<]
TUDelft

Delft University of Technology

Shallow water models for stratified equatorial flows

Geyer, Anna; Quirchmayr, Ronald

DOI
10.3934/dcds.2019186

Publication date
2019

Document Version
Final published version

Published in
Discrete and Continuous Dynamical Systems- Series A

Citation (APA)
Geyer, A., & Quirchmayr, R. (2019). Shallow water models for stratified equatorial flows. Discrete and
Continuous Dynamical Systems- Series A, 39(8), 4533-4545. https://doi.org/10.3934/dcds.2019186

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.3934/dcds.2019186
https://doi.org/10.3934/dcds.2019186

DISCRETE AND CONTINUOUS do0i:10.3934/dcds.2019186
DYNAMICAL SYSTEMS
Volume 39, Number 8, August 2019 pp. 4533-4545

SHALLOW WATER MODELS FOR STRATIFIED
EQUATORIAL FLOWS
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ABSTRACT. Our aim is to study the effect of a continuous prescribed density
variation on the propagation of ocean waves. More precisely, we derive KdV-type
shallow water model equations for unidirectional flows along the Equator from
the full governing equations by taking into account a prescribed but arbitrary
depth-dependent density distribution. In contrast to the case of constant
density, we obtain for each fixed water depth a different model equation for
the horizontal component of the velocity field. We derive explicit formulas
for traveling wave solutions of these model equations and perform a detailed
analysis of the effect of a given density distribution on the depth-structure of
the corresponding traveling waves.

1. Introduction. The dynamics of inviscid fluids are governed by Euler’s equations
of motion. In the context of water wave models one usually assumes the density
function to be constant throughout the entire fluid body, which is a reasonable
simplification since the compressibility of water is negligible: even very high amounts
of hydrostatic or hydrodynamic pressure have almost no effect on the water density.
In fact, the pressure acts like a Lagrange multiplier, enforcing the incompressibility
condition (see the discussion in [3]). However, other factors like temperature and
salinity have a considerably higher effect on the density and give rise to stratified flows
which become relevant e.g. in the context of ocean dynamics. A significant increase
of density due to changes in temperature or salinity gives rise to a pycnocline—a
layer that separates surface water of lower density from water of higher density in
greater depths. The propagation of disturbances of a pycnocline gives rise to internal
waves, which are much larger than surface waves but hard to detect since there is
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only weak interaction between internal waves and surface waves, cf. [19, 11] and the
references therein.

In recent studies of stratified equatorial ocean flows, cf. [4, 11, 12], the pycnocline
has been considered as an infinitely thin interface between two layers of different but
constant densities. This approach opened up rich developments in the theoretical
investigations of equatorial flows, including the derivation of exact solutions [5, 6, 7],
a generalization to three-dimensional fluid flows [14], discovery of the Hamiltonian
structure of the model [8, 9, 22, 23] and qualitative analysis of the thermocline
see e.g. [32]; see also the overview articles [26, 27] and the references therein. A
comprehensive account of phenomena pertaining to physical oceanography in general
and to equatorial ocean dynamics in particular is presented in [13].

While the above approach assumes a predefined discontinuous piecewise constant
density function with a jump at the pycnocline, the aim of the present paper is to
study the effect of a continuous change of density on the propagation of water waves.
To this end we derive the weakly nonlinear KdV-type shallow water equation

1
2ur — 2Qoue + p(2)v(p)uue + ueee = 0.

for an arbitrary prescribed depth-dependent smooth density distribution p. Here
the unknown w, depending on time 7 and space £, describes the horizontal velocity
component of the flow field beneath a unidirectional free surface shallow water wave
of small amplitude at a specific water depth z; the coefficient v depends on the
density distribution and will be specified in the sequel. The major novelty compared
to the case of constant density is the depth dependence of the horizontal velocity
component of the flow at leading order. In particular, the vorticity of these flows
does not vanish, cf. Remark 3.3. This is expected in view of the general principle
that stratified flows can never be irrotational, see the discussion in [3] and [33]. The
constant € incorporates the Coriolis effect along the Equator. We obtain a similar
equation for the elevation of the free surface. By a thorough study of the explicit
traveling wave solutions of these KdV-type equations we acquire a solid theoretical
understanding of the effect of the density distribution on the size and shape of these
traveling waves at various depths. This analysis shall serve as a basis for a better
understanding on how a continuous change of density affects the dynamics of more
general types of waves.

