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Model Reduction and Outer Approximation for
Optimizing the Placement of Control Valves in

Complex Water Networks
Filippo Pecci, Ph.D.1; Edo Abraham, Ph.D.2; and Ivan Stoianov, Ph.D.3

Abstract: The optimal placement and operation of pressure control valves in water distribution networks is a challenging engineering problem.
When formulated in a mathematical optimization framework, this problem results in a nonconvex mixed integer nonlinear program (MINLP),
which has combinatorial computational complexity. As a result, the considered MINLP becomes particularly difficult to solve for large-scale
looped operational networks.We extend and combine network model reduction techniques with the proposed optimization framework in order to
lower the computational burden and enable the optimal placement and operation of control valves in these complex water distribution networks.
An outer approximation algorithm is used to solve the considered MINLPs on reduced hydraulic models. We demonstrate that the restriction of
the considered optimization problem on a reduced hydraulic model is not equivalent to solving the original larger MINLP, and its solution is
therefore sub-optimal. Consequently, we investigate the trade-off between reducing computational complexity and the potential sub-optimality of
the solutions that can be controlled with a parameter of the model reduction routine. The efficacy of the proposed method is evaluated using two
large scale water distribution network models. DOI: 10.1061/(ASCE)WR.1943-5452.0001055. © 2019 American Society of Civil Engineers.

Introduction

Ageing infrastructure, growing water demand, and more stringent
environmental standards pose unprecedented challenges to the
management of water distribution networks (WDNs). Significant
benefits can be achieved through an efficient pressure control that
results in the reduction of leakage (Lambert 2000; Wright et al.
2015) and risk of pipe failure (Lambert and Thornton 2011). Tradi-
tionally, pressure control in WDNs is actuated by pressure reducing
valves (PRVs), which regulate pressure at their downstream node.
The optimal placement and operation of control valves are complex
tasks, and the locations of such control devices are usually deter-
mined based on engineering judgment. When formulated into a
mathematical framework, these tasks result in a difficult co-design
optimization problem, which combines continuous and discrete
decision variables. Continuous variables include nodal hydraulic
heads and pipe flow rates, while discrete decision variables are used
to represent control valve locations. Energy and mass conservation
laws are enforced across each pipe and at each node, respectively,
resulting in nonconvex optimization constraints. A faithful represen-
tation of WDN daily operation requires the consideration of multi-
ple water demand conditions and associated pumps control profiles,
thus further increasing the number of continuous optimization

variables and constraints. The network models presented in this
paper do not include pumps. However, pumps operation can be
modelled by adding suitable optimization constraints, i.e., Eq. (10)
in D’Ambrosio et al. (2015). The resulting optimization problem is
analogous to the one considered here and it can be solved using the
methods discussed in the following sections.

In this article, we consider multiple demand conditions and
build upon the problem formulation introduced and briefly dis-
cussed in Pecci et al. (2017a). The proposed problem reformulation
reduces the degree of nonlinearity of the constraints and the over-
all problem size in comparison to previous literature (Eck and
Mevissen 2012; Dai and Li 2014; Pecci et al. 2017b).

The resulting problem is a nonconvex Mixed Integer Nonlinear
Program (MINLP) that is difficult to solve, and it is usually dealt
with using meta-heuristic approaches (Nicolini and Zovatto 2009;
Creaco et al. 2015; Ali 2015; De Paola et al. 2017) or local opti-
mization methods (Eck and Mevissen 2012; Dai and Li 2014; Pecci
et al. 2017b). As a consequence, the quality of the generated sol-
ution will depend on the algorithmic initialization. It is sometimes
convenient to start the optimization process with different initial
conditions, selecting a posteriori the best objective function perfor-
mance. In addition, when multiple objectives need to be minimized
at the same time, typical mathematical optimization methods rely
on the solution of sequences of MINLPs—see examples shown
in Pecci et al. (2017d). Consequently, it is important to take into
account the computational effort required to generate a solution.
Solving a MINLP requires a substantial computational effort when
the number of discrete variables is large. This is the case when we
study operational water distribution networks. Additional problem-
specific computational challenges can be posed by the structure of
a water distribution network considered for the optimal placement
and operation of control valves. In the case of a highly inter-
connected network, there exist multiple control valve configura-
tions with similar objective function performances. The high degree
of symmetry in the solution space results in an increased computa-
tional effort (Margot 2010).
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In the study, we investigate the application of alternative network
reduction approaches to decrease the dimension of the search space
and the computational load associated with solving the problem of
optimal placement and operation of control valves within complex
water distribution networks. The considered model-reduction tech-
niques have already been demonstrated to improve the computa-
tional performance of hydraulic simulation tools (Deuerlein et al.
2016; Deuerlein 2008; Simpson et al. 2014) and for operational op-
timization of large water networks (Burgschweiger et al. 2005).
However, their use within a framework for the optimal placement
of control valves (i.e., design problems) in water distribution net-
works has not been previously investigated. In particular, we first
consider the forest-core decomposition proposed by Elhay et al.
(2014), and pose reduced size MINLP using only the core of the
network (i.e., the part of a network that is not contained in the forest,
where the forest is the union of all trees of the network). In addition,
we implement the contraction of links, which are connected in
series, through a zero demand node as proposed by Burgschweiger
et al. (2005) to reduce network size before operational optimization.
The resulting model reduction procedure is then expanded by intro-
ducing the elimination of trivial loops, “leafy loops,” which include
nodes with zero demand.

We investigate the integration of these model reduction routines
with optimization methods for solving the co-design problem of
optimal placement and operation of control valves. The two prob-
lem formulations, when applied upon full-scale and reduced net-
work models, result in nonconvex MINLPs with a similar structure.
Hence, the optimal valve placement problems for the different net-
work models are solved using the same optimization tools. We uti-
lize the Outer Approximation with Equality Relaxation (OA/ER)
algorithm for the solution of the considered MINLPs. This solution
approach was initially proposed by Kocis and Grossmann (1987).
The OA/ER algorithm solves an alternating sequence of nonlinear
programs (primal problems) and mixed integer linear programs
(master problems). Under certain convexity assumptions on the op-
timization constraints, OA/ER converges to global optimal solutions
(Floudas 1995, Section 6.5). When the problem is nonconvex, like
the one considered here, OA/ER does not provide theoretical guar-
antees of global optimality. Nonetheless, OA/ER was shown to find
near-optimal solutions when previous applied to problems in pro-
cess synthesis optimization by Kocis and Grossmann (1987) and
Viswanathan and Grossmann (1990).

The main contributions of this paper are as follows. Firstly, we
evaluate strengths and limitations of the application of the OA/ER
method in complex and operational water distribution networks.
Secondly, we numerically investigate the coupling of model reduc-
tion and outer approximation for solving the problem of optimal
placement and operation of control valves in complex water distri-
bution networks. In particular, we observe that the restriction of the
considered optimization problem on a reduced network can result
in sub-optimal solutions. This is due to the exclusion of links, or
sequences of links, with significant elevation differences within the
reduced network model. Therefore, we propose a heuristic that pre-
serves those links connected to nodes with elevation differences
larger than a certain threshold parameter; the elevation difference
threshold. Thirdly, the trade-off between the model size reduction
and potential sub-optimality is numerically investigated using two
complex water distribution networks as case studies.

