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steps before and after IVA are also discussed so that a whole estima-
tion road map is formed.

Both simulation and experimental analysis are provided to val-
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Abstract

To better understand how brain signals are processed and even how the human mind
works, analyzing the hemodynamic signal model is one of the most essential steps. In
the CUBE group of Erasmus MC, functional ultrasound (fUS) data of a mouse’s brain
is recorded. By using this fUS dataset, this thesis will solve the problem regarding the
joint estimation of hemodynamic response function (HRF) and the underlying stimulus.
Usually, hemodynamic responses are investigated in the time domain, while this thesis
provides another perspective from frequency domain signal processing.

We consider the hemodynamic response as a convolutive signal mixture, then try
to transform it into an instantaneous mixing model by converting the context into the
frequency domain. By applying independent vector analysis (IVA), this estimation
problem can be solved without facing permutation ambiguity which is a well-unknown
problem regarding independent component analysis (ICA). Additional steps before and
after IVA are also discussed so that a whole estimation road map is formed.

Both simulation and experimental analysis are provided to validate this estimation
algorithm. Results show that by using this method, both stimulus and HRF estimation
can be achieved satisfyingly in a suitable experimental setting. This thesis provides in-
sights and future potentials for IVA to be further investigated in neural signal processing
problems.
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Introduction 1
For generations, the human mind has always been a mysterious and exhilarating topic
that scientists dedicated countless time and efforts to investigate. One of the key
methods to unmask the mystery is by studying brain functional activation signals non-
invasively.

Due to the existence of neurovascular coupling (NVC), brain activation in certain
regions will cause an increasing requirement of blood flow, and this kind of metabolic re-
sponse is called hemodynamic response. There are many functional imaging techniques
used to capture this response, such as functional magnetic resonance imaging (fMRI)
and functional near-infrared spectroscopy (fNIRS). However, regarding the penetration
depth for image acquisition as well as spatial and temporal resolution, these methods
all have their limitations. In recent years, functional ultrasound (fUS) has emerged as
a competitive technology with the potential to be used widely for functional imaging
due to its portability, high spatial and temporal resolution, and low cost [1]. However,
practical requirements like opening the skull for probing can be a disadvantage for fUS,
but it is realizable in a laboratory environment. In this paper, signals collected using
fUS will be used for analyzing the hemodynamic response.

To investigate the hemodynamic response in one or more brain regions, a common
experimental design is to expose the test object to one or more stimuli, and then record
signals from regions of interest. A linear time-invariant (LTI) model is commonly used
to model this process, where the impulse response (IR) is called the hemodynamic
response function (HRF). Estimating HRF is one of the most essential topics in in-
vestigating brain activities because HRF serves as a link between the observed signals
and the underlying neural activities. In addition to HRF, the stimulus signal is also of
interest to many researchers, as it can be seen as input of the LTI system, and therefore,
represents the underlying neural activity. By jointly estimating HRF and stimulus, the
brain functional network and the whole cognitive process can be better understood.

Different from many previous works on this similar estimation problem which work
in the time domain, this thesis proposes a method performed in the frequency domain.
This new perspective exploits the convolutive nature of the observation signal and
transforms it into an instantaneous mixing problem at each frequency bin. The pro-
posed method is inspired by a similar mixing model in audio signal processing problems
where frequency domain techniques are more widely used.

1.1 Thesis Research Question

This thesis explains how HRF and stimulus are estimated, and the meaning of the
results. The main research question can be expressed as three smaller research questions
as listed below, which will be solved in this thesis sequentially.
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• RQ1: How to convert the signal estimation problem into frequency domain?

• RQ2: What frequency domain technique can be considered in solving this esti-
mation problem?

• RQ3: What neuroscientific insights can the estimation results give?

1.2 Thesis Outline

In this thesis paper, several neuroscientific background topics are introduced in Chapter
2, which are essential to getting into the actual research question itself as well as
developing the algorithm. In Chapter 3, previous literature related to HRF and source
estimation will be concluded which inspired the formation of this paper. After that, in
Chapter 4, the main methods implemented in each step of the estimation procedure are
explained. With these methods fully explained, in Chapter 5 the simulation pipeline
and corresponding results will be discussed, which investigates the proposed estimation
algorithm from a theoretical perspective. Then in Chapter 6, a similar procedure will
be used for experimental data which is recorded from a mouse’s brain using fUS. Both
pipeline steps and results will be explained here, and the results will be compared
and evaluated. Chapter 7 discusses existing limitations in the proposed estimation
procedure, and also gives several possible directions for future work. Finally, Chapter
8 concludes this paper.
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Background 2
In this chapter, background information about several topics related to neuroscience
will be explained in detail. First, functional ultrasound (fUS) is the imaging technique
involved in this thesis, and its working mechanism will be explained in Section 2.1.
After acquiring fUS imaging data, to further investigate the brain regional response to
different stimuli, brain mapping and its relation to the concerned estimation problem
will be introduced in Section 2.2. It can also help to explain the experiment result
which will be discussed in later chapters. Finally, for a better understanding of the
hemodynamic system, Section 2.3 will provide a visual example to explain the relation
of the brain, hemodynamic response, stimulus signal, and HRF.

2.1 fUS Imaging Technique

2.1.1 Comparison with other techniques

Techniques like fMRI, fNIRS, and fUS which are used to capture hemodynamic signals
share a similar mechanism that depends on the NVC process in the brain. When
neural activities happen in a certain brain region, the local blood flow will increase,
which gives the possibility to indirectly observe local brain activities by measuring the
blood movement.

For fMRI, blood oxygen level-dependent (BOLD) changes are captured using MRI
signals when the brain is activated in certain regions. Due to NVC, the concentration
change of deoxyhemoglobin which is significantly paramagnetic will influence the local
magnetic environment, and it will change the local MRI signal decaying speed [2].
For fNIRS, optical intensity measures are influenced by NVC instead of magnetic field
intensity. This technique provides lower spatial resolution compared with fMRI, yet
requires lower cost and gives better temporal resolution [3]. For fUS, Power Doppler
(PD) signals which come from ultrasound waves reflected back from brain tissues are
used to represent cerebral blood volume (CBV) change [4] [5], which will be explained in
detail in the next section. Since this indirect representation of neural activity through
signal measurements is shared among these techniques, they can also share similar
signal processing methods.

2.1.2 PDI Acquisition

Functional ultrasound imaging is based on the Doppler effect of blood cell movement in
a certain brain region. When the image acquisition begins, a set of tilted plane waves
are sent towards the brain tissue, and the ultrasonic energy scattered back will form
images that can be coherently summed into a compound image. This summation step
provides better image contrast and resolution, as well as a lower noise level.
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However, the resulting compound images contain not only information about blood
cell movement, but also other tissues. To only preserve changes due to blood cell
movement, a high-pass filter can be applied to compound images over time, which will
filter out the influence of tissues that moves slower than blood [6] [7].

After acquiring all the filtered compound images, power Doppler signals can be
calculated by averaging across several samples, as shown in equation 2.1 below. At the
spatial location (z, x) of the PDI, the pixel value can be calculated as:

I(z, x) =

∑Ns

j=1 |sf (z, x, tj)|2

Ns

(2.1)

where Ns is the number of filtered compound images for averaging; sf (z, x, tj) is the
pixel value of corresponding filtered compound image.

The obtained PDI signals are proportional to the CBV of corresponding locations.
Therefore, the underlying neural activities can be represented as changing CBV through
NVC mechanism, then ”translated” into PDI values using fUS imaging technique.

2.2 Brain Mapping

As explained in the previous sections, fUS is the neuro-imaging technique used in this
thesis. It can generate spatial maps which match pixel locations to PDI values. Sim-
ilarly, there are techniques that match biological properties (such as cellular gene ex-
pression) and functions (such as memory and cognition) of the brain to spatial regions,
which are called (functional) brain mapping [8].

Brain mapping can be considered a generalized form of neuro-imaging. With decades
of efforts in brain mapping research, scientists have gathered data and built several
successful projects for the human and animal brains, including the Allen Brain Atlas 1

[9] which will be referred to here. Allen Mouse Brain Atlas matches in situ hybridization
(ISH) data, which represents DNA or RNA sequence appearance in tissues, with spatial
regions in adult mouse brain.

For this thesis, visual stimulus is of concern, therefore visual cortex regions will be
investigated in the following parts. Figure 2.1 shows one slice of the Allen Mouse Brain
Atlas, which is located around the same position as the experimental data used in this
thesis. The visual cortex region is shown as dark green color, which locates on the
up-right and up-left corners of this image.

To investigate the regional behavior in the brain regarding visual stimulus, signals
from left and right visual cortex regions will be measured and analyzed in this thesis.
In this thesis, the regional brain property is represented through HRF, which can be
evaluated based on the Divided Visual Field Paradigm: a visual stimulus that appears
in the left visual field will lead to visual information projected to the right cerebral
hemisphere, and conversely, the visual stimulus appears in the right visual field will
be mainly projected to the left cerebral hemisphere [10] [11]. Therefore, the mapping
between the left/right visual cortex in the brain and the direction of visual stimulus
can be established.

1Website: https://mouse.brain-map.org/
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Figure 2.1: Coronal Mouse Brain Atlas from Allen Brain Map Database.
.

Although this paradigm has many limitations and is relatively coarse because the
connection between both cerebral hemispheres also exists [12], it still can serve as
general guidance to analyze visual stimulus-related measurements. The usage of this
paradigm will be demonstrated later in this thesis during experimental data analysis.

2.3 Hemodynamic Response

As mentioned in the previous section, one of the focuses of this thesis is to find out how
different brain regions respond to different stimuli through hemodynamic responses.
To introduce the hemodynamic system which we will dive into in later chapters, the
following figure shows a simplified illustration of the signals and terminologies.