2. Governing equations in dimensionless form. In this section we introduce
the governing equations for unidirectional gravity water waves; we provide the
equations in physical variables and bring them into dimensionless form in the sequel.
The main difference compared to the classical water waves problem is that we allow
for a non-constant “background” density distribution depending smoothly on the
vertical direction caused by e.g. increasing salinity or decreasing temperature with
depth. Such stratification phenomena occur in particular in equatorial regions, where
waves typically propagate in purely azimuthal direction, so that a unidirectional
setting is a reasonable simplification, cf. [31] and the discussion in [11]. Motivated
by this geophysical point of view, in which the effects of the Earth’s rotation on
large waves become relevant, we consider the f-plane approximation for the inviscid
Euler equations for two-dimensional unidirectional flows near the Equator. The
motion of the water between the flat bed and the free surface is therefore governed
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by the following set of equations:

Uy + Uty + Wiz 4+ 20w = —p~ ' Py

Wi + Wiy + 0wz — 20U = —p ' P: — (1)

pi + (pu)z + (pw)z = 0,
where the bars distinguish these physical variables from dimensionless variables
appearing later. The independent variables Z and Z denote the directions of increasing
azimuth and vertical elevation respectively; the horizontal and vertical fluid velocity
component in the direction of increasing azimuth and elevation are given by @ =
w(Z, z,t) and w = w(Z, z,t). The pressure is denoted by P = P(z, z,t). We consider
a prescribed but arbitrary continuously differentiable density distribution p of the
water which may vary with depth only, as illustrated in Fig. 1b, that is,
p=p(z) >0.

The gravitational acceleration is denoted by g ~ 9.81ms~2 and the constant Q ~
7.29 - 10 % rad 5;1 denotes the rotational speed of the Earth around the polar axis.
Thus, the two Q-terms in (1) capture the effects of the so-called Coriolis force. Let
us emphasize at this point that all considerations we make in this paper equally
apply to the corresponding non-geophysical settings, i.e. to unidirectional inviscid

gravity water waves with a prescribed smooth depth-dependent density distribution.
In this case we simply set 2 = 0.

wi
I
=)

(a)

FI1GURE 1. Fig. la illustrates the fluid domain in the physical
(z, Z)-plane between the flat bed at z = 0 and the free surface
Z = ho +7(+,7) at a certain instant of time #. The average water
level hy is indicated by a dashed line, A shows the distance between
two consecutive crests and a is the vertical deviation of a typical
crest from hg. Fig. 1b shows a prescribed depth dependent density
distribution p(Zz) with a significant density increase in the region
between the two dotted horizontal lines close to the surface giving

rise to a pycnocline.

The fluid body is bounded from below by a flat bed located at z = 0; it is bounded
from above by the free water surface which is assumed to be described by the graph
of the function hy + 7(-,#) at any instant of time #, where 7(Z,f) measures the
deviation of the free surface from the average water depth hg at (7,%). We impose
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the usual dynamic boundary condition for the pressure at the water surface and the
kinematic boundary condition for the vertical velocity at the surface and the flat
bed:

P=Pym on z=hy+0(z,t)
D =N+ Uz on Zz=hy+q(,t) (2)
w=0 on Zz=0;

the constant Pm denotes the atmospheric pressure.

To bring the set of equations (1) and boundary conditions (2) into dimensionless
form, we use the following standard reference length scales: a typical amplitude of
the surface wave @ and the average undisturbed water depth hg as the vertical scales,
and a typical wave length \ as the horizontal scale; cf. Fig. 1a, we refer to [10], [24]
and [25] for more details. We introduce the following set of non-dimensional variables:

_ _ _ h) - —h
T=\r, Z=hoz, ft=—2—t, @=1/ghou, W=1\/gho—w, 7=an,
VvV gho A
: N
g 0Q7

P:Patm_g/ ﬁ(s)ds—’_gﬁﬂﬁpa Q==
h ho

(3)

where the dimensionless pressure P acts as a measure for the deviation of P from
the hydrostatic pressure distribution. The density p is scaled according to

p(2) = pop(z), where py = p(ho). (4)

By employing (3)—(4) and introducing the two fundamental dimensionless parameters
a ho