Problem Formulation

Awater distribution network with n0 water sources (e.g., reservoirs
or tanks), nn nodes and np pipes, is modelled as a graph with

nn þ n0 vertices and np links. We define the two edge-node inci-
dence matricesA12 ∈ Rnp×nn andA10 ∈ Rnp×n0 , for the nn junction
nodes and the n0 water sources, respectively. Moreover, we include
in the formulation nl different demand conditions—e.g., describing
daily water demand profiles. Let t ∈ f1; : : : ; nlg be a time step
and let dt ∈ Rnn be the assigned vector of nodal demands. Vectors
of unknown hydraulic heads and flows are defined as ht ≔
½ht1 : : : htnn �T and qt ≔ ½qt1 : : : qtnp �T , respectively. Hydraulic heads
at the water sources are known and denoted by ht0i for each
i ¼ 1; : : : ; n0. Moreover, the vector of nodal elevation is repre-
sented by ξ ∈ Rnn. Finally, for every link j we have maximum
allowed flow though j defined by qmax

j .
The frictional energy losses across network pipes can be mod-

elled by either the Hazen-Williams (HW) or Darcy-Weisbach (DW)
formulae. However, these are not suitable for being used in a math-
ematical optimization framework, since they involve non-smooth
terms. Consequently, it is necessary to consider smooth approxima-
tions for both friction head loss formulae. Here we apply a quad-
ratic approximation minimizing the integral of relative errors—see
Eck and Mevissen (2015) and Pecci et al. (2017c). For a pipe j and
time t, the resulting quadratic function can be written as ϕjðqtjÞ ≔
ðajjqtjj þ bjÞqtj, where ΦðqtÞ ≔ ½ϕ1ðqt1Þ; : : : ;ϕnpðqtnpÞ�T , for each
t ∈ f1; : : : ; nlg.

In this article, we consider an optimization problem for place-
ment and operation of control valves, and so we introduce the vec-
tors of unknown binary variable zþ ∈ f0; 1gnp and z− ∈ f0; 1gnp
to model the possible placement of control valves on np links, with
the following permutations:
• zþj ¼ 1⇔ there is a valve on link j in the assigned positive flow

direction,
• z−j ¼ 1⇔ there is a valve on link j in the assigned negative flow

direction,
• zþj ¼ z−j ¼ 0⇔ no valve is placed on link j, and the constraints
• zþj þ z−j ≤ 1 to preclude the placement of two valves on a single

link j, for each j ¼ 1; : : : ; np.
The objective to be minimized is average zone pressure (AZP),

which is used as a surrogate measure for pressure-driven leakage
(Wright et al. 2015) and is defined as

1

nlW

Xnl

t¼1

wTðht − ξÞ ð1Þ

where Lj = the length of link j; wi ¼
P

j∈IðiÞ Lj=2 with IðiÞ set of
indices for links incident at node i; and W ¼ Pnn

i¼1 wi is a normali-
zation factor.

The optimization problem is subject to physical constraints in
the form of energy and mass conservation laws:

ΦðqtÞ þA12ht þA10ht
0 þ ηt ¼ 0; t ¼ 1; : : : ; nl ð2Þ

AT
12q

t − dt ¼ 0; t ¼ 1; : : : ; nl ð3Þ

where the vector ηt ≔ ½ηt1 : : : ηtnp �T in Eq. (2) represents the
unknown additional head losses introduced by the action of
control valves. In order to formulate linear constraints modelling
the placement of a valve or otherwise on network links, we
introduce diagonal matrices of large positive constants Mþ ≔
diagðMþ

1 ; : : : ;M
þ
npÞ ∈ Rnp×np and M− ≔ diagðM−

1 ; : : : ;M
−
npÞ ∈

Rnp×np , and define Qmax ≔ diagðqmax
1 ; : : : ; qmax

np Þ ∈ Rnp×np . Then,
we formulate the inequality constraints:

ηt −Mþzþ ≤ 0; t ¼ 1; : : : ; nl ð4Þ

© ASCE 04019014-2 J. Water Resour. Plann. Manage.
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−qt þQmaxzþ ≤ qmax; t ¼ 1; : : : ; nl ð5Þ

−ηt −M−z− ≤ 0; t ¼ 1; : : : ; nl ð6Þ

qt þQmaxz− ≤ qmax; t ¼ 1; : : : ; nl ð7Þ

In the following, we clarify the role of these linear constraints.
Assume that zþj ¼ z−j ¼ 0 for a particular link j. Constraints
(4) and (5) imply that ηtj ¼ 0, while the sign of qtj is not constrained
and −qmax

j ≤ qtj ≤ qmax
j for all t ∈ f1; : : : ; nlg. Therefore, (2) rep-

resents the standard Bernoulli equation for energy conservation
across link j. Now let zþj ¼ 1, which implies z−j ¼ 0. Constraints
(4)–(7) yield 0 ≤ ηtj ≤ Mþ

j and 0 ≤ qtj ≤ qmax
j , ∀t ∈ f1; : : : ; nlg.

Note thatMþ
j has to be larger then any feasible value for ηtj. Analo-

gously, if z−j ¼ 1, we have −M−
j ≤ ηtj ≤ 0 and −qmax

j ≤ qtj ≤ 0, for
all time steps t ∈ f1; : : : ; nlg.

Consequently, in our problem formulation, once the direction of
operation of a valve is chosen, we do not allow the flow direction to
change during the control period—e.g., 24 h. This assumption is
not restrictive from an engineering point of view, as it represents
the standard operation of pressure reducing valves, which regulate
pressure at their downstream node with no or negligible backflow.
Finally, we include in the formulation additional operational, physi-
cal and economic constraints:

ht ≤ ht
max; t ¼ 1; : : : ; nl ð8Þ

−ht ≤ −ht
min; t ¼ 1; : : : ; nl ð9Þ

zþ þ z− ≤ 1 ð10Þ

Xnp

j¼1

ðzþj þ z−j Þ ¼ nv ð11Þ

where ht
max and ht

min are the vectors of maximum and minimum
allowed pressure head, respectively; 1 ≔ ½1; : : : ; 1�T ∈ Rnp ; and
nv = the number of PRVs to be installed, based on financial
constraints.

In summary, the problem formulation assumes known hydraulic
heads at water sources, nodal demands, elevations, and bounds on
allowed hydraulic heads and flow rates. Optimization variables
include hydraulic heads, flows, additional head losses introduced
by the action of control valves, and valve locations. The resulting
optimal valve placement problem is formulated as

minimize
1

nlW

Xnl

t¼1

wTðht − ξÞ

subject to ðqtÞt; ðhtÞt; ðηtÞt; zþ; z− satisfy ð2Þ-ð11Þ
zþ; z− ∈ f0; 1gnp ð12Þ

Note that the Problem (12) has multiple sources of nonconvex-
ity. Firstly, it includes binary constraints which result in a noncon-
vex disconnected feasible set, requiring the application of branch
and bound procedures. In addition, the nonlinear equality con-
straints in (2) can not be relaxed as convex inequality constraints
and so they can not be efficiently handled by convex optimization
tools. Finally, the components of function Φð·Þ are nonconvex, be-
cause their second order derivatives involve the signð·Þ function.

The number of linear constraints in Problem (12) is nlð3nn þ
4npÞ þ np þ 1 while the nonlinear equations involved in the
problem formulation are nlnp. In addition, only the nlnp flow var-
iables appear within nonlinear expressions, while the optimization

constraints are linear with respect to the remaining variables. The
formulation used in previous literature (Pecci et al. 2017b; Dai and
Li 2014; Eck and Mevissen 2012) includes more constraints with
higher degree of nonlinearity involving both flows and hydraulic
heads as unknowns. The main difference between the solution
spaces resulting from the two formulations is represented by the
behaviour of a fully open valve. The model used in (Pecci et al.
2017b; Dai and Li 2014; Eck and Mevissen 2012) allows flow
in both directions when a valve is fully open. On the other hand,
in the present work, a solution is feasible only if the flow across a
valve never changes sign during the control period—e.g., 24 h. This
assumption is not restrictive from the engineering point of view
while resulting in a simplification of the optimization constraints.

