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Abstract

Large Language Models (LLMs) such as
GPT-4 and LLaMA have demonstrated
promising performance in fact-checking
tasks, particularly in labeling the veracity of
claims. However, the real-world utility of such
fact-checking systems depends not only on
label accuracy but also on the faithfulness of
the justifications they provide. Prior work
has explored various prompting strategies to
elicit reasoning from LLMs, but most studies
evaluate these styles in isolation or focus
solely on veracity classification, neglecting
the impact on explanation quality. This
study addresses that gap by investigating how
different prompt styles affect both the accuracy
and the faithfulness of LLM-generated claim
labelling and justifications. Seven established
prompting strategies such as Chain-of-Thought,
Role-Based, or Decompose-and-Verify, were
tested across two datasets (QuanTemp and
HoVer) using two efficient models: LLaMA
3.1:8B and GPT-4o-mini. Additionally, two
novel prompt variants were introduced and all
styles were tested under three label conditions
to assess bias and explanation drift.

1 Introduction

The rise and accessibility of Large Language
Models (LLMs) in everyday use has introduced an
inevitable spike in the spread of misinformation
(Hanley and Durumeric, 2024). Although the
accessibility of these systems can have positive
applications, it has certainly heightened the need
for robust and transparent fact-checking systems.
LLMs such as GPT-4 and LLaMA models have
at times shown strong performance in claim
verification - meaning, in deciding whether a claim
is true or false (Quelle and Bovet, 2024; Cheung
and Lam, 2023). However, in practice, the true
value of real-world fact-checking lies not just
in labeling a claim’s veracity, but in providing
a faithful justification for that label. Currently,
LLMs have been shown to at times generate
explanations that can be factually inconsistent,
hallucinated, or biased, even when provided with
the context and/or direct evidence for the claim(s)
in question (Huang et al., 2025). This can have
severe societal implications given that people who
frequently use LLMs for facts and information
tend to over-rely on and, often blindly, highly trust
these systems (Si et al., 2024; YouGov, 2023).

The current research landscape has explored
the task of fact checking with LLMs, however
most tend to only evaluate the veracity of claims
rather than also taking into account the quality
of justifications (Kuznetsova et al., 2025; Setty,
2024). A ‘Faithful’ justification is one in which the
model’s generated reasoning is factually supported
by the evidence, coherent, non-hallucinated, and
relevant to the claim. Recent work by Russo et
al. (2023) highlights the challenge of generating
faithful fact-checking explanations, showing
that state-of-the-art LLMs often hallucinate or
misrepresent the reasoning behind fact labels, even
on benchmark datasets. However, a knowledge gap
exists in understanding how prompt phrasing - the
way a user would attempt to formulate reasoning
questions - affects the models’ faithfulness to
provided evidence. Prior work has introduced a
variety of different approaches to prompting, with
varying degrees of success, but the bulk of these
studies typically evaluate each style in isolation
or on narrow metrics (e.g., solely label accuracy)
rather than conducting head-to-head comparisons
of both accuracy and explanation faithfulness
(Dmonte et al., 2025). This project attempts to
build a better understanding of how different styles
of prompting influence LLM fact-checking quality
as a whole.

To address this gap, I pose the following
Research Question:

“How does variation in prompt style affect
the accuracy and faithfulness of LLM-generated
justifications in claim verification?”

To further structure the research, I decompose
the Research Question into the following sub-
questions:

• SQ1: How does changing the structure, order,
and phrasing of prompts impact the predicted
labels and the accompanying justifications?

• SQ2: How does the presence and correctness
of a supplied label influence the model’s rea-
soning, justification quality, and susceptibility
to label bias?

• SQ3: Does the accuracy and faithfulness of
LLM justifications change depending on the
type or complexity of the claim?

• SQ4: What prompt styles or LLM usage
practices consistently maximize accuracy and
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faithfulness, leading to higher factual align-
ment with evidence?

2 Prompt Formulation

A targeted review was conducted of recent studies
on LLM-based claim verification (2023–2025)
to identify the range of prompting strategies,
styles, and templates that have been explored
in practice in the context of LLM-based claim
verification. Prompting styles were selected based
on appearing repeatedly across multiple published
papers and being evidently different in terms of
either reasoning structure, role framing, evidence
ordering, model instruction, etc.

This resulted in the following seven prompting
strategies, capturing the most widely studied and
structurally distinct approaches to LLM-based
claim verification found in current research. While
other variations exist, in terms of instruction
tuning, output format, or evidence retrieval, they
are typically based on one or more of these
paradigms, not distinct, stand-alone approaches.