= =, = -, 5

referred to as amplitude and shallowness parameter, the set of equations (1) and
boundary conditions (2) transform into the following dimensionless form:

up + Uty + wu, + 2Quw = — P,

P).
(52(wt + ww, + ww,) — 2Qu = —M
P
uz+wz+&w:0
p (6)
1 z
P:—/ps ds on z=1+en(x,t
o S 0

w=¢e(n +un;) on z=1+en(z,t)
w=0 on z=0.
In order to transfer the free surface to a fixed boundary, we rewrite the boundary

conditions at the free surface by means of Taylor expansions of the involved variables
u, w and P about z = 1. This yields the expressions

P+ enP, + €202 )2P,, = en — 62172% +0@E} on z=1

w=e(n +une —nw.) +OE?) on z=1

where we have used the fact that p(1) = 1 in view of the nondimensionalization (4).
Finally, following [10], we perform the usual scaling

u eu, w— ew, P+ eP (7)
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on the system (6) and set
Q= EQ(), (8)

where )y is an appropriate constant. The latter scaling is a valid maneuver since
the dimensionless parameters 2 and ¢ are of the same order of magnitude when
assuming typical values of ocean depth and wave amplitude for offshore waves near
the Equator, see the discussion in [21]. Additionally we exploit that the shallowness
parameter § in system (6) can be scaled out in favor of € via the transformation

é é
rT— —x, z—2z, t—= —=t,

Ve Ve
NG

P—P n—n u~—u, wHTw,

where the scaling of w is required to ensure conservation of mass in the resulting
system. We note that this transformation remains non-singular for € and § tending
to zero only if these parameters satisfy a certain asymptotic relation. That is, by
imposing the transformation (9) one considers the restriction to shallow water waves
of small amplitude:

9)

§< 1, e =0(6%). (10)

The application of (7), (8) and (9) on the system (6) yields the following system of

governing equations for unidirectional equatorial waves in scaled and dimensionless
form:

us + e(uuy + wu,) + 2eQow

— Pz

(pP)-
P

e(w + e(vw, + ww,)) — 2eQou = —

ux—l—wz—l—p—zw:()
p

(11)

P:n—&n(%pz—Pz) on z=1

w=mn+elun, —nw,) on z=1

w=0 on z=0.

3. Derivation of a shallow water model. The system (11) of governing equa-
tions for equatorial waves serves as a starting point for our derivations. We follow the
techniques presented in [24, 25] to obtain model equations for the surface elevation
7 and the horizontal velocity u. By retaining only the leading order terms of (11)
(i.e. by setting & = 0) we obtain the linear system

uy = —P,

0=(pP):
Uy + W, + P2 =0
p (12)

P=n on z=1
w=mn on z=1
w=0 on z=0,

from which we infer that the leading order approximation of 7 (again denoted by n)
satisfies the linear wave equation:

Nt — Nex = 0. (13)
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To see this, we first note that the second equation in (12) and the dynamic boundary
condition imply that n = pP for all z € [0,1]. In view of the first equation this
yields that pu; = —n,. Next we invoke the equation of mass conservation which is
equivalent to (pw), = —pu,, hence

w(z,z,t) = —p(2)~! /OZ p(8)ug(x, s, t)ds.

Differentiating both sides with respect to ¢, using the boundary condition at the top
and the fact that p(1) = 1, we obtain that n; = — fol pugtds on z = 1. Hence, we
infer that n satisfies (13).

The general solution of (13) is of the form n(z,t) = F_(x —t) + F(x + ¢) for
arbitrary functions F_, and F._. This motivates the introduction of the far-field
variables

E=ax—t, T=c¢t (14)

to follow right-propagating waves governed by (11). Rewriting (11) in terms of the
far-field variables (14) yields the system

—ug + e(ur + uue + wu, + 2Qw) = —F

P).
e(—we + e(wr + uwe + ww,) — 2Qou) = — (Pp)
(pw). = —pug (15)

P:n—an(ng—Pz) on z=1
w=—ne+e(n +une —nw.) on z=1
w=0 on z=0.

To obtain an asymptotic solution of system (15), we formally expand the respective
variables 7, u, w and p in the form ¢ ~ Y > g,e™. At leading order we obtain the
linear system

upe = Poe
0= (pF)-
(pwo)= = —puoe (16)
Ph=m on z=1
wo = —"oe on z=1

wg=0 on 2z=0.