When the number of binary variables is large, the solution of
Problem (12) poses significant computational challenges for stan-
dard MINLP solvers. To mitigate this challenge, in the next section
we investigate possible approaches for (considerably) reducing
the size of (12), without (considerably) affecting the quality of the
solutions.

Model Reduction

The complexity of Problem (12) grows combinatorially as the
size of the considered network increases. In the literature, various
model-reduction approaches have been used for improving the
computational performance of hydraulic simulation tools (Deuerlein
2008; Deuerlein et al. 2016; Simpson et al. 2014) and optimizing the
operation of large operational water networks (Ulanicki et al. 1996;
Burgschweiger et al. 2005; Paluszczyszyn et al. 2013). However, the
application of these simplification schemes to the co-design prob-
lem of optimal placement and operation of control valves in WDNs
has not been investigated. In this work, we study the implementa-
tion of model-reduction as a pre-processing routine for optimal co-
design problems in WDNs and discuss its benefit and limitations.
In particular, we investigate whether a reduction in the number of
binary variables is achievable while preserving equivalence between
the optimization problems for the reduced and original models. To
do so, we first give some essential definitions for the applied graph
decomposition.

Definition 3.1: A non-fixed head node VðjÞ belonging to the
graph of a WDN is called a leaf if it has cardinality one.

The following definition of a tree in a WDN is introduced in
Deuerlein (2008) and Simpson et al. (2014).

Definition 3.2: A tree in a WDN graph is an acyclic connected
subgraph such that only one of its nodes is connected to either a
looped part of the network or to a fixed head node. Such a unique
node is called root.

Definition 3.3 (Deuerlein 2008; Simpson et al. 2014): The for-
est of a water network is defined as the disjoint union of all trees in
the network. The part of the network which is not contained in the
forest but includes the roots of all the trees is called core.

We now introduce the definition of trivial loops, i.e., “leafy
loops” involving only nodes with zero demand. In hydraulic mod-
els of operational water networks, such loops can be found where
some nodal demands have been set to zero to account for discon-
nected customer connections or where the driver for near real time
hydraulic models has resulted in the alignment between hydraulic
models and GIS information.

Definition 3.4: For a WDN graph, we define a loop as a trivial
loop if:
• all nodes in the loop have demands equal to zero; and
• all nodes except one have cardinality two; the unique node with

cardinality greater than two is referred to as root of the loop.

© ASCE 04019014-3 J. Water Resour. Plann. Manage.
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In order to describe the model-reduction algorithm and illustrate
the challenges posed by its application to co-design optimization
problems in WDNs, we devise and present an example network
(appropriately named “ToyNet”), whose layout is reported in Fig. 1.
The details for the pipes and nodes are listed on the left and right
columns of Table 1, respectively. For this model, the H-W friction
head loss formula is used. All nodes with non-zero demand have a
required minimum pressure of 15 m while the maximum velocity
in each pipe is 2 m=s, hence we set qmax

Pj
≔ ðπD2

Pj
=4Þ · 2. The

maximum allowed hydraulic head at each node is equal to the head
at the reservoir, H0 ¼ 120 m.

Given the small size of this example network, it is possible to
compute the global minimizer of Problem (12) for ToyNet using the
global MINLP solver SCIP (Gamrath et al. 2016), implemented
here via the Matlab interface provided by the OPTI TOOLBOX
(Currie and Wilson 2012). The globally optimal solution for the
placement of three valves is on links P4;P5;P7 and results in an
average zone pressure of 39.53 m.

Now consider the index sets for the links and non-fixed head
nodes of the full network model P ≔ fP1; : : : ;P7g and V ≔
fV1; : : : ;V6g, respectively. At the current stage, the unique leaf
node is V6 and the corresponding link is P7. The conservation of
mass and energy equations at V6 and across P7, respectively, are

qP7
¼ dV6

ð13Þ

hV6
¼ hV5

− dV6
· ðaP7

· dV6
þ bP7

Þ − ηP7
ð14Þ

Therefore, qP7
is known a priori while hV6

can be expressed
as a linear function of the head hV5

and the additional head loss
introduced by a possible valve placed on P7, denoted by ηP7

.
We update demand at V5 with dV5

←dV5
þ dV6

¼ 0.01þ 0.01 ¼
0.02ðm3=sÞ and now we get the reduced model P←fP1; : : : ;P6g,
V←fV1; : : : ;V5g. In the network described by ðP;VÞ, we identify

V5 as a leaf node whose corresponding link is P6. As before, we can
discard the variables qP6

and hV5
as we can evaluate them from the

formulae

qP6
¼ dV5

ð15Þ

hV5
¼ hV3

− dV5
· ðaP6

· dV5
þ bP6

Þ − ηP6
ð16Þ

and perform the update dV3
←dV3

þ dV5
þ dV6

¼ 0.02. We now
express the head at V6 with

hV6
¼ hV3

− dV6
· ðaP7

· dV6
þ bP7

Þ
− dV5

· ðaP6
· dV5

þ bP6
Þ − ηP6

− ηP7
ð17Þ

After this second reduction, we have P←fP1;P2;P3;P4;P5g
and V←fV1;V2;V3;V4g. At this stage, all leaf nodes have been
removed from ðP;VÞ. We observe that links P2, P3 are connected
in series to V2, which has demand equal to zero. The corresponding
conservation laws are

qP4
− qP5

¼ dV4
ð18Þ

qP1
− qP2

¼ dV1
ð19Þ

qP2
− qP4

¼ 0 ð20Þ

hV1
− hV2

¼ qP2
ðaP2

jqP2
j þ bP2

Þ þ ηP2
ð21Þ

hV2
− hV4

¼ qP4
ðaP4

jqP4
j þ bP4

Þ þ ηP4
ð22Þ

As shown in Pecci et al. (2017c), in the case of H-W friction
models, the quadratic approximation coefficients are defined such
that aP2

¼ rP2
αðqmax

P2
Þ, bP2

¼ rP2
βðqmax

P2
Þ and aP4

¼ rP4
αðqmax

P4
Þ,

bP4
¼ rP4

βðqmax
P4

Þ. Eq. (20) implies that qP2
¼ qP4

. Hence, qmax
P2

¼
qmax
P4

and we have that αðqmax
P2

Þ ¼ αðqmax
P4

Þ and βðqmax
P2

Þ ¼ βðqmax
P4

Þ.
We can introduce a pseudo-link P8 connecting V1 and V4 with
flow qP8

and quadratic approximation coefficients aP8
≔ aP2

þ aP4

and bP8
≔ bP2

þ bP4
. The conservation laws (18)–(22) are

equivalent to

qP8
− qP5

¼ dV4
ð23Þ

qP1
− qP8

¼ dV1
ð24Þ

hV1
− hV4

¼ qP8
ðaP8

jqP8
j þ bP8

Þ þ ηP2
þ ηP4

ð25Þ

hV2
¼ rP4

rP2
þ rP4

hV1
þ rP2

rP2
þ rP4

hP4

− rP4

rP2
þ rP4

ηP2
þ rP2

rP2
þ rP4

ηP4
ð26Þ

Constraints (23)–(25) are added to the original problem formu-
lation, while removing (13)–(16) and (18)–(22). As a consequence,
variables qP7

, qP6
, qP2

, qP4
, hV6

, hV5
and hV2

can be discarded from
the optimization together with the corresponding constraints. We
set P←fP1;P3;P5;P8g and V←fV1;V3;V4g. In order to preserve
the feasible set of the original problem, all binary variables related
to discarded links have to be included within the problem formu-
lation. Moreover, it is necessary to add linear constraints to enforce
physical and operational constraints at discarded nodes and links.
As a result, the graph simplification does not result in a substantial
reduction of the combinatorial complexity: while the overall num-
ber of continuous variables and nonlinear constraints is reduced,
the set of of binary variables and the number of linear constraints

Fig. 1. ToyNet layout.

