yaxis.set_major_formatter (plt.FormatStrFormatter ('%.2f'))
# Set tick positions and limits

plt.xticks(np.arange(0, 501, 100), fontname='Arial')

ax.set_yticks(np.arange (0.5, 2.6, 0.5))
ax.set_ylim(0.5, 2.5)

# Set the y-axis height for the bottom spine
y_axis_height = 1.5
ax.spines['bottom'].set_position(('data', y_axis_height))

# Manually adjust x-axis label position
ax.xaxis.set_label_coords(-0.5, 0.0) # Adjust x-axis label position

# Ensure a tick mark at the end of x-axis without a corresponding value

xticks = np.arange (100, 501, 100)

plt.x1im (15, 525)

xticks = np.append(xticks, 525) # Add the endpoint where you want the tick without a label

ax.set_xticks(xticks)

ax.set_xticklabels ([str(int(x)) if x != 525 else '' for x in xticks]) # Set labels; use ''
for the endpoint

# Customize the ticks

plt.tick_params(axis='y', which='major', direction='out', length=2, width=1, colors='black')

plt.tick_params(axis='x', which='major', direction='out', length=2, width=1, colors='black')

plt.gca() .yaxis.set_ticks_position('left')

plt.gca() .xaxis.set_ticks_position('bottom')# Ensure ticks are on the left side of the plot

plt.tick_params(axis='y', which='major', direction='out', length=2, width=1, colors='black')

plt.tick_params(axis='x', which='major', direction='inout', length=4, width=1, colors='black'
)

# Set labels and legend

plt.ylabel('Scalar,,(-)', fontsize=10, fontname='Arial')

plt.xlabel ('Amount of candidate solutions,(-)', fontsize=10, fontname='Arial')

plt.legend(prop={'family': 'Arial'}, loc='upper,right')

# Show the plot
plt.show ()

8 plt.figure(figsize=(7, 5))

plt.plot(dfs[0], dfs[2], color='lightsteelblue', label = '1,in,x,and,1,in,y"',marker="'s",
markersize=4.5,markeredgewidth=0.5, markeredgecolor='black', linewidth=1, linestyle='-"')

#plt.plot(dfs[0], productGA, color='steelblue', label = 'GA',marker='o', markersize=5,
linewidth=0.8,markeredgewidth=0.5, markeredgecolor='black', linestyle='-"')

#plt.plot (dfs[0], dfs[7], color='black', label = '2 in x and 2 in y',marker='v', markersize
=6, linewidth=0.8, markeredgewidth=0.5, markeredgecolor='black', markerfacecolor='white',

linestyle="'-")
plt.plot(dfs[0], dfs[7], color='firebrick', label = '1,in.x,and,2,in,y',marker="'"",

markersize=6, linewidth=0.8,markeredgewidth=0.5, markeredgecolor='black', zorder=3)

#plt.plot (dfs[0], productCMCr, color='goldenrod', label='CMC with $\\rho$', marker='D"',
markersize=4, markeredgewidth=0.5, markeredgecolor='black', linewidth=0.8, linestyle='-"',
zorder =1)

# Customize the grid and spines
plt.grid(True, which='both', linestyle=':', linewidth='0.5', color='white')
ax = plt.gca()
ax.spines['top'].set_linewidth(0.5)
ax.spines['top'].set_color('white')
ax.spines['right'].set_linewidth(0.5)
ax.spines['right'].set_color('white')
ax.spines['bottom'].set_linewidth(0.5)
ax.spines['bottom'].set_color('black"')
ax.spines['left'].set_linewidth(0.5)
ax.spines['left'].set_color('black')

# Set tick positions and limits
plt.xticks(np.arange(0, 501, 100), fontname='Arial')
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ax.set_yticks(np.arange(3, 11.1, 2))
ax.set_ylim(3, 11)

# Set the y-axis height for the bottom spine
y_axis_height = 7.0
ax.spines['bottom'].set_position(('data', y_axis_height))

# Manually adjust x-axis label position

ax.xaxis.set_label_coords(-0.5, 0.0) # Adjust x-axis label position

ax.yaxis.set_major_formatter (plt.FormatStrFormatter('%.2f"'))

# Ensure a tick mark at the end of x-axis without a corresponding value

xticks = np.arange (100, 501, 100)

plt.x1im (15, 525)

xticks = np.append(xticks, 525) # Add the endpoint where you want the tick without a label

ax.set_xticks(xticks)

ax.set_xticklabels([str(int(x)) if x != 525 else '' for x in xticks]) # Set labels; use ''
for the endpoint

# Customize the ticks

plt.tick_params(axis='y', which='major', direction='out', length=2, width=1, colors='black')

plt.tick_params(axis='x', which='major', direction='out', length=2, width=1, colors='black')

plt.gca() .yaxis.set_ticks_position('left')

plt.gca() .xaxis.set_ticks_position('bottom')# Ensure ticks are on the left side of the plot

plt.tick_params(axis='y', which='major', direction='out', length=2, width=1, colors='black')

plt.tick_params(axis='x', which='major', direction='inout', length=4, width=1, colors='black'
)

# Set labels and legend

plt.ylabel('Scalar,,(-)', fontsize=10, fontname='Arial')

plt.xlabel ('Amount of candidate solutions,(-)', fontsize=10, fontname='Arial')

plt.legend(prop={'family': 'Arial'}, loc='upper,right')

# Show the plot
plt.show ()

plt.figure(figsize=(7, 5))

plt.plot(dfs[0], dfs[3], color='lightsteelblue', label = '1,in,xyand1,in,y"',marker="'s",
markersize=4.5,markeredgewidth=0.5, markeredgecolor='black', linewidth=1, linestyle='-"')

#plt.plot (dfs[0], productGA, color='steelblue', label = 'GA',marker='o', markersize=5,
linewidth=0.8,markeredgewidth=0.5, markeredgecolor='black', 1linestyle='-"')

#plt.plot (dfs[0], dfs[13], color='black', label = '2 in x and 2 in y',marker='v', markersize
=6, linewidth=0.8, markeredgewidth=0.5, markeredgecolor='black', markerfacecolor='white',

linestyle='-"')
plt.plot(dfs[0], dfs[8], color='firebrick', label = '1,in,x,and,2,in,y',marker="'"",

markersize=6, linewidth=0.8,markeredgewidth=0.5, markeredgecolor='black', zorder=3)

#plt.plot (dfs[0], productCMCr, color='goldenrod', label='CMC with $\\rho$', marker='D"',
markersize=4, markeredgewidth=0.5, markeredgecolor='black', linewidth=0.8, linestyle='-"',
zorder =1)

# Customize the grid and spines
plt.grid(True, which='both', linestyle=':', linewidth='0.5', color='white')
ax = plt.gca()
ax.spines['top'].set_linewidth(0.5)
ax.spines['top'].set_color('white')
ax.spines['right'].set_linewidth(0.5)
ax.spines['right'].set_color('white')
ax.spines['bottom'].set_linewidth(0.5)
ax.spines['bottom'].set_color('black')
ax.spines['left'].set_linewidth(0.5)
ax.spines['left'].set_color('black')

# Set tick positions and limits
plt.xticks(np.arange(0, 501, 100), fontname='Arial')

#ax.set_yticks(np.arange(0, 14.1, 2))

#ax.set_ylim (0.0, 14)

ax.set_yticks(np.arange(0.36, 0.481, 0.02))
#ax.set_ylim(0.3990, 0.403)

# Set the y-axis height for the bottom spine

y_axis_height = 0.4
ax.spines['bottom'].set_position(('data', y_axis_height))
ax.yaxis.set_major_formatter (plt.FormatStrFormatter ('%.2f'))
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3 # Manually adjust x-axis label position

ax.xaxis.set_label_coords(-0.5, 0.0) # Adjust x-axis label position

5 # Ensure a tick mark at the end of x-axis without a corresponding value

xticks = np.arange (100, 501, 100)

plt.x1im (15, 525)

xticks = np.append(xticks, 525) # Add the endpoint where you want the tick without a label

ax.set_xticks(xticks)

ax.set_xticklabels([str(int(x)) if x != 525 else '' for x in xticks]) # Set labels; use ''
for the endpoint

# Customize the ticks

plt.tick_params(axis='y', which='major', direction='out', length=2, width=1, colors='black')

plt.tick_params(axis='x', which='major', direction='out', length=2, width=1, colors='black')

plt.gca() .yaxis.set_ticks_position('left')

plt.gca() .xaxis.set_ticks_position('bottom')# Ensure ticks are on the left side of the plot

plt.tick_params(axis='y', which='major', direction='out', length=2, width=1, colors='black')

plt.tick_params(axis='x', which='major', direction='inout', length=4, width=1, colors='black'
)

# Set labels and legend

plt.ylabel('Scalar,,(-)', fontsize=10, fontname='Arial')

plt.xlabel ('Amount of candidatesolutions (-)', fontsize=10, fontname='Arial')

plt.legend(prop={'family': 'Arial'}, loc='upper,right')

# Show the plot
plt.show()

plt.figure(figsize=(7, 5))

plt.plot(dfs[0], dfs[4], color='lightsteelblue', label = '1,in,x,and,1,in,y"',marker="'s",
markersize=4.5,markeredgewidth=0.5, markeredgecolor='black', linewidth=1, linestyle='-"')

#plt.plot (dfs[0], productGA, color='steelblue', label = 'GA',marker='o', markersize=5,
linewidth=0.8,markeredgewidth=0.5, markeredgecolor='black', linestyle='-"')

#plt.plot (dfs[0], dfs[14], color='black', label = '2 in x and 2 in y',marker='v', markersize
=6, linewidth=0.8, markeredgewidth=0.5, markeredgecolor='black', markerfacecolor='white',

linestyle='-"')
plt.plot(dfs[0], dfs[9], color='firebrick', label = '1,in.x,and,2,in,y',marker="'"",

markersize=6, linewidth=0.8,markeredgewidth=0.5, markeredgecolor='black', zorder=3)

#plt.plot (dfs[0], productCMCr, color='goldenrod', label='CMC with $\\rho$', marker='D"',
markersize=4, markeredgewidth=0.5, markeredgecolor='black', linewidth=0.8, linestyle='-"',
zorder =1)

