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Abstract

While FPGAs have seen prior use in database systems, in recent years interest in using FPGA to accelerate databases has
declined in both industry and academia for the following three reasons. First, specifically for in-memory databases, FPGAs
integrated with conventional I/O provide insufficient bandwidth, limiting performance. Second, GPUs, which can also provide
high throughput, and are easier to program, have emerged as a strong accelerator alternative. Third, programming FPGAs
required developers to have full-stack skills, from high-level algorithm design to low-level circuit implementations. The
good news is that these challenges are being addressed. New interface technologies connect FPGAs into the system at main-
memory bandwidth and the latest FPGAs provide local memory competitive in capacity and bandwidth with GPUs. Ease of
programming is improving through support of shared coherent virtual memory between the host and the accelerator, support
for higher-level languages, and domain-specific tools to generate FPGA designs automatically. Therefore, this paper surveys
using FPGAs to accelerate in-memory database systems targeting designs that can operate at the speed of main memory.

Keywords Acceleration - In-memory database - Survey - FPGA - High bandwidth

1 Introduction

The computational capacity of the central processing unit
(CPU) is not improving as fast as in the past or growing
fast enough to handle the rapidly growing amount of data.
Even though CPU core-count continues to increase, power
per core from one technology generation to the next does
not decrease at the same rate and thus the “power wall”
[7] limits progress. These limits to the rate of improvement

B Jian Fang
j-.fang-1@tudelft.nl

Yvo T. B. Mulder
yvo.mulder @ibm.com

Jan Hidders
jan.hidders@vub.be

Jinho Lee
leejinho@yonsei.ac.kr

H. Peter Hofstee

hofstee @us.ibm.com
1" Delft University of Technology, Delft, The Netherlands
IBM Research and Development, Boblingen, Germany
Vrije Universiteit Brussel, Brussels, Belgium
4 IBM Research, Austin, TX, USA

Yonsei University, Seoul, Korea

bring a demand for new processing methods to speed up
database systems, especially in-memory database systems.
One candidate is field-programmable gate arrays (FPGAs),
that have been noted by the database community for their high
parallelism, reconfigurability, and low power consumption,
and can be attached to the CPU as an 1O device to acceler-
ate database analytics. A number of successful systems and
research cited throughout this paper have demonstrated the
potential of using FPGAs as accelerators in achieving high
throughput. A commercial example is IBM Netezza [41],
where (conceptually) an FPGA is deployed in the data path
between hard disk drives (HDDs) and the CPU, perform-
ing decompression and pre-processing. This way, the FPGA
mitigates the computational pressure in the CPU, indirectly
amplifying the HDD-bandwidth that often limited database
analytics performance.

While FPGAs have high intrinsic parallelism and very
high internal bandwidth to speed up kernel workloads, the
low interface bandwidth between the accelerator and the
rest of the system has now become a bottleneck in high-
bandwidth in-memory databases. Often, the cost of moving
data between main memory and the FPGA outweighs the
computational benefits of the FPGA. Consequently, it is a
challenge for FPGAs to provide obvious system speedup, and
only a few computation-intensive applications or those with
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data sets that are small enough to fit in the high-bandwidth
on-FPGA distributed memories can benefit.

Even with higher accelerator interface bandwidth, the
difficulty of designing FPGA-based accelerators presents
challenges. Typically, implementing efficient designs and
tuning them to have good performance requires developers
to have full-stack skills, from high-level algorithm design to
low-level circuit implementation, severely limiting the avail-
able set of people who can contribute.

While some of these challenges also apply to GPUs, GPUs
have become popular in database systems. As is the case for
FPGAs, GPUs can benefit from their massive parallelism and
provide high throughput performance, but also like FPGAs,
GPU to system memory bandwidth typically falls well short
of the bandwidth of the CPU to system memory. However,
compared to FPGAs GPUs support much larger on-device
memory (up to 32 GB) that is accessible at bandwidths (more
than 800 GB/s) that exceed those of the CPU to system mem-
ory. For these reasons, a GPU-accelerated system can provide
benefit in a larger number of cases.

Emerging technologies are making the situation better
for FPGAs. First, new interface technologies such as Open-
CAPI [123], Cache Coherent Interconnect for Accelerators
(CCIX) [13], and Compute Express Link (CXL) [112] can
bring aggregate accelerator bandwidth that can exceed the
available main-memory bandwidth. For example, an IBM
POWERY SO processor can support 32 lanes of the Open-
CAPIl interface, supplying up to 100 GB/s for each direction,
while the direct-attach DDR4 memory on the same proces-
sor provides up to 170 GB/s (2667MT/s x 8 channels) in
total [129]. Another feature brought to FPGAs by the new
interfaces is shared memory. Compared to using FPGAs as
1/0 devices where FPGAs are controlled by the CPU, in the
OpenCAPI architecture, the coherency is guaranteed by the
hardware. FPGAs are peers to the CPUs and share the same
memory space. With such a high-bandwidth interface, the
computational capability and the parallelism of the acceler-
ator can now be much more effectively utilized.

Apart from new interface technologies, high-bandwidth
on-accelerator memory is another enabler for FPGAs. Some
FPGAs now incorporate high bandwidth memory (HBM)
[138] and have larger local memory capacity as well as
much higher (local) memory bandwidth. Similar to the GPUs
with HBM, such high-bandwidth memory with large capac-
ity allows FPGAs to store substantial amounts of data locally
which can reduce the amount of host memory access, and
bring the potential to accelerate some of the data-intensive
applications that require memory to be accessed multiple
times.

In addition, FPGA development tool chains are improving.
These improvements range from high-level synthesis (HLS)
tools to domain-specific FPGA generation tools such as
query-to-hardware compilers. HLS tools such as Vivado
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HLS [38] and OpenCL [115] allow software developers to
program in languages such as C/C++ but generate hard-
ware circuits automatically. Other frameworks such as SNAP
[136] further automate the designs of the CPU-FPGA inter-
face for developers. In this case, the hardware designer can
focus on the kernel implementation, and the software devel-
opers do not have to concern themselves with the underlying
technology. Domain-specific compilers such as query-to-
hardware compilers (e.g., Glacier [86]) can even compile
SQL queries directly into FPGA implementations.

Therefore, with these emerging technologies, we believe
that FPGAs can again become attractive as database acceler-
ators, and it is a good time to reexamine integrating FPGAs
into database systems. Our work builds on [127] which
has presented an introduction and a vision on the potential
for FPGA’s for database acceleration. Related recent work
includes [98] which draws similar conclusions with respect
to the improvements in interconnect bandwidth. We focus
specifically on databases, we include some more recent work,
and we emphasize the possibilities with the new interface
technologies.

In this paper, we explore the potential of using FPGAs
to accelerate in-memory database systems. Specifically, we
make the following contributions.

e We present the FPGA background and analyze FPGA-
accelerated database system architecture alternatives and
point out the bottlenecks in different system architec-
tures.

e We study the memory-related technology trends includ-
ing database trends, interconnection trends, FPGA devel-
opment trends, and conclude that FPGAs deserve to be
reconsidered for integration in database systems.

e We summarize the state-of-the-art research on a num-
ber of FPGA-accelerated database operators and discuss
some potential solutions to achieve high performance.

e Based on this survey, we present the major challenges
and possible future research directions.

The remainder of this paper is organized as follows:
In Sect. 2, we provide FPGA background information and
present the advantages of using FPGAs. Section 3 explains
the current database systems accelerated by FPGAs. We
discuss the challenges that hold back use of FPGAs for
database acceleration in Sect. 4. The database, intercon-
nect and memory-related technology trends are studied in
Sect. 5. Section 6 summarizes the state-of-the-art research
on using FPGAs to accelerate database operations. Section 7
presents the main challenges of using high-bandwidth inter-
face attached FPGAs to accelerate database systems. Finally,
we conclude our work in Sect. 8.

System designers may be interested in Sect. 3 for the
system architecture overview, Sect. 4 for the system limita-
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tions, and Sect. 5 for the technology trends that address these
limitations. FPGA designers might want to concentrate on
Sect. 6 that discusses the state of the art for high-bandwidth
operators relevant to database queries. For performance ana-
lysts, Sect. 4 gives a brief comparison between FPGAs and
GPUs, as well as the challenges of FPGA regarding database
acceleration. For the performance of each operator, a deeper
discussion is presented in Sect. 6. For software developers,
Sect. 2 provides an introduction to FPGAs, while FPGA pro-
gramming is discussed in Sect. 4 and 5. We also present
lessons learned and potential future research directions in
Sect. 7 addressing different groups of researchers.

2 FPGA background

This section gives an introduction to FPGAs, and pro-
vides software researchers and developers with background
knowledge of FPGAs including architecture, features, pro-
gramming, etc.

2.1 Architecture

An FPGA consists of a large number of programmable
logic blocks, interconnect fabric and local memory. Lookup
tables (LUTs) are the main component in programmable
logic. Each LUT is an n-input l-output table,' and it can
be configured to produce a desired output according to the
combination of the n inputs. Multiple LUTS together can be
connected by the configurable interconnect fabric, forming
a more complex module. Apart from the logic circuits, there
are small memory resources (registers or flip-flops) to store
states or intermediate results and larger block memory (Block
RAMs or BRAMs) to act as local memory. Recently, FPGA
chips are equipped with more powerful resources such as
built-in CPU cores, Digital Signal Processor (DSP) blocks,
UltraRAM (URAM), HBMs, preconfigured I/O blocks, and
memory-interface controllers.

2.2 Features

The FPGA is a programmable device that can be config-
ured to a customized circuit to perform specific tasks. It
intrinsically supports high degrees of parallelism. Concur-
rent execution can be supported inside an FPGA by adopting
multi-level parallelism techniques such as task-level par-
allelization, data-level parallelization, and pipelining. In
addition, unlike the CPU where the functionality is designed
for generic tasks that do not use all the resources efficiently

! Multi-output LUTs are available now. See Figure 1-1 in https://www.
xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.
pdf.

for a specific application, the circuit in an FPGA is highly
customizable, with only the required functions implemented.
Even though building specific functions out of reconfigurable
logic is less efficient than building them out of customized
circuits, in many cases, the net effect is that space is saved
and more processing engines can be placed in an FPGA
chip to run multiple tasks in parallel. Also, the capability
of customizing hardware leads to significant power savings
compared to CPUs and GPUs, when the required function-
ality is not already directly available as an instruction. The
FPGA can also support data processing at low latency due
to the non-instruction architecture and the data flow design.
In CPUs, the instructions and data are stored in the memory.
Executing a task is defined as running a set of instructions,
which requires fetching instructions from memory. How-
ever, FPGAs define the function of the circuit at design-time,
where the latency is dependent on the signal propagation
time. Apart from that, the data flow design in FPGAs allows
forwarding the intermediate results directly to the next com-
ponents, and it is often not necessary to transfer the data back
to the memory.