As shown in Figure 2.2, the brain is activated by a stimulus signal (blue line),
which can be considered the source of the LTI system. In the small brain region of
concern (black square), the measured fUS signal is the hemodynamic response (red
line) to this stimulus, which can be considered the observation of the LTI system. The
hemodynamic response will be generally slower than the stimulus due to the processing
of this dynamic system. The impulse response of the dynamic system which represents
the regional property is HRF (green line). Here only two activation duration appears
in the stimulus signal as an example, while in the real case the number of activation
will be more.

Different from this simplified illustration, the estimation problem in this thesis will
consider not only one region of the brain but multiple, and the number of sources will
also be more than one. In this case, each of the brain regions will have a unique HRF

5



Figure 2.2: Hemodynamic-related signals at a certain brain position.

for each of the source stimuli.
To transfer this signal estimation problem to the frequency domain, a frequency

expression of HRF is needed, which is called the hemodynamic transfer function (HTF).
The expression of both HRF and HTF will be further explained in Chapter 4.
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Related Work 3
Functional brain mapping, as well as stimulus and HRF estimation, are among the
most concerning research topics in the neuro-signal processing field. This chapter in-
troduces existing literature about this signal estimation problem, as well as its similarity
with certain audio signal estimation problems. In Section 3.1, literature focusing on
time domain HRF and stimulus analysis will be briefly explained and concluded into
several categories. In Section 3.2, several frequency domain approaches which exploit
the hemodynamic signal model’s convolutive nature will be introduced. Finally, this
chapter will end by introducing several audio signal estimation methods that share a
similar convolutive model with the current problem. The related works introduced in
this chapter can serve as an inspiration that leads to the formation of the estimation
method used in this thesis.

3.1 Prior Work in Time Domain

Most of the previous works regarding HRF estimation are based on certain canonical
HRF models [13]. These models have a fixed expression and constrained parameters
that can be tuned to control signal properties like amplitude, peak delay, etc [14] [15]
[16]. By this simplified assumption of HRF signals, different algorithms were proposed
to estimate HRF parameters instead of the HRF itself. However, due to the complex
and still partly-unknown nature of neural signals, this parameterized method has its
limitations. One of the major drawbacks is that one fixed expression cannot adapt to
the varying HRF across the whole brain, nor among different stimuli.

To improve the HRF model flexibility and achieve better estimation results, HRF
modeling using signal basis sets can also be found in the literature. By linearly combin-
ing basis and fitting into the signal model, regression coefficients are estimated which
will finally be used to construct an HRF signal. Several well-known signal basis sets
are B-splines [17], finite impulse responses (FIR) [18], wavelets [19], and canonical HRF
with its derivatives with respect to time and dispersion [20]. This basis signals fitting
method is also known as the general linear model (GLM) [21]. HRF estimated using
this method can capture more differences across brain regions because it’s more flexible
compared to the parameter estimation method. Generally, the more basis signals are
used, the more reliable and accurate the HRF modeling can be, but it will also lead to
the over-fitting problem due to a large degree of freedom [22] [16]. Another limitation
is that, since the basis fitting process is based on the statistical model rather than the
physical model, the result may not be a faithful representation of the reality which
happens in the brain [23].

Another choice to estimate HRF is by using data-driven methods, which don’t
require a pre-defined HRF shape [24]. By using the data-driven method, the HRF
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result is less biased and even more flexible compared with GLM method [25].

In addition to estimating HRF, stimulus estimation is also a popular topic. As
previously illustrated in Fig. 2.2, in the hemodynamic model there are three signals of
concern. Then by putting noise into consideration, their relation can be expressed as:

x = h ∗ s+ n (3.1)

Here x is the hemodynamic response, h is the HRF, s is the stimulus signal, and
n is the additive noise. When estimating h, many previous methods are based on the
measured x as well as a known stimulus s, which will not always be available in exper-
iments. Therefore, the requirement of estimating both h and s based on measurement
x is of significance during hemodynamic analysis. To achieve this joint estimation of
both stimulus and HRF, simplifications are usually applied to the problem. For exam-
ple, some proposed methods assume the HRF is identical or constrained across brain
regions or events [26][16]. Some other methods for joint estimation are only applicable
to one-dimension observation data x instead of the whole brain [27] [28].

3.2 Prior Work in Frequency Domain

Though the frequency domain approach is widely used in other signal processing prob-
lems, the number of its application in hemodynamic signal estimation is still limited.
It is a generally more complex and indirect approach compared with the time domain
since it requires additional transformation. However, the frequency domain approach
provides the possibility to simplify the signal model from convolution mixture to in-
stantaneous mixture using Fourier transform.

Some literature performs hemodynamic analysis in the frequency domain assuming
both observation x and stimulus s are known (using the same symbol as in Eq. 3.1).
In [14], HRF is extracted from fMRI by applying the Fourier-wavelet regularised de-
convolution (ForWaRD) algorithm in the frequency domain to effectively mitigate the
influence of noise. ForWaRD algorithm is a regularisation technique that is used to
modify the frequency coefficient after raw HRF estimation by pointwise division. This
algorithm also relies on a parametric HRF model. In [29], cross-spectral density func-
tions are calculated for observations x and a fixed stimulus s by using periodograms.
And instead of estimating HRF itself, this method provides the total power of all HRFs
in the frequency domain as the final result.

When stimulus s is assumed unknown but periodical, frequency domain analysis
as discussed in [30] can be applied to a one-dimension observation, single stimulus
scenario. This method estimates the underlying correlation structure of hemodynamic
response signal by doing spectral density analysis. This method can effectively prevent
signal analysis from being affected by high-frequency artifacts.

Due to the small amount of literature that can be referred to regarding frequency
domain hemodynamic signal analysis, we’ll turn to literature about audio signal pro-
cessing to find further possibilities to solve this estimation problem.
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3.3 Prior Work in Audio Signal Estimation

A popular application field that may share a similar signal model with the concerned
joint estimation problem is the audio signal estimation problem. Therefore, methods
developed in the audio signal processing literature can be used as a reference to find
applicable methods which can be re-implemented for hemodynamic signal estimation.

In the audio signal estimation scenario, several microphones are placed at different
positions in a room, and each of them records a version of the displayed source signals.
The recording picked up by the microphone experiences reverberation in the room, so
the signals can be expressed in a convolutive model similar as Eq. 3.1. Now x represents
the audio signal recorded by the microphone, h is the room impulse response (RIR)
between one source and one microphone, and s is the displayed source signal. There are
two main topics in this audio estimation scenario: blind source separation (BSS) and
blind channel identification (BCI). BSS is to estimate source signals s when only the
recording signals are known. BCI is to estimate RIR and acoustical transfer functions
(ATF), which is the frequency domain expression of RIR, from the recordings.

To realize BSS, one of the most popular methods is by using independent component
analysis (ICA), either in the time or frequency domain [31]. This method is usually
used when source estimation is the priority since it doesn’t give a direct result about
channel information. This separation problem is comparable to estimating stimulus
signals, therefore ICA in the frequency domain is a potential choice, which will be
discussed further in the next chapter.

To perform joint estimation of both source and RIR, second-order statistics can be
utilized together with designed cost functions, which turns the estimation problem into
an optimization problem [32] [33].
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Methodology 4
In this chapter, the most essential steps and methods used to model and analyze hemo-
dynamic response signals are discussed in four sections. Section 4.1 will introduce model
assumptions for the hemodynamic system, as well as the use of short-time Fourier trans-
form which provides the possibility of moving the research problem to the frequency
domain. In section 4.2, the core technique used in the proposed analyzing pipeline,
Independent Component Analysis (ICA), and its higher dimensional extension, Inde-
pendent Vector Analysis (IVA), will be discussed in detail. After implementing IVA in
the algorithm, other necessary steps for getting estimations results and evaluation are
covered in Sections 4.3 and 4.4, whose results will be shown later in the next chapter.
Finally, in section 4.5 the HRF and HTF models will be explained.

4.1 Problem Formulation

4.1.1 Signal Modeling

The signal model assumption for this estimation problem can be expressed as a convo-
lution model as follows, which is an ideal model without considering noise:

xj(t) =
N∑
i=1

P−1∑
p=0

hji(p)si(t− p) (4.1)

Here xj(t) ∈ RT represents the jth hemodynamic response time sequence (observation),
where j = 1, 2, ...,M . Similarly, si(t) ∈ RT represents the ith stimulus signal time
sequence (source), where i = 1, 2, ..., N . The convolution mixing filter hji(p) ∈ RP

for the jth observation and the ith stimulus, is the corresponding time domain impulse
response, which is the HRF with length P .

Alternatively, this convolution model can also be written using the convolution
operator:

xj(t) =
N∑
i=1

hji(t) ∗ si(t) (4.2)

During simulation and experimental signal estimation which will be discussed in
later chapters, the presence of noise vj(t) ∈ RT will be considered, which is assumed to
be white and additive. Under this assumption, the model will be written as follows:

xj(t) =
N∑
i=1

hji(t) ∗ si(t) + vj(t) (4.3)
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In our setting, we assume both HRF and stimulus signals are unknown. Therefore,
the research question in the time domain can be interpreted as: Knowing M observation
time series xj(t), how to find N underlying sources si(t) and corresponding mixing filters
hji(t)?

4.1.2 Transformation Using STFT

To convert time series problems to the frequency domain, short-time Fourier transform
(STFT) can be used as a powerful tool. It can provide signal frequency domain infor-
mation that changes over time. For an L-point STFT, using a window function w(t)
and with a certain shift length J which creates enough overlap between windows, xj(t)
can be transformed into:

xf
j (k) =

L−1∑
l=0

w(l)xj(kJ + l)e−j2πωf l (4.4)

where ωf = (f − 1)/L, with f = 1, 2, ..., L as the frequency.
For a window length L large enough than the length of mixing filter hji(p) [34], the

convolution model expressed in Eq. 4.2 can be transformed into frequency domain by
applying STFT on both sources si(t) and observations xj(t). Then the signal model
can be rewritten in the frequency domain as:

xf
j (k) =

N∑
i=1

hf
jis

f
i (k) (4.5)

here both xf
j (k) and sfi (k) are STFT coefficients of frequency f at the k-th time frame.