1. Minimal: A minimal instruction to label
and justify a claim with no specific rationale.
(baseline)

2. Few-Shot In-Context Learning (ICL): In-
cludes a set of worked examples before the
to-be-evaluated prompt to guide the model’s
prediction format (Singhal et al., 2024)

3. Zero-Shot Role-Based Prompting: In-
structs the model to assume a specific role,
often one of a professional fact checker or
journalist, to guide its rationale and encour-
age critical reasoning (Li and Zhai, 2023)

4. Chain-of-Thought: Instructs the model to
“think step-by-step” before answering, encour-
aging explicit reasoning (Wei et al., 2023),
(Kojima et al., 2023), (Wang and Shu, 2023)

5. Decompose and Verify: Attempts to break
down the claim into smaller ’reasoning units’,
such as sub-claims, predicates, sub-questions,
etc. and expects the model to evaluate each
of them before giving its overall judgement.
(Zhang and Gao, 2023, HiSS), (Wang and Shu,
2023, FOLK)

6. Evidence-First: Requires the model to pro-
cess the evidence first and draw conclusions
about the relationship between the claim and
evidence, such as the extent of correlation, or
relevant facts between the claim and evidence
(Tan et al., 2025, CorXFact), (Jafari and Allan,
2024, FactDetect)

7. Multi Agent Debate: Assigns different roles
to multiple model agents, allowing them to
critique each other’s reasoning while working
towards a common verdict (Kim et al., 2024,
MADR), (Du et al., 2023)

Out of these strategies, I chose to evaluate struc-
tured approaches that are feasible to implement
in such a comparative experiment, given the time-
frame and available computing power. As a result,
the Multi Agent Debate technique was taken out
of consideration, given that managing multiple dis-
tinct LLM processes and synchronizing inter-agent
communication introduces design and runtime over-
heads that place it outside the practical scope of
this experiment.

2.1 Prompt Creation

To begin, a ’base prompt’ was created to serve as
a bare-boned template which could then be manip-
ulated while keeping the underlying structure as
similar as possible, in order to properly isolate the
prompting style variations:

“You are given a Claim and corresponding Ev-
idence. (This Claim is considered [LABEL]).
Please label the Claim as True, False, or Con-
flicting based solely on the Evidence, without
using other internal or external knowledge or
information, and provide an explanation for
your decision.

Claim: [CLAIM]
Evidence: [EVIDENCE]

Please format your answer as:
Label: (True, False, or Conflicting)
Explanation: (your explanation)”

Keeping these instructions identical allowed to
observe the effects of the actual strategy change
on the output, rather than potentially allowing
superficial details to affect the reasoning.

The selected prompting strategies were then
used to adapt this base template into six distinct

2



prompt templates, into which each claim and ev-
idence could be "plugged into" to obtain results.
Beyond the aforementioned strategies, two novel
techniques were explored, which can be considered
variants of the "Evidence-First" template. Both
techniques specifically instruct the model to extract
supportive and refuting parts of the evidence in
relation to the claim, before making its veracity
decision. Specifically, this was explored in two
ways:

• a "Support-Refute" technique in which the
model is instructed to identify supporting and
refuting parts of the evidence, if such parts
exist, before labeling the claim.

• a "Arguments" technique in which the model
is instructed to identify and present 3 argu-
ments for and 3 against the claim, from the
evidence, before labeling it.

The exact prompt templates used for each
strategy can be found in Appendix A.

Additionally, in order to further understand how
the presence of label information affects model out-
put, each prompt strategy was tested in three dis-
tinct conditions. These include one case where no
label was given to the model, one where the correct
label was given, and a case where a fixed label was
always given, regardless of the original label of the
claim. Specifically, this resulted in three fixed-label
cases for the QuanTemp dataset (either True, False,
or Conflicting) and two for the HoVer dataset
(either SUPPORTED or NOT_SUPPORTED).
Overall, this experimental setup allowed for ob-
serving the effect of two factors:

1. Prompt Style: how differences in wording or
structure influence the model’s response.

2. Label Injection: how the presence or absence
of a supplied label for the given claim affects
response and bias, using either

a. no label
b. the correct (“true”) label
c. a deliberately incorrect ("fake") label

3 Datasets and Models

Models I evaluate two near-state-of-the-art
LLMs for this task: the 8B-parameter LLaMA 3.1
and OpenAI’s GPT-4o-mini. These models were

chosen for their performance-efficiency trade-off,
making them ideal for this application. The
LLaMA model showcases relatively strong rea-
soning capabilities while remaining small enough
to be run locally (Meta, 2025). Its open-source
availability is also a favorable aspect. The GPT
model, a cost-efficient variant of GPT-4, achieves
robust reasoning performance, surpassing GPT-3.5
Turbo and other equivalent small models on
multiple academic benchmarks, while maintaining
a significantly reduced per-token cost (OpenAI,
2024).

