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1. Introduction and Background 

1.1. Motivation 

The offshore wind power industry has experienced a very rapid growth in the past decade, 

especially in Europe, where installed capacity is increasing every year. Just in 2012 a total of 

1166 MW were deployed in the European Union, which translates to 293 wind turbines 

distributed in 9 new wind farms. The investments made (between €3.4 bn to €4.6 bn) 

represent an increase of 33% in deployed capacity with respect to 2011. In total, 4995 MW of 

offshore wind power has been installed in the EU so far, and this number is expected to keep 

on rising in the foreseeable future (1). 

 

Figure 1. Annual and cumulative offshore wind installed capacity in the EU, from 1993 to 2012. 
Reproduced from (1). 

With the number of offshore installations growing it is in the best interest of researchers, 

developers and the general public to maximize the net yield of wind farms, which would 

make them more efficient while driving down the costs of such massive projects. Heavy 

emphasis has been placed on optimization of offshore wind farm layouts, mainly to drive 

down the costs of the energy produced (Levelized Production Cost, LPC) in order to make 

projects more attractive for investment. Modeling tools have been extensively developed in 
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order to gain a better understanding of intra-array dynamics and optimize characteristic farm 

parameters such as yield, losses, costs, turbine distribution, etc.  

Recently heavy emphasis has been placed in research and development of automated wind 

farm design and optimization tools, which are capable of determining the optimal position for 

each of the turbines within a project area based on site conditions, interactions between the 

turbine wakes and additional constraints that reflect in the final annual energy yield and 

levelized production cost (LPC) of energy. 

Several of these developed tools and projects have attempted to implement advanced 

algorithms for automated offshore wind farm design based on objective function optimization. 

Usually LPC or energy yield are chosen as objective functions; most optimization routines 

(from single objective optimization to genetic algorithms) account for wake effects, turbine 

characteristics, water depth, distance to shore and site conditions to arrive to a solution. 

However, other design considerations like aesthetics, practicality, noise effects, 

environmental interactions or other “hard to account for” variables are rarely considered in 

optimization models and must therefore be manually adjusted by the designer moving away 

from the optimum solution even further than required. Therefore, it would be nice to explore 

the possibility of accounting for these kind of not-so-common objective functions in pre-

developed OWF design software in order to apply some more real world constraints into an 

otherwise exclusively cost-driven optimization routine. 

1.2. Objectives 

The objective of the project is to design, develop refine and implement a series of 

modifications and extensions in the form of algorithms that enable an existing offshore wind 

farm design tool (from here on referred to as the MZ Tool) to develop wind farms with 

complex layouts subject to realistic constraints. Therefore, the final production of the project 

is a functional software tool with extended functionality when compared to the one in 

existence currently. 

In order to achieve this main objective four secondary goals or activities have been defined, 

which are: 

• Investigate about the needs of wind farm developers and their current limitations 

when using tools similar to the one targeted by this project and translate them into 

functional requirements. This also covers performing a state-of-the-art analysis. 

• Prioritize the functional requirements and determine which of the problems they 

pose are feasible to be solved within the scope of this project.  
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• Develop solutions in the form of algorithms and routines designed to solve the 

problems identified in the previous step. 

• Implement and test the solutions within the MZ tool to determine the extent of 

success of the project. 

The proposed approach closely follows the waterfall product development model as 

presented in Figure 2. 

 

Figure 2. Waterfall model for product development. Reproduced from (2). 

The operations and maintenance phase as depicted in the model is the only one that is not 

contemplated for the current project, although it may be argued that this entire project is an 

“operation and maintenance” procedure on the current prototype of the MZ tool. 

1.3. Document Outline 

The outline of this report is as follows: 

Chapter 2 provides insight on the state-of-the art of wind farm layout optimization as well as 

a summary of other aspects that need consideration when developing such projects. It 

serves to provide the reader context on the overall problem. 
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Chapter 3 presents an overview of the MZ tool, pointing out is most relevant features, 

characteristics and limitations. 

Chapter 4 defines which are the user requirements for wind farm design and optimization 

tools. These user requirements are then classified and prioritized. 

Chapter 5 presents the process used to translate the identified requirements to be 

addressed into a complete problem definition. 

Chapter 6 describes the process to develop a solution to the cable layout optimization, which 

was an issue identified as priority in Chapter 5. 

Chapter 7 describes the process to develop the wind farm layout optimization algorithm 

following guidelines and requirements previously identified. 

Chapter 8 contains a discussion on the performance and results of the implemented 

solutions. 

Chapter 9 presents the conclusions of the project as well as recommendations and pointers 

for future developments.  
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2. Computational methods for layout 

optimization 

2.1. Overview of optimization 

Optimization problems are amongst the most recurring ones in engineering. They are 

concerned with finding the minima and maxima of a function, often named an objective 

function. In order to do this the values of the problem variables are chosen from within an 

allowed set (often called the solution space) until the objective function attains its maximum 

or minimum value. A mathematical formulation of the generalized maximization problem 

presented in (3):  

            

                        (  )   ( )        

Equation 1. 

The subspace A is often defined by a set of inequalities, equalities or constraints that all the 

elements within have to satisfy. Therefore, A constitutes the solution space and its elements 

are called feasible solutions. 

Minimum and maximum points may be local or global, which further increases the complexity 

of the problem and can sometimes lead to undesired or incorrect solutions. The most basic 

optimization routines, denominated local search algorithms, start from an initial guess as an 

approximation to the solution and then modify and test it until no better solution is attainable. 

One of the most popular local search methods, known as the gradient method, is presented 

in Figure 3. 
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Figure 3. The gradient method, also known as steepest ascent, shown for a multidimensional 
unconstrained optimization problem. Reproduced from (4). 

This method tries to find the optimum by “climbing” the solution space until the maximum is 

reached. If the black dot represents the initial guess, then it is altered by a certain magnitude 

(represented by the arrow), and the process is repeated until no further alteration results in a 

better solution. While these kinds of optimization methods work flawlessly for most simple 

problems they become problematic when the solution space becomes more complex, in 

which case local and global maxima/minima may exist within the same solution space. A 3D 

representation of such complex solution space is presented in Figure 4.  

 

Figure 4. 3D mesh of a non-concave solution space, with local and global maxima. Reproduced from (5). 

Suppose a traditional local search method is used to try to find the global maxima of the 

function. It becomes clear that if the initial guess is closer to the local maximum (for example, 

within the red meshing) the gradient method and most local search methods will end up with 

the local maximum as a solution. However, it is often the case that the global maximum is the 

desired solution. Thus, it becomes clear that local search methods are highly dependent on 
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the initial guess. Fortunately, other optimization methods have been devised to bypass this 

problem. Some of these will be discussed in detail in the following section.  

2.2. State of the art of layout optimization tools 

The offshore wind farm design problem is characterized by several interconnected variables, 

which often makes it difficult to find an optimal solution without the help of computational 

tools and techniques. Different optimization techniques are available to solve this kind of 

problem; in general they can be split in two groups: exact optimization algorithms and 

approximation algorithms, also known as heuristics. The second category has been proven 

to be better suited for the layout optimization problem for reasons that shall now be 

discussed. 

Pérez et.al (6) present two main reasons why heuristic methods are preferred to exact 

optimization for wind farm layout problems: 

• The computational time of gradient-based methods is often prohibitive to solve 

these kinds of problems. 

• The optimal location problem is non-convex, and gradient based methods attain 

local solutions as was explained in section 2.1. Depending on the initial guess the 

global optimum may be skipped. 

Approximation algorithms “search the solution space intelligently, and focus on those sub-

spaces of the total solution space which have a higher probability of finding a high quality, 

feasible solution” (7). Khan et.al (7) further divide approximation algorithms into two sub-

categories: constructive and iterative. Constructive algorithms find a solution by using 

deterministic moves to alter the previous guess; they are faster than iterative algorithms but 

often produce solutions of unacceptable quality or can even fail to produce a solution at all. 

Iterative algorithms, on the other hand, attempt to find the solution by performing a controlled 

walk over the solution space. Iterative non-deterministic algorithms are the most widely used 

in the field of wind farm optimization due to the advantages hereby presented and their ability 

to cope with the complexity of the problem. 

A literature review revealed that four iterative algorithms stand out as the most widely used 

for layout optimization: genetic algorithms, differential evolution, particle swarm optimization 

and simulated annealing. Nevertheless, additional approaches exist. The most important 

types of algorithms will now be described in detail.  
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2.2.1. Genetic algorithms 

Inspired by the process of natural selection, these algorithms have proved to be highly 

effective in solving the wind farm optimization problem. Particular solutions in a pool are 

regarded as chromosomes and only the fittest ones will survive and be able to reproduce, 

that is, effectively transmitting their characteristics (called genes) to their offspring. After two 

chromosomes are allowed to reproduce a new set of chromosomes, called offspring, are 

produced. Offspring are generated by means of four genetic operators which mimic the 

biologic process of genetic recombination: selection, crossover, mutation and inversion. The 

process stops once a certain stopping condition is met and the final chromosome is returned 

as the solution. 

A seminal paper by Mosetti et.al (8) is regarded as the first attempt at solving the layout 

problem via a genetic algorithm. Written in 1994, this paper uses a multi-objective 

optimization approach, with the goal of maximizing energy output and minimizing cost of the 

wind farm. The solution is given as a string of chromosomes that represent turbine positions 

in a rectangular grid. Grady et.al (9) tackles the problem in a similar fashion to Mosetti more 

than a decade later, with the main difference being a change in the objective function: he 

uses a single objective optimization approach, with the objective function being the ratio of 

cost to power output. 

Attempts have also been made by several authors to give more degrees of freedom to the 

solution space of the genetic algorithm, in order to find more realistic solutions to the 

problem. For example, Mora et.al (10) and Huang (11) not only changed the objective 

function once again (to Net Present Value NPV and profit, respectively) but also allowed the 

number of turbines to be placed to be a variable instead of an input, thus ending with a 

solution that not only contains turbine positions but also the optimal number of turbines for 

the wind farm. Huang later modified his original genetic algorithm (12) and transformed it into 

a so-called single objective hybrid algorithm, in which both local and global search are 

performed simultaneously, drawing from the advantages of both approaches. 

Two papers, written by Sisbot et.al (13) and González et.al (14) provide an interesting 

approach to the problem due to their attempts at further constraining the placement problem 

with forbidden positions that reduce the solution space to reflect a real life scenario. Sisbot 

uses a multi-objective optimization approach for a real site located in the Aegean Sea. The 

objective of this project was to design a wind farm subjected to particular site conditions and 

constraints of the terrain which was accomplished by restricting the available siting positions 

for a wind turbine in the grid that constitutes the solution space. González’s approach is 

based on the problem definition by Grady et.al (9) for an onshore wind farm. However, 
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González added the presence of a main road crossing the wind farm, two areas where 

turbine placement is forbidden and a load-bearing capacity zone in which foundation costs 

for turbines are higher. A more realistic NPV cost model was also introduced as well as a 

more complicated wake model when compared to the landmark one developed by Jensen 

(15). In posterior works González et.al (16) (17) further refined their optimization approach by 

introducing uncertainties in the annual energy production due to the unpredictable nature of 

wind. Also, other variables that in reality have an associated uncertainty, namely pricing of 

energy and the discount rate were modified to reflect such sensitivities. 

One final implementation of a genetic algorithm with a novel approach is presented by 

Kwong et.al (18), who for the first time introduced an environmental consideration in the 

objective function in the form of the noise generated by the wind farm. In their multi-objective 

approach, they sought to maximize power generation while minimizing noise levels at the 

wind farm boundary. 

Genetic algorithms are probably the most widely used iterative non-deterministic optimization 

methods to solve the optimal layout problem. Further works on the subject using this 

approach are presented by Wan et.al (19), Wang et.al (20) (21), Herbert-Acero et.al (22), 

Emami et.al (23), Mittal (24), Kusiak et.al (25), Bilbao et.al (26), and Khan et.al (27). 

2.2.2. Differential Evolution 

In a similar way to genetic algorithms, differential evolution uses an approach based on 

natural phenomena to produce solutions. The genetic operators previously mentioned 

(mutation, crossover and selection) are also used, although in a different manner. These 

algorithms maintain two arrays: one which contains the current population of individuals, 

while another one stores those which will be passed on to the next generation. In order to 

determine which individuals are the fittest ones competition is simulated between the existing 

arrays and some trial ones, until the strongest solution is achieved. 

As Khan Et.al (7) point out, application of differential evolution algorithms to wind farm 

problems has been limited so far, with only two papers written by the same authors actively 

working on the subject. The work by these authors, namely Rasuo et.al (28) (29) is not 

explored here in detail. 

2.2.3. Particle swarm optimization 

Particle swarm optimization algorithms, often shortened to PSO, are algorithms which use a 

population of individuals to find an optimum solution by making each individual move about 

the search space and “remember” which its best position is so far. In the PSO context 

individuals are regarded as particles, with each particle being a potential solution to the 
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problem. The collection of possible solutions is regarded as the swarm. Tesauro et.al (30) 

explain a common misconception of the PSO approached applied to wind farm design and 

also manage to synthesize the inner workings of the method: “Thinking of the wind farm 

layouts as particles of the swarm is quite difficult because we naturally tend to associate the 

turbines to particles and the wind farm to the swarm, which is wrong. In reality the whole 

wind farm layout is a bird/fish that is moved around by the algorithm, where “moved around” 

means that the position of the wind generators within the layout is changed”.  

In order for a particle to move it has an associated velocity to search the solution space in a 

controlled manner. Particles can also communicate with one another and trade information 

regarding the search space, thus guaranteeing that the final solution will be the global 

minimum/maximum. It should be noted that PSO algorithms are highly parameter dependent, 

which is why proper model tuning and calibration is required. 

The first attempt to solve the wind farm layout problem using a PSO approach was by 

Rahmani et.al. (31), employing a single objective optimization and comparing the results with 

those obtained by other authors using genetic algorithms. Wan et.al (32) further worked on 

the PSO technique by adding parameters such as inertia weight, maximum velocity and a 

constriction factor. However, his most interesting contribution was using a continuous 

solution space instead of a discrete one as all approaches to the problem previously have, 

effectively making it possible for any wind turbine to sit in any position inside the wind farm 

area. Wan’s approach was also single-objective optimization. 

Additional works using PSO approaches are those of Chowdhury (33) (34) et.al and Bilbao 

et.al (35). 

2.2.4. Simulated Annealing 

Unlike genetic algorithms, differential evolution and particle swarm optimization, simulated 

annealing (SA) algorithms are not population based; instead they work with only a single 

solution which is refined until no further improvement on it is achievable. The algorithm has 

two main steps: the initialization and a so-called Metropolis procedure. The former one is 

concerned with generating a feasible solution, while the latter one perturbs it to generate a 

secondary solution. If the quality of the secondary solution (usually called fitness) is higher 

than that of the original, the secondary solution replaces its forerunner as the best solution so 

far. While this method is quite similar to a local search algorithm, SA uses an additional 

probabilistic device to avoid getting “stuck” with local minima/maxima. If the fitness of the 

new solution is not greater than that of the previous one then it is not readily discarded; 
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instead it may be accepted based on the Metropolis criterion, which is described by the 

following equation: 

 (    
  
 ) 

Equation 2. 

Where r is a random number ranging from 0 to 1, Δh is the fitness difference between 

solutions and T is a parameter known as the annealing temperature. This is due to the fact 

that SA was originally formulated for the problem of cooling a material at high temperature in 

a heat bath. The reason behind the use of the Metropolis criterion allowing the acceptance of 

not necessarily better solutions than the previous one is best described by Aghabi (3): he 

describes the overall optimization process as finding a dip or a peak in the function, 

corresponding to minima and maxima, respectively. If a minimization is desired then a local 

search algorithm will only perform “downhill” moves until a minimum is reached, be it local or 

global. However, an SA approach allows occasional “uphill” moves that prevent the routine 

from getting trapped in the neighborhoods of a local minimum. 

As is the case for PSO, SA algorithms are also highly dependent on proper parameter 

tuning, being the most important the initial temperature, the cooling ratio, the stopping 

temperature and the length of the Markov chain, which determines the time used until the 

next update. The work by Aghabi (3) is a comprehensive implementation of a SA algorithm to 

solve the layout optimization problem, which also provides pointers to aid with the proper 

selection of the parameters previously mentioned. 

2.2.5. Evolutionary Strategies 

In principle, evolutionary strategies (ES) seem quite similar to genetic algorithms. Both types 

are biologically inspired routines that aim to replicate processes such as mutation, 

recombination and parent-offspring dynamics within single and multiple objective 

optimization problems. What marks the difference between evolutionary and genetic 

strategies is that in ES new candidate solutions are sampled stochastically from a 

distribution, instead of the arbitrary recombination process used in genetic algorithms. 

The Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) represents the most 

recent generation of ES algorithms, offering a number of significant performance advantages 

when compared to other heuristic approaches and has been applied to a wide range of 

engineering problems with success. An example of the CMA-ES used to solve the layout 

optimization problem is presented in the work of Rodrigues et.al (36). 
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2.2.6. Other approaches 

Sections 2.2.1 to 2.2.5 described the most widely used algorithms and approaches at solving 

the layout optimization problem, however, there are some more that although aren’t quite as 

popular are still worth mentioning. 

Viral algorithms have inner workings similar to genetic algorithms, although their main 

inspiration was the mechanisms that viruses use to replicate and transmit themselves. The 

process starts with an initial population of possible solutions, the most fit of them are 

replicated and their traits propagated according to the lytic cycle, which govern viral 

reproduction in reality. The process is as follows: “the virus injects its own nucleic acids into a 

host cell, which mistakenly copies the viral acids instead of its own. In the next step the viral 

DNA forms new viruses inside the cell which then break the cell membrane to infect other 

cells” (30). The solutions with lowest fitness values are grouped in a subpopulation which is 

recombined to achieve higher fitness, after which they can form part of the main cycle. 

Greedy heuristic algorithms start out with an initial guess for a solution. Then, three 

operations can be performed on the layout: adding a turbine, removing a turbine or moving a 

turbine. The altered layout is tested and if it has a higher performance to the previous one it 

replaces it as the new best solution. To avoid local minima and maxima turbines can be 

occasionally moved a random distance. The process is stopped when continued iterations no 

longer produce better results.  

Interestingly, some researchers have managed to apply pure or modified local search 

algorithms for the layout optimization problem, such as Wagner et.al (37). However, their 

approach seems to borrow heavily from greedy heuristic algorithms, which would classify it 

as a hybrid approach. The industry tool AWS OpenWind uses a local search optimization 

(38). 

In addition to Wagner et.al, other authors have also produced hybrid approaches which aim 

to retain the advantages of their preceding algorithms while diminishing the effect of their 

disadvantages. Saavedra-Moreno et.al (39) use a greedy heuristic algorithm to generate an 

initial solution (seed) which then serves as an input to an evolutionary algorithm, which 

results in an improvement in convergence times and solution quality by guaranteeing that the 

initial guess is a good one. Another notable hybrid approach is the work by Pérez et.al (6); 

they use a heuristic algorithm to generate an initial solution which is then optimized by 

means of non-linear mathematical programming for local search. Both approaches strive to 

apply usable area constraints to the solutions, limiting the valid positions for turbine 

placement. 
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2.3. Objective functions 

The approach selection plays a vital role in the solution of the problem; however, the 

optimization process may produce undesired or non-useful results if an adequate objective 

function is not used. The most popular choices for objective function are: 

 Energy yield: this function is also known and referred to as annual energy production 

(AEP) in a great deal of literature is the most straightforward objective function to 

maximize; the optimization strives to obtain the layout that produces the highest 

amount of energy. AEP is often used in commercial software as the objective 

function, such as GL Garrad Hassan WindFarmer, AWS OpenWind and EMD 

WindPro. 

 Cost of energy: this function considers both energy and cost parameters, which 

makes it a more robust choice when compared to AEP. It is simply defined as the 

cost of energy per kWh produced. The cost of energy can be defined in different 

ways, the simplest approach being to take the ratio between total project costs over 

energy yield (Ey). However, levelized production cost (LPC) is a better indicator of the 

true cost of energy, since it not only considers investment costs (Cinv) but also 

operation and maintenance costs (CO&M), decommissioning costs (Cdecom) and an 

annuity factor (a) to account for the change in value of money over time. LPC is often 

defined as: 
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Equation 3. 

 Profit: the profit function is an economic indicator of the performance of the wind farm, 

as the objective is to maximize net gains resulting from the operation of the turbine 

array over the course of its lifetime. According to the review by Tesauro et.al (30), 

“Rethoré et.al (40) built the most comprehensive function within the TopFarm 

framework”. The function they used, named financial balance, is defined as follows: 

                (     )  (  (
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Equation 4. 

Pe is the price of energy in the market, TEP is the total energy production across the 

lifetime of the project (X), CD is the degradation cost of the turbines, CM are the 

maintenance costs, Cf is the future value of the investment in foundations and Cg the 

same parameter but for electrical grid investments. The inflation and interest rates (ri 
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and rl, respectively) also play a part in the equation. The final parameter, NL, 

represents the number of times interests of loans have to be paid per year. 

 Net Present Value (NPV): a direct alternative to using Profit, the NPV indicates the 

financial performance of the wind farm over its lifetime using a different, well known 

formulation (not presented here). 

Combinations of the objective functions are also a possibility to create custom-built 

optimization targets, as many authors have suggested. One such example, albeit a very 

famous one, is the proposed objective function by Mosetti et.al (8), structured as follows: 

       
 

  
    

    
  

 

Equation 5. 

where Py is the yearly power produced, Ctot is the cost of the project and ω1, ω2 are two 

weighing constants to be chosen. If ω1 is set to 1 and ω2 to 0 the objective function targets 

maximization of energy yield. Likewise, if ω1 is set to 0 and ω2 to 1 then the minimum cost of 

energy becomes the objective. 

2.4. Additional problem considerations and models 

Although the optimization routine for the layout may be considered the centerpiece to the 

problem there is a great number of parallel aspects akin to wind farm design that need to be 

considered because they either affect or are affected by changes in the layout. The most 

important of them are presented here. 

2.4.1. Wake modeling 

The study of wind turbine wakes is not a new subject. When a rotor disc interacts with the 

incoming flow a pressure drop is generated at the site of the interaction, which is essential in 

converting the kinetic energy of the wind into output power via aerodynamic power 

conversion. Nevertheless, this interaction also has an effect on the incoming wind field; since 

some of the energy is extracted from the flow there is a velocity dip (from here onwards 

called the deficit) that is a function of the downwind distance from the wind turbine. Other 

turbines places downwind of said turbine will therefore be in the wake of the upwind one, and 

will be subjected to different wind characteristics than those of the undisturbed flow.  

