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Preface

This thesis contains a research that is the result of a collaboration between the Delft University of Technology
and the Istituto Italiano di Tecnologia (IIT) in Genoa, Italy. A lot of knowledge and support on the technical
side of the research was available at IIT, where the first three months of the research has been performed.
The Delft University of Technology has a haptics lab that has a lot of knowledge available on the human-
machine interaction. The last part of the research, including the experiment, has been performed at the Delft
University of Technology.

This thesis is submitted for the Master of Science degree in Mechanical Engineering at the Delft University
of Technology. The research and its results are presented in a scientific paper that is part of this thesis. The ap-
pendices contain more in-depth descriptions of the design choices and a guideline on using the experimental
setup.

S.A. Seuren
Delft, August 2018
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Real-time reference trajectory adaptation for
haptic shared control during teleoperation

Stijn A. Seuren, Henri Boessenkool, Martijn J. Zeestraten, and David A. Abbink, Senior Member, IEEE

Abstract—Haptic Shared Control (HSC) can improve operator performance during teleoperation. HSC uses assistive forces on the
master device to guide the operator’s control input towards a reference trajectory. However, the reference trajectory might be incorrect
due to inaccuracies in the sensed or modeled environment and thus not match the intended trajectory of the operator, resulting in force
conflicts that can potentially reduce performance. This paper describes the design and evaluation of a haptic shared controller whose
reference trajectory adapts in real-time to resort force conflicts. Different adaptive controllers have been designed and compared in
simulation. The final controller is built on a Task Parameterized Gaussian Mixture Model and adapts using an Incremental Gaussian
Mixture Model. The controller is evaluated in an experiment (n = 16) where subjects performed a planar teleoperation task that
involved moving the slave through a narrow corridor. The subjects were assisted by HSC with a correct reference (cHSC), HSC with a
wrong reference (wHSC), HSC with a wrong reference that adapts in real-time (waHSC) and a manual condition. The waHSC condition
was expected to result in lower control effort, compared to wHSC, and induce better performance compared to wHSC and the manual
condition. Within-subjects results showed that waHSC decreases control effort compared to wHSC while the performance remained
similar. Manual control had better performance than wHSC and waHSC, while cHSC outperformed all other conditions. Even though
the conditions were tested in a balanced order, we observed a strong effect of the order of conditions: between-subject results showed
improved performance, lower control effort and better subjective results for waHSC over wHSC when wHSC was executed first. Upon
first execution of waHSC, improved performance and self-reported satisfaction were realized for wHSC over waHSC. The results show
that, in the event of a force conflict, an adaptive controller is a promising alternative to temporarily adjusting the HSC stiffness.

Index Terms— Teleoperation, haptic shared control, conflict, reference adaption, Task Parameterized Gaussian Mixture Model,
Incremental Gaussian Mixture Model

F

1 INTRODUCTION

T ELEOPERATION devices consist of an operator interface,
the master, and a manipulation robot, the slave, which

are connected by a controller. These devices allow humans
to remotely manipulate objects in environments that are not
directly accessible. This can be due to safety, as applies for
environments like space [1, 2], deep sea [3, 4] or nuclear
sites [5], or for dimensional reasons like in minimal invasive
surgery [6, 7, 8] or micro manipulation [9].

Achieving good teleoperation performance remains a
challenge because of limited haptic- and visual feedback.
Haptic Shared Control (HSC) can improve this performance.
It assists the operator during the task execution by generat-
ing haptic force feedback that is based on a programmed
reference in the controller. Application of HSC improves
performance and reduces control effort during task execu-
tion [10, 11, 12].

However, these benefits are gained under the assump-
tion that the reference trajectory of the controller is cor-
rect. Whenever the reference trajectory of the controller is
incorrect, the controller will provide incorrect HSC to the
operator of the system. The incorrect HSC will result in
unnecessary conflicts between the operator and the con-
troller. Liabilities in creating a correct reference trajectory
can be the sensors that provide the controller with the

• S.A. Seuren, H. Boessenkool and D.A. Abbink are with the Department
of Cognitive Robotics, Faculty 3mE, Delft University of Technology,
Mekelweg 2, 2628 CD Delft, The Netherlands.

• M.J. Zeestraten was with the Department of Advanced Robotics, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.

necessary information, the processing of this information or
a dynamically changing environment.

While incorrect HSC doesn’t necessarily result in worse
teleoperation performance [13], it does increase the control
effort [14]. If the incorrect reference trajectory is consistent,
calibration of the system may suffice as a remedy. However,
if the source for incorrect reference varies in time, calibration
might be too much effort. Conflicts that are caused by short-
term incorrect reference trajectories can be reduced in two
ways: by changing the Level of Haptic Authority (LoHA) or
by changing the reference where the HSC is based upon.

The LoHA determines to which degree the operator is
guided by the controller [15, 16, 17]. As stated by Abbink
et al. [17]: ”...for high stiffness—a high LoHA—the per-
formance is expected to be improved —of course, only as
long as the human operator agrees with the automation
and there are no automation failures. For low stiffness—
a low LoHA—there is not much support from the system,
so little performance increase is expected, but the system
will be easy to overrule.”. Reducing the LoHA could there-
fore be an option to decrease the conflicts that arise when
the automation fails and thus generates incorrect reference
trajectories. But, changing the LoHA can be considered
symptom management and implies accepting the incorrect
reference trajectory.

Another option is to adapt the reference trajectory on
which the HSC is based. This could reduce conflicts while
maintaining the benefits of HSC. De Jonge et al. [18] showed
that a trial-by-trial adaption of a reference trajectory can
decrease the control effort opposed to a static reference. This
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trial-by-trial adaption is considered offline adaption; the
reference trajectory is adapted for use in a future execution
of the same trial and not for use in the current trial. For
reducing short-term conflicts the adaption should occur
online. No literature was found related to controllers that
are able to adapt the reference trajectory online.

The goal of this paper is to design a haptic shared
controller that, by adapting the reference trajectory online,
improves the task performance and reduces the control
effort in the event of a short-term incorrect reference trajec-
tory. This controller should decrease the number of conflicts
between the operator and the controller while maintaining
the benefits of HSC. The controller will be evaluated exper-
imentally, for which is hypothesized that an incorrect but
adapting reference will result in better performance (H1)
and lower control effort (H2) compared to an incorrect and
non-adapting reference. Finally, it is hypothesized that the
performance with incorrect but adapting HSC is better than
manual teleoperation (H3).

The paper starts with Section 2 that discusses which
method is chosen for generating the reference trajecto-
ries and how these trajectories will be adapted. Section 3
starts with describing the experimental setup. Subsections
3.2 to 3.6 discuss how the chosen methods are modified,
implemented and tuned in the controller for use in the
experimental setup. The retrieved experimental data are
analyzed in Section 4. The notion of an adaptive controller
and the designed controller will be discussed in Section 5.
The conclusions are described in Section 6.

2 DESIGN OF AN ADAPTIVE CONTROLLER

The proposed adaptive controller can be divided into two
parts: one that generates a reference trajectory and one that
can adapt this reference trajectory. The parts have to work
alongside each other, but have different criteria.

2.1 Generating a reference trajectory

The reference trajectory is adapted by the adaptive con-
troller in every update. As a result, the magnitude or di-
rection of the guidance force will also change with every
update. To make the adaptation appear smooth, it should
be executed at a high frequency [19].

Furthermore, the controller should be prone to adapta-
tion. If conflicts arise, the control parameters should allow
being changed in such a way that the reference trajectory
makes the desired adaptation.

The controller in this research uses a Task Parameterized
Gaussian Mixture Model (TP-GMM) [20] for the generation
of the reference trajectories. TP-GMM is a probabilistic
model which originates from the field of imitation learning.
This method is model-based, meaning that it does only
require several parameters to function, and is therefore
capable of quickly generating the reference trajectories. Fur-
thermore, the process from demonstration data to reference
trajectory allows for adaptation on several levels, as seen in
Fig. 1. Finally, TP-GMM has already been applied in several
HSC systems [21, 22, 23]. For these reasons, TP-GMM is a
suitable method for generating reference trajectories in an
adaptive controller.

Transform to 
local frame

K-Means 
clustering

Expectation 
Maximization

Transform to 
local frame

K-Means 
clustering

Expectation 
Maximization

Demonstration Data

Local GMM

Reference trajectory

Generative  
Update

Local GMM

Gaussian Product

Global Gaussian Mixture Model

Gaussian Mixture Regression

For every task param
eter

Direct  
Update

IGMM

Fig. 1. Schematic overview of the Task Parameterized Gaussian Mixture
Model (TP-GMM). The locations where Generative Update, Direct Up-
date and the Incremental Gaussian Mixture Model (IGMM) can adapt an
existing model are marked with the blue pointers.

The TP-GMM is trained with demonstration data that
consist of multiple recordings of the movements that require
guidance. Each data point contains the location of the slave
(x, y) and a timestamp t. During training, the demonstration
data are clustered (K-Means) and transformed to k Gaussian
distributions (Expectation Maximization) relative to each of
the local frames defined by the task parameters. A task
parameter defines the local reference frame in the global
reference frame with a position vector b and rotation matrix
A. The k Gaussian distributions, or ’states’, in the local
frame p are defined by a state mean µk,p and covariance
Σk,p. The local states combined form a local GMM. By using
the task parameters, the local GMMs can be combined into
a global GMM (µk, Σk) using the Gaussian product. This
global GMM serves as input for Gaussian Mixture Regres-
sion (GMR) [24]. For every timestamp t the GMR algorithm
finds the most likely corresponding (x, y) position, which
in sequence form the reference trajectory. Fig. 1 shows a
systematic overview of this process.

2.2 Adapting a reference trajectory
Using TP-GMM, reference trajectories can be adapted on
different levels. Three methods for adapting a GMM have
been found in literature. Calinon and Billard [25] describe
two methods for adapting an existing GMM: Generative
Update and Direct Update. The third method is introduced
in the work by Engel and Heinen [26] and adapts a GMM
using an Incremental Gaussian Mixture Model.

The Generative Update samples new demonstration data
from an existing reference trajectory. A new GMM will be
constructed based on this sampled data combined with the
current movement data. GMR can then be used to create an
adapted reference trajectory.

Direct Update uses a modified Expectation Maximiza-
tion algorithm to weigh the summed likelihood of the
original demonstration data versus the summed likelihood
for all the data points of the slave movement. Depending
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on the relative weights, Direct Update will create a new
GMM with which the adapted reference trajectory can be
generated through GMR.

The third method for adapting a GMM is described by
Engel and Heinen [26]. They introduced the Incremental
Gaussian Mixture Model (IGMM), which ”creates and con-
tinually adjusts a Gaussian Mixture Model consistent to all
sequentially presented data.”. IGMM checks the likelihood
that the current slave location belongs to state k and adjusts
the locations of the state means and the covariance matrices
accordingly.

The main difference between the three methods is the
location within the reference trajectory generation where the
methods make changes (Fig. 1). Based on these different
levels it can be hypothesized that IGMM will be the least
computationally expensive for every update, followed by
Direct Update and Generative Update respectively.