5 # Customize the grid and spines

plt.grid(True, which='both', linestyle=':', linewidth='0.5', color='white')
ax = plt.gca()

ax.spines['top'].set_linewidth(0.5)

ax.spines['top'].set_color('white')

ax.spines['right'].set_linewidth(0.5)

ax.spines['right'].set_color('white')
ax.spines['bottom'].set_linewidth(0.5)
ax.spines['bottom'].set_color('black"')

ax.spines['left'].set_linewidth(0.5)

ax.spines['left'].set_color('black')

# Set tick positions and limits
plt.xticks(np.arange(0, 501, 100), fontname='Arial')

#ax.set_yticks(np.arange(0, 14.1, 2))

#ax.set_ylim (0.0, 14)

ax.set_yticks(np.arange(7, 11.1, 1))

ax.set_ylim(7, 11)

# Set the y-axis height for the bottom spine
y_axis_height = 9.0
ax.spines['bottom'].set_position(('data', y_axis_height))

# Manually adjust x-axis label position

ax.xaxis.set_label_coords(-0.5, 0.0) # Adjust x-axis label position
ax.yaxis.set_major_formatter (plt.FormatStrFormatter('%.2f"'))

# Ensure a tick mark at the end of x-axis without a corresponding value
xticks = np.arange (100, 501, 100)

plt.x1lim(15, 525)
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xticks = np.append(xticks, 525) # Add the endpoint where you want the tick without a label

ax.set_xticks (xticks)

ax.set_xticklabels([str(int(x)) if x != 525 else '' for x in xticks]) # Set labels;

for the endpoint

# Customize the ticks

plt.tick_params(axis='y', which='major', direction='out', length=2, width=1,
plt.tick_params(axis='x', which='major', direction='out', length=2, width=1,

plt.gca() .yaxis.set_ticks_position('left')

use

[

colors='black"')
colors='black"')

plt.gca() .xaxis.set_ticks_position('bottom')# Ensure ticks are on the left side of the plot
colors='black')

plt.tick_params(axis='y', which='major', direction='out', length=2, width=1,
plt.tick_params(axis='x', which='major', direction='inout', length=4, width=1,

)
# Set labels and legend
plt.ylabel('Scalar,(-)', fontsize=10, fontname='Arial')

plt.xlabel ('Amount of ,candidate solutions,(-)', fontsize=10, fontname='Arial')

plt.legend(prop={'family': 'Arial'}, loc='upper,right')

# Show the plot
plt.show ()

Measurement Uncertainties

import time

%load_ext autoreload
%autoreload 2

from copy import deepcopy

from pyvibe.models.Timoshenko import Timo, TimoPieceWiseBeamlD, TimoPieceWiseBeam2D,

UpdatingMethod, cost_funclD, cost_func2D,update_model
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

# Dimension Parameters:

L = 153.87 #[m]

Lt = np.array([3.15, 22.65, 46.8, 81.27]) #[m]

A = np.array([1320, 1320, 1320, 825]) #[m]

I_yy = np.array([4312, 4312, 4744, 1402]) #[m4]
I_xx = np.array([34350, 34350, 35105, 10685]) #[m4]
H = Lt/L #[-]

# Material properties:

rho = np.array([5070, 552, 426, 371]) #[kg/m3]

E = np.array([11e9, 11e9, 22e9, 33e9]) #[N/m2]
v = 0.2 #[-]

G = E/(2x(1+v))#[N/m~2]

k = 0.85 #[-]

# Springs:

kr_y = 6486e9 #[Nm/rad]
kr_x = 50371e9 #[Nm/rad]
kt_x 9.22e9 #[N/m]
kt_y = 9.22e9 #[N/m]

#boudary conditions:

bc = ("rot+transl", "free")

scaler = {"kr":0.4, "kt":9.0, "I":1.5, "E":7.0}
zz_trgt = np.array([0, 69, 108.60, 144.60])
z_trgt = zz_trgt/L

#Startpoints
startpoints = 200

# Number of iterations
num_iterations = 10

timoshenko_x = []
for ix in range(len(H)):

timoshenko_x.append(Timo (params={"E": E[ix], "I": I_xx[ix],"L": L,"rho":

ix] , "kG": k * G[ix], "kr": kr_x, "kt": kt_x}, height=H[ix]))
timoshenko_y = []

rho[ix],

g,

colors="'black'

AL
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46 for ix in range(len(H)):

a7 timoshenko_y.append(Timo (params={"E": E[ix], "I": I_yy[ix],"L": L,"rho": rho[ix], "A": A[
ix] , "kG": k * G[ix], "kr": kr_y, "kt": kt_yl}, height=H[ix]))

48 model = TimoPieceWiseBeam2D(beams_x=timoshenko_x, beams_y=timoshenko_y, bc = bc)

49

50 import numpy as np
51
52 def apply_random_errors (input_data, max_error=0.2, seed=None):

53 if seed is not None:

54 np.random. seed(seed)

55

56 if input_data.ndim == 1:

57 data_with_errors = np.copy(input_data)

58 scaling_factors = np.random.uniform(l - max_error, 1 + max_error, input_data.shape)
59 data_with_errors *= scaling_factors

60

61 elif input_data.ndim == 2:

62 data_with_errors = np.copy(input_data)

63 scaling_factors = np.random.uniform(l - max_error, 1 + max_error, input_data.shape)
64 data_with_errors *= scaling_factors

65

66 else:

67 raise ValueError ("Input,data mustybe either a,1D or 2D array.")

68

69 return data_with_errors

70

71 model.scale_params(scalers=scaler)

72 fn_x, fn_y, phi_x, phi_y, pts_x, pts_y = model.modeshapes(pts=z_trgt, n_modes_x = 1,
n_modes_y=2)

73 parameters_to_update = {p:[1/10, 9.8] for p in list(scaler.keys())}

74 logscale = False

76 def process_iteration(npts):

77 results = update_model(

78 model=model,

79 cost_func=cost_func2D,

80 parameters_to_update=parameters_to_update,

81 y_hat=y_hat,

82 npts=npts,

83 sim_type=UpdatingMethod.CMC,

84 verbose=False,

85 logscale=logscale)

86

87 parameters_columns = [cc for cc in results.columns if "_st" in cc or "_opt" in cc]
88 plot_cols = [a + "_opt" for a in parameters_to_update.keys ()]

89 map_opt2name = {pcl: k for k, pcl in zip(parameters_to_update.keys(), plot_cols)}
90 df _opt = results.dropna().copy()

91 df _opt.dropna(inplace=True)

92

93 if logscale:

94 df _opt [parameters_columns] = df_opt[parameters_columns].apply(np.exp)
95

96 top_lowest_convergence = df_opt.sort_values(by='Convergence') .head (1)
97 return (npts,

98 top_lowest_convergence["kr_opt"].iloc[0],

99 top_lowest_convergence["kt_opt"].iloc[0],

100 top_lowest_convergence["I_opt"].iloc[0],

101 top_lowest_convergence ["E_opt"].iloc[0],

102 top_lowest_convergence ["Convergence"].iloc [0])

103

104 kr = []

105 kt = []

106 I = []

w7 E = []

108 convergence = []

109

110 for i in range(num_iterations):

111 seed_fn_xt = i * 4

112 seed_phi_xt =i * 4 + 1

113 seed_fn_yt = i *x 4 + 2

114 seed_phi_yt =i * 4 + 3
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fn_xt = apply_random_errors(deepcopy(fn_x), max_error=0.1, seed=seed_fn_xt)
phi_xt = apply_random_errors(deepcopy(phi_x), max_error=0.2, seed=seed_phi_xt)
fn_yt = apply_random_errors(deepcopy(fn_y), max_error=0.1, seed=seed_fn_yt)
phi_yt = apply_random_errors(deepcopy(phi_y), max_error=0.2, seed=seed_phi_yt)

y_hat = {"z": z_trgt, "fn_x": deepcopy(fn_xt), "fn_y": deepcopy(fn_yt), "modes_x":
deepcopy (phi_xt), "modes_y": deepcopy(phi_yt)}

result = process_iteration(startpoints)

kr.append (result[1])
kt.append (result [2])
I.append(result[3])
E.append(result [4])
convergence.append (result [5])

import os

import pandas as pd

directory = r'C:\Users\ritfeldis\OneDrive -, ,TNO\Documents\Master thesis Isa_ Ritfeld,(4892534)
\5.,Python\5.3_ ,Results\Delfste Poort’

os.makedirs (directory, exist_ok=True)

file_names = [

'Measure_I.csv',
'Measure_E.csv',
'Measure_kr.csv',
'Measure_kt.csv',
'Measure_convergence.csv',
data_lists = [I, E, kr, kt, convergencel
parameter_names = ['I', 'E', 'kr', 'kt', 'convergence'l]
for file_name, data, parameter in zip(file_names, data_lists, parameter_names):

df = pd.DataFrame ({f'value of {parameter}': datal})
file_path = os.path.join(directory, file_name)
df .to_csv(file_path, index=False)

directory = r'C:\Users\ritfeldis\OneDrive,-,TNO\Documents\Master thesis Isa Ritfeld,(4892534)
\5.,Python\5.3 Results\Delfste Poort'
file_names = [
'Measure_I.csv',
'Measure_E.csv',
'Measure_kr.csv',
'Measure_kt.csv',
'Measure_convergence.csv',

dfs = []

for file_name in file_names:
file_path = os.path.join(directory, file_name)
df = pd.read_csv(file_path)
dfs.append (df)

import os
import pandas as pd
import matplotlib.pyplot as plt

# Define the directory and file names
directory = r'C:\Users\ritfeldis\OneDrive,- TNO\Documents\Master thesis Isa_ Ritfeld(4892534)
\5._ Python\5.3_,Results\Delfste Poort'
file_names = [
'Measure_I.csv',
'Measure_E.csv',
'Measure_kr.csv',
'Measure_kt.csv',
'Measure_convergence.csv',
]

column_names = ['I', 'E', 'kr', 'kt', 'convergence']

# Load the data into a list of DataFrames
dfs = []
for file_name, col_name in zip(file_names, column_names):
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file_path = os.path.join(directory, file_name)

df = pd.read_csv(file_path)
df.columns = [col_name]
dfs.append (df)