There is a great deal of wake models available, nevertheless a quite simple model by N.O 

Jensen (15) and then modified by Kátic et.al (41) remains, up until now, the most widely used 

of them all. Although simple in nature, explicit models such as the Jensen model are still 

widely used due to their ease of implementation and low computational demands, while still 
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providing satisfactory results. The details of the model are not presented here, but may be 

found in their original references or in (42). 

Out of all the authors that have attempted to solve the wind farm layout problem presented in 

section 2.2 only Rasuo et.al (28) (29), González et.al (14) and Chowdbury et.al (33) use 

alternate models to the Jensen/Kátic approach. The former developed their own wake model, 

while the two latter authors used the Frandsen wake model (not discussed here). 

2.4.2. Cost models 

Cost modeling is a centerpiece behind proper definition of the objective function for the 

optimization process. Many of the objective functions presented in section 2.3 have an 

included cost term (that can account for construction, operation and maintenance and 

decommissioning phases); however there is no common consensus of how said total costs 

are best estimated. Some authors assemble their own cost functions, while others resort to 

guidelines and estimations based on previous data. 

Khan et.al (7) presents percentage approximations to the costs of a wind farm based on 

several studies published before. Table 1 presents his proposed cost composition. Notice 

that although he mentions maintenance costs in his work, he provides no percent 

approximation to them as with the other concepts given.  

Table 1. Estimation of main costs for an offshore wind farm, as reported by Khan et.al (7). 

Concept Percentage of total cost (%) 

Wind turbines 65-75 

Electrical infrastructure 10-15 

Civil works 5-10 

Installation and miscellaneous 10 

 

Elkinton et.al (43), as part of the widely recognized OWFLO project, present a more detailed 

cost breakdown from two different sources, which are in turn also based on state-of-the art 

and case studies. The first of these studies was the Opti-OWECS (Optimization of Bottom 

Mounted Offshore Wind Energy Converters) while the second one was the OWECOP 

(Offshore Wind Energy – Cost and Potential) study. Their findings are presented in Table 2. 

Table 2. Breakdown of main costs for Offshore wind farm projects, based on Opti-OWECS and OWECOP 
studies. Reproduced from (43). 
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Component % of energy cost (Opti-

OWECS) 

% of Installed Cost 

(OWECOP) 

Turbines and tower 34 25 

Sub-structure and 

foundation 

24 11 

O&M 23 17 

Electrical 

interconnection 

15 17 

Installation and 

decommissioning 

Included in above 18 

Other 4 12 

 

Aside from the percentage approximation approach some authors propose using 

mathematical formulations that approximate the cost as a function of other problem 

variables. The most recurrent one of these was first introduced by Mosetti et.al (8), and has 

been also used by Grady et.al (9), Marmidis et.al (44), Saavedra et.al (39) and Mittal (24). 

The equation that describes the total cost per year of the entire wind farm is: 

      (
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Equation 6. 

where N is the number of wind turbines in the wind farm. There is no clear advantage 

between using one cost model approach over another, which means that it is a matter of 

choice for the designer. The use of these cost models becomes relevant in layout 

optimization only when the number of wind turbines in the wind farm is not fixed but an 

optimization variable. 

2.4.3. Area limitations and symmetry 

A problem that is intertwined with most negative issues is the area selection problem. Many 

of the annoyances and negative impacts of offshore wind farms can be avoided if from the 

planning stage a series of no-go areas are defined, either by the project leasers or the 

planners themselves. For example, say the project developer receives a permit from the local 

government to build a wind farm within a certain area A within their continental sea. 

However, within area A the developer determines that a subarea A1 has a water depth that 

becomes economically prohibitive (support structures too expensive), a subarea A2 which is 

known to be a common spot for recreational fishing, a subarea A3 that has high porpoise 
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activity, subarea A4 was found to have an unsuitable soil type for the planned support 

structure and subarea A5 is too close to the shore for the local people to give the project their 

support (or, as Snyder et.al (45) put it, may spoil their view of historical areas). It would be 

wise for the developer then to plan its wind farm in the space given by the remaining area, if 

it is still technically and economically feasible. This same approach can be used to deal with 

many constraints to the project using a single methodology, from here on referred to as area 

restriction. 

Pérez et.al (6) present a rather simple formulation of the area restriction problem. In their 

work all the wind turbines must be allocated within a certain area, defined by four nodes 

(quadrilateral). Given the four node coordinates as (xi
L, yi

L);i=1,2,3,4 as input data, the 

constraints to ensure that all turbine remain within the polygon formed by these nodes is: 

|
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Equation 7. 

The constraint expressed by Equation 7 “requires that the area of the four triangles formed 

by each node-turbine with each pair of consecutive boundary nodes (measured in counter-

clockwise direction) is always greater than zero” (6).  While this formulation is to ensure that 

all wind turbines are placed within the boundaries given by the nodes, the conditional can be 

easily reversed to create areas in which turbines cannot be places (which do not necessarily 

have to be rectangular). Wagner et.al (37) also formulate an area restriction for their 

optimization algorithm, although in a much simpler manner by placing an upper bound on the 

available area for turbine placement. 

Another common constraint often found in optimization algorithms for layouts is a minimum 

allowable distance between turbines, which has a perfectly reasonable physical explanation. 

The industry standard is usually taken as 8 to 10 turbine diameters (8D-10D) of separation 

between turbines to achieve array losses below 10% (46), with 4D-5D being often 

considered as the minimum separation before wake effects become extremely detrimental on 

downwind turbine performance (some issues with this statement will be treated in section 

5.4). Safety reasons also play an important role in this minimum distance definition. Pérez et 

al (6) formulate this constraint using the following expression (using 4D as minimum 

distance): 

(     )
  (     )

 

(  ) 
          (    )       
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Equation 8. 

Regarding public preferences for overall layouts no information is readily available in 

scientific literature. However, there is a strong tendency for people to prefer symmetry to 

asymmetry as an indicator for beauty and overall aesthetics. In 1933, a mathematician by the 

name of George Birkhoff proposed a mathematical formulation to determine the aesthetic 

value (aesthetic measure) of an object, definition which is mainly applied to art. However, his 

basic formulation may still be applicable for the case of an offshore wind farm. Birkhoff (47) 

stated that the aesthetic experience is composed of three phases: “i) a preliminary effort of 

attention, which is necessary for the act of perception, and that increases proportionally to 

the complexity (C) of the object; ii) the feeling of value or aesthetic measure (M) that rewards 

this effort and iii) the verification that the object is characterized by certain harmony, 

symmetry or order (O), which seems to be necessary for the aesthetic effect” (48). The 

aesthetic measure is defined as the ratio between order (symmetry) and complexity. Higher 

values of M indicate a superior aesthetic experience. In simple terms, Birkhoff concludes that 

beauty increases with symmetry and decreases with complexity. This result may be 

extended to wind farm arrays. 

2.4.4. Electrical infrastructure 

The layout choice has a deep impact on the electrical infrastructure chosen for the project, in 

particular the cable topology. Figure 5 presents the standard types of topologies used for 

power collection and transmission from the wind turbines to the transformer stations and then 

to the shore connection. 
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Figure 5. Star and string layout options for turbine interconnections. Reproduced from (49). 

The two most common unitary topologies are shown by I and III in Figure 5, respectively 

named string and star. An additional transformation station may be added to allow for high 

voltage shore connections, as depicted in II and IV of the same figure. Schachner (49) 

mentions that for large offshore wind farms a combination of these unitary topologies is used, 

and several strings of turbines are connected to the onshore grid hookup. This has an 

advantage over using an strictly star layout: shorter cabling lengths and a simpler pattern; 

however, the layout is more sensitive to cabling failure since  using a series connection 

means that all upwind turbines in the same string to the failure point will remain non-

operational until a fix has been made. 

It makes sense that once the layout is altered the overall cable topology is also affected. 

Often tradeoffs between variables that the designer wishes to optimize appear, and the 

cabling layout is one such variable that is highly sensitive to changes made to optimize other 

aspects of the problem. For example, moving the wind farm further away from shore may 

reduce the visual impact of the project, but it will also raise its overall cost by generating the 

need for a longer cable to connect the array to the grid onshore. Also, changes in cabling 

distance produces changes in the overall transmission losses which are an important 

variable to determine overall wind farm efficiency. Another common tradeoff occurs when 

spacing between turbines is changed: greater spacing may be desirable since wake losses 

are reduced by spreading the turbines further apart, but the length (and costs) of internal 

cabling increases. 

In the optimization routine cabling is often considered in two ways. The first one is to include 

cable costs directly into the cost model as a function of total cabling distance required. This 

way using more cable will have an indirect negative effect on the objective function, and thus 

it will be desirable to minimize it. The second way cabling is considered in the routine is via a 

loss model for said components, which scale also with the total transmission distance. 

Energy output is therefore sensitive to cable topology as well, which means that in turn it has 

a huge repercussion on overall wind farm performance. 

2.4.5. Support structures 

Although not highly dependent on wind farm layout, the support structure is important to be 

considered because it is intertwined with another variable that does have a relation with 

layout: the area of the development. Water depth is one of the main drivers of support 

structure design; too shallow or too deep waters are avoided, due to inaccessibility and cost 

or optimization constraints respectively. Water depths outside the range of 2 meters to 30 

meters are not usually considered for an offshore wind farm (3), although it is technically 
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feasible to design projects that place turbines outside this range. Seabed conditions are also 

quite important to be taken into account since they often determine which type of support 

structure is appropriate for the site. 

Aghabi (3) synthesizes very clearly the influence of these variables on support structure cost: 

“If both the depth and the seabed terrain are homogeneous then the placing of the turbines in 

different places inside the perimeter will not influence the output cost. But if this is not the 

case, then the taking into account the foundation costs can be significant”. Most optimization 

routines and available software often assume homogeneous conditions, including Aghabi 

himself, who in order to handle the problem removes any unfeasible area from the solution 

space using an area restriction approach. Nevertheless, being able to optimize for non-

homogeneous areas may be interesting for some developers. 
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3. The MZ Tool 

3.1. Overview 

The MZ tool was developed by Professor Michiel Zaayer of the Delft University of 

Technology, with its role being “similar to that of a wind turbine model in a wind tunnel for 

aerodynamic research. It is not the real thing, to be used in a commercial application. Rather, 

it is a prototype, with the purpose to generate knowledge” (2). Since the tool was conceived 

as a research prototype many common requirements for industrial use are not treated and 

thus it cannot be thought of as a direct competitor or alternative to the commercial packages 

presented in the previous chapter. The purpose of this chapter is to present the MZ tool, 

outlining its most important characteristics and features, which will then be cross-referenced 

with the user requirements to outline the target improvements of this project. 

3.2. Inputs and Outputs 

A very comprehensive way to assess the overall functionality and capabilities of a program is 

to analyze its inputs and outputs. A very simple model representing the function of a software 

(or of any tool for that matter) is shown in Figure 6. 

System 
(Tool)

Inputs Outputs

 

Figure 6. Simplified representation of a system in block-diagram form without feedback loops. 

A tool can be visualized, in its most stripped-down conception, as a black box that converts 

inputs into outputs (which is also the strict definition of a system). It is often useful to first 

understand what is happening at both ends of the box before attempting to understand what 

happens inside it (which will be treated in the following section), since the user only has 

direct contact with inputs and outputs and thus will judge the performance on the tool based 

on them. 

The MZ tool has a text-based interface that currently has no graphical input capabilities or 

options (due to being developed as a prototype). The user is allowed to modify three project 

inputs and their related parameters, which are described in Table 3. 

Table 3. Allowed input description within the MZ tool. 
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Input Description 

Farms Allows the user to define the target wind farm in terms of number of 

turbines per row and per column. 

Sites Serves as an input interface for all relevant site characteristics. It is 

composed of seven sub-modules, which are: wind climate, water levels, 

wave and current climate, water properties, geophysical properties, 

accessibility information and grid coupling point. 

Turbines Allows the user to define the turbine’s characteristics in seven sub-

modules, which are: geometric properties, mass properties, aerodynamic 

load properties, power properties, electrical properties, operational 

properties and financial data. 

 

The “farms” input reveals that the tool is only capable currently of designing and optimizing 

wind farms with square layouts, defined by rows and columns with a certain number of 

turbines. This in turn also fixes the total number of turbines in the wind farm. 

Site definition, while comprehensive in terms of the number of inputs that the user can 

customize, is strictly numerical. The wind climate is defined by the Weibull shape and scale 

parameters which are used to generate the corresponding distribution. Therefore, the user 

may not use personalized wind data. Wind rose or any other wind direction indicators are not 

supported either. Water depth is also assumed as constant throughout the whole site and is 

entered as a single numerical value, which is also the case for extreme tide and storm surge 

levels. The rest of the sub-modules also receive numerical inputs for all relevant parameters. 

The possible wind farms that can be designed with the tool can only contain one type of 

turbine (although this is always the case for real projects, although in the future it may 

change), which is defined in the turbines input module. The most important parameters, such 

as rotor radius, mass of the RNA, drag coefficients (of idling rotor and nacelle), maximum 

thrust and total cost are all user-defined. The tool also supports the input of discretized thrust 

and power curves (the user must define the number of x-y points to approximate these 

curves). 

Once all the inputs have been filled in the user is then given the option of generating and 

optimizing different wind farm designs using different combinations of sites, farms and 

turbines. The program then allows the user the selection between two operations: initial 

guess or optimization.  
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The initial guess option, as the name suggest, performs an initial calculation of all the 

parameters that characterize an offshore wind farm. The results are clearly not optimized; 

however, the option is useful to visualize expected project outputs and to help the user have 

a preliminary judgment of the expected results. The outputs of the initial guess are organized 

in six modules: system (overall wind farm performance), support structures, layout, electrical 

system, maintenance, and cost analysis. 

While the inputs and outputs of the MZ tool provide great insight into its capabilities and 

limitations, some more specific information that is relevant to the present project can only be 

obtained by analyzing the inner structure of the tool. 

3.3. Inner Structure 

The MZ tool is composed of four main subcomponents, which are the application, the 

domain, the infrastructure and the user interface.  

 The application is tasked with launching the tool. 

 The domain contains most of the problem related variables, models, designers and 

analysts and thus constitutes the “heart” of the tool. 

 The infrastructure, as was the case with the application, contains a single functional 

component intended to enable the tool to run: the file handler. Its name explains its 

function, which is to handle storage and retrieval of information generated in all other 

modules. 

 The user interface contains all the build of the tool’s GUI. 

For the purpose of this project most developments will be aimed at altering/generating the 

components included in the domain since all the wind energy related aspects of the problem 

are treated in it. 

The MZ tool splits the overall wind farm design problem into disciplines, in a manner not 

different from that used in the present project. According to Zaayer (2) “after separation of 

the constraints, the remaining design problem of each discipline is to find the minimum of the 

LPC by variations of its own design variables, subject to constraints that also depend only on 

its own design variables”. The sequence of optimization per discipline as currently used by 

the MZ tool is presented in Figure 7. 
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Figure 7. Sequence of disciplinary optimization, reproduced from (2). 

A so-called multi-criteria analysis module sits at the center of the optimization routine (placed 

inside the humanities analysts), which is in charge of evaluating the objective function by 

obtaining all relevant parameters for the evaluation from the physics analysts. LPC is used 

by the MZ tool as the objective function, with its exact definition being contained in the 

economy analyst (also inside humanities). 

The optimization routine itself is contained in the team designer, which makes calls to 

designers (classified by discipline); these in turn make calls to the individual sub-problem 

analysts. The routine is based on incremental improvement comparison of the objective 

function’s score, which is defined as: 

                    

Equation 9. 

The weight term is set as 1.0 as default; if a multi-objective optimization approach were to be 

implemented then different weights for different objective functions could be assigned via the 

same scoring system. The routine varies the parameters that affect the LPC, after which the 

objective function is evaluated and the score for that particular iteration is calculated. If the 

score of the previous run is saved, the increment (or decrease) in the score can be defined 

as a percentage of improvement. The variation of parameters continues until one of two 

conditions is met: 

 The number of iterations reaches an allowed maximum, which is currently defined as 

10. 

 The incremental improvement between two separated runs is below 1% 

(stabilization). 

This pattern search method may be classified as a local search algorithm (also called a 

univariate search) in which the problem is converted into a series of optimization routines. 
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Figure 8. Schematic representation of univariate search. Reproduced from (4). 

As a closing remark, Zaayer also identified three properties that have a high importance for 

the optimization tool and that should be retained as the prototype is refined and its 

functionality increases. In the first place, the tool should be able to produce solutions quickly, 

even at the expense of some accuracy in the solution. Secondly, the optimization routine 

should always be able to find a solution without any unnecessary intervention from the user 

(stable performance of the optimization). Finally, the determined LPC should not be highly 

sensitive to input parameters, in order to avoid instability in other optimization routines used 

by the MZ tool (not discussed here in detail). 

3.4. Annotations by the tool’s author 

Zaayer (2) makes the following observations worth noting about possible functionality and 

performance improvements identified by reviewers of his tool (only the most relevant ones to 

the present project are presented): 

 More options for the user, for example, having more freedom of choice regarding the 

selection of parameters which are currently preset (such as interest rate and cost 

parameters). Design variables of the wind farm (such as turbine siting) may also open 

to modifications by the user, although a problem of required expertise for changing 

such parameters arises. 

 Automation of routine actions that the user will constantly perform, such as parameter 

variations and post-processing of different test scenarios. 

 Increasing the scope of the application, for instance, to add functionalities that enable 

the tool to support detailed design or conceptualization and configuration phases. 
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 Include the assessment of fatigue of the support structure by extending the current 

fatigue model to include limit state analysis. 

 Combat erratic response of spacing optimization. 

 Currently the tool performs layout and support structure optimization separately, each 

bounded by its own constraints. If a fatigue assessment model is implemented the 

effect of wake turbulence would need to be considered to determine loads in the 

support structure, therefore, the division of optimization routines would no longer be 

acceptable due to the created bridge between both problems. 

 Extending the tool to analyze different concepts and configurations of the project, in 

order to optimize a wind farm for a wider range of conditions. 

 Addition of area restrictions and site-specific aspects. 

 Visualization of inputs and outputs, as well as an overall improvement on the user 

interface allowing for file management and importing/exporting data from other 

programs. 

All these remarks included in Zaayer’s own work will also be used in tandem with the 

identified functional requirements to identify the target problem. 
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4. User requirements and problem 

narrowing 

4.1. Introduction to the Problem 

Whenever a computational tool is to be developed determining the user requirements is a 

central part of the process, since they constitute the desired output that the software 

designer must somehow deliver based on problem inputs. In computer science the user’s 

demands are often referred to as functional requirements.  

In the layout design problem the user can be clearly identified: it is the wind farm planner, 

those actors who design the projects and then invest the capital to build them in order to gain 

future profit. However, getting a specific list of functional requirements is not very 

straightforward since contacting the users is not easy when being an outsider to the industry. 

Aside from that, planners often don’t quite reflect on extended functionalities that 

computational tools may offer to them, thus making it even harder to determine exactly “what 

additional features they would like to have”. For these reasons functional requirements must 

often be extrapolated, or reverse engineered, from actual projects, designs and general 

outputs from the client itself. Analyzing what current tools offer is also a useful way to paint a 

general picture of what wind farm planners often expect from their computational tools. 

There are three types of functional requirements, which are: 

 Those that have already been addressed up to a satisfying degree. 

 Those that have been addressed but still leave some room for improvement to 

completely fulfill the user’s demands. 

 Those that remain completely untreated, due to either lack of knowledge on how to or 

due to the user’s failure to identify “hidden potential” in additional requirements. 

This chapter pretends to use some of these extrapolation methods to try and define what the 

functional requirements of wind farm design software are. These will then be prioritized, 

based not only on the importance of having said functionality but also on how achievable the 

implementation would be based on current knowledge and the scope of this project. 
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The methodology presented to obtain the final list of functional requirements was as follows: 

first, different approaches to extrapolating said requirements from available sources, tools 

and general observation were used (sections 4.3 to 4.6). All notable observations, features 

and other relevant information was then translated into requirement form which were then 

grouped, categorized and reshaped to avoid any redundancies (section 4.7). Then, this final 

list of requirements was evaluated according to certain indicators and figures of merit to 

obtain the final prioritized list. This process if further described in section 4.8. 

4.2. Commercially available wind farm design tools 

There are a number of software tools available in the market automatic layout design and 

optimization capabilities. The functions of each one of them shall be briefly described in this 

section, in order to further elaborate on the state of the art of wind farm design tools and help 

identify aspects in which the MZ tool may be lagging behind with respect to said software 

solutions. It is worthwhile to note that most of these tools have been developed for onshore 

wind farm design, which means that some of their functions may not be relevant for offshore 

wind power. This section briefly presents them, although a more detailed analysis of their 

capabilities and characteristics is given in sections 4.2.5 and 4.3. 

4.2.1. GL Garrad Hassan WindFarmer 

This program, developed by one of the world’s biggest renewable energy consulters, is one 

of the most complete software packages for wind farm design and optimization. Its functions 

are divided in modules, which include energy, financials and electrical calculations as well as 

visualization and rendering capabilities, among others. More information on WindFarmer can 

be found in (50). 

4.2.2. AWS Truepower openWind 

AWS Truepower is a renewable energy consultancy, with around three decades of 

experience. Their wind farm design tool, named openWind, comes in two versions: a deluxe 

Enterprise edition and a Basic one, with more limited functionality. The tool uses a GIS 

(Geographical Information System) approach to the layout problem, meaning that the use of 

maps, digital terrain models and layering techniques are the core of the program. More 

information on openWind is available in (38). 

4.2.3. EMD WindPro 

Developed by EMD International A/S, which is a software and consultancy company in green 

energy projects based in Denmark, WindPro is probably the most robust wind farm design 

and optimization tool available in the market (although it can be argued that WindFarmer 

may come in a very close second place, if not being an actual tie). The software provides a 
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very wide array of modules and tools that take into consideration virtually all aspects that are 

elated to wind farm development. Analogous to WindFarmer, WindPro is also organized by 

modules whose hierarchy and main functions are depicted in Figure 9. 

 

Figure 9. Short module description and classification within EMD WindPro. Reproduced from (51). 

More information on WindPro is available in (51). 

4.2.4. ReSoft WindFarm 

ReSoft is a small UK-based company whose single product is the wind farm design software 

WindFarm. The tool is also map-based. Most of its features are shared by the programs 

previously presented. More information on WindFarm is available in (52). 