Datasets Experiments are run on filtered
versions of two datasets, namely QuanTemp
(Venktesh et al., 2024), and HoVer (Jiang et al.,
2020). These datasets were chosen as they
complement each other in covering a wide
range of fact-checking challenges: QuanTemp
provides real-world, journalist-verified claims
with grounded evidence, while HoVer introduces
multi-hop reasoning complexity, requiring models
to combine information across multiple sources.
Specifically:

▶ QuanTemp The QuanTemp dataset
is comprised of numerical real-world claims,
each associated with a label and evidence. Its
test split was filtered down to 350 numerical
real-world claims, all sourced from PolitiFact,
an award-winning fact-checking website (The
Pulitzer Prizes, 2009). Duplicates and non-English
entries were removed. The split was restricted to
PolitiFact to ensure consistency and reliability,
given its verdicts having been produced by expert
journalists. Finally, to avoid bias and allow the
model to draw its own conclusions, the part of the
evidence in which PolitiFact states its verdict was
removed, leaving only the supporting evidence for
each claim.

▶ HoVer HoVer is a multi-hop evidence
extraction and fact verification dataset. A "hop",
in this context, refers to the number of distinct
evidence sentences (or Wikipedia pages) that must
be combined in order to verify a claim. The dataset
divides the claims by number of hops, which range
from 1 to 5. For our purposes, 50 claims were
taken per 2, 3 and 4 hops respectively, resulting
in a reduced set of 150 claims. This filtering was
done to reduce the computational complexity of
the experiments.
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Figure 1: Experimental Setup Workflow

4 Experimental Setup

A comparative experiment was conducted to eval-
uate the eight total prompting strategies outlined
above across two datasets (QuanTemp and HoVer),
two models (GPT-4o-mini and LLaMA 3.1:8B),
and three label conditions.

4.1 Processing

An overview of the experiment pipeline can be
found in Figure 1. Each claim-evidence pair was
inserted into all eight prompt templates, for both
datasets. Each template was run on five label in-
jection conditions on QuanTemp (No Label, Real
Label, and three fixed fakes) and four on HoVer (No
Label, Real Label, two fakes) by appending “This
claim is considered [LABEL]” to the prompt (omit-
ted in the No-Label case). Each model therefore
answered every claim once per template-condition
combination. Scripts then parsed the raw response
to obtain the generated Label and Justification, and
evaluated the results to compare strategies.
Tools and Technologies: Langchain was used
to facilitate the model communication, both with
the LLaMA and GPT model. Experiments using
the LLaMA model were run on a local machine
with 16GB RAM. The GPT API was used for ex-
periments using the GPT model. All code is made
available on https://github.com/yuanzexiong/llm-
fact-check.

4.2 Evaluation

Accuracy in this context was measured in terms
of the amount of veracity labels generated by the
model that matched the ground truth label assigned
in each data set.
Faithfulness, defined as the degree to which each
explanation matches the evidence, was measured
using G-Eval (Liu et al., 2023), an LLM-based
framework that prompts models to act as expert
raters. It first generates evaluation steps to assess
explanation faithfulness. Then, it rates the faith-
fulness of each explanation on a scale from 1 to 5
based on the provided claim and evidence, using

the generated evaluation steps. G-Eval was cho-
sen because it shows better performance and aligns
more strongly with human judgments than tradi-
tional n-gram metrics such as BLUE/ROUGE, as
shown by Liu et al.

5 Results

5.1 Prompt Strategy Comparison
The “No Label” condition provides the clearest
view of how each prompt strategy alone influences
model output. Figures 2 and 3 plot accuracy
for QuanTemp and HoVer, while Figures 4 and
5 report the corresponding G-Eval faithfulness
scores. Across both datasets, the GPT-4o-mini
model is consistently more accurate and faithful
than the LLaMA-3.1:8B model, regardless of
strategy. The GPT model shows relative stability,
as its accuracy ranges between 55-69% across both
datasets. The LLaMA model is more volatile, with
accuracy ranging from 38-63%.