# Merge all DataFrames on the index
merged_df = pd.concat(dfs, axis=1)

# Add 'EI_opt' column which is the product of
merged _df ['EI'] = merged df['E'] * merged_df['I']

print (merged_df ['EI'])
# Define the additional solution

additional_solution = {
'kr': 0.4,
'kt': 9.0,
N5l 7.0,
YT 106l
'EI': 7.0 *x 1.5
}
# Define columns to plot
columns = ['kr', 'kt', 'E', 'I', 'EI']
# Define colors for each column

colors = {
'kr': 'steelblue',
'kt': 'lightsteelblue',
'I': 'firebrick',
'E': 'goldenrod',
'EI': 'white'
}
# Define marker styles for each column
markers = {
'kr': 'o', # circle
'kt': 's', # square
'I': 7, # triangle up
'E': 'D', # diamond
'"EI': 'v' # plus (filled)
}

# Define marker sizes for each column
marker_sizes = {

'kr': 50, # Adjust marker size as needed
'kt': 43,
'I': 60,
'E': 35,
'"EI': 60

}

# Define the additional solution color

additional_color = 'red'

# Set up the plot
plt.figure(figsize=(9, 6))

# Create scatter plot for each column with thin black

for col in columns:
plt.scatter(

[col]l] * len(merged_df),
merged_df [coll],
label=col,
color=colors[col],
marker=markers[col],
edgecolor="'black',
linewidth=0.5,
s=marker_sizes[col],
zorder=2

# Connect the dots for each row
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for i in range(len(merged_df)):
plt.plot(columns, merged_df.iloc[i][columns], color='dimgrey', linestyle='-', linewidth
=0.5, zorder=1)

# Plot the additional solution with corresponding markers and additional color
for col in columns:
plt.scatter(
[coll,
[additional_solution[coll],
color=additional_color,
marker=markers[col],
edgecolor="'black',
linewidth=0.5,
s=marker_sizes[col],
zorder=3
)
plt.plot(columns, list(additional_solution.values()), color=additional_color, linestyle='-"',
linewidth=0.5, zorder=3)

# Add labels and title
plt.xlabel('Optimized, updating parameters', fontsize=12)
plt.ylabel('Scalar,(-)', fontsize=12)
plt.xticks(rotation=45)

# Customize grid
plt.grid(True, which='major', axis='x', linestyle='-', linewidth=0.5, color='black') # Major
vertical grid lines

# Hide major horizontal grid lines
plt.grid(True, which='major', axis='y', linestyle='-', linewidth=0.5, color='white')

# Add ticks where vertical grid lines intersect horizontal lines
for col in columns:
y_vals = [0.1, 1, 10, 20]
for y_val in y_vals:
plt.scatter(col, y_val, color='black', marker='_', linewidths=1.7, s=40, zorder=0)

for col in columns:
y_vals = [0.2,0.3,0.4, 0.5,0.6,0.7,0.8,0.9, 2,3,4,5,6,7,8,9]
for y_val in y_vals:
plt.scatter(col, y_val, color='black', marker='_', linewidths=0.5, s=2, zorder=0)

# Adjust spines

plt.gca().spines['top'].set_linewidth(0.5)

plt.gca() .spines['top'].set_color('white')

plt.gca().spines['right'].set_linewidth(0.5)

plt.gca() .spines['right'].set_color('white')

plt.gca().spines['bottom'].set_linewidth(0.5)

plt.gca() .spines['bottom'].set_color('white')

plt.gca() .spines['left'].set_linewidth(0.5)

plt.gca() .spines['left'].set_color('black"')

plt.gca() .yaxis.set_ticks_position('left') # Ensure ticks are on the left side of the plot

plt.tick_params(axis='y', which='major', direction='out', length=5, width=1, colors='black')
# Customize tick parameters

# Set y-scale and limits

plt.yscale('log')

plt.ylim(0.1, 20)

plt.gca().set_yticks([0.1, 1, 10, 201)
plt.gca().set_yticklabels(['0O.1', '1', '"10', '20'])

# Show legend for main columns only
plt.legend(columns, bbox_to_anchor=(0.05, 1), loc='upper,left', prop={'family': 'Arial',
size': 10})

# Display the plot
plt.tight_layout ()
plt.show ()
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App

%load_e
%autore
from co
from py

lication

xt autoreload

load 2

py import deepcopy

vibe.models.Timoshenko import Timo, TimoPieceWiseBeamlD, TimoPieceWiseBeam2D,

UpdatingMethod, cost_funclD, cost_func2D,update_model

import
import
import
import
import
import
/%matplo

# Param

# Dimen
L = 160
Lt = np
B 28
D 28
A =B x*
#I_x =

#I_y = np.array([1536.25, 959.01, 1245.46, 1202.07, 831.57]) #[m4]
I_yy = np.array([1444,1500,1393,1389,1293]1) #[m4]
I_xx = np.array([1532,1548,2796,2324,760]) #[m4]
H = Lt/L #[-]
# Material properties:
rho = np.array([1933, 495, 486, 440, 383]) #[kg/m3]
E = np.array([38.2e9, 38.2e9, 38.2e9, 38.2e9, 32.8e9]) #[N/m2]
v = 0.2 #[-]
G = E/(2x(1+v)) #[N/m~2]
k = 0.85 #[-]
# Springs:
kr_x = 2380e9 #[Nm/rad]
kr_y = 2625e9 #[Nm/rad]
kt_y = 19e9 #[N/m]
kt_x = 4e9 #[N/m]
#boudary conditions:
bc = ("rot+transl", "free")
scaler = {"kr":0.4, "kt":9.0, "I":1.5, "E":7.0} #The parameters chosen are from the
conclusion of sensitivity study 2
zz_trgt = np.array([57.165, 120.435, 153.735]) #The three locations where there are
measurements taken of the New Orleans
z_trgt = zz_trgt/L
#Startpoints
startpoints = 400
fnx = np.array([0.282, 1.527])
phixx = [
[-0.30, 0.89],
[-0.71, -0.23],
[-1, -1]
]
phix = np.array(phixx)
# Procedure
def adjust_modes(phil, phi2):
rmse_plus = np.sqrt(np.mean((phil - phi2) ** 2))
rmse_minus = np.sqrt(np.mean((phil + phi2) ** 2))
flip = np.ones_like(phi2)
flip[rmse_plus > rmse_minus] = -1

phi

numpy as np
matplotlib.pyplot as plt
seaborn as sns
scipy.stats as stats
math

pandas as pd

tlib inline

eters

sion Parameters:

.58 #[m]

.array([5.735, 11.47, 26.640, 89.91, 26.825]) #[m]

#[m]

#[m]

D #[m2]

np.array([619.21, 948.47, 2727.22, 2335.82, 905.52]) #[m4]

_flip = phil * flip
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return phi_flip

def modal_assurance_criterion(phil, phi2):
phi2 = adjust_modes(phi2, phil)
mac = np.abs(np.conj(phil).dot(phi2))**2 / \
(np.conj(phil) .dot(phil) * np.conj(phi2).dot (phi2))
return mac

timoshenko_x = []
for ix in range(len(H)):

timoshenko_x.append(Timo (params={"E": E[ix], "I": I_xx[ix],"L": L,"rho": rhol[ix],

, "kG": k * G[ix], "kr": kr_x, "kt": kt_x}, height=H[ix]))
model_x = TimoPieceWiseBeamlD (beams=timoshenko_x, bc = bc)

y_hat_x = {"z": z_trgt, "fn": deepcopy(fnx), "modes": deepcopy(phix)}

parameters_to_update_x = {p:[1/10, 10] for p in list(scaler.keys())} #maybe change this?

print (parameters_to_update_x)
logscale = False

results_x = update_model(
model=model_x,
cost_func=cost_funclD,
parameters_to_update=parameters_to_update_x,
y_hat=y_hat_x,
npts=startpoints,
sim_type=UpdatingMethod.CMC,
verbose=False,
logscale=logscale

)

parameters_columns = [cc for cc in results_x.columns if "_st" in cc or "_opt" in cc]

plot_cols = [a + "_opt" for a in parameters_to_update_x.keys()]

map_opt2name = {pcl: k for k, pcl in zip(parameters_to_update_x.keys(), plot_cols)}
df _opt = results_x.copy()
df _opt.dropna(inplace=True)

if logscale:

df _opt [parameters_columns] = df_opt[parameters_columns].apply(np.exp)
# Results
t_x = results_x.sort_values(by='Convergence').head(startpoints)

quantile_threshold = t_x['Convergence'].quantile(0.125)
test_x = t_x[t_x['Convergence'] <= quantile_threshold]
print(test_x)

# Find the minimum and maximum values in each _opt column
min_values = test_x[[col for col in test_x.columns if col.endswith('_opt')]].min()

max_values = test_x[[col for col in test_x.columns if col.endswith('_opt')]].max()

# Update the boundaries

new_boundaries = {
'kr': [min_values['kr_opt'], max_values['kr_opt']],
'kt': [min_values['kt_opt'], max_values['kt_opt']l],
'I': [min_values['I_opt'], max_values['I_opt'l],

'"E': [min_values['E_opt'], max_values['E_opt']]
}
print ("New ,Boundaries:")
print (new_boundaries)

results_repeated2_x = update_model(
model=model_x,
cost_func=cost_funcilD,
parameters_to_update=new_boundaries,
y_hat=y_hat_x,
npts=startpoints,
sim_type=UpdatingMethod.CMC,
verbose=False,
logscale=logscale

)

parameters_columns = [cc for cc in results_repeated2_x.columns if "_st" in cc or "_opt"