4.2.5. Comparison between available software 

Using the main characteristics that each of the four most widely used wind farm design tools 

offer an objective comparison was elaborated. Note that this is only based on information 

provided by the manufacturers on their official websites. Table 4 and Table 5 present a 

feature detailed comparison of all commercially available software tools. 

Table 4. Feature comparison (optimization and environmental variables) for commercially available wind 
farm design software. 
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openWind 

EMD 

WindPro 

 x x x x  x x 

ReSoft 

WindFarm 

x x  x x  x x 

 

Table 5. Feature comparison (other concepts) for commercially available wind farm design software. 
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openWind 

 x    x x 

EMD 

WindPro 

x x x x x x x 

ReSoft 

WindFarm 

x     x  

 

The most important conclusions that can be drawn from this feature comparison, as well as 

from general characteristics, are: 

 All analyzed tools give the designer the choice of at least two objective functions for 

the layout optimization process. The choice in commercial software is limited to the 

three functions presented in Table 4. 

 None of these commercial tools has been specifically developed for offshore projects. 

This is especially notable in the emphasis the available software tools place on 

variables such as noise level evaluation and shadow flicker, which have no relevance 

for offshore wind projects.  

 None of the tools assess environmental impacts on wildlife, which can be relevant for 

both on and offshore projects (although the evaluation methods for both cases and 

the extent of the effects are remarkably different). 

 Layout optimization routines play a central role in all four tools analyzed in the review. 

All of them are able to perform optimization while adhering to area, boundary or 
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environmental constraints; an exception is GL WindFarmer although it may be 

because Garrad Hassan may not have published this information regarding their 

software, thus it is highly likely that this capabilities are included as well. 

 Visual impact assessment has also become an industry standard, and some of the 

methods used for onshore projects such as ZVI, photomontages and rendering may 

translate correctly to the offshore case (although these are only good for a subjective 

valuation). 

 Most of the currently used tools are GIS based, which gives them the advantage of 

being able to work with real multi-layered maps and use a database with very 

particular and often relevant site information. Results visualization is also simplified by 

using this kind of approach. 

 Uncertainty analysis is an interesting tool to implement for giving the designer a more 

realistic appraisal of the project since risk management often plays an important role 

in project funding. 

 While economic viability analysis is often considered to be a centerpiece of large 

scale project planning two of the evaluated tools don’t have a built-in module for said 

purpose. Although these two programs (openWind and WindFarm) are both able to 

use cost of energy as an objective function, which is an inherently economic variable, 

they are not able to perform more advanced financial calculations such as NPV, IRR, 

liquidity, expected revenues, amongst other possibilities. 

4.3. Software Outputs 

The first approach used to obtain functional requirements follows a very simple logic: if wind 

farm planners are buying and using commercially available software it is because the 

solutions they offer comply with their demands (at least to a certain point). Therefore, 

analyzing said existing programs in more detail is a very straightforward way to reverse 

engineer the expectations their users have.  

 In order to do this extrapolation the main features of four commercially available programs 

previously considered (section 4.2) will be used as the analysis base. The objective now is to 

translate each program’s features to “what is the user looking for” or “why I, as a wind farm 

planner, would find this useful”. The approach is presented in user-thoughts diagrams, which 

are presented below. In these diagrams all the elements that start with “…” should be read 

as “I would like…”, since this is the perspective of a user that acquires and uses the 

software. 
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GL WindFarmer

... advanced 
wind flow 
modeling 

capabilities

...to download 
and use 

worlwide map 
data

...to apply 
restrictions to the 

available area for the 
wind farm.

...to refine the yield 
calculation using more 

specific parameters and 
data.

...to have the 
option of using 

an advanced 
wake model.

...to calibrate 
outputs with 

data from real 
wind farms.

...to be able to 
determine the 

uncertainty of the 
energy yield.

...to assess 
noise impacts of 
my wind farm.

...to assess 
visual impacts 

of my wind 
farm

...the tool to 
optimize the layout 
automatically and 

quickly.

...visualize my 
wind farm (both 

in 3D and 
maps).

...use my own 
wind data.

...to know not 
only total cost but 

also its 
breakdown.

...see and check 
the electrical 
design of the 

wind farm

...map shadow 
flicker effects.

...see how 
layout changes 
impact costs of 

the project

 

Figure 10. User-thoughts diagram for GL WindFarmer software. 

AWS openWind

...optimize the 
wind farm for 

minimum COE.

...optimize the 
wind farm for 

minimum noise 
impacts.

...determine the 
uncertainty of 

my wind farm’s 
energy yield.

...optimize a 
gridded layout.

...assess the 
noise impacts of 
my wind farm.

...assess the 
visual impact 
of my wind 

farm.

...optimize a 
layout for a 
constrained 

area.

...define shut-
down 

strategies.

...be able to choose 
between different 

standard wake 
models.

 

Figure 11. User-thoughts diagram for AWS openWind software. 
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EMD WindPro

...to use and 
analyze my own 

wind data

...to use 
reference 

worlwide wind 
data.

...to calculate 
estimated yield 
based on site 

conditions alone.

...to model and 
visualize the wind flow 
over the project area.

...to assess 
noise impacts.

...to estimate losses 
and uncertainty of 

the project.

...have a built-in 
catalogue of 
commercially 

available turbines.

...to optimize the 
layout for 

compliance with 
noise limits.

...optimize the 
layout for 

maximum energy 
production.

...the tool to 
optimize the layout 
automatically and 

quickly.

...visualize my 
wind farm (both 

in 3D and 
maps).

...to calculate yield 
based on direct 

measurements or 
flow models.

...to apply 
constraints and 
reqirements to 
wind farm area.

...optimize 
while 

conserving a 
symmetrical 

layout.

...to map 
shadow flicker 

effects.

...to assess 
visual impacts.

...check for loads 
on turbines and 

compare to 
relevant standards.

...visualize all 
impacts on 
neighboring 

areas in a map.

...check the 
performance of 

already built 
projects.

...determine the 
financial feasibility 

of the project.

 

Figure 12. User-thoughts diagram for EMD WindPro software. 

ReSoft WindFarm

...use scanned 
maps as the 
visual base.

...apply 
geographic and 

area 
constraints.

...visualize 
calculation outputs 

in maps.

...calculate energy yield 
while considering 

topographic and wake 
effects.

...assess visual 
impacts.

…consider 
turbulence effects of 

other turbines.

...visualize wind flows 
over the project 

area.

...optimize the 
layout for 

minimim cost of 
energy.

...optimize the layout 
while applying 

constraints.

...optimize the layout 
for maximum energy 

yield.

...visualize my 
wind farm (both 

in 3D and 
maps).

...be able to choose 
between different 

wake models.

...optimize for 
only certain 

turbines, while 
fixing others.

...use and 
analyze my own 

wind data.

...assess noise 
impacts.

...assess 
shadow flicker 

effects.

...create radar 
ceiling maps.

...create and edit 
turbine files.

 

Figure 13. User-thoughts diagram for ReSoft WindFarm software. 

User-thoughts diagrams are useful to think from the viewpoint of both the software publisher 

and the wind farm designer himself. Simple inspection of the diagrams also reveals which of 

the developer’s requirements are addressed by all of them (making them “standards” or 
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minimum requirements), while also pointing out which features and aspects are considered 

only by some tools. If this is the case, then this second category of requirements are either (i) 

untreated or overlooked for the most part by other software designers, or (ii) not heavily 

demanded by the users and therefore not widely implemented. 

The final step (yet a crucial one) in this analysis is the translation of the “user-thoughts” into 

actual functional requirements. For this particular method of extrapolation this task is quite 

simple since tool analysis reveals features and functions at a very detailed level of the 

problem itself and thus they can be taken directly as features that the user would like to have 

in his program. The final list of functional requirements (section 4.7) contains many of the 

features and needs identified using the user-thoughts diagrams, which appear unchanged 

from their initial formulation in this section due to their characteristic simplicity. 

Another approach that is also useful is to find and use customer reviews of the software 

itself, which most of the time can be easily found online. However, due to the specialized 

function of the tools and the narrow user-group that they are aimed at no such reviews were 

available and thus this important feedback source could not be used. 

4.4. Scientific literature 

Literature can provide some insight in what the functional requirements may be. Research 

and development efforts are often focused on building knowledge and techniques that 

address problems whose solution is being demanded, therefore giving insight on the first two 

types of functional constraints listed in section 4.1. Note that referencing each particular 

requirement to a single author or source is an extremely complex task, since many of the 

identified requirements are not directly voiced by said sources or appear as part of the 

project background in most of the studied reports.  

Additionally, the “future work” section often found in scientific publications can provide insight 

in the third type of requirements. The state-of-the-art report presented in section 2.2 gives an 

idea on where current research in layout optimization is heading at, from which some 

generalized user requirements can be extrapolated, as shown in Table 6 (note that these 

lists contains not only requirements for a project developer but also reflects interests of other 

actors). 

Table 6. Extrapolated requirements from state-of-the-art study. 

Category Ongoing R&D Reflected requirement 

Optimization Which optimization strategy is 

better suited to solve the layout 

Obtain the highest-quality solution 

possible from a computational tool. 
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problem? 

Reduce computational time and 

burden by perfecting algorithms. 

Efficient programs that solve the 

problem within reasonable time 

constraints. 

Which objective function is 

better suited for the 

optimization? 

Develop and implement new objective 

functions which encompass all relevant 

problem variables and prove to yield 

good results. 

Modeling Developing and implementing 

better wake models. 

Same as ongoing R&D. 

Developing and implementing 

better cost models. 

Same as ongoing R&D. 

Use of economical valuation 

models and strategies. 

Be able to know profits and benefits of 

investing in projects. 

Developing and implementing 

better cable models. 

Improve loss estimation, and thus 

improve energy yield estimation. 

Improving cable topologies. Reduce costs; improve transmission 

efficiency and overall yield. 

Implement automated support 

structure design. 

Reduce costs, increase computational 

tool functionality. 

Layout Symmetry of layouts. Increase public acceptance and thus 

probability of project success. 

Convert constraints into 

restricted areas. 

Obtain more realistic solutions using a 

simple approach for the designer. 

Visual impact assessment and 

minimization. 

Increase public acceptance and thus 

probability of project success. 

Environmental Assess climatic effects (local 

and global) produced by 

offshore wind farms. 

Evaluate long term risks and 

consequences of mass deployment. 

Assess noise impacts and 

propagation. 

Minimize burden on neighbors, thus 

increasing public acceptance. 

Assess impacts on local wildlife. Evaluate long term risks and 

consequences of mass deployment. 
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Notice that as was mentioned before the table does not contain all the requirements that a 

project developer expects from wind farm developer software, it is simply a guide that in a 

further section will be combined with the other extrapolation methods to voice the final list of 

actual functional requirements. 

The studied literature also provides some information regarding future work and opportunities 

that may be used to shape the expectations of those working on the field that still remain to 

be fulfilled. Since authors tend to voice and list their perceptions on what future work should 

be, clearly referencing each requirement to a particular source becomes a simpler task than 

with ongoing R&D activities and projects. The sources used for this analysis are now briefly 

presented, and the recommendations given by each were then grouped and translated to 

functional requirements. 

Aghabi (3) and Pérez et.al (6) have developed works related to computational approaches to 

solve the layout optimization problem. Interestingly, both works contain the same choice of 

words to voice the authors’ view on requirements and possibilities of improvement (it is 

unclear who wrote it first since both fail to quote the text): “There is still much work to be 

done in the field of wind farm optimization. These include wake modeling to properly predict 

the wind decay (and therefore the power losses). Other physical aspects such as foundations 

or cabling, human aspects as visual effects and area restrictions, and mathematical topics 

regarding the optimization approaches must also still be reviewed in detail”. All of these 

requirements were also identified in the literature review and are therefore contained in Table 

6. Aghabi’s work, which consisted in the implementation of a simulated annealing 

optimization algorithm, also contains additional recommendations that may correspond 

closely to the developer’s functional requirements.  

Elkinton et.al (43) also mention possible additional functionalities and requirements for wind 

farm design software as part of their report concerning the OWFLO project. At the top of their 

priorities they voice the “need for software that can optimize an offshore wind farm layout 

based on a measure of the COE, such as the LPC. This type of software will be particularly 

useful as developers look at sites farther from shore and in deeper waters” (43). The OWFLO 

project was particularly concerned in developing a software tool that addressed specifically 

this need. Their work also mentions the lack of certain cost models that were developed by 

the authors when lack of sufficient literature was encountered. Since the reference used is a 

preliminary results assessment for the OWFLO project in this stage the authors mentioned 

that they were improving cost and component models, which corresponds well to some of the 

requirements identified previously.  
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A similar work to Aghabi’s project is that of Mittal (24) in which he developed and 

implemented a genetic algorithm for layout optimization, named WFOG (Wind Farm 

Optimization using a Genetic Algorithm). In the list of recommendations included in his work 

Mittal identifies several improvements that can be extrapolated for any software development 

effort in the field. 

Regarding the optimization routines and approaches perhaps no other work encompasses 

future work and still unsolved requirements better than the review by Khan et.al (6). Their 

work provides a very comprehensive and detailed list of research opportunities and 

remaining challenges specific for the iterative non-deterministic approaches that are the 

subject of their very comprehensive review.  

All of the recommendations obtained from the sources mentioned in this subsection were 

translated to functional requirements, which are presented in Table 7. Note that only 

recommendations that lead to concrete functional requirements are considered. 

Table 7. Functional requirements obtained from future work sections in literature. 

Category Author Remarks Reflected requirement Reference 

Optimization 

Faster optimization algorithm. Achieve a solution in a 

reasonable amount of time. 
(3) 

Possibility to use a heuristic 

approach. 

Implement a heuristic 

optimization algorithm. 
(3) 

Possible use of local search 

methods, such as Tabu 

search or GRASP. 

Implement a local search 

optimization algorithm. (3) 

Optimize based on COE. Include COE or LPC as an 

objective function. 
(43) 

Develop more efficient multi 

objective optimization 

approaches 

Achieve a high quality 

solution in a reasonable 

amount of time. 

(7) 

Increase focus on algorithm 

development and efficiency, 

including optimal parameter 

selection. 

Achieve a high quality 

solution in a reasonable 

amount of time. 
(7) 

Modeling 

Use of a more exact cost 

function. 

Develop and implement 

better cost functions and 

models. 

(3), (43) 
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Evaluate the performance of 

different wake models to 

determine which is better. 

Provide a choice of different 

wake models to the user. (24) 

Analyze and implement the 

effect of turbulence on wake 

recovery. 

Account for atmospheric 

turbulence effects. (24) 

Study and implement a 

model that accounts for 

ground effect on wake 

expansion. 

Develop better, more 

comprehensive wake models. 
(24) 

Generate more realistic 

objective functions that 

consider only variables 

relevant to the layout. 

Develop and implement 

better objective functions. 
(7) 

Acknowledge and correct for 

the non-determistic nature of 

the algorithms. 

Develop a strategy that 

minimizes randomization 

errors that stem from the 

heuristic nature of the 

algorithms. 

(7) 

Layout 

Managed to perform layout 

optimization while adhering to 

a certain predefined pattern. 

He mentions that his 

approach, while functional, 

may still be greatly improved. 

Ability to generate optimized 

symmetrical (or slightly 

optimized) turbine layouts. 
(3) 

 

4.5. Layouts and constraints 

A very obvious way to extrapolate user requirements is to analyze what their final products 

look like; in the case of the present project this consists in understanding how final layouts of 

wind farms are in real life. For this analysis two already built offshore wind farms were 

considered: the Egmond aan Zee (OWEZ) off the coast of the North Holland province in the 

Netherlands and the Middelgrunden offshore wind farm, located 3.5 km away from the coast 

of Copenhagen, Denmark. The locations of the turbines were facilitated by a fellow student of 

the wind energy research group of the Delft University of Technology, Alberto Striedinger 

(53). In addition, a third planned offshore wind farm will also be considered, named the Q4 

West project located in the vicinities of the OWEZ and Princess Amelia windparks in the 



51 
 

Dutch North Sea. The presented layouts (Figure 14, Figure 15 and Figure 16) have an 

aspect ratio as close to 1:1 as possible, which explains the odd formatting of the figures. 

 

Figure 14. Turbine coordinates of the OWEZ wind farm. Reproduced from (53). 

The turbine coordinates for the 36 generators that compose the layout shown in Figure 14 

are not completely exact since they were obtained using a digitalization from an overhead 

view of the wind farm.  
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Figure 15. Turbine coordinates of the Middelgrunden offshore wind farm. Based on (53). 
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Figure 15 shows the turbine locations of the 20 generators that compose the Middelgrunden 

offshore wind farm. In addition to the two already built projects presented the Q4 West 

project will also be taken into consideration due to the following reasons: 

 The layout, while organized, does not follow an exact geometric shape. 

 The cabling layout is available. 

The Q4 West project is being developed by Eneco. The proposed wind farm will be located 

26 km away from the coast of Bergen aan Zee. 

 

Figure 16. Turbine coordinates of the Q4 West planned offshore wind farm. Data from (54). 

The report by Pondera consulting for Eneco (54) also contains the proposed electrical 

infrastructure for the wind farm as shown in Figure 17. 
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Figure 17. Proposed electrical infrastructure for the Q4 West offshore wind farm. Reproduced from (54). 

Some important conclusions may be drawn from simple visual inspection of these layouts 

that reflect clearly what offshore wind farm planners aim for: 

 The layouts of the OWEZ, Middelgrunden and Q4 West projects clearly demonstrate 

the developer’s tendency to achieve a symmetrical or at least mostly organized 

layout. OWEZ demonstrates a more traditional rectangular array (save for an 

extended arm) while the Middlegrunden wind farm has an arching disposition of 

turbines. Even the planned Q4 West wind farm seems to follow a “boomerang” type of 

pattern, with lines of turbines clearly defined inside an irregular area. 

 Area limitations and constraints can be clearly identified in all three analyzed layouts. 

For the OWEZ wind farm a gap between turbines can be observed clearly (starting 

from approximate coordinates [4.43, 52.6] and ending in [4.45, 52.61]). The reason 

for the existence of this gap is a trench in the ocean floor, which results in a section 

within the development area with a higher depth. This area was probably not 

considered as a viable place for turbine positioning and thus the layout was designed 

without taking it into account. The Middelgrunden wind farm is arguably the most 

aesthetically pleasing out of the three analyzed projects (arguably because said 

statement is subjective). This may be due to the fact that it is closer to a human 

settlement than both OWEZ and Q4, meaning that visual impact minimization was 

probably a higher priority during its design phase, reflecting thus the need to include 
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said aspect as a requirement. The Q4 West wind farm also displays an area 

constraint, evident in the no-siting band that cuts the layout from east to west. The 

presence of a submarine cable, clearly visible in Figure 17, demonstrated another 

type of area restriction that has a direct impact on the layout. 

 The distance between turbines remains an important parameter to be respected, no 

matter what kind of layout is chosen. The coordinates may be used to check that the 

minimum recommended separation of 4D (6) is amply respected by all the layouts 

considered. 

 The cabling layout presented in Figure 17 showcases important design drivers that 

planners often take into account. For instance, the Q4 West clearly has an electrical 

infrastructure of the star type (as shown in Figure 5-IV) with the turbines connected in 

branches and a central transforming station (OHVS, standing for Offshore High 

Voltage Station). There is a single export cable to transport the energy to the shore 

connection. Also noticeable is the fact that the topology follows logically the proposed 

layout by minimizing the cabling distance. For this particular wind farm up to 10 

turbines are allowed per branch of cable, which is below the recommended maximum 

of 19 (55). 

All the observations here obtained must be converted to functional requirements, analogous 

to the other methodologies presented in this chapter. 

Table 8. Extrapolated requirements from actual layouts and constraints. 

Observation Reflected Requirement 

Symmetrical (or somehow organized 

layouts) 

Ability to generate optimized symmetrical (or 

slightly optimized) turbine layouts. 

Area restrictions and obstacles have an 

impact on overall layout design. 

Restrict available turbine siting area due to 

various constraints. 

All analyzed wind farms respect a minimum 

turbine separation. 

Apply a constraint of minimum turbine 

separation. 

Minimizing cabling distance in design of 

cable topology. 

Implement an automated cable topology 

optimizer, closely related to the layout 

optimization routine. 

4.6. Extrapolation from objective functions 

This method of requirement extrapolation consists in breaking down the objective functions 

used for the optimization routines into their most basic components. The logic behind it is 

quite simple. As the name suggests, objective functions are the main targets that routines 



56 
 

strive to maximize or minimize, therefore, they contain most of the problem variables in their 

formulation. It is therefore possible to reverse engineer not only functional requirements but 

also existing conditions and inputs for the tool by breaking down the objective functions into 

their building blocks. 

4.6.1. Energy yield breakdown 

Amongst all the available objective functions for the layout optimization problem energy yield 

is probably the easiest one to decompose. This is due to the fact that is a purely technical 

function (no cost dependency), therefore cost models are not required to assess maximum 

yield. 

Energy yield is, in its most fundamental definition, given by the following equation: 

    ∫    ( )   ( )  

   

   

 

Equation 10. 

where T is the number of hours per year, Uci and Uco are the cut-in and cut-out wind speeds 

of the turbine, respectively, Pel(V) is essentially the power curve and f(V) the frequency 

distribution of the wind speed. Further decomposition of the function is possible by splitting 

each term of the equation into more basic components. These breakdowns are presented in 

the form of breakdown diagrams. However, the decomposition here presented is not aimed 

at reaching the most elemental level of the structure of the function; for example, 

understanding that the power curve is needed to assess energy yield is a sufficiently detailed 

piece of information, thus, it is not necessary to break the power curve into its building 

blocks. The target level of detail here treated was determined by the author’s judgment.  

The energy yield is the simplest of the objective functions analyzed, thus making it possible 

to present a total breakdown diagram for the function. When additional breaking down of an 

element is required it will be treated separately. 
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Figure 18. Energy yield function breakdown diagram. 

Figure 18 shows the decomposition into basic components required for energy yield 

evaluation for a complete wind farm. The power curve encompasses all relevant information 

regarding the undisturbed energy production of the wind turbine, and it indirectly also 

contains information regarding its aerodynamics, rotor area, etc. By combining this power 

curve with the site conditions (in particular with the wind speed distribution) the undisturbed 

yield of a single turbine may be obtained, as described by Equation 10. The wind speed 

distribution also encompasses the effect of the hub height on the total yield, since it is 

measured or given at said height. The wind rose allows the evaluation of this output for all 

desirable wind directions. 