Table 1. ToyNet data

Link D (m) L (m) CHW Node d (m3=s) ξ (m)

P1 0.40 1,000 70 V1 0.03 50
P2 0.30 1,000 100 V2 0 100
P3 0.25 1,000 100 V3 0 35
P4 0.30 1,000 100 V4 0.05 30
P5 0.25 1,000 100 V5 0.01 90
P6 0.25 1,000 100 V6 0.01 5
P7 0.25 1,000 100
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involving the binary variables is preserved. With the aim of reduc-
ing the number of binary variables, we assume that no valve has
to be placed on forest links P6 and P7. In this case, it is possible
to set z−P6

¼ zþP6
¼ z−P7

¼ zþP7
¼ 0 and enforce constraints at nodes

hV5
and hV6

by appropriately modifying minimum and maximum
allowed hydraulic heads at the root node V3, taking into account the
head losses occurring across forest links:

hminðV3Þ←maxfhminðV3Þ; hminðV5Þ þ ϕP6
ðdV5

Þ;
hminðV6Þ þ ϕP7

ðdV6
Þ þ ϕP6

ðdV5
Þg ð27Þ

hmaxðV3Þ←minfhmaxðV3Þ; hmaxðV5Þ þ ϕP6
ðdV5

Þ;
hmaxðV6Þ þ ϕP7

ðdV6
Þ þ ϕP6

ðdV5
Þg ð28Þ

It is therefore possible to ignore all variables and constraints
related to forest nodes and links while preserving the feasibility
of the solution. However, as we see in the remainder of this section,
the computed valve configuration can be sub-optimal, since we dis-
card links P6 and P7 from the set of candidate locations. In com-
parison, the elimination of binary variables related to links P2 and
P4 while enforcing feasibility at node V2 requires the inclusion of
the pseudo-link P8 as candidate valve location. In fact, the simple
exclusion of both links P2 and P4 from the set of candidate loca-
tions would inevitably result in sub-optimal solutions.

Therefore, we propose the following two stage algorithm.
Firstly, we introduce additional variables ηP8

, zþP8
, z−P8

, and solve
Problem (12) on the simplified network defined by ðP;VÞ—see
Fig. 2, with updated minimum and maximum allowed hydraulic
heads at node V3. At this first stage, the optimization process is
ignoring the existence of node V2 and the changes in elevation
occurring along the path composed of of links P2 and P4. The re-
sulting optimal locations are used to determine a set of candidate
locations for the second stage, where Problem (12) is solved on the
original full network model, with binary variables restricted to the
set defined in the first stage.

We solved Problem (12) on the reduced network using SCIP
and found the global optimum with valve placements on
P1;P5;P8. The set of candidate locations is then restricted to
fP1;P5;P2;P4g and Problem (12) is solved for the full network
model with SCIP. The optimal solution has a corresponding AZP
of 42.65 m and valves on links P1;P4;P5; compare with the global
optima of 39.53 with valves placed on links P4;P5;P7.

The implemented two-stage algorithm has resulted in a sub-
optimal solution. The reason for such an outcome is the exclusion
of forest links from the set of possible valve locations. In fact, the
significant changes in elevation occurring at nodes V5 and V6 re-
quires the installation of a control valve on link P7. Analogously, it
is possible to define examples where the sub-optimality is caused
by ignoring changes in elevations occurring across a sequence
of demand nodes discarded by contraction. In order to limit the
level of sub-optimality, we include a simple heuristic in the model-
reduction algorithm to preserve those links that connect nodes with
elevation differentials bigger than some constant εthres > 0; we dis-
cuss how to choose appropriate εthres values in the Numerical
Results section. We then apply the two-stage approach outlined
using ToyNet.

In general terms, the model reduction algorithm proceeds as
follows—for a detailed description see Appendix S1. A procedure
for computing network forest and core is presented in Simpson et al.
(2014), with the aim of improving computational efficiency of
hydraulic simulation. We extend the approach by Simpson et al.
(2014) in order to enforce the satisfaction of minimum and maxi-
mum pressure constraints (8) and (9) at forest nodes. The second
stage of our algorithm involves the elimination of all trivial loops.
These can be collapsed into a single node, the root of the loop,
whose hydraulic head is equal to the hydraulic heads of every
other node. Because all the links involved in the trivial loops have
zero flow, such links cannot be candidates for valve placement.
Consequently, trivial loops are considered as member of the forest.
Finally, we operate the contraction of sequences of links connecting
nodes with zero demand by introducing hydraulically equivalent
pseudo-links.

Let P and V be the index sets of all network links and nodes,
respectively, resulting from the model reduction routine. Let
ΦPðqtðPÞÞ ≔ diagðϕPð1ÞðqtPð1ÞÞ; : : : ;ϕPðjPjÞðqtPðjPjÞÞÞ. The restric-

tion of Problem (12) to the network defined by ðP;VÞ can be
formulated as follows:

minimize
1

nlŴ

Xnl

t¼1

ŵTðĥt − ξðVÞÞ

subject to ΦPðq̂tÞ þA12ðP;VÞĥt þA10ðP; ∶Þht
0 þ η̂t ¼ 0;

t¼ 1; : : : ;nl

A12ðP;VÞT q̂t − dðVÞt ¼ 0; t¼ 1; : : : ;nl

ðq̂tÞt; ðĥtÞt; ðη̂tÞt; ẑþẑ− satisfy ð4Þ–ð11Þ restricted to ðP;VÞ
ẑþ; ẑ− ∈ f0;1gjPj; ð29Þ

where the following notation is adopted: given a matrix B, the ex-
pressionBðI; JÞ denotes the sub-matrix composed by rows and col-
umns of B whose indices are in I and J, respectively. The above
formulation includes a smaller number of variables and constraints
with respect to Problem (12). In particular, Problem (29) has less
nonlinear constraints, thus reducing the total nonconvexities, and a
smaller number of binary variables.

After solving Problem (29), let ẑþ and ẑ− define optimal valve
placements for the reduced model, which we shall use to define
candidate valve locations for the original full network. If a valveFig. 2. ToyNet reduced model.
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is placed on a pseudo link, then all links contracted in making it
become candidate locations. Similarly, if a valve is placed on a real
link of the reduced model, then that link also becomes a candidate
valve location. This can be implemented using binary cuts as
follows, where zþj and z−j are set to zero for non-candidate links j.
Let ẑb ¼ 0 ∈ Rnp , then:
• if ẑþl þ ẑ−l ¼ 1 and PðlÞ is not a pseudo-link, we set

ẑbðPðlÞÞ ¼ 1.
• if ẑþu þ ẑ−u ¼ 1 and PðuÞ is a pseudo-link, let Pðl0Þ; : : : ;PðlNÞ

be the sequence of links that have been contracted in PðuÞ.
We set ẑbðPðljÞÞ ¼ 1, ∀j ∈ f0; : : : ;Ng.
Using ẑb, we add binary cuts to the original Problem in (12) to

form the MINLP:

minimize
1

nlW

Xnl

t¼1

wTðht − ξÞ

subject to ðqtÞt; ðhtÞt; ðηtÞt; zþ; z− satisfy ð2Þ–ð10Þ
zþ ≤ ẑb

z− ≤ ẑb

zþ; z− ∈ f0; 1gnp ð30Þ

The binary cuts introduced in Problem (30) considerably reduce
the combinatorial complexity with respect to Problem (12) and
make the problem easier to solve. In fact, as a consequence of the
binary cuts, many binary variables in Problem (30) are fixed. The
proposed two-stage method is characterized by the subsequent sol-
ution of Problems (29) and (30) and is summarized in Algorithm 1
and Fig. 3.