The discrete-time notation used here is k, which represents the STFT time frame
index, and it will be mostly omitted from the rest of this thesis paper for convenience.
For example, random variable xf

j represents the STFT coefficient at frequency bin f
and observation j.

Equation 4.5 can be combined across frequency bins at certain observation j into
an array of time series, represented as:

xj = [x1
j , ..., x

f
j , ..., x

F
j ]

T (4.6)

Similarly, 4.5 can also be combined across observations at a certain frequency f :

xf = [xf
1 , ..., x

f
j , ..., x

f
M ]T (4.7)

Their dimensions are xj ∈ RF×K and xf ∈ RK×M .
Due to the instantaneous mixing nature of signals in each frequency, equation 4.5

can be expressed in matrix form:

xf = Hfsf (4.8)

where H ∈ RM×N×F is the 3-D mixing array which stores the values of each Fourier-
transformed convolutive filter hji together, and Hf represents the un-mixing matrix at
each frequency f , as shown in the bottom sub-image in Figure 4.1.
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To combine equation 4.6 and 4.7 further, the 3-D array representation of xf
j can

be written as X ∈ RF×K×M , as shown in the top-right sub-image of Figure 4.1. Here
xf
j is the elemental entry, and xj and xf can be seen as 2-D slices inside X at certain

observation j and frequency f , respectively. Similarly, the source signals can also be
represented as 3-D array S ∈ RF×K×N , as the top-left sub-image of Figure 4.1.

Figure 4.1: 3-D arrays S (top left), X (top right), and H (bottom)

After this step, the research problem can be expressed further as a short-time Fourier
estimation problem: Knowing the observation 3-D array X, how to estimate the under-
lying source S and corresponding system mixing matrix Hf? To make sure this model
is solvable, not only the window length L used for STFT should be long enough then
the convolutive filter hji(p), but the equation number should also be larger than the
total unknown number in model 4.8, which can be expressed as N ≤M .

Compared with equation 4.2 which uses a convolution mixture to represent the
problem setting, now equation 4.8 converts the problem into F separated instantaneous
mixture estimation problem in the frequency domain. As discussed in Chapter 2, there
are plenty of previous applications mainly focusing on audio signal processing sharing a
similar signal model with this one, the next research question will be: which technique
can solve this problem?

4.2 From ICA to IVA

In order to solve Eq. 4.8, the stimulus estimation result can be expressed as:
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yf = ŝf = Wfxf (4.9)

where yf = ŝf is the stimulus estimation result, which is a time series vector similar
to the expression in Equation 4.7, and Wf is the un-mixing (separation) matrix with
a N -by-M dimension, at frequency bin f = 1, 2, ..., F .

4.2.1 ICA

As introduced in Chapter 3, ICA is a well-known signal processing approach, which can
be used to achieve BSS for some audio signal problems. The method assumes signals
are mixed instantaneously, and different sources are statistically independent of each
other. Although here it cannot be directly applied to the hemodynamic signal model,
understanding ICA can still significantly help to explain the methods proposed in this
thesis.

To explain how ICA works, here we can assume an instantaneous signal mixing
scenario: X is the observation data matrix with M observations and each has T time
samples; S is the underlying source data with N independent sources and each has
T time samples; A is the mixing matrix where A ∈ CN×M . The matrix form of this
mixing model can be expressed as:

X = A · S (4.10)

Since the M observations are measured individually, each observation as a column
inside matrix X can be expressed as an instantaneous signal mixture:

xj =
N∑
i=1

Ajisi, j = 1, ...,M (4.11)

The goal of ICA is to separate N statistically independent sources si from the
mixture. One of the main approaches to achieving this separation is by minimizing
the mutual entropy among different sources. There are many ICA algorithms already
developed in the literature, like the natural gradient method [35], InfoMax method [36],
and FastICA method [37].

Usually, ICA is applied to achieve temporal independence, which means the sepa-
rated independent sources are time series, this is called temporal independent compo-
nent analysis (tICA). While for some biomedical applications, when ICA is applied on
voxel time series, the goal will change to achieve spatial independence by separating
voxel groups (regions). This method is called spatial independent component analysis
(sICA) and can be used to detect brain networks [38] [39].

4.2.2 Frequency domain ICA and Permutation Problem

In the current problem, for a fixed frequency f , the signal mixture can be seen as a
tICA separation problem. By performing parallel ICA calculations at each frequency
bin, the underlying source signals shown in the instantaneous mixing model 4.9 can be
estimated as yf , and this process can be executed across all frequency bins.
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Also, using this ICA model at each frequency f , by calculating the Moore-Penrose
pseudo-inverse of Wf , the corresponding mixing matrix can also be recovered:

Ĥ
f
= (Wf )† (4.12)

where Ĥ
f
∈ RM×N is the HTF estimation result at frequency f . Therefore, theoretically

by using ICA on the observation xf , desired stimuli and mixing filters can both be
estimated.

To get stimulus yi, all STFT coefficients for the i-th source across frequency bins
should be collected for reconstruction. However for each ICA calculation, the resulting
un-mixed coefficients yfi inside yf are in random order regarding source index i =
1, ..., N across frequency bins. For example, for a N = 2 mixture, at frequencies f0 and
f1, stimuli estimation after ICA could be in different index order, like:

yf0 = [yf01 , yf02 ]T yf1 = [yf12 , yf11 ]T (4.13)

and as a result, if without any additional step, signal reconstruction for each source
index will fail. And obviously, a similar random-index problem will also happen for the
un-mixing matrix Wf , due to equation 4.9.

In ICA-related literature, this random-index problem is well-known as permutation
ambiguity (PA), where proper grouping algorithms are required to group elements from
the same source together, so they can be put into one column and then reconstructed
back into a time domain signal.

To solve the permutation ambiguity, previous works have already provided several
grouping algorithms involving many different fields of applications, from speech signal
which has more additional environment parameters [40], to EEG signals [41] which is
similar to the problem being discussed here.

One of the most popular and classic solutions to permutation ambiguity is called
the Hungarian algorithm [42], and there are also later approaches developed based on
this algorithm dedicated to being applied to different specific scenarios [43]. In this
thesis paper, instead of proposing additional grouping algorithms to solve PA, we use
another method that prevents permutation from happening in the first place. Compared
with adding a grouping algorithm after ICA, this method is simpler and can solve the
separation problem and permutation ambiguity at the same time.

4.2.3 IVA for Frequency Domain Signal Estimation

Due to the permutation problem which occurs in the frequency domain ICA algorithm
discussed above, another signal independence analysis algorithm is proposed, called
independent vector analysis (IVA), which was originally designed for frequency-domain
blind source separation problem [44][45][34]. And since IVA inherits ICA’s features
and also focuses on source separation in noise-free scenarios, in the rest of this chapter,
signla model described in Eq. 4.2 will be used, if not specified otherwise.

Instead of calculating independent uni-variate components at each frequency bin,
the IVA algorithm treats multi-variate vectors as basic components when doing indepen-
dence analysis. Figure 4.2 shows the relation between an elemental vector component
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Figure 4.2: Observation signals X and the elemental vector component structure (shown in
blue) for IVA.

xj(k0) and observation X. (Similar vector expression can be also applied to the target
stimulus estimation result Y, where source number N will replace observation number
M).

Therefore, Eq.4.8 can be stacked together across frequency bins and rewritten as the
signal mixing model for IVA (# represents element-wise multiplication where matrices
are elements):

[x1, ...,xf , ...xF ]T = [H1, ...,Hf , ...HF ]T#[s1, ..., sf , ...sF ]T (4.14)

Then by combining the entries into 3-D array forms as shown in Fig.4.1, this ex-
pression can be simplified into:

X = H#S (4.15)

The basic component vector shown in red can be represented as:

xj(k0) = [x1
j(k0), x

2
j(k0), ..., x

f
j (k0), ..., x

F
j (k0)]

T j = 1, 2, ...,M ; k0 ∈ [0, K] (4.16)

which contains uni-variate components across all F frequency bins at a single time frame
k0 for observation j. In Fig. 4.2, j = 1 is used as an example. It is also a temporal
element of xj as represented in equation 4.6. Using this multi-variate vector of time
sequence, the previously mentioned procedure which requires F times ICA calculation
can be simplified into one IVA calculation since the information of all frequency bins
is concentrated into one elemental vector component.

To achieve both separation of different sources and correct grouping to achieve
permutation, there are two corresponding assumptions that the signal mixture model
should follow [46]:

16



• Components of one source are mutually independent with components of another
source along time;

• Elements inside one source vector are dependent on the other elements along
frequency.

To express this duality in equations, an objective function can be defined using the
definition of mutual information among different vectors, here interpreted as different
sources. Kullback-Leiber divergence between two functions is used to calculate this
mutual information (dependency):

C = I(Y) = KL
(
p(y1,y2, ...,yN)||

N∏
i

q(yi)

)
=

∫
p(y1,y2, ...,yN)log

p(y1,y2, ...,yN)∏N
i q(yi)

dy1...dyN

=

∫
p(x1,x2, ...,xM)logp(x1,x2, ...,xM)dx1...dxM −

F∑
f=1

log|detW f |

−
N∑
i=1

∫
p(yi)logq(yi)dyi

= const.−
F∑

f=1

log|detWf | −
N∑
i=1

E[logq(yi)]

(4.17)

The first function p(y1,y2, ...,yN) is the joint probability density function (PDF) of

all sources, and the second function
∏N

i q(yi) is the product of marginal PDFs of each
source as multi-variate time sequence. The constant term in the final step comes from
the definition of xj’s entropy H(xj), which is already known. By using the equation
4.9, we can express Y into observations X and mixing matrix W f as: yf = Wfxf .
By assuming this process zero-mean and spatially white, rows of the un-mixing matrix
Wf are orthogonal, therefore

∑F
f=1 log|detW

f | = 0.
Now equation 4.17 can be simplified into:

C = const.−
N∑
i=1

E[logq(yi)] (4.18)

By using the definition of entropy again, equation 4.18 can be expressed as:

C = const.+
N∑
i=1

H(yi) = const.+
N∑
i=1

( F∑
f=1

H(yfi )− I(yi)
)

(4.19)

which is due to the relation H(yi) =
∑F

f=1 H(yfi )− I(yi).