Finally, the results for single turbines must be extended to wind farm scale. Wake models are 

the missing link in the problem, since they account for the interactions between turbines 

inside the wind farm in the form of wake losses. In order to achieve an accurate prediction of 

the energy yield, wake effects need to be considered. 

What is left in the lower level of the function breakdown diagram are the required “gears to 

make the machine work”, that is, requirements that the program need to somehow have built-

in in order to use energy yield as the objective function. These lower blocks are those 

represented by two vertical lines enclosing the inner text (notice that downtime is not one of 

them since it requires additional breaking down). Components that affect or are affected the 

most by the layout design have been colored blue to highlight the relevance to the current 

problem. For the energy yield, only the wake model is affected by the layout, since it must be 

able to account for wake interactions between different turbines. Also, wake interactions are 

necessary to calculate power losses, which in turn affect the total energy yield directly. 
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From the analysis of the energy yield function the identified functional requirements are 

presented in Table 9. 

Table 9. Requirement identification from the energy yield objective function analysis. 

Component Reflected Requirement 

Wake model Include a robust wake model that can handle any layout. 

4.6.2. Cost of energy breakdown 

The cost of energy (COE), also known as levelized production cost (LPC) is a more complex 

function than the energy yield since it includes financial considerations into the optimization, 

therefore requiring the use of additional models and variables. COE is a more 

comprehensive function than energy yield, especially from a wind farm developer’s point of 

view. 

Equation 3 is the most common formulation for the LPC of a wind farm. Four variables are 

included in the formulation: investment costs (Cinv), operation and maintenance costs (CO&M), 

energy yield and a so-called annuity factor (a). The energy yield was explored deeply in 

section 4.6.1, thus its analysis is omitted from this section. 

Investment Costs 

Investment costs are usually expressed using cost models that are a function of the problem 

design variables. Investment costs for an offshore wind farm can be decomposed according 

to Equation 11. 

                           

Equation 11. 

where Cei are the electrical infrastructure costs, Ct are turbine costs, Cfou are the costs of the 

foundations and support structures, Cins are the installation costs, and Coth are other costs not 

included in previous categories. These sub-costs, in turn, can be further decomposed 

resulting in the breakdown diagrams presented below. 
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Figure 19. Electrical infrastructure costs breakdown diagram. 

Amongst electrical infrastructure costs only the cable topology is affected by the layout, since 

cabling distance and overall design of it is a function of the turbine positions (the Q4 West 

layout and its cable topology evidence this fact). 
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Figure 20. Total turbine costs breakdown diagram. 

The breakdown reveals that the number of turbines is related to the layout, although the 

relation is not straightforward: the layout may be a function of the number of turbines, but the 

opposite can also hold (number as a function of layout). This depends entirely on how the 

variable is treated. If the number of turbines is a fixed input then the final layout will be a 

function of it; however, if the optimization has as a side goal determining the optimal number 

of turbines then the dependence becomes somewhat unclear. The discussion presented 

here is not aimed at determining which is the best way to treat the number of turbines 

variable, but rather to acknowledge its relevance to the layout optimization problem and 

therefore considering its role as part of a functional requirement. 
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Figure 21. Foundation costs breakdown diagram. 

Figure 21 reveals that foundation costs are significantly more complex than turbine and 

infrastructure costs, since the choice of a particular foundation type (monopile, jacket, tripod, 

etc.) is dependent on a large number of variables. The diagram identifies three components 

that are a function of the layout, two of which were already previously identified. Water depth 

appears as relevant since it is related to the area and turbine siting problem: if the layout 

places a turbine in deep water then the support structure costs will increase due to this 

selection. The area constraint problem is also closely tied to water depth considerations, 

since often designers opt to exclude too deep or too shallow zones from the available 

solution space. 
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Figure 22. Installation costs breakdown diagram. 

The installation costs breakdown reveals only two components that are layout-dependent. 

The type of foundation was decomposed (Figure 21) in the foundation costs breakdown, 

revealing its indirect dependence to layout related variables. The second component is the 

cost of trenching and laying the cables on the seabed, which is a function not only on the 

total cabling distance but also on the soil type and terrain characteristics (all related to the 

area selection problem). 

Operation and Maintenance Costs 

O&M costs are not as complex as installation costs. The breakdown diagram in Figure 23 

presents the individual components that influence the total O&M costs. 
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Figure 23. O&M costs breakdown. 

The diagram shows that O&M costs are completely independent on the layout chosen; they 

are instead heavily influenced by the site conditions and the strategy implemented to perform 

the respective actions. 
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Annuity Factor 

The final term appearing in the COE equation is a financial parameter often used in project 

valuation called the annuity factor, which is used to calculate the present value of future 

payments (aptly name annuities), all of which are equal over a certain time frame. The 

annuity factor is given by the following equation: 

  
  (   )  

 
 

Equation 12. 

Where n is the number of terms or periods and r is the interest rate per period. It is evident 

that the annuity is exclusively a function of how the project is being financed, and it can often 

be calculated with high accuracy if a proper choice if interest rate is made. 

Extrapolated Requirements 

Using all the detailed breakdowns of the individual components of the COE objective 

function, additional functional requirements related to the layout may be obtained. These are 

reported in Table 10. 

Table 10. Extrapolated functional requirements from the cost of energy objective function. 

Component Reflected Requirement 

Wake model Include a robust wake model that can handle any layout. 

Cable topology Implement an automated cable topology optimizer, closely 

tied to the layout optimization routine. 

Number of turbines Determine the optimal number of turbines to be installed, 

or optimize for a fixed number of turbines. 

Water depth Ability to optimize for a site with variable water depth. 

Cost of trenching and cable 

laying 

Develop and implement better cost models that offer a 

more detailed breakdown of every contributing factor. 

 

4.6.3. Profit breakdown 

The profit function proposed by Réthore et.al (40) as part of the TopFarm framework is, as 

described by Tesauro et.al (30) the most comprehensive objective function available. The 

equation that describes the financial balance presented in section 2.3 shows that the function 

is heavily influenced by financial parameters, to an even greater extent than the COE/LPC 

function. A detailed analysis of Equation 4 allows for the decomposition of the profit function.  
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Figure 24 presents the function breakdown diagram for the financial balance, or profit 

function. It shares many common requirements and building blocks with the COE function; 

the operation and maintenance costs are broken down in the same way for both objective 

functions. Noticeable is the lack of installation costs in the evaluation of the profit function, 

which the COE does consider. However, many of the considerations made to assess the 

investment costs are also taken into account in the profit function, since an important part of 

the evaluation is the determination of the future value of the investments made at the start of 

the project, which means that all relevant cost models must be also known.  
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Figure 24. Profit function breakdown, as defined by Réthoré et.al (40). 

The profit function considers several aspects of project valuation also present in the COE 

evaluation: financial parameters such as interest and inflation rates are contemplated by the 

annuity factor as well as the effect of lifetime on costs and profitability.  This function 

considers depreciation of project assets as a burden to the overall profit, therefore generating 

a need to include an appropriate depreciation strategy that reflects not only the estimated 

state of the system and its projected current market value but also achieving concordance 

with tax regulations. 

Regarding layout-related variables the energy yield reappears, which was analyzed in 

section 4.6.1. Three cost-related components which have also been treated before are 
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present, thus no additional layout-related functional requirements will be obtained from the 

profit function analysis. 

4.6.4. Net Present Value breakdown 

The Net Present Value (NPV) is a well-known and understood function that can and is often 

used as an objective for all kinds of investment projects due to its “general” character. The 

advantage of using NPV as an objective function is that its terms are flexible, meaning that it 

is highly customizable and it can be as complicated as the designers wants it to by adding 

terms depending on how much information is available regarding the financial status of the 

project. NPV is based on simple cash flow discounting, translating periodic investments and 

profits to the present value of money, hence the name of the function. 

The function breakdown here presented is what the author of this project considers to be the 

minimum requirements to achieve an objective function as comprehensive as those 

presented previously. Once again investment and operation and maintenance costs appear 

as extensions of the diagram. 
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Figure 25. NPV function breakdown diagram. 

The choice of NPV as an objective function is very straightforward and has the advantage 

that it is an indicator widely understood by most people with basic knowledge in project 

valuation. It also makes it possible for an investor to directly compare the benefit of building a 

wind farm against other project prospects. 
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The two components that are layout-dependent in the NPV objective function have also 

appeared in previous analysis, thus, no additional requirements can be obtained from it 

either. 

4.7. Brainstorming 

The final method of requirement extrapolation presented here is an informal one, since it 

consists of a personal reflection of the author of this project on the previous analysis 

outcomes and literature study. By brainstorming it is possible to provide some additional 

insight on missing requirements, reinforcement of the importance of some previously 

identified ones or reshaping the way they were originally stated. The results of this 

brainstorm are here synthesized and expanded from their original form: 

 The objective function is the core of any optimization routine, therefore its definition is 

a very important step in order to obtain relevant results. The literature study revealed 

that authors often stress the need to develop more comprehensive objective functions 

that consider only the relevant problem variables (in this case layout optimization). 

The author of this project would like to express that research activities are now 

shifting their focus towards developing algorithms, routines and attaining better 

solutions to the problem. While this is perfectly fine (these developments target a 

requirement that needs to be fulfilled) few sources aim to develop new objective 

functions specially designed for the layout optimization alone, which is why most 

implementations rely exclusively on energy yield and COE.  

 As an experienced software user the author cannot emphasize enough how important 

it is to have a streamlined user interface. When designing GUIs, extremes should be 

avoided: too simple and many functions are hidden or lost (and the perceived value of 

the program is reduced), too complicated and the user will feel overwhelmed by the 

tool. Adding graphical aids to the interface is often perceived as an improvement, 

either in the inputs or in the outputs. Plotting capabilities are also often overlooked, 

yet they can be especially helpful in sorting engineering problems. For the layout 

optimization problem the use of maps and other inputs from GIS software could 

greatly improve the user experience.  

 Although not explicitly stated by any of the software publishers in their specification 

sheets a built-in help module or interactive user manual is a very valuable addition to 

any program, especially when used by users with mixed backgrounds and experience 

levels with computational tools. Engineering software often comes with a theory 

manual and a user manual, which often can be opened from the program itself. This 

is therefore added as a requirement. 
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 The analysis of uncertainty is a very important part of overall project assessment that 

the author feels is somewhat overlooked or not well documented for the case of wind 

farm energy yield. This functionality would be greatly appreciated by investors and 

project developers. 

 Integrated support structure design in wind farm planning tools is now commonplace, 

yet it is unclear for most programs if only monopile design (which are the most widely 

used structures to date) are supported. The design process of jacket structures is 

considerably more complex since they are constituted of complicated three-

dimensional trusses that make load determination more difficult. However, jacket 

structures can be preferred to monopiles (depends on site conditions) and thus 

providing the user with the option to choose between more than one support structure 

would add versatility to computational tools. 

 A common way to define wind conditions is by means of the Weibull distribution. If the 

form and shape parameters are known, as well as the mean wind speed, then the 

generated distribution will accurately represent realistic site conditions. However a 

problem arises when the parameters are unknown or the user would like to generate 

the distribution from measured wind data. This function is provided by some of the 

commercial tools analyzed, and the author considers that it is a very important feature 

to include in any wind farm design tool. 

 Many tools are capable of determining loads on the support structure, yet a function 

that only EMD WindPro has and would be worth extending to more practical 

applications is checking for compliance with the relevant standards (in particular, the 

IEC-61400). 

 Providing the user with a catalogue of wind turbines to choose from is a very good 

idea; however, as was the case with automated standard verification this feature is so 

far only included in EMD WindPro. 

 While performing the breakdown of objective functions a recurring thought was 

related to the financial parameters used for their evaluation, in particular interest and 

inflation rates. It is obvious that they must be somehow included in any tool that used 

COE, profit or NPV as an objective function, yet the source of those parameters is 

unknown. Allowing the user to use custom, up-to-date values would result in better 

financial appraisals. 

4.8. Shaping and prioritizing functional requirements 

Now that all possible methodologies of functional requirement extrapolation were applied all 

the observations and conclusions must be gathered, filtered and combined to arrive at the 
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final list of user requirements. However, in order to properly define what particular problem 

will be tackled within the framework of this project the requirements must be prioritized by 

applying relevant criteria. Three criteria were chosen for this purpose, which are: 

 Relevance (R): if a particular requirement or problem variable appears with high 

frequency in the analysis methodologies used it can be interpreted as a highly 

relevant aspect to address, due to the recurrence of the requirement. Some others 

are also highly relevant due to their addressing being a pre-requirement for further 

development. Relevance is also assigned from the point of view of an offshore wind 

farm developer, meaning that variables and requirements significant to the onshore 

layout problem only will score a lower relevance. 

 Feasibility (F): this indicator takes into account both the nature of the requirement and 

the ability to implement the requirement given the current state of the art of both 

knowledge and tools available. It also encompasses the difficulty associated with said 

implementation.  

 Pertinence (P): the final indicator aims to reflect how important and achievable is the 

implementation of the requirement from the perspective of the current project, time 

wise, scope wise and considering the current capabilities of the MZ tool. 

All the identified requirements must be shaped into concrete actions, strategies and possible 

developments that may constitute a real engineering problem. Many of the identified 

problems/requirements are too broad or abstract as formulated in the previous sections; 

therefore some of them were reshaped, reinterpreted or combined to arrive at a total of 56 

identified functional requirements. Ten categories (types) of requirements were identified, 

defined as described in Table 11. 

Table 11. Classification of functional requirements. 

Requirement Type Description 

A Software requirements and inputs 

B Layout related requirements 

C Modeling and calculations requirements 

D Graphics and user interface 

E Environmental aspects 

F Optimization routine requirements 

G Financial aspects 

H Support structures 

I Electrical aspects 
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J Miscellaneous 

 

Some remarks regarding the classification: 

 Category A contains those requirements tied to the performance of the program itself, 

as well as additional options and special inputs.  

 Category J, named “miscellaneous” contains those requirements whose 

characteristics don’t match with any of the other categories. 

 Many requirements involve models; for example, assessing impacts on wildlife 

requires a model to achieve this goal. However, since this is a problem more closely 

related to environmental issues, it is classified as type E rather than type C. Category 

C therefore contains modeling aspects that are not mainly related to any of the other 

requirement types. 

Also presented for every requirement an indicator denominated source (S), referencing the 

extrapolation methodology used to obtain them. Sources are classified as follows: 

Table 12. Categories of the source indicator (S). 

Source Code (S) Methodology Used 

I Software outputs 

II Scientific literature 

III Layouts and constraints 

IV Objective functions 

V Brainstorming 

 

The requirements per category and their respective scores for each of the selected indicators 

are presented in Appendix A: Lists of Functional Requirements in the form of tables. The 56 

functional requirements are distributed as shown in Figure 26. 
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Figure 26. Pie chart representing percentage of the number of requirements per category to the total. 

The priority indicator developed as part of this project serves as the main tool to assess the 

true importance of every functional requirement, not only in general but also to the present 

project. It is defined as the arithmetic addition of Relevance, Feasibility and Pertinence. 

Figure 27 presents the average value of priority per category, from highest to lowest. This 

average is computed using the individual priority scores of each item within the category. The 

categories with highest average priority also present lower standard deviations, indicating 

that there is a uniform trend for these types of requirements to consistently rank as very 

important within the context of wind farm design tools. 

Layout-related functional requirements are ranked with the highest average priority, which is 

not surprising considering that the layout is influenced and influences practically all of the 

relevant variables to offshore wind farm optimization. Interestingly though, layout 

requirements constitute a quite small share of the total pool (only 7%), which only reinforces 

the importance that should be given to addressing them. 

Discussing the lowest ranked category (type D, graphics and interface) also proves to be 

interesting, since the requirements in this group scored high in relevance due to reasons 

discussed previously on how graphical aids add a significant amount of value to 

computational tools. However, due to the difficulty of implementation of said solutions and 

the required knowledge and expertise on the field of GUI design these requirements scored 

low on feasibility and pertinence, leading to a poor performance in overall priority. 
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Figure 27. Average priority and standard deviation per functional requirement category. 

In order to select the requirements that will be addressed by the present project only those 

with very high (above 13) priority will be considered. Table 13 presents the requirements that 

satisfy this condition.  

Table 13. Functional requirements with highest priority. 

No. Requirement Type Pr 

1 Achieve a high-quality solution in a reasonable amount 
of time. 

A 15 

2 Ability to either receive the power curve as input or 
otherwise generate an approximation to it. 

A 15 

3 Ability to generate optimized symmetrical (or slightly 
organized) turbine layouts. 

B 15 

4 Ability to generate optimized non-organized layouts. B 15 

5 Restrict available turbine siting area due to various 
constraints. 

B 15 

6 Apply a constraint of minimum turbine separation. B 15 

7 Include a robust wake analyst that can handle any 
layout. 

C 15 

8 Include COE/LPC as an objective function due to its 
known relevance to the problem, comprehensive 
formulation and acceptance by most users. 

F 15 

9 Include models to determine hydrodynamic and 
aerodynamic loads. 

C 14 

10 Ability to evaluate financial performance indicators, 
such as NPV or IRR for the project. 

G 14 

11 Include the option of defining custom financial 
parameters, such as interest and inflation rates. 

G 14 

12 Automated support structure design. H 14 
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13 Implement an automated cable topology optimizer, 
closely tied to the layout optimization routine. 

I 14 

14 Allow the user to use create and use custom wind 
turbines. 

A 13 

15 Have a fully implemented and functional wind rose. C 13 

16 Give the user a choice of at least two objective 
functions. 

F 13 

17 Implement a heuristic optimization algorithm. F 13 

18 Implement a local search optimization algorithm F 13 

19 Ability to calculate loads on the structure and 
automatically determine compliance with the IEC-
61400 standard. 

H 13 

20 Ability to analyze uncertainty of the energy yield 
calculation. 

J 13 

 

The following chapter aims to determine which of these requirements will be addressed 

within the framework of this project. The numbering of the requirements in Table 13 is also 

used for referencing purposes. 
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5. Identification of problem(s) to be 

addressed 

5.1. Chapter Introduction 

Table 13 presents a pool of requirements that, according to the structured analysis 

performed, have the highest priority for the present project. For purposes of requirement 

selection it may be considered that all of them have the same weight, in order to avoid 

choosing those that have the highest rankings in the table. The selection process must be 

smart and based on practical and pragmatic reasons, rather than by simple selection 

according to the scores. An analysis of every requirement in Table 13 is presented in this 

section, acting as a final funnel in order to shape the target problem. 

5.2. Already treated problems 

The first simple step is to discard all those requirements that have already been treated or 

implemented in the MZ tool, whose main features were described in section 3.  

The tool already has an option for the user to input a discretized power curve; even though 

this approach may not be the most exact it is good enough considering the true purpose of 

the tool and the minimum accuracy required. Therefore, requirement number 2 may be 

considered satisfied to an acceptable level.  

Regarding the wake analyst requirement (number 7) a previous project by González (42) 

concerned the implementation of a general purpose algorithm that could determine wake 

losses for any layout, in contrast to the previously existing routine which could only deal with 

symmetrical arrays. This algorithm was successfully implemented in the MZ tool and 

therefore this requirement has also been fulfilled. 

The MZ tool is also capable of optimization using COE/LPC as an objective function; 

therefore requirement number 8 may also be discarded. 

Requirement 14 has also been addressed to a certain extent. While no database of turbines 

that the user can choose from is implemented, the MZ tool does allow the user to define all 

relevant turbine parameters as inputs to the program. While a higher level of detail and 



73 
 

specification could be achieved, the current state of the implementation of this requirement in 

the project context is considered satisfying enough and thus discarded. 

Requirement number 1 is a special one due to its general nature and overall relevance to 

computational problem solving as a whole. Achieving high quality solutions in a reasonable 

amount of time is a target that may be applied to every step, routine and algorithm developed 

and thus it is implicitly included as a “must have” characteristic, which is also permanently 

addressed by the developer of the code. Therefore, it is discarded from the list, not because 

it has no importance to the problem but because its relevance is already implicit in all further 

developments. 

5.3. Requirement clustering 

Due to the nature of many of the requirements listed in Table 13 it is possible to group many 

of them into clusters, which tackle problems that are in one way or another interconnected 

and thus could provide a “package” that constitute a full problem definition. Three clusters 

were identified from the list, which shall now be treated in detail. 

5.3.1. Cluster A: Layout exclusive 

Cluster A is composed of requirements 3, 4, 5, 13, 17 and 18. This group is the largest one 

of the three, and contains all those requirements focused exclusively on optimization of the 

layout itself (turbine siting issues only). The need to be able to design and optimize both 

symmetrical and unsymmetrical layouts was clearly determined by several of the requirement 

extrapolation methods used, which means that they constitute the most important issues to 

be addressed within this cluster.  

Requirement 13, concerned with optimization of the cable topology, is one that must be tied 

to any routine that optimizes non-symmetrical layouts. For symmetrical layouts determining 

the best cable route (and thus the optimal cabling distance) is not extremely challenging due 

to the stiffness and uniformity of the solutions; it can almost be said that for square layouts 

the cable routing is almost predefined. However, when dealing with irregular layouts the 

ever-changing turbine positions makes the task of writing an algorithm that is versatile and 

flexible enough to find the optimal cabling route extremely challenging, yet necessary for an 

optimization that accounts for all relevant problem variables, being cabling distance one of 

the most important ones. 

Total cable cost depends not only on cabling distance but also on the type and size of cable 

used. Several cable models exist to predict cable size based on transmitted power, however, 

it is well known (and intuitive) that larger power outputs require larger, more expensive 
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cables. Therefore, as the number of turbines per branch increases the cable design needs to 

be adapted to support the infrastructure and properly reflecting the added burden on the total 

cable cost. In reality, cables with different diameters compose a single branch, with the 

caliber reducing as the distance from the substation increases. The cabling topology of the 

Anholt offshore wind farm in Denmark (Figure 28) is a good example of this phenomenon, in 

which three different cable sizes are used due to the higher power concentrations closer to 

the substation. Devising a way of including this variable tariff based on number of turbines in 

the optimization brings the solution closer to reality. 

 

Figure 28. Anholt offshore wind farm cable design, Denmark. Reproduced from (56). 

Requirement 5, which embodies the recurrent area restriction problem, constitutes a great 

challenge depending on the scope given to it. Consider the case presented in Figure 29. 

INTOOR
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Figure 29. Placement of symmetric layout in an allowed area with restrictions (orange). 