2.2.1 Simulation of available adaptation methods
Each of the methods is tested in a simulation environment
to test this hypothesis and to get insight into the behavior
of each method. The simulation was conducted in MATLAB
and is based on code provided by Calinon [20]. The training
of the TP-GMM was performed using a cursor in the MAT-
LAB environment depicted in Fig. 2a. Three task parameters
–start, obstacle and end– were used for the training, of
which the starting point and endpoint had 3 variations. A
total of 9 demonstrations were performed to cover all the
possible paths. The collected demonstration data were re-
sampled in order for all the demonstrations to have the same
length of 100 data points. Finally, the TP-GMM was trained
with the re-sampled data.

(a) (b)

Fig. 2. The GMM training environment (a) and the simulation environ-
ments with incorrect reference trajectory and the slave movement (b)

Using GMR, a reference trajectory for a predetermined
set of task parameters was generated based on the trained
TP-GMM. The resulting reference trajectory is considered
the incorrect reference trajectory and is shown in red in Fig.
2b. The correct environment is simulated by changing some
task parameters. Two correct environments were tested for
determining the behavior of the adaptation methods: an en-
vironment where the obstacle and end point were translated
and an environment where the obstacle was rotated. These
correct environments are shown in green in Fig. 2b. The
slave movement is performed in the correct environment
with the cursor in two different ways: one movement at a
constant speed and one movement with varying movement
speeds. These slave movements are also logged and are re-
sampled to 100 data points.

The relative computational cost of each method has also
been tested using simulation. For this simulation, the user
movement data were re-sampled to different sizes ranging
from 50 to 500 points. Each of these data sets was used
10 times as input for the three adaptation methods. The
required time to finish the adaptation was logged for each
simulation.

2.2.2 Simulation results
The logged times for each data set are averaged and a
variance is calculated over the repeated measures. The result
of the simulation test on relative computational costs is
visualized in Fig. 3. The hypothesis that Generative Update
would relatively be the most expensive, followed by re-
spectively Direct Update and IGMM, is confirmed by these
results.

50 100 150 200 250 300 350 400 450 500
Number of data points [-]

0

50

100

150

T
im
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Generative Update
Direct Update
IGMM

Fig. 3. The computation time per adaptation method for increasing data
points in the user movement. The variance is displayed by with a shade
around the line.

The general features of each method are assessed and
their behavior is visually observed using the simulation
environments of Fig. 2b.

Generative Update showed to be unusable for applica-
tion in an adaptive controller for several reasons. The main
reason is the shock wise adaptation of the reference trajec-
tory. Since a new GMM is constructed for every update, the
generated reference trajectories vary slightly for every up-
date. If this method would be implemented in HSC it would
result in a vibrating feedback force and is therefore not
suitable for this application. Moreover, Generative Update
is computationally the most expensive relative to the other
methods and becomes more expensive with the growing
amount of slave movement data. Adapting the reference
trajectory multiple times per second might be unfeasible
with the hardware available. Finally, sampling new data
from a reference trajectory doesn’t represent the original
model unless a lot of samples are generated, which in turn
adds to the computation time when constructing a GMM.
As a result, information from the original GMM will get lost
when Generative Update is used. In terms of behavior, Gen-
erative Update showed unable to handle varying movement
speeds, but was able to adapt the reference trajectory to the
rotated and translated obstacle.

Direct Update showed promising results in the simula-
tion. This method is less computationally expensive than
Generative Update, but still requires all the slave movement
data and therefore also becomes more computationally ex-
pensive with time. In contrast to Generative Update, Direct
Update is not able to cope with the rotated obstacle but was
able to handle varying movement speeds.

The most suitable for implementation in HSC is IGMM
and will therefore be used in this research. This method only
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requires the current slave position, not the past movement,
to adapt the reference trajectory. As a result, the speed of
the adaptation won’t change with time or movement dis-
tance. Moreover, this method requires the least computation
power per update relative to the other methods. Similar to
Direct Update, IGMM can’t cope with the rotated obstacle,
but can handle varying movement speeds. The limits of
IGMM will be elaborated upon in Section 5.3.

3 METHOD

3.1 Experimental setup

The setup used is an in-house built planar teleoperation
device called the ’Munin’ [27]. This device can provide
haptic feedback up to 5N/1Nm (x, y, θ), has an identified
slave inertia of 260 ± 10g and has 3 degrees of freedom of
which the rotation is disabled for calibration purposes. The
master and slave are linked by a position-error controller
(Kp : 400,Kd : 0.02) running on a 1kHz real-time computer.
A webcam is placed above the slave-side of the system to
provide visual feedback to the operator.

Fig. 4. The master (L) and slave (R) of the ’Munin’ telemanipulator.

3.1.1 Task boundaries
The operator has to move the slave side between the bound-
aries shown in Fig. 5. These boundaries are printed on an
A3 underlay to provide a visual reference. The width of the
diagonal sections is 1cm, the horizontal section has a width
of 1.5cm. The location of the boundary is calibrated into the
model by entering the slave’s XY coordinates at the points
that define the boundary.

Fig. 5. The webcam video feed

3.2 The adapting haptic shared controller

The controller will use TP-GMM to construct a model of the
environment, IGMM to adapt the model online and GMR
to generate reference trajectories from the (adapted) model.
The following subsections will elaborate on how each step
is implemented and what parameters are used.

3.2.1 Task Parameterized Gaussian Mixture Model
The TP-GMM is trained prior to the experiment in order to
guarantee a correctly trained model during the experiments.
The amount of states in the GMM is set to k = 3 and the
task parameters are defined by the location and orientation
of the start, finish and middle of the path. The middle of the
path is fixed in all situations, but the starting position and
end position can vary resulting in 4 possible paths (Fig. 6).
A tunable regularization term R is added to the diagonal of
each covariance matrix Σk,p prior to the Gaussian product.
A higher value for R increases the variance of the states in
the GMM, resulting in a less accurate but smoother reference
trajectory from the GMR.

Fig. 6. Correct and incorrect reference paths

3.2.2 Incremental Gaussian Mixture Model
The used method to adapt the GMM is a modified version
of the Incremental Gaussian Mixture Model (IGMM). The
IGMM method was not designed to be implemented in
HSC and requires modifications before it can be used to
adapt a reference trajectory. The original IGMM introduced
a new state whenever the likelihood that a new data point
belonged to one of the existing states was below a defined
’novelty threshold’. The modified IGMM doesn’t include such
threshold and is not capable of introducing new states to
the global GMM. Further modifications include addition of
lines 4, 7, 9, 13 (see Algorithm 1) and the changed value of
spk(0).

The IGMM algorithm consists of a loop that adapts
each state separately. The loop starts with estimating the
likelihood p(k|x) that the current slave location x belongs to
state k. This likelihood is added to the saturation parameter
sp∗k in line 3, which determines how eager a state is to adapt.
The initial value for the saturation parameter spk(0), or
presaturation, can be tuned to prevent a state from adapting
too early. Contrarily, line 4 limits the saturation parameter to
the maximum value spmax to prevent over-saturation of the
state which can limit its adaptation. In line 5 the likelihood
is divided by the saturation parameter to retrieve ω∗k, which
reflects the confidence in the current slave location: a higher
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Algorithm 1 Modified IGMM adaptation algorithm
1: procedure IGMM ADAPTATION(x, sp,µ,Σ)
2: for k = [1...ktotal] do
3: sp∗k(t) = spk(t− 1) + p(k|x)
4: spk(t) = min(sp∗k, spmax)

5: ω∗k = p(k|x)
spk

6: ωk = αω∗k
7: ek = x− µk(t− 1)
8: ∆µ∗k = ωkek
9: ∆µk = min(∆µ∗k,∆µmax)

10: µk(t) = µk(t− 1) + ∆µk

11: e∗k = x− µk(t)
12: Σ∗k(t) = (1−ωk)Σk(t−1)+ωke

∗
je
∗T
j −∆µk∆µT

k

13: Σk(t) = AffineRotation(Σ∗k(t),Σk(t− 1))
14: end for
15: return sp,µ,Σ
16: end procedure

value for ω∗k results in more adaptation of the related state
towards the slave’s location. Line 6 introduces the adapta-
tion coefficient α that is a gain for ω∗k and allows for tuning
of the overall adaptation rate. The required translation of the
state mean can then be calculated in line 8 by multiplying
ωk with the error ek between the slave and the respective
state mean. The actual adaptation of the state mean in line
10 is limited in line 9 by the maximum displacement per
update, which is defined by ∆µmax. Lines 11 and 12 are
derived from the Gauss-Wishart distribution and calculate
the updated covariance matrix Σ∗k(t).

The adaptation of Σk(t−1) to Σk(t) is limited to rotation
using an algorithm we call ’AffineRotation’. AffineRota-
tion calculates the orientation difference between the two
covariance matrices using the biggest eigenvector of each
matrix. This difference is used to create a rotation matrix
with which Σk(t − 1) is rotated, resulting in Σk(t). The
adaptation limited to rotation because a varying size can
lead to stretching of the states while trailing the slave.
Moreover, the covariance matrices represent a ’confidence
interval’ based on the original training so varying their size
would discard this information.

3.2.3 Gaussian Mixture Regression
The demonstration data set that was used to train the TP-
GMM consisted of multiple recorded movements between
the start and end positions. Each movement consisted of
1000 data points, where the time labels of the demonstration
data were linearly spaced between 1 and 1000. The input to
the GMR therefore consists of 1100 points between −50 ≤
t ≤ 1050 in order to extend the reference trajectory beyond
the start and end positions.

3.2.4 Generation of guidance forces
The reference trajectory that is created by the TP-GMM
and IGMM is used as the reference for the HSC. Most
commonly this is done by applying a stiffness Khsc on
the error between the slave’s location and the closest point
on the reference trajectory. For this research, we employed
an HSC design from previous work in our group on this
manipulator [18, 10, 28]. In this HSC design the guidance

is based on the future location of the slave by using a
look-ahead controller. This predictive guidance towards a
reference trajectory has shown to improve performance
compared to regular force fields [29]. Equation 1 shows
how the future location of the slave is calculated, whereas
Equation 2 shows the calculation of the HSC forces. In this
equation is xref the point on the reference trajectory that is
nearest to the future location of the slave.

xslave(t+ tla) = xslave(t) + tlavmaster(t) (1)
Fhsc(t) = Khsc(xref − xslave(t+ tla)) (2)

The tuning of the look-ahead time tla and HSC stiffness
Khsc depend on the environment and type of task. The task
in this experiment is to follow a trajectory while refraining
from hitting the boundaries around the trajectory. As the
boundaries leave little movement space (Fig. 5), a small
error requires more guidance force to prevent the slave
from hitting the boundary. A high HSC stiffness is therefore
required, which is set at 200 N/m. Moreover, since small
errors result in a high guidance force, the look-ahead time
should be relatively low. The look-ahead time is tuned by
hand and set to 0.2 seconds. Lastly, the controller is pro-
grammed in such a way that no data points of the reference
trajectory can be skipped. The haptic shared controller has
to go through every data point in the reference trajectory,
which prevents sudden changes in the direction of the
guidance.

3.2.5 Tuning
The tuning of the controller is different for each environ-
ment, demonstration set and refresh rate of the system.
The (train) environment and demonstration data have a
big influence on the covariance matrices in the GMM and
thus the resulting adaptation. The update frequency of the
system has a linear relation with the adaptation rate of
the reference trajectory. The setup used runs on a 1kHz
computer, so the controller is tuned accordingly.