AN, A

in cc
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]
plot_cols = [a + "_opt" for a in new_boundaries.keys()]
map_opt2name = {pcl: k for k, pcl in zip(new_boundaries.keys(), plot_cols)}
df _opt = results_repeated2_x.copy()
df _opt.dropna(inplace=True)

if logscale:

df _opt [parameters_columns] = df_opt[parameters_columns].apply(np.exp)
t2_x = results_repeated2_x.sort_values(by='Convergence') .head(startpoints)
print (t2_x)

quantile_threshold = t2_x['Convergence'].quantile(0.125)
test2_x = t2_x[t2_x['Convergence'] <= quantile_threshold]
print (test2_x)

results_output_x = []
for ii in range(len(test2_x)):
scaler_x = {
"kr": test2_x["kr_opt"].iloc[ii],
"kt": test2_x["kt_opt"].iloc[ii],
"I": test2_x["I_opt"]l.iloc[iil],
"E": test2_x["E_opt"].iloc[ii]
}
model_x.scale_parms(scalers=scaler_x)
fn_x, phi_x, pts_x = model_x.modeshapes(pts=z_trgt, n_modes=2)

mac_O = modal_assurance_criterion(phi_x[:, 0], phix[:, 0])
mac_1 modal_assurance_criterion(phi_x[:, 1], phix[:, 1])

results_output_x.append ({
"index": ii,
"fn_x_1": fn_x[0],
"fn_x_2": fn_x[1],
"mac_1": mac_O,
"mac_2": mac_1

b

results_df = pd.DataFrame(results_output_x)
stats_results = {}
z_value = 1.645

for col in ['fn_x_1', 'fn_x_2', 'mac_1', 'mac_2']:
mean_val = results_df[col].mean()
median_val = results_df[col].median()
max_val = results_df[col].max()
min_val = results_df[col]l.min()
stats_results[col] = {
"Median": median_val,
"Mean": mean_val,
"lower_bound": min_val,
"upper_bound": max_val
}
summary_df = pd.DataFrame(columns=["Measured, fnx", "Median", "Mean", "Lower Bound",
Bound"])

for param, values in stats_results.items():
if "fn_x_1" in param:
measured_fnx = fnx[0]
elif "fn_x_2" in param:
measured_fnx = fnx[1]
else:
measured_fnx = np.nan

"Uppery

summary_df.loc[param] = [measured_fnx, values["Median"], values["Mean"], values["

lower_bound"],
values ["upper_bound"]]
print (summary_df)

def calculate_summary_stats(df, columns, direction):
print (f"{direction}-direction")
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kr_summary_stats = [
kt_summary_stats = [

for column in column
if "kr_opt" in c

mean_val = d
median_val =
sem_val = df
std_dev = df
z_value = 1.

lower_boundkr

]
]

s:
olumn:
f [column] .mean ()

df [column] .median ()
[column].sem()
[column].std ()

645

df [column] .min ()

upper_boundkr = df [column].max()

cv = round ((

kr_summary_s

'Design':
'Median':

'Lower B
'Upper B
'CoVy ()
}, index=["k

elif "kt_opt" in

std_dev / mean_val) * 100, 2)

tats.append(pd.DataFrame ({

1:
median_val,
ound': lower_boundkr,
ound': upper_boundkr,
't cv
r_opt"1))
column:

mean_val = df [column].mean ()
median_val = df [column].median ()
sem_val = df[column].sem()
std_dev = df [column].std()
z_value = 1.645

lower_boundkt = df [column].min()

upper_boundkt = df [column].max ()

cv = round ((

kt_summary_s

'Design':
'Median':

'Lower B
'Upper B
'COVy (%)
}, index=["k

kr_summary_stats_df
kt_summary_stats_df

print ("Summary,stati
print (kr_summary_sta
print (kt_summary_sta

for ii in range(len(
print CED)

print (f"Summary statistics for discrete element {ii}")

summary_stats_1i

for column in co

if "kr_opt"
continue
mean_val = d
median_val =
sem_val = df
std_dev = df
z_value = 1

lower_bound
upper_bound

cv = round ((

std_dev / mean_val) * 100, 2)

tats.append(pd.DataFrame ({

1,

median_val,
ound': lower_boundkt,
ound': upper_boundkt,
't cv
t_opt"1))

= pd.concat (kr_summary_stats, axis=0)
= pd.concat (kt_summary_stats, axis=0)

stics,for boundary conditions:")
ts_df)
ts_df.to_string(header=None))

E)):

st = []

lumns:
in column or "kt_opt" in column:

f[column] .mean ()

df [column] .median ()
[column].sem()
[column].std ()

.645

df [column] .min ()
= df [column] .max ()

std_dev / mean_val) * 100, 2)
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if 'y' in direction:
if "E_opt" in column
summary_stats =

1,

elif

pd.DataFrame ({

'Design': 1,

'Median': median_val,

'Lower Bound': lower_bound ,
'UpperBound': upper_bound,
'COV, (%) ' cv

index=["E_opt"])
summary_stats_list.append(summary_stats)
n I opt n

in column:
summary_stats = pd.DataFrame ({
'Design': 1,
'Median': median_val,
'Lower Bound': lower_bound ,
'Upper_Bound': upper_bound,
'COV, (%) ' cv

} b

index=["I_opt"])
summary_stats_list.append(summary_stats)

new_column = df["E_opt"] * df["I_opt"]
mean_val_new = new_column.mean ()

median_val_new =
std_dev_new = new_column.std()

lower_bound_new
upper_bound_new

cv_new = round((std_dev_new / mean_val_new) * 100,

summary_stats =

1,

summary_stats_df
print (summary_stats_df)

parameters_columns_y

'Design': 1,

'Median': median_val_new,
'Lower_ Bound':
'UpperBound':

= pd.concat (summary_stats_list, axis=0)

import matplotlib.pyplot as plt

new_column.median ()

new_column.min ()
new_column.max ()

pd.DataFrame ({

lower_bound_new ,
upper_bound_new,
'COV, (%) ': cv_new

index=["EI_opt"])
summary_stats_list.append(summary_stats)

[cc for cc in test2_x.columns if
summary_stats_y = calculate_summary_stats(test2_x, parameters_columns_y,

# Assuming test2_x is already defined and has the columns

', and 'EI_opt'

# Add a new column 'EI_opt'

which is the product of

test2_x['EI_opt'] = test2_x['E_opt'] * test2_x['I_opt'l]

# Columns to plot
columns = ['kr_opt',

'kt

_opt',

# Define colors for each column

colors = {
'kr_opt': 'steelblue',
'kt_opt': 'lightsteelblue',
'I_opt': 'firebrick',
'E_opt': 'goldenrod',
'EI_opt': 'white'
}
# Define marker styles for each column
markers = {
'kr_opt': 'o', # circle
'kt_opt': 's', # square
'I_opt': '""', # triangle up
'E_opt': 'D', # diamond

'E_opt', 'I_opt',

'"EI_opt']

_opt"

'E_opt'

'E_opt
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345 'EI_opt': 'v' # plus (filled)
346 }

347

348 # Define marker sizes for each column
349 marker_sizes = {

350 'kr_opt': 50, # Adjust marker size as needed
351 'kt_opt': 43,

352 'I_opt': 60,

353 'E_opt': 35,

354 '"EI_opt': 60

355 }

356

357 # Set up the plot

358 plt.figure(figsize=(9, 6))

359

360 # Create scatter plot for each column with thin black edges
361 for col in columns:

362 plt.scatter(

363 [col]l * len(test2_x),
364 test2_x[col],

365 label=col,

366 color=colors[col],
367 marker=markers [col],
368 edgecolor="'black',
369 linewidth=0.5,

370 s=marker_sizes[col],
371 zorder=2

372 )

373

374 # Connect the dots for each row

375 for i in range(len(test2_x)):

376 plt.plot(columns, test2_x.iloc[i] [columns], color='dimgrey', linestyle='-', linewidth
=0.5, zorder=1)

378 # Add labels and title

379 plt.xlabel('Optimized updating  parameters,in x-direction', fontsize=12)
380 plt.ylabel('Scalar,(-)', fontsize=12)

381 plt.xticks(rotation=45)

383 # Customize grid

384 plt.grid(True, which='major', axis='x', linestyle='-', linewidth=0.5, color='black') # Major
vertical grid lines

385

386 # Hide major horizontal grid lines

387 plt.grid(True, which='major', axis='y', linestyle='-', linewidth=0.5, color='white')

389 # Add ticks where vertical grid lines intersect horizontal lines
390 for col in columns:

391 y_vals = [0.1, 1, 10]
392 for y_val in y_vals:
393 plt.scatter(col, y_val, color='black', marker='_', linewidths=1.7, s=40, zorder=0)

3905 for col in columns:

396 y_vals = [0.2,0.3,0.4, 0.5,0.6,0.7,0.8,0.9, 2,3,4,5,6,7,8,9]

397 for y_val in y_vals:

398 plt.scatter(col, y_val, color='black', marker='_', linewidths=0.5, s=2, zorder=0)
399

400 # Adjust spines

401 plt.gca().spines['top']l.set_linewidth(0.5)

402 plt.gca() .spines['top'].set_color('white')

403 plt.gca().spines['right'].set_linewidth(0.5)

404 plt.gca().spines['right'].set_color('white')

405 plt.gca().spines['bottom'].set_linewidth(0.5)

406 plt.gca().spines['bottom'].set_color('white')

407 plt.gca().spines['left'].set_linewidth(0.5)

408 plt.gca().spines['left'].set_color('black')

400 plt.gca().yaxis.set_ticks_position('left') # Ensure ticks are on the left side of the plot

410 plt.tick_params(axis='y', which='major', direction='out', length=5, width=1, colors='black')
# Customize tick parameters

411 # Set y-scale and limits

412 plt.yscale('log')
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413 plt.ylim(0.1, 10)
414 plt.gca().set_yticks([0.1, 1, 10])
415 plt.gca().set_yticklabels(['0O.1', '1', '"10'])

416 #plt.tick_params(axis='y', which='major', direction='inout', length=6, width=1, colors='black
")

417 #plt.gca().yaxis.grid(True, which='minor', linestyle='-', linewidth=0.25)

418 # Show legend

419 plt.legend(columns, bbox_to_anchor=(0.05, 1), loc='upper left', prop={'family': 'Arial', '
size': 10})

420

421 # Display the plot
422 plt.tight_layout ()
423 plt.show ()

425 # Dimension Parameters:

426 L = 160.58 #[m]

427 Lt = np.array([5.735, 11.47, 26.640, 89.91, 26.825]) #[m]
428 B = 28 #[m]

431 #I_x = np.array([619.21, 948.47, 2727.22, 2335.82, 905.52]) #[m4]
432 #I_y = np.array([15636.25, 959.01, 1245.46, 1202.07, 831.57]) #[m4]
433 I_yy = np.array([1444,1500,1393,1389,1293]) #[m4]