The figure illustrates the problem of placing a symmetric layout wind farm inside a target area 

with a restriction zone. This issue is very straightforward to solve, since the stiff geometry of 

the wind farm allows for the reduction of the problem to “placing area 1 inside area 2”, or just 

finding a way to fit one geometric shape inside another. The area defined by the wind farm 

may be expanded/contracted and rotated (as Figure 29 illustrates) until the condition is 

achieved, effectively turning the area restriction problem into a geometrical and mathematical 

problem. More importantly, the cable topology is unaffected if the problem is treated from this 

scope due to the unchanged turbine positions, as was discussed previously. The fact that the 

cable topology optimization is disjointed from the area restriction and turbine siting problem 

indicates that this is not an ideal approach. 

If a non-symmetrical layout is used the scenario is completely different, as shown in Figure 

30. 

INTO

 

Figure 30. Area restriction problem for a non-symmetric final layout. 

In this case the problem can no longer be reduced to “fitting area 1 inside area 2”, quite 

simply because there is no clearly defined area 1. By allowing some randomness in the final 

solution turbine siting becomes an individual problem, and thus the stiffness of the layout is 

eliminated. Cable topology becomes not only a relevant but a challenging problem in this 

case, since there is no longer a “prescribed optimum” as the one that existed for exclusively 

symmetric layouts. If the cabling topology optimization issue is solved for random layouts 

then adding the area restriction problem becomes once again a constraint, since each 

individual turbine is able to determine its own ideal siting position while accounting for the 

effect of not only neighboring turbines but also the effect on cabling distance while being 

“forbidden” to sit in certain areas. 
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The final two requirements of cluster A (17 and 18) deal with the technicalities of the 

optimization routine itself, more specifically, which method will be used to solve the problem. 

When attempting to find the solution to an optimization problem the choice of approach is 

heavily guided by the problem definition itself.  

5.3.2. Cluster B: support structures 

Cluster B includes requirements 9, 12 and 19. These requirements are all related to support 

structure design, which depending on the approach used may or may not have an effect on 

the layout. This is particularly true for requirement 12, especially if the functionality of the MZ 

tool is extended to allow for optimization and use of more than one type of support structure. 

If this were the case then it may occur that due to varying water depth conditions and a 

freedom of support structure choice leads to certain turbines being moved closer to shore or 

further away, again considering that variables such as cabling distance and wake losses are 

also considered by the main optimization routine. This idea can be synthesized as follows: if 

support structure design is included as part of the problem, rather than an outcome of the 

calculation, then the problem becomes not only more challenging but also capable of 

affecting the wind farm’s layout. 

Requirement 9, dealing with modeling of conditions and loads can be viewed as one that can 

be made as complicated as the designer wishes to. While current models to assess 

hydrodynamic and aerodynamic loads are considered sufficient for pragmatic structure 

design, there is ongoing research on how to improve these modeling techniques in order to 

yield more accurate results, in a manner analogous to the wake modeling issue.  

One clear example of current modeling issues and their effect on the layout is pointed out by 

(57), regarding wave conditions. When modeling wind, inflow turbulence models are already 

well known and have been validated extensively due to their use in the now-mature onshore 

wind industry; however, the standard practice for wave modeling is to represent the irregular 

(random) waves using a linear wave. This approach, while being very simple is too 

unrealistic and thus hydrodynamic loads are not determined with a high degree of accuracy 

and thus the support structure cannot be truly optimized since the real conditions are not 

properly represented. Ongoing research is concerned with improving and refining wave 

modeling, in particular using second-order models that offer a better representation of the 

randomness behind the natural phenomena.  

Requirement 19 can be classified as partially treated by the MZ tool, since the tool is able to 

determine the loads in the structure for a limited amount of load cases although subjected to 
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sizable simplifications that leave room for improvement. The load cases currently evaluated 

are: 

 Operation at rated wind speed, maximum wave in one-year extreme sea state. 

 Parked turbine, reduced gust in 50-year average wind speed, maximum wave in 50-

year extreme sea state. 

 Parked turbine, maximum gust in 50-year average wind speed, reduce wave in 0-year 

extreme sea state. 

Safety factors and external conditions are defined as dictated by the IEC 61400-3 standard, 

just as the functional requirement identified demanded. The optimization routine uses an 

initial guess for the tower top diameter and the length of the transition piece; all other 

geometric parameters of the support structure are determined by the routine.  

As was already mentioned the tool currently has the option of optimizing for a monopile 

structure. If a possibility existed to be able to design for more than one support structure type 

then options such as determining not only the best type of foundation but also its optimal 

design become available, further reinforcing the tool’s capabilities.  

In conclusion, requirements included in cluster B can be considered interesting and relevant 

for the scope and extent of this project only if they are approached from a perspective in 

which they are no longer additional calculations but can have an effect on the layout itself, 

effectively becoming “translatable” into working variables for the optimization. 

5.3.3. Cluster C: profit driven requirements 

The final cluster is comprised of requirements 10, 11 and 18, all of which are in one way or 

another related to financial aspects of the project. Analogous to the previous clusters, 

requirements here analyzed should be treated from the perspective of the possible effect that 

their assessment could have on the layout, which is not very straightforward for financial 

parameters and considerations. 

Requirement 10 involves the calculation of cash flows and revenues to obtain financial 

performance indicators, and it may be either a post-processing option (for final feasibility 

evaluation) or as part of the layout optimization if it directly affects the objective function. The 

parameters used for this evaluation are those mentioned in requirement 11. This constitutes 

the more traditional view of project valuation: the project’s main characteristics and overall 

design is obtained, translated to costs and forecasts of future revenues enable the 

calculation of yearly cash flows. Then, VPN or IRR calculation becomes very straightforward.  
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In section 2.3 an overview of most objective functions was presented, in which NPV and 

profit were identified as possible maximization targets. From this perspective the layout may 

be subject to alterations, especially if the use of more than one support structure and 

integration of an all-purpose cabling topology optimization routine is enabled. In short, aiming 

for a wind farm that maximizes profits throughout the complete life time of the project will 

probably produce a final layout that differs from that designed using a different objective 

function. Even if profit maximization does not constitute the target of the optimization routine, 

making it part of the multi-objective approach will surely have an effect on the outcome. 

Requirement 18 is included in this cluster only because it can be easily associated with profit 

driven optimization. Requirement extrapolation methods from existing software tools 

revealed that often the choice between energy yield and a cost-oriented objective function 

(LPC, profit, VPN, etc.) is provided to the user. Nevertheless, using energy yield as an 

objective is not a very comprehensive approach to solving the layout problem since all cost-

related variables and restrictions are left out of the scope of the solution. Furthermore, yield 

can be seen as a calculation step towards determining a more comprehensive and complex 

project indicator, such as LPC, which means that energy yield cannot be placed in the same 

level of significance as other objective functions. Only if cost-oriented objective functions are 

given to the user as options it makes sense to include more than one of them since they 

would constitute two different approaches providing results that offer similar complexity and 

reveal detailed design results. 

5.4. Other loose requirements 

In this section all requirements from the original table that have not been clustered or 

discarded are analyzed, in order to determine if they should be a part of the final problem 

formulation. 

Requirement 6, while initially appearing as very straightforward has actually some physical 

related problems and considerations that can make it hard to tackle. When performing a 

literature study on layout optimization it is not uncommon to find authors that recommend 

that the separation distance between turbines is within a certain range, and not exceed or be 

below certain thresholds. These recommendations have two problems: 

 Often they do not coincide, since they are mostly derived from observation or 

experimental results. For example, Bierbooms (58) suggests the spacing of offshore 

wind turbines should be above 6D (with only extreme exceptions being allowed under 

this value), Mittal uses a minimum separation of 5D (24), Pérez et.al (6), Kusiak et.al 
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(25) and Wan et.al (32) set this minimum at 4D and Réthoré et.al (40) go as far as 

setting a minimum in his work at 1D. 

 Turbine separation is a variable that can have two effects on project LPC: if the 

turbines are too close together the cabling distance is minimized, but the wake 

losses are increased and a subsequent power loss is observed. If the turbines are 

too far apart, wake losses are minimized but cabling distance and cost increase. 

Therefore it is easy to imagine that a curve of LPC versus spacing will have one or 

more minima, being the lowest point in the curve the optimal separation distance. 

Since LPC is a project-specific variable this curve will also be project-specific, 

making it difficult to generalize where the optimal separation could be; in an extreme 

case there could be a project in which turbine and site characteristics make it optimal 

to place turbines with a 4D separation. 

Some background behind the existence of a minimum separation distance can be found in 

literature. Pérez et.al (6) do provide the reason behind the existence of a minimum distance: 

“the wake model selected (Jensen) is known to provide appropriate results for distances 

higher than four rotor diameters, and for safety reasons, the minimum distance between 

turbines within the wind farm is limited to four rotor diameters”. Kusiak et.al (25), who also 

use a minimum separation of 4D use as an argument that “ensuring sufficient spacing 

between adjacent turbines reduces interactions, e.g., wind turbulence, thus diminishing the 

hazardous loads on the turbine”. Kusiak et.al further elaborate on this spacing constraint by 

tracing it back to (46), where the minimum distance of 4D is based on certain domain 

heuristics, as shown in Figure 31, where array losses remain relatively constant from 

unidirectional wind until 4D. The authors mention the possibility of replacing this assumption 

with more complex constraints, such as setting the minimum distance between two turbines 

as a function of wind direction and probability (related to the second problem identified for the 

requirement). 
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Figure 31. Wind farm array losses as a function of crosswind turbine spacing. Reproduced from (46). 

Another explanation is that offered by Réthoré et.al (40), who mention that standards (not 

specified) require larger than 2D separation distances due to the detrimental effects of 

turbulence on the downwind turbine for shorter spacing. What can be concluded from this 

various attempts at justifying the minimum separation distance is that there is still some 

research required that points out if treating the problem as a constraints with a fixed range is 

the best approach to include it in a layout optimization routine. Modeling problems and 

restrictions do not constitute a fully valid justification for the use of the minimum separation 

distance since the origin of the constraint is not from a physical derivation but rather from a 

method limitation, which may be solved investing some time in research and development of 

a more appropriate model. However, the effects of additional turbulence created by a turbine 

siting too close is a real concern that does explain the need to draw a line from which turbine 

siting should be maybe not completely restricted, but appropriately flagged as potentially 

detrimental. 

Requirement 15 is a particular one since there are many ways that a designer may achieve 

the goal of “implementing a fully functional wind rose”. This requirement achieved a score of 

5 in relevance due to the importance of having average wind speeds and probability for a 

detailed assessment of energy yield and to account for the effects of directionality in wind 

farm performance. On the other hand, the assessment of feasibility and pertinence resulted 

in a score of 4 for both indicators, placing the requirement on the lower end of the high-

scoring priority list. This is due to the fact that, while implementing a discretized wind rose via 

numerical inputs for a fixed number of sampling directions is not a highly challenging task, 

standard wind rose visualization may require an upgrade of the program’s graphical 

capabilities.   

Finally, requirement 20 had a high priority score, stemmed by the overall importance that 

wind farm developers and program designers place on determination of best and worst case 

energy yields. Yield uncertainty is mainly associated with three sub-problems: the inability to 

properly determine, model and characterize site conditions (site uncertainty), errors 

associated with properly obtaining the power curve and projected availability uncertainty. In 

order to address this particular requirement a great deal of research is therefore needed. The 

problem becomes even more complex if cost uncertainties are introduced in the problem 

definition, especially those related to the design of the support structure, since regarding the 

improvement of the design of these structures, “there are still many uncertainties that 

question the design requirements used so far” (59). 
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5.5. Requirement selection and final problem definition 

Now that all the top ranked requirements listed in Table 13 have been grouped, analyzed 

and discarded when appropriate the final problem to be addressed by this particular project 

may be defined. The problem funnel diagram presented in Figure 32 is a useful metaphorical 

representation of the process followed by the author to arrive to this point. 

Offshore Wind Farm Design

Problem components

Layout problem

Functional Requirements

Top Priorities

Final Problem 
Definition

Breakdown

Selection

Extrapolation

Prioritizing

Smart choice

 

Figure 32. Funnel diagram illustrating the problem identification and narrowing procedure. 

Following from the filtering process of the requirements with highest priority presented in 

sections 5.2 through 5.4 it may be concluded that cluster A constitutes an excellent base for 

the problem definition, due to the following reasons: 

 On average, all layout-related constraints consistently achieved the highest priority 

scores. 

 All requirements included in cluster A are closely related to each other and some of 

them (for example layout optimization, routine implementation and cabling 

optimization) need to be addressed simultaneously and in parallel to achieve a 

satisfactory solution. In short, they form a nice “package of objectives”. 

 The requirements in this cluster correspond well to the initial expectations of how the 

problem definition would be shaped after a systematic approach was used. 

 The implementation of said requirements is challenging, yet corresponds well to the 

extent of the project and the timeframe in which it is enclosed. 
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The problem definition is therefore an amalgamation of the requirements in the cluster, and is 

defined as follows: “design, implement and test a series of computational solutions within an 

existing offshore wind farm design tool that enable it to produce organized and non-

organized layouts while respecting area restrictions and realistic/optimal cable topologies”. 

The following chapters deal with the methods and solutions developed to address this global 

problem. 
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6. Developing Solutions: Cabling 

Topology 

6.1. Introduction and Methodology 

The optimization of the electrical layout is a logical first step in the development of solutions, 

due to the fact that the cable layout must be defined before any objective function can be 

evaluated; it is therefore a prerequisite to addressing the siting problem. This chapter 

presents the methodology used to characterize the cabling optimization by representing it as 

an existing topological problem and then apply a solution strategy designed to solve such a 

problem. 

6.2. Problem identification 

In section 5.3.1 the problem of determining the optimal cable layout was introduced, 

alongside its characteristics and constraints. Due to the restriction of having no more than a 

maximum number of turbines per cable branch a solution that contemplates multiple cables 

stemming from a base node must be designed. This problem is usually tackled from the 

perspective of graph theory and optimal routing, which attempts to generate connections of 

varying nature over a set of nodes following preset rules and constraints. Four topology 

problems from graph theory resemble the cabling routing challenge: 

 The traveling salesman problem (TSP), and its more generalized version, the multiple 

traveling salesman problem (mTSP). 

 The minimum spanning tree (MSP) problem. 

 Shortest path problem (SPP). 

 The open vehicle routing problem (OVRP). 

All of these compose a family of topology problems called optimal routing problems. An 

analysis and comparison with the cable topology optimization problem revealed that the 

Open Vehicle Routing Problem (OVRP) is the one that more closely resembles the 

characteristics and constraints involved in tracing a wind farm cable layout. The OVRP will 

therefore be treated here in more detail; for more information on the mTSP, MSP and SPP 

references (60), (61), (62) and (63) are recommended. 
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6.2.1. The OVRP 

The Vehicle Routing Problem (VRP) consists in defining a set of optimal routes departing 

from a certain number of depots (starting points) to service a certain number of customers. It 

can be considered a special case of the mTSP, yet the reason why it is treated separately is 

because at the end of a vehicle/salesman’s route he does not have to return to the depot, 

hence dubbed “open”. Bauer et.al (63) have documented a successful application of this 

problem model and solution to the design of cable topology for offshore wind farms. The 

problem definition in their approach is as follows: “Given turbine and transformer positions 

and a cable capacity in number of turbines, and a set of cable routes minimizing the total 

cable cost, connecting every turbine to a transformer, not exceeding cable capacity, and 

such that cables do not cross each other”. In their work, they document the development of a 

solution algorithm to the problem and test it with real OWF layouts, some of which have more 

than one substation (depot). The results of their work are highly satisfactory and thus it may 

be a good option to treat the problem from this perspective. 

The equations that formulate the VRP are nearly identical to those that constitute a traditional 

TSP, however, the constraints to the problem are altered and a set of so-called planarity 

constraints. To solve the linear programming problem that the formulation generates, Bauer 

et.al resort to the Clarke and Wright savings heuristic, which is one of the best known 

heuristic solutions to the VPR problem. Furthermore, branching and cable types are both 

acknowledged as being implementable in their solution, although the current version of the 

algorithm does not support these characteristics. More importantly, their work demonstrates 

that even though the problem formulation of the VRP contemplates the vehicles returning to 

the origin, it is possible to modify or interpret results in such a way that the algorithm 

determines routes and branches and not tours. The variation of the problem definition that 

includes this condition is named the Open Vehicle Routing Problem (OVRP), due to the 

“open” ends that the branches represent as opposed to closed loops stemming from a 

central point. 

6.3. Solution Methodology 

In order to provide a solution algorithm for the OVRP the work by Bauer et.al (63) will be 

central in the development of an implementable solution. In their work, they developed two 

algorithms based on the Clarke and Wright savings approach (dubbed planar savings 

heuristics, or POS) and an add-on to improve suboptimal routes that any of the POS routines 

may generate, named RouteOpt.  
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The POS heuristics differs from the original Clarke and Wright formulation in the following 

aspects: 

 Allows the definition of open routes, that is, with a starting point in a depot (in the 

cabling routing problem this is the OHVS) and ending in a turbine without the 

additional condition of returning to the depot. 

 Two arcs are no longer allowed to cross each other. While in reality cable overlapping 

may be solved using special connections during installation the situation is usually 

avoided due to the additional costs and risks associated with such a setup. The POS 

heuristics add an additional constraint (called the planarity constraint) to work around 

this problem by forbidding routes from overlapping. 

The solution algorithms (POS1, POS2, POS1+RouteOpt, POS2+RouteOpt and best of POS) 

presented by Bauer et.al were tested and their performances were compared. In this listing 

the algorithms are ranked from most basic to most refined. As expected, more refined 

versions of the heuristic were more efficient and accurate but are also considerably more 

complicated and do generate an additional computational burden. However, the test 

instances revealed that POS1 generates cable routings that are only 5% more expensive 

that the known optimal solutions. Considering that cable routing is only one of the problems 

to be addressed in this project and not its main goal POS1 was chosen as the blueprint for 

the algorithm to be developed, in order to avoid the additional complexities of using POS2 or 

a combination of both. If the need arises, RouteOpt may also be added to the algorithm 

developed in order to further improve its outputs. 

A guided example that illustrates how POS1 works is presented in Appendix C. 

6.4. The Algorithm 

Following the pseudo-code presented by Bauer et.al an algorithm was designed to 

implement the POS1. The algorithm is presented in the form of flow of logic diagrams. In 

order to simplify the presentation of said diagrams many processes have been grouped into 

subroutines, which are included in Appendix B; therefore, only the main routine is presented 

here. The POS1 algorithm finds optimal routes as follows: 

a. Using the positions of every node (turbines) as inputs a cost matrix C is calculated, 

representing the distance of traveling from one node to another. 

b. The initial routing is defined as all nodes connected to the central point (the OHVS) 

with a single arc (cable). 

c. A savings matrix S is calculated from the cost matrix applying the definition of saving 

developed by Clarke and Wright (and slightly modified by Bauer at.al). While the 
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equation is not presented here, it is worth noting that a saving represents the cost 

that is spared by replacing the original arc (from the node to the central point) with a 

new arc connecting two nodes. 

d. The elements in the savings matrix are sorted from highest to lowest saving. 

e. The possible arcs that are defined by the savings matrix are then assessed 

individually to determine if their inclusion in the final routing is beneficial or not (in 

terms of reducing cost). This assessment consists in verifying that a single arc 

satisfies five conditions that deem it beneficial for the final solution. These conditions 

are discussed in more detail in the following section. 

f. If the arc satisfies the five conditions, it is added to the routing vector R (containing 

the information of how to connect the nodes) and to its respective path (a single path 

represent a cable, connecting a certain number of turbines to the OHVS).  

g. Steps 5 and 6 are repeated until no all arcs have been evaluated. 

One noticeable change developed for the implementation here presented is that the savings 

matrix S has been replaced with a savings vector S serving the same purpose; this change is 

exclusively due to the fact that a vector is easier to sort than a matrix.  

Figure 33 illustrates the symbol convention that all subsequent flow of logic diagrams will use 

in the present document. Figure 34 illustrates the POS1 algorithm to be implemented. 

Data, 
Inputs or 
Outputs

Process or 
Action

Subroutine Decision Loop start

 

Figure 33. Symbol convention for flow diagrams. 
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Figure 34. Cable routing algorithm POS1. 

The designed algorithm to implement POS1 contains three different subroutines, tasked as 

follows: 
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 Subroutine 1 is concerned with initializing and calculating the cost matrix “C”, which 

for the cabling routing problem is filled with distances between all possible pairs of 

turbines. 

 Subroutine 2 calculates the savings for every possible arc and places the values in 

the savings vector “S”. 

 Subroutine 3 is by far the most complex, since it is tasked with performing the five 

condition checks required to merge an arc into an existing route. The complexity of 

some of this condition checks implies that subroutine 3 has its own subroutines; a 

breakdown of such conditions is presented in section 6.4.1.  

The algorithms final output is a new routing vector R, containing all arcs that construct the 

optimal cable routing. The paths vector which is initialized in conjunction with R contains the 

same arcs included in R, but organized per route. An example routing vector is given by 

Equation 20, with each tuple of values (k,u) representing the turbine ID’s that are connected 

by a single cable. The ID marked “0” is reserved for the OHVS. 

6.4.1. Condition checks to add a new arc 

In order to determine whether or not the addition of a new arc results in a better cable routing 

it must meet five requirements here presented (as conditions). The author considers that an 

appropriate breakdown that explains how each condition is evaluated is relevant, since some 

of them constitute subroutines of their own which are also included in Appendix B. The check 

of these five conditions is achieved by subroutine 3 in the proposed implementation. 

Condition 1: Check if two nodes (k,u) are both in the same route or path 

Consider the scenario in which an arbitrary routing vector has been modified by several arc 

mergers, resulting in: 

  [(   ) (   ) (   ) (   ) (   )] 

Equation 13. 

This is not the final routing vector, but rather an intermediate one being modified by the main 

loop of the algorithm. Now consider that arc (2,5) is to be evaluated against the five 

conditions. Nodes 1, 2 and 5 are already part of the same route, thus adding arc (2,5) would 

result in a closed loop which is undesirable, therefore, this arc must be rejected due to its 

composing nodes (k,u) being already in the same route. In order to reject said arc the paths 

vector may be used, since all individual routes are contained within it. 

The compliance of this condition is implemented in subroutine 4.  
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Condition 2: Check if arc (k,0) is included in the routing vector R 

This condition requires no special method or in-depth description since it only consists in 

verifying if a particular element is included in an array. 