Several things were kept in mind during tuning of the
IGMM. First of all, adaptation should not result in a wrinkle
in the reference trajectory for different movement speeds
or strategies (R1). Wrinkles result in unpredictable guid-
ance forces and therefore should be avoided. The second
requirement is a high adaptation rate (R2). The trials in the
experiment are relatively short in terms of time and dis-
tance, therefore quick adaptation is required to emphasize
the effects of the adaptation.

Table 1 shows the parameters that are available for tun-
ing. The regularization term R is chosen as high as possible
as long as the reference trajectory of the cHSC condition
stays within the boundaries and doesn’t cut the corners. A
higher R results in smoother reference trajectories that are
less likely to result in kinks (R1) and it makes states more
susceptible to adapt (R2) due to the higher p(k|x) value. The
adaptation coefficient α is set at 0.3, which is relatively high
(R2). The realized adaptation is limited using parameters
spk(0) end ∆µmax (R1), which are manually tuned and set
to 120 and 1e − 5 respectively. These parameters are tuned
manually and respectively prevent a state from adapting
too early and limit the absolute displacement of state means
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TABLE 1
Used parameter values

General parameters
Variable Value Description
Khsc 200 [N/m] HSC stiffness
tla 0.2 [s] Look-ahead time
R 1e-5 [-] Regularization term

IGMM parameters
Variable Value Description
α 0.3 [-] adaptation coefficient
spk(0) 120 [-] Presaturation of states
spmax 2000 [-] Max saturation of states
∆µmax 1e-5 [m] Max displacement of state mean

per update

per update, which serves R1. Finally, spmax is also tuned
by hand and is set to 2000. It is tuned in such a way that
the middle state (Fig. 6) remains adaptable throughout the
trial. Initially the middle state will move to the left, but if
the value for spmax is too high the state will not be able to
move to the right due to the over-saturation.

3.3 Experiment protocol

The experiment consists of 1 training set and 4 sets with
different conditions. Each experiment starts with a training
set to familiarize the participants with the controls and the
setup. The training set has no HSC so the participant won’t
be conditioned to one of the conditions. After the training
set the participant will perform 12 trials in each of the 4
conditions, each with a controller named after their ability
to adapt (a) and whether the initial reference trajectory was
correct (c) or wrong (w).

1) Manual
In this condition no HSC is present. As a result the
operator only feels the inertia forces of the system.

2) cHSC
The second condition uses correct HSC that does
not adapt. The green lines in Fig. 6 show the correct
reference trajectories.

3) wHSC
The third condition uses a controller that also
doesn’t adapt, but has incorrect reference trajecto-
ries and thus pulls the slave to the wrong direc-
tion. The wrong reference trajectory is generated by
translating the task parameters perpendicular to the
path. The task parameters related to the starting
point were left untouched to allow for a normal
start. The red lines in Fig. 6 depict the translated
reference trajectories.

4) waHSC
The last test condition initially has the incorrect
reference trajectories in every trial, just as the wHSC
condition. However, this condition adapts online to
the current movement using IGMM.

The different conditions were presented to the subjects
in a balanced order using a Latin square. Each condition is

followed by a digital ’Van der Laan’ questionnaire [30] to
collect subjective data on the usefulness and satisfaction of
the condition.

Each trial consists of a movement from one of the two
starting points on the left towards one of the two endpoints
on the right (Fig. 5), making 4 possible paths. The order of
the paths is randomized and each path is followed 3 times
in each trial. The participant moves the slave between trials
to the next starting position indicated by the red arrow. If
the slave is on the starting position, the operator will feel
vibrations in the master input device accompanied by a
’Start when ready’-text on the webcam feed. The trial will
then start automatically whenever the slave deviates more
than 0.2 cm from the start and finish when the slave is within
a 0.2 cm range of the endpoint.

The slave has to stay clear of the boundaries during the
trial. Whenever a collision is detected during a trial, the
operator will be notified onscreen and has to restart the trial.
Only correctly completed trials add up to the 12 trials.

Balanced order

Manual
12 trials

Van der Laan

Training
12 trials

cHSC
12 trials

Van der Laan

wHSC
12 trials

Van der Laan

waHSC
12 trials

Van der Laan

HSC ✗ ✓ ✓ ✓
Wrong reference - ✗ ✓ ✓

Reference adaption - ✗ ✗ ✓
Fig. 7. Experiment overview

3.3.1 Task instructions
The participants in the experiment received written instruc-
tions prior to the experiment. They were instructed to ”Com-
plete the trial as fast as possible without hitting the boundaries”.
Furthermore, the participants were asked to sit on a chair
that was height adjustable to make sure their lower arm
was in a horizontal position.

3.4 Measured variables and Metrics

The variables are logged at a sampling rate of 1kHz during
the experiment. These data include position, velocity and
force and also contain the HSC related data like the reference
trajectory, state means, and covariance matrices. This data
set forms the basis for the calculation of several metrics. The
following metrics are used to measure the task performance:

• Task completion time [s]
The time between leaving the starting position and
reaching the end position.

• Number of wall hits
The number of attempts that led to wall hits prior to
completing a trial.

The control effort is quantified with the following metrics:

• Y-reversals
The number of zero-crossings of the differentiated Y
value. A higher number of reversals implies more
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control effort, since more effort is put into correcting
the position of the slave.

• Maximum conflict force [N]
The maximum HSC interaction force between the
operator and the controller within one trial.

Apart from the measured variables, subjective data is
collected by means of a Van der Laan questionnaire.

3.5 Subjects
A total of 16 subjects participated in the experiment of which
75% were male. The average age was 24.8 (±2.3) years
and they all were right-handed. Three subjects used the
teleoperation setup before, the other subjects had no prior
experience with this setup. The study was approved by the
Human Research Ethics Committee of the Delft University
of Technology. All the subjects gave their informed consent
for the use of their data.

3.6 Analysis
3.6.1 Data processing
The relevant variables were logged at a frequency of 1kHz
during the execution of the experiment. These raw data are
pre-processed prior to the calculation of the metrics. The
pre-processing included filtering all the location (x, y) and
force data (Fx, Fy) using a 10Hz 4th-order Butterworth filter
to remove the measurement noise. Also, all the wall hits in
a radius of 1cm around the starting points were removed
since they were often caused by accidental starts.

3.6.2 Statistical analysis
A two way ANOVA was used to determine the significance
of the task completion time, Y-reversals and maximum con-
flict force metrics (p < 0.05). The used factors are the con-
dition and the paths. For the wall hits the non-parametric
Friedman test was used, since the wall hits weren’t normally
distributed as the hits can’t get below 0. A post-hoc analysis
is performed using the Bonferroni correction. The results of
the Van der Laan questionnaire are analyzed using paired
t-tests (p < 0.05).

4 RESULTS

4.1 Raw data
Each subject performed 3 trials on each of the 4 possible
paths for every experimental condition. Fig. 9 shows the
trajectories of all the subjects, with four combinations of an
experiment condition and path. The results of the 12 trials
will be averaged for the metric calculation, assuming there
are no significant differences in the results between each
path. Contrarily to this assumption, there were significant
differences between the paths.

These differences are the clearest in the raw data of the
operator’s movement speed. For the paths 2 and 3 there is a
spike in the total speed between 0.05 < x < 0.1, while this
spike is not present in the raw data for paths 1 and 4 (Fig.
8). This spike in the total speed causes a slightly shorter task
completion time, as seen in Table 2. The difference between
the paths 2 and 3 and the paths 1 and 4 is the orientation of
the reference trajectory relative to the user movement. In the

paths 2 and 3, the operator takes the inner turn relative to
the reference trajectory, while in paths 1 and 4 the operator
takes the outer turn relative to the reference trajectory. This
effect will be elaborated upon in the discussion.

Fig. 8. Raw data plots of the total speed over the x location for paths 3
and 4. The red crosses denote the maximum speed within a trial.

The question remains whether the differences are
grounds for excluding certain paths in the final results.
The influence of this effect on the experiment is checked
by excluding all the trials performed on path 2 and 3.
This showed that the effect was relatively small and that
the between condition results remained the same relative
to each other. Also, this effect is considered an inherent
property of wrong reference trajectories, so path 2 and 3
have not been excluded from the final results.

Another thing that has been analyzed in the raw data
is how the reference trajectory adapted in waHSC. The
trajectory adapted as expected in all the completed trials,
meaning that the adapted reference trajectory is closer to the
correct trajectory than it initially was (Fig. 9). However, in
some trials where the slave hit the wall, the cause was likely
that the adaptation didn’t result in a smooth trajectory. The
reason for this adaptation error will be discussed in Section
5.3.

Finally, the trajectory plots in Fig. 9 show that many hits
in wHSC and waHSC occurred near the parting of the paths
towards the end, while little hits occurred in the horizontal
part of the paths.

4.2 H1: Performance wHSC vs. waHSC

We hypothesized that, when HSC was based on a translated
initial reference trajectory, the designed adaptive controller
would provide increased performance over a non-adaptive
controller (H1). Contrary to our hypothesis H1, waHSC
showed no benefits compared to wHSC: there was no sig-
nificant difference in terms of performance or wall hits, as
shown in 2 and as illustrated in Fig. 11.

The experiment was not designed to explore between-
subject differences, but doing so resulted in interesting dif-
ferences between wHSC and waHSC. The between-subject
comparison shows that the order of waHSC and wHSC is
relevant for both the measured and subjective results. With
the assumption that the manual and cHSC trials had no
significant effect on the task execution in the wHSC and
waHSC conditions, a between-subjects one-way ANOVA
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Fig. 9. Selection of raw trajectory plots. Each of the 4 conditions is plotted on one of the possible paths. A red ’o’ represents the hit location of a
failed trial.

test is conducted to quantify the influence of the different
orders of condition execution.

When a subject (n = 9) first experienced wHSC followed
by waHSC, the task completion time decreased significantly
and waHSC was perceived as being significantly more use-
ful (p = 0.002) and significantly more satisfying (p = 0.015).
The other way around, when subjects (n = 7) performed
the trials first in waHSC followed by wHSC, there was a
significant decrease in task completion time and wHSC was
perceived as more satisfying (p = 0.011), but no significant
difference was found in the self-reported usefulness. The
relevant graphs can be found in Fig. 10.

4.3 H2: Control effort wHSC vs. waHSC

We hypothesized that when there is an offset in the reference
trajectory, the adaptive controller would result in a lower
control effort compared to a non-adaptive controller (H2),
where subjects had to continuously overcome the force
guiding them towards the translated reference. The results
confirm this hypothesis: waHSC significantly reduces the
control effort compared to wHSC.

The control effort is measured with the metrics maxi-
mum conflict force and Y-reversals. For the maximum con-
flict force there is a significant difference between each of the
conditions, with waHSC requiring less control effort than
wHSC followed by cHSC. For the Y-reversals significant dif-
ferences have been found between almost all the conditions,
only manual and waHSC showed no significant difference.
The wHSC condition had significantly the highest amount
of Y-reversals, while cHSC had significantly the lowest
amount of Y-reversals.

The between-subject results based on order of execution
showed no different results for the maximum conflict force
metric. For Y-reversals however, a significant difference

was found when wHSC was performed before waHSC. No
significant difference was found when wHSC was executed
after waHSC.