As observed before, the constraints in Problem (29) do not in-
clude information about discarded nodes involved in elevation
changes smaller than εthres. Therefore, Problem (29) represents
an approximation of the original Problem (12), which was formu-
lated on the full network model. The reduction in accuracy of such
approximation becomes higher for larger εthres. A computational
evaluation of the exact level of sub-optimality caused by a particu-
lar value of εthres would be possible only by applying a global
MINLP solver, which is not practical in problem instances for com-
plex water networks. Nonetheless, based on the illustrative example
ToyNet and the results reported in the Numerical Results section,

we conjecture that the larger the value of εthres, the greater the
possibility of obtaining a severely sub-optimal solution from
Algorithm 1 and demonstrate that physically reasonable values
can be derived by solving the problem for larger values and gradu-
ally decreasing εthres until no improvements can be shown or the
problem becomes intractable.

Algorithm 1: Two-stage method for optimal placement and
operation of control valves
1: Input: Network properties and an elevation threshold εthres
2: Apply the network reduction and compute index sets P, V
3: Stage 1: solve Problem (29) and obtain ẑþ and ẑ−
4: Define vector ẑb
5: Stage 2: solve Problem (30)

Solution Method

We observe that Problems (12), (29), and (30) are mixed integer
nonlinear programs (MINLPs) with similar structure, involving
nonlinear equality constraints and a number of linear constraints.
As a consequence, we apply the same solution method to all three
problems. We implement the Outer Approximation with Equality-
Relaxation (OA/ER), which was initially employed by Kocis and
Grossmann (1987) for problems in process synthesis optimization.
OA/ER relies on the solution of an alternating sequence of master
mixed integer linear programs (MILPs) and primal nonlinear pro-
grams (NLPs), until a termination criteria is met. Master MILPs are
defined by linearizations of the nonlinear equality constraints. In
the case considered here, at each iteration, the solution of the master
MILP results in a set of candidate valve locations. On the other
hand, the primal NLP corresponds to the problem of optimizing
valves control settings, while their locations are fixed. A detailed
description of the OA/ER algorithm can be found in Appendix S2.

Under suitable convexity assumptions OA/ER converges to the
globally optimal solution, see Floudas (1995, Section 6.5). How-
ever, the functions involved in the nonlinear equality constraints
within Problems (12), (29), and (30) are nonconvex, hence OA/ER
is applied only as a local optimization method. In this work, we
terminate OA/ER if the master MILP is infeasible or the best ob-
jective function values are not decreasing in consecutive iterations.

Model reduction:
Separate forest from core of the network
Eliminate “leafy loops”
Contract sequence of consecutive core
links connected by zero-demand nodes
and with an elevation difference below
the threshold

Stage 1: solve the restriction
of the MINLP problem on the
reduced model –
i.e. Problem (30)

Use optimal valve locations for
the reduced model to define
candidate valve locations for the
full network

Stage 2: solve the optimal
placement MINLP problem for
the full network model with
restricted candidate locations –
i.e. Problem (31)

Input network’s properties and set
an elevation threshold

START

END

Fig. 3. Flowchart of Algorithm 1.
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The nonconvexity of the equality constraints has two main ef-
fects on the application of OA/ER to Problems (12), (29), and (30).
Firstly, the corresponding primal NLPs are nonconvex and the ap-
plication of gradient-based NLP solvers results in local optima,
with no theoretical guarantee of global optimality. Secondly, the
linearized constraints within the master MILP may cut out portions
of the feasible set, discarding the globally optimal choice of binary
variables. As shown in the next section, this can result in early
termination of the OA/ER algorithm, due the infeasibility of the
master MILP caused by inconsistent linearised constraints.

Consequently, the quality of the solutions computed by OA/ER
depends on the initialization. We initialize OA/ER using the solu-
tion of Problem (12) with nv ¼ 0, which is feasible provided that
hydraulic heads and flows satisfy constraints (4)–(9) when no valve
is installed. We observe that solving Problem (12) with nv ¼ 0 is
equivalent to simulating the network model without valves. Alter-
natively, the authors in Viswanathan and Grossmann (1990) have
proposed to initialize OA/ER with the solution of the NLP relax-
ation of Problem (12), where the binary constraints in (12) are
ignored and variables zþj and z−j are allowed to assume any value
between 0 and 1, for all j ∈ f1; : : : ; npg. The numerical results
reported in the next section show that good quality solutions can
be achieved by applying one of these two initialization strategies.

Numerical Results

The developed model reduction and OA/ER methods for the sol-
ution of Problem (12) have been evaluated using two large opera-
tional network models. The solver IPOPT (v3.12.6) (Waechter and
Biegler 2006) is used to solve the primal NLP problems within
OA/ER as well as any NLP needed to initialize OA/ER. IPOPT
is implemented in MATLAB through the interface provided by the
OPTI TOOLBOX (Currie and Wilson 2012). Moreover, in the im-
plementation of IPOPT we directly supply the solver with sparse
gradients and Jacobians, in order to take advantage of the very
sparse structure of our problem. The master MILP within OA/ER
is solved using the commercial solver GUROBI (v7.0) (Gurobi
Optimization 2017), and implemented in MATLAB using the sup-
plied interface with tolerance for the relative MIP optimality gap set
to 0.01. All other GUROBI options were set to their default values.
In particular, these include the presolving routines, that are applied
before starting the linear programming based branch and bound
algorithm implemented in GUROBI. In order to provide a fair
comparison between the different instances, we report the total
CPU time employed by OA/ER to reach a solution as well as the
number of IPOPT iterations, the amount of simplex iterations, and
the number of nodes visited by the branch and bound algorithm
within GUROBI—these are referred to as “BB Nodes” in Tables 4,
6–8, and 10. All computations were executed within MATLAB
2016b-64 bit for Windows 7, installed on a 2.40 GHz Intel
Xeon(R) CPU E5-2665 0 with 16 Cores and 32 GB of RAM.

Case Study 1

We first consider BWFLnet, network model of the Smart Water
Network Demonstrator, a “Field Lab” operated by Bristol Water,
InfraSense Labs at Imperial College London and Cla-Val presented
in Wright et al. (2015). This water supply network consists of 2,310
nodes, 2,369 pipes and two inlets (with fixed known hydraulic
heads) —see also Table 2, where the quantities ðnp − nnÞ=np and
2np=nn correspond to the loopiness of network topology and
the average degree of connectivity per node, respectively. We ob-
serve that BWFLnet represents a typical network in urban area in

United Kingdom, which is characterized by a tree-like structure
with few loops. In addition, since its average degree of connectivity
per node is close to 2, the network model includes a large number
of link sequences (possibly involving non-zero demand nodes). As
a consequence, we expect the proposed model reduction procedure
to result in considerable computational savings. Following the
work by Wright et al. (2015), the network operator has already in-
stalled three PRVs, currently operated in order to minimize AZP as
a surrogate measure for leakage. For the purpose of this numerical
experiment, the presence of the PRVs is ignored and their corre-
sponding links are modelled without PRVs. This is useful also be-
cause wewant to analyze the degree of sub-optimality of the current
locations. The network graph is presented in Fig. 4. The frictional
head losses are modelled in BWFLnet using the HW formula. In
this study, we use the quadratic approximation of the H-W formula
proposed in (Eck and Mevissen 2015), where the maximum veloc-
ity in each pipe is set to 3m=s.