Condition 3: Check if wind turbine with ID=u in the arc (k,u) has only one neighbor 

This check is required to avoid establishing an arc connecting to a node that is already a 

“bridge” between two other turbines or a turbine and the OHVS (in other words, prevents 

branching). Subroutine 5 (Figure B 5) achieves the check of this condition by counting the 

number of times a certain node (in this case, u) is present in the arcs that constitute the 

routing vector R. If any node has more than one neighbor it will be present in more than one 

arc and thus the count of repetitions of that particular node will be greater than one. 

Condition 4: Check if capacity is not exceeded in any of the paths containing k or u 

This condition prevents the merger of two paths if the resulting route has a turbine count 

higher than the maximum capacity per branch. Although not a difficult check to perform it is 

complex enough to be assigned its own subroutine (Subroutine 6). Every path in the paths 

vector is checked to see if it contains either k or u. When a path that does contain them is 

identified, the turbines in said path are counted and compared to the capacity.  

Condition 5: Check that arc (k,u) doesn’t intersect other arcs in the routing vector R 

This condition is reduced to a geometrical problem concerning line segments, which are not 

exactly straightforward to solve. The solution developed is based on the fact that the interest 

is to find whether to line segments intersect or not; the point at which this intersection occurs 

is not of concern for the method and thus the problem solution is simplified. Consider the two 

lines to be evaluated are the current arc (k,u) and an arbitrary arc in R, (v,w). The arc 

connecting nodes k and u shall be defined as the anchor, while nodes v and w will be 

evaluated against this arc. Consider the three test cases shown in Figure 35: 
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Figure 35. Test cases for Subroutine 7, checking for intersections. 

Case 1 displays a simple intersection between the anchor segment (k,u) and the test 

segment (v,w). Notice that in this case points v and w are in opposite sides of the anchor 

segment; this simple observation constitutes the base of Subroutine 7. Case 2 illustrates the 

opposite condition, in which both v and w are to “the left” of the anchor segment; clearly 

these segments do not intersect. Therefore, if points v and w are in the same side of the 

anchor line the test segment and anchor segment do not intersect. 

Case 3 illustrates a special condition which must be considered within the algorithm. Test 

points C and D are to the left and right of the projection of anchor segment (A,B), yet the 

lines clearly do not intersect, thus failing the criteria previously proposed. Notice, however, 

that if the anchor line is changed to be (C,D) then the previous statement is true. Thus, any 

case may be evaluated using the following statement: “two line segments intersect if and 

only if the two nodes of one segment are on opposite sides of the other segment and vice-

versa”. 

To verify whether a point is to the left or right of the anchor line the area of the triangle 

formed between the anchor segment and the point is calculated (using coordinates, not 

absolute lengths); thus the sign of this area will serve as an indication as to where the point 

lays in relation to the segment.  

6.5. Results of Implementation 

The POS1 algorithm was added to the MZ tool, contained by the layout analyst. The purpose 

of performing preliminary tests using the algorithm is not to determine whether the Clarke 

and Wright parallel savings algorithm is well-suited to solve the cable routing problem (this is 

treated in Bauer’s work), but to verify that the implementation yields logical results and the 
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routine behaves as expected. In order to do this, two different random wind farm layouts 

were used as inputs for the algorithm and the resulting cable topologies were analyzed to 

make sure that none of the imposed constraints to the solutions were violated and the 

calculated routing is close to what may seem an optimal solution. 

The first wind farm layout and the resulting topology are shown in Figure 36. The maximum 

number of turbines per branch (capacity) was set to 3. 
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Figure 36. Test layout with seven turbines and resulting routing. 

The test scenario using seven wind turbines arranged in a random layout yields good results, 

with all the constraints being satisfied. No branch exceeds the capacity and there is no cable 

intersection in the solution. A debugging process was used to follow the algorithm “step-by-

step”, with the non-usable arcs being rejected according to one or more of the five conditions 

that constitute the heart of the POS1 algorithm. The only apparently non-optimal arc that 

appears in the final routing is (5,4), since it appears that it would make more sense to leave 

turbine 5 connected directly to the OHVS to obtain a shorter cable. These sub-optimal routes 

are mentioned by Bauer et al. (63) as a possible outcome of the POS1, which may be 

eliminated if RouteOpt is coupled to it.  
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A second layout was also tested; unlike the first one, a more traditional wind farm was used 

(that is, the turbine siting is more symmetric). The layout and the resulting cabling topology 

are presented in Figure 37. 
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Figure 37. Test layout 2 with seven turbines and resulting routing. 

The capacity was also set to three for this test case. The results show also a very “intuitive” 

routing, that once again satisfies all the problem restrictions. Moreover, none of the routes 

seem to be particularly sub-optimal for this layout. 

From both tests it can be concluded that the implemented algorithm is performing as 

expected, and while it is possible that the resulting routings are not the exact optimal solution 

they are good enough for the purpose of this project. Bauer et.al mention a 5% deviation 

between the optimum and the outcomes of POS1; therefore, it is expected that most 

solutions obtained using this routine lie within that margin. 

6.6. A Note on Objective Function Evaluation 

Proper evaluation of the objective function is essential to the success of any optimization 

routine (as explained in Chapter 2); in the case of the MZ tool the objective function is the 

wind farm’s LPC. The original MZ tool featured a grid-based default layout, with extensive 

use of symmetry for calculation simplification based on the fact that all wind turbines were 

organized in rows and columns. This kind of logic had to be completely removed from the MZ 

tool in order to enable it to calculate the LPC of any wind farm layout. One module that 

required special attention was the electricity analyst in which the infield and transmission 

cables are analyzed and their main properties and attributes recorded. This module required 
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a complete overhaul due to the fact that for more realistic layouts stemming from non-grid 

symmetries each cable has a different length and thus the analysis can no longer use row-

column logic and result duplication. This problem is better visualized in Figure 38. 

OHVS

OHVS

 

Figure 38. Cabling analysis in the original MZ tool (left) and the proposed modification (right). 

In the original problem treatment symmetry enabled the design and analysis of a single 

infield cable (represented in red in Figure 38, left) since all of them have the same lengths 

and thus calculations for active and reactive currents, temperatures and losses were easily 

extended for the whole wind farm. Only the cables connecting each row of turbines to the 

platform were treated individually, due to the fact that the length of each of these cables 

varied according to the relative position of the row to the OHVS. The strategy used to modify 

the analyst can be roughly summarized as implementing a different way to generate and 

store cable properties due to the different geometry, while retaining the original electrical 

models. 

One additional matter that needs to be addressed in order to have a “finished” algorithm 

(aside from a defined stop criterion which is treated in the following section) is the selection 

of a number of sectors in which the wind rose is divided for the wake analysis. In a previous 

work based on the same subject (69) it was determined that the performance of the wake 

analyst was a function of several parameters, with order of calculations having a linear 

increase with the number of sectors used to divide the wind rose to set the wind directions for 

the analysis (for example, using 12 sectors results in a division of the wind rose in 30 degree 

segments). Consider the schematic representation of a wake produced by an upwind turbine 

on a downwind one represented in Figure 39. 
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Figure 39. Schematic representation of a wake produced by a downwind turbine (bottom) on an upwind 
one (top) for three different wind directions and a “coarse” wind rose division. 

This scheme represents a wake expansion from a turbine for three different wind directions. 

In this case the wind rose has been divided in “coarse” sections, which is equivalent to 

having a small number of wind direction sectors. What can be deduced from the figure is that 

for the first direction (direction A) the downwind turbine has no induced speed deficit from the 

upwind turbine; this also holds true for the last wind direction (direction C). The intermediate 

direction (direction B) has the downwind turbine completely immersed in the wake of the 

upwind one, thus generating a “full” wake effect. It is therefore very easy to deduce that the 

wake efficiency of this two turbine array will have a dependence on wind direction as shown 

in Figure 40. 
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Figure 40. Wake efficiency for different wind directions, schematic plot. A 30° division of the wind rose 
was used, representing a “coarse” division situation. 

The points A, B and C make reference to the directions used in Figure 39, whereas A’, B’ 

and C’ represent those same directions plus a 180° shift. The problem of using such a large 

angle step size becomes evident when compared with a situation in which a “finer” step size 

is used, such as the one depicted in Figure 41. 
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Figure 41. Schematic representation of a wake produced by a downwind turbine (bottom) on an upwind 
one (top) for three different wind directions and a “finer” wind rose division. 

Using a “finer” division of the wind rose (more sectors) produces drastic changes in the 

results of the qualitative wake analysis. Direction A still reveals no wake effect of the upwind 

turbine on the downwind one. However, due to the smaller step size directions B and C now 

reveal a partial wake incidence on the downwind turbine. It is easy to imagine that the next 

direction sampled (direction D, not shown in the figure) will reveal an inexistent wake 

influence once again of one turbine over the other. Under these conditions the wake 

efficiency of the two turbine array as a function of direction will show a behavior as 

represented in Figure 42.   
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Figure 42. Wake efficiency for different wind directions, schematic plot. A 10° division of the wind rose 
was used, representing a “finer” division situation. 

It becomes evident that the curve starts becoming “smoother” the finer the divisions are, 

since a greater number of partial wake effects are captured by the wake analyst. 

Zaayer (2) justifies the use of angle step sizes no greater than 10° based on the same line of 

argumentation here presented; in his implementation 144 wind sectors (that is, 2.5° steps) 

are used to capture at least two partial wake effects on a rotor for a 5D separation between 

turbines. For the purpose of this project an angle step of 10° was chosen (to allow 

acceptable computation times while still capturing significant wake information), which is 

equivalent to 36 sectors. 

 

Figure 43. Wake efficiency for different wind directions, schematic plot. A 1° division of the wind rose was 
used, representing a “very fine” division situation. 
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7. Developing Solutions: Turbine 

Siting Problem 

7.1. Introduction and Methodology 

In order to generate an algorithm that is able to determine the optimal location of turbines 

over a continuous solutions space a suitable wake analyst and a cabling topology 

optimization routine were developed and implemented. The outcomes of this routines and 

analysts are required for the calculation of any objective function used for the offshore wind 

farm optimization algorithm. Now that these routines have been designed and implemented, 

the main problem to be addressed by this project will be introduced in detail. 

In this chapter, a strategy to optimize the position of the turbines inside the wind farm area 

will be presented and an algorithm to implement said strategy will be developed and 

implemented. 

7.2. The CMA-ES 

In section 2.2 most of the optimization strategies that have been implemented to solve the 

turbine siting problem were briefly introduced and described. This review revealed that only 

heuristic approaches are interesting for the problem, due to the number of optimization 

variables and overall problem size typically associated with wind farm optimization, which 

makes finding exact solutions a computationally expensive process that not always yields a 

satisfactory result. 

The CMA-ES approach is a heuristic evolutionary algorithm first proposed and described by 

Hansen (64) (65) which has recently gained momentum and overtaken genetic algorithms as 

the state-of-the-art solution for many multi-objective problems in engineering. The strategy is 

“a stochastic method for real-parameter (continuous domain) optimization of non-linear, non-

convex functions” (64) that has already been successfully applied in at least one instance to 

the wind turbine siting problem by Rodrigues et.al (36). 

The CMA-ES is a powerful heuristic that is able to overcome the most common problems 

associated with evolutionary strategies, namely: 
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 Poor performance (in terms of solution quality) optimizing badly scaled and/or highly 

non-separable objective functions.  

 The need to use large population sizes to achieve convergence. When using CMA-

ES, the population size can be chosen unrestrictedly due to the algorithms ability to 

“learn” through each subsequent generation and understand the problem better. 

 Premature convergence of the population. This is avoided by the use of step-size 

control. However, as with any other heuristic routine, entrapment inside a local 

optimum may still occur. 

 

Figure 44 illustrates the flow of logic that characterizes the CMA-ES algorithm. The steps that 

comprise the routine are described in the subsections that follow. 

 

Figure 44. Flowchart for the CMA-ES algorithm, reproduced from (36). 

7.2.1. Step 1: Defining an Initial Solution 

In the initialization a solution to the problem (in this case, a layout) is randomly generated by 

sampling the turbine coordinates from a normal distribution. A solution to the turbine siting 

problem will therefore be a structure containing all the (x,y) pairs of coordinates for all the 

turbines in the layout. The problem dimension (search space dimension), denoted by n is 

therefore equal to two times the number of turbines, since each turbine has an x and y 

coordinate to be optimized. 

7.2.2. Step 2: Fitness Evaluation 

The randomly generated initial solution is tested in a process denominated “fitness 

evaluation”, which is essentially calculating the objective function (yield, LPC, profit, etc) for 

the given layout. The idea behind any evolutionary strategy is to maximize or minimize the 
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objective function by finding the solution with the highest fitness, thus this evaluation needs 

to be performed every time solution is to be tested, as the figure depicts.  

7.2.3. Step 3: Stop Criterion 

Step 3 involves deciding whether or not to terminate the optimization loop by evaluating a 

stopping criterion that can be defined in a variety of ways. A convenient way to define this 

termination criterion is to limit the number of generations (solutions), which is analogous to 

restricting the maximum number of iterations that the main loop of the algorithm is allowed to 

run. Alternatively, stagnation of the objective function evaluation may also be used as a stop 

criterion. Nevertheless, there is no clear consensus so far of what the best stop criterion is 

for the CMA algorithm; for the purpose of this project some conclusions will be drawn on 

what an appropriate formulation for the criteria should be based on the convergence on the 

problem (section 7.3). 

7.2.4. Step 4: Sampling of new solutions 

If the loop is not terminated, a new set of solutions is obtained by sampling from a 

multivariate normal distribution with a mean m, standard deviation σ and covariance matrix 

C. Note that this distribution parameters are initially assigned recommended values and then 

updated after each CMA loop. This sampling procedure of λ new individuals obeys Equation 

14. 

  
(   )   ( )   ( ) (   ( ))            

Equation 14. 

where N(0,C) may be read as “sample from a normal distribution with mean 0 and 

covariance matrix C”.  Subindex g stands for “generation”, meaning that new individuals are 

sampled using distribution parameters from the previous generation of solutions.  

7.2.5. Step 5: Selection and Recombination 

The new generation of solutions is then recombined, much like a regular genetic algorithm. 

However, unlike a genetic strategy in which all solutions are arbitrarily recombined, in the 

CMA-ES only half of the solutions (λ/2) with the best fitness are recombined and used to 

obtain a new mean for the sampling distribution. This selection and recombination process 

(step 5 of the algorithm) enhances the ability of the strategy to avoid entrapment in the local 

minima of the problem. The mean of the new distribution is calculated with Equation 15, 

which assigns weights to every solution (with the best ones having the highest weights). 
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Equation 15. 

Where μ is the number of selected recombination points (λ/2), wi are the recombination 

weights and xi:λ
(g+1) g is the ith best individual out of generation (g+1). 

7.2.6. Step 6: Update covariance matrix and step size 

The last step of the routine is updating the covariance matrix C and the step size σ. In order 

to do both updates the concept of evolution paths must be introduced. “We call a sequence 

of successive steps, the strategy taken over a number of generations, an evolution path” 

(64). To construct the evolution path using the parameters from the previous generation 

Equation 16 is used. 
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Equation 16. 

The internal parameter cc is the learning rate for the update of the covariance matrix, whose 

value can be found in the parameter table (Table 14). The parameter μeff is the variance 

effective selection mass, given as: 
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Equation 17. 

The evolution path is then used to update the covariance matrix for every iteration, which is 

done according to Equation 18. 
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Equation 18. 

The internal parameters used in this equation are c1 (Equation 19), cμ (Equation 20) and 

yi:λ
(g+1) (Equation 21). 

   
 

  
 

Equation 19. 
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Equation 20. 
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Equation 21. 

In an analogous manner to the covariance matrix update, the standard deviation (step size) 

of the multivariate distribution is updated using the so called conjugate evolution path 

calculated using Equation 22. 
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Equation 22. 

Finally, the step size is updated as: 
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Equation 23. 

The only parameter in Equation 23 that has not been introduced so far is dσ, which is a 

damping parameter for the update of the standard deviation. 

Once the covariance matrix and the step size have been updated a new fitness evaluation is 

performed for the new individuals and the process is looped until the stop criterion is met. 

7.2.7. Default parameter values and overall algorithm 

The previous subsections introduced the steps that compose the CMA-ES along with the 

required equations for an implementation of said strategy. This evolutionary strategy is 

heavily dependent on a set of internal parameters, many of which do not even appear in the 

main equations of the routine. The default values for all these parameters are summarized in 

Table 14. 

Table 14. Default values for the internal parameters of the CMA-ES. Reproduced from (65). 
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In addition to these parameters, Rodrigues et.al (36) initialize the covariance matrix C(0) as 

the identity matrix, the evolution paths pc=pσ=0 and the standard deviation σ(0)=0.5, which is 

consistent with the recommendations of Hansen (65). The synthesized algorithm for the 

CMA-ES strategy is presented in Table 15. 

Table 15. CMA-ES synthesized algorithm. Reproduced from (65). 
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The following sections deal with the implementation of this strategy within the MZ tool. 

7.3. Defining the Stop Criterion for the Problem 

As with any optimization algorithm, the CMA is highly dependent on a proper definition of a 

stop condition that terminates the main loop of the algorithm and returns a final solution to 

the problem. Two main issues make the formulation of this criterion a delicate matter: if the 

algorithm is terminated too quickly then the final solution will not be a “good enough” 

approximation to the minimum or maximum; on the other hand, allowing too many iterations 

hardly produces more accurate results at the cost of computational performance. 

The standard version of the CMA uses three stopping criteria: 

 Break the loop if the value of the objective function (fitness) of a solution is below or 

above a threshold set by the designer for finding minima and maxima, respectively. 

 Break the loop is the maximum standard deviation amongst the covariance matrix is 

bigger than the minimum standard deviation in the same matrix times a safety factor. 

 Break the loop if the number of iterations exceeds a fixed maximum. 

Analyzing the three default stop criteria it may be concluded that the best (and simplest) way 

to define a custom definition for a new criterion is to determine what the minimum number of 

runs should be to achieve convergence. It is undesirable to set a “minimum LPC” as per 

demanded by the first default criterion, as this limits the quality of the solutions that may be 

found and bounds the algorithm to find a final solution that is not close to the global 

minimum. This is more or less equivalent to placing a constraint on the problem by bounding 

the possible LPC outcomes. The second default condition is derived from the mathematical 

properties of the covariance matrix and thus it is not advisable to change its definition, due to 

the fact that it is based on internal parameters and workings of the CMA and its apparent 

suitability to serve as a stop criterion. 

Defining a minimum number of iterations based on the number of turbines may seem to be 

the best approach, yet there is one problem regarding this methodology: the number of 

parameters that have an effect of convergence is too large to be able to properly generate a 

function that uses all of them to predict what an optimum number of iterations should be. 

Therefore, the approach undertaken here is simply to provide some observations on the 

convergence of the algorithm that may serve as an indicator, in order to make a gross 

estimation of what the stop criterion should be. 
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The simulations performed to assess the convergence as a function of the number of 

iterations were designed based on variations on two parameters that may have an effect on 

convergence speed. These parameters are: 

 Number of turbines: has a direct effect on the performance on the CMA since the 

number of variables to optimize (coordinates) is directly related to this parameter. 

 Initial step size: this is an internal parameter of the CMA, which is recommended (36) 

to be set to 0.5. The step size is adaptive in the CMA algorithm, yet there may be an 

effect on convergence speed depending on the selection of its initial value. 

The effect of these parameters on convergence speed shall now be analyzed in order to see 

if a correlation exists that may be used to generate some indications for a possible stopping 

condition. However, before a proper analysis is performed a minimum number of iterations 

must be defined such as it is possible to “see” the algorithm converging and thus, analyze 

the effect of altering the parameters. 

7.3.1. Number of Iterations for evaluation of stopping criterion 

In the original version of the CMA the minimum number of iterations to stop the algorithm is 

given by the following equation: 

               
  

Equation 24. 

where N is the number of variables to be optimized. For the turbine siting problem it would be 

equal to two times the number of turbines in the wind farm. There is no information regarding 

whether this equation is based upon empirical data, calculated from the algorithm’s 

properties or simply an observed minimum plus a safety factor. It does show however that no 

less than 1000 iterations would be required until this particular stop condition is applied, 

which for simple optimization problems is acceptable but not for the turbine siting problem as 

defined here. The reason behind the inapplicability of this stop criterion is computational 

time. 

To illustrate this problem the CMA was used to solve two different optimization problems: 

finding the minimum of the Rosenbrock function with 20 problem variables and minimizing 

the LPC of a wind farm with 10 turbines (which also has 20 problem variables). The CMA 

was timed for a fixed number of iterations; the results are shown in Table 16. 

Table 16. Timing of CMA performance for 100 iterations over two different optimization problems. 

CMA Time Performance on a Machine with Intel 
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Core i5-2430M CPU @ 2.4 GHz 

100 Iterations 

Optimization Problem Time (s) 

Rosenbrock function (N=20) 0.38 

LPC Minimization (N=20) 889.84 

 

The time difference between performing 100 runs for the optimization of the Rosenbrock 

function is several orders of magnitude smaller than running the same number of iterations 

for the LPC minimization problem. The reason for such a difference is evident: a simple 

algebraic function such as the Rosenbrock function receives an input parameter ‘x’ and 

calculates and output ‘y’, which is the equivalent of an objective function. For the turbine 

siting problem, the calculation of the LPC is by no means a simple algebraic function: it 

involves several calculations and optimizations of internal design variables (the most time 

consuming being performing a wake analysis) which results in significantly longer objective 

function evaluation times. 

A test batch of unrestricted optimization runs was performed in order to attempt to determine 

at which point the solution was considered “converging” to a final LPC value. The results of 

the convergence of this test batch (10 turbine optimization) are presented in Figure 45. 

 

Figure 45. Score as a function of number of iterations for test batch, starting from an initial guess. 
Different series represent different simulations. 

Notice that in this figure the number of iterations plotted has been limited to 200 since visual 

convergence of the simulations has been achieved before this number. Figure 46 presents a 
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close up of Figure 45 for the last 50 iterations, in which the approximation of the simulations 

to asymptotic values is noticeable. 

 

Figure 46. Close-up of Figure 45, for the last 50 iterations. Different series represent different simulations. 

The net change in Score between iteration 150 and iteration 200 for all three test simulations 

is around 0.2 euro cents per kWh. This is a small change in LPC and therefore it may be 

assumed that convergence has been achieved. 

If a more quantifiable condition of visual convergence is defined as the point in which the 

average percentage of improvement between five consecutive iterations is below 0.05% (five 

is used to ensure that premature convergence is not a stop criterion due to a “lucky” iteration) 

then at approximately 150 iterations it is possible to say that the LPC has converged, as 

shown in Figure 47 and Figure 48. 
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Figure 47. Percentage of improvement as a function of iteration number for the test batch. Different series 
represent different simulations. 