4.4 H3: Performance Manual vs. waHSC
The third hypothesis stated that the adaptive controller with
a wrong initial reference would have improved performance
over the manual condition. However, the task completion
time and wall hits show significant differences between
manual and waHSC in favor of the manual condition.
This means that whenever the initial reference trajectory
is incorrect, it is better for the performance to disable the
adaptive controller and use manual control to execute the
task. H3 therefore can’t be accepted.

5 DISCUSSION

The results show that the adaptive controller is able to
reduce the force conflicts that are caused by an incorrect
initial reference trajectory. Opposed to our hypotheses, the
adaptive controller was not able to increase the performance
relative to the manual or wHSC condition. These results are
comparable with the results in the work by De Jonge et al.
[18]. Their trial-by-trial adapting controller also reduced
conflicts, but didn’t improve the performance relative to a
non-adaptive controller.

The results also show some remarkable results, such as
the differences between the paths and the differences be-
tween the orders of execution of waHSC and wHSC. These
differences and other general topics on adaptive controllers
will be discussed in the following sections.

5.1 Adaptation rate
The trials in the experiment were relatively short. It took op-
erators roughly 10 seconds to complete a trial that spanned
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TABLE 2
Table of the raw metric data per condition and per path, averaged over all the subjects. The number between the parentheses shows the standard

deviation. The cells are shaded according to their relative values.

Task completion time [s]
Man cHSC wHSC waHSC

P1
7.09 5.53 9.41 8.87

(2.24) (1.81) (2.11) (2.32)

P2
7.68 5.84 8.58 8.10

(2.29) (1.66) (2.02) (1.64)

P3
6.41 5.40 7.32 7.23

(1.69) (1.74) (1.82) (2.06)

P4
7.26 5.61 9.56 9.10

(2.00) (1.76) (2.38) (2.24)

All
7.11 5.60 8.72 8.32

(2.07) (1.71) (2.23) (2.16)

Number of wall hits [-]
Man cHSC wHSC waHSC
0.69 0.10 1.27 1.04

(0.86) (0.16) (1.11) (0.89)
0.83 0.12 1.79 1.46

(0.70) (0.30) (1.15) (1.17)
0.65 0.08 0.77 1.56

(0.65) (0.15) (0.88) (1.12)
0.40 0.10 0.63 0.81

(0.60) (0.23) (0.95) (1.95)

0.64 0.10 1.11 1.22
(0.71) (0.21) (1.11) (1.35)

Y-reversals [-]
Man cHSC wHSC waHSC
3.71 2.40 5.48 4.75

(1.72) (1.10) (1.61) (1.49)
4.19 2.92 5.58 4.38

(1.25) (0.76) (1.54) (1.33)
3.94 2.54 4.98 4.85

(1.66) (1.07) (1.37) (1.79)
4.48 3.29 6.08 4.90

(1.35) (1.58) (2.32) (1.13)

4.08 2.79 5.53 4.72
(1.50) (1.19) (1.75) (1.43)

Max. conflict force [N]
cHSC wHSC waHSC
0.79 3.74 2.70

(0.14) (0.21) (0.20)
0.85 3.50 2.39

(0.11) (0.19) (0.20)
0.60 3.25 2.50

(0.11) (0.19) (0.28)
0.65 3.69 2.78

(0.14) (0.14) (0.32)

0.72 3.55 2.59
(0.16) (0.26) (0.30)
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Fig. 11. Results for the different metrics. The connected dots represent one subject and the significance is denoted by bullets (•), (••), (• • •) that
respectively represent p-values with p ≤ 0.05, p ≤ 0.01, p ≤ 0.001 significance.

a distance of around 25 centimeters. Given this short trial,
the adaptation rate was required to be relatively high in
order to have the reference trajectory change enough to
make a difference. The high adaptation rate had several
implications on the behavior of both the operator and the
controller.

For the operator it is hard to understand the intentions
of the system since the system changes continuously. This
could also be the reason for the different between-subject
results for wHSC and waHSC: it might be harder to learn a
control strategy with a continuously changing system than
with a system that behaves consistently.

For the controller, a high adaptation rate results in tu-
multuous adaptation. The resulting bigger changes in the
reference trajectory increase –in this adaptation method– the
possibility that the reference trajectory wrinkles or adapts to
undesired forms. Most of the controller tuning in this exper-
iment was aimed at preventing wrinkling in the reference
trajectory. Even when is assumed that the adaptation is sta-
ble, there are still other aspects to consider. Since the initial
reference trajectory is completely based on prior knowledge
of the environment, the more the adapting reference trajec-
tory deviates from the initial reference trajectory, the less
the trajectory will be driven by prior knowledge and the
more it is driven by the current movement of the slave. The
adaptation rate therefore also represents how reliable the
original reference trajectory is. If a model is trained poorly,
more emphasis can be put on the slave movement. There

are however two possible downsides to adapting reference
trajectories based on the movement of the slave.

Firstly it makes the adaptation difficult since the current
movement of the slave is a very limited information source
for updating the reference trajectory. It is hard to determine
what the preferred adaptation is based solely on the state
of the slave. In this experiment the preferred adaptation
is ’forced’ upon the controller by means of tuning the
controller for this specific task.

Secondly, a controller with a too high adaptation rate
tends to follow the operator more, taking away the benefits
of HSC, instead of guiding the operator.

To summarize the discussion on the adaptation rate: a
controller with an adaptation rate that is too high may be of
less support to the operator and harder to understand by the
operator. On the technical side, a high adaptation rate may
result in undesired shapes in the reference trajectory due to
the limited available information. Contrarily, an adaptation
rate that is too low may result in unnecessary high control
effort.

5.2 Robustness for varying situations

Another point of discussion is the reaction of the controller
to different inputs. The operator can move the slave fast,
slow, backward or even stand still during the task exe-
cution. These different inputs may require different forms
of adaptation and real-world applications should account
for this variability in the input. The question that needs



MSC THESIS PAPER, AUGUST 2018 10

Fig. 10. Results for different order of execution of waHSC and wHSC.
The dots (•), (••) respectively denote p-values with p ≤ 0.05, p ≤ 0.01
significance.
‘

addressing is how the controller is expected to adapt in
different situations.

As stated in Fitt’s law, operators make a trade-off be-
tween speed and accuracy during the execution of a task.
Operators tend to slow down the movement when they
reach a difficult part in the task and increase the speed when
less accuracy is required. A constant adaptation therefore
might be beneficial considering that the more movement
data points are generated for the same movement distance
if the movement is slow. The result is that the reference
trajectory adapts more during slow movements and less
during fast movements. However, in the case where there is
no movement at all, the controller is sometimes not expected
to adapt. As a result, a different behavior of the controller
can be expected for the same operator input. Furthermore,
an adaptive controller should also perform properly when
the initial reference trajectory is correct. No adaptation is
expected from the controller when the reference trajectory is
correct.

Summarizing, before an adaptive controller can success-
fully be implemented, the expected behavior of the con-
troller needs to be clear. Deducting the expected behavior

from the slave movement is very hard and will likely only
work for precisely defined tasks.

5.3 Limitations and issues
The IGMM based adaptive controller used in this experi-
ment is not without its limits or issues. Most of them are im-
posed by the way IGMM works. This subsection will cover
the limitations first, followed by the issues encountered with
the controller.

The first limitation is the very task-specific tuning. The
tuning relies strongly on the update frequency and envi-
ronment. The tuning is required to prevent the adaptation
from forming unwanted shapes in the reference trajectory.
One of the encountered issues is that the reference trajectory
in some circumstances can adapt towards a wrinkle (Fig.
12b). The specific tuning for each task and environment can
prevent this to a certain degree.

(a) (b)

Fig. 12. Plots with initial wrong reference (red) and current adapted ref-
erence (blue) showing issues with the IGMM adaptation: (a) adaptation
in correct movement, (b) forming of wrinkles.

Secondly, IGMM is not capable of rotating the direction
in a reference trajectory. It can only translate parts of the
reference trajectory at the locations of the state means. As
mentioned in Section 3.2.3, GMR bases the reference trajec-
tory on the most likely (x, y) position for each time-step t,
but IGMM does not update the covariances between these
variables. In fact, IGMM only adapts the x- and y-related
(co)variances for each state with the inability to rotate the
reference relative to the state mean as a result.

The last limitation is that the IGMM controller in this
research can only handle forward motion. Due to the inclu-
sion of line 4 in the IGMM algorithm, the controller adapts
regardless of the input type, which means that when the
slave isn’t moving the reference trajectory is still adapting
towards the slave. This method was sufficient for this ex-
periment since the subjects were instructed to move as fast
as possible towards the end point and therefore the input
type didn’t vary.

In terms of issues, there are some problems that arise
which are inherent to the wrong reference trajectory or
the core working principles of the used algorithms. The
first issue relates to how an IGMM controller works when
the slave follows a reference trajectory and there are no
conflicts. As discussed earlier, an adaptive controller should
also be able to function when the initial reference trajectory
is correct. The IGMM based controller in this experiment
can’t cope with a correct reference trajectory (Fig. 12a). In
the event that the slave position is close to the reference
trajectory, it’s location is by definition in extension of one of
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the states in the global GMM. This results in a high value
for p(k|x) for state k and therefore state k will move along
the reference trajectory towards the slave’s position. As a
result, the states are adapting even though the slave is on
the reference trajectory, while no adaptation is required.

The last issue to discuss is inherent to incorrect trajec-
tories. As became clear when analyzing the raw data in
Section 4.1, the location of the wrong reference trajectory
relative to the current movement has a significant effect
on the movement of the slave. Whenever the movement
took the inner turn relative to the reference trajectory, as
seen in path 3 in Fig. 9, the direction of the guidance force
can change very quickly. This is due to the fact that the
direction and magnitude of the guidance force are based on
the shortest distance between slave and reference trajectory
and that the user is close to the radial center of the corner
when taking the inner turn. The implemented look-ahead
time, where an estimated future location is used to base the
guidance force upon, adds to this effect since the peak in
velocity (Fig. 8) results in a wrong estimated future location
and thus in incorrect guidance force.

5.4 Implications, recommendations and future work

This research shows that online adaptation of the reference
trajectory can be used to reduce conflicts in HSC. However,
more research has to be done before an adaptive controller
could be generally usable. The use of the designed controller
is limited to a very specific task and requires a lot of
tuning before it adapts the reference trajectory properly.
Based on these limitations and the discussion above, several
recommendations can be made for future work.

The controller in this research used a high adaptation
rate. As mentioned in the discussion, there are several draw-
backs to a high adaptation rate. Teleoperation tasks that are
longer—in space and time—allow for a lower adaptation
rate. It would therefore be interesting to see what differences
an adaptive controller can make in an experiment that
involves these longer tasks.

The conducted experiment in this research was not
aimed at exploring the effect of the execution order of the
different conditions, but these were found to be substan-
tially based on the between-subject analyses. The learning
of a movement strategy by the operator could be the cause
of the difference in results between different execution or-
ders. Another future research could look into this possible
strategy learning and explore the benefits of an adaptive
controller for operators with and without a movement strat-
egy.

Finally, a research could be conducted to eliminate some
limitations of the designed adaptive controller. Several en-
countered limitations and issues of the designed controller
are related to IGMM. The Direct Update method adapts
the reference trajectory in a different way and does not
suffer from many of the IGMM related limitations. Some
of these limitations, such as the possible wrinkling of the
reference trajectory and the intensive tuning to get the
desired adaptation behavior, can be circumvented by using
the Direct Update method.