From equation 4.19, to achieve min(C), it’s equivalent to min(
∑F

f=1H(yfi )) and

max(I(yi)). In other words, the goal of finding mutually independent sources comes
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together with maximizing the mutual information of elements within each source vector.
This conclusion proves the two assumptions are both valid for solving the IVA problem.

The detailed steps in the IVA algorithm will be provided in the following parts,
which are similar to traditional ICA in general, but with multi-variate variables instead
of uni-variate variables, and therefore, each step will also be a multi-variate version1.

4.2.3.1 IVA Preparation

For each frequency f , perform zero-mean on xf by subtracting mean values along time:

xf
zero−mean = xf − EK [x

f ] (4.20)

Then by doing principle component analysis (PCA) at each frequency, data is
whitened and the dimension M is reduced to N , making the following parts an N -
to-N un-mixing problem. The final result of this preparation step is zf :

zf = Qxf
zero−mean, (Q = D−1/2EH) (4.21)

where Q is a linear transformation matrix, with D = diag(λ1, ..., λN) the diag-
onal matrix of the first N largest eigenvalues of spatial correlation matrix R =
xf
zero−mean[x

f
zero−mean]

H , and E = [e1, ..., eN ] which is matrix of their corresponding
eigenvectors.

4.2.3.2 Learning Algorithm - Natural Gradient Method

According to equation 4.18, which is the cost function of this dependency minimization
problem, we can differentiate the cost function calculated from zf with respect to the
un-mixing matrix, to find the one which can achieve the lowest cost:

∆Wf ∝ ∂C
∂Wf

· (Wf )TWf (4.22)

where (Wf )TWf is the scaling matrices. Then the gradient learning rule can be ex-
pressed as:

∆Wf =
{
I− E

[
ϕ(yf ) · yfH

]}
·Wf (4.23)

Wf ←−Wf + η ·∆Wf (4.24)

where ϕ(yf ) is a multivariate nonlinear score function, and η is the learning rate.
When the value difference between two iterations is smaller than a certain threshold,
this iteration algorithm stops and outputs W with yi.

To find a suitable score function ϕ(yf ), first we can express it as a vector:

ϕ(yf ) = [ϕ(yf
1) ... ϕ(yf

N)]
T (4.25)

and for each entry, the nonlinear function can be related to its source prior PDF across
frequency.

1The algorithm described below is partly based on the Matlab code provided by:
https://github.com/teradepth/iva
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According to [34], experiments on audio signals indicate that super-Gaussian distri-
bution is a suitable choice to represent its frequency domain source prior PDF. There-
fore, for simplicity, here we also assume super-Gaussian distribution for stimuli in this
experiment. So the source prior can be expressed as a dependent multivariate super-
Gaussian distribution as in [34]:

ϕ(yf
i ) = −

∂log[q(y
[1]
i , ...,y

[F ]
i )]

∂y
[f ]
i

=
y
[f ]
i√∑F

b=1|y
[b]
i |2

(4.26)

4.2.3.3 IVA Reconstruction

After getting un-mixing matrix Wf from Equation 4.24, we can restore the original
dimension using matrix Q. After that, the scaling ambiguity can be solved by adjusting
the separation matrix:

Wf
norm = diag((Wf )−1)Wf (4.27)

Then by using equation 4.9, the separated source yf as well as 3-D array Y can
be obtained. After that, by performing inverse-STFT (ISTFT) on Y using the same
parameters as STFT before, we can finally find the separated stimuli time sequences
yi(t) = ŝi(t), i = 1, 2, ..., N .

4.3 Stimulus Estimation

4.3.1 Post-IVA Recovery

Ideally, the source estimation results from the IVA algorithm should be the true stim-
uli. However, due to model inaccuracy and estimation errors, the results cannot be
reconstructed perfectly. For this research problem, since the sources are neural stimuli
sequences, their unique shape can be taken advantage of. Their shapes are similar to
impulse trains but with several seconds of activation duration for each impulse and a
certain pattern of rest time in between.

This unique source sequence shape will cause the IVA estimation results to be spiky
in the time domain, with several peaks representing potential activation moments.
Using this information, we can better reconstruct the source stimuli by locating when
activation happens on the time axis, then applying a certain signal waveform to it.

In the estimation algorithm, a MATLAB function findpeak() is used to provide peak
locations and corresponding height values. In order to find at which time point stimuli
happen, this function can take several configurable parameters and constrain which
local maximums in the signal should be counted as reasonable peaks: the minimum
peak value, the minimum distance between two peaks, the total number of peaks, etc.
Which parameters are configurable depends on the actual experimental setting, and
more determined information will lead to a more accurate estimation result.

After finding all activation moments, an activation waveform can be applied to all
the moments to mimic the neural activation incidence. The neural activation waveform
is usually modeled as a smoother shape compared with a square wave [47], so here we
use two exponential curves, as shown in Figure 4.3. After inserting all the activation
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Figure 4.3: Assumed neural stimulus waveform. (The total length can be adjusted according
to experimental requirements about stimulation duration.)

time points with the waveform, the output time sequence can be seen as the final
stimulus estimation result.

4.3.2 Stimulus Estimation Evaluation

There are two source evaluation methods that are applicable in this thesis paper, with
their own different features and usages. In the following two equations 4.28 and 4.29,
we assume the estimated sequence is represented as y and the real sequence as s.

(1) The first evaluation method is using normalized cross-correlation between the
estimated source and the real source sequence, which will be equal to 1 at zero lag
when two sequences are exactly the same (in this case it’s an auto-correlation):

R̂ys,norm(m) =
1√

R̂yy(0)R̂ss(0)
R̂ys(m) (4.28)

(2) The second evaluation method is quantifying signals into discrete stimulus events
and calculating the event appearance correctness. This method is simpler compared
to the first one but requires setting a period within which the estimated stimulus
appearance can be considered a ”hit”. By using the Kronecker Delta function, this
method can be expressed as:

KDavg(y, s) =
1

P

P∑
p=1

δ(y(p), s(p)) (4.29)

where p = 1, 2, ..., P is the index of a stimulus event, and P is the total number of
stimulus events in one source signal.

20



4.4 HRF Estimation

4.4.1 Simultaneous Method

From the IVA algorithm described in Section 4.2, IVA final results contain not only
the estimated source time sequence ŝi(t), but also un-mixing matrices Wf at each
frequency f . From equation 4.12 we know that hemodynamic transfer function (HTF),
which represents the frequency domain transformed HRF, can be derived directly from

Wf as Ĥ
f
= (Wf )†. So theoretically, each hji(p) can be estimated by applying ISTFT

to the vector ĥji which contain frequency elements with same observation index j and
source index i.

4.4.2 Revised Simultaneous Method

To improve the result of the simultaneous method, this revised method modifies the
IVA algorithm used in the previous steps. At the end of each iteration of updating W,
first calculate temporary mixing matricesAf = (Wf )† for each f , then stack them back
into 3-D array A in the same order as W. As the canon HTF model will be known as
equation 4.31, then each column aji is fitted to the HTF model and outputted together

as Â. Finally, calculate the un-mixing matrices back by Wf
rev = ˆ(Af )†, and use them

to proceed to the next iteration.

Revising the IVA algorithm by utilizing the HTF model information can restrain
each column in the mixing 3-D array A to be more canonical, iteration by iteration.
Therefore, IVA can not only find a fixed mixing pattern between observation positions
and sources but also make this mixing filter converge to an HTF-shaped signal. This
revised algorithm will also influence stimuli estimation performance.

However, because the error in IVA stimuli estimation results compared with real
stimuli cannot be avoided, the HTF information is also affected, and unlike source
sequence estimation, the error in HTF cannot be compensated by using additional steps
like the peak-finding process. So practically, HRF estimation achieved by using direct
IVA results will lead to large errors, making this revised method also inappropriate to
actual data.

4.4.3 Sequential Method

To estimated HRF, the already achieved stimulus estimation results ŝi(t) can be used
together with observation signals xi(t). In this way, the HRF estimation can only
happen after stimulus estimation, which leads to this sequential method.

By using equation 4.8 where bothX and S are known either by given or by the previ-
ous estimation, we can calculate the deconvolution problem directly from this equation.
Besides, as the canonical HTF shape can also be known from previous literature, it can
be used to reshape the estimation result, the detailed steps will be discussed in the
next chapter.
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4.4.4 HRF Estimation Evaluation

The evaluation of HRF can come from two aspects:

1. The statistical accuracy of estimated HRF signal shape compared with the real
HRF signal, which is similar to stimulus evaluation criteria;

2. The neural scientific meaningfulness of HRF estimation results, represented by
HRF-related parameters’ regional and stimulus-wise behavior.

The first one can be applied to the simulation result since real HRFs (ground truth)
are manually generated, therefore, can be known and used for evaluation. However,
for experimental estimation, there’s no real HRF signal to be known, so the related
parameters (e.g. amplitude value, peak delay, total length,...) of HRF can be used to
evaluate the estimation performance. As already discussed in Chapter 2, one of the
most significant patterns regarding HRF regional behavior with respect to different
visual stimuli is that the left visual-related brain region will respond to visual stimuli
appearing on the right more significantly, and vice versa. By using this pattern, we can
use only the amplitude value of each HRF signal to evaluate HRF estimation results.
The detailed evaluation results will be given in the next two chapters.