In the present formulation we consider 24 different demand con-
ditions, one for each hour of the day. The minimum allowed pres-
sure head at demand nodes is 18 m, while this value is relaxed to
zero for nodes with no demand. We formulate Problem (12) for the
optimal placement and operation of 1–5 control valves, addressing
the minimization of AZP, for the full network model. The number
of continuous variables, binary variables and constraints is reported
in Table 3.

We initialize OA/ER using the solution of Problem (12) with
nv ¼ 0. With this initial point, the OA/ER algorithm has success-
fully converged after two iterations to (local) solutions in all

Table 2. Network topological characteristics for the two case studies

Name np nn n0 nl

np − nn
np

2np
nn

BWFLnet 2,369 2,310 2 24 0.025 2.0251
NYnet 14,830 12,523 7 1 0.156 2.368

Fig. 4. BWFLnet with current valve configuration.

Table 3. Problem size for the two case studies

Name
No. cont.

var.
No. bin.
var.

No. lin.
const.

No. nonlin.
const.

BWFLnet 169,152 4,738 285,234 56,856
NYnet 42,183 29,660 86,674 14,830

Note: No. cont. var. = number of continuous variables; No. bin. var. =
number of binary variables; No. lin. const. = number of linear
constraints; and No. nonlin. const. = number of nonlinear constraints.
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instances. The number of iterations taken from OA/ER is limited
because of the nonconvexity of the constraints; once the first iter-
ation is completed and a vector of binary variables has been iden-
tified, the set of linearised constraints becomes inconsistent and so
the master MILP at the second iteration is infeasible.

If we fix the locations of PRVs to those currently installed by the
network operator in BWFLnet, we obtain an optimized AZP value
of 37.48 m. Therefore, the application of OA/ER for the placement
of three control valves has resulted in a good quality configuration
with a slightly lower value of the objective function—see Table 4.
This is in agreement with the numerical results reported in Kocis
and Grossmann (1987) and Viswanathan and Grossmann (1990),
where OA/ER has resulted in near-optimal solutions for problems
in process synthesis optimization. Finally, the overall computa-
tional performance is summarized in Table 4.

The number of nodes explored in the branch and bound pro-
cedure grows rapidly with nv and so does the CPU time. However,
for the considered case study, the computational effort required for
OA/ER to converge is limited to a few hours, on the desktop ma-
chine used for the numerical tests reported in Table 4. When the
considered network model is larger, the combinatorial problem
could become intractable and the implementation of MINLP sol-
ution algorithms that efficiently exploit multiple available CPU
cores is subject of ongoing research (Ralphs et al. 2018). In addi-
tion, in order to improve the quality of the solutions, it is sometimes
convenient to implement a multi-start optimization strategy, where
OA/ER is executed with many different initial points. Furthermore,
it is possible to seek the minimization of additional objective func-
tions together with AZP. In this case, standard approaches require
the solution of a parametrized sequence of MINLPs with the same
structure as Problem (12)—see Pecci et al. (2017d) for an example.
Under such circumstances, the computational burden could easily
become impractical.

In order to reduce the computational effort, we investigate the
application of the two stage approach outlined in Algorithm 1.
Firstly, we focus on the choice of εthres. In the following, the ratio
jPj=np is used as surrogate measure of the reduction in computa-
tional burden, as the number of binary variables is 2jPj. In addition,
we conjecture that the larger value of εthres, the higher the possibil-
ity of generating a sub-optimal solution—see the example ToyNet
in the Model Reduction section.

Numerical tests show that, for this case study, very small/
negligible model reduction is achieved for εthres > 5 and no further
reduction is achieved when εthres > 28. Therefore, we report in Fig. 5
the values of jPj=np corresponding to εthres ∈ f0; 1; 2; : : : ; 28g.
Fig. 5 shows that the most significant reductions in problem size
occur for εthres ≤ 3. Elevation differences of such magnitude are
analogous to the order of uncertainty usually experienced in WDN
models. In particular, pressure control in operational water networks
is subject to multiple sources of data and modelling errors. These
include stochastic nature of customer demand, dynamic hydraulic
conditions, uncertainty affecting the hydraulic model and the data,
and failures of the control pilots and equipment—see the experi-
mental study reported in (Wright et al. 2015).

In the following, we investigate the computational performance
of Algorithm 1 with εthres ∈ f1; 2g.

The size of the simplified network after the different stages of
the reduction algorithm is summarized in Table 5. When εthres ¼ 1,
the final reduced network is composed of roughly 45% of the links
and nodes of the full order model. In comparison, if εthres ¼ 2, the
network size is reduced by roughly 65%. In both cases, the formu-
lation of Problem (29) results in a considerably smaller nonconvex
MINLP than the one formulated for the full network model, with
the number of binary variables reduced by roughly 45% and 65%,
respectively.

Following Algorithm 1, OA/ER is applied to solve Problem (29)
and then Problem (30), for each choice of εthres ∈ f1; 2g. The per-
formance of Algorithm 1 with εthres ¼ 1 is reported in Table 6. In all
instances, it results in the same solutions computed with the full
network model. However, we observe that both computational time
and number of nodes visited by the branch and bound algorithm are
reduced by an order of magnitude. In addition, Table 6 shows that
the number of nodes visited during the second stage of Algorithm 1
is either zero or very small (<10). This is because, at this stage,
OA/ER is applied to solve Problem (30), where binary cuts have
been added to restrict the set of feasible binary variables according
to the solution computed at the previous stage.

Table 4. Overall performance of OA/ER applied to the full network model
BWFLnet

nv AZP (m)
CPU

time (s)
OA/ER
iter

Simplex
iter

BB
nodes

IPOPT
iter

1 44.84 315 0 — — 2
1 147,336 47 19
2 0 0 —

2 39.61 680 0 — — 2
1 1,017,019 1,090 43
2 68,159 0 —

3 36.43 4,527 0 — — 2
1 4,765,154 5,428 49
2 95,564 0 —

4 34.49 31,987 0 — — 2
1 25,428,435 42,738 86
2 0 0 —

5 33.40 87,667 0 — — 2
1 44,096,088 78,042 57
2 0 0 —

0 5 10 15 20 25

tres

0.2

0.4

0.6

0.8

1

|P
|/n

p

Fig. 5. Values of jPj=np corresponding to εthres ∈ f0; 1; 2; : : : ; 28g.

Table 5. Subsequent reductions of BWFLnet dimensions, with εthres ¼ 1; 2

Model reduction stage

εthres ¼ 1 εthres ¼ 2

jPj=np jVj=nn jPj=np jVj=nn
Initial 1 1 1 1
Forest-core decomposition 0.72 0.72 0.61 0.60
Final 0.46 0.44 0.35 0.34
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When a larger threshold is considered, the computational per-
formance is further improved. However, as observed in the previous
sections, Algorithm 1 is more likely to converge to sub-optimal
solutions. In the case considered here, the use of εthres ¼ 2 results
in slightly worse solutions in the case of nv ¼ 3; 4; 5—see Table 7.
Nonetheless, the differences between AZP values from Tables 6
and 7 are smaller than the level of hydraulic head uncertainties
for models of operational water networks. The computational time
reported in Table 7 is reduced with respect to Table 6. However,
number of iterations, CPU time and amount of visited nodes re-
ported in Tables 6 and 7 are of the same order of magnitude in all
instances. Less conservative choices of εthres would result in small
reductions of network dimension and hence of computational ef-
fort, possibly with more severely sub-optimal solutions. Therefore,
we limited our analysis to the computational performance corre-
sponding to εthres ∈ f1; 2g.