6 CONCLUSION

This paper presented the design and evaluation of a haptic
shared controller that is capable of adapting its reference
online. The core of the controller consists of a Task Param-
eterized Gaussian Mixture Model (TP-GMM), which allows
for adaptation in different ways and is capable of quickly
generating reference trajectories. Literature provided three
methods that can adapt an existing Gaussian Mixture
Model: Generative Update, Direct Update and an Incre-
mental Gaussian Mixture Model (IGMM). These methods
have been compared in a simulation on their computational
expense and their adaptation behavior. The Incremental
Gaussian Mixture Model showed to be the most promising
for implementation in the adapting controller, since it was
the fastest method and it only requires the current slave
position. The TP-GMM and IGMM have been modified to
make them suitable for use in haptic shared control (HSC)
for a planar telemanipulated movement task.

The performance of the adapting controller is evaluated
with an experiment in which 16 participants performed a
trajectory following task on a teleoperation device. Four
different conditions were tested: HSC with a correct refer-
ence trajectory (cHSC), HSC with a wrong reference tra-
jectory (wHSC), HSC with a wrong reference trajectory
that adapts the reference trajectory online (waHSC) and
manual operation. The performance of each condition has
been experimentally assessed and compared, for which was
hypothesized that: waHSC improved performance (H1) and
reduced control effort (H2) compared to wHSC, and that
waHSC resulted in better performance than manual control
(H3). The results led to the following conclusions:

• Within-subject results showed no significant differ-
ence in performance between waHSC and wHSC
with the used adapting controller. Therefore hypoth-
esis 1 is not accepted.

• waHSC results in less control effort compared to
wHSC. This confirms hypothesis 2.

• waHSC results in worse performance relative to
manual control. Therefore hypothesis 3 is not ac-
cepted.

• When the HSC is based on a perfect reference trajec-
tory, the performance is significantly better and the
control effort is significantly lower compared to the
other conditions.

Apart from the within-subject results, a between-subject
analysis between waHSC and wHSC has been conducted
based on the order of execution. This showed decreased
task completion time, better self-reported usefulness and
more self-reported satisfaction for waHSC relative to wHSC
when wHSC was performed before waHSC. When wHSC
was performed after waHSC a significant decrease in task
completion time was found and wHSC was reported as
being more satisfying.
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A
TP-GMM overview and implementation

This appendix will describe how TP-GMM works and how it is implemented in MATLAB.

A.1. Overview of TP-GMM
Task Parameterized Gaussian Mixture Models (TP-GMM) allow for the creation of a Gaussian Mixture Model
(GMM) that is specific to a certain task. Gaussian Mixture Regression (GMR) can be used on the created GMM
to generate a regression line, which in turn can be used as a reference trajectory in Haptic Shared Control.
Figure A.1 gives an overview of the steps that will be discussed in section A.2. Finally, section A.3 will provide
a visualization of each step.
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Figure A.1: Overview of TP-GMM.
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A.2. TP-GMM steps
A.2.1. Parameter notation
Before the implementations and equations will be discussed, several parameters have to be assigned and
explained. Table A.1 shows the parameters and values used for the model, along with their counters used in
the equations and MATLAB code.

Table A.1: Annotation of parameters and values of the model

Variable Annotation Counter Value Unit

Dimension N - 2 [-]
States K k 4 [-]

Reference frames P p 2 [-]
Demonstrations M m 4 [-]

Data points per demo T t 200 [-]
Data points total D d D = MT [-]

K-means iterations - - 20 [-]
EM threshold C1 - 10−5 [-]

Table A.2 shows the parameters used in the equations and MATLAB code, along with their dimension and
explanation.

Table A.2: Explanation and description of equation parameters

Symbol MATLAB variable Dimension Description
Ap,m s(m).p(p).A N ×N Rotation matrix
bp,m s(m).p(p).b N ×1 Translation matrix
ξt ,m s(m).Data0(:,t) N ×T Data point in Global matrix
X Data N ×P ×D Local data tensor
µk,p model.Mu(:,p,k) N ×P ×K Means of model matrix
Σk,p model.Sigma(:,:,p,k) N ×N ×P ×K Covariance of model matrix
πk model.Priors(k) K ×1 Model priors
hk (ξt ) H(i,t) K ×T Activation weight for each data point

A.2.2. Demonstrations
Demonstrations are stored in the s (sample) struct. This struct consists of the movement data, a variable de-
picting the number of data points (nbData) and the demonstration specific task parameters. Task parameters
consist of a rotation matrix A and translation matrix b that determine the location and orientation of the local
reference frame.

ξm =
 t1 · · · tt

x1 · · · xt

y1 · · · yt

 (A.1)

The sm matrices contain coordinates of the examples in the global reference frame (see A.1), which has to
be converted to data relative to the reference frames for future calculations. This is done using the following
formula, considering time elements t1 . . . tt have been removed:

Xp,t = A−1
p (ξt ,m −bp ) (A.2)

The resulting data matrices for all p are then combined into a data tensor X for easy computing with
MATLAB.

A.2.3. K-means
The K-means algorithm divides the data into a set amount (K ) clusters based on the spacing between the data
points. Before the clustering is done, the data tensor is flattened (N ×P ×D to N ×PD) so it can be handled
at once by the K-means algorithm. For example a data tensor with N = 2, M = 4:
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X =
[

x1,1 · · · xp,1

y1,1 · · · yp,1

]]]]
m

=


x1,1 · · · x1,m

y1,1 · · · y1,m
...

. . .
...

xp,1 · · · xp,m

yp,1 · · · yp,m


(A.3)

The K-means algorithm is based on the following formula:

µk = argmin
µ

K∑
k=1

D∑
d=1

||xk,d −µk ||2 (A.4)

When the K-means algorithm (kmeansClustering.m [2]) is finished, it returns a list that assigns each
data point to one of the states. The calculated distribution can be a local optimum, since the starting means
are generated randomly. Therefore the code is adjusted to chose the distribution over the states with the
lowest cumulative distance over 20 iterations, increasing the likelihood of finding the global optimum. This
is done for consistency in the results when running the code.

Additionally, the list is used to calculate the means µk,p and covariances Σk,p . This is however optional,
since in this application K-means is used as an initial distribution for Expectation Maximization (EM). Mean
matrix µk,p and covariance matrix Σk,p will therefore be overwritten by the EM algorithm.

A.2.4. Expectation Maximization
Expectation Maximization consists of two steps, namely the expectation and maximization step. In the so-
called E-step the probability is calculated that a data point belongs to a certain distribution. This is done for
all the data points. Based on this probability, new means and covariances are calculated in the M-step. Each
point has a probability that it belongs to a certain distribution, so based upon this each data point might
contribute more in the mean calculation of one distribution than the other.

The steps in the expectation maximization algorithm are as follows:

E-step:

hu
k (ξd ) = πu

k N
(
ξd |µu

k ,Σu
k

)
∑K

k=1π
u
k N

(
ξd |µu

k ,Σu
k

) (A.5)

E u
k =

D∑
d=1

hu
k (ξd ) (A.6)

M-step:

πu+1
k = E u

k

D
(A.7)

µu+1
k =

∑D
d=1 hu

k (ξd )ξd

E u
k

(A.8)

Σu+1
k =

∑D
d=1 hu

k (ξd )(ξd −µu+1
k )(ξd −µu+1

k )>

E u
k

(A.9)

The EM algorithm is stopped whenever the increase of the total log-likelihood drops below a certain per-
centile threshold C1, which is calculated as follows:

Lu+1(ξ) =
D∑

d=1
log

(
K∑

k=1
πu+1

k N
(
ξd |µu+1

k ,Σu+1
k

))
(A.10)

Lu+1(ξ)

Lu(ξ)
<C1 (A.11)
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When likelihood doesn’t increase any further, and thus a local optimum has been reached, the EM algo-
rithms returns the µk,p and Σk,p of the local optimum. Furthermore, the model priors πk are now known,
which represent the fraction of the data points assigned to a specific state and show the probability that a
random data point belongs to a specific state.

The code written by Calinon [2], EM_tensorGMM.m, is used for this application. The value for C1 in the
original EM_tensorGMM.m has been adopted for this research.

A.2.5. Gaussian product
The model describes the location and variation of the states relative to the local reference (or ’frame’). To
create a global GMM they need to be placed in a global reference frame based on their task parameters.
Transforming the location and orientation of the mean and covariances from the local frame to the global
frame is done by using the task parameters. This transformation is done using the following equations:

µ̂k,p = Apµk,p +bp (A.12)

Σ̂k,p = ApΣk,p A>
p (A.13)

When all the local GMMs are transformed to the global frame, they can be multiplied with each other by
using the Gaussian Product. The Gaussian Product is defined as:

Σ̂k =
( P∑

p=1
Σ̂−1

k,p

)−1
(A.14)

µ̂k = Σ̂k

P∑
p=1

Σ̂−1
k,p µ̂k,p (A.15)

The combined situation specific states are known as a Gaussian Mixture Model (GMM).

A.2.6. Gaussian Mixture Regression
Now the situation specific GMM is known. With this information the regression data, with the respective re-
gression line, can be generated using Gaussian Mixture Regression (GMR). This is done in the GMR.mfile. GMR
estimates µ̃ and Σ̃ for each time step. This is retrieved by calculating the following probability distribution:

P (ξO
t | ξI

t ) ∼
K∑

k=1
hk (ξI

t )N
(
µ̂O

k (ξI
t ),Σ̂O

k

)
(A.16)

Where: µ̂O
k (ξI

t ) =µO
k +ΣOI

k (ΣI
k )−1(ξI

t −µI
k ) (A.17)

Σ̂O
k =ΣO

k −ΣOI
k (ΣI

k )−1ΣIO
k (A.18)

However, the resulting probability distribution is multi-modal. The different states are summed rather
than ’merged’, which results in the possibility for local optima and is therefore not suitable for GMR. Instead,
an approximation to this distribution is used:

P (ξO
t | ξI

t ) = N
(
ξ̂O

t | µ̂O
t ,Σ̂O

t

)
(A.19)

Where: µ̂O
t =

K∑
k=1

hk (ξI
t )µ̂O

k (ξI
t ) (A.20)

Σ̂O
t =

K∑
k=1

hk (ξI
t )

(
Σ̂O

k + µ̂O
k (ξI

t )µ̂O
k (ξI

t )>
)− µ̂O

t (µ̂O
t )> (A.21)

In equation A.21 an optional regularization term can be added to the diagonal of the matrix to ensure the
stability of the algorithm.