2.3 FPGA-related bandwidth

As we focus on the bandwidth impact on this paper, we give
a brief introducing of FPGA-related bandwidth and present
the summary in Table 1. Similar to the CPU memory hier-
archy, the memory close to the FPGA kernel has the lowest
latency and highest bandwidth, but the smallest size. The
FPGA internal memory including BRAM and URAM typi-
cally can reach TB/s scale bandwidth with a few nanoseconds
latency. The on-board DDR device can provide tens GB/s
bandwidth, While the HBM that within the same socket with
the FPGA have hundreds of GB/s bandwidth, and both of
them require tens to hundreds nanoseconds latency to get
the data. The bandwidth to access the host memory typically
is the lowest one in this hierarchy. However, it provides the
largest memory capacity.

Hiding long memory latency is a challenge for FPGA
designs. Typically, applications with streaming memory
access patterns are less latency-sensitive: because the
requests are predictable it is easier to hide the latency. How-
ever, applications that require a large amount of random
access (e.g., as hash join) or unpredictable streaming access
(e.g., sort) could get stalls due to the long latency. In this
case, we might need to consider using memory with lower
latency or transform the algorithms to leverage streaming. We
discuss more details based on different operators in Sect. 6.

2.4 Programming

The user-defined logic in the FPGA is generally speci-
fied using a hardware description language (HDL), mostly
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Table1 FPGA-related

bandwidth and latency (from Mem source Mem type BW (GB/s) Latency (ns) Capacity (MB)
data source to FPGA kernels) Internal BRAM > 103 100 100
URAM > 10° 10! 10!
On-board HBM 102103 10'-10% 103
DRAM 10'-10? 10'-10? 10*
Host DRAM 10! > 107 > 10°
VHDL or Verilog. Unlike software programming languages Storage/ | <5 FPGA | o

such as C/C++ handling sequential instructions, HDLs
describe and define an arbitrary collection of digital circuits.
It requires the developers to have knowledge on digital elec-
tronics design, meaning understanding how the system is
structured, how components run in parallel, how to meet the
timing requirement, and how to trade off between different
resources. This is one of the main reasons that make the soft-
ware community reluctant to use FPGAs.

High-level synthesis (HLS) tools such as Vivado HLS
[38] and Altera OpenCL [115] overcome this problem by
supporting software programmers with the feasibility of
compiling standard languages such as C/C++ and higher-
level hardware-oriented languages like systemC into register-
transfer level (RTL) designs. In such a design procedure, HLS
users write C code and design the interface protocol, and the
HLS tools generate the microarchitecture. Apart from gen-
erating the circuit itself, programming frameworks such as
OpenCL [121] provide frameworks for designing programs
that run on heterogeneous platforms (e.g., CPU+FPGA).
These frameworks typically specify variants of standard
programming languages to program the kernels and define
application programming interfaces to control the platforms.
The corresponding software development kits (SDKs) are
now available for both Xilinx FPGAs [137] and Intel FPGAs
[56]. There are also some domain-specific compilers that can
compile SQL queries into circuits or generate the circuit by
setting a couple of parameters. An example is Glacier [86])
which provides a component library and can translate stream-
ing queries into hardware implementations.

3 FPGA-based database systems

How to deploy FPGAs in a system is a very important ques-
tion for system designers. There are many ways to integrate
FPGAs into database systems. The studies in [82,83] cate-
gorize the ways FPGAs can be integrated by either placing
it between the data source and CPU to act as a filter or by
using it as a co-processor to accelerate the workload by off-
loading tasks. Survey [57] presents another classification that
contains three categories including “on-the-side” where the
FPGA is connected to the host using interconnect such as

@ Springer
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Network

(decompress+filter)

Fig.1 FPGA as a bandwidth amplifier

PClIe, “in data path” where the FPGA is placed between the
storage/network and the CPUs, and “co-processor” where
the FPGA is integrated together with the CPU in the same
socket. In this section, we specify three possible database
architectures with FPGA accelerators in a logical view and
explain their shortcomings and advantages.

3.1 Bandwidth amplifier

In a storage-based database system, the bottleneck normally
comes form the data transmission to/from the storage, espe-
cially the HDD. Compared to hundreds of Gbit/s bandwidth
supported by DRAM, the data rate of an HDD device remains
at the 1 Gbit/s level, which limits the system performance.
In these systems, FPGAs can be used to amplify the storage
bandwidth.

As shown in Fig. 1, the FPGA is used as a decompress-
filter between the data source (disks, network, etc.) and the
CPU to improve the effective bandwidth. In this architec-
ture, the compressed data is stored on the disks, and would be
transferred to the FPGA, either directly through the interfaces
like SCSI, SATA, Fibrechannel, or NVMe or indirectly, for
network-attached storage or protocols like NVMe over Infini-
band or Ethernet. In the FPGA, the data is decompressed and
filtered according to some specific conditions, after which
the data is sent to the CPU for further computation. As the
compressed data size is smaller than the original data size,
less data needs to be transferred from storage, improving the
effective storage bandwidth indirectly.

The idea has proven to be successful by commercial
products such as Netezza [41], or a few SmartNIC variants
[80,92]. In Netezza, an FPGA is placed next to the CPU
doing the decompression and aggregation in each node, and
only the data for post-processing is transferred to the CPU.
In a few SmartNIC products, an FPGA sits as a filter for the
network traffic. By applying compression/decompression or
deduplication, they greatly enhance the effective bandwidth
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of an network-to-storage applications. A similar idea is also
studied by prior research such as the ExtraV framework [72],
where the FPGA is integrated into the system in an implicit
way. The FPGA is inserted in the data path between the
storage and the host, performing graph decompression and
filtering. Some research [42,128,139] shows that even with-
out doing the decompression by only performing filtering and
aggregation on the FPGA, one can significantly reduce the
amount of data sent to the CPU, as well as relieve the CPU
computational pressure. This is a good solution for latency-
sensitive applications with data stream processing, where the
FPGA capability for the high throughput and low latency pro-
cessing is demonstrated.

3.2 |0-attached accelerator

Attaching FPGAs as an IO-attached accelerators is another
conventional way to deploy accelerators in the systems, espe-
cially for computational-intensive applications in which the
CPUs are the bottleneck of these systems. In this case, FPGAs
are used as IO devices performing data processing workloads
offloaded by CPUs. Figure 2 illustrates the architecture of
using the FPGA as an IO-attached accelerator. In this archi-
tecture, the FPGA is connected to the CPU through buses
such as PCle, and the FPGA and CPU have their own mem-
ory space. When the FPGA receives tasks from the CPU,
it first copies the data from the host memory to the device
memory. Then the FPGA fetches data from the memory and
writes the results back to the device memory after process-
ing it. After that, the results can be copied back to the host
memory.

This approach is illustrated by both industry and academic
solutions. Kickfire’s MySQL Analytic Appliance [63], for
example, connects the CPU with a PCle-attached FPGA card.
The offloaded queries can be processed in the FPGA with a
large amount of high-bandwidth on-board memory. Xtreme-
data’s dbX [106] offers an in-socket FPGA solution where the
FPGA is pin compatible with the CPU socket. Key database
operations including joins, sorts, groupbys, and aggregations
are accelerated with the FPGA. In recent academic research
on accelerating database operators such as sort [18] and join
[109], the data is placed in the device memory to avoid data
copies from/to the host. This architecture is also present in
GPU solutions such as Kinetica [66], MapD [81], and the
research work in [51]. A drawback of this architecture is that
it requires extra copies (from the host memory to the device
memory and the other way around) which leads to longer
processing latencies. Also the application must be carefully
partitioned, as the accelerator is unable to access memory
at-large. The separate address spaces also affect debug, and
performance tools. Even today, it is often difficult to get an
integrated view of the performance of a GPU-accelerated sys-
tem for example. Placing the whole database in the device

$EeIFPGA| | cPU
Host Memory

Fig.2 FPGA as an IO-attached accelerator

memory such as the design from [43] can reduce the impact of
the extra copies. However, since the device memory has lim-
ited capacity which is much smaller than the host memory, it
limits the size of the database and the size of the applications.

3.3 Co-processor

Recent technology allows FPGA to be deployed in a third
way where the FPGA acts as a co-processor. As shown in
Fig. 3, in this architecture, the FPGA can access the host
memory directly, and the communication between the CPU
and the FPGA is through shared memory. Unlike the 10-
attached deployment, this deployment provides the FPGA
full access to system memory, shared with the CPU, that is
much larger than the device memory. In addition, accessing
the host memory as shared memory can avoid copying the
data from/to the device memory. Recently, there have been
two physical ways to deploy FPGAs as co-processors. The
first way tightly couples the FPGA and the CPU in the same
die or socket, such as Intel Xeon+FPGA platform [48] and
ZYNQ [27]. The FPGA and CPU are connected through Intel
QuickPath Interconnect (QPI) for Intel platforms and Accel-
erator Coherency Port (ACP) for ZYNQ, and the coherency
is handle by the hardware itself. The second method connects
the FPGAs to the host through coherent 10 interfaces such
as IBM Coherent Accelerator Processor Interface (CAPI) or
OpenCAPI [123], which can provide high bandwidth access
to host memory. The coherency between the CPU and the
FPGA is guaranteed by extra hardware proxies. Recently,
Intel also announced a similar off-socket interconnect called
Compute Express Link (CXL) that enables a high-speed
shared-memory based interaction between the CPU, platform
enhancements and workload accelerators.

DoppioDB [114]is ademonstrated system of this architec-
ture from academia. It extends MonetDB with user-defined
functions in FPGAs, along with proposing a Centaur frame-
work [97] that provides software APIs to bridge the gap
between CPUs and FPGAs. Other research work studies
the acceleration of different operators including compression
[104], decompression [35], sort [146] and joins [49], etc.
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Fig.3 FPGA as a co-processor

4 What has held FPGAs back?

In this section, we discuss three main challenges that have
reduced the interest in using FPGAs to accelerate in-memory
database systems in both industry and academia. System
designers and performance analysts might be interested in
Sects. 4.1 and 4.3 where the system performance limitation
and the comparison to GPUs are explained, while soft-
ware developers can focus on the FPGA programmability
in Sect. 4.2. In Sect. 5 we discuss the technology trends that
address the challenges discussed here.

4.1 Significant communication overhead

A first obvious challenge for using any accelerator is commu-
nication overhead. While many FPGA accelerators discussed
in Sect. 6 such as [49,61,125] have demonstrated that FPGAs
can achieve high (multi-) kernel throughput, the overall per-
formance is frequenty-limited by the low bandwidth between
the FPGA and the host memory (or CPU). Most recent accel-
erator designs access the host memory data through PCle
Gen3, which provides a few GB/s bandwidth per channel or
a few tens of GB/s accumulated bandwidth. This bandwidth
is not always large enough compared to that between the CPU
and the main memory in the in-memory database systems,
and the cost of data transmission from/to the FPGA might
introduce significant overhead.