Case Study 2

In this section, we evaluate the developed methods on a network
model with different size and level of connectivity from BWFLnet.
We consider NYnet (Ostfeld et al. 2008), which represents an
highly looped city network from USA—see Fig. 6. This network
model has 12,523 nodes, 14,830 pipes and 7 inlets (modelled as
nodes with fixed hydraulic heads) and has been previously pre-
sented in the framework of optimal sensor placement (Ostfeld et al.
2008). To the best of our knowledge, this network model has not

been previously used to evaluate solution methods for optimal
valve placement and operation problems, and the present study is
the only example where the considered problem is solved for a net-
work as complex as NYnet. The network topological properties are
reported in Table 2. Since NYnet is highly looped and it has a larger

Table 6. Computational performance of Algorithm 1 applied to BWFLnet
with εthres ¼ 1

nv AZP (m)
CPU

time (s) Stage
OA/ER
iter

Simplex
iter

BB
nodes

IPOPT
iter

1 44.84 68 1 0 — — 2
1 62,729 19 26
2 0 0 —

2 0 — — 2
1 34,881 0 19
2 0 0 —

2 39.61 206 1 0 — — 2
1 213,185 235 42
2 0 0 —

2 0 — — 2
1 37,946 0 43
2 86,836 0 —

3 36.43 599 1 0 — — 2
1 925,233 703 28
2 0 0 —

2 0 — — 2
1 42,009 6 49
2 41,815 0 —

4 34.49 3,289 1 0 — — 2
1 4,948,463 9,022 35
2 0 0 —

2 0 — — 2
1 41,745 3 86
2 0 0 —

5 33.40 8,856 1 0 — — 2
1 11,499,816 18,133 46
2 0 0 —

2 0 — — 2
1 51,172 7 57
2 46,693 0 —

Table 7. Computational performance of Algorithm 1 applied to BWFLnet
with εthres ¼ 2

nv AZP (m)
CPU

time (s) Stage
OA/ER
iter

Simplex
iter

BB
nodes

IPOPT
iter

1 44.84 57 1 0 — — 2
1 52,616 21 21
2 0 0 —

2 0 2 — —
1 34,881 0 19
2 0 0 —

2 39.61 141 1 0 — — 2
1 121,604 137 32
2 0 0 —

2 0 — — 2
1 37,946 0 43
2 86,836 0 —

3 36.50 370 1 0 — — 2
1 538,511 518 20
2 0 0 —

2 0 — — 2
1 41,547 5 47
2 40,774 0 —

4 34.55 1,781 1 0 — — 2
1 2,121,801 6,159 27
2 74,406 0 —

2 0 — — 2
1 42,466 3 79
2 0 0 —

5 33.46 7,401 1 0 — — 2
1 11,189,820 22,695 74
2 0 0 —

2 0 — — 2
1 50,593 7 39
2 45,438 0 —

Fig. 6. NYnet.
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average degree of connectivity per node than BWFLnet, we expect
the model reduction algorithm to have a less significant impact on
the size of the network and hence on the corresponding combina-
torial complexity of Problem (12)—see also Fig. 7. The NYnet
hydraulic model considers a single demand condition, by setting
nl ¼ 1. As a result, the number of continuous variables and con-
straints in the problem formulation is reduced in comparison to
BWFLnet (Table 3). This results in a smaller computational load
for the solution of the primal NLP problem for NYnet within
OA/ER by the solver IPOPT. However, computing optimal valve
locations for NYnet is more challenging in comparison to the case
of BWFLnet. This is due to the larger number of binary variables
(i.e., candidate valve locations, see Table 3) included in the prob-
lem formulation and the highly looped topology of NYnet, which
increases the degree of symmetry of the resulting MINLP. The pres-
ence of multiple demand conditions does not affect the combina-
torial difficulty of the problem, since the number of binary variables
remains the same. Some nodes experience low pressure, thus we set
the minimum pressure at demand nodes to 6m, relaxing this value
to zero for those nodes with no demand. The friction head loss
model used in NYnet is the DW formula, which we approximate
using smooth quadratic function as described by Eck and Mevissen
(2015). For the purpose of computing the approximation, we con-
sider values of the Reynolds number between 4,000 and the value
corresponding to a velocity of 3 m=s. However, during the optimi-
zation process, the maximum allowed velocity is set to 12 m=s, as
few network pipes are subject to very high velocities. We formulate
and solve Problem (12) on NYnet.

As observed in the previous sections, in the case of nonconvex
constraints OA/ER is applied as a heuristic, hence the quality of the
computed solutions depends significantly on algorithmic initializa-
tion. OA/ER results in poor quality solutions for nv ¼ 2; 3; 4; 5
when it is initialized using the solution of Problem (12) with
nv ¼ 0. Therefore, we initialize OA/ER by means of the solution
of the NLP relaxation of Problem (12), obtained by ignoring the
binary constraints in (12) and allowing variables zþj and z−j to as-
sume any value between 0 and 1, for all j ∈ f1; : : : ; npg. With such
initial point, in instances with nv ¼ 1; 2; 3, the algorithm converges
to good quality solutions, which are reported in Table 8 together
with the computational performance. Table 8 shows that the solu-
tion of the continuous relaxation of Problem (12) requires a sub-
stantial computational effort from IPOPT—this is expected, as
continuous relaxations of MINLPs are known to be difficult to
solve. However, we observe that the solution of the primal NLP
problem at iteration 1 requires a reduced number of IPOPT itera-
tions with respect to what reported for BWFLnet—see also Table 4.

On the contrary, the number of simplex iterations and nodes visited
by GUROBI is larger than what reported in Table 4 for BWFLnet.

The cases of nv ¼ 4; 5 show the limitations of the application of
OA/ER to the network in study. In particular, after two iterations of
OA/ER no feasible solutions for nv ¼ 4 was generated and the op-
timization process was manually terminated. At the same time, the
reported solution of the master MILPs is computationally expen-
sive, with a large number of nodes visited by the branch and bound
procedure. During an outer approximation algorithm, the genera-
tion of infeasible binary choices is not unexpected. Binary cuts are
included in the formulation of the master MILP to prevent the
algorithm from generating the same infeasible binary assignments
more than once. As a consequence, it is possible that OA/ER would
eventually produce a feasible solution, in a sufficiently large num-
ber of iterations. However, for the purpose of the present study, we
decided to interrupt the iterative search after two consecutive infea-
sible binary solutions, because of time constraints. The complexity
of the considered problem is further amplified for nv ¼ 5. In this
case, the optimization process was manually interrupted during the
first iteration of the OA/ER algorithm, with GUROBI experiencing
very slow progress towards the solution of the master MILP. In fact,
after a longer CPU time than what reported for the entire run with
nv ¼ 4, the relative optimality gap is still equal to 7.90%.

We investigate the effect of the presented model reduction
routine on the dimension of NYnet and hence on the size of the
corresponding combinatorial problem for optimal placement and
operation of control valves. Numerical tests on NYnet show that
no further reduction is possible when εthres > 19 and that the maxi-
mum decrease in the number of pipes is around 25%—see Fig. 7.
In addition, Table 9 shows the reductions in model size achieved by
the simplification procedure, when εthres ¼ 3.