Integrating the second equation and using the boundary condition on the pressure
we obtain that 19 = pPy for all z € [0,1]. In view of the first equation we may
therefore deduce that

uo = p~no, (17)

where we have invoked the assumption that any change in uw can occur only due to
a perturbation of 1, see [24]. From the equation of mass conservation, the bottom
boundary condition and (17) we deduce that wy = —zp_lnog. Next we consider the
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first order system
—uig +p " nor +p (14 2p” p2)notioe — 22029 e = — P
znoge — 2Q0m0 = —(pP1)-
(pw1): = —puse

18
P1=771+%Zn§ on z=1 (18)

wy = =M +nor + (2= p2)momog on z=1
w; =0 on z=0,
where we have written all leading order expressions in terms of 7y. Viewing the

second equation as a linear ODE in P; with z being the independent variable, we
can solve it using the pressure boundary condition and obtain that

P = [P+ [0 smee)ds).

This results in the following representation of P; in terms of 79 and 7;:

22 -1

Pi(z)=p" {771 + %773 +2Q0m0(2 — 1) — 5 77055} .

Next we solve the equation of mass conservation as a linear ODE in w;. By expressing
the inhomogeneity using the first equation, and incorporating the boundary condition
on z = 0 and Pj¢ obtained in the previous step, we find that

1 z
wy(z) = 7;/0 puie ds

1 [* s
= —*/ {7715 + 1or — 2Q0M0¢ —
P Jo

2

1 s
Moge + (pz T %)nonog} ds.
(19)
Finally, we calculate the integral in (19), evaluate the resulting expression for w; at

z =1 and compare the outcome with the corresponding boundary condition in (18).
This yields the weakly nonlinear third order partial differential equation

1

20 — 2Qone + v(p)nme + 3llege = 0, (20)
where )
Zp).
vy =2=p+ [ (o4 )0 er (21)
0 P

which governs the free surface n at leading order, where n ~ 1y + O(¢). The
equation for the leading-order approximation of the horizontal velocity u at any
depth z € [0, 1] has a depth-dependent coefficient of the nonlinear term:

1
2u, — 2Qoue + p(2)v(p)uue + ueee = 0. (22)
Remark 3.1. For constant density p = 1 and vanishing Coriolis force, both equations
(20) and (22) reduce to the standard KdV [29]
1
2ur + 3uue + Jueee = 0, (23)

which approximates right-propagating shallow water waves of small amplitude at
leading order. We observe that for fixed z € [0,1] and for any given density
function p the coefficient of the nonlinear term in both equations is a fixed real
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number. Therefore, these equations can always be brought to the form (23) via the
transformation

U= (a/3)%5u, T=(af3)%%r, X = (af3)">(€+Q7), (24)

where o = v(p) and u = for (20) and a = p(z)v(p) for (22). This transformation
is valid only as long as « > 0. The sign of o can be determined for any arbitrary
given density distribution p; we note that « is strictly positive for realistic density
distributions in the context of (geophysical) water waves and provide examples for
different densities at the end of Section 4.

Remark 3.2. In view of Remark 3.1 several remarkable properties of the standard
KdV (23), like soliton interaction, bi-Hamiltonian structure, the existence of a
Lax pair, integrability, global Birkhoff coordinates for space-periodic solutions, see
e.g. [20, 30, 18, 28], and stability of traveling wave solutions (cf. Section 4.3 for some
references regarding stability) remain valid for equations (20) and (22) by means of
the transformation (24).

Remark 3.3. The depth dependent coefficient in the velocity equation (22) due to
non-constant density p represents a major difference compared to the standard KdV,
which models both the free surface 7 and the horizontal velocity u at any depth. In
the next section we will consider explicit traveling wave solutions of (20) and (22) for
certain prescribed density distributions to illustrate the change of the corresponding
wave profiles with depth. Moreover, a non-constant density distribution p entails a
non-vanishing vorticity' of the flow field at leading order, cf. (16) and (17). This is
to be expected in view of the rotational nature of stratified flows, see [3, 33].