Accuracy: QuanTemp The GPT model per-
forms best with the Correlation strategy, at 69.4%
accuracy. It also scores above 63% for 6/8 total
strategies, with the exception of the Arguments and
FOLK techniques. LLaMA scores 5-18 percent-
age points lower than GPT across all strategies,
as is evident in Figure 2. It performs best under
the Role-Based prompt with an accuracy of 58.9%,
and also does well with Support-Refute and Chain-
of-Thought. The FOLK strategy scores lowest for
both models, at 54.9% and 49.7% accuracy for
GPT and LLaMA respectively.

Figure 2: Accuracy per strategy on QuanTemp dataset.
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Accuracy: HoVer On the tougher HoVer
dataset, GPT’s accuracy declines overall, while
LLaMA improves on some prompts, as can be
seen in Figure 3. However, its results are more
uneven, showing both higher peaks and greater
dips than on QuanTemp. Both models achieve
highest accuracy with the Few-Shot model, at
65.3% for GPT and 63.3 for LLaMA. GPT main-
tains relatively consistent scores across strategies,
but LLaMA shows steep dips in performance in
decompositional-style prompt techniques such as
FOLK (43.3%), Support-Refute (50%), and Argu-
ments (38%).

Figure 3: Accuracy per strategy on HoVer dataset.

Faithfulness: QuanTemp The Minimal ap-
proach yields highest the faithfulness across both
models, with a score of 4.46 out of 5 for GPT and
4.25 for LLaMA. However, as can be seen in Fig-
ure 4, it is important to note that the differences are
very small, as GPT scores above 4.4 for 5/8 strate-
gies, and LLaMA above 4.2 for 4/8. The FOLK
approach yields the worst results, with a faithful-
ness score of 4.04 using the GPT model, and 3.88
using LLaMA.

Figure 4: Faithfulness per strategy on QuanTemp
dataset.

Faithfulness: HoVer Again, the HoVer
dataset introduces a general drop in performance

across both models. The Minimal strategy yields
the best results for faithfulness with the GPT model,
achieving a score of 4.33, while the Chain-of-
Thought strategy is best with LLaMA with a score
of 4.19. Again, the differences are mostly small.
GPT scores above 4.2 for 6/8 strategies, while
LLaMA shows similar scores above 4.05 for 4/8
strategies, including the Minimal one, as shown in
Figure 5.

Figure 5: Faithfulness per strategy on HoVer dataset.

5.2 Label Injection Effect

Real Label Given Unsurprisingly, providing ei-
ther model with the Real Label of the claim resulted
in a significant improvement in accuracy compared
to the case where no label was provided. This is
shown clearly in Figure 6, which plots the improve-
ment in accuracy for each strategy between the two
conditions, for both models. Similar results are
found for the HoVer dataset, however, when using
the LLaMA model, four strategies actually intro-
duced a decline in accuracy. A figure showcasing
this spread can be found in Appendix B.

Figure 6: Accuracy improvement per strategy on Quan-
Temp dataset between the No Label and Real Label
conditions.

Faithfulness was, in part, negatively affected
across both datasets by the injection of the Real
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label. In QuanTemp, 6/16 cases across both mod-
els resulted in less faithful explanations regardless
of the presence of the real label. A figure showing
the specific strategies affected can be found in Ap-
pendix B. In the HoVer set, all but 4 cases showed a
relative decline in faithfulness, and 2 of the 4 cases
remained identical, as can be seen in Figure 7.

Figure 7: Effect of providing the Real Label on Faith-
fulness per strategy on HoVer dataset.

Fake Label Given All strategies show
relative vulnerability to being provided a fake
label, with some notable outliers. Figures 8 and
9 show the ‘bias-rate’ of each strategy per label
condition, i.e. the percentage of matches to the
label provided, when that is not the same as the
correct label. This aims to investigate the extent
to which the model skews its output to match and
justify the label provided. The light version of
each color corresponds to the GPT output, while
the darker version to the LLaMA output. Several
observations are made.

Figure 8 shows the effect of the injection of any
label on QuanTemp. A ’True’ label generally adds
little bias, with 8-24% fake label matches in all
but one strategy. In contrast, in the ’False’ la-
bel injection case, the impact becomes striking.
For LLaMA, six of the eight prompt styles incor-
rectly match the injected ’False’ label on 38–68%
of all claims, while GPT-4o-mini is even more
prone, with a 47–73% match-rate. Similar bias
is found in the ’Conflicting’ injection case, where
most strategies sway to match the fake label for
39-58% of claims. Notably, the FOLK and Few-
Shot strategies stand out. They perform remark-
ably well across all conditions and models. In the
’False’ case, they are the only strategies with below
30% bias across both models. In the ’Conflicting’
case, FOLK yields at most a 7% bias rate in the
GPT model, and 3% in the LLaMA model. The

Few-Shot technique also remains strong with un-
der 3% bias rate, but only in the LLaMA model,
and the Correlation strategy performs relatively
well across both as well.