The hk term in the equations is the activation weight, depicting the weight of each state at each data point
and ensuring a smooth transition between the states by doing so.

hk (ξI
t ) = πk N

(
ξI

t |µI
k ,ΣI

k

)
∑K

k=1πk N
(
ξI

t |µI
k ,ΣI

k

) (A.22)
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Where the conditional probability is calculated using the classical formula:

N (ξI
t |µI

k ,ΣI
k ) = 1√

|2πΣI
k |

e−
1
2 (ξI

t −µI
k )>ΣI

k (ξI
t −µI

k ) (A.23)

A.3. Visualization of TP-GMM steps
All the TP-GMM steps are visualized below. Steps A.2c to A.2e show the clustering for each of the local frames.
Steps A.2g and A.2h show the Gaussian Product with the resulting global GMM in step A.2i. GMR is applied
in steps A.2j and A.2k, with the resulting reference trajectory in step A.2l

(a) Training environment (b) Demonstrations complete

(c) Local GMM for start TP (d) Local GMM for middle TP (e) Local GMM for end TP

(f) Target Environment (g) Local GMMs overlay for target
environment

(h) Gaussian Product

(i) Global GMM (j) Gaussian Mixture Regression (k) Regression line

(l) Resulting reference trajectory

Figure A.2: Visualization of all the TP-GMM steps

A.4. Nesting of MATLAB functions
The steps described in the appendix is all implemented in MATLAB. Table A.2 shows the parameters with
their corresponding equivalents in MATLAB. Table 1 shows the nesting of the mentioned MATLAB functions
together with the location of the discussed equations.
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Algorithm 1 Nesting of MATLAB functions with corresponding described equations

Require: M Demonstrations with each a K ×T data matrix

1: function MAIN.M

2: Set parameters: K , P, A, b
3: Retrieve parameters from demonstrations: N , M , T . A.1
4: for every M do
5: for every P do
6: Xp,t = A−1

p (ξt ,m −bp ) . A.2
7: end for
8: end for
9: function INIT_TENSORGMM_KMEANS.M

10: Flatten data tensor X for K-means . A.3
11: function KMEANS_CLUSTERING.M(X ,K )
12: for every P do
13: µk,p = argminµ

∑K
k=1

∑D
d=1||xk,d −µk,p ||2 . A.4

14: end for
15: return µk,p

16: end function
17: Calculate priors πk and covariance Σk,p based on X ,µk,p

18: return µk,p ,Σk,p ,πk

19: end function
20: function EM_TENSORGMM.M(X ,µk,p ,Σk,p ,πk )
21: for every P do

22: while Lu+1(ξ)
Lu (ξ) <C1 do . A.11

23: hu
k (ξd ) = πu

k N
(
ξd |µu

k ,Σu
k

)
∑K

k=1π
u
k N

(
ξd |µu

k ,Σu
k

) . A.5

24: E u
k =∑D

d=1 hu
k (ξd ) . A.6

25: πu+1
k = E u

k
D . A.7

26: µu+1
k =

∑D
d=1 hu

k (ξd )ξd

E u
k

. A.8

27: Σu+1
k =

∑D
d=1 hu

k (ξd )(ξd−µu+1
k )(ξd−µu+1

k )>

E u
k

. A.9

28: Lu+1(ξ) =∑D
d=1 log

(∑K
k=1π

u+1
k N

(
ξd |µu+1

k ,Σu+1
k

))
. A.10

29: end while
30: end for
31: return µk,p ,Σk,p ,πk

32: end function
33: function PRODUCTTPGMM0.M(µk,p ,Σk,p , Ap ,bp )
34: µ̂k,p = Apµk,p +bp . A.12

35: Σ̂k,p = ApΣk,p A>
p . A.13

36: Σ̂k =
(∑P

p=1 Σ̂
−1
k,p

)−1
. A.14

37: µ̂k = Σ̂k
∑P

p=1 Σ̂
−1
k,p µ̂k,p . A.15

38: return µ̂k ,Σ̂k

39: end function
40: function GMR.M

41: hk (ξI
t ) = πk N

(
ξI

t |µI
k ,ΣI

k

)
∑K

k=1πk N
(
ξI

t |µI
k ,ΣI

k

) . A.22

42: function GAUSSPDF.M

43: N (ξI
t |µI

k ,ΣI
k ) = 1√

|2πΣI
k |

e−
1
2 (ξI

t −µI
k )>ΣI

k (ξI
t −µI

k ) . A.23

44: end function
45: µ̂O

t =∑K
k=1 hk (ξI

t )µ̂O
k (ξI

t ) . A.20
46:

47: Σ̂O
t =∑K

k=1 hk (ξI
t )

(
Σ̂O

k + µ̂O
k (ξI

t )µ̂O
k (ξI

t )>
)− µ̂O

t (µ̂O
t )> . A.21

48: P (ξO
t | ξI

t ) = N
(
ξ̂O

t | µ̂O
t ,Σ̂O

t

)
. A.19

49: end function
50: end function



B
Reference adaptation methods

As discussed in the previous chapter, the global GMM will be generated using TP-GMM. The adaptation
methods described in this chapter all adapt the resulting reference trajectory by making changes in one of
the TP-GMM steps. This chapter explains the working principle of each method, how they are compared and
which one is most suitable for adapting the reference online.

B.1. Three adaptation methods
A total of 3 different adaptation methods have been investigated: Generative Update, Direct Update and
IGMM. Each of the methods adapts the reference trajectory on a different ’level’ in the process of generating
a reference trajectory. Generative Update works on the deepest level by adapting the demonstration data,
Direct Update uses an alternate form of Expectation Maximization to result in an adapted reference trajectory
and IGMM adjusts the global GMM to change the reference trajectory. An overview of can be found in Figure
B.1.
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clustering
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For every task param
eter

Direct  
Update
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Figure B.1: Overview of TP-GMM with the locations where the different methods adapt.
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B.1.1. Generative update
Generative Update (GU) is a GMM update method that has been introduced by Calinon and Billard [3]. This
method works on the deepest level in TP-GMM and therefore requires the most time for each update. The
update steps in GU work as follows:

1. The current movement of the operator is logged n1.

2. An existing reference trajectory is used to sample a set of new demonstration data points n2 that looks
similar to the existing reference trajectory.

3. The new combined data set n = n1 +n2 is used to create a new reference trajectory.

The speed at which this method adapts to the new movements can be determined by changing the ratio
of new/sampled data defined by α ∈ [0;1] in nα= n1. A more conservative adaptation setting requires more
sampled data, with the added computational expenses, while quicker adaptation requires less sampled data.
Less sampled data also results in a worse representation of the original model.

Another downside of this method is the randomness in sampling the data. Since the combined data set
will be slightly different for each update, the resulting reference trajectory will be different as well. This can
lead to shock-wise adaptation.

B.1.2. Direct Update
The Direct Update method has also been introduced by Calinon and Billard [3]. This method works by using
a modified Expectation Maximization procedure:

E-step:

hu
k (ξd ) = πu

k N
(
ξd |µu

k ,Σu
k

)
∑K

k=1π
u
k N

(
ξd |µu

k ,Σu
k

) (B.1)

E u
k =

D∑
d=1
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k (ξd ) (B.2)

M-step:
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k +E 0
k

D +D0 (B.3)
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(B.6)

The expectation step is the the same as in the regular EM algorithm (A.2.4). The maximization step is
different; the amount of points and the summed expectancy of the current movement and demonstration
movements are used as a weight ratio in the M-step. The adaptation rate can therefore be tuned by changing
the weight ratio. This can be achieved by replacing the existing values for E 0

k and D0 with E 0∗
k and D0∗ as

follows:

E 0∗
k =αE 0

k (B.7)

D0∗ =αD0 (B.8)

Where α is the tunable adaptation rate.
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B.1.3. Incremental Gaussian Mixture Model
Introduced by Engel and Heinen [4], the Incremental Gaussian Mixture Model (IGMM) adapts the global
GMM. The algorithm consists of the following equations:

spk (t ) = spk (t −1)+p(k|x) (B.9)

ωk = p(k|x)

spk
(B.10)

ek = x −µk (t −1) (B.11)

∆µk =ωk ek (B.12)

µk (t ) =µk (t −1)+∆µk (B.13)

ek = x −µk (t ) (B.14)

Σk (t ) = (1−ωk )Σk (t −1)+ωk e∗
j e∗T

j −∆µk∆µ
T
k (B.15)

This adaptation method adapts every state in the global GMM separately. The first step in the process is
determining the likelihood p(k|x) that the current slave position belongs to the state that is being adapted.
This value is added to the saturation parameter spk (t ). The likelihood is divided by the saturation parameter
to retrieve ωk , which represents the confidence in the current slave position. A higher value for ωk will result
in a bigger adaptation of the global GMM. The saturation parameter spk (t ) prevents the state from trailing the
slave, since the state is less likely to adapt when the saturation parameter fills up. The actual displacement
of the state ∆µk is calculated by multiplying ωk with the error between the state and the current position
of the slave. Finally, the covariance of the state is adapted using equation B.15, which is derived from the
Gauss-Wishart distribution.

The adaptation rate of the IGMM can be changed by applying a gain to ωk . This can be implemented by
changing the value for ωk with ω∗

k , which is defined as follows:

ω∗
k =αωk (B.16)

The other modifications mentioned in the paper haven’t been implemented during the simulation tests.

B.2. Simulation
The behavior of the methods is tested in a simulation. User movements have been recorded in a training
environment by logging the location of the computer cursor. The training environment (Figure B.2) consisted
of a starting point, an obstacle and an end point. The starting point and end point had 3 variations each, so a
total of 9 different paths from start to end were possible.

The logged data is re-sampled so all the demonstrations had the same length of 100 data points. The
logged data is then fed to the algorithms point by point in a for-loop to simulate a real-time movement.

Figure B.2: Training environment. A total of 9 paths were demonstrated.

Two simulation experiments have been conducted. One experiment was aimed at exploring the compu-
tational expense of each method. The other investigated the behavior of the different adaptation methods.
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B.2.1. Adaptation behavior
The adaption behavior of each method is tested on two different aspects. One aspect is the behavior for dif-
ferent changes in the environment. The methods are tested in an environment where the obstacle is rotated
(Figure B.3) and an environment where the obstacle and end point are translated (Figure B.4).

Figure B.3: Simulation environment with a rotated obstacle.

Figure B.4: Simulation environment with a translated obstacle and end point.

The second aspect is the behavior related to the movement speed of the operator. This behavior is tested
in for different constant speeds and for a varying speed. The different constant speeds are simulated by
re-sampling an existing movement trajectory to 200 and 50 data points, respectively the double and half of
the original number of data points. If a constant logging frequency of the operator’s movement is assumed,
the movement trajectory with 50 data points represents a faster movement than the movement trajectory
with 100 data points. The operator movement with varying speed is recorded separately and re-sampled to
100 data points. The speed simulations are conducted in the simulation environment of Figure B.4. The
conclusions on the behavior of the different adaptation methods can be found in Table B.1.

Generative Update Direct Update IGMM

Type of adaptation Complete new model
Relative to original

model
Relative to last

update
Handles varying
movement speeds

No Yes Yes

Handles different
movement speeds

No
Frequency should be

the same as in training
Yes, but requires

tuning
Cope with rotation of
obstacle

Yes No No

Cope with translation of
obstacle and end point

Yes Yes Yes

Table B.1: Overview of the conclusions

The simulation on the varying movement speed showed that the Generative Update method was not able
to handle varying movement speeds or different movement speeds. This method generates a new GMM for
every update based on the movement of the operator. If the operator movement is slightly different from the
initial demonstrations, the reference trajectory adapts to shapes that are unusable as a reference trajectory.
Direct Update can handle movements with varying movement speeds, but has also problems with move-
ments of different speeds. This is due to the summed expectancy of the operator movement, which is based
on the amount and expectancy of the data points in the operator movement.