In addition, transferring data from the host to FPGAs that
are not in the same socket/die as the CPU increases latency.
When the FPGA operates in a different address space, latency
is increased even more (a few microseconds is not uncom-
mon). This brings challenges to the accelerator designs,
especially for those have unpredictable memory access pat-
terns such as scatter, gather and even random access. To hide
the long latency, extra resources are required to buffer the
data [88] or to maintain the states of a massive number of
tasks or threads [49].

@ Springer

4.2 Weak programmability

Another big challenge is the difficulty of developing FPGA-
based accelerators and effectively using them, which has two
main reasons.

First, programming an FPGA presents a number of chal-
lenges and tradeoffs that software designers do not typically
have to contend with. We give a few examples. To produce
a highly-tuned piece of software, a software developer occa-
sionally might have to restructure their code to enable the
compiler to do sufficient loop unrolling (and interleaving)
to hide memory latencies. When doing so there is a trade-
off between the number of available (renamed) registers and
the amount of loop unrolling. On the FPGA, the equiva-
lent of loop unrolling is pipelining, but as the pipeline depth
of a circuit is increased, its hardware resources change, but
its operating frequency can also change, making navigating
the design space more complex. Even when we limit our
attention to the design of computational kernels, an aware-
ness of the different types of resources in an FPGA may be
required to make the right tradeoffs. The implementation in
an FPGA is either bound by the number of the computa-
tion resources (LUTSs, DSP, etc.) or the size of the on-FPGA
memory (BRAM, URAM, etc.) or it can be constrained by the
available wiring resources. Which of these limits the design
informs how the design is best transformed. As can be seen
from this example, implementing an optimized FPGA design
typically requires developers to have skills across the stack to
gain performance While nowadays HLS tools can generate
the hardware circuits from software language automatically
by adopting techniques such as loop unrolling and array par-
titioning [26,28], manual intervention to generate efficient
circuits that can meet the timing requirements and sensi-
bly use the hardware resources is still required too often. In
many cases, the problem is outside the computational kernels
themselves. For example, a merge tree that can merge mul-
tiple streams into a sorted stream might require prefetching
and bufferring of data to hide the long latency. In this case,
rewriting the software algorithms to leverage the underlying
hardware or manually optimizing the hardware implementa-
tion based on the HLS output or even redesigning the circuit
is necessary.

Second, generating query plans that can be executed on
an FPGA-accelerated system demands a strong query com-
piler that can understand the underlying hardware, which is
still lacking today. The flipside of having highly specialized
circuits on an FPGA is that (parts of) the FPGA must be
reconfigured when a different set, or a different number of
instances of functions or kernels is needed, and FPGA recon-
figuration times exceed typical context switch penalties in
software by orders of magnitude. In software, the cost of
invoking a different function can usually be ignored. Unlike
the single-operator accelerators, we survey in Sect. 6, in real-
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ity, a query is typically a combination of multiple operators.
The query optimizer component in the query compiler opti-
mizes the query plan by reordering and reorganizing these
operators based on the hardware. While this field has been
well studied in the CPU architecture, it becomes more chal-
lenging when taking FPGAs into account. Because of the
long reconfiguration times, a query plan for a short running
query may look vastly different than an optimized query plan
for a long-running query, even if the queries are the same.
Thus query compilers need to map the query plan to meet
the query execution model in the FPGA. In addition, the
FPGA designs may not be optimized and implemented for
all required functions or operators. Thus, for some special
functions or operators that have not been implemented in
the FPGA or where FPGAs do not provide adequate perfor-
mance gain, the query compiler should drive the query plan
back to the pure CPU execution model. Without a shared
address space, and a common method to access the data (e.g.,
the ability to lock memory), a requirement to flexibly move
components of a query between the CPU and accelerators is
significantly complicated.

4.3 Accelerator alternative: GPU

In recent years, the GPU has become the default accelerator
for database systems. There are many GPU-based database
systems from both industry and academia such as Kinet-
ica/GPUDB [66,143], MapD [81], Ocelot [53], OmniDB
[147], and GPUTx [52]. A comprehensive survey [15] sum-
marizes the key approaches to using GPUs to accelerate
database systems and presents the challenges.

Typically, GPUs achieve higher throughput performance
while FPGAs gain better power-efficiency [23]. The GPU has
a very large number of lightweight cores with fewer control
requirements and provides a high degree of data-level par-
allelism. This is an important feature to accelerate database
applications since many database operators are required to
perform the same instructions on a large amount of data.
Another important feature is that the GPU has large capac-
ity high-bandwidth on-device memory that is typically much
larger than the host main memory bandwidth and the CPU-
GPU interface bandwidth. Such large local memory allows
GPUs to keep a large block of hot data and can reduce the
communication overhead with the host, especially for appli-
cations that need to touch the memory multiple times such as
the partitioning sort [39] that achieves 28 GB/s throughput
on a four-GPU POWER9 node.

While FPGAs cannot beat the throughput of GPUs in some
database applications, the result might change in power-
constrained scenarios. One of the reasons is that the data flow
design on FPGAs can avoid moving data between memories.
A study from Baidu [96] shows that the Xilinx KU115 FPGA
is 4x more power-efficient than the GTX Titan GPU when

running the sort benchmark. In addition, the customizable
memory controllers and processing engines in FPGAs allow
FPGA s to handle complex data types such as variable-length
strings and latency-sensitive applications such as network
processing that GPUs are not good at (we discuss more detail
in Sect. 7.3).

However, when considering programmability and the
availability of key libraries, FPGAs still have a long way
to go compared to GPUs, as mentioned in Sect. 4.2. Conse-
quently, engineers might prefer GPUs which can also provide
high throughput but are much easier to program, debug, and
tune for performance. In other words, GPUs have raised the
bar for using FPGAs s to accelerate database applications. For-
tunately, the technology trends in Sect. 5 show that some of
these barriers are being addressed, and thus it is worth it to
have another look ar FPGAs for in-memory database accel-
eration.

5 Technology trends

In recent years, various new technologies have changed the
landscape of system architecture. In this section, we study
multiple technology trends including database system trends,
system interconnect trends, FPGA development trends, and
FPGA usability trends, and we introduce a system model that
combines these technologies. We believe that these technol-
ogy trends can help system designers to design new database
system architectures, and help software developers to start
using FPGAs.

5.1 Database system trends

Databases traditionally were located on HDDs, but recently
the data is often held in-memory or on NVM storage.
This allows for two orders of magnitude more bandwidth
between the CPU and stored database compared to the
traditional solution. Some of the database operators now
become computation-bound in a pure CPU architecture,
which demands new and strong processors such as GPUs
and FPGAs.

However, the downside is that acceleration, or the offload-
ing of queries, becomes more difficult due to the low
FPGA-CPU interconnect bandwidth. When using FPGAs as
[0-attached accelerator, typically PCI Express (PCle) Gen
3 is used as an IO interconnect. It provides limited band-
width compared to DRAM over DDRx, and may suffer
resource contention when sharing PCle resources between
FPGA and NVM over NVMe, which may impact the per-
formance. While PCle Gen 4 doubles the bandwidth, it does
not solve the communication protocol limitation that using
FPGA s as [10-attached accelerators requires to copy the data
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between the host memory and the device memory, resulting
in extra data transmission overhead and long latency.

These limitations result in a high cost of data movement
between the database and the FPGA. This limits the appli-
cability of FPGAs in the data center. In order to accelerate
databases with FPGAs (again), the interconnect has to over-
come these limitations in order to become a viable alternative.

5.2 System interconnect trends

The bandwidth of system interconnects plateaued for quite a
few years, after the introduction of PCle Gen3. More recently
the pace has increased, the PCI Express Consortium released
the specification of Gen 4 in 2017 and Gen 5 in 2019, respec-
tively [100], and is expected to release the specification of
Gen 6in 2021 [99]. Because of the long wait for anew genera-
tion, other initiatives had started, proposing new interconnect
standards to solve the bandwidth bottlenecks mentioned in
Sect. 4.

5.2.1 Increase in system interconnect bandwidth

Figure 4 shows collected data regarding DRAM, network
and storage bandwidth in 2019 [70] and predicts the future
until 2022 (indicated by the diamond-shaped markers). The
bandwidth of PCle was added to act as a proxy for intercon-
nect bandwidth. For each generation of the PCle standard,
the bandwidth of sixteen lanes is plotted, since this is typ-
ically the maximum number of lanes per PCle device. The
DRAM data interface is inherently uni-directional and sev-
eral cycles are required to turn the channel around. A memory
controller takes care of this by combining reads and writes
to limit the overhead cycles spent in configuring the channel.
Therefore, DRAM bandwidth should be interpreted as either
a read or write channel with the plotted bandwidth, while
attached devices such as network and storage typically have
a bi-directional link.

The slope of each of the fitted lines is important here.
Clearly, both network and storage bandwidths are increasing
at a much faster rate (steeper slope) than DRAM and PCle.
The network and storage slopes are similar and double every
18 months. PCIe doubles every 48 months, while it takes
DRAM 84 months to double in bandwidth. A server typically
contains one or two network interfaces, but often contains a
dozen or more storage devices, lifting the blue line by an order
of magnitude. Thus, a shift in balance is expected for future
systems where DRAM, interconnect, network and storage
bandwidth are about the same.

The fitted straight lines for each of the four data sets shown
in Fig. 4 indicate exponential behavior. While it might look
like accelerators, such as GPUs and FPGAs, will have to com-
pete for interconnect bandwidth with network and storage,
one option is to scale memory and interconnect bandwidth
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Fig. 4 Bandwidth trends at device-level. Data points were approxi-
mated from the referenced figures in order to add the PCI Express
standard bandwidth and represent all bandwidths in GB/s [70,88]

accordingly. While scaling is the trend, as becomes appar-
ent from the next paragraph, and works in the short-term, it
does not solve the fundamental problem of limited DRAM
bandwidth improvements.

The reason that DRAM bandwidth is not increasing at
a similar pace is twofold. To increase bandwidth, either
the number of channels or the channel frequency must be
increased. However, each solution has significant implica-
tions. Every additional channel requires a large number of
pins (order of 100) on the processor package (assuming an
integrated memory controller) that increases chip area cost.
Increasing channel frequency requires expensive logic to
solve signal integrity problems at the cost of area, and more
aggressive channel termination mechanisms at the cost of
power consumption [30,47]. If the bandwidth of the inter-
connect is increased to the same level as DRAM, the same
problems that DRAM faces will be faced by attached devices.

5.2.2 Shared memory and coherency

Solely increasing bandwidth will not solve all of our prob-
lems, because the traditional I0-attached model will become
abottleneck. Currently, the host processor has a shared mem-
ory space across its cores with coherent caches. Attached
devices such as FPGAs, GPUs, network and storage con-
trollers are memory-mapped and use a DMA to transfer data
between local and system memory across an interconnect
such as PCle. Attached devices can not see the entire system
memory, but only a part of it. Communication between the
host processor and attached devices requires an inefficient
software stack in comparison to the communication scheme
between CPU cores using shared memory. Especially when
DRAM memory bandwidth becomes a constraint, requir-
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ing extra memory-to-memory copies to move data from one
address space to another is cumbersome.