Figure 8: Percentage of matches to fake, incorrect label
per strategy and label injection condition, QuanTemp
dataset.

In the HoVer dataset, more mixed results are
generally observed, as seen in Figure 9. Less sus-
ceptibility to label bias is found with the maximum
being the Role-Based approach on LLaMA, barely
over 40%. Most notably, the FOLK strategy ap-
pears robust across both models by a large margin
once again, when being supplied with a "NOT SUP-
PORTED" label.

Figure 9: Matches to fake, incorrect label per strategy
and label injection condition, HoVer dataset.

Figure 25, overlays faithfulness on the bias-rate
of each strategy, for the ’False’ label injection con-
dition. In general, even when a strategy shows a
very high injection bias of the label, that is, match-
ing the incorrect label in 50 to 70% of the claims
(e.g., Minimal, Arguments, Role-Based), its G-
Eval score remains high ( 4.3 to 4.5). Across both
models, faithfulness varies by < 0.4 points on the
1–5 scale, underscoring that numerical differences
in faithfulness are noticeable, but small. Addi-
tionally, relative to the dashed “No-label” base-
line, faithfulness shifts by ≤ 0.1 point across most
strategies. FOLK and Few-Shot show small im-
provements in the injection case. The ’True’ and
’Conflicting’ conditions show generally similar pat-
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terns in Faithfulness, and can be found in Appendix
C.

Figure 10: Bias rate and faithfulness in the ’False’ label
injection condition, QuanTemp.

In HoVer, the ’SUPPORTED’ label injection in-
troduced more significant bias, as can be also seen
in Figure 9. The faithfulness trend is similar to that
of QuanTemp, and does not diverge significantly
from the No Label baseline, shifting by ≤ 0.1 point
as well, as shown in Figure 11. The ’NOT SUP-
PORTED’ condition can be found in Appendix C.

Figure 11: Bias rate and faithfulness in the ’SUP-
PORTED’ label injection condition, HoVer.

5.3 Claim Type Influence

The QuanTemp dataset labels each claim as statis-
tical, temporal, comparison, or interval (220, 73,
44, 13 items respectively in our 350-claim split).
The subset of the HoVer dataset used for this exper-
iment contains 50 each of 2, 3, and 4-hop claims.
The "No Label" runs using the GPT model are
used as baseline to analyze accuracy and faithful-
ness per claim taxonomy type, or hop number, for
both datasets. For those interested in more de-
tails, heatmaps of accuracy and faithfulness per
taxonomy/hop-count and strategy can be found in
Appendix D, for all label injection cases, across
both models and datasets .

Figure 12: Heatmap of accuracy and faithfulness per
taxonomy type, QuanTemp dataset, GPT model.

As shown in the heatmap in Figure 12, faith-
fulness remains relatively stable across taxonomy
types. Temporal claims produce generally more
faithful results, but the variation among strategies
remains stable: more faithful strategies produce
better results across all taxonomy types. In terms
of accuracy, Interval claims appear "harder" for
all strategies, producing generally less accurate
predictions.

Figure 13: Heatmap of accuracy and faithfulness per
taxonomy type, HoVer dataset, GPT model.

Unsurprisingly, higher hop counts give worse
results in both accuracy and faithfulness due to the
increase in complexity of the claims, regardless
of strategy. This can be seen in Figure 13. The
Few-Shot technique appears to handle 4-hop
claims the best out of all strategies, but all appear
to struggle more on both fronts as hop-count
increases.

6 Discussion

This study aimed to investigate the effects of
Prompt Style variation on the accuracy and faithful-
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ness of LLM-based fact-checking. Several patterns
emerge:

Prompt Strategy effect on Model size:
The GPT model showed generally stable outputs
on Accuracy across strategies, with variation that
didn’t exceed 10 percentage points. The smaller
LLaMA model appeared more sensitive to prompt
style variation. Decompositional-style techniques
that force multi-step reasoning such as FOLK,
Support–Refute, or Arguments systematically re-
duced both accuracy and faithfulness on LLaMA,
though GPT handled them reasonably well. Adding
to this, the LLaMA model often misunderstood in-
structions, or "got lost" when the strategies were
complicated, leading it to misbehave, ignore the
desired format, and require manual parsing of its
responses.