43¢ I_xx = np.array([1532,1548,2796,2324,760]) #[m4]
435 H = Lt/L #[-]
436

437 # Material properties:
438 rho = np.array([1933, 495, 486, 440, 383]) #[kg/m3]

439 E = np.array([38.2e9, 38.2e9, 38.2e9, 38.2e9, 32.8e9]) #[N/m2]
4420 v = 0.2 #[-]

441 G = E/(2%(1+v)) #[N/m"~2]

442 k = 0.85 #[-]

443

444 # Springs:
1445 kr_x = 2380e9 #[Nm/rad]

446 kr_y = 2625e9 #[Nm/rad]

447 kt_y = 19e9 #[N/m]

1448 kt_x = 4e9 #[N/m]

449

450 #boudary conditions:

451 bc = ("rot+transl", "free")

453 scaler = {"kr":0.4, "kt":9.0, "I":1.5, "E":7.0} #The parameters chosen are from the
conclusion of sensitivity study 2

454 zz_trgt = np.array([57.165, 120.435, 153.735]) #The three locations where there are
measurements taken of the New Orleans

455 z_trgt = zz_trgt/L

457 #Startpoints
458 startpoints = 400

460 fny = np.array([0.291, 1.332])
461 phiyy = [

462 [-0.29, -0.90],

463 [-0.78, 0.19],

464 [-1, 1]

465 ]

466 phiy = np.array(phiyy)

467

1468 # Procedure

469

470 def adjust_modes(phil, phi2):

471 rmse_plus = np.sqrt(np.mean((phil - phi2) *x 2))
472 rmse_minus = np.sqrt(np.mean((phil + phi2) ** 2))
473 flip = np.ones_like(phi2)

474 flip[rmse_plus > rmse_minus] = -1

475 phi_flip = phil * flip

476 return phi_flip

477

478 def modal_assurance_criterion(phil, phi2):
479 phi2 = adjust_modes(phi2, phil)
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mac = np.abs(np.conj(phil).dot(phi2))**2 / \
(np.conj(phil) .dot(phil) * np.conj(phi2).dot (phi2))
return mac

timoshenko_y = []
for iy in range(len(H)):
timoshenko_y.append(Timo (params={"E": E[iy], "I": I_yyl[iy]l,"L": L,"rho": rholiy],
, "kG": k * G[iy], "kr": kr_y, "kt": kt_y}, height=H[iy]))
model_y = TimoPieceWiseBeamlD (beams=timoshenko_y, bc = bc)

y_hat_y = {"z": z_trgt, "fn": deepcopy(fny), "modes": deepcopy(phiy)}
parameters_to_update_y = {p:[1/10, 10] for p in list(scaler.keys())}
logscale = False

results_y = update_model(
model=model_y,
cost_func=cost_funciD,
parameters_to_update=parameters_to_update_y,
y_hat=y_hat_y,
npts=startpoints,
sim_type=UpdatingMethod.CMC,
verbose=False,
logscale=logscale
)
parameters_columns = [cc for cc in results_y.columns if "_st" in cc or "_opt" in cc]
plot_cols = [a + "_opt" for a in parameters_to_update_y.keys()]
map_opt2name = {pcl: k for k, pcl in zip(parameters_to_update_y.keys(), plot_cols)}
df _opt = results_y.copy()
df _opt.dropna(inplace=True)

if logscale:

df _opt[parameters_columns] = df_opt[parameters_columns].apply(np.exp)
# Results
t_y = results_y.sort_values(by='Convergence').head(startpoints)

quantile_threshold = t_y['Convergence'].quantile (0.125)
test_y = t_y[t_y['Convergence'] <= quantile_threshold]
print (test_y)

# Find the minimum and maximum values in each _opt column
min_values = test_y[[col for col in test_y.columns if col.endswith('_opt')]].min()

max_values = test_y[[col for col in test_y.columns if col.endswith('_opt')]].max()

# Update the boundaries

new_boundaries = {
'kr': [min_values['kr_opt'], max_values['kr_opt'l],
'kt': [min_values['kt_opt'], max_values['kt_opt']],
'I': [min_values['I_opt']l, max_values['I_opt'l],
'E': [min_values['E_opt'], max_values['E_opt']]

}

print ("New ,Boundaries:")
print (new_boundaries)

results_repeated2_y = update_model(
model=model_y,
cost_func=cost_funcilD,
parameters_to_update=new_boundaries,
y_hat=y_hat_y,
npts=startpoints,
sim_type=UpdatingMethod.CMC,
verbose=False,
logscale=logscale

)

parameters_columns = [cc for cc in results_repeated2_y.columns if "_st" in cc or "_opt"

]
plot_cols = [a + "_opt" for a in new_boundaries.keys()]
map_opt2name = {pcl: k for k, pcl in zip(new_boundaries.keys(), plot_cols)}
df _opt = results_repeated2_y.copy ()
df _opt.dropna(inplace=True)

nAN .

A
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if logscale:
df _opt[parameters_columns] = df_opt[parameters_columns].apply(np.exp)

t2_y = results_repeated2_y.sort_values(by='Convergence').head(startpoints)
print (t2_y)

quantile_threshold = t2_y['Convergence'].quantile (0.125)
test2_y = t2_y[t2_y['Convergence'] <= quantile_threshold]
print (test2_y)

results_output_y = []
for ii in range(len(test2_y)):
scaler_y = {
"kr": test2_y["kr_opt"].iloc[ii],
"kt": test2_y["kt_opt"].iloc[ii],
"I": test2_y["I_opt"].iloc[ii],
"E": test2_y["E_opt"].iloc[iil
}
model_y.scale_parms(scalers=scaler_y)
fn_y, phi_y, pts_y = model_y.modeshapes(pts=z_trgt, n_modes=2)

mac_0O
mac_1

modal_assurance_criterion(phi_y[:, 0], phiy[:, 0])
modal_assurance_criterion(phi_y[:, 1], phiy[:, 1])

results_output_y.append ({
"index": ii,
"fn_y_1": fn_y[O0],
"fn_y_2": fn_y[1],
"mac_1": mac_O,
"mac_2": mac_1,

1))

results_df = pd.DataFrame(results_output_y)
stats_results = {}
z_value = 1.645

for col in ['fn_y_1', 'fn_y_2', 'mac_1', 'mac_2']:
mean_val = results_df[col].mean()
median_val = results_df[col].median()
max_val = results_df[col].max()
min_val = results_df[col].min()

stats_results[col] = {
"Median": median_val,
"Mean": mean_val,
"lower_bound": min_val,
"upper_bound": max_val

}

summary_df = pd.DataFrame(columns=["Measured,fny", "Median", "Mean", "Lower Bound",

Bound"])
for param, values in stats_results.items():
if "fn_y_1" in param:
measured_fny = fny[0]
elif "fn_y_2" in param:
measured_fny = fny[1]
elif "fn_y_3" in param:
measured_fny = fny[2]
else:
measured_fny = np.nan

"Upper,

summary_df.loc[param] = [measured_fny, values["Median"], values["Mean"], values["

lower_bound"], values["upper_bound"]]
print (summary_df)

def calculate_summary_stats(df, columns, direction):
print (f"{direction}-direction")

(1
(1

kr_summary_stats
kt_summary_stats
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for column in column
if "kr_opt" in c

mean_val = d
median_val =
sem_val = df
std_dev = df
z_value = 1.

lower_boundk
upper_boundk

cv = round ((

kr_summary_s

'Design':
'Median':

'Lower B
'Upper B
'COVy (%)
}, index=["k

elif "kt_opt" in

mean_val = d
median_val =
sem_val = df
std_dev = df
z_value = 1.

lower_boundk

upper_boundkt

cv = round ((

kt_summary_s

'Design':
'Median':

'Lower B
'Upper B
'COVy (%)
}, index=["k

kr_summary_stats_df
kt_summary_stats_df

print ("Summary_stati
print (kr_summary_sta
print (kt_summary_sta

for ii in range(len(
print ("")

print (£"Summary statistics for discrete element {ii}")

summary_stats_1i

for column in co

if "kr_opt"
continue
mean_val = d
median_val =
sem_val = df
std_dev = df
z_value = 1

lower_bound
upper_bound

cv = round ((

if 'y' in di

if "E_op

s:
olumn:
f[column] .mean ()

df [column] .median ()
[column].sem()
[column].std ()

645

r = df [column].min ()
r = df [column].max ()

std_dev / mean_val) * 100, 2)

tats.append(pd.DataFrame ({

1,
median_val,
ound': lower_boundkr,
ound': upper_boundkr,
't cv
r_opt"]))
column:

f[column] .mean ()

df [column] .median ()
[column].sem()
[column].std ()

645
t df [column] .min ()
df [column] .max ()

std_dev / mean_val) * 100, 2)

tats.append(pd.DataFrame ({

1,

median_val,
ound': lower_boundkt,
ound': upper_boundkt,
't cv
t_opt"1))

pd.concat (kr_summary_stats, axis=0)
= pd.concat (kt_summary_stats, axis=0)

stics,for boundary conditions:")
ts_df)
ts_df.to_string(header=None))

E)):

st = []

lumns:
in column or "kt_opt" in column:

f[column].mean ()

df [column] .median ()
[column].sem()
[column].std ()

.645

df [column] .min ()
df [column] .max ()

std_dev / mean_val) * 100, 2)

rection:
t" in column:
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elif

summary_stats = pd.DataFrame ({

'Design': 1,

'Median': median_val,
lower_bound ,
upper_bound,

'Lower_ Bound':
'UpperBound':
'COVy, (%) ' cv

}, index=["E_opt"])

summary_stats_list.append(summary_stats)
"I_opt" in column:

summary_stats = pd.DataFrame ({

'Design': 1,

'Median': median_val,
lower_bound ,
upper_bound,

'Lower Bound':
'UpperBound':
'COVL (%) ' cv

}, index=["I_opt"])

summary_stats_list.append(summary_stats)

new_column = df ["E_opt"] * df["I_opt"]

mean

_val_new = new_column.mean ()

median_val_new = new_column.median ()
std_dev_new = new_column.std()

lower_bound_new = new_column.min()
upper_bound_new = new_column.max ()

cv_new = round((std_dev_new / mean_val_new) * 100, 2)

summary_stats = pd.DataFrame ({

summary_stats_list.append(summary_stats)

summary_stats_df
print (summary_stats_df)

parameters_columns_y = [cc for cc in test2_y.columns if

summary_stats_y =

'Design': 1,

'Median': median_val_new,

'Lower_Bound':
'UpperBound':

lower_bound_new ,
upper_bound_new,
'COV, (%) ': cv_new
}, index=["EI_opt"])