This forced the industry to push for coherency and shared
memory across CPU cores and attached devices. This way,
accelerators act as peers to the processor cores. The Cell
Broadband Engine architecture [59] introduced coherent
shared system memory access for its Synergistic Processor
Element accelerators. A coherent interface between a CPU
and GPU has also been adopted by AMD several years ago
with their Accelerated Processing Unit (APU) device family
[29]. Another example is the Cache Coherent Interconnect
for Accelerators (CCIX) [13] which builds on top of PCle
and extends the coherency domain of the processor to het-
erogeneous accelerators such as FPGAs. OpenCAPI is also
a new interconnect standard that integrates coherency and
shared memory in their specification. This avoids having to
copy data in main memory, and coherency improves FPGA
programmability.

With shared memory, the system allows FPGAs to read
only a small portion of the data from the host memory without
copying the whole block of data to the device memory. This
can reduce the total amount of data transmission if the appli-
cation has a large number of small requests. With coherency
supported by hardware, programmers can save effort needed
to keep the data coherent through software means. In addi-
tion, the shared, coherent address space provided by the
coherent interface allows programmers to locally transform
a piece of code on the CPU to run on the FPGA, without
having to understand the full structure of the program and
without having to restructure all references to be local to
the FPGA. Especially for production code that tends to be
full of statements that are very infrequently executed, the
ability to focus on performance-critical code without having
to restructure everything is essential. The drawback of sup-
porting shared memory and coherency by hardware is that
it requires extra hardware resources and can introduce addi-
tional latency. Thus, for performance reasons, a developer
might need to optimize the memory controller for special
memory access patterns.

5.2.3 Concluding remarks

As discussed in this section, both identified bottlenecks will
soon belong to the past. This opens the door for FPGA accel-
eration again. FPGAs connected using a high bandwidth and
low latency interconnect, and ease of programming due to the
shared memory programming model, make FPGAs attractive
again for database acceleration.

5.3 HBMin FPGAs

As shown in Fig. 4, DRAM bandwidth is not increasing at the
same rate as attached devices. Even though the latest DDR4

can provide 25 GB/s bandwidth per Dual In-line Memory
Module (DIMM), for high-bandwidth applications, a dozen
or more modules are required. This leads to a high price to
pay in Printed circuit board (PCB) complexity and power
consumption.

The new high-bandwidth memory technologies provide
potential solutions, one of which is high-bandwidth mem-
ory (HBM). HBM is a specification for 3D-stacked DRAM.
HBM has a smaller form factor compared to DDR4 and
GDDRS, while providing more bandwidth and lower power
consumption [65]. Because HBM is packaged with the
FPGA, it circumvents the use of a PCB to connect to DRAM.
The resulting package is capable of multi-terabit per second
bandwidth, with a raw latency similar to DDR4. This pro-
vides system designers with a significant improvement in
bandwidth. The latest generation of Xilinx FPGAs supports
HBM within the same package [138], providing FPGAs with
close to a half TB/s scale bandwidth (an order of magnitude
more bandwidth than the bandwidth to typical on-accelerator
DRAM). This makes FPGAs also applicable to data intensive
workloads.

Due to the area limitation and the higher cost of stacked
DRAMs, HBM integrated with the FPGA can not match the
capacity of conventional DRAM. Integration with FPGAs
results in a competitive advantage for workloads that require,
for example, multiple passes over the same data at high band-
width. Various examples of multi-pass database queries have
been studied in this paper. An example is the sort algorithm
presented in Sect. 6.3.

5.4 System with accumulated high bandwidth

Today it is possible to have systems with large storage and
accelerator bandwidth. Accelerated database systems can
leverage these types of heterogeneous systems. A feasible
conceptual system model is depicted in Fig. 5, which is based
on the IBM AC922 HPC server [55,89]. Note that the num-
bers shown in Fig. 5 are peak numbers.

This system consists of two nodes that connect to each
other via a Symmetric multiprocessing (SMP) interface with
64 GB/s bandwidth in each direction. Each node contains
one POWERY CPU and two FPGAs. Each POWER9 CPU
has 170 GB/s bandwidth to DDR4 memory in the host side
and supports up to two FPGAs. Each FPGA is connected
at 100 GB/s rate through two OpenCAPI channels, meaning
in total 200 GB/s accelerator bandwidth is provided in each
node. The FPGA fabric would be the latest model VU37P
[142], where 8 GB HBM is integrated that supports 460 GB/s
bandwidth. Each FPGA would have two OpenCAPI inter-
faces to the I/O that can be used to attach the NVMe storage.
In total, eight of these interfaces in a two-node system support
400 GB/s peak storage I/O bandwidth. FPGAs can be con-
nected to each other via 100 GB/s high-end interfaces. This
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Fig. 5 Proposed FPGA-intensive configuration of POWERY system
(after [89])

example demonstrates that a system with all of the memory
bandwidth being available to the accelerators is feasible.

5.5 Programmability trends

Even though the FPGA programmability is a serious and
historical challenge that reduces the interest in accelerators
for databases from developers, the FPGA community has
made great progress and can be expected to keep the current
momentum. The number of HLS tools from industry and
academia is increasing, and examples include Vivado HLS
[38], Altera OpenCL [115], Bluespec System Verilog [93],
LegUp [17], DWARYV [90], and Bambu [102], etc.

The first step that allowed compiling sequential code
in software programming language such as C/C++ into
hardware circuits by inserting HLS pragmas and adopting
techniques such as loop unrolling, array partitioning, and
pipeline mapping [26,28] have proved a milestone contri-
bution. Now these tools are leveraging new techniques to
further simplify the programming and enhance the perfor-
mance. One recent trend is that HLS tools are integrating
machine learning techniques to automatically set param-
eters for performance and controlling resource utilization
[75,120,144]. In addition, these techniques can reduce the
number of required HLS pragmas which further simplifies
FPGA programming in HLS. Another recent change is the
support of OpenMP [16,117,134]. OpenMP is one of the
most popular languages for parallel programming for shared
memory architecture. The support of OpenMP in HLS pro-
vides the potential of compiling parallel programs into FPGA
accelerators that support shared memory. Because HLS is a
big topic study by itself, we can not cover all the aspects. A
recent survey [91] comprehensively studies the current HLS
techniques and discusses the trends.
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The emerging programming framework is another impor-
tant achievement that contributes to the FPGA programma-
bility, especially for hardware designers. These frameworks
help in two different ways. First, such a framework can gen-
erate the memory interface for the designers with optimized
memory controllers. An example is the SNAP [95] frame-
work for CAPI/OpenCAPI which can take care of the low
level communication protocol with the interface and abstract
a simple burst mode data request. Another example is the
Fletcher [101] framework which can generate interfaces for
the Apache Arrow [4] in-memory tabular data format. With
these program frameworks, the designer can save time from
interface design and focus on the kernel design and perfor-
mance tuning. Another benefit comes from the support of
APIs that can manage the accelerators. These APIs typically
wrap up the host accelerator management jobs and commu-
nication jobs into a package of software functions. The user
only needs to choose and call the right APIs to access the
hardware accelerators, which further improves ease of use.

Recently, the above techniques are being applied to
the database domain. The prior study in [24,25] gives an
overview of how software infrastructure can enable FPGA
acceleration in the data center, where the two main enablers
are the accelerator generation and the accelerator manage-
ment. Other work studies SQL-to-hardware compilation. An
example is Glacier [86], which can map streaming SQL
queries into hardware circuits on FPGAs. Other studies work
on the acceleration on database operators such as decom-
pression [73], sort [6], and partitioning [133]. As mentioned
before, the frameworks can support FPGA acceleration for
databases in two ways, managing the hardware and provide
APIs, the Centaur framework [97] is an example of leverag-
ing these ideas for the database domain.

6 Acceleration of query operators

Even though there is not yet a commercial FPGA-accelerated
in-memory database, a substantial body of prior work on
accelerating database operators or components is pushing
progress in this direction. In this section, we summarize
the prior work on database operator acceleration including
decompression, aggregation, arithmetic, sorts, joins, and oth-
ers. An overview of the prior work is summarized in Table 2,
where FPGA designers and performance analysts can have
a quick view on the prior work. We also discuss the poten-
tial improvement for operator acceleration, which might be
interesting for hardware designers. Most of this work shows
that FPGA implementations of the kernels are efficient to the
point where performance is limited by the bandwidth from
host memory to the FPGAs. In most conventional systems
this bandwidth is limited most by the PCle connection to the
FPGA.
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Frequency
311 MHz

FPGA
Virtex-7

Data source

FPGA
FPGA
FPGA
FPGA
FPGA

Throughput
77.2 GB/s

Bandwidth

Interface

References

Methods
Merge tree

Table 2 continued
Operator category
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99 MHz

Virtex-7

24.6 GB/s
9.54 GB/s
26.72 GB/s
126 GB/s
7.9 GB/s

Merge tree

200 MHz
208 MHz
506 MHz
250 MHz
200 MHz
100 MHz
200 MHz
150 MHz
206 MHz
100 MHz
200 MHz

Virtex-7

Vu3p

Merge tree

Merge tree

Virtex-7

Merge tree

Virtex-7

Off-chip

10 GB/s

DDR3

—_— e e e e e

Merge tree

SMJ
SMJ

Virtex-6

Off-chip

6.45 GB/s
0.69 GB/s

115 GB/s 4 GB/s

3.2 GB/s
10 GB/s

DDRx intra-FPGA

DDR3

[18]
[20]
[110]
[49]
[50]

[21]

Join

Zynq

Off-chip

Virtex-7

Oft-chip

DDR3

Hash join

Virtex-6

Off-chip
FPGA

12 GB/s

76.8 GB/s
3 GB/s

DDR3

Hash join

Stratix IV
Zynq

18M rows/s

Hash join

Oft-chip
Host

DDR3
QPI

PHJ and Groupby

Partitioning

Partitioning

Stratix V

3.83 GB/s

6.5 GB/s

[61]

Operator: Combined a combination of multiple streaming operators, SN sorting network, F M S FIFO merge sorter, SM J sort-merge join, P H J partitioning hash join.

Data Source: F PG A the data is generated by FPGAs or stored in FPGA memory, of f — chip the data is stored in the off-chip memory in the accelerator side, host the data is stored in the host

memory side

6.1 Decompression

Decompression is widely used in database applications to
save storage and reduce the bandwidth requirement. The
decompressor works as a translator, reading a compressed
stream consisting of tokens, translating the tokens into
data itself, and outputting a decompressed stream. There
are many different (de)compression algorithms. Since in
database applications we do not want to lose any data, we
consider lossless (de)compression algorithms in this sur-
vey paper. The most popular two types of (de)compression
in database systems are the Run-Length Encoding (RLE)
[111] and the Lempel-Ziv (LZ) series. This paper focuses
on decompression algorithms instead of compression algo-
rithms, even though there are many studies [1,11,40] on
compression acceleration. An important reason is that in
database systems, the common case is to compress the data
once and to decompress it more frequently.