4.5 HRF and HTF model

Although in this thesis, the stimulus and HRF estimation algorithm is not based on
canonical HRF/HTF models, they will be used during the fitting procedure and in
some future improvements. Therefore, this section will introduce the Gamma models
for HRF and HTF which are used in this thesis.

As mentioned in the previous chapter, the hemodynamic process is usually modeled
as an LTI system. HRF is the system’s impulse response and is usually described using
Gamma functions in many previous researches [15][22][48]. Here to further simplify the
expression, a three-parameters canonical model with one Gamma function can be used
to express HRF shape [49] :

f(t,θ) = θ1(Γ(θ2))
−1θθ23 tθ2−1e−θ3t (4.30)

Since the goal of this thesis paper is to analyze the hemodynamic process in the
frequency domain, a frequency domain HRF model should also be generated. By ap-
plying Fourier transform to Equation 4.30, we can derive the canonical hemodynamic
transfer function (HTF) as 2:

F{f(t,θ)} = θ1θ
θ2
3 (θ3 + j2πf)−θ2 (4.31)

In this thesis, equation 4.31 will be used for fitting estimated HTF results, which
can give a more meaningful HRF signal shape after being transformed back to the time
domain for evaluation.

2This HTF expression is developed by ir. S.E. Kotti, PhD student in Circuits and Systems (CAS) group,
TU Delft.
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Simulation Data and Results 5
In the previous chapter, most of the major techniques used in the proposed algorithm
are introduced. To test the algorithm’s performance using artificially generated data,
a simulation is designed which will be explained in this chapter. In Section 5.1, a
pipeline that describes how signals are generated and estimated will be explained with
example inputs and outputs. Then in 5.2, the estimation results will be evaluated and
the influence of changing different parameters will be explained.

5.1 Simulation Pipeline

The simulation assumes the scenario as: N stimulus time sequences (sources) are fed
into the signal model, and M observation time sequences (observations) are recorded
from positions that have distinguished characteristics regarding their responses to stim-
uli. One source consists of a fixed number P of stimuli with a certain shape, and every
two adjacent stimuli are separated by a resting time tr which is randomized in values.
The task of the estimation algorithm is to recover N sources and (N×M) corresponding
HRFs from the known M observations.

Figure 5.1 shows the main steps of simulation, which consists of a Generation Pro-
cess, which outputs artificial observation time sequences, and the following steps for
signal estimation. The main variables passed between steps are also annotated in the
diagram.

Figure 5.1: Simulation Pipeline
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5.1.1 Generation Process

Before generating any signals, the algorithm should first configure signal model
parameters. In this step several important parameters will be set: fUS sampling rate
Fs which is close to the rate used in the actual experiment; source number N and
observation number M which should satisfy N ≤ M ; randomized resting duration’s
maximum and minimum values [tr,min, tr,max] between two stimuli; stimulus duration
which is constant for all sources; the total number of stimuli P in one source; duration
of HRFs; window length L used in STFT which should be longer than HRFs’ duration;
SNR for additive white noise.

As an example for this simulation, the values in Table 5.1 are used. All the results
and plots shown in the rest of this chapter will use this set of parameter values, if not
specified otherwise.

Table 5.1: Parameters used in the simulation procedure.

Simulation Parameters
Fs 4 [Hz]
N 2
M 3

tr,min 5 [s]
tr,max 20 [s]

stimulus duration 3 [s]
P 10

HRF duration 15 [s]
window length L 20 [s]

SNR 10 [dB]

After configuring all the parameters needed for the simulation, the next step is to
generate HRFs, which are treated as ground truth in the simulation. By using the
Gamma HRF model shown in Equation 4.30, three model parameters [θ1, θ2, θ3] are
needed for each observation-source pair and used to construct corresponding HRF as a
time sequence with a duration of 15s. Figure 5.2 below shows the HRFs used in this
simulation.

To generate sources according to the setting mentioned above, we concate-
nate P identical pieces of stimuli into a time sequence, with a randomized rest time
tr ∈ [tr,min, tr,max] between every two adjacent stimuli, and this process repeats for both
sources we need. The stimulus waveform is the same as Figure 4.3, with a 3s duration
above half-peak value (which is 0.5 here). The N = 2 sources are statistically indepen-
dent from each other, and their appearances in time domain is also random, as shown
in Figure 5.3.

The final step in Generation Process is to generate observations, which will be
output as xgen,j(t) to the next step. This generation step takes HRFs hji(t) and sources
si(t) from the previous two steps as input, where i = 1, 2 and j = 1, 2, 3. By using
the signal model in equation 4.3, HRFs are convolved with corresponding sources and
summed into observations, then each observation is added to their corresponding white
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Figure 5.2: Generated HRFs corresponding to each source-observation combination. The
θ parameter sets generated for the 1st source are: θ1 = [3.0071, 0.7064, 1.7902]; θ2 =
[2.3674, 0.5578, 3.2731] ; θ3 = [6.3406, 0.3134, 4.4608]. For the 2nd source: θ1 =
[2.8096, 0.0740, 4.4442]; θ2 = [3.2245, 0.6841, 2.5571] ; θ3 = [3.8848, 0.4024, 3.2672].

Figure 5.3: Sources generated for simulation.

noise sequence based on its signal power and SNR =
Ssignal

Snoise
. This generated observation

time sequence is an artificial version of the recorded fUS signal, and therefore, will be
given to the following estimation procedure as initial input.

5.1.2 Stimulus Estimation

The first step of estimation process is denoising with a low-pass filter which has cut-off
frequency at 0.2 [Hz][49]. This step filters out high-frequency artifacts in observations,
by using the information that hemodynamic response signals mostly contain informa-
tion in a higher frequency range. The output of this step is xj(t), which corresponds
to the one in equation 4.2.

To transform xj(t) into the frequency domain, STFT is applied as explained in
Section 4.1.2, which gives 3-D array X as output which is applicable for IVA in the
next step. This X will also be used in later steps to calculate HRF.

After deriving the 3-D arrayX, IVA can be implemented to estimate the underlying
sources, as discussed in detail in Section 4.2.3. The outcome of IVA Y is also a 3-

25



D array representation of estimated sources. Then after ISTFT, the estimated time
domain source sequences are derived as yi(t).

As the last step to get the final stimuli estimation result, a post-IVA recovery is
needed as already stated in Section 4.3.1. This recovery process can be visualized as
Figure 5.4, where blue signals are estimated sources yi(t) by IVA, red circles indicate
which peak will be recovered as the estimated stimulus, and yellow signals are scaled
true stimuli for easier comparison. Then after applying the stimulus waveform at each
peak time point, the estimated source sequences ŝi(t) are comparable to the known
real sources si(t), therefore can be evaluated using the method mentioned in Section
4.3.2. For this example, the cross-correlation evaluation gives a score of 0.8762, and
the discrete score is 0.85.

Figure 5.4: Post-IVA recovery by locating peak positions and replacing them with stimulus
waveform.

5.1.3 HRF Estimation

After acquiring X and ŝi(t), we can calculate HRF by first transforming ŝi(t) into a

time-frequency domain 3-D array Ŝ, then by using the signal model described in Eq.
4.14, frequency domain HTF can be directly calculated using the Sequential Method as
described in Section 4.4.3, and easily transformed into HRF results.

However, the estimated HTF/HRF result now may have a distorted shape due to
the influence of system error, remaining noise, or model inaccuracy. To get an HRF
result resembling the canonical shape, an additional fitting step is required before the
final ISTFT. Each HTF result is fitted into the canonical HTF model as shown in
equation 4.31 by solving the following optimization problem:

min
θ1,θ2,θ3

||∆f(t,θ)||22

= min
θ1,θ2,θ3

[Re
{
||F{f(t,θ)} −HTFestm||22

}
+ Im

{
||F{f(t,θ)} −HTFestm||22

}
]

(5.1)
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where HTFestm represents the raw HTF estimation result as described in Section 4.4.3
waiting to be fitted, and F{f(t,θ)} represents the signal model with θ to be estimated,
which has the same length as HTFestm.

In this optimization problem, three parameters in θ are derived which can minimize
the cost function f . Since the HRF model shares the same set of parameters as the
HTF model, by feeding θ back into the HRF signal model, we can have the final fitted
HRF result. Figure 5.5 shows one of the results (h22: 2nd observation’s HTF/HRF to
the 2nd stimulus) of our example. The left plot is the HTF result, and the right one
is the HRF result. The blue line represents the true HTF/HRF previously generated
in Figure 5.2a; the red line represents the result without fitting; while the yellow line
is the final fitted result. From the plots, we can see that the final result is close to the
ground truth, and the fitting tuned the result towards a more canon-like shape without
too much compromising the estimation performance.

For HRF, peak value (amplitude) and peak delay in time are the two most essential
parameters. In this example, the fitted HRF result has a better peak value compared
with the raw result, with only a 1.75% relative error. However, the peak delay of fitted
HRF is a little worse than raw HRF. Since this only shows one example among 6 HRF
results, the estimation performance regarding peak value and peak delay will be further
discussed in the next section.

Figure 5.5: Example estimation results for HTF and HRF

5.2 Evaluation

5.2.1 Stimulus Estimation Performance

As mentioned in Section 4.3.2, there are two methods for source evaluation. The cross-
correlation method as expressed in Eq. 4.28 gives the similarity between the estimated
source signal and the true source signal, and therefore, it’s more accurate than the
second one which treats each stimulus as a discrete instance. As a result, in this
section, only the first method is used, if not specified otherwise.

27



As discussed in Table 5.1, there are 10 related parameters in this simulation, among
which some are configurable. To investigate how stimulus estimation performance will
change in different scenarios, the stimulus estimation score can be plotted versus sev-
eral parameters of interest. And by analysing these parameters’ influence to the per-
formance, suggestions towards future experimental design can be concluded. In this
section, every data point in all the following figures are calculated by averaging the
performance score of 5 trials where source signals and HRFs are randomly generated,
using the same set of parameters. The error bar indicated the standard deviations of
each set of data. And for each plot, the parameter of interest will change, and other
parameters remain the same.