= pd.concat (summary_stats_list, axis=0)

_opt"

in cc]

calculate_summary_stats(test2_y, parameters_columns_y, "y")

import matplotlib.pyplot as plt

# Assuming test2_y is already defined and has the columns

', and 'EI_opt'

# Add a new column

test2_y['EI_opt']

# Columns to plot
columns = ['kr_opt', 'kt

'EI_opt'

which is the product of 'E_opt'

test2_y['E_opt'] * test2_y['I_opt']

_opt', 'E_opt',

# Define colors for each column

colors = {
'kr_opt':
'kt_opt':
'I_opt':
'E_opt':
'"EI_opt':
}

'steelblue’',

'lightsteelblue’,
'firebrick',
'goldenrod’,

'white'

# Define marker styles for each column

markers = {
'kr_opt':
'kt_opt':
'I_opt':
'E_opt':
'EI_opt':

o s

S

0=0
3

‘D',
ty!

>

H H K HE R

circle

square
triangle up
diamond

plus (filled)

'I_opt',

'EI_opt']

and

'kr_opt', 'kt_opt',

'I_opt'

'I_opt'

>

'E_opt



759

761
762
763
764
765
766

768
769
770
771
772
773

775
776
77T
778
779
780

782
783
784
785
786
787

788
789
790
791
792
793

795

822
823
824
825

169

# Define marker sizes for each column

marker_sizes = {
'kr_opt': 50, # Adjust marker size as needed
'kt_opt': 43,
'I_opt': 60,
'E_opt': 35,

'"EI_opt': 60
}

# Set up the plot
plt.figure(figsize=(9, 6))

# Create scatter plot for each column with thin black edges
for col in columns:
plt.scatter(

[col]l * len(test2_y),
test2_y[coll,
label=col,
color=colors[col],
marker=markers [col],
edgecolor='black',
linewidth=0.5,
s=marker_sizes[col],
zorder=2

# Connect the dots for each row
for i in range(len(test2_y)):
plt.plot(columns, test2_y.iloc[i][columns], color='dimgrey', linestyle='-', linewidth
=0.5, zorder=1)

# Add labels and title

plt.xlabel ('Optimized updating parameters in y-direction', fontsize=12)
plt.ylabel('Scalar,(-)', fontsize=12)

plt.xticks(rotation=45)

# Customize grid

plt.grid(True, which='major', axis='x', linestyle='-', linewidth=0.5, color='black') # Major

vertical grid lines

# Hide major horizontal grid lines
plt.grid(True, which='major', axis='y', linestyle='-', linewidth=0.5, color='white')

# Add ticks where vertical grid lines intersect horizontal lines
for col in columns:
y_vals = [0.1, 1, 10]
for y_val in y_vals:
plt.scatter(col, y_val, color='black', marker='_', linewidths=1.7, s=40, zorder=0)

for col in columns:
y_vals = [0.2,0.3,0.4, 0.5,0.6,0.7,0.8,0.9, 2,3,4,5,6,7,8,9]
for y_val in y_vals:
plt.scatter(col, y_val, color='black', marker='_', linewidths=0.5, s=2, zorder=0)

# Adjust spines

plt.gca() .spines['top'].set_linewidth(0.5)

plt.gca() .spines['top'].set_color('white')

plt.gca() .spines['right'].set_linewidth(0.5)

plt.gca() .spines['right'].set_color('white')

plt.gca().spines['bottom'].set_linewidth(0.5)

plt.gca() .spines['bottom'].set_color('white')

plt.gca() .spines['left'].set_linewidth(0.5)

plt.gca() .spines['left'].set_color('black"')

plt.gca() .yaxis.set_ticks_position('left') # Ensure ticks are on the left side of the plot

plt.tick_params(axis='y', which='major', direction='out', length=5, width=1, colors='black')

# Customize tick parameters
# Set y-scale and limits
plt.yscale('log')
plt.ylim(0.1, 10)
plt.gca().set_yticks([0.1, 1, 10])
plt.gca() .set_yticklabels(['0O.1', '1', '10'])



827

829
830

831
832

834
835
836
837
838
839

841
842
843
844
845
846

848
849
850
851
852
853

855

857

865

170

#plt.tick_params(axis='y', which='major', direction='inout', length=6, width=1, colors='black

D)

#plt.gca() .yaxis.grid(True, which='minor', linestyle='-', linewidth=0.25)

# Show legend

plt.legend(columns, bbox_to_anchor=(0.05, 1), loc='upper,left', prop={'family': 'Arial', '
size': 10})

# Display the plot
plt.tight_layout ()
plt.show()

# Dimension Parameters:
L = 160.58 #[m]
Lt = np.array([5.735, 11.47, 26.640, 89.91, 26.825]) #[m]

B = 28 #[m]
D = 28 #[m]
A =B x D #[m2]

#I_x = np.array([619.21, 948.47, 2727.22, 2335.82, 905.52]) #[m4]
#I_y = np.array([1536.25, 959.01, 1245.46, 1202.07, 831.571) #[m4]
I_yy = np.array([1444,1500,1393,1389,1293]) #[m4]

I_xx = np.array([1532,1548,2796,2324,760]) #[m4]

H = Lt/L #[-]

# Material properties:
rho = np.array([1933, 495, 486, 440, 383]) #[kg/m3]

E = np.array([38.2e9, 38.2e9, 38.2e9, 38.2e9, 32.8e9]) #[N/m2]
v = 0.2 #[-]

G = E/(2x(1+v)) #[N/m~2]

k = 0.85 #[-]

# Springs:

kr_x = 2380e9 #[Nm/rad]

kr_y = 2625e9 #[Nm/rad]
kt_y = 19e9 #[N/m]
kt_x = 4e9 #[N/m]

#boudary conditions:
bc = ("rot+transl", "free")

scaler = {"kr":0.4, "kt":9.0, "I":1.5, "E":7.0} #The parameters chosen are from the
conclusion of sensitivity study 2

zz_trgt = np.array([57.165, 120.435, 153.735]) #The three locations where there are
measurements taken of the New Orleans

z_trgt = zz_trgt/L

#Startpoints
startpoints = 400

fny = np.array([0.291, 1.332, 2.771])
phiyy = [
[-0.29, -0.90, -0.73],
[-0.78, 0.19, 0.83],
[-1, 1,-1]
]
phiy = np.array(phiyy)

# Procedure

def adjust_modes(phil, phi2):
rmse_plus = np.sqrt(np.mean((phil - phi2) *x* 2))
rmse_minus = np.sqrt(np.mean((phil + phi2) *x* 2))
flip = np.ones_like(phi2)
flip[rmse_plus > rmse_minus] = -1
phi_flip = phil * flip
return phi_flip

def modal_assurance_criterion(phil, phi2):
phi2 = adjust_modes(phi2, phil)
mac = np.abs(np.conj(phil).dot(phi2))**2 / \
(np.conj(phil) .dot(phil) * np.conj(phi2).dot(phi2))
return mac
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timoshenko_y = []
for iy in range(len(H)):
timoshenko_y.append(Timo (params={"E": E[iy], "I": I_yyl[iy]l,"L": L,"rho": rholiy],
, "kG": k * G[iy], "kr": kr_y, "kt": kt_y}, height=H[iy]))
model_y = TimoPieceWiseBeamlD (beams=timoshenko_y, bc = bc)

y_hat_y = {"z": z_trgt, "fn": deepcopy(fny), "modes": deepcopy(phiy)}
parameters_to_update_y = {p:[1/10, 10] for p in list(scaler.keys())}
logscale = False

results_y = update_model(
model=model_y,
cost_func=cost_funciD,
parameters_to_update=parameters_to_update_y,
y_hat=y_hat_y,
npts=startpoints,
sim_type=UpdatingMethod.CMC,
verbose=False,
logscale=logscale
)
parameters_columns = [cc for cc in results_y.columns if "_st" in cc or
plot_cols = [a + "_opt" for a in parameters_to_update_y.keys ()]
map_opt2name = {pcl: k for k, pcl in zip(parameters_to_update_y.keys(), plot_cols)}
df _opt = results_y.copy()
df _opt.dropna(inplace=True)

"_opt" in ccl

if logscale:
df _opt [parameters_columns] = df_opt[parameters_columns].apply(np.exp)

# Results

t_y = results_y.sort_values(by='Convergence').head(startpoints)

quantile_threshold = t_y['Convergence'].quantile (0.125)

test_y = t_y[t_y['Convergence'] <= quantile_threshold]

print (test_y)

# Find the minimum and maximum values in each _opt column

min_values = test_y[[col for col in test_y.columns if col.endswith('_opt')]].min()

max_values = test_y[[col for col in test_y.columns if col.endswith('_opt')]].max()

# Update the boundaries

new_boundaries = {
'kr': [min_values['kr_opt']l, max_values['kr_opt']],
'kt': [min_values['kt_opt'], max_values['kt_opt']],
'I': [min_values['I_opt'], max_values['I_opt']],

'E': [min_values['E_opt'], max_values['E_opt']]
}
print ("New Boundaries:")
print (new_boundaries)

results_repeated2_y = update_model(
model=model_y,
cost_func=cost_funciD,
parameters_to_update=new_boundaries,
y_hat=y_hat_y,
npts=startpoints,
sim_type=UpdatingMethod.CMC,
verbose=False,
logscale=logscale

)

parameters_columns = [cc for cc in results_repeated2_y.columns if "_st" in cc or "
]

plot_cols = [a + "_opt" for a in new_boundaries.keys()]

map_opt2name = {pcl: k for k, pcl in zip(new_boundaries.keys(), plot_cols)}
df _opt = results_repeated2_y.copy()
df _opt.dropna(inplace=True)

if logscale:
df _opt [parameters_columns] = df_opt[parameters_columns].apply(np.exp)