6.1.1 RLE

RLE is a simple form of a compression algorithm that records
a token with a single value and a counter indicating how
often the value is repeated instead of the values themselves.
For example, a data sequence “AAAAAAAABBBC” after RLE
compression is “8A3B1C”. In this case, instead of storing
12 bytes of raw data, we store 6 bytes, or 3 tokens with each
token in fixed size (1 byte counter and 1 byte value). The
RLE decompression works in reverse. The RLE decompres-
sor reads a fixed size token, translates it into a variable-length
byte sequence, and attaches this sequence to the decom-
pressed data buffer built from the previous tokens.

The method proposed in [33] shows that their FPGA-based
RLE implementation can help reduce the FPGA reconfigu-
ration time and achieves a throughput of 800 MB/s which
is limited by the Internal Configuration Access Port (ICAP)
bandwidth. It is not difficult to parallelize this translation pro-
cedure. As the token has a fixed size, the decompressor can
explicitly find out where a token starts without the acknowl-
edgement of the previous token, and multiple tokens can be
translated in parallel. The write address of each parallel pro-
cessed token can be provided in the same cycle by adopting
prefix-sum on the repeating counter. Thus, we can imagine
that a multi-engine version of this implementation can suffi-
ciently consume the latest interface bandwidth.

6.1.2 LZ77-based

Instead of working on the word level, LZ77 [149] compres-
sion algorithms leverage repetition on a byte sequence level.
A repeated byte sequence is replaced by a back reference
that indicates where the previous sequence occurs and how
long itis. For those sequences without duplicates, the original
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data is stored. Thus, a compressed file consists of a sequence
of tokens including copy tokens (output the back reference)
and literal tokens (output the data itself). During the com-
pression, a history buffer is required to store the most recent
data for finding a matched sequence. Similarly, maintaining
this history buffer is a prerequisite for copy tokens to copy
context from during the decompression. Typically, the size of
history buffer is on the order of tens of KB level and depends
on the algorithms and their settings.

Decompression translates these two types of tokens into
the original data. For literal tokens, the decompressor selects
the original data stored in the tokens and writes it into the his-
tory buffer. For copy tokens, the back reference data including
the copied position and copied length is extracted, followed
by a read from the history buffer and a write to the history
buffer. There are many extensions to this algorithm, e.g., LZ4
[22], LZSS [122], Gzip2 [32] and Snappy [44].

In an FPGA, the history buffers can be implemented using
shift registers [68] or BRAMs [54], and the token decoding
and the BRAM read/write can be placed in different pipeline
stages. While pipeline design can ensure continuous process-
ing of the compressed data, the throughput declines when
data dependencies occur. The LZ4 decompression proposed
in [77] uses separate hardware paths for sequence process-
ing and repeated byte copying/placement, so that the literal
tokens can always be executed since they contain the origi-
nal data and are independent of the other tokens. Separating
the paths ensures these tokens will not be stalled by the
copy tokens. A similar two-path method for LZ77-based
decompression is shown in [46], where a slow-path routine is
proposed to handle large literal tokens and long offset copy
tokens, while a fast-path routine is adopted for the remain-
ing cases. This method is further demonstrated at the system
level in [45] to hide the latency of slow operations and avoid
stalls in the pipeline.

Even though a single-engine FPGA implementation can
outperform a CPU core, it is not easy to exceed a throughput
of one token per cycle per engine. To saturate the bandwidth
from a high-bandwidth connection, we can either implement
multiple decompressor engines in an FPGA or implement a
strong engine that can process multiple tokens per cycle. A
challenge of implementing multiple engines is the require-
ment of a powerful scheduler that can manage tens of engines,
which also drains resources and might limit the frequency.
In addition, the implementation of the LZ77-based decom-
pressor in FPGAs takes much more memory resources [141],
especially the BRAMs, limiting the number of engines we
can place in a single FPGA. Apart from that, the unpre-
dictable block boundaries in a compressed file also bring
challenges to decompressing multiple blocks in parallel [58].
As an alternative, researchers also look for intra-block paral-

2 Gzip is an implementation of DEFLATE [62].

lelism. However, the demands of processing multiple tokens
in parallel pose challenges including handling the various
token sizes, resolving the data dependencies and BRAM
bank conflicts. A parallel variable length decoding technique
is proposed in [2] by exploring all possibilities of bit spill.
The correct decoded streams among all the possibilities are
selected in a pipelined fashion when all the possible bit spills
are calculated and the previous portion is correctly decoded.
A solution to the BRAM bank conflict problem is presented
in [105] by duplicating the history buffer, where the pro-
posed Snappy decompressor can process two tokens every
cycle with throughput of 1.96 GB/s. However, this method
can only process up to two tokens per cycle and is not easy
to scale up to process more tokens in parallel due to the
resource duplication requirement. To reduce the impact of
data dependencies during the execution of tokens, Sitaridi et
al. [116] proposed a multiround execution method that exe-
cutes all tokens immediately and recycles those copy tokens
that return with invalid data. The method proposed in [34]
improves this method to adopt the parallel array structure in
FPGAs by refining the tokens into BRAM commands which
achieve an output throughput of 5 GB/s.

For LZ-77-based decompression accelerators that need a
history buffer (e.g., 64 KB history for Snappy), a light engine
that processes one token per cycle would be BRAM lim-
ited, while a strong engine that processes multiple token per
cycle might be LUT limited. Even the design [34] with the
best throughput cited in this paper is not in perfect balance
between LUTs and BRAMSs for the FPGA it uses, and there
is room for improvement.

6.1.3 Dictionary-based

Dictionary-based compression is another commonly used
class of compression algorithms in database systems, the
popular ones of which are the LZ78 [150] and its extension
LZW [135]. This class of compression algorithms maintains
a dictionary and encodes a sequence into tokens that consist
of a reference to the dictionary and the first non-matched
symbol. Building the dictionary lasts for the whole compres-
sion. When the longest string matches the current dictionary,
the next character in the sequence is appended to this string to
construct a new dictionary record. It is not necessary to store
the dictionary in the compressed file. Instead, the dictionary
is reconstructed during decompression.

A challenge to designing efficient decompression in
FPGAs is to handle the variety of string length in the dictio-
nary. When adopting fixed-width dictionaries, while setting a
large width for the string wastes a lot of memory space, using
a small string width suffers from throughput decrease since
multiple small entries must be inspected to find the match.
Thus, a good design for these decompression algorithms
demands explicit dictionary mechanisms that can efficiently
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make use of the FPGA’s capability of bit-level processing. A
two-stage hardware decompressor is proposed in [74] which
combines a parallel dictionary LZW with an Adaptive Huff-
man algorithm in a VLSI, achieving 0.5 GB/s data rate for
decompression. The study in [148] presents an efficient LZW
by storing the variable-length strings in a pointer table and
a character table separately. The implementation of a single
instance of this algorithm consumes 13 18 Kb BRAMs and
307 LUTs in an XC7VX485T-2 FPGA, achieving 300 MHz
frequency and 280 MB/s throughput.

6.1.4 Discussion

Memory access patterns Table 3 compares the host mem-
ory access patterns of operators discussed in this survey,
assuming that the source data is initially stored in the host
memory. The decompression has a “sequential” memory
access pattern since it has streaming input and streaming
output. Typically the decompressor outputs more data then
the input.

Bandwidth efficiency As we mentioned before, the RLE algo-
rithms can easily achieve high throughput that can meet the
interface bandwidth bound, but the LZ77 and LZ78 series are
challenging due to the large number of data dependencies.
According to our summary, most of the prior work can not
reach the latest accelerator interface bandwidths, but some
designs [34] can. This depends on many factors including the
algorithm itself, hardware design and its trade-offs, including
LUT-to-BRAM balance, and FPGA platforms. For a multi-
engine implementation, the throughput is defined by the
product of throughput per engine and the number of engines.
The challenge is that in an FPGA, we can either have strong
decompression engines but fewer of them or more less pow-
erful engines. Thus, a good trade-off during design time is
indispensable to match the accelerator interface bandwidth.

6.2 Streaming operators
6.2.1 Streaming operators

Streaming operators are database operations where data
arrives and can be processed in a continuous flow. These
operators might belong to different categories of database
operators such as selections [85,107,124,125,139], projec-
tions [85,107,124,126], aggregations (sum, max, min, etc.)
[31,84,86,97], and regular expression matching [113,131].
We place them together because they typically act as pre-
processing or post-processing in most of the queries and have
similar memory access patterns.

Projections and selections are filtering operations that only
output the fields or records that match the conditions, while
the aggregations are performing arithmetic on all the inputs.
Due to the pipeline style design in FPGAs, these opera-
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tions can be performed in a stream processing model in
the FPGA implementation, at high bandwidth and with low
overall latency. A multi-engine design of these operators, by
adopting parallelism at different levels, can easily achieve
throughput that may exceed the accelerator interface band-
width and even get close to the host memory bandwidth.
Regular expression matching can be used to find and replace
patterns in strings in databases, such as “REGEXP_LIKE”
in SQL. The performance of regular expression matching
is bounded by the computation in software due to the low
processing rate of software deterministic finite automaton.
However, it can be mapped to custom state machines in the
FPGA and gain performance from a pipelined design.

Even though the implementation of these kernels in
FPGAs is trivial, acceleration of the combination of these
operators and other operators is non-trivial. Typically, a query
is executed according to a query plan that consists of sev-
eral operators. In software, the operator order is decided and
optimized by the query compiler and the query optimizer.
Choosing an order of these operators can reduce the amount
of data running in the pipeline and avoid unnecessary loads
and stores of the intermediate results. Conversely, an irra-
tional query plan can cause extra data accesses and waste
the communication resources. Similarly, to achieve high
throughput, the consideration of combining different FPGA-
implemented operators in areasonable order is indispensable.
There are many methodologies to optimize the query order, a
basic one of which is filtering data as early as possible. This
idea has been reported in many publications. For instance,
the implementation in [124] executes projections and selec-
tions before sorting. The compiler proposed in [85] supports
combinations of selections, projections, arithmetic compu-
tation, and unions. The method from [107] allows joins after
the selection and the projection.

6.2.2 Discussion

Memory access pattern The streaming operators have stream-
ing reads and streaming write or can only write a single value
(such as sum). They typically produce less output data com-
pared to the input, especially for aggregation operators that
perform the arithmetic. In other words, the streaming opera-
tors have sequential access patterns to the host memory.

Bandwidth efficiency A single engine of the streaming oper-
ators can easily reach GB/s or even tens of GB/s magnitude
throughput. For example, the sum operation proposed in [31]
shows a throughput of 1.13 GB/s per engine, which is lim-
ited by the connection bandwidth bound of their PCle x4
Gen 2 connected platform. A combination of decompres-
sion, selection, and projection presented in [124] reports a
kernel processing rate of 19 million rows/s or 7.43 GB/s
(amplified by decompression) which exceeds the bandwidth
of PCle used in their reported platform. Since these opera-
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tors do not require resource-intensive functions in FPGAs,
an instance of multiple engines can be easily implemented
in a single FPGA to achieve throughput that is close to the
interface bandwidth. Although multiple engines need to read
from and write to different streams, this won’t increase the
data access control since the streams are independent. Thus,
a theoretically achievable throughput upper bound of these
operators is the accelerator interface bandwidth.