Accuracy and Faithfulness Trade offs: At
first glance, it was found that the strategies that
yield the highest accuracy are not the same ones
that yield the highest faithfulness and vice versa.
However, with small trade-offs, specific strategies
can be pinpointed that perform well on both fronts.
Specifically, on QuanTemp, the GPT model per-
forms best on accuracy with the Correlation and
Few-Shot strategies, which are only 0.03 percent-
age points shy of the highest-scoring techniques
on faithfulness. Similarly, the LLaMA model per-
forms best on accuracy with the Role-Based ap-
proach, which is only 0.01 percentage point shy
of the best scoring technique on faithfulness. On
HoVer, the Few-Shot technique ranks first in ac-
curacy for both models, and faithfulness for the
LLaMA model. For the GPT model, it is just 0.06
percentage points off from the best technique for
faithfulness. As such, it can be said that Few-Shot
is generally the most balanced prompt strategy.

Label Injection Bias: The most robust
strategy to injection of an incorrect label was
FOLK, which is interesting given that it scored
badly on both Accuracy and Faithfulness in the ’No-
Label’ case, often worse than every other strategy.
Notably, the Few-Shot strategy was also nearly as
bias-proof on QuanTemp dataset while still deliver-
ing high accuracy and faithfulness. It was, however,
more inconsistent on the HoVer set.

Faithfulness as measured by G-Eval does not
consistently penalise label drift. This means a strat-
egy can be heavily biased toward the injected label
yet still earn a high faithfulness score. Furthermore,
while the FOLK approach was most robust to label
injection, its faithfulness dipped across both mod-

els, scoring lower than most other strategies. The
Few-Shot technique, on the other hand, remained
both robust and comparatively more faithful, partic-
ularly with GPT. For the LLaMA model, the most
faithful explanations were generated by the Mini-
mal and Correlation strategies, but at the cost of
larger bias in accuracy.

7 Conclusions & Future work

Overall, it can be concluded that variation in
prompt style has an impact on fact-checking
accuracy and faithfulness. Across the two datasets,
accuracy varies by more than 25 percentage
points and faithfulness shifts by roughly 0.4 on
the 1-5 scale depending on prompt style. The
Few-Shot technique appears most balanced
across models and datasets in terms of all aspects
explored. The Minimal technique yielded the
highest faithfulness on both models and datasets.
Decompositional approaches such as FOLK,
Arguments, and Support-Refute negatively
impacted the smaller LLaMA model, implying
that forcing decomposition on smaller models can
over-tax their limited context reasoning. FOLK
showed remarkable resistance to label injection
bias even though it scored low otherwise.

Future Work This study used a very basic
Few-Shot approach with no particular rationale. Fu-
ture work could explore the use of few-shot variants
of every strategy, in order to observe the effect on
prediction and explanation quality when the model
is always given concrete examples. Additionally,
replicating the study using larger models, datasets
and/or including more strategies would improve
generalizability and perhaps unearth more interest-
ing findings.

8 Limitations

Dataset size and taxonomy split: The strategy
evaluation was performed on a relatively small
number of claims (350 for QuanTemp and 150
for HoVer). In addition, the use of only PolitiFact
claims for QuanTemp means the findings may not
generalize across different fact-checking platforms,
domains, or claim styles. Finally, the taxonomy
data in QuanTemp was unevenly split (220, 73, 44,
and 13 items for the 4 categories) implying that
conclusions on taxonomy may not be reliable.

Model size: The two LLMs used are
lightweight models with relatively small numbers
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of parameters, particularly the LLaMA model.
They were chosen on a basis of practical con-
straints, namely GPU availability and token-cost.
While both models are capable, their reasoning ca-
pabilities may vary when compared to larger vari-
ants, affecting generalizability.

Choice of prompting strategies: Given the lim-
ited time-frame of this study, a complete systematic
review of all prompting strategies employed in cur-
rent research was infeasible, meaning there may be
strategies that were overlooked or excluded from
this experiment.

Metrics: Faithfulness evaluation is done
through G-Eval, which is an LLM-based technique
on its own. While this method is efficient, and
attempts to simulate human judgement, concerns
can be raised about potential bias, hallucination,
and accuracy.

9 Responsible Research

This research has been conducted in accordance
with the principles of responsible research as
outlined in the Netherlands Code of Conduct
for Research Integrity (Netherlands Code of
Conduct for Research Integrity Committee, 2018)
and TU Delft’s Vision on Integrity (Committee
Reassessment Integrity Policy, 2018). Given in-
creasing concerns about the reliability and societal
impact of AI-generated information, particularly in
fact-checking contexts, this research takes special
care to ensure transparency, reproducibility, and
scientific integrity.