The results of the simulation with the different environments is displayed in Figure B.5. All the methods
can adapt the reference trajectory to the translated object and end point, but only Generative Update can
adapt to the reference trajectory to the rotated obstacle.
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(a) Generative Update (b) Generative Update

(c) Direct Update (d) Direct Update

(e) IGMM (f) IGMM

Figure B.5: Adapted trajectories for each method in different simulation environments.

B.2.2. Computational speed
The number of calculations that have to be done for each update is different for each method. To determine
the relative difference in computation time, as well as the scaling of computation time with increasing data
points, a series of simulations was performed.

The simulation environment of Figure B.4 was used for this simulation. The user movement was re-
sampled to 10 data sets with a different amount of data points. The smallest set consisted of 50 data points
and the biggest data set consisted of 500 data points. These data sets were used as inputs for the different
adaptation methods that adapted the existing TP-GMM model. The simulation with each of the data sets was
repeated 10 times in order to minimize the effect of potential influences that could affect the computation
time. The results of the simulation are displayed in Figure B.6.
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Figure B.6: Computation time in seconds for user movements with different amount of data points.





C
Munin Guide

This appendix will give a brief introduction to the Munin and might be useful as a starting point for future
researchers.

C.1. Set-up
The Munin consists of a master and a slave that are connected by a real-time computer, which is labeled as
the ’target computer’.Next to the target computer is the host computer, which has Windows 7 and several
versions of MATLAB installed. The models that control the setup are built in Simulink and uploaded from the
host computer to the target computer whenever the setup is going to be used.

C.1.1. Target computer
The target computer is a regular PC that has some extra PCI boards that have connections for controlling the
servos and reading the sensors in the setup. The target computer boots from a USB stick, of which there are
two versions. One of the sticks contains the real-time operating system that belongs to MATLAB2011b, while
the other contains the real-time operating system that belongs to MATLAB2017b.

Figure C.1: The master (L) and slave (R) of the ’Munin’ telemanipulator.
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MATLAB2011b
The boot USB for this version is created using the two m-files. The first m-file settings_xpcenv.m is run to
set all the variables for the target computer, while the second m-file createbootdisk.m is used to create the
actual USB disk.

settings_xpcenv.m

1 %Set Environment Variables for XPC Target
2 setxpcenv('CDBootImageLocation','D:\haptics\Arnold\target\bootimage');
3 setxpcenv('BootFloppyLocation','O:');
4 setxpcenv('HostTargetComm','TcpIp');
5 setxpcenv('MaxModelSize','16MB');
6 setxpcenv('MulticoreSupport','off'); %NOTE: multicore support disabled, performance 2−3x

better
7 setxpcenv('Name','MuninTarget2012');
8 setxpcenv('NonPentiumSupport','off');
9 setxpcenv('TargetRamSizeMB','2048');

10 setxpcenv('TcpIpTargetAddress','192.168.0.10');
11 setxpcenv('TargetMACAddress','F0:4D:A2:32:8B:A5');
12
13 setxpcenv('TargetBoot','BootFloppy');
14 env = getxpcenv;
15 disp([env.propname.', env.actpropval.']);

createbootdisk.m

1 disp('Create bootdisk program');
2
3 disp('Loaded settings');
4 settings_xpcenv;
5
6 createTrue = input('Are you sure you want to create a disk? (y/n)','s');
7 if strcmp(createTrue,'y')
8 disp('Creating disk');
9 xpcbootdisk;

10 else
11 disp('No disk created');
12 end

MATLAB2017b
The command slrtexplr opens the Simulink Real Time Explorer, through which the boot USB can be cre-
ated. The used settings for creating the USB stick are as follows:

Target Network Settings
IP Adress 192.168.0.10
Subnet Mask 255.255.255.0
Port 22222
Gateway 255.255.255.255

Ethernet Device Settings
Target Driver Auto
Bus type PCI

Target Settings
USB Support Yes
Graphics Mode Yes
Boot mode Removable Disk

Table C.1: Settings used for creating the MATLAB2017b USB boot disk
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C.1.2. Host computer
The host computer controls the target computer via an ethernet cable. As mentioned before, there are several
versions of MATLAB installed in the host computer. The model that is described in appendix D is built with
MATLAB2011b and is therefore guaranteed to work with that MATLAB version. The model can also be used
in MATLAB2017b, but it is not thoroughly tested. The only adjustments required in order for it to function
in MATLAB 2017b is replacing ’obj.xpcObject = xpc();’ for ’obj.xpcObject = slrt();’ in line 133 of
Target_Model.m and changing the ’memory allocation size’. If the memory allocation size isn’t changed,
the target computer will give an error stating: "allocation of logging memory failed". Therefore the buffer
size is adjusted to the default 100000 in the Code Generation > Simulink Real-Time Options pane of the
Configuration Parameters dialog box.

C.2. Step by step guide for using the model
The following steps apply for the used model and use with MATLAB2011b, since this is the MATLAB version
that is used for the experiment. It might work the same for MATLAB2017b, but this has not been tested.

1. Run startup.m

2. Select TPGMM_Final.mat when the selection window opens. This is the file that contains the trained
TP-GMM model.

3. Click ’Yes’ when the ’Open Controller?’ dialog opens. This will open the GUI that enables you to control
the target computer.

4. Now press the ’Select’ button in the GUI to select the Simulink model that is to be used. Choose
Munin_180529_Stijn_Final.mdl, which is the model that will be described in appendix D.

5. Press the ’Upload’ button to upload the selected model to the target computer.

6. Press the ’Refresh’ button to update all the visuals in the GUI that represent the state of the target com-
puter.

7. Start the electric amplifiers by pulling the red button upwards.

Figure C.2: The GUI for controlling the target computer
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The model is now ready for use. The subject number, experiment condition and trial sequence can be
changed to your preference. If the trial sequence is to be changed, the required sequence should be selected
two times after each other. For unknown reasons the sequence only changes when it is selected for the second
time.

When everything is set, the experiment can be started by following these steps:

1. Initialize the webcam by pressing the button in the GUI. This will open the slave-view window on the
second screen that is attached to the host computer.

2. The Logitech webcam controller will open. Turn off the ’auto focus’ function in the webcam options,
otherwise the focus is adjusting continuously during the experiment.

3. Start the webcam by pressing the start button. This will initiate a loop that waits for the target computer
to start the simulation.

4. Start the experiment by pressing the button that starts the model on the target computer.

Several buttons have been added to the lower left of the GUI for demo purposes. These buttons allow to
turn on/off features of the model such as the haptic feedback, the HSC or the boundary crossing detection
(which includes the vibration if the slave is outside the boundary).



D
Simulink model

This appendix will explain the structure in the Simulink model and the purpose of several blocks in the model.
The nesting of the blocks can be seen in Figure D.1. The blocks highlighted with blue will be discussed in this
chapter.

Figure D.1: Nesting of the Simulink model. The highlighted blocks will be discussed in this appendix.
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D.1. Main
The top level of the model can be seen in Figure D.2. The inputs of the system are on the left side of the main
block, while the outputs are on the right side of the main block. Inputs consist of the press buttons (used for
calibration) and the rotary encoders. The outputs are the motor controls and the LED-lights on the setup.

Figure D.2: Top level of the Simulink model

Opening ’Main’ from the top level brings us to the ’State machine’-block that contains the core of the
controller (Figure D.3, while the green ’MotorConditioning’ block implements several safety limits to prevent
the hardware from damaging itself.

Figure D.3: Contents of the ’Main’-block.
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D.2. State Machine
The state machine contains a ’supervisor’ that determines when the system should switch between states.
This system contains 3 different states: initializing, leveling and running.

Figure D.4: The state machine

D.2.1. State: Initializing
The initializing state calibrates the encoders in the set-up. The master and slave are equipped with respec-
tively 4 and 3 push buttons, one for each motor. This state actuates every motor until the beam attached
to that motor touches a push button. By doing so, the offsets of the encoders are measured and with these
offsets the system is calibrated.

D.2.2. State: Leveling
Once the system is calibrated, the supervisor will switch to the leveling state. This simply moves the master
and slave to the center of their workspace. Once the master and slave are leveled, the supervisor switches to
the running state.

D.2.3. State: Running
The running state contains the real controller. The controller is preceded by kinematic calculations that trans-
form the measured rotations and torques to Cartesian locations and forces. The output of the controller is
converted back to torques using the inverse kinematics.

Figure D.5: Contents of the running state block, where angular inputs from the encoder are converted to Cartesian values. After the
controller determined the force output, the forces are converted to torques using the inverse kinematics.
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D.3. Controller
The controller is the heart of the model. There are 4 blocks that are capable of generating forces: the PD
controller, the Haptic assistance, the boundary check and trial detection. Each of these blocks will be briefly
discussed below.

Figure D.6: These are the contents of the controller, which determines the output based on the input.

D.3.1. PD Controller
The PD controller minimizes the error between the master and the slave. A stiffness and damping are applied
on the position and velocity error (Kp : 400,Kd : 0.02), which are then applied on both the slave and master. If
the slave hits a physical object, an error will arise. This error is felt through the master device, but also results
in a higher force exerted by the slave. This way the slave can interact with the environment while the operator
receives force feedback.

D.3.2. Boundary Check
The boundary check block checks whether the slave is within the boundaries of the task environment. The
block gives two outputs: a vibration force that acts on the master whenever the slave is outside the boundary
and a Boolean ’BoundaryOK’ that is true whenever the slave is within the boundaries.

D.3.3. Trial Detection
The trial detection block is very important and serves as a supervisor within the running state. Within the
running state of the model, several states can be differentiated during the experiment:

• Slave in starting position, ready to start

• Trial is in progress and slave is moving towards finish

• Slave hit a boundary, returning to start

• Slave reached the end point and should return to start

These trials are detected using three different variables, knowing: ’HeartBeat’, ’BoundaryOK’ and ’Trial-
Count’. Heartbeat is true whenever the slave is within a 0.2cm radius of the starting position, BoundaryOK
is true whenever the slave is within the boundaries and TrialCount adds 1 when the slave reaches the finish
within a 0.2cm radius. Using derivatives of these signals, the current movement of the slave can be classified
into one of the mentioned states. Also, the HSC is only turned on whenever the trial is in progress.
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D.3.4. Haptic Assistance
The haptic assistance calculates the required guidance forces. These forces are generated by multiplying a
stiffness (200N/m in this research) with the error between the reference trajectory and the estimated future
location of the slave. The estimation of the future location is done in the ’Look Ahead’ block, where also the
look-ahead time can be adjusted. Based on the experiment condition, the reference trajectory can be adapted
in the ’PathAdaption’ block.

Figure D.7: The Haptic Assistance block

Path Adaption
The IGMM is implemented in this block. The reference trajectory is reset before each trial by the ’Initial
Conditions’ block. When the trial is started, the IGMM uses the slave position to adapt the reference trajectory
online.

Figure D.8: Contents of the block that adapts the path in every update.





E
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E.1. Raw data plots
E.1.1. Raw data for manual

Figure E.1: Plots of the total speed during the trials of all the subjects. The red crosses show the maximum speed within one trial.

Figure E.2: The movement trajectories of all the subjects per path. The red circles show all the hit locations.
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E.1.2. Raw data for cHSC

Figure E.3: Plots of the total speed and interaction force during the trials of all the subjects. The red crosses show the maximum speed
and interaction force within one trial.