6.3 Sort

Sorting is a frequently used operation in database systems
for ordering records. It is can be used in ORDER BY in SQL
and in a more complex query to improve the performance.
Large scale sort benchmarks are considered key metrics for
database performance.

In a CPU-based sort, the throughput is limited by the
CPU computation capacity, as well as the communication
between computational nodes. For the record holder for a
large multi-node sort the per node performance is about
2 GB/s [94]. Single-node sort throughput without the com-
munication overhead may be somewhat larger, but we believe
that the single-node performance would be within the same
order of magnitude. As network speed increases rapidly, and
storage is replaced with NVMe devices where storage band-
width grows rapidly, sort with CPUs is not going to keep
up. Therefore, accelerators are now required for this oper-
ation that historically was bandwidth-bound. To reach this
goal, many hardware algorithms have been presented using
FPGAs to improve performance. In this section, we give an
overview of the prior FPGA-based sort algorithms.

6.3.1 Sorting network

A sorting network is a high throughput parallel sort that can
sort N inputs at the same time. The compare-and-swap unit is
the core element in a sorting network. A compare-and-swap
unit compares two inputs and arranges them into a selected
order (either ascending or descending), guaranteed by swap-
ping them if they are not in the desired order. Using a set
of these compare-and-swap units and arranging them in a
specific order, we can sort multiple inputs in a desired order.

A simple way to generate a sorting network is based on
the bubble sort or insertion sort algorithm. Thus, these types
of sorting networks require O (N?) compare-and-swap units
and O(N?) compare stages to sort N inputs. More efficient
methods to construct the network include the bitonic sort-
ing network and the odd-even sorting network [12]. Figure 6
shows the architecture of the bitonic sorting network (Fig. 6a)
and the odd-even sorting network (Fig. 6b) with 8 inputs. We
can further pipeline the designs by inserting registers after
each stage. Knowing that it takes one cycle for a signal to
cross one stage in a pipeline design, both sorting networks
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Fig.6 Architecture of sorting network

take O (log” N) cycles to sort N inputs, while the space com-
plexity is O (N log? N).

A sorting network can sort multiple data sets concurrently
by keeping different data sets in different stages. An N-input
sorting network is able to process N elements per FPGA
cycle. The sorting network proposed in [87] outputs 8 32-
bit elements per cycle at 267 MHz, meaning a throughput
of 7.9 GB/s. It is not difficult to increase the throughput
by scaling up the sorting network for a larger input num-
ber. A 64-input sorting network at 220 MHz based on the
implementation in [87] can consume data at 52.45 GB/s,
approximately equivalent to the bandwidth of two OpenCAPI
channels (51.2 GB/s). However, the required reconfigurable
resources increase significantly with the increase in the num-
ber of inputs. Thus, a sorting network is generally used for the
early stages of a larger sort to generate small sorted streams
that can be used as input for the FIFO merge sort or merge
tree in the later stages.

6.3.2 FIFO merge sorter

The first-in first-out FIFO merge sorter is a sorter that can
merge two pre-sorted streams into a large one. The key ele-
ment is the select-value unit. It selects and outputs the smaller
(or larger) value of two input streams. The basic FIFO merge
sorter is illustrated in Fig. 7a. Both inputs are read from two
separate FIFOs that store the pre-sorted streams, and a larger
FIFO is connected to the output of the select-value unit. In
[78], an unbalanced FIFO merge sorter is proposed which
shares the output FIFO with one of the input FIFOs to save
FIFO-resources. The proposed architecture is able to sort
32K 32-bitelements at 166 MHz, consuming 30 36 Kb blocks
(30 out of 132 from a Virtex-5 FPGA).

A drawback of the FIFO merge sorter is that it takes many
passes to merge from small streams to the final sorted stream
since it only reduces the number of streams into half each
pass, especially when handling large data sets that have to
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store into host memory. Sorting a data set with 1024 small
pre-sorted streams requires 10 passes, which means the data
needs to travel between the memory and the FPGA multiple
times. In this case, the overhead of the data transmission dom-
inates, and the overall performance is limited by the interface
bandwidth. This problem can be solved by cascading multi-
ple FIFO merge sorters. As shown in Fig. 7b, FIFO merge
sorters with smaller FIFOs are placed in the earlier stages,
while those with larger FIFOs are inserted at later stages. An
improved method is presented in [69] where the proposed
cascading FIFO merge sort can reduce the pipeline filling
time and emptying time by starting to process the merge as
long as the first element of the second FIFO has arrived. This
implementation can sort 344 KB of data at a throughput of
2 GB/s with a clock frequency of 252 MHz. However, in the
cascading FIFO merge sorter, the problem size is limited by
the FPGA internal memory size, since it needs to store all
the intermediate results of each merge sort stage.

6.3.3 Merge tree

For data sets that do not fit in the internal FPGA memory, we
need merge trees. The merge tree can merge several sorted
streams into one larger stream in one pass. As shown in Fig. 8,
a merge tree is constructed by a set of select-value units
arranged in multiple levels. In each level, the smaller ele-
ments between two streams are selected which will be sent to
the next level to select the smallest among these four streams.
This process is iterated until the largest element among all
the input streams is selected. FIFOs are inserted between the
leaves of the tree and the external memory to hide the mem-
ory access latency. To pipeline the whole merge and reduce
the back pressure complexity from the root, small FIFOs are
placed between the adjacent levels. An M-input merge tree
merges N streams into % streams each pass. Compared to
a FIFO merge sorter, it reduces the number of host memory
accesses from log, N to log,, N. The merge tree implemen-
tation in [69] provides a throughput of 1 GB/s to sort 4.39

? output

| |

t t t t

[ o] e | [ e ] [ ww ]

Stream 1 Stream 2 Stream n

Fig.8 Architecture of merge tree

million 64-bit elements. Partial reconfiguration was used to
configure a three-run sorter (one run of the FIFO merge sorter
and two runs of the tree merge sorter) that can handle 3.58 GB
of data and achieve an overall throughput of 667 MB/s.

For a multi-pass merge sort, even though we can place
multiple merge trees to increase the system throughput, the
final pass has to guarantee all the remaining streams are com-
bined into a single sorted stream. This demands a stronger
merge tree that can output multiple elements per cycle. The
study in [18] presents a multi-element merge unit. This unit
compares N elements from the selected stream with N feed-
back elements produced in the previous cycle and selects the
smallest N ones as output, while the remaining N elements
will be fed back for the next cycle comparison. The proposed
merge tree achieves a throughput of 8.7 GB/s for a two-pass
merging which reaches 89% utilization of the interface band-
width.

A. Srivastava et al. [119] proposed a multi-output merge
tree architecture by adopting increasing-in-size bitonic
merge units (BMUs). In this architecture, the BMU in the
leaf level compares the first element from both input streams
and outputs one element per cycle. The next level BMU com-
pares the first two elements from both streams and outputs
two elements per cycle. The size of the BMU doubles from
one level to the next level until it reaches the root. As a small
BMU is much more resource efficient than a large one, as it
saves hardware resources in the FPGA, bringing high scala-
bility. A drawback of this method is that the throughput for
skewed data drops. A similar architecture [118] where the
merge tree is able to output 32 64-bit elements in one cycle
reports a throughput of 24.6 GB/s. However, this paper uses
a wrapper to produce the input data instead of reading from
the external memory, where the control of feeding 32 input
streams would consume internal memory of the FPGA as
well as potentially reducing the clock frequency. A clock fre-
quency optimization method is illustrated in [79] by deeply
pipelining the multi-element merge unit. An instance of this
method with 32 outputs per cycle operates at 311 MHz. The
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method proposed in [108] further raises the frequency of the
merge tree to 500 MHz by breaking the feedback loop.

Based on the observation that it might consume all the
BRAM resources in an FPGA to hide the interconnect latency
in a wide merge tree, an alternative is presented [145] of
an “odd-even” merge sorter combined with a multi-stream
interface [88] that can deal with the data skew and supply a
stable throughput for any data distribution. The multi-stream
interface is constructed as a two-level buffer using both the
BRAM and URAM resources. The evaluation shows that
the “even-odd” merge sorter kernel can merge 32 streams,
providing a throughput of 26.72 GB/s. However, even with
the two-level buffer solution, the buffer and the associate
logic still require a majority of the FPGA resources.

Even though speedups are gained from the FPGA accel-
eration, we have to note that the maximum throughput is not
going to exceed the interface bandwidth divided by the passes
of memory accesses. Thus, a good way to design a sorter
needs to trade off between the number of sorting passes and
the throughput of each pass.

6.3.4 Discussion

Memory access pattern Different sort algorithms have dif-
ferent memory access patterns. An N-input sorting network
typically is used in an early stage of sorting to convert an
input stream into an output stream that is a sequence of N-
element sorted substreams. The FIFO merge sort has two
sorted streams as inputs that will be merged into a larger
sorted stream. However, the two inputs are not independent
from each other. This is because the next data to be read relies
on the comparison result of the current inputs. Since this
access pattern is similar with the pattern of “gather” (indexed
reads and sequential writes), but the next reads depend on the
current inputs, we refer to this as a streaming gather pattern.
Thus, the FIFO merge sort has dependent multi-streaming
read and streaming write memory access patterns. Similarly,
the merge tree has the same access pattern as FIFO merge
sort, with the next input might come from multiple streams
instead of two.

Bandwidth efficiency All three classes of sort methods men-
tioned above can sufficiently utilize the interface bandwidth
by making stronger engines or deploying more engines. How-
ever, a large sort may require multiple passes that each
requires the host memory to be accessed. In this manner,
the overall throughput of an entire sort depends on both the
number of passes and the throughput of each pass, or the
overall throughput does not exceed the bandwidth divided by
the number of passes. The number of passes can be reduced
by a wider merger that merges more streams into one larger
stream. However, because each input stream requires buffer-
ing, building up a wider merge tree requires a lot of BRAMs,
which makes the design BRAM limited.
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Buffer challenge Reducing the number of memory access
passes is a key point to improve the sort throughput. One
way to do this is to sort as much data as possible in one pass.
For example, use a wider merge tree to merge more streams.
However, in an FPGA, hiding the host memory latency for
multiple streams is a challenging problem, let alone for the
dependent multi-streaming accesses. In a merge tree, when
merging multiple streams, which stream is chosen next can-
not be predicted. Even though buffers can be placed at the
inputs of each stream, naively deploying buffers for each
input to hide the latency would consume all the BRAMs in
an FPGA or even more. In the case of a 64-to-1 merge tree that
can output 8 16B elements each cycle, to hide the intercon-
nect latency (assume 512 FPGA cycles ina250 MHz design),
4 MB of FPGA internal memory resources are demanded
(which is all the BRAM resources for a Xilinx KU15P).
HBM benefit HBMs on the FPGA card bring the potential
to reduce the number of host memory accesses for sort.
It provides accelerators with larger bandwidth and deliv-
ers comparable latency compared to the host memory. Thus,
instead of writing the intermediate results back to the host
memory, we can store them in the HBMs. For a data set that
fits in an HBM, the analysis from [145] illustrates that it only
demands one pass read from and write to the host memory
with the help of HBM (the read in the first pass and the write
in the final pass), while without HBM it requires five passes
access to the host memory. For data sets larger than the HBM
capacity, using HBMs for the first several passes of sorting
can reduce a remarkable number of host memory accesses.
Partitioning methods The number of host memory accesses
goes up fast once the data set size is larger than the HBM
capacity. For example, using a 32-to-1 merge tree to sort
256 GB data in an FPGA equipped with 8 GB HBM demands
two passes, including one pass to generate 8 GB sorted
streams and one pass to merge these 8 GB streams into the
final sorted stream. However, with every 32 times increase
in the data set size, an extra pass is required.