Throughout the study, I prioritized honesty both
in data handling and result interpretation. Models
were evaluated using publicly available datasets,
and filtering was explained. The codebase is
publicly available and has been documented to
facilitate future reproducibility. Outputs have been
preserved to ensure verification.

Accuracy and faithfulness, the core research
subjects, are inherently subjective. To ensure
transparency, I carefully defined what ’accuracy’
and ’faithfulness’ refers to in the context of this
research, documented the rationale behind each
metric used, and justified the inclusion of the
datasets used based on their complexity and
relevance.

A crucial aspect of this research project revolves
around prompts. I conducted a focused literature
review on common prompting strategies used in
fact-checking and explanation tasks. Based on
this, I crafted a base prompt template, based on
which all others were adapted, in order to ensure
consistency. Each version was documented and
example prompts are included. This process was
fully explained to ensure reproducibility and allow
for future reanalysis.

In terms of ethics, I adhered to the principle
of responsibility by reflecting critically on the
societal implications of LLM use in verification
contexts. This includes the potential misuse of
unverifiable explanations and excessive reliance on
automatic tools. In line with TU Delft’s integrity
policy, I also aimed to be open about the project’s
limitations, and invite replication and critique
through open sharing of results, codebase, and
methodology.

Use of Generative AI Generative AI was
used briefly during this project, mainly to aid with
polishing the writing process. All ideas and con-
cepts are my own. Prompt examples include "how
can I make this sentence more clear/concise?" or
"is there a better word to fit this context?". Very
rarely during the implementation, I may have asked
prompts like "Why is this error being thrown?"
when stuck.

A Examples of all Prompt Templates

Minimal Prompt Template:

"Claim: [CLAIM]
Evidence: [EVIDENCE]

(This Claim is considered [LABEL].)
Thoughts?
Please format your answer as:

Label: (True, False, or Conflicting)
Explanation: (your explanation)"

Role-Based Prompt Template:
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"You are an expert fact-checker, and are pro-
vided with a Claim and corresponding Evi-
dence. (This Claim is considered [LABEL])
Please label the Claim as True, False, or Con-
flicting based solely on the Evidence, without
using other internal or external knowledge or
information, and provide an explanation for
your decision.

Claim: [CLAIM]
Evidence: [EVIDENCE]

Please format your answer as:
Label: (True, False, or Conflicting)
Explanation: (your explanation)"

Evidence-First (Correlation) Prompt Template
in Two Steps:

STEP 1:

"You are given a Claim and corresponding Ev-
idence. (This Claim is considered [LABEL]).
Please judge the Correlation between Claim
and Evidence based solely on the Evidence.
Pick from the following options:

a) Evidence definitely supports Claim;
b) Evidence definitely contradicts Claim;
c) Evidence indirectly supports Claim;
d) Evidence indirectly contradicts Claim;
e) Evidence partially supports Claim;
f) Evidence partially contradicts Claim;
g) Evidence has no relation with Claim.

Claim: [CLAIM]
Evidence: [EVIDENCE]
Please just state the option picked with no
other details. "

STEP 2:

"You are given a Claim and corresponding Ev-
idence. (This Claim is considered [LABEL]).
Please label the Claim as True, False, or Con-
flicting based solely on the Evidence and the
correlation provided, and provide an explana-
tion for your decision.

Claim: [CLAIM]
Evidence & Claim–Evidence Correlation:

[EVIDENCE]
Correlation: [CORRELATION]

Please format your answer as:
Label: (True, False, or Conflicting)
Explanation: (your reasoning)"

Support-Refute Prompt Template:

"You are given a Claim and corresponding Ev-
idence. (This Claim is considered [LABEL].)
Please first identify which (if any) parts of
the Evidence support the Claim, and which (if
any) parts of the Evidence refute the Claim.
Then, please label the Claim as True, False,
or Conflicting and provide an explanation for
your decision.
Base your decisions solely on the Evidence,
without using other internal or external knowl-
edge or information.

Claim: [CLAIM]
Evidence: [EVIDENCE]

Please format your answer as:
Label: (True, False, or Conflicting)
Explanation: (your explanation)"

Chain-of-Thought Prompt Template:

"You are given a Claim and corresponding Ev-
idence. This Claim is considered label.
Based solely on the Evidence, without using
other internal or external knowledge or infor-
mation, is this Claim True, False or Conflict-
ing?