_opt"
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t2_y = results_repeated2_y.sort_values(by='Convergence').head(startpoints)
print (t2_y)

quantile_threshold = t2_y['Convergence'].quantile(0.125)
test2_y = t2_y[t2_y['Convergence'] <= quantile_threshold]
print (test2_y)

results_output_y = []
for ii in range(len(test2_y)):
scaler_y = {
"kr": test2_y["kr_opt"].iloc[ii],
"kt": test2_y["kt_opt"].iloc[ii],
"I": test2_y["I_opt"].iloc[iil,
"E": test2_y["E_opt"].iloc[iil]
}
model_y.scale_parms(scalers=scaler_y)
fn_y, phi_y, pts_y = model_y.modeshapes(pts=z_trgt, n_modes=3)

mac_0 = modal_assurance_criterion(phi_y[:, 0], phiy[:, 0]1)
mac_1 modal_assurance_criterion(phi_y[:, 1], phiy[:, 1])
mac_2 modal_assurance_criterion(phi_y[:, 2], phiy[:, 2])

results_output_y.append ({
"index": ii,
"fn_y_1": fn_y[O0],
"fn_y_2": fn_y[1],
"fn_y_3": fn_y[2],

"mac_1": mac_O,
"mac_2": mac_1,
"mac_3": mac_2

1))

results_df = pd.DataFrame(results_output_y)
stats_results = {}
z_value = 1.645

for col in ['fn_y_ 1', 'fn_y_2','fn_y_3', 'mac_1', 'mac_2', 'mac_3']:
mean_val = results_df[col].mean()
median_val = results_df[col].median()
max_val = results_df[col].max()
min_val = results_df[col].min()

stats_results[col] = {
"Median": median_val,
"Mean": mean_val,
"lower_bound": min_val,
"upper_bound": max_val

}

summary_df = pd.DataFrame(columns=["Measured,fny", "Median", "Mean", "Lower Bound",

Bound"])
for param, values in stats_results.items():
if "fn_y_1" in param:
measured_fny = fny[0]
elif "fn_y_2" in param:
measured_fny = fny[1]
elif "fn_y_3" in param:
measured_fny = fny[2]
else:
measured_fny = np.nan

"Upper,

summary_df.loc[param] = [measured_fny, values["Median"], values["Mean"], values["

lower_bound"], values["upper_bound"]]
print (summary_df)

def calculate_summary_stats(df, columns, direction):
print (f"{direction}-direction")

(1
(1

kr_summary_stats
kt_summary_stats
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for column in column
if "kr_opt" in c

mean_val = d
median_val =
sem_val = df
std_dev = df
z_value = 1.

lower_boundk
upper_boundk

cv = round ((

kr_summary_s

'Design':
'Median':

'Lower B
'Upper B
'COVy (%)
}, index=["k

elif "kt_opt" in

mean_val = d
median_val =
sem_val = df
std_dev = df
z_value = 1.

lower_boundk
upper_boundk

cv = round ((

kt_summary_s

'Design':
'Median':

'Lower B
'Upper B
'COVy (%)
}, index=["k

kr_summary_stats_df
kt_summary_stats_df

print ("Summary_stati
print (kr_summary_sta
print (kt_summary_sta

for ii in range(len(
print ("")

print (£"Summary statistics for discrete element {ii}")

summary_stats_1i

for column in co

if "kr_opt"
continue
mean_val = d
median_val =
sem_val = df
std_dev = df
z_value = 1

lower_bound
upper_bound

cv = round ((

if 'y' in di

if "E_op

s:

olumn:
f[column] .mean ()

df [column] .median ()
[column].sem()
[column].std ()

645

r = df [column].min ()
r = df [column].max ()

std_dev / mean_val) * 100, 2)

tats.append(pd.DataFrame ({

1,
median_val,
ound': lower_boundkr,
ound': upper_boundkr,
't cv
r_opt"]))
column:

f[column] .mean ()

df [column] .median ()
[column].sem()
[column].std ()

645

t
t

df [column] .min ()
df [column] .max ()

std_dev / mean_val) * 100, 2)

tats.append(pd.DataFrame ({

1,

median_val,
ound': lower_boundkt,
ound': upper_boundkt,
't cv
t_opt"1))

pd.concat (kr_summary_stats, axis=0)
= pd.concat (kt_summary_stats, axis=0)

stics,for boundary conditions:")
ts_df)
ts_df.to_string(header=None))

E)):

st = []

lumns:
in column or "kt_opt" in column:

f[column].mean ()

df [column] .median ()
[column].sem()
[column].std ()

.645

df [column] .min ()
df [column] .max ()

std_dev / mean_val) * 100, 2)

rection:
t" in column:
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summary_stats = pd.DataFrame ({
'Design': 1,
'Median': median_val,
'Lower Bound': lower_bound ,
'UpperBound': upper_bound,
'COVL (%) ': cv
}, index=["E_opt"])
summary_stats_list.append(summary_stats)
elif "I_opt" in column:
summary_stats = pd.DataFrame ({
'Design': 1,
'Median': median_val,
'Lower Bound': lower_bound ,
'UpperBound': upper_bound,
'COVL (%) ": cv
}, index=["I_opt"])
summary_stats_list.append(summary_stats)
new_column = df ["E_opt"] * df["I_opt"]
mean_val_new = new_column.mean ()
median_val_new = new_column.median ()
std_dev_new = new_column.std()

lower_bound_new = new_column.min()
upper_bound_new = new_column.max ()

cv_new = round((std_dev_new / mean_val_new) * 100, 2)

summary_stats = pd.DataFrame ({
'Design': 1,
'Median': median_val_new,
'Lower Bound': lower_bound_new ,
'UpperBound': upper_bound_new,
'COV, (%) ': cv_new
}, index=["EI_opt"])
summary_stats_list.append(summary_stats)

summary_stats_df = pd.concat(summary_stats_list, axis=0)
print (summary_stats_df)

parameters_columns_y = [cc for cc in test2_y.columns if "_opt" in cc]
summary_stats_y = calculate_summary_stats(test2_y, parameters_columns_y, "y")

Appendix Timoshenko beam model

%load_ext autoreload

%autoreload 2

from copy import deepcopy

from pyvibe.models.Timoshenko import Timo, TimoPieceWiseBeamlD, TimoPieceWiseBeam2D,
UpdatingMethod, cost_funclD, update_model

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline
## Parameters

# Dimension Parameters:

L = 2 #[m]

Lt = np.array([1,1]) #[m]
B = 0.1 #[m]

D = 0.1 #[m]

A =B x D #[m2]

I = 1/12 * B * D*x3 #[m4]
H = Lt/L #[-]

# Material properties:

rho = np.array([8000,8000]) #[kg/m3]
E = np.array([260e9,260e9]) #[N/m2]
G = np.array([100e9,100e9]) #[N/m2]
k = 5/6 #[-]
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26
27 #boudary conditions:
28 bc = ("hinged", "hinged")

29

30 ## Procedure

31

32 timoshenko = []

33 for ix in range(len(H)):

34 timoshenko.append(Timo(params = {"E": E[ix], "I": I, "L": L, "rho": rho[ix], "A": A, "kG"
k*G[ix]},height= H[ix]))

35 pb = TimoPieceWiseBeamlD (beams=timoshenko, bc=bc)

36 fn, phi, pts = pb.modeshapes(max_fn=30000, n_intervals=10000, n_modes= 50)

37

38 ## Results

39

40 print ("The first_ 50 natural frequencies (inyrad/s) of the Timoshenko beam are:")
41 for ii in range(50):

42 print (£"Mode, {ii +,1},:", fn[ii]l * 2 * np.pi)

43

44 plt.figure(figsize=(6, 6))

45 plt.plot(pts, phil:,0], color='blue', label='Mode,1"')

46 plt.plot(pts, phil[:,1], '--', color='red', label='Mode, 2')

47 plt.plot(pts, -phil:,2], '-.', color='green', label='Mode,3"')
48 plt.plot(pts, -phil[:,3], '--', color='magenta', label='Mode 4')
49 plt.plot(pts, phil:,4], '-.', color='black', label='Mode. 5')

50
51 plt.ylim(-2, 2)

52

53

54 plt.ylabel('Normilized displacement(-)")

55 plt.xlabel('Normalized,length, (-)")

56 #plt.title('The mode shape of mode 1,2,3,4,and 5')

57 plt.x1im(0,1)

58 plt.yticks([-2,-1.6, -1.2, -0.8, -0.4, 0, 0.4, 0.8, 1.2, 1.6, 2.0])

s plt.xticks([0,0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.01)

60 plt.tick_params(axis='y', which='both', direction='inout', length=6, width=1, colors='black')
61 plt.legend(frameon=True, loc='lower left')

62 plt.grid(True)

63 plt.show()

64

65 plt.figure(figsize=(6, 6))

66 plt.plot(pts, -phil:,25], color='blue', label='Mode 26"')

67 plt.ylim(-0.5, 0.5)

68 plt.x1im(0,1)

690 plt.ylabel('Nodal displacement (-)")

70 plt.xlabel('Normalized,length,(-)")

71 #plt.title('The mode shape of mode 26 (at transition frequency $\omega_c$)')
72 plt.yticks([-0.5,-0.4, -0.3, -0.2, -0.1, O, 0.1, 0.2, 0.3, 0.4, 0.5])

73 plt.xticks([0,0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.01)

74 plt.legend(frameon=True, loc='lower left')

75 plt.grid(True)

76 plt.show ()

77

78 plt.figure(figsize=(6, 6))

79 plt.plot(pts, phil[:,26], color='blue', label='Mode 27"')

8o plt.plot(pts, phil[:,27], '--', color='red', label='Mode 28')

s1 plt.plot(pts, -phil[:,29], '--', color='magenta', label='Mode 30"')
82 plt.plot(pts, -phil[:,30], '-.', color='black', label='Mode 31"')
83

84 plt.ylim(-2, 2)

85

86 plt.ylabel('Nodal, displacement (-)")