The partitioning method is a solution to reduce the host
memory accesses and to improve the memory bandwidth effi-
ciency. It was previously used to obtain more concurrency by
dividing a task into multiple sub-tasks. Another benefit is that
it can enhance the bandwidth efficiency.

For sorting large data sets in GPUs, a common method
is the partitioning sort [39] where a partitioning phase is
executed to partition the data set into small partitions and
a follow-up sort phase to sort each of them. This method
only demands two passes of host memory accesses and can
achieve a throughput of up to one-fourth of the host memory
bandwidth (two reads and two writes). Experimental results
in [39] illustrate a throughput of 11 GB/s in a single GPU
node which is 65% of the interface bandwidth.

This method is feasible in FPGAs if the HBM is inte-
grated. In this way, to sort the whole data set, two passes
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accessing the host memory is sufficient. In the first pass,
the data is partitioned into small partitions that fit in HBM,
and write the partitions back to the host memory. The sec-
ond pass then reads and sorts each partition and writes the
sorted streams back. As this method needs fewer host mem-
ory accesses compared to the merge sort, it is interesting to
study the partitioning sort in FPGAs and compare it with the
multi-pass merge tree method. The partitioning methods are
also applicable to hash joins to enhance the memory band-
width efficiency. This is described in detail in Sect. 6.4.

6.4 Join

Joins are a frequently used operation in database systems, that
combine two or more tables into one compound table under
specific constraints. The most common one is the equi-join
that combines two tables by a common field. In the rest of this
paper, we refer to equi-joins as joins. There are many different
join algorithms including nested loop join, hash join (HJ),
and sort—-merge join (SMJ). In this paper, we focus on the
HJ and SM1J since they are more interesting to the database
community due to their low algorithmic complexity.

6.4.1 Hash join

Hash join is a linear complexity join algorithm. It builds
a hash table from one of the two join tables and uses the
other table for probing to find matches. The probing time for
each element remains in constant time if a strong hash func-
tion is chosen. In CPUs, it is difficult for a hash function to
have both strong robustness and high speed. In FPGAs, this
trade-off is broken because FPGAs allow a complex algebra
function implemented in a circuit that calculates faster than
the CPU does. Kaan et al. [60] shows a murmur hash FPGA
implementation that achieves high performance as well as
strong robustness. Research from [67] points out that the
indexing takes up most of the time for index-based func-
tions, especially the walk time (traversal of the node list)
which accounts for 70%. To solve this problem, the Widx
ASIC, an index traversal accelerator tightly connected to the
CPU cores, is proposed to process the offloaded index-based
walker workloads. Widx decouples the hash unit and the
walker (the traversal unit) and shares the hash unit among
multiple walkers to reduce the latency and to save the hard-
ware resources.

One of the key points to design an FPGA-based hash
join algorithm is to have an efficient hash table structure.
On one hand, the hash table structure influences the perfor-
mance of the hash join engine. An inappropriate hash table
design might introduce stalls, reducing the throughput. On
the other hand, as there is a limited number of BRAMSs inside
an FPGA, to ensure a multi-engine instance is feasible in one
FPGA, a hash table should not consume too many BRAMs.

The method in [130] makes use of most of the BRAMsS in
an FPGA to construct a maximum size hash table. In this
method, the BRAMs are divided into groups. The hash table
connects the BRAM groups into a chain, and different hash
functions are adopted for different BRAM groups. In the case
of hash collisions, conflicting elements will be assigned to
the next group until the hash table overflows. Even so, due
to the skewed data distribution, some of the memory may
be wasted. The hash join in [50] uses two separate tables to
construct the hash table, including one Bit Vector table stor-
ing the hash entries and one Address Table table maintaining
the linked lists. The proposed architecture allows probing
without stalls in the pipeline.

For data sets that are too large to store the hash table in the
FPGA’s internal memory, in-memory hash joins are needed.
As the BRAMs can only store part of the hash table, probing
tuples demands loading the hash table multiple times from the
main memory. However, the latency of accessing main mem-
ory is much larger than that of accessing BRAMs. One way to
deal with this problem is to use the BRAMs as a cache [110].
However, to achieve high throughput, an efficient caching
mechanism is required. If the size of the hash table is much
larger than the BRAMs, the cache miss ratio might remain
too large to benefit from the cache system. Another way to
hide the memory latency is to use multi-tasking. As FPGAs
have a large amount of hardware resource for thread states,
we can keep hundreds of tasks in an FPGA. An example
is shown in [49] where the hash join runs against a Convey-
MX system and achieves a throughput of up to 12 GB/s or 1.6
billion tuple/s. However, when applying this method to other
architectures, we need to avoid suffering from the granularity
effect [36]. Because each access to the main memory must
obey the access granularity that is defined by the cache line,
every read/write request always acquires the whole cache
line(s) of data. If a request does not ask data that covers
the whole cache line(s), part of the response data is useless,
meaning a waste of bandwidth. Thus, the hash table needs to
be properly constructed to reduce or avoid the occurrence of
this situation.

Another way to process in-memory hash joins is to parti-
tion the data before performing the joins. Both the input tables
are divided into non-intersecting partitions using a same par-
tition function. One partition from a table only needs to join
with the corresponding partition in the other table. If the hash
table of a partition is small enough to fit in the internal FPGA
memory, the hash table is required to be loaded only once.
The main challenge is how to design a high throughput par-
titioner. The study in [140] presents a hardware-accelerated
range partitioner. An input element is compared with multiple
values to find a matched partition, after which this element is
sent to the corresponding buffer. In this work, deep pipelin-
ing is used to hide the latency of multiple value comparisons.
Kaan et al. [61] proposed a hash partitioner that can contin-
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Fig. 9 Data flow regarding main memory accesses in different hash
join algorithms. R, stands for reading x, while W, stands for writing
x. Note that the number of writes to the hash table (Wg7) is based on
the size of Table A, and the number of reads from the hash table (Ry7)
is based on the size of Table B

uously output a 64B cache line in a 200 Mhz FPGA design.
Write combiners are used to construct a full cache line out-
put to avoid granularity effects [36]. To keep up with the
QPI bandwidth, the authors implement multiple engines in
an FPGA. Their end-to-end example shows around 3.83 GB/s
for partitioning the data in an FPGA and 3 GB/s for a hybrid
partitioning hash join (partition in the FPGA and join in the
CPU). If the data set is too large and the partition size does
not fit in the FPGA’s internal memory, a multi-pass parti-
tioning can be adopted. An example is demonstrated in [21]
where LINQits is proposed to accelerate database algorithms
including the hash join and the group-by operator.

6.4.2 Sort-merge join

The sort—merge join is comparable to the hash join algorithm.
It first sorts both tables and does a merge step afterward. The
most challenging part of a hardware sort—merge join is the
sort itself which we have discussed in Sect. 6.3. To further
improve the sort—-merge join performance, the merge step can
be started as long as the first sorted element from the second
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table is output. The sort—-merge join proposed in [18] adopts
a similar idea and achieves a throughput of 6.45 GB/s for the
join. Ren et al. [20] proposed a sort join in a heterogeneous
CPU-FPGA platform. It performs the first few sorting stages
in FPGAs and streams the partial results to the CPUs for a
later merge sort step, and the merge join afterward.

Others study the comparison between the hash join and
the sort—merge join. This topic has been well studied for the
CPU architecture [3,8,64], but not too much for FPGA-based
accelerators. The work in [130] studies the FPGA-based
hash join and the FPGA-based sort-merge join, and claims
that the sort—merge join outperforms the hash join when the
data sets become larger. However, the in-memory hash join
is not included in this comparison which is more suitable
for larger data sets. A detailed analysis and comparison is
explained in [8] on a multi-core CPU platform. According
to the experimental results, the optimized hash join is supe-
rior to the optimized sort—merge join, while for large data
sets the sort—-merge join becomes more comparable. Even
though this analysis is based on the CPU architecture, we
believe that the principles of the analysis are similar and it
would be a good guideline for further analysis based on the
FPGA architecture.

6.4.3 Discussion

Memory access pattern Typically hash joins have a stream-
ing read pattern for reading both tables and a streaming
write pattern for writing the results back, but accessing the
hash table, including establishing the hash table and prob-
ing it, is random. If the data set is small enough that the
hash table can be stored in the accelerator memory, access-
ing the hash table becomes internal memory accesses. Thus,
from the host memory access aspect, hash joins for small
data sets only have streaming read and streaming write
patterns. Partitioning a large data set into small partitions
before doing the joins allows the hash table to be stored
in the accelerator memory, which can avoid the random
access to the host memory. The extra memory access passes
introduced by the partitioning phase hold scatter patterns
(read from sequential addresses and write to indexed/random
addresses).

For sort-merge join, the memory access pattern of
sorting the two tables is studied in Sect. 6.3.4. Similar
with the FIFO merge sorter, the join phase reads both
sorted tables in dependent streaming ways and writes
the results back as a single stream. Accordingly, the
sort—-merge join has the same memory access pattern as
the sort, plus the streaming gather memory access pat-
tern.

Bandwidth efficiency The data flows of different types of
hash joins are illustrated in Fig. 9. The memory shown in the
figure is the host memory. However, the data flows can also
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be applied in the off-chip memory on the accelerator side.
Hash joins on small data sets are streaming-like operations.
Both tables are read from the host memory, while the hash
table is stored in the FPGA internal memory. Thus, a hash
join requires a pass reading the data and a pass writing the
results back. As hash joins are not highly computational, this
streaming read and streaming write can saturate the acceler-
ator interface bandwidth.

For large data set cases, the hash table needs to be stored
in host memory. During the build phase, each tuple in the
build table needs to write the hash table. Similarly, each
tuple in the probe table during the probe phase generates
at least one read to the hash table. Consequently, hash
joins on large data sets equivalently demand two passes
of host memory accesses for the original tables and the
hash table, and one pass writing the results back. How-
ever, accessing the hash table results in random access
patterns, which suffer performance decrease due to cache
misses [14], TLB misses [9,10], the Non-uniform mem-
ory access (NUMA) effect [71], and the granularity effect
[36], etc. The study in [36] shows that only 25% of the
memory bandwidth is effective during the access to the
hash table in a 64B cache line machine if the tuple size is
16B.