Figure 5.6 below shows that with a fixed number of observations (here M = 15),
increasing source number N can lead to a gradually decrease performance. This is
easy to understand because it’s equivalent to increasing the number of unknowns while
the given information is fixed.

Figure 5.6: Performance influences by number of stimulus sources.

Figure 5.7a and 5.7b below show the influence of increasing observation number
M . With a fixed number of stimuli, when more observations are known, theoretically
the performance will be better. However, from the figures we can see that the perfor-
mance is not significantly relevant to this change. This result may due to the PCA
process inside IVA algorithm, where dimension reduction is applied. When more ob-
servation is known to the algorithm, this step will reduce more information which leads
to a compensation towards the final result. Also, the plots shown that the trials has a
relatively high variance, therefore the result may also be influenced by randomness.

By concluding findings in Fig. 5.6 and Fig. 5.7, the experimental design suggestion
is: set a small number of sources as estimation target, and record smaller number of
observation signals for a shorter computation cost.

Figure 5.8a shows how performance will change when maximum rest duration be-
tween two activation tr,max increases. It can be concluded that a longer possible rest
duration upper bound can lead to a better separation performance. Figure 5.8b shows
when the possibility duration of rest time is fixed to be 10s, how rest time length in gen-
eral can influence the performance. We can conclude from the plot that the performance
is not significantly influenced by the general rest time. However, in real experiments,
the total rest duration will be restricted by practical limitations and cannot be too
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Figure 5.7: Performance influenced by number of observations.

long.
By concluding Fig. 5.8a and 5.8b, the experimental design suggestion is: give a

larger range of possibility for rest time, and keep the total rest duration within a
reasonable length.

Finally, in Fig. 5.8c, the influence of noise level is shown. A higher SNR level will
lead to a better estimation performance, which is as expected.

Figure 5.8: Performance influenced by different parameters.

5.2.2 HRF Estimation Performance

In this section, HRF estimation results for the example will be evaluated in three
aspects: amplitude, peak delay, and the whole HRF. Performance of these aspects can
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be quantified as: amplitude relative error measured in %, ∆(Peak delay) measured in
seconds, and signal mean square error (MSE), respectively.

In this example, there are 6 HRF results in total, each corresponding to one pair of
observation and source signals. In the following Table 5.2, each aspect is calculated as
the average of all 6 results, which represents the performance in general.

Table 5.2: HRF estimation result evaluation in three aspects.

HRF Evaluation
Amplitude relative error 14.8 %

∆(Peak delay) 0.33 [s]
MSE 0.0012

For the amplitude value, the estimated result is very near the true HRF in most
cases. The average error between estimated amplitude and true amplitude is around
15%, which is on an acceptable level. The fitting process sometimes may reduce the
amplitude error compared with the raw HRF, as shown in Fig. 5.5. However, it is not
always guaranteed. For the peak delay, the difference between estimated HRF and true
HRF is around 0.33s on average. Compared with the 15s duration of HRF, this error
is very small. Similar to amplitude value, the fitting process is not always helping with
reducing the error. The averaged MSE of the HRF estimation has a value of 0.0012,
which means in this example, the estimated HRF is very similar to the true ones.

The HRF estimation performance can also be influenced by changing model param-
eters listed in Table 5.1, which is similar to stimulus estimation. Because the HRF
estimation is performed sequentially after stimulus estimation, its performance will in-
herit the patterns related to parameter changes and shown in Fig 5.6, 5.7, and 5.8,
therefore not repeated here.

30



Experimental Data and Results 6
To further investigate the performance of this proposed estimating algorithm, in this
chapter, experimental fUS data will be used as observation signals, and the results will
be evaluated and discussed similarly as in Chapter 5. In Section 6.1, a pipeline that
illustrates data pre-processing, as well as estimation steps, will be discussed. In Section
6.2, the estimated stimulus will be analyzed by comparing it with other methods and
comparing performance among different trails. Then in Section 6.3, the HRF estimation
results will be shown and evaluated.

6.1 Experimental Pipeline

The main differences between this experimental processing pipeline and the simulation
in Chapter 5 are: (1) No data generation steps are needed; (2) More pre-processing
is required to get the IVA-calculable observations xj(t). Therefore, in Figure 6.1, the
blocks after getting xj(t) are the same as the ones in Figure 5.1, and as a result this
section will focus on explaining the steps before getting xj(t).

Figure 6.1: Experimental Pipeline

6.1.1 Data Description

The fUS dataset was recorded by CUBE research group from Erasmus MC. It is a
PDI recording of a mouse’s brain over time. In the experimental setting, there are two
screens in front of the experiment object (mouse), one on the left and another on the
right, which both display a series of icons that varies over time. A series of icons are
displayed on each which differs in shape and size. Figure 6.2 shows all the icons used in
this experiment and their corresponding index from 1 to 20. Each icon is repeated 10
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times, and each time 3 seconds. The resting period is designed as a completely black
screen, which is a random period between 5 to 9 seconds. The appearance of stimuli
icons is also random.

In the rest of this chapter, we assume each different stimulus icon’s appearance as
a source signal, therefore, there are 20 different sources in total in this dataset. Since
for this experiment, PDI is recorded continuously when different icons are displayed on
screens, to extract the corresponding hemodynamic response we need to cut relative
time series out of the whole PDI recording. This ”cut and paste” step may lead to non-
continuity inside extracted observation signal, but this effect can be reduced somehow
by the temporal filtering step which will happen later.

Figure 6.2: Stimuli icons in different sizes, shapes, and positions shown on screen.

As discussed in Chapter 2, the PDI recording is formed by averaging compound
images over time. Here the fUS time series has the sampling frequency Fs = 4.6503[Hz].
The fUS data are stored as (Nx × Ny) time sequences, where Nx and Ny are the PDI
image sizes along x and y axis. Therefore, the imported PDI here can be treated as
observation signals in all (Nx ×Ny) voxels.

Although the actual stimuli are part of the estimation targets (unknown) of this
experiment, their true appearance patterns (ground truth) can be known from the
experimental process which can be used for evaluation. To roughly visualize how the
mouse’s brain responds to each stimulus, 20 temporal correlation maps between all 20
stimulus series and the whole brain PDI voxel time series are generated and shown in
Figure 6.3.

Each column of 5 maps represents stimuli of one certain shape and position and
increases in size accordingly. It can be observed that, as icon size increases, the PDI
brightness of certain regions which represents response amplitude also increases gen-
erally. The relation between the position (left or right) of the stimulus and the brain
region with a higher response can also be observed, since the left stimulus will mostly
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Figure 6.3: 20 different stimuli vary in position, symbol shape, and size.

receive a higher response from the right half of the brain, and vice versa.

6.1.2 Data Pre-processing

The raw PDI data acquired from fUS cannot be directly applied to the same pipeline
as simulation data, because of the large voxel number, the noise, etc. Several pre-
processing steps are needed to convert the PDI into desired xj(t).

There are two main steps in data pre-processing after importing PDI. The first
is selecting area and period of interest. By cutting off edges with no useful
information, the total data size can be reduced, therefore the image dimensions changed
to (Nx0 × Ny0), where Nx0 ≤ Nx and Ny0 ≤ Ny. Here Nx0 and Ny0 are the new voxel
dimensions of the slice. To select several sources for analysis which is less than 20, the
time periods when sources of interest are happening also need to be extracted. We use
N = 2 source for this chapter, and source index 4 (Left, Square, Size 4) and 9 (Right,
Square, Size 4) will be used as an example to show estimation performance regarding
stimulus position. The extracted sources are shown in Figure 6.4, which can be used
later to evaluate stimulus estimation.

The second step is to rescale, normalize and filter. To rescale the extracted PDI
signals, we can treat the PDI image at each time point separately, and by dividing each
voxel value with the mean value across the whole image at one moment, a rescaled
relative PDI image is generated. For each relative PDI image, the relative values
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Figure 6.4: Sources with index 4 and 9

of voxels are maintained at a similar scale across time; while the amplitude behavior
across the image is also preserved since a larger amplitude voxel will always have a larger
relative value after rescaling. This is used to mitigate the potential global change in
amplitude level which happen across time. Then, to normalize the PDI signals, the
temporal mean of each voxel is subtracted from the original signal and then divided by
their temporal standard deviations. Finally, a low-pass filter with a cut-off frequency
at 0.2 [Hz] is applied to each voxel, so that noises can be mostly mitigated, which is
similar to the denoising step in the simulation pipeline.

Now, the updated PDI consists of (Nx0 ×Ny0) time sequences which are the hemo-
dynamic response to source indexes 4 and 9. The voxel numbers is around 17k and
time points is around 1k.

6.1.3 Spatial ICA and Region Selection

The PDI at the current stage usually has a larger number of voxels than the number
of time points. To reduce the total number of observation signals, voxels need to be
parcellated together into regions. This can be implemented using Spatial ICA(sICA),
as already introduced in Chapter 4. The whole brain activity can be treated as a
superposition of smaller independent brain activity patterns which happen in different
volumetric regions, and as a result, the voxels v here are labels of time sequences, which
makes spatial independence analysis possible. The ICA model can be expressed as [50]:

B(v, t) =
R∑

r=1

Mr(t)Cr(v) (6.1)
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where v ∈ R2 is the voxel location on the slice; R is the total number of independent
patterns; Cr(v) is the spatial activity map with size (Nx0 × Ny0); Mr(t) ∈ RT is
the corresponding activity time course. Since C(v) here represents the spatial map
of different activities, it can be used to generate R parcellated regions which we are
interested in. By taking the inverse of each spatial map, the parcelization maps D(v)
can be generated for each independent activity, which indicates how to weigh the whole
brain activity at each voxel to form parcellated regions.