87 plt.xlabel('Normalized length, (-)")

ss #plt.title('The mode shape of mode 27, 28, 30 and 31')
89 plt.x1lim(0,1)

90 plt.yticks([-2,-1.6, -1.2, -0.8, -0.4, 0, 0.4,
o1 plt.xticks([0,0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
92 plt.legend(frameon=True, loc='lower left')

93 plt.grid(True)

94 plt.show()

95

0.8, 1.2
0.8, 0.9,
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plt.figure(figsize=(6, 6))

plt.plot(pts, phil[:,28], color='blue', label='Mode 29')

plt.plot(pts, -phil[:,31], '--', color='red', label='Mode 32"')

plt.ylim(-2, 2)

plt.x1im(0,1)

plt.yticks([-2,-1.6, -1.2, -0.8, -0.4, 0, 0.4, 0.8, 1.2, 1.6, 2.0])

plt.xticks([0,0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0])

plt.ylabel('Nodal,displacement(-)")

plt.xlabel ('Normalized length(-)")

#plt.title('The mode shapes of modes 29 and 32')

plt.legend (frameon=True, loc='lower left')

plt.tick_params(axis='y', which='major', direction='inout', length=6, width=1, colors='black'
)

plt.tick_params(axis='y', which='minor', direction='inout', length=4, width=0.5, colors='gray
1
)

plt.grid(True)

plt.show()

import matplotlib.pyplot as plt

# Plotting the data

plt.figure(figsize=(6, 6))

plt.plot(pts, phil[:,28], color='blue', label='Mode ,29"')

plt.plot(pts, -phil[:,31], '--', color='red', label='Mode 32')

plt.ylim(-2, 2)

plt.x1im(0, 1)

plt.yticks([-2, -1.6, -1.2, -0.8, -0.4, 0, 0.4, 0.8, 1.2, 1.6, 2.0])

plt.xticks([O, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0])

plt.ylabel('Nodal displacement(-)")

plt.xlabel ('Normalized length (=) ")

plt.legend (frameon=True, loc='lower left')

plt.grid(True)

# Customizing tick parameters for y-axis only

plt.tick_params(axis='y', which='major', direction='inout', length=6, width=1, colors='black'
)

plt.tick_params(axis='y', which='minor', direction='inout', length=4, width=0.5, colors='gray
")

plt.show ()

import matplotlib.pyplot as plt
import numpy as np

# Generate some sample data

x =

y =

np.linspace (0, 2*np.pi, 100)
np.sin(x)

# Plotting the data

plt
plt

plt

plt.

plt

plt.
plt.

plt

plt.

.figure(figsize=(8, 6))
.plot(x, y, color='blue', label='sin(x)"')

.ylim(-1.2, 1.2)
x1im (0, 2%np.pi)
.yticks(np.linspace(-1, 1, 5)) # Set y-axis ticks at specific intervals

xlabel('x")
ylabel('sin(x)"')

.title('Sine_ Function')

legend ()

# Customizing y-axis tick parameters

plt

.tick_params(axis='y', which='major', direction='inout', length=6, width=1, colors='black'

)
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plt.show ()

%load_ext autoreload
%autoreload 2
from copy import deepcopy

from pyvibe.models.Timoshenko_phi import Timo, TimoPieceWiseBeamlD, TimoPieceWiseBeam2D,

UpdatingMethod, cost_funciD, update_model
import numpy as np
import matplotlib.pyplot as plt

%matplotlib inline
## Parameters

# Dimension Parameters:

L = 2 #[m]

Lt = np.array([1,1]) #[m]
B = 0.1 #[m]

D = 0.1 #[m]

A =B *x D #[m2]
I = 1/12 * B * D*x*3 #[m4]
H = Lt/L #[-]

# Material properties:

rho = np.array([8000,8000]) #[kg/m3]
= np.array ([260e9,260e9]) #[N/m2]
= np.array([100e9,100e9]1) #[N/m2]
5/6 #[-]

W @ m
I

#boudary conditions:
bc = ("hinged", "hinged")
## Procedure

timoshenko = []
for ix in range(len(H)):
timoshenko.append(Timo (params = {"E": E[ix], "I": I, "L": L,
k*G[ix]},height= H[ix]))
pb = TimoPieceWiseBeamlD (beams=timoshenko, bc=bc)
fn, phi, pts = pb.modeshapes(max_fn=30000, n_intervals=10000, n_modes= 50)
## Results

"rho'":

plt.figure(figsize=(6, 6))
plt.plot(pts, phil[:,0], color='blue', label='Mode,1')

plt.plot(pts, -phil[:,1], '--', color='red', label='Mode;2')
plt.plot(pts, phil[:,2], '-.', color='green', label='Mode; 3')
plt.plot(pts, -phil[:,3], '--', color='magenta', label='Mode 4')
plt.plot(pts, -phil[:,4], '-.', color='black',6 label='Mode 5')

#plt.ylim(-2, 2)

plt.ylabel ('Normalizedyrotation,(-)")
plt.xlabel('Normalized length (=) ")

#plt.title('The mode shape of mode 1,2,3,4,and 5')

plt.x1im(0,1)

plt.yticks([-2,-1.6, -1.2, -0.8, -0.4, 0, 0.4, 0.8, 1.2, 1.6, 2.0])
plt.xticks([0,0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0])

plt.tick_params(axis='y', which='both', left=True, right=False, direction='out',

width=0.5)

plt.tick_params(axis='x', which='both', bottom=True, top=False, direction='out',

width=0.5)
plt.legend (frameon=True, loc='lower left')
plt.grid(True)
plt.gca() .spines['top'].set_linewidth(0.5)
plt.gca() .spines['top'].set_color('black')
plt.gca() .spines['right'].set_linewidth(0.5)
plt.gca() .spines['right'].set_color('black')
plt.gca() .spines['bottom'].set_linewidth(0.5)
plt.gca() .spines['bottom'].set_color('black')
plt.gca() .spines['left'].set_linewidth(0.5)
plt.gca() .spines['left'].set_color('black')
plt.show ()

rho[ix],

"AM: A, "KG"

length=8,

length=8,
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plt.figure(figsize=(6, 6))

plt.plot(pts, phil[:,25], color='blue', label='Mode 26')

plt.x1im (0, 1)

plt.ylim(-1.2,1.2)

plt.ylabel('Normalizedyrotation,(-)")

plt.xlabel ('Normalizedylength,(-)")

#plt.title('The mode shape of mode 26 (at transition frequency $\omega_c$)')

plt.yticks([-1.2,-1.0,-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0,1.2])

plt.xticks([0,0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0])

plt.tick_params(axis='y', which='both', left=True, right=False, direction='out',
width=0.5)

plt.tick_params(axis='x', which='both', bottom=True, top=False, direction='out',
width=0.5)

plt.gca().spines['top'].set_linewidth(0.5)

plt.gca() .spines['top'].set_color('black')

plt.gca() .spines['right'].set_linewidth(0.5)

plt.gca() .spines['right'].set_color('black')

plt.gca() .spines['bottom'].set_linewidth(0.5)

plt.gca() .spines['bottom'].set_color('black')

s plt.gca().spines['left'].set_linewidth(0.5)

plt.gca().spines['left'].set_color('black')
plt.legend (frameon=True, loc='lower left')
plt.grid(True)

plt.show ()

plt.figure(figsize=(6, 6))
plt.plot(pts, phil[:,26], color='blue', label='Mode 27')

plt.plot(pts, phil:,27], '--', color='red', label='Mode;,28"')
plt.plot(pts, phi[:,29], '--', color='magenta', label='Mode 30')
plt.plot(pts, phil[:,30], '-.', color='black', label='Mode 31"')

plt.ylim(-2, 2)

plt.ylabel ('Normalized rotation,(-)")

plt.xlabel ('Normalized length (=) ")

#plt.title('The mode shape of mode 27, 28, 30 and 31')

plt.x1im(0,1)

plt.yticks([-2,-1.6, -1.2, -0.8, -0.4, 0, 0.4, 0.8, 1.2, 1.6, 2.0]1)

plt.xticks([0,0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0])

plt.tick_params(axis='y', which='both', left=True, right=False, direction='out',
width=0.5)

plt.tick_params(axis='x', which='both', bottom=True, top=False, direction='out',
width=0.5)

plt.gca().spines['top'].set_linewidth(0.5)

plt.gca() .spines['top'].set_color('black"')

plt.gca().spines['right'].set_linewidth(0.5)

plt.gca() .spines['right'].set_color('black')

plt.gca().spines['bottom'].set_linewidth(0.5)

plt.gca() .spines['bottom'].set_color('black')

plt.gca() .spines['left'].set_linewidth(0.5)

plt.gca() .spines['left'].set_color('black"')

; plt.legend(frameon=True, loc='lower left')

plt.grid(True)
plt.show ()

plt.figure(figsize=(6, 6))
plt.plot(pts, -phil[:,28], color='blue', label='Mode 29')
plt.plot(pts, phil[:,31], '--', color='red', label='Mode;32"')

plt.ylim(-2, 2)

plt.x1im(0,1)

plt.yticks([-2,-1.6, -1.2, -0.8, -0.4, 0, 0.4, 0.8, 1.2, 1.6, 2.0])

plt.xticks([0,0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.01)

plt.tick_params(axis='y', which='both', left=True, right=False, direction='out',
width=0.5)

plt.tick_params(axis='x', which='both', bottom=True, top=False, direction='out',
width=0.5)

plt.gca() .spines['top'].set_linewidth(0.5)

plt.gca().spines['top'].set_color('black')

plt.gca() .spines['right'].set_linewidth(0.5)

plt.gca() .spines['right'].set_color('black')

length=8,

length=8,

length=8,

length=8,

length=8,

length=8,
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plt.gca() .spines['bottom'].set_linewidth(0.5)
plt.gca() .spines['bottom'].set_color('black')
plt.gca() .spines['left'].set_linewidth(0.5)
plt.gca() .spines['left'].set_color('black"')
plt.ylabel('Normalizedyrotation,(-)")

plt.xlabel ('Normalizedylength,(-)")
#plt.title('The mode shapes of modes 29 and 32')
plt.legend (frameon=True, loc='lower left')
plt.grid(True)

plt.show()
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