Figure E.4: The movement trajectories of all the subjects per path. The red circles show all the hit locations.
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E.1.3. Raw data for wHSC

Figure E.5: Plots of the total speed and interaction force during the trials of all the subjects. The red crosses show the maximum speed
and interaction force within one trial.

Figure E.6: The movement trajectories of all the subjects per path. The red circles show all the hit locations.
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E.1.4. Raw data for aHSC

Figure E.7: Plots of the total speed and interaction force during the trials of all the subjects. The red crosses show the maximum speed
and interaction force within one trial.

Figure E.8: The movement trajectories of all the subjects per path. The red circles show all the hit locations.
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E.2. Metric plots
E.2.1. Per condition

Figure E.9: Results for the different metrics per condition. The connected dots represent one subject and the significance is denoted by
bullets (•), (••), (•••) that respectively represent p-values with p ≤ 0.05, p ≤ 0.01, p ≤ 0.001 significance.
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E.2.2. Per path

Figure E.10: Results for the different metrics per path. The red dots represent wHSC, blue represents waHSC, grey represents manual
operation and green represents cHSC.
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E.2.3. Per subject

Figure E.11: Results for the different metrics per subject. The red dots represent wHSC, blue represents waHSC, grey represents manual
operation and green represents cHSC. The number next to a colored dot shows the execution order of each condition per subject.

E.2.4. VanderLaan results

Figure E.12: The Van der Laan results for each condition. The red results represent wHSC, blue represents waHSC, grey represents
manual operation and green represents cHSC.
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E.3. Learning plots
E.3.1. Task completion time

Figure E.13: These plots show the change of the results of all the subjects during the experiment and show possible strategy learning.
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E.3.2. Number of wall hits

Figure E.14: These plots show the change of the results of all the subjects during the experiment and show possible strategy learning.
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E.3.3. Y-reversals

Figure E.15: These plots show the change of the results of all the subjects during the experiment and show possible strategy learning.
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E.3.4. Maximum interaction force

Figure E.16: These plots show the change of the results of all the subjects during the experiment and show possible strategy learning.
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E.4. Order of execution differences
E.4.1. For each metric

Figure E.17: Results for different order of execution of waHSC and wHSC. The bullets (•), (••), (•••) respectively represent p-values with
p ≤ 0.05, p ≤ 0.01, p ≤ 0.001 significance.
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E.4.2. For the VanderLaan results

Figure E.18: Van der Laan results for different order of execution of waHSC and wHSC.
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Information sheet 

 
Before agreeing to participate in this study it is important that the information in this 
document is carefully read and understood!  
This document will describe the purpose, procedures, risks and possible discomforts of this 
experiment. 
 
Purpose of the Research 
The purpose of this research is to investigate the effect of different shared controllers in 
teleoperation on the performance, behavior and comfort of operators. The results will be 
statistically analyzed and published in a master thesis, as well as a possible publication. 
 
The experiment setup 
The haptic device ‘Munin’ is consists of a ‘Master side’, which is controlled by you, and a ‘Slave 
side’, which imitates the movements on the master side. The Master and Slave are connected 
via a computer that can help you perform a task using a shared controller. 
 

 
Figure 1: The “Munin”, a teleoperation experiment setup.  

 
Procedure 
After reading these instructions you will be asked to operate the Munin. First you will get the to 
familiarize yourself with controlling the Munin, after which the real experiment will begin. The 
experiment consists 4 sets of 12 trials and after each trial there will be a small questionnaire. 
The total required time for the experiment will be around 60 minutes. 

 

Familiarization 
12 trials 

Set 1 
12 trials 

1 questionnaire 

Set 2 
12 trials 

1 questionnaire 

Set 3 
12 trials 

1 questionnaire 

Set 4 
12 trials 

1 questionnaire 
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Task Instructions 
Try to reach the indicated target as fast as possible without hitting the walls. 
 
Using the setup 
During the experiment you will make movements from the starting positions, located on the left 
side, to the end positions that are located on the right side of the screen. The webcam view will 
display red arrows to these start- and end positions. The webcam view will also display 
additional information, of which additional information can be found in the table below: 
 

 
Figure 2: The Webcam view of the slave side 

 

Started! Try to move to the finish point as fast as possible 

Start when ready You will feel the ‘heartbeat’ vibration on the Master. You 
can start the trial when you are ready.  
If you started accidentally, you can move back to the 
start position for a restart. 

Return to Start… This will appear when you’ve reached the target. Move 
back to the next starting point. 

Collision, restart You just hit the wall, restart the trial. 

Done! You’ve completed the current set. 
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Benefits and risks of participating 
You are asked to use an experiment setup that provides force feedback. During the experiment 
you can be exposed to forces up to 5 Newton. 
There are no benefits or compensation for participating in this experiment. 
 
Discomfort and withdrawal from the study 
If you feel uncomfortable in any way or for any reason, you can press the red emergency button 
that is placed next to the Master device. At any time you have the right to withdraw from the 
experiment without mentioning any reason or consequences.  
 
Confidentiality and privacy 
This experiment will collect position and force data from the experiment setup as well as the 
answers from the questionnaires. All collected data will be: 

- Anonymized, subjects are referred to by only a subject number.  
- Kept confidential. 
- Used for research purposes only. 
- Stored in the TU Delft Haptics Lab repository for future learning and research. This 

repository is only accessible to researchers connected to the TU Delft Haptics Lab. 
 
Questions 
If you have any questions or complaints regarding the experiment or research you can contact 
Stijn Seuren, his contact details are listed below. Any questions about the nature of the different 
test-conditions can be asked at the end of the experiment. 
 
Contact details 

Researcher: 
Stijn Seuren 
s.a.seuren@student.tudelft.nl 
+31 6 28521148 

Supervisor: 
Prof. Dr. Ir. D.A. Abbink 
d.a.abbink@tudelft.nl 
 

Supervisor: 
Dr. Ir. M.J.A. Zeestraten 
martijnzeestraten@gmail.com 
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Consent Form 
  

Please tick the appropriate boxes Yes No 

Taking part in the study   

I have read and understood the study information dated       /      /           , or it has been read to me. 
I have been able to ask questions about the study and my questions have been answered to my 
satisfaction. 
 

¡ ¡ 

I consent voluntarily to be a participant in this study and understand that I can refuse to answer 
questions and I can withdraw from the study at any time, without having to give a reason.  
 

¡ ¡ 
 

I understand that taking part in the study involves operating an experiment setup with haptic 
feedback and filling out a questionnaire after each set of trials. 
 
Risks associated with participating in the study 

¡ 
 

¡ 
 

I understand that taking part in the study involves the following risks:  
- Exposure to feedback forces up to 5 Newton 

¡ ¡ 

 
Use of the information in the study 

  

I understand that information I provide will be statistically analyzed and published in a master 
thesis, as well as a possible publication. 
 

¡ 
 

¡ 
 

I understand that personal information collected about me that can identify me, such as age and 
gender, will not be shared beyond the study team.  

¡ 
 

¡ 
 

 
Future use and reuse of the information by others   
I give permission for the anonymized questionnaire answers and experiment data that I provide to 
be archived in TU Delft Haptics Lab repository so it can be used for future research and learning. 
This repository is only accessible to researchers connected to the TU Delft Haptics Lab. 

¡ 
 

¡ 
 

Signatures   
 
 
_____________________  _____________________ ________  
Name of participant   Signature   Date 

  

   
I have accurately read out the information sheet to the potential participant and, to the best of my 
ability, ensured that the participant understands to what they are freely consenting. 
 
 
________________________  __________________         ________  
Researcher name   Signature                 Date 
 

  

Contact Details 

Researcher 
Stijn Seuren 
s.a.seuren@student.tudelft.nl 
+31 6 28521148 

Supervisor 
Prof. Dr. Ir. D.A. Abbink 
d.a.abbink@tudelft.nl 
 

Supervisor 
Dr. Ir. M.J.A. Zeestraten 
martijnzeestraten@gmail.com 
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Powered by
Google Forms

Anonymous information
Could you please fill out the form below before the experiment? The subject number will be given 
to you by the researcher.

* Required

1. What is your subject number? *

2. What is your gender? *
Mark only one oval.

 Female

 Male

 Prefer not to say

3. How old are you?

4. Are you left- or right handed? *
Mark only one oval.

 Left handed

 Right handed

5. Have you ever operated a teleoperation device before? *
Mark only one oval.

 Yes, but a different device

 Yes, I have operated this device before

 No

60 I. Subject questionnaire



Bibliography

[1] Sarcos, Guardian GT, (2017).

[2] S. Calinon, A tutorial on task-parameterized movement learning and retrieval, Intell. Serv. Robot. 9, 1
(2016).

[3] S. Calinon and A. Billard, Learning of Gestures by Imitation in a Humanoid Robot, Imitation Soc. Learn.
Robot. Humans Anim. Behav. Soc. Commun. Dimens. , 153 (2007).

[4] P. Engel and M. Heinen, Incremental learning of multivariate Gaussian mixture models, Adv. Artif. Intell.
2010 , 82 (2011).

61

https://www.sarcos.com/products/guardian-gt/
http://dx.doi.org/ 10.1007/s11370-015-0187-9
http://dx.doi.org/ 10.1007/s11370-015-0187-9
http://dx.doi.org/ 10.1145/1228716.1228751
http://dx.doi.org/ 10.1145/1228716.1228751
http://link.springer.com/chapter/10.1007/978-3-642-16138-4{_}9
http://link.springer.com/chapter/10.1007/978-3-642-16138-4{_}9

	Paper
	Abstract
	Introduction
	Design of an adaptive controller
	Generating a reference trajectory
	Adapting a reference trajectory

	Method
	Experimental setup
	The adapting haptic shared controller
	Experiment protocol
	Measured variables and Metrics
	Subjects
	Analysis

	Results
	Raw data
	H1: Performance wHSC vs. waHSC
	H2: Control effort wHSC vs. waHSC
	H3: Performance Manual vs. waHSC

	Discussion
	Adaption rate
	Robustness for varying situations
	Limitations and issues
	Implications recommendations and future work

	Conclusion

	TP-GMM overview and implementation
	Overview of TP-GMM
	TP-GMM steps
	Parameter notation
	Demonstrations
	K-means
	Expectation Maximization
	Gaussian product
	Gaussian Mixture Regression

	Visualization of TP-GMM steps
	Nesting of MATLAB functions

	Reference adaptation methods
	Three adaptation methods
	Generative update
	Direct Update
	Incremental Gaussian Mixture Model

	Simulation
	Adaptation behavior
	Computational speed


	Munin Guide
	Set-up
	Target computer
	Host computer

	Step by step guide for using the model

	Simulink model
	Main
	State Machine
	State: Initializing
	State: Leveling
	State: Running

	Controller
	PD Controller
	Boundary Check
	Trial Detection
	Haptic Assistance


	Plots of experiment data
	Raw data plots
	Raw data for manual
	Raw data for cHSC
	Raw data for wHSC
	Raw data for aHSC

	Metric plots
	Per condition
	Per path
	Per subject
	VanderLaan results

	Learning plots
	Task completion time
	Number of wall hits
	Y-reversals
	Maximum interaction force

	Order of execution differences
	For each metric
	For the VanderLaan results


	Ethics letter of approval
	Experiment Information sheet
	Consent Form
	Subject questionnaire
	Bibliography