 

Figure 48. Close-up of Figure 47, fo the last 50 iterations. Additionally, the average of the three test 
simulations is plotted with the solid line. 

The results suggest that 150 iterations are enough to visualize convergence of the simulation 

batches based on this condition.  

7.3.2. Initial Step Size 

A total of 12 simulations were performed while keeping the number of turbines and the 

number of sectors constant and only varying the initial step size used by the CMA. The 

definition of these simulations is shown in Table 17. 

Table 17. Simulation configurations to assess the effect of initial step size on convergence. 

Simulation 

Batch 

Number of 

Simulations 

Number of 

Turbines 

Initial Step 

Size 

A 3 10 0.5 

B 3 10 0.3 

C 3 10 1.0 

D 3 10 1.5 

 

The results of the simulations are presented below. Notice that simulation batch A is 

equivalent to the test batch defined in the preceding section (in which the step size was also 

0.5). 
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Figure 49. Score as a function of number of iterations simulation batch A, starting from an initial guess. 
Different series represent different simulations.  

 

Figure 50. Score as a function of number of iterations simulation batch B, starting from an initial guess. 
Different series represent different simulations.  
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Figure 51. Score as a function of number of iterations simulation batch C, starting from an initial guess. 
Different series represent different simulations. 

  

Figure 52. Score as a function of number of iterations simulation batch D, starting from an initial guess. 
Different series represent different simulations. 

An analysis of the results reveals that there is no evident effect of the initial step size on the 

convergence speed of the algorithm. It must be stated however that convergence is being 

evaluated in a visual, somewhat qualitative way by simply assessing the number of iterations 

after which the score stops its phase of steep decline and starts becoming “flat”, since the 

previous criteria for convergence is generally met towards the end of the 150 iterations 

defined. An approximate number of iterations after which this transition occurs for each set of 

simulations is presented in Table 18. 

Table 18. Approximate range of iterations at which relative convergence begins to occur for simulation 
batches A, B, C and D. 
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Simulation Batch Number of Iterations to Approximate 

Convergence 

A 60-70 

B 120 - 130 

C 60 - 70 

D 120 - 130 

 

There is no clear correlation between the variables that may be used as evidence to 

conclude that the initial step size plays an important role in defining the optimal number of 

iterations. Nevertheless, simulation batch D seems to show that large initial step sizes result 

not only in delayed convergence but also in a decline phase with a smaller slope compared 

to the other simulations. It may then be concluded that the adaptive properties of the step 

size of the CMA quickly stabilize any changes made to the initial value of the parameter and 

the convergence speed achieved remains the same, therefore, the default step size of 0.5 

will be fixed for the remaining simulations. 

7.3.3. Number of Turbines 

In an analogous manner to the analysis for the effect of initial step size, a set of simulation 

batches to test the effect of this parameter on convergence speed was defined as follows: 

Table 19. Simulation configurations to assess the effect of number of turbines on convergence. 

Simulation 

Batch 

Number of 

Simulations 

Number of 

Turbines 

A 3 10 

E 3 15 

F 3 30 

G 3 45 

 

Notice that simulation batch A is once again used here, thus the results are not replicated 

here but can be observed in Figure 49. 
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Figure 53. Score as a function of number of iterations simulation batch E, starting from an initial guess. 
Different series represent different simulations. 

 

Figure 54. Score as a function of number of iterations simulation batch F, starting from an initial guess. 
Different series represent different simulations. 
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Figure 55. Score as a function of number of iterations simulation batch G, starting from an initial guess. 
Different series represent different simulations. 

There are several noticeable effects of the number of turbines on the behavior of the CMA 

algorithm (most of which will be discussed on the following chapter). Focusing on algorithm 

convergence it appears that the transition between the quick decay phase and the flat line 

phase occurs at a higher number of iterations as the number of turbines increases. Notice, 

however, that there may be exceptions to this observation as shown by simulation F2 which 

appears to converge very fast and oscillate around a particular value of the score. 

Interestingly, there appears to be a correlation between convergence of the algorithm and 

number of turbines as demonstrated by the trend in Figure 20. It is worth pointing out that 

such a correlation is not fault proof and general, as demonstrated by the non-typical 

convergence behaviors of simulations A2, F2 and F3. 

Table 20. Approximate range of iterations at which relative convergence begins to occur for simulation 
batches A, E, F and G. 

Simulation Batch Number of Iterations to Approximate 

Convergence 

A 60-70 

E 100-110 

F 130-140 

G 150> 

7.3.4. Convergence for more than one Optimization Loop 

All the previous tests were performed for 150 iterations within a single CMA loop. 

Nevertheless, once the CMA has produced a solution the whole program will enter another 

optimization global loop (as shown in the sequence of disciplinary optimization, Figure 7) 
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after which a second CMA optimization will be performed and so on. Therefore it is worth 

analyzing what happens for multiple CMA runs with the convergence of the solution, since a 

possibility exists that changes in the cable design, support structure, tower height, or other 

design variables of the wind farm produce a change in the LPC. 

A single simulation with test conditions identical to simulation batch A was performed, limiting 

the maximum number of iterations per CMA run to 150. Three global optimization loops were 

allowed. The result of such a simulation is presented in Figure 56. 

 

Figure 56. Score as a function of iteration number for three CMA runs, using parameters of simulation 
batch A. 

The figure illustrates that two CMA runs are sufficient to achieve a completely convergent 

LPC, with the partial convergence criteria being met at around 150 iterations as predicted 

previously. 

7.3.5. Recommendations for Criteria Definition 

Based on the simulations and results presented in sections 7.3.1 through 7.3.3 the following 

set of recommendations are presented if in future work it would be desired to include a stop 

condition for the CMA related to the parameters analyzed: 

 The initial step size has no discernible effect on convergence speed and thus it is 

recommended to set it to a value of 0.5, as suggested by literature. 

 The number of turbines in the wind farm should be the main driver in the selection of 

a stop criterion (not only backed up by the existing criterion of Equation 24, but also 

by the simulation results and observations). A correlation seems to exist between the 

number of turbines and the number of iterations until convergence (visually 
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assessed); yet in order to extract an equation that would model such a behavior 

requires more data and tests that are not developed within the scope of this project. 

Thus, the recommendation is to explore the possibility of defining a stopping condition that is 

a function of the number of turbines that yields a number of iterations high enough to achieve 

convergence under any scenario. The simulations performed with relatively small numbers of 

turbines show that at least 150 iterations are required for most test cases to guarantee 

convergence as defined previously (less than 0.05% variation for a number of sequential 

iterations). 

7.4. The Area Constraint 

In order to obtain a feasible final solution it is required that most of the offspring that are 

recombined in the CMA are feasible solutions themselves. If the recombination is based only 

on fitness, it is highly likely that some solutions which have turbines placed in invalid spots 

(for example, outside the wind farm area) yield lower LPC values due to the reduced wake 

effects and thus are chosen by the optimization algorithm as strong candidates for 

recombination. 

There are several ways to implement a constraint in an optimization algorithm; the method 

chosen here is one of the more simple and straightforward, known as the static penalty 

function approach. Consider once again the general formulation for a minimization problem 

given by Equation 1. The concept behind applying a penalty function is to generate a 

modified version of the objective function (denominated the penalized objective function), 

given by the following expression (66): 

  ( )   ( )  ∑    

 

   

 

Equation 25. 

Where fp(x) is the penalized objective function, f(x) is the objective function, m is the number 

of constraints, Ci is a constant imposed for the violation of constraint i and δi is a parameter 

equal to 0 if the constraint is respected, or 1 if the constraint is violated. Currently only one 

constraint will be applied to the optimization, therefore Equation 25 is reduced to Equation 

26. 

  ( )   ( )     

Equation 26. 
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The issue is now the determination of the constant that must be applied as a penalty. It is 

evident that under-penalizing the LPC must be avoided since under certain cases this will 

allow certain highly undesirable solutions to recombine. However, over-penalizing the 

objective function can also lead to undesirable results. If a solution that has been over-

penalized is still selected by the algorithm for recombination (which could happen if its high 

“unfeasibility” gave it a much lower LPC than the pool average) then stability problems of the 

algorithm may occur due to the highly perturbed solution that was used as a parent. 

The approach chosen here to determine the magnitude of the penalty is as follows: 

 Calculate the standard deviation amongst the LPC’s of simulation batches A, E, F 

and G. The reason these batches are used is because the magnitude and range of 

the score (and therefore the LPC) is only a function of the number of turbines 

amongst the three parameters used to analyze convergence in the previous section. 

 Average the standard deviations per simulation batch. 

 Generate a plot of average standard deviation versus number of turbines to see if 

there is any correlation. If not, select a penalty value that is higher than the maximum 

standard deviation in the plot. 

The before mentioned plot is presented in Figure 57. 

 

Figure 57. Average standard deviation for score values amongst simulation batches A (10 turbines), E (14 
turbines), F (28 turbines) and G (40 turbines). 

There is no clear trend that can be adjusted to this small dataset, although it appears that the 

variation in the score remains bounded in a relatively small bandwidth regardless of the 

number of turbines used. Therefore, applying a static penalty function will likely guarantee a 

feasible final solution for the turbine siting problem.  
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The penalty constant is here determined by first obtaining the highest standard deviation 

identified from the test runs. Afterwards, floor rounding is applied to improve the stability of 

the solutions, which comes at the cost of granting more non-feasible offspring the chance to 

recombine. The logic behind it is as follows: applying a smaller penalty will inevitably lead to 

unfeasible solutions displaying lower LPC’s than the feasible offspring in the same 

generation to improve their chances of recombining, but if the constant were ceiling rounded 

the result would be a greater difference between penalized and un-penalized LPC’s that 

would result in a higher degree of convergence instability. The former is preferred to the 

latter since some of the unfeasible turbine positions can be ultimately corrected manually by 

the designer. 

 Following the procedure described previously, the penalty constant will be set as: 
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8. Discussion on Performance 

8.1. Introduction 

The previous chapter discussed the implementation of the Covariance Matrix Adaptation 

Evolutionary Strategy, which is a heuristic algorithm developed to solve multivariate 

optimization problems. Several observations and conclusions on convergence of the LPC 

were analyzed in order to try and determine an appropriate stopping condition for the 

algorithm.  

This chapter discusses the suitability of using the POS1 and CMA to solve the turbine siting 

problem by analyzing the solutions generated by the algorithm. Remarks on computational 

performance will also be briefly explored here, although this is not the main focus of the 

discussion. The main issues treated in this chapter include computational performance in 

terms of speed, observations on the LPC’s of the designed solutions and analysis of the wind 

farm layouts themselves. 

8.2. Algorithm Speed 

In section 7.3.1 it was briefly discussed that the original stop criterion for the CMA could not 

be kept due to the time intensive nature of the objective function evaluation, with the turbine 

siting problem showing a run time several orders of magnitude larger than the optimization of 

a simpler function.  

Profiling of the entire optimization algorithm revealed that the bottleneck of the optimization is 

the objective function evaluation; in particular the wake analysis. González (42) pointed out 

that for the particular wake analyst implemented in the MZ tool the order of the algorithm had 

an O(n2) dependency on the number of wind turbines, due to the fact that several loops over 

the list of turbines in the wind farm are required. This dependency is presented in Figure 58, 

in which two different wake analysis algorithms are compared: the “base algorithm” is an 

initial version developed in (42) while “second algorithm” is the algorithm currently used by 

the MZ tool. The parameter O1/O2 is the ratio between the base and the second algorithm 

order of computation. Notice that the order of the calculation is proportional to computational 

time, yet it is not a measure of time in itself. 
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Figure 58. Sensitivity analysis for the wake analyst currently implemented in the MZ tool; dependency on 
number of turbines. Reproduced from (42). 

In order to determine if the entire optimization routine’s time performance is in fact restricted 

by the wake analyst, four different simulations timed where the number of wind turbines was 

varied. The timed simulations were A3, E1, F1 and G1 (corresponding to 10, 15, 30 and 45 

turbines, respectively). The resulting times were plotted and are shown in Figure 59. 

 

Figure 59. Time to complete a CMA run (limited to 150 iterations) as a function of the number of turbines 
in the wind farm, on an Intel Core i5-2430M @2.40GHZ machine. 

The plot illustrates that the curve fit between run time and number of turbines is, in fact, 

quadratic. This result is consistent with the expected order of the algorithm calculated by 

González (42). It appears that indeed the wake analyst is the bottleneck of the optimization 

routine, showing a time complexity response entirely dominated by its predicted behavior. 
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Nevertheless, it is possible that another part of the CMA execution also displays a O(N2) time 

complexity that could potentially be a bottleneck as well, yet tests using different objective 

functions (like Rosenbrock) don’t seem to point out that this is necessarily the case. 

The current version of the wake analyst coupled to the existing optimization routine will lead 

to a poor computational performance for medium to large wind farms; according to the trend 

line a wind farm the size of Horns Rev would take about 20.4 hours to optimize (notice that 

this is for a single CMA run). Therefore, although the “pure” CMA displays a time-efficient 

behavior (demonstrated by evaluation of an algebraic function), the objective function 

evaluation and in particular the wake analyst require further optimization and speed-up 

strategies in order to enable the tool to optimize large wind farms within practical time 

scopes. 

8.3. Final Solution LPC’s 

The simulation batches presented in section 7.3 evidence a particular, unexpected 

characteristic of the CMA algorithm applied to the turbine siting problem: dependency on the 

initial guess. It is not uncommon for heuristic algorithms to yield different final solutions for 

the same problem depending on the initial values assigned to the problem variables; this is 

due mainly to their non-exact nature (introduced by their “randomness” approach to finding a 

solution) and the existence of multiple local minima or maxima in the solution space. 

In the simulation batches used to evaluate convergence of the CMA after 150 iterations a 

relative level of convergence was achieved for the score parameter of the solutions, with 

many of them displaying a trend to oscillate around an asymptotic value with minimal 

changes in the LPC value. However, for simulations within the same batch it is impossible to 

determine a single score value to which all simulations converge. Take for example 

simulation batch A (Figure 49): the LPC of the final solutions of each simulation are 

approximately 132.5 for A1, 134.3 for A2 and 130.2 for A2. The net differences between 

them (around 0.2 Є cents), represents a non-uniform behavior of the final solution that the 

CMA yields; the magnitude of the net change may seem small but for energy pricing issues a 

change in tenths of a cent is still significant. Furthermore, the final wind farm design also 

differs for every simulation, indicating that the algorithm does have a strong dependency on 

the initial guess. This hypothesis may hold true for “short” numbers of iterations only; 

however, increasing an order of magnitude in the maximum number of iterations per CMA 

run is currently highly unpractical in terms of computational time as described previously, and 

there is no evidence to believe that eventually all simulations will converge to one unified 

solution considering that asymptotic trends start to emerge after a small number of runs. 
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Some heuristic algorithms that show dependency on the initial guess circumvent the problem 

by what is called a multi-start approach: instead of using a single feasible solution as a 

starting point, several of them are generated and then either used as an initial pool for 

recombination or the best one is selected as the original parent. Applying a multi-start 

approach to the CMA strategy may seem tempting, yet there is no guarantee that it will lead 

to the global optimum and a single solution for every optimization due to the fact that often 

optimizations that start with a “bad” initial guess end up being the best of a batch, as 

demonstrated by simulations A3, C1 and E1. This strategy could serve however as a way of 

finding the best solution among non-optimal solutions (considering the scenario in which 

several optimizations failed to find the global optimum), which is indeed more desirable. 

What may be concluded from this discussion is that the problem in question seems to have 

several local minima and possibly more than one optimal solution, which is not strange 

considering that the large number of parameters and variables involved in its definition 

generate a complicated, non-monotonous solution space.  

8.4. Resulting Wind Farm Layouts 

The previous sections have dealt with issues and observations related to the intrinsic CMA 

performance; however, so far there hasn´t been any discussion regarding how the designed 

layouts look like. This issue is tackled here. For the layouts presented in this section no 

constraint was imposed on the minimum turbine separation. 

A forty turbine wind farm design subjected to area constraints in the form of a polygon 

defining the limits of the project is presented in Figure 60. Two data series are plotted (for 

this figure and all subsequent layouts presented in this chapter): the initial guess used by the 

CMA as a starting point and the optimized layout. For the layout plot presented in Figure 62, 

a visual queue indicating the displacement of each turbine from its initial to its optimized 

position will be provided when it is considered that the magnitude of such a displacement 

makes it difficult to determine the path followed by the turbine. The other plots don’t require 

such a visual queue since the initial and final position of a single turbine are often quite close 

and additional lines only convolute the plot. 
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Figure 60. Initial guess and final solution after one CMA run for a 40 turbine wind farm subjected to area 
constraints (red polygon). Initial guess is plotted in blue, final solution in green. 

Several observations may be drawn from the layout presented in Figure 60: 

 Both the initial guess and the final solution display a uniform spread of the turbines 

throughout the area, although a concentration of points is perceived in the central 

area of the polygon. This is due to the fact that the initial guess samples from a 

normal distribution a value between 0 and 1 to determine the x and y coordinates of 

every turbine. 

 The overall displacement of the turbines from their initial to their final position varies 

greatly depending on the turbine itself: some of them are barely moved (or less than 

10 meters), while others are displaced more than 100 meters. This behavior is in line 

with a previous implementation of the CMA for the turbine siting problem by 

Rodrigues et.al (36), and was completely expected. 

 One of the turbines in the layout displays an unfeasible position, product of an 

unfeasible offspring recombining at some point and exerting its influence in the final 

solution; the turbine in question is the easternmost one in the wind farm. The initial 

guess for this turbine is only two meters away from the boundary (inside the polygon). 

This particular turbine is an example of the effect of lowering the penalization on the 
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LPC to achieve stability, yet it is easy to see that a manual correction is very 

straightforward to achieve feasibility once more. 

 Although a subjective observation, it seems that the turbines are being “pushed 

away” from each other (and in most cases towards the edges of the polygon). This is, 

for this case, a result of the turbines distancing themselves from their neighbors in 

order to reduce their wake losses and thus increase energy yield, thereby minimizing 

the wind farm LPC. However, depending on the initial separation distance the 

contrary is expected to happen: turbines will move closer together to lower cable 

costs. 

8.4.1. Complex Boundaries 

To further test the capabilities of the CMA in producing layouts several more complicated 

polygons were applied to bound the available wind farm area. The number of wind turbines 

was also varied for different simulations. These “more complicated” available areas and the 

designed layouts are presented in Figure 61, Figure 62 and Figure 64. 

 

Figure 61. Initial guess and final solution after one CMA run for a 10 turbine wind farm subjected to area 
constraints (red polygon). Initial guess is plotted in blue, final solution in green. 
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Figure 62.  Initial guess and final solution after one CMA run for a 15 turbine wind farm subjected to area 
constraints (red polygon). Initial guess is plotted in blue, final solution in green. 

In these more complicated polygon shapes the observations derived from the large wind 

farm presented in Figure 60 still hold valid, thereby proving that the CMA strategy 

implemented produces feasible layouts that respect the area constraints. 

8.4.2. Turbine positions for more than one CMA Run 

The previously presented layouts were generated for one CMA run using 150 iterations; 

however, it is also interesting to see what happens to the designed layout after more than 

one CMA run. To assess this effect the simulation that generated WF-2 (Figure 61) was 

allowed two perform two more passes over the main optimization loop. The results of this 

sequential CMA optimization are shown in Figure 63. 
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Figure 63. Initial guess (blue) and solutions after three sequential CMA runs (first in green, second in 
purple, third in orange) for a 10 turbine wind farm (WF-2). 

The results indicate a behavior that is consistent with the observed LPC convergence after 

multiple runs for a single simulation presented in Figure 56. The rapid LPC decline phase is 

visualized by a notorious change in the turbine positions between the initial guess and the 

result of the first CMA run; for all subsequent runs the change in the turbine positions is quite 

small, with some of the turbines moving in the order of less than 5 meters between 

optimizations.  

8.4.3. Wind farm layouts for unchanged conditions 

In section 8.3 the dependency of final solutions on initial turbine positions was discussed, 

which served as an explanation for the different LPC values obtained when all design 

parameters and variables remain unchanged. In order to gain more insight on this issue 

three simulations with different starting points were performed to assess whether or not the 

turbine positions themselves tend to converge or not (unlike the LPC). The initial guesses for 

the three simulations are presented in Figure 64, while the final layouts after one CMA run 

are shown in Figure 65. 
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Figure 64. Initial guess for three simulations of 8 turbine wind farms, represented by different colored 
data sets. 
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Figure 65. Final solutions after one CMA run for three simulations of 8 turbine wind farms, represented by 
different colored data sets. Each data series corresponds to its counterpart in Figure 64. 

Two important conclusions may be drawn from these simulations: 

 The polygon defining the wind farm boundaries is the most complicated one used so 

far, considering its sharp vertices and very “odd” shape to contain a wind farm. For 

this polygon the number of non-feasible points in the final solutions increased 

compared to previous simulations, indicating that it is possible that a complex shape 

leads to more unfeasible solutions being generated, and therefore, recombined. 

 Interestingly, there appears to be a certain degree of clustering of turbines for 

different simulations, with some particular areas in the polygon displaying the 

convergence of three turbines (one for each simulation) with only a few meters of 

difference. These instances are highlighted by the black circles enclosing the turbines 

in Figure 65. This might be either an indication of the existence of clear minima 

around the contour of the solution space in these areas or an effect of the position of 

the OHVS, which is an important driver in the layout organization. 

8.4.4. Cable Layout Design 

One more aspect that is worth visualizing in the resulting wind farms is the cable layout 

design, which is generated by the POS1 algorithm described in chapter 6. Two cable layouts 

are presented in Figure 66 and Figure 67, which correspond to WF-2 and WF-3, respectively. 

For both cable layout designs the capacity per branch was fixed to a maximum of three 

turbines. 
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Figure 66. Designed cable layout for the 10 turbine WF-2; cables are shown in purple. 

 

Figure 67: designed cable layout for one of the 8 turbine WF-3 versions. Cable is shown in purple. 
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The cabling layout presented in both figures is consistent with previous testing results for the 

POS1; the maximum capacity per branch is respected and there is no cable overlap. 

Furthermore, the layout is “logical” in the sense that it seems to trace the shortest possible 

routes between turbines. One issue with the cable optimization algorithm that was not treated 

as part of this project is notorious in both layouts: cable routes do not respect the area 

constraints. The cable that overlaps with the wind farm polygon is evidence of the problem to 

be addressed; it is easy to imagine that in order to treat this problem a modification on the 

POS1 is required that would allow it to connect two turbines using non-straight lines, that 

would allow the cable to “go around” the polygon boundaries. 