The partitioning hash join can avoid random access by

splitting the data into small partitions such that the hash table
for each can be stored in the FPGA memory. One drawback
of this method is that the partitioning phase introduces extra
memory accesses. The cost of partitioning even becomes
dominating if multi-pass partitioning is inevitable. However,
the partition can be implemented in a streaming processing
way, which has streaming read and multi-streaming write
patterns. For a one-pass partitioning hash join, two passes of
streaming read and streaming write to the host are required.
Thus, the throughput can reach up to one-fourth of the band-
width.
HBM benefit The HBM technology can be adopted in the
hash joins as well. For non-partitioning hash joins, HBM
can be used as caches or buffers, leveraging the locality and
hiding the latency of host memory accesses. It also allows
smaller granularity access than DRAM, and therefore can
reduce the granularity effect.

For partitioning hash joins, HBMs can help in two ways.
One way is to use HBMs to store the hash table of each
partition, which allows larger size partitions and can reduce
the required number of partitions. The other way is to use
HBMs as buffers to buffer the partitions during the partition-
ing phase, which provides the capability of dividing the data
into more partitions in a pass. Both methods can reduce the
number of partitioning passes, leading to fewer host memory
accesses.

7 Future research directions

In this section we discuss future research directions as well as
their challenges for different groups of researchers including
database architects, FPGA designers, performance analysts,
and software developers.

7.1 Database architecture

We believe that in-memory databases should be designed
to support multiple types of computational elements (CPU,
GPU, FPGA). This impacts many aspects of database design:

— It makes it desirable to use a standard data layout
in memory ( e.g., Apache Arrow ) to avoid serializa-
tion/deserialization penalties and make it possible to
invest in libraries and accelerators that can be widely
used.

— It puts a premium on a shared coherent memory architec-
ture with accelerators as peers to the host that can each
interact with the in-memory data in the same way, thus
ensuring that accelerators are easily exchanged.

— It implies we need to develop a detailed understanding
of which tasks are best executed on what computational
element. This must include aspects of task size: which
computational element is best is likely to depend on both
task type and task size.

— As noted earlier in the paper, new query compilers will
be required that are based on this understanding that can
combine this understanding with the (dynamically vary-
ing) available resources.

This may seem like a momentous task, but if we assume
we are in a situation where all elements have equal access
to system memory, it may be possible to build some key
operations like data transformations in FPGAs and derive an
early benefit.

In addition to shared-memory-based acceleration, there
are additional opportunities for near-network and near-
(stored-)data acceleration for which the FPGAs are a good
match. So in building architectures for in-memory databases,
it is also important to keep this in mind.

7.2 Accelerator design

As new interfaces and other new hardware provide new fea-
tures that break the accelerator-based systems balance, more
opportunities arise for FPGAs to accelerate database systems.

As noted in this paper, for several key operators FPGA-
based implementation exist that can operate at the speed of
main memory. However, less work has been done on designs
that leverage both the CPU and FPGA or even a combination
of CPUs, FPGAs, and GPUs.
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Another opportunity brought to FPGAs is the emerging
machine learning workloads in databases. Database systems
are extending the support of machine learning operators [76].
In addition, the databases are integrating machine learning
methods for query optimization [132]. In both cases, the
heavy computation required poses computational challenges
to the database systems, and FPGAs can likely help. Thus,
new accelerators for these emerging workloads are worth
studying.

Lastly, from a system perspective, a single FPGA can only
provide limited performance enhancement, while a multi-
FPGA architecture should bring remarkable speedup. On the
one hand, different functions can be implemented in different
FPGAs to enable a wider functionality and more complicated
workloads. One the other hand, multiple FPGAs can work
together for a single job to enhance the performance. Using
FPGAs as a cloud resource can further increase the FPGA
utilization rate in both clouds and in distributed database
systems [19,103]. Important challenges related to this topic
include how to connect the FPGA with CPUs and other
FPGAs, and how to distribute the workloads.

7.3 Comparison with GPUs

GPUs have now become a serious accelerator for database
systems. This is because the GPU has thousands to ten
thousands of threads, which is a good choice for throughput-
optimized applications. Besides the high parallelism, being
equipped with HBM allowing large capacity internal mem-
ory and fast speed to access it is another enabler. While FPGA
now is also integrating HBM that makes it more powerful,
the parallelism in FPGAs does not typically provide the same
order of magnitude of threads in GPUs. Thus, a question we
would like to ask ourselves is what kinds of database appli-
cations can work better on FPGAs than GPUs.

The first possible answer is the latency-sensitive stream-
ing processing applications such as network processing. The
request of both high throughput and low latency in the stream-
ing processing presents challenges to GPUs. Since GPUs
need to process data in a batch mode with well-formatted data
for throughput gains, this formatting might introduce addi-
tional latency. However, this requirement can perfectly meet
the features of the FPGA with data flow designs where format
conversion is often free. The ability to do efficient format con-
version might also apply to near storage processing such as
Netezza [41] to relieve the pressure for CPUs and networks.
Further improvement can include new features to meet the
emerging workloads such as supporting format transforma-
tion between the standardized storage formats (e.g., Apache
Parquet [5]) and the standardized in-memory formats (e.g,
Apache Arrow [4]).

In addition, FPGAs may even beat GPUs in terms of
throughput in specific domains that require special func-
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tions. For example, if one wants to build databases that
operate under an encryption layer, it might need to combine
encryption with other operators. FPGAs may be efficient
at implementing these special functions in hardware and
FPGAs often suffer only suffer negligible throughput impact
by combining two function components in a pipeline. These
special functions also include provisions for database relia-
bility, special data types like geo-location data processing, or
data types requiring regular expression matching.

We can also think about exploring more heterogeneity of
building a database system with a CPU-GPU-FPGA com-
bination. Different processors have different features and
different strong points. CPUs are good at complex control
and task scheduling, GPUs work well in a batch mode with
massive data-level parallelism, and FPGAs can provide high
throughput and low latency using data flow and pipeline
design. Combining these processors together in one system
and assigning the workloads to the processors that fit best
may well deliver an advantage. However, some challenges
need to be addressed to build this system including how to
divide tasks into software and hardware, how to manage the
computational resources in the system, and how to support
data coherency between different types of processors.

7.4 Compilation for FPGAs

The FPGA programmability is always one of the biggest
challenges to deploying FPGAs in database systems. To
reduce the development effort and the complexity for FPGA-
based database users, a hardware compiler that can map
queries into FPGA circuits is necessary. Even though there is
prior work [85,86,139] and proposed proof-of-concept solu-
tions, there is still a long way to go. The following three
directions may improve the hardware compiler, and thus
increase FPGA programmability.

One important feature of the recent interfaces such as QPI,
CXL, and OpenCAPI is that they support shared memory and
data coherency. This development allows leveraging FPGAs
more easily for a subset of a query or a portion of an operator
in collaboration with CPUs. This enablement is significantly
important for FPGA usability because not all the functional-
ity may fit in the FPGA, as the FPGA size may depend on
problem size, data types, or the function itself. Thus, a future
hardware compiler might take the shared memory feature into
account. A first step to start exploring this direction is to sup-
port OpenMP for hardware compilation [117,134]. OpenMP
has been a popular parallel computing programming lan-
guage for shared memory. It provides a few pragmas and
library functions to enable multi-thread processing in CPUs,
which eases multi-thread programming and is very similar
to the HLS languages. Some recent enhancements, like task
support, are an especially good fit for accelerators. Starting
from OpenMP in the hardware compiler allows leveraging
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the lessons learned from the study of OpenMP and might
be the easier path to prove the benefits of supporting shared
memory.

The second potential improvement comes from the sup-
port of standards for in-memory representation of data, such
as Apache Arrow for columnar-oriented in-memory data.
Taking Apache Arrow as an example, this standardized in-
memory format allows data exchanges between different
platform with zero-copy. Since it eliminates the serializa-
tion and deserialization overhead, it significantly enhances
performance for data analytics and big data applications.
Supporting such standards allows FPGA to be leveraged
across languages and frameworks, which also reduces total
amount of effort required.

Lastly, for FPGA designers that want to exercise more con-
trol over the design of the FPGA kernels for database queries
or operators, the approaches that separate interface genera-
tion from computational kernel design can further increase
productivity. Different FPGA kernels have different memory
access patterns [37]. Some of them require gathering multi-
ple streams (e.g., the merge tree), while some others have a
random access pattern (e.g., the hash join). Thus simply using
a DMA engine that is typically optimized for sequential data
cannot meet all requirements, and customized data feeding
logic is needed. While the ability to customized memory con-
trollers is a strength of using FPGAs, optimizing this interface
logic requires significant work. Thus, such interface gener-
ation frameworks can generate the interface automatically
and designers can focus on the design and the implementa-
tion of kernels themselves. An example of such frameworks
is shown in an initial work, the Fletcher framework [101].

8 Summary and conclusions

FPGAs have been recognized by the database community
for their ability to accelerate CPU-intensive workloads. How-
ever, both the industry and academia have shown less interest
inintegrating FPGAs into database systems due to the follow-
ing three reasons. First, while FPGAs can provide high data
processing rates, the system performance is bounded by the
limited bandwidth from conventional IO technologies. Sec-
ond, FPGAs are competing with a strong alternative, GPUs,
which can also provide high throughput and are much easier
to program. Last, programming FPGAs typically requires a
developer to have full-stack skills, from high-level algorithm
design to low-level circuit implementation.

The good news is that these challenges are being addressed
as can be seen through the technology trends and even the
latest technologies. Interface technologies develop so fast
that the interconnection between memory and accelerators
can be expected to deliver main-memory scale bandwidth.
In addition, FPGAs are incorporating new higher-bandwidth

memory technologies such as the high-bandwidth memory,
giving FPGAs a chance to combine a high degree parallel
computation with high-bandwidth large-capacity local mem-
ory. Finally, emerging FPGA tool chains including HLS,
new programming frameworks, and SQL-to-FPGA compil-
ers, provide developers with better ease of use. Therefore
FPGAs can become attractive again as a database accelera-
tor.

In this paper, we explore the potential of using FPGAs
to accelerate in-memory database systems. We reviewed
the architecture of FPGA-accelerated database systems, dis-
cussed the challenges of integrating FPGAs into database
systems, studied technology trends that address the chal-
lenges, and summarized the state-of-the-art research on
database operator acceleration. We observe that FPGAs are
capable of accelerating some of the database operators such
as streaming operators, sort, and regular expression match-
ing. In addition, emerging hardware compile tools further
increase the usability of FPGAs in databases. We anticipate
that the new technologies provide FPGAs with the oppor-
tunity to again deliver system-level speedup for database
applications. However, there is still a long way to go, and
future studies including new database architectures, new
types of accelerators, deep performance analysis, and the
development of the tool chains can push this progress a step
forward.
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