After getting R parcelization maps of voxels, a manual selection of observation
regions is needed to pick several most informative maps, in order to further reduce
the total number of ”observations”, as well as concentrate on meaningful parcelization
maps which reflects the regional behavior of the whole brain under certain stimuli. This
step can be assisted by the known brain atlas as introduced in Chapter 2, where we can
know which brain regions are corresponding to visual activities. In this example where
R = 30, 5 maps can be manually selected as informative regions, as shown in the first
row in Figure 6.5, while other maps are generally noisy or not meaningful according to
the brain atlas.

Figure 6.5: Selected parcelization maps and regions after thresholding.

To further process these maps and find brain regions that can be treated as regions of
interest for observation signals, a threshold is needed for each map. Here the threshold
is set to be at the first 1/4 highest value of parcelization map, and after thresholding,
the selected regions of each map can also be shown in the second row of Figure 6.5 as
yellow regions.

Now there are 5 regions of interest derived from brain activity maps, and the final
step in this part is to calculate observation signals from these regions. Since the
maps are Nx0 × Ny0 matrices with weighting coefficients as its entries, the calculation
of signals should follow the weight given by the entries. Besides, since the summations
of all entries within a region are not always equal to 1, a normalization is needed to
unify each map’s weighting scaling to be summed to 1. The process of calculating the
j-th observation signal can be expressed as:

xj(t) =
∑

v∈Regionth,j

Dj(v)I(v, t) (6.2)

where Regionth,j with j = 1, ..., 5 represents one of the 5 selected thresholded regions;
Dj(v) is the spatial parcelization map; and I(v, t) is the PDI shown as time sequences.

Now all the pre-IVA processing are finished, and the rest steps are the same as
simulation, only with a different observation number M = 5.
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6.2 Stimulus Estimation

By using the proposed estimation algorithm, the stimulus estimation result of this
example can be shown in Figure 6.6. Similar to the simulation result, here blue signals
are estimated sources yi(t) by IVA, red circles indicate which peak will be recovered as
an estimated stimulus, and yellow signals are scaled true stimuli for easier comparison.
The cross-correlation evaluation gives a score of 0.8293, and the discrete score is 0.95.

Figure 6.6: Experiment source estimation

6.2.1 Comparison with temporal ICA

One of IVA’s advantages is that, compared with the traditional and widely-used tem-
poral ICA (tICA) method to recover source stimulus, the IVA algorithm is based on
the convolution model as stated in Eq. 4.3, while the temporal ICA method is based
on a much simpler instantaneous mixing model assumption as expressed in Eq. 4.11.
The goal of this comparison is to show that the convolutive model is important for
stimulus reconstruction and stimuli can be estimated more accurately using this model
assumption.

Figure 6.7 and 6.8 shown below compare both methods’ stimulus peak estimation
results, which is an important intermediate output before source estimation. In Figure
6.7, neither of the sources’ peaks can be derived from temporal ICA separation results.
While in Figure 6.8, the left subplot clearly shows that the peaks derived from IVA
separation results can be used to recover source 1, and similarly, the right subplot can
be used to derive source 2. Since for tICA, neither estimated results can be clearly
assigned to corresponding true sources for cross-correlation evaluation, here the second
evaluation method shown in Eq. 4.29 will be used. The ”hit” tolerance is set to be a
single stimulus activation duration. Using this evaluation equation, tICA will have a
score of 0.3 out of 1, while the score of IVA is approximately 1.

Using the same evaluation equation in Eq. 4.29, a comparison between IVA and
tICA among all pair of sources can be shown in Fig. 6.9. It can be observed that IVA
achieves a generally better stimulus separation performance compared with tICA.
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Figure 6.7: Temporal ICA stimulus peaks estimation results

Figure 6.8: IVA stimulus peaks estimation results

6.2.2 Source Position Estimation Result

To further focus on estimating sources distinguished by position (icon shown on the left
or right screen), 10 pairs of tests can be formed as shown in Table 6.1, and by applying
the experiment pipeline steps on all of these trials, we can calculate evaluation score
for each trail. As mentioned before, the stimulus estimation results are evaluated using
cross-correlation between results and the true sources as expressed in Eq.4.28.

The first test between stimulus indexes 1 and 6 doesn’t generate results due to
poor performance. The estimated results are not comparable to either true source,
therefore an evaluation score cannot be calculated. The rest of the tests are evaluated
in score values (unit = 1). From the table, we can observe that square stimuli have a
generally better performance than circle tests, and stimuli with a larger icon will have a
better performance compared with a smaller one. However, this relation is not strictly
linear, because each trial’s performance may also be influenced by other factors, like test
subject’s tiredness or memory. Also, the example we chose in the previous explanations
(source index 4 and 9) is the best case regarding source estimation among all other pairs.
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Figure 6.9: Performance comparison between IVA and tICA

Table 6.1: Stimulus Estimation score for different pair of sources.

Stimulus Index (Square) Score Stimulus Index (Circle) Score
1, 6 N/A 11, 16 0.4053
2, 7 0.4859 12, 17 0.4865
3, 8 0.5601 13, 18 0.5902
4, 9 0.8293 14, 19 0.5681
5, 10 0.7802 15, 20 0.5450

As a comparison in literature, another thesis using the same dataset as this thesis
also performs an estimation of stimulus [51]. One of its goals is to predict if the stimulus
appears on the left or right screen. It uses the second stimulus estimation method as
stated in Section 4.3.2, and the best result comes from the sparse dictionary learning
(sDL) method, which is 0.87. It is higher than the best case as shown in Table 6.1.
However, the worst case of this data-driven algorithm will have a score of around 0.5
(random guess), due to its classification nature. While for the IVA estimation, the
worst case can reach a score of 0 when none of the peaks are recognized.

6.3 HRF Estimation

The HRF results can also be calculated following the experimental pipeline. One pair
of HTF/HRF estimation results is shown as Figure 6.10 (for region R1 and the 1st

stimulus). Different from the plot of simulation HRF results, since in the experiment
scenario the true HRFs (ground truth) are known, here the blue lines represent HRFs
calculated using true sources, which can be referred to as an upper bound of estimation
results. The red lines represent HTF/HRF estimation results without fitting, and the
yellow lines represent fitted results. Due to HRF’s physical properties, the length of
the shown HRF result is trimmed to 10s.
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Figure 6.10: Estimation results for HTF and HRF

6.3.1 Evaluation

To evaluate HRF results without knowing the true HRFs, the second method mentioned
in section 4.4.4 can be applied here. According to the Divided Visual Field Paradigm,
a stimulus that appears in the left visual field will lead to a higher response in the
right cerebral hemisphere, and the right stimulus will cause a higher response in the
left hemisphere. Since one of the most important HRF characteristics is its amplitude,
it can represent the level of response: a larger HRF amplitude means a higher response
level.

Using the information mentioned above, HRF results of all M = 5 observations
regions toN = 2 stimuli sources can be shown in figure 6.11. The first row is observation
maps which also indicate their most activated brain regions (left or right). The second
row is HRF estimation results corresponding to the first source (stimulus index 4, left
screen), and the third row shows results for the second source (stimulus index 9, right
screen). The number marked in each HRF plot is the amplitude value. The significantly
larger one within each pair is written in red, and the values from unsatisfying results
are marked in braces.

The two chosen stimuli icons have the same size and shape and only differ in position
(left screen or right screen). Therefore, the source amplitudes of both stimuli can be
assumed equal. And as a result, the level of response can be reflected through HRF
amplitude, and compared with each other. Here HRF length of all results is trimmed
to 10s.

It can be seen that in this example, both right brain observation regions R1 and
R2 have a higher response to the left stimulus. For the left brain observation regions,
two out of three HRF results show a higher response to the right stimulus, while for
region L1 both stimuli are having a similar level, therefore not very distinguishable. In
conclusion, in this 5-by-2 HRF test, a 4/5 = 80% correctness is achieved.
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Figure 6.11: HRF results shown by observation region and stimulus position pairs.
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Discussion 7
In this chapter, the research questions raised in Chapter 1 will be first answered ac-
cordingly in section 7.1. Although the results shown in previous chapters demonstrate
a desirable performance, there are still drawbacks that exist in this proposed estima-
tion process regarding the current research problem. The proposed method will be
critically discussed from two aspects: its limitations and potential aspects for future
improvement. In Section 7.2, limitations regarding the estimation algorithm’s assump-
tion, methodology, and results generation will be explained. Then based on these
limitations, in section 7.3, several possible directions for future work are proposed.

7.1 Answers to Research Questions

In Chapter 1, there are three research questions raised for this thesis. Corresponding
answers and explanations will be given here:

• RQ1: How to convert the signal estimation problem into frequency domain?

ANS1: In this thesis STFT is used to convert the signal estimation problem
into frequency domain. As a result, IVA algorithm can achieve STFT coefficient
vectors separation across all frequency bins.

• RQ2: What frequency domain technique can be considered in solving this esti-
mation problem?

ANS2: First ICA is considered for stimulus separation, then IVA is found to be
its suitable higher dimension extension for this estimation problem. The ideal
goal is to achieve stimulus and HRF separation simultaneously, while the attempt
failed due to the erroneous HRF results. Therefore, a sequential method is chosen
for HRF estimation after acquiring stimulus results.

• RQ3: What neuroscientific insights can the estimation results give?

ANS3: The experimental analysis in this thesis proves that convolutive model
assumption is more accurate then instantaneous mixing model. It is done by
comparing the stimulus estimation results between IVA and tICA results. The
HRF estimation results also indicates the hemodynamic response level difference
between left and right hemisphere when exposed to visual stimulus in left/right vi-
sual fields. However, since the dataset and the corresponding settings are limited,
theses insights still require further proof to be applied generally.
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7.2 Limitations

From the answers to the research question as well as the proposed algorithm itself, we
can see that this method explained so far still has several limitations:

(1) Prior source PDF is not exactly super-Gaussian. In section 4.2.2, when
explaining the learning algorithm used in IVA, the source prior PDF information is used
for constructing score functions ϕ(yf

i ) as expressed in Equation 4.26. Currently, there’s
little literature investigating the actual prior PDF of neuro-signal stimulus, therefore,
it is assumed that stimulus source signals will have super-Gaussian distribution in the
frequency domain, which is a conclusion from audio signal research and used here for
simplicity. Although IVA can still be successfully performed on neuro-signals using this
super-Gaussian prior PDF, the estimation performance may be compromised due to
this context mismatch.