In general, the CMA strategy and the POS1 algorithm developed in the scope of this project 

do an excellent job in yielding optimized layouts that respect constraints that are often placed 

on real wind farms. 

  



129 
 

9. Conclusions and Recommendations 

9.1. Conclusions 

This project documents the development of several modifications on an existing offshore 

wind farm design and verification computational tool in order to extend its capabilities, 

enabling it to generate more realistic layouts subjected to common constraints. A sequential 

problem solving approach was used, which ultimately proved to be an adequate method to 

solve the engineering problem at hand producing a solution that not only satisfies the initial 

objectives and requirements, but was also delivered in a timely manner. 

A very extensive assessment of wind project developer’ needs was performed using five 

different methodologies, from which a final list of functional requirements was extracted that 

served as the main driver for the specific project implementation goals. These were further 

prioritized based on a multi-criteria analysis that revealed that the most urgent aspects to be 

treated within the MZ tool were the ability to generate optimal wind farm layouts subjected to 

area restrictions and other real-world constraints. 

The methodologies devised and used to obtain a list of user requirements was very 

comprehensive, since it allowed for the identification of not only software-specific 

requirements and opportunities for implementation but also limitations on current models that 

are used in the wind farm design process. The extrapolation from objective functions method 

was deemed to be the most useful, since it revealed all the “building blocks” required to 

arrive to the final result. Interestingly, while most objective function evaluations require a 

common set of minimum parameters there are some which are function-specific that could 

have not been identified if several objective functions were not assessed.  

The overall methodology to identify user requirements for the wind farm optimization problem 

designed here is recommendable for future projects in the field due to the plurality of 

individual methods used and its ability to reveal both quantitative and qualitative 

requirements. Furthermore, this methodology could be adapted for use in other engineering 

problems that require their translation into a software tool, with the obvious observation that 

“observation from existing layouts” should be reinterpreted as observations from the 

particular problem at hand. 

The process of prioritizing the requirements was designed to be as objective as possible, 

however, as with any other multi-criteria analysis there are always issues with biasing and 
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subjective concerns reshaping the result and conclusions. This is a fact recognized by the 

author; however, the priorities identified within the scope of this project are in line with current 

research and literature on the topic, serving as evidence that while the initial method is not 

perfect there is some background to justify its results. 

Two principal algorithms (including several subroutines each) were implemented as part of 

the scope of this project. They were developed sequentially, due to the fact that the pre-

existence of an automated cable layout designer for any wind farm topology was required in 

order to develop an algorithm that would reposition the turbines themselves. 

The cable layout design algorithm is an implementation of the POS1 designed and 

developed by Bauer et. al (63). This algorithm provides a solution to the Open Vehicle 

Routing Problem (OVRP) using a heuristic approach adapted exclusively for its use in wind 

farm optimization problems. The implemented version achieved an excellent computational 

performance even for high numbers of turbines, despite the fact of having a nested loop 

structure and a sequential series of subroutines design to verify the compliance of solutions 

to constraints. This heuristic algorithm yields cable layouts ranging from “good” to 

“acceptable”, with several test cases revealing sub-optimal routings identifiable by mere 

visual inspection. Fortunately, these sub-optimal routes do not appear in all design layouts, 

with the frequency of recurrence having a relation with the complexity of the layout and the 

number of turbines (in other words, less complexity means less likelihood of having sub-

optimal routes). A post-processing manual correction can be performed on the resulting 

cabling layout to approximate the solution to the true optimum, indicating that this drawback 

of the POS1 can be easily addressed for small and medium wind farms where visual 

inspection reveals sub-optimal routes. 

The second main algorithm implemented was the Covariance Matrix Adaptation Evolutionary 

Strategy (CMA-ES) which has been reported in the literature as being a state-of-the-art 

heuristic approach for multivariable optimization problems. Furthermore, a previous 

successful application of the CMA in the turbine siting problem by Rodrigues et.al (36) 

served as a reassurance criteria for the selection of this algorithm. The CMA is capable of 

producing wind farm layouts that respect the imposed area constraints, displaying rapid 

convergence towards an asymptotic LPC value. From several optimizations it was concluded 

that the turbine siting problem as defined here doesn’t appear to have a single optimal 

solution, with a variety of layouts and wind farm LPC values resulting from repeated runs of 

the heuristic algorithm under the same design conditions and parameters. A comparison of 

optimized layouts against the initial guesses for the turbine positions revealed a heavy 

dependence on the solution on such a starting condition, with most turbines being displaced 
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short distances before being almost “fixed” to a final position, even after several iterations of 

the CMA algorithm. This result, while not an indication of an inability to achieve converging 

layouts by the algorithm, does raise several questions regarding additional strategies and 

modifications to the solution approach that may be used to circumvent this problem. 

Regarding time performance, while the CMA uses complicated data structures (mainly 

matrices and multiple poly-dimensional arrays) it was determined that the evolutionary 

strategy is not the bottleneck of the optimization strategy. The wake analyst was identified as 

the main bottleneck, mainly due to the multiple nested loops in its structure that result in a 

O(n2) time complexity with the number of turbines in the farm. The presence of such a 

bottleneck tremendously hinders the computational performance of the design tool, making 

the design of large wind farms (>50 turbines) a rather unpractical task. Nevertheless, as a 

tool for producing feasible optimized layouts the CMA implementation is considered a 

success and its application to solving the turbine siting problem is strongly encouraged. 

In retrospect, the project objectives were met and the development of a solid base on which 

to base further work on the MZ tool was achieved. While there are still several improvements 

and extensions that need to be added to the tool to make it a truly powerful wind farm 

designer that is as close of a reflection of the real problem as possible, the ability to generate 

non-square layouts hereby developed is a substantial step in this direction. 

9.2. Future Work 

This project leaves a solid working framework on which to base future developments and 

further extend the capabilities of the MZ tool. The following is a list of possible issues that 

could be addressed as part of subsequent projects: 

 The list of high-priority functional requirements to be addressed serves as a good 

guide to determine possible “next steps”. For example, providing the user with the 

choice of more than one objective function besides LPC is a good way to add 

functionality to the tool, providing the user with more freedom and possible outcomes 

and designs depending on his/her specific priorities. 

 Extending the capabilities of the financial module is not an extremely complicated 

extension that could potentially provide valuable information for investors, such as 

wind farm NPV, IRR, cost-benefit ratio and other similar parameters.  

 The topic of uncertainty in prediction of energy yield is a multi-layered problem that is 

not yet fully understood and still lacks standardized methods of estimation. However, 

a “crude” uncertainty module can be already developed with existing knowledge 

(some of the commercial wind farm design software analyzed possess such 
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capabilities); this addition combined with the extended financial assessment 

capabilities suggested in the previous point could greatly increase the attractiveness 

of the MZ tool not only as a software for designing but also to aid in selling a project. 

 In order to produce more realistic wind farm designs the possibility to include non-

uniform subsea conditions must be addressed. The inclusion of such models will not 

only result in a more versatile support structure designer (opening the possibility to 

even having more than one type of structure per wind farm) but also in a more 

challenging cable design problem that will have to deal with bathymetry and 

obstacles. 

 There are several ways to improve the cable layout design. One aspect that remains 

to be addressed is enabling the POS1 algorithm to trace non-linear routes between 

points, thereby making the cables respect the area constraints as well. However, the 

chief recommendation would be to upgrade the POS1 to its more sophisticated 

version (POS2) and couple it with the RouteOpt extension to reduce the number of 

sub-optimal routes present in the final design. The POS2 shares most of its structure 

with the already implemented POS1, meaning that this shouldn’t be a very complex 

extension. 

 The original motivation to generate wind farm layouts that respected certain rules of 

aesthetics was ultimately not addressed as part of this project, due mainly to this 

requirement ranking lower in the priority list than the treated problems. However, it 

remains an interesting problem to solve, that could be coupled with an option to 

enable the MZ tool to generate symmetric optimized layouts. 

 Finally, if a host of different extensions are to be developed for the MZ tool, it is 

recommended that a more robust and capable graphical user interface (GUI) is 

developed. This addition will increase dramatically the value of the tool in the eyes of 

a developer, while also opening the possibility of the tool to be introduced to other 

types of users. 
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Appendixes 

Appendix A: Lists of Functional Requirements 

Category A Requirement S R F P Pr 

Include a built-in help menu or manual to aid the user. V 5 5 0 10 

Achieve a high-quality solution in a reasonable amount of time. II 5 5 5 15 

Include an ample catalogue of commercially available wind turbines for 
the user to choose from. 

I, V 4 4 4 12 

Allow the user to use create and use custom wind turbines. I 4 5 4 13 

Allow the user to use and analyze personal wind data. I, V 4 4 3 11 

Automatically obtain, import or otherwise allow for the input of the 
wind speed distribution. 

I 4 4 3 11 

Ability to either receive the power curve as input or otherwise generate 
an approximation to it. 

I, IV 5 5 5 15 

Table A 1. Type A (software requirements and inputs) functional requirements. 

Category B Requirement S R F P Pr 

Ability to generate optimized symmetrical (or slightly organized) turbine 
layouts. 

I, II, 
III 

5 5 5 15 

Ability to generate optimized non-organized layouts. I, II, 
III, IV 

5 5 5 15 

Restrict available turbine siting area due to various constraints. I, II, 
III 

5 5 5 15 

Determine the optimal number of wind turbines to be installed (make it 
an output rather than an input). 

IV 3 4 4 11 

Apply a constraint of minimum turbine separation. II, III 5 5 5 15 

Table A 2. Type B (layout related requirements) functional requirements. 

Category C Requirement S R F P Pr 

Develop and implement a more complex wake model, including factors 
such as surface interactions and meandering. 

II 3 1 1 5 

Develop and implement better cost models that offer a more detailed 
breakdown of every contributing factor. 

II, IV 4 2 2 8 

Include a robust wake model that can handle any layout. I, IV 5 5 5 15 

Provide the user the choice of at least two wake models. I, II 2 3 3 8 

Account for atmospheric turbulence effects. I, II 3 4 2 9 

Include models to determine hydrodynamic and aerodynamic loads. I, IV 5 4 5 14 

Ability to calculate energy yield considering topographic effects. I 0 3 0 3 

Enable yield calculations without accounting for wake effects (site 
conditions alone). 

I 2 5 0 7 

Have a fully implemented and functional wind rose. I 5 4 4 13 
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Table A 3. Type C (modeling and calculations requirements) functional requirements. 

Category D Requirement S R F P Pr 

Include wind flow modeling and visualization capabilities, for example 
through the use of WAsP. 

I 3 1 0 4 

Import and use worldwide maps, geographic data and layers. I, V 4 2 0 6 

Visualize all environmental impacts on neighboring zones in a map or 
2D-plot. 

I 1 1 1 3 

Allow the use of scanned maps as the visual base (workspace). I 4 3 2 9 

Provide GIS-styled functionality and interface. I 5 2 0 7 

Visualize outputs of calculations in maps. IV 5 2 1 8 

Table A 4. Type D (graphics and user interface) functional constraints. 

Category E Requirement S R F P Pr 

Include climatic impact (local and global) models and assessment 
capabilities. 

II 2 3 3 8 

Include a model to assess impacts on wildlife. II 1 2 1 4 

Visual impact assessment capabilities, either by ZVI, photomontages or 
rendering. 

I 5 4 0 9 

Include shadow flicker effects assessment and visualization. I 0 3 0 3 

Include noise impact assessment tools. I 0 5 3 8 

Ability to evaluate compliance with local noise limits. I 0 5 2 7 

Assess radar ceiling effects. I 2 2 1 5 

Table A 5. Type E (environmental aspects) functional requirements. 

Category F Requirement S R F P Pr 

Develop and implement new objective functions which encompass all 
relevant problem variables and prove to yield good results. 

II, V 5 3 4 12 

Give the user a choice of at least two objective functions. I 5 4 4 13 

Implement a heuristic optimization algorithm. II 4 4 5 13 

Implement a local search optimization algorithm II 4 4 5 13 

Include COE/LPC as an objective function due to its known relevance to 
the problem, comprehensive formulation and acceptance by most 
users. 

I, II 5 5 5 15 

Develop a strategy that minimizes randomization errors that stem from 
the heuristic nature of the algorithms. 

II 3 2 3 8 

Ability to optimize for a site with variable water depth. I, IV 4 3 3 10 

Table A 6. Type F (optimization routine requirements) functional requirements. 

Category G Requirement S R F P Pr 

Ability to evaluate financial performance indicators, such as NPV or IRR 
for the project. 

I, IV 4 5 5 14 

Include the option of defining custom financial parameters, such as 
interest and inflation rates. 

V 4 5 5 14 
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Include a detailed installation cost module, explicitly stating its 
breakdown into components. 

IV 3 4 4 11 

Include a detailed O&M costs module, explicitly stating its breakdown 
into components. 

IV 3 4 4 11 

Allow the user to input and assess the effect of project lifetime on total 
costs. 

IV 3 5 3 11 

Implement a future value model for all project assets, to refine the 
overall cost model. 

IV 2 4 3 9 

Table A 7. Type G (optimization routine requirements) functional requirements. 

Category H Requirement S R F P Pr 

Automated support structure design. I 5 4 5 14 

Provide the user a choice of at least two support structures (monopile 
and jacket). 

V 3 3 4 10 

Ability to calculate loads on the structure and automatically determine 
compliance with the IEC-61400 standard. 

I, V 4 4 5 13 

Table A 8. Type H (support structures) functional requirements. 

Category I Requirement S R F P Pr 

Have the ability to visualize the optimized cable layout. I, V 3 2 2 7 

Implement an automated cable topology optimizer, closely tied to the 
layout optimization routine. 

I, III, 
IV 

5 4 5 14 

Table A 9. Type I (electrical aspects) functional requirements. 

Category J Requirement S R F P Pr 

Ability to calibrate tool outputs with real site data. I 1 4 1 6 

Determine optimal start-up and shut-down strategies based on the 
optimized wind farm. 

I 1 3 1 5 

Ability to analyze uncertainty of the energy yield calculation. I, V 5 4 4 13 

Include tools that allow for performance assessment of already existing 
projects. 

I 1 4 0 5 

Couple a wind farm controller optimizer to the existing routine. V 4 2 3 9 

Table A 10. Type J (miscellaneous) functional requirements. 
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Appendix B: Subroutines for Cabling Algorithm POS1 

Empty cost matrix “C”
List of WT coordinates (x,y) with ID’s

OHVS coordinates (x,y) with ID=0

i=0:NT

R=vector[]
R←Append (i,0)

j=0:NT

Calculate distance between turbines with ID’s equal to i and j (EQ A), 
save to C(i,j)

C(i,j)=0?

Next j

C(i,j)=∞ Yes

No

Next i

End

 

Figure B 1. Subroutine 1, set cost (distance) matrix. 
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Filled cost matrix “C”
List of WT coordinates (x,y) with ID’s

OHVS coordinates (x,y) with ID=0
Empty savings vector “S”

i=1:NT

j=1:NT

Calculate saving between connecting turbine with ID=i 
to turbine with ID=j (EQ B)

S←Append (i,j,Sij)

Next j

Next i

Sort S from lowest to highest Sij

End

 

Figure B 2. Subroutine 2, set and sort savings vector. 
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WT with ID=Sk(0) in a different route than 
that of WT with ID=Sk(1)? (Sub 4)

(SK(0),0) R?

Yes

WT with ID=Sk(1)have only one neighbor 
in R? (Sub 5)

Yes

Cap exceeded in any route containing 
SK(0) and SK(1)? (Sub 6)

Yes

(Sk(0), Sk(1)) crosses any edge in R?
(Sub 7)

No

R←R/(SK(0),0)
R←Append (SK(0),SK(1))

Paths(Sk(1)).merge with Paths(Sk(0))
Paths(SK(0))=” “

Arc Sk (k,u, Sku)
WT coordinates and ID’s

Routing vector “R”

End

No

No

No

Yes

Yes

No

 

Figure B 3. Subroutine 3, condition checks for every arc. 
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Arc Sk
Paths vector

Same_path=”No”

i=1:len(Paths)

Sk(0)   Paths(i) && 
SK(1)   Paths(i)

Next i

Same_path=”Yes”

Yes

No

Same_Path

 

Figure B 4. Subroutine 4, determine if two turbines in an arc (k,u) are already in the same cabling route. 
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Arc Sk
Routing vector “R”

Counter=0
More_than_one=”No”

i=1:len(R)

Arc(0)==Sk(1) or 
Arc(1)==Sk(1)

Arc=R(i)

Next i

Counter=Counter+1

Yes

No

Counter > 1

More_than_one=”Yes”

Yes

More_than_one

No

 

Figure B 5. Subroutine 5, determine if a turbine has more than one neighbor in the same route. 
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Arc Sk
Paths vector

Maximum number of turbines per 
branch (Cap)

Cap_exceeded=”No”

i=1:len(Paths)

j=0:len(Paths(i))

Node=(Paths(i))(j)

Node==Sk(0) || 
Node==Sk(1)

Num_WT=len(Paths(i))

Num_WT > Cap

Cap_exceeded=”Yes”

Yes

Yes

Next j

No

No

Next i

Cap_exceeded

 

Figure B 6. Subroutine 6, check for exceeded capacity. 
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Arc Sk
Routing vector R

Turbine coordinates

X1=Turbine Sk(0).x
Y1=Turbine Sk(0).y
X2=Turbine Sk(1).x
Y2=Turbine Sk(1).y
Intersection=False

i=1:len(R)

Arc=R(i)
X3=Turbine Arc(0).x
Y3=Turbine Arc(0).y
X4=Turbine Arc(1).x
Y4=Turbine Arc(1).y

Area=[]
Position=[]

Area[0]=(X2-X1)*(Y3-Y1)-(X3-X1)*(Y2-Y1)
Area[1]=(X2-X1)*(Y4-Y1)-(X4-X1)*(Y2-Y1)
Area[2]=(X4-X3)*(Y1-Y3)-(X1-X3)*(Y4-Y3)
Area[3]=(X4-X3)*(Y2-Y3)-(X2-X3)*(Y4-Y3)

Position[0]=’ ‘
Position[1]=’ ‘
Position[2]=’ ‘
Position[3]=’ ‘

Counter=0

i=0:3

Area[i]>0 Position[i]=’Left’Yes

Area[i]<0 Position[i]=’Right’

No

Yes

Position[i]=’Collinear’
Counter=Counter+1

No

Position[0]!=Position[1] && 
Position[2]!=Position[3] && 

Counter<=1
Intersection=’Yes’Yes

Intersection

Next i

No

 

Figure B 7. Subroutine 7, determine if two segments of line intersect. 
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Appendix C: Guided Example of POS1 

Although the work by Bauer et.al (63) contains the pseudo-code to implement POS1, it may 

be more helpful to illustrate the way it works by means of an example. Consider the case of 

five wind turbines and one OHVS with known coordinates; the goal is to generate the optimal 

cabling route that connects all turbines to the OHVS once and only once. Also, no single 

branch may have more than a specified number of turbines (capacity, or Cap), which in this 

example will be set to 3. 

The optimal routing is defined by a so-called routing vector R, which is initially defined as 

follows: 

  [(   ) (   ) (   ) (   ) (   )] 

Each element in the vector R is called an arc, which is the path created by connecting two 

turbines together or a turbine to the OHVS. Only arcs that are part of the routing vector are 

those that comprise the optimal solution. Therefore, initially, the cable routing looks as shown 

in Figure C 1. The star numbered “0” represents the OHVS, while all the circles are the 

turbines to be connected, each number representing their identification number (ID). 
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2

3

4

5
 

Figure C 1. Initial cabling routing as defined by the R vector. 

Since the Cartesian coordinates of all six points are known the distance between every 

turbine and its neighbors may be calculated using simple trigonometry. The savings heuristic 

was originally defined in terms of travel costs between one point and the other, the general 

idea being the minimization of such costs in the final solution. Since the cabling problem 

deals with minimizing the cabling distance, cost and distance can be used interchangeably in 

the problem’s context. Thus, a cost (or distance) matrix is generated by filling the distances 
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between the respective points. The matrix in EQU is an example of a cost matrix, using 

arbitrary values for the distances between points. It can be easily read as “from ROW to 

COLUMN”, for example, the distance from turbine 1 to turbine 3 is 29. 

  

[
 
 
 
 
 
     

   
 

      
      
      
     

   
 ]
 
 
 
 
 

 

Notice that this matrix is both square and symmetric, since the distance from A to B is the 

same as B to A. Additionally, the diagonal is filled with hyphens instead of zeroes, with the 

hyphen representing an infinite distance. 

The next step is calculating the savings matrix, with each saving Sku representing how much 

cost is saved by merging two routes into a single one containing the arc (k,u).This saving is 

calculated according to the definition in EQ, in which the subindex d represents the OHVC, or 

point 0. 

            

The resulting savings matrix is not symmetric and has dimensions NTxNT. The purpose of 

calculating the savings achieved by merging for every pair of turbines is to allow the heuristic 

algorithm to choose the merge with the highest saving that doesn’t exceed the capacity per 

route, which will in turn result in an optimal route. Using the numerical values given by the 

cost matrix and applying the savings definition the resulting savings matrix is as follows: 

  

[
 
 
 
 
    
    
      

  
    
     

         
         

      
      ]

 
 
 
 

 

Once the savings matrix is calculated the corresponding arcs are sorted from highest to 

lowest saving, resulting in an arc vector A like this: 

  [(   ) (   ) (   )   (   ) (   ) (   )] 

Therefore, merging routes using the arc (5,1) creates the highest saving, while doing so with 

(3,2) generates the lowest and thus it is the least preferred routing option. The final step is to 

iterate over vector A, and for every arc evaluate the following conditions: 

 Are k and u in different routes? 

 Is the arc (k,d)   R? 
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 Point u has only one element in R? 

 The total number of points in the paths containing k and u does not exceed Cap? 

 The arc (k,u) does not cross any arc in R? 

If all five conditions are satisfied then the arc is added to the routing vector R, and one of the 

initialization arcs is removed. The first arc in A, namely, (5,1), satisfies all the conditions, thus 

R is altered as follows: 

    (   )  (   )  [(   ) (   ) (   ) (   ) (   )] 

After all arcs in A have been evaluated the resulted routing vector is: 

  [(   ) (   ) (   ) (   ) (   )] 

This routing is illustrated in Figure C 2. 
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Figure C 2. Final routing for the example, two routes, no route may hold more than three turbines. 

 

 