Claim: claim
Evidence: evidence

Let’s think step by step.
Please format your answer as:

Label: (True, False or Conflicting)
Explanation: (your explanation)"

Arguments Prompt Template:

10



"You are given a Claim and corresponding Ev-
idence. (This Claim is considered [LABEL].)
Please first present 3 arguments for and 3
against the claim from the evidence, if such
arguments exist.
Then, please label the Claim as True, False,
or Conflicting and provide an explanation for
your decision.
Base your decisions solely on the Evidence,
without using other internal or external knowl-
edge or information.

Claim: [CLAIM]
Evidence: [EVIDENCE]

Please format your answer as:
Label: (True, False, or Conflicting)
Explanation: (your explanation, includ-

ing your arguments)"

Decompositional (FOLK) Prompt Template in
Two Steps:

STEP 1:

"You are given a Claim and corresponding Ev-
idence. (This Claim is considered label).

The task is to:
1. Define all the predicates in the claim
2. Parse the predicates into followup ques-

tions.
3. Answer the followup questions based

solely on the Evidence provided, without us-
ing other internal or external knowledge or
information.

Claim: claim
Evidence: evidence

Please format your answer as:
Predicates: (list of predicates)
Followup Question: (question following

from predicate) Answer: (answer to question)
for each predicate"

STEP 2:

"Given a Claim and a Context, please label
the Claim as True, False, or Conflicting and
provide an explanation for your decision.

Claim: claim
Context: info

Please format your answer as:
Label: (True, False, or Conflicting)
Explanation: (your explanation)

Few-Shot ICL Prompt Template:

"You are given a Claim and corresponding Ev-
idence. (This Claim is considered label.)
Please label the Claim as True, False, or Con-
flicting based solely on the Evidence, without
using other internal or external knowledge or
information, and provide an explanation for
your decision.
Here are some examples:

Example 1:
Claim: "Says Arizona... (This Claim is

considered False.)"
Evidence: ...
Response: "Label: False

Explanation: The evidence presented indicates
... the claim is false."

"Example 2:
Claim: "The non-partisan Congres-

sional Budget Office ... (This Claim is con-
sidered Conflicting.)"

"Evidence: ...
Response: "Label: Conflicting

Explanation: The claim that ... is conflicting
because it misrepresents the nuance ..."

Example 3:
Claim: "More than 50 percent of immi-

grants... (This Claim is considered True.)"
Evidence: ...
"Response: "Label: True

Explanation: The evidence provided supports
... claim is considered true."

Claim: [CLAIM]
Evidence: [EVIDENCE]

Please format your answer as:
Label: (True, False, or Conflicting)
Explanation: (your explanation)
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B Effect of Real Label injection on
Accuracy and Faithfulness compared to
No Label condition

When using the LLaMA model, certain strategies
actually introduced a decline in accuracy on the
HoVer dataset. These four cases can be seen in
bold in Figure 15.

Figure 14: Accuracy improvement per strategy on
HoVer dataset between the No Label and Real Label
conditions.

Figure 15: Faithfulness effect per strategy on QuanTemp
dataset between the No Label and Real Label conditions.

C Bias rate and Faithfulness in remaining
label conditions across both datasets

Figure 16: Bias rate and faithfulness in the ’True’ label
injection condition, QuanTemp.

Figure 17: Bias rate and faithfulness in the ’Conflicting’
label injection condition, QuanTemp.

Figure 18: Bias rate and faithfulness in the
’NOT_SUPPORTED’ label injection condition, HoVer.
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D Heatmaps of Accuracy and
Faithfulness by Claim Taxonomy
Type/Hop Number

QuanTemp

Figure 19: Heatmap of accuracy and faithfulness per
taxonomy type, QuanTemp dataset, GPT model in the
REAL LABEL case.

Figure 20: Heatmap of accuracy and faithfulness per
taxonomy type, QuanTemp dataset, GPT model in the
’TRUE’ LABEL case.

Figure 21: Heatmap of accuracy and faithfulness per
taxonomy type, QuanTemp dataset, GPT model in the
’FALSE’ LABEL case.

Figure 22: Heatmap of accuracy and faithfulness per
taxonomy type, QuanTemp dataset, GPT model in the
’CONFLICTING’ LABEL case.

HoVer

Figure 23: Heatmap of accuracy and faithfulness per
taxonomy type, HoVer dataset, GPT model in the REAL
LABEL case.

Figure 24: Heatmap of accuracy and faithfulness per
taxonomy type, HoVer dataset, GPT model in the ’SUP-
PORTED’ LABEL case.
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Figure 25: Heatmap of accuracy and faithfulness per
taxonomy type, HoVer dataset, GPT model in the
’NOT_SUPPORTED’ LABEL case.
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