4. Explicit traveling wave solutions. In this section we present explicit traveling
wave solutions of equations (20) and (22). We study the effects of the non-constant
density on the z-structure of solutions in general and for two concrete examples of
density distributions. Traveling wave solutions of (20) of the form (¢, 7) = (£ —e7)
with wave speed ¢ > 0 satisfy the ordinary differential equation

1
= 2(c+ Q)¢ +v(p)pg’ + 3¢ =0, (25)
with v(p) defined in (21).

4.1. Solitary traveling waves. Assuming decay at infinity we may integrate this
equation twice using ¢’ as an integrating factor in the second integration. The
solitary traveling wave equation then reads

(') = (6(c+ Qo) — v(p)p)p”.

We see that real solutions can exist only if ¢ < %. Following [17] we integrate

the equation by writing

/<p\/6(6+??i) —v)e jE/ @

where s = £ — c¢7, and using the substitution ¢ = %sech%@). We obtain that

the solitary wave solutions of (20) are given by

)= 6(c + ) QO)Sech2 (‘ 6(c+ ) (& — CT)> . (26)

(€ —cr ) 5

IThe voricity of the dimensionless flow field is given by w = u, — cwy.
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Notice that for constant p = 1 and Q¢ = 0 this reduces to the familiar sech*-solutions
of the standard KdV (23).

Remark 4.1. We observe that p appears only as a multiplicative factor in front of
the solution and hence any changes in p affect only the amplitude, cf. Fig. 2a. This
is different from the dependence on the Coriolis parameter and the wave speed: as ¢
or ) increase, the profiles become taller as well as narrower, see [21]. Moreover,
observe that we have made no assumption on the sign of v(p). Therefore, in principle
our approach allows us to obtain solitary waves of elevation when this number is
positive and waves of depression when it is negative, see the remark at the end of
Example 2.

For the horizontal velocity component u, traveling wave solutions of the equation
(22) of the form u(¢, z,7) = ¢(£ — c7, 2z) can be obtained directly from the explicit
traveling wave solutions of (20) in view of the relation between the surface and the
velocity component given in (17). This relation provides an explicit measure for the
attenuation of the amplitude with depth, which is inversely proportional to p(z), see
also Fig. 2b. Therefore, we obtain a traveling wave solution of (22) for each depth
z €10, 1] given by

$(€ —c1,2) = p(2) " p(€ — e7), (27)
where ¢ is a solution of (25). We observe that the amplitude of the wave does not
vanish at the bottom.

Ezxample 1. Consider the linear density function

p(z) =14+ Al —2), z€]0,1] (28)
where A > 0, i.e. p(z) is increasing with depth. In this case the coefficient of the
nonlinear term in the equation (20) is v(p) = 2In(1+ A)/A+ 1 € (1, 3), which is a
strictly monotonically decreasing function of A. Therefore, for every fixed z € [0, 1],
the profiles of the solitary traveling wave solutions become taller and also wider as A

increases, cf. (26) and Fig. 2a. The amplitude of the velocity component ¢(§ — e, 2)
decreases with depth like (Az)~! in view of (17) and (28), see Fig. 2b.

101\ s 2

o
|
~
A
l\

o
A

IS

~

[ aannan

o

FIGURE 2. Solitary traveling wave solutions (26) of the surface
equation (20) with linear density function p(z) =14 A(1 — 2). In
Fig. 2a we see that for larger values of the parameter A > 0 the
profile becomes taller and also wider. In Fig. 2b we see how the
amplitude of solutions decreases with depth z € [0,1] like (Az)~!
according to (27).
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FEzample 2. Next we consider the density function
p(2) = ag — ay arctan (az(z — a3)), =z €]0,1], (29)

for suitable parameters a; € R, to obtain a more realistic density distribution as
described in the introduction and depicted in Fig. 1b. We choose the parameters to
match the actual physical situation in the mid-equatorial Pacific, with an average
water depth of about 4000 m and a pycnocline located at a depth of roughly 200 m. In
this oceanic region, the density of the water at the surface is about 1027 kg/m? with a
density increase of 1% from the surface to the seabed, cf. [11]. Nondimensionalizing
and scaling these quantities to depths z € [0,1] and p(1) = 1 leads us to the
following choice of parameter values: a3 = 0.95 determines where the region of
biggest density gradient is located, i.e. at the center of the pycnocline; as = 300
regulates the thickness of the pycnocline; with the last two parameters ag = 1.0047
and a; = 0.0034 we ensure the correct density increase. This choice results in the
density distribution depicted in Fig. 3a.