0 5 10 15

tres

0.7

0.75

0.8

0.85

0.9

0.95

1

|P
|/n

p

Fig. 7. Values of jPj=np corresponding to εthres ∈ f0; 1; 2; : : : ; 19g.

Table 8. Overall performance of OA/ER applied to the full network model
NYnet

nv AZP (m)
CPU

time (s)
OA/ER
iter Simplex iter BB nodes

IPOPT
iter

1 30.80 610 0 — — 235
1 94,485 41 11
2 73,872 0 —

2 30.49 2,112 0 — — 581
1 983,186 6,177 18
2 66,746 0 —

3 26.68 7,601 0 — — 1,084
1 7,618; 460 43,185 18
2 0 0 —

4 — 819,189 0 — — 978
1 273,950; 103 1,173; 708 Infeasible
2 202,464; 015 970,874 Infeasible

5 — 1,032,790 0 — — 1,168
1 173,250; 345 4,299; 016 —
2 — — —

Table 9. Subsequent reductions of NYnet dimensions with εthres ¼ 3

Model reduction stage

εthres ¼ 3

jPj=np jVj=nn
Initial 1 1
Forest-core decomposition 0.81 0.78
Final 0.76 0.71

© ASCE 04019014-10 J. Water Resour. Plann. Manage.
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We implement Algorithm 1 for solving Problem (12) on NYnet,
with εthres ¼ 3. As we can see from Table 10, in the cases of
nv ¼ 1; 2; 3, the two-stage approach results in the same solutions
as those reported in Table 8, when OA/ER was directly applied to
the full network model. In addition, as expected, the time required
to generate a solution is smaller when the model is reduced. In par-
ticular, in the first stage of Algorithm 1, the number of nodes visited
by the branch and bound procedure is reduced by up to a factor of
3.7, compared to what reported in Table 8. Nonetheless, the gains in
computational burden are not as significant as for the case of the
BWFLnet model. The application of the model reduction algorithm
did not enhance the ability of OA/ER to solve the considered prob-
lem for nv ¼ 4; 5. In particular, for nv ¼ 4, no feasible solution was
found after two iterations of OA/ER and the algorithm was inter-
rupted. Furthermore, the method was manually terminated in the
case nv ¼ 5, as GUROBI showed a slow progress towards the sol-
ution of the master MILP. This limitation in impact of the model
reduction algorithm is explained by the high density of the NYnet
network model, where the forest and pipe sequences for contraction
constitute a smaller fraction of the network.

The challenging computational experience of the solver
GUROBI is caused by the characteristics of the case study. Firstly,
the number of binary variables involved in the formulation of Prob-
lem (12) for NYnet is an order larger than the number of binary
variables corresponding to BWFLnet—see Fig. 3. In addition, as
observed at the beginning of this section, NYnet is highly looped
and presents an higher level of connectivity than BWFLnet. As a
result, the solution space for NYnet is characterised by an increased
degree of symmetry, with multiple valve configurations resulting in
similar AZP performances. It is well known that symmetry of an
integer program results in the generation of a large enumeration tree
within the branch and bound procedure and therefore should be

detected and removed (Liberti 2012; Margot 2010). Therefore, in
the case of networks that are not highly looped (i.e., np − nn ≪ np)
with ð2np=nnÞ ≪ 3, we expect the model reduction to considerably
reduce the computational cost associated with the solution of the
optimal valve placement and operation problem, as reported for the
case of BWFLnet. In comparison, further investigation is needed on
symmetry-breaking techniques to reduce the computational load
required to optimally locate control valves in highly looped water
networks with an high level of connectivity.

Conclusions

In this paper, we have proposed and investigated the application of
model reduction and outer approximation with equality relaxation
(OA/ER) algorithms for generating good quality solutions for the
problem of optimal valve placement and operation in water distri-
bution networks. The numerical results reported in the manuscript
suggest that OA/ER has enabled the convergence to good quality
solutions when large operational water networks with a relatively
low number of loops are considered. The numerical experience
also indicates that OA/ER can fail to generate a solution for highly
meshed network instances. Since the computational load of solv-
ing the considered optimization problem grows combinatorially
with the network dimensions, we have proposed the application of
model reduction techniques for water distribution networks. The
reformulation of the considered optimization problem on a reduced
network model does not result in an equivalent MINLP and its
solution can be severely sub-optimal. As a consequence, we have
introduced an arbitrary parameter of the model reduction algo-
rithm in order to regulate the trade-off between reducing com-
putational complexity and potential sub-optimality of the solutions.
The numerical results reported in the manuscript show that, when
networks with a relatively lower number of loops are considered
(e.g., more branched systems common in United Kingdom), sig-
nificant computational gains can be made by integrating model
reduction approaches and OA/ER algorithm, without affecting the
quality of the solutions. Furthermore, we have demonstrated that
the proposed model reduction routines have limited effect on highly
looped, dense water networks where the problem presents high
degree of symmetry (e.g., networks from United States). Future
work will investigate the application of symmetry-breaking tech-
niques for solving the problem of optimal placement and operation
of control valves in complex and highly looped water distribution
networks.
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Notation

The following symbols are used in this paper:
A12, A10 = edge-node incidence matrices for the nn nodes

and n0 water sources, respectively;
dt = nodal demands at time t;
e = vector composed of ones;

Table 10. Computational performance of Algorithm 1 applied to NYnet
with εthres ¼ 3

nv
AZP
(m)

CPU
time (s) Stage

OA/ER
iter

Simplex
iter BB nodes

IPOPT
iter

1 30.80 573 1 0 — — 237
1 85,557 42 12
2 66,823 0 —

2 0 — — 27
1 30,284 3 11
2 30,697 0 13

2 30.80 1,513 1 0 — — 746
1 400,713 3,078 14
2 55,245 0 —

2 0 — — 29
1 31,120 11 Infeasible
2 31,949 7 14
3 72,626 0 —

3 26.68 2,379 1 0 — — 644
1 2,231,130 17,193 20
2 57,614 0 —

2 0 — — 32
1 29,088 11 18
2 29,383 0 —

4 — 36,584 1 0 — — 882
1 21,942; 579 290,218 Infeasible
2 23,802; 048 334,473 Infeasible

5 — 83,857 1 0 — — 1,334
1 53,282; 719 1,455; 812 —
2 — — —
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ht
max, ht

min = vectors of maximum and minimum hydraulic
heads at nodes, respectively;

ht, ĥt = full scale and reduced vectors of unknown
hydraulic heads at time t, respectively;

Lj = length of pipe j;
Mþ, M− = diagonal matrices of large positive constants;

nl = number of loading conditions;
n0 = number of water sources;

np, nn = number of pipes and nodes, respectively;
nv = number of valves to be installed;

P, V = index sets of pipes and nodes in the reduced
network model, respectively;

Qmax = diagonal matrix with diagonal elements equal to
qmax
1 ; : : : ; qmax

np ;
qmax
j = maximum flow allowed across pipe j;

qt, q̂t = full scale and reduced vectors of unknown flows at
time t, respectively;

w, ŵ = full scale and reduced vectors of weights,
respectively;

ẑb = vector used to define binary cuts;
zþ, z− = vectors of binary variables for the full scale

network model;
ẑþ, ẑ− = vectors of binary variables for the reduced network

model;
εthres = parameter used within the model reduction routine;
ηt, η̂ = full scale and reduced vectors of unknown

additional head losses, respectively;
ξ = vector of nodal elevations; and

Φð·Þ, ΦPð·Þ = friction head loss functions for full scale and
reduced network models, respectively.

Supplemental Data

Appendixes S1 and S2 are available online in the ASCE Library
(www.ascelibrary.org).
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