(2) Applicable scenarios and settings are limited. As described in Section
5.2.1, there are several parameters that will influence the estimation performance, such
as the number of observations and sources, rest time, and SNR level. While in real
cases, the values of these parameters are not always the ”best” choices. Therefore, the
estimation performance’s upper bound will be affected. This can also be observed in
Table 6.1, where different pairs which differ in appearance order, size, and shape will
have different performances, which is reasonable but still requires further investigation.

(3) Noise model is too simplistic. Here we only consider additive white noise in
the signal model, while the real noise and artifacts in the fUS signal are far more complex
than that [52]. There are different noise sources that can come from physiological,
thermal, and also motion-related behaviors. Therefore, after simply de-noising additive
white noises, there will still be artifacts that remained in the signal data.

7.3 Future Work

Based on the previous discussion of methodology and limitations, several directions of
future work can be proposed as follows:

(1) To reduce the influence of inaccurate prior source PDF, more research regarding
neural stimulus’ frequency domain property can be conducted. It can be realized by
designing source stimuli with a certain pattern, which not only has a prior PDF that
can be expressed easily, but also can lead to better performance with this method. In
this case, the multivariate score function can also be chosen more accurately.

(2) To further investigate the most suitable scenarios where this method is appli-
cable, more simulations and experiments with various settings can be performed. It
can also help validate assumptions like certain properties of neural signals and the
capability of this IVA algorithm.

(3) A more complex noise model can be used in simulation and experimental fUS
processing. And as a result, corresponding de-noising algorithms should be performed
in addition. The noise model can be chosen based on the experimental paradigm in
which certain influencing factors can be ignored by choice, such as thermal artifacts
which can be treated as a constant through a short experiment. While other factors
that are related should be kept.
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(4) The Revised Simultaneous method can be further improved by utilizing HRF
information which is acquired afterward so that the estimation result can be improved
in an iterative way. Since the IVA algorithm only assume there is a certain filter existing
in each mixing process, the information about the filter itself (in this case, HTF) is not
used fully, which leads to a sub-optimal result. Although the attempt as mentioned in
4.4.2 failed, this IVA algorithm still holds the potential to be improved better so that
stimulus and HRF can be estimated together in one step, rather than sequentially.

(5) Since the dataset used in Chapter 6 is segmented and connected again to form
corresponding observation signals, the non-continuity caused by this step may lead to a
larger error during estimation. Therefore, a more suitable experiment for this proposer
estimation method can be designed in the future.

43



44



Conclusion 8
In this thesis paper, a joint estimation method is proposed for both HRF and stimulus
using fUS data.

In the first chapter, an introduction is given about fUS imaging and the hemody-
namic system. The thesis research problem consists of three parts: how to convert the
context into frequency domain; what technique can be used; what insights can be found
from this estimation.

In the second chapter, background information is given regarding three topics. The
fUS technique and PDI imaging process are explained. Then, brain mapping is intro-
duced, which provides this estimation problem with a broader context. An illustration
of the concerned hemodynamic signals is also shown in this chapter.

In the third chapter, literature related to HRF and stimulus estimation, as well as
audio signal application which shares a similar signal mixing model are discussed. For
the time domain hemodynamic analysis, HRF canonical model and GLM method are
two of the most popular choices. There’s also a data-driven approach that provides
a more flexible scheme for signal estimation. For frequency domain analysis, there’s
not so much related work, which provides space for more new developments. Then by
discussing the audio signal analysis problem, ICA is found to be a potential method
for further investigation.

In the fourth chapter, the main steps and techniques used in the proposed estimation
algorithm are explained in detail. First, the estimation problem itself is explained using
equations for signal modeling and domain transformation. Most notations and symbols
involved in the algorithm are also introduced there. Then ICA and its frequency domain
application attempt are explained, which leads to the conclusion that the permutation
problem is not what we desired. Therefore, IVA which shares a similar essence with
ICA is introduced, which avoids the aforementioned permutation problem, and can
provide frequency domain solution in a more direct way. Then the detailed steps in the
IVA algorithm are explained, as well as additional steps needed after IVA to achieve
stimulus and HRF estimation. Finally, HRF and HTF Gamma model is introduced,
which will be used later in the result fitting step.

In the fifth chapter, artificial data is generated for simulation. Then an exam-
ple setting is used to generate results using the proposed pipeline. In this 2-source
3-observation example, IVA is used first to find stimulus peaks when activation hap-
pens. Then by reconstructing the source signal, stimulus estimation is achieved. HRF
estimation and final fitting are done after acquiring stimulus results, which leads to
a sequential method. The estimation results here are displayed and evaluated sepa-
rately. Quantitative scores are given to the evaluation, from which we can see that this
simulation example has satisfying performance.

In the sixth chapter, experimental data provided by Erasmus MC is used for analysis.
First, the dataset itself is introduced, which leads to the example that will be used
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throughout this chapter. Then by applying the experimental pipeline to the dataset,
each step along the way is explained together with visualized results. The sICA method
is used for pre-processing the dataset, which can reduce voxel dimension and create
regions of interest in the fUS image. Then by constructing observation time courses,
IVA can be applied to the response signals, which leads to final estimation results. The
stimulus estimation result is shown and compared with the tICA result, which is based
on an instantaneous mixture assumption. The comparison shows that IVA achieves a
much better estimation of stimulus compared with tICA. Since the example only shows
the results of one pair of stimuli, another table is used to show the general source
estimation performance of all 10 stimulus pairs. From the evaluation scores, we can
conclude that this algorithm’s performance may highly rely on suitable experimental
settings, since some pairs have very good performance while others don’t. Finally, the
HRF results are also shown and evaluated, which takes advantage of the Divided visual
Field Paradigm for result validation. The result shows that the HRF amplitude result
follows our assumption with an 80% correctness, although there are still a few results
that don’t perform as expected.

In the seventh chapter, first researches questions are answered based on all the pre-
vious chapters. Then several limitations of the current work are listed, which critically
explained the drawbacks of some techniques and experimental designs. According to
the limitations and inspirations from previous chapters, several potential future working
directions are also listed as a reference.

In conclusion, this thesis provides a solution to the concerned research questions.
This proposed estimation approach gives satisfying results for both stimulus and HRF
estimation using frequency domain methods under suitable experimental design. It also
provides valuable insights into the convolution hemodynamic signal system, which may
benefit researchers who are interested in neuroscience and ICA/IVA-related topics.
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[39] F. I. Karahanoğlu and D. Van De Ville, “Transient brain activity disentangles fmri
resting-state dynamics in terms of spatially and temporally overlapping networks,”
Nature communications, vol. 6, no. 1, pp. 1–10, 2015.

[40] M. Gholamrezaii, M. R. Aghabozorgi, and H. R. Abutalebi, “Blind separation of
speech target sources using ica in the frequency domain,” in 2010 5th International
Symposium on Telecommunications. IEEE, 2010, pp. 765–768.

[41] J. Anemüller, T. J. Sejnowski, and S. Makeig, “Complex independent compo-
nent analysis of frequency-domain electroencephalographic data,” Neural networks,
vol. 16, no. 9, pp. 1311–1323, 2003.

[42] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval research
logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[43] A. Ciaramella, R. Tagliaferri, and M. Funaro, “Separation of convolved mixtures
in frequency domain ica,” in International Mathematical Forum, vol. 16. Citeseer,
2006, pp. 769–795.

[44] J.-H. Lee, T.-W. Lee, F. A. Jolesz, and S.-S. Yoo, “Independent vector analysis
(iva): multivariate approach for fmri group study,” Neuroimage, vol. 40, no. 1, pp.
86–109, 2008.

[45] I. Lee, T. Kim, and T.-W. Lee, “Fast fixed-point independent vector analysis
algorithms for convolutive blind source separation,” Signal Processing, vol. 87,
no. 8, pp. 1859–1871, 2007.

[46] T. Kim, I. Lee, and T.-W. Lee, “Independent vector analysis: definition and algo-
rithms,” in 2006 Fortieth Asilomar Conference on Signals, Systems and Comput-
ers. IEEE, 2006, pp. 1393–1396.

[47] L. D. Lewis, K. Setsompop, B. R. Rosen, and J. R. Polimeni, “Stimulus-dependent
hemodynamic response timing across the human subcortical-cortical visual path-
way identified through high spatiotemporal resolution 7t fmri,” Neuroimage, vol.
181, pp. 279–291, 2018.

[48] S. Van Eyndhoven, B. Hunyadi, L. De Lathauwer, and S. Van Huffel, “Flexi-
ble fusion of electroencephalography and functional magnetic resonance imaging:
Revealing neural-hemodynamic coupling through structured matrix-tensor factor-
ization,” in 2017 25th European Signal Processing Conference (EUSIPCO). IEEE,
2017, pp. 26–30.

[49] A. Erol, S. Van Eyndhoven, S. Koekkoek, P. Kruizinga, and B. Hunyadi, “Joint
estimation of hemodynamic response and stimulus function in functional ultra-
sound using convolutive mixtures,” in 2020 54th Asilomar Conference on Signals,
Systems, and Computers. IEEE, 2020, pp. 246–250.

50



[50] I. Daubechies, E. Roussos, S. Takerkart, M. Benharrosh, C. Golden, K. D’ardenne,
W. Richter, J. D. Cohen, and J. Haxby, “Independent component analysis for
brain fmri does not select for independence,” Proceedings of the National Academy
of Sciences, vol. 106, no. 26, pp. 10 415–10 422, 2009.

[51] M. Enthoven, “Differentiating task-based functional ultrasound signals via data-
driven decompositions,” 2021.
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