It is interesting to see how this density profile is reflected in the decay of the
amplitude of the solitary wave profile (26) with depth. This is because the solitary
waves ¢(§—cr, z) of the velocity equation (22) decay with depth inversely proportional
to p(z) according to relation (27), see Fig. 3b?.

Finally, we observe that for the choice of parameters described above the coefficient
of the nonlinear term v(p) = 2.97 defined in (21) is positive. We note that in this
setting negative values of v(p), which give rise to solitary waves of depression, would
arise only for a density increase of almost 300% which is not a physically relevant
scenario.

0995

L L L L L
00 02 04 06 08 10

FIGURE 3. In Fig. 3a we see a plot of the density profile p(z) =
ag — ap arctan (az(z — ag)) defined in (29) for suitable choices of
parameter values a; € R to model a density increase of 1% from
surface to bed. Fig. 3b shows a schematic representation of the fact
that the amplitude of solitary wave solutions ¢(§ — cr, z) decays
with depth inversely proportional to p(z), cf. (27).

2Note that, since the density change of 1% in p and the resulting impact on the amplitude
decay in depth is quite small compared to the amplitude of the solitary wave, we have used a larger
value for a; to produce Fig. 3b to make this effect more visible.
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4.2. Periodic traveling waves. Periodic traveling waves of (20) can be obtained
in a similar fashion, cf. [17] or [16]. To this end we integrate (25) twice to obtain

(¢')?=F(p) where F(p):=—v(p)p®+6(c+Q)p*+Ap+B,  (30)

where A, B are constants of integration. One can show that this equation has real and
bounded solutions only if F'(¢) has three simple roots satisfying ¢z < w2 < 0 < 4
when v(p) > 0 (the other situation being similar), in which case we can write

F(o) = —v(p)(e — o1)(@ — v2) (¢ — ©3).

The solution oscillates between s < ¢ < 1 with period 2 fél Therefore

F

U
A6
&

we can express the solution implicitly as

P1
S:sli/ dg ,
¥ F(g)

where ¢(s1) = ¢1. Using the substitution g = @1 — (1 — 2)sin®() this can be
transformed into the standard elliptic integral

/W

with elliptic modulus m = £1=22 such that m € (0,1) and ¢ = 2+ (o1 —2) cos®(¢).
Finally, using Jacobi elliptic functions and the fact that cn(v|m) = cos(¢) is an even
function, we obtain the periodic cnoidal solution

(S S01 <P3

2

(p(S) = o + ((Pl _ (,02)CI12 ((S _ 80) V(P)(SDl - 903) —

Y1 — @2) (31)
in terms of the three distinct roots of F'(y). These roots are related to the parameters
of the traveling wave equation (30) via the nonlinear relations

6(C+ Qo) —A B
prF+ Y2t s =——"-", Y12t Y13t a3 =—7=, PYi1P2pP3=—7—,
v(p) v(p) v(p)

which one can solve as needed for concrete choices of density distributions p. We
see from the explicit expression (31) for periodic cnoidal wave solutions that both
the amplitude %(¢1 — ¢2) and the wave length 4K (m)(v(p)(p1 — ¢3)) /2, where

(/2 de . TR . -
K(m)= [, @) depend on the density distribution p in an intricate way.

As in the case of solitary waves, explicit periodic traveling wave solutions of the
velocity equation (22) can be obtained directly from (31) in view of relation (17) for
each depth z € [0,1]. We refrain here from any further qualitative discussion on
periodic traveling waves, which can be carried out along the lines of our analysis for
solitary waves as illustrated in Section 4.1.

4.3. Stability. Having established existence and some qualitative properties of
traveling waves, we may ask about the stability of these solutions. The orbital
stability of periodic and solitary traveling waves of the standard KdV have been
studied by many authors, see for instance [1, 2, 15]. Recall the observation presented
in Remark 3.1 that for every fixed depth z € [0, 1] the KdV-type equations (20) and
(22) derived in Section 3 can be transformed into the standard KdV. For this reason,
we infer that the explicit solitary and periodic traveling wave solutions (26) and (27)
of equations (20) and (22) respectively, are orbitally stable as well.
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