

Delft University of Technology

Knowledge architecture supporting the next generation of MDO in the AGILE paradigm

van Gent, Imco; Aigner, Benedikt; Beijer, Bastiaan; Jepsen, Jonas; La Rocca, Gianfranco

DOI
10.1016/j.paerosci.2020.100642
Publication date
2020
Document Version
Final published version
Published in
Progress in Aerospace Sciences

Citation (APA)
van Gent, I., Aigner, B., Beijer, B., Jepsen, J., & La Rocca, G. (2020). Knowledge architecture supporting
the next generation of MDO in the AGILE paradigm. Progress in Aerospace Sciences, 119, Article 100642.
https://doi.org/10.1016/j.paerosci.2020.100642

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.paerosci.2020.100642
https://doi.org/10.1016/j.paerosci.2020.100642

Progress in Aerospace Sciences 119 (2020) 100642

Available online 24 September 2020
0376-0421/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Knowledge architecture supporting the next generation of MDO in the
AGILE paradigm

Imco van Gent a,1, Benedikt Aigner b,2, Bastiaan Beijer c,3, Jonas Jepsen d,4,
Gianfranco La Rocca a,*,5

a Delft University of Technology - Faculty of Aerospace Engineering, Kluyverweg 1, 2629 HS, Delft, the Netherlands
b Institute of Aerospace Systems, RWTH Aachen University, Wuellnerstrasse 7, 52062, Aachen, Germany
c KE-works, Molengraaffsingel 12, 2629 JD, Delft, the Netherlands
d Integrated Aircraft Design Dpt., German Aerospace Center (DLR), ZAL TechCenter, Hein-Saß-Weg 22, 21129, Hamburg, Germany

A R T I C L E I N F O

Keywords:
MDO
Knowledge architecture
AGILE
Framework
Standardization

A B S T R A C T

After almost three decades of evolution, it is not yet possible to apply MDO in collaborative projects within large,
heterogeneous and distributed teams of experts, whilst nowadays necessary for the development of any complex
product. The H2020 project AGILE took the challenge of devising a novel paradigm to swiftly set up and deploy
large distributed MDO systems, that are easy to (re)configure and monitor during the whole process, from re-
quirements definition to data post-processing. The main outcome is an advanced set of tools and methods
contributing to a 3rd generation MDO environment, specifically tailored to the aerospace industry. The AGILE
paradigm is built on top of two main pillars, the so-called knowledge architecture and the collaborative architecture.
The former, which is the main focus of this paper, provides a structured approach and the related workbench to
formulate and inspect any automated design process, including fully formalized MDO systems. The latter in-
cludes the tools and methods to translate these formulations into executable workflows and deploy them across
distributed networks. Although AGILE aims specifically at aircraft MDO, the proposed knowledge architecture
provides a general conceptual framework that is suitable for the development of any complex product. The
knowledge architecture has a multi-level hierarchical structure, consisting of four layers: development process,
automated design, design competences and data schemas. Interfaces between the various layers are defined to
achieve a fully.interconnected development process. This paper provides first a description of the knowledge
architecture as a generalized paradigm to formulate collaborative and distributed MDO systems. Then, the
specific implementation of such a paradigm within the AGILE project is illustrated: four knowledge architecture
applications and two data schemas are described in detail. Finally, the whole approach is demonstrated by means
of a realistic aircraft design case. This implementation proved successful in multiple aspects. First of all, in
allowing heterogeneous teams of experts to generate complete and correct MDO system formulations involving
large amount of distributed disciplinary tools, while maintaining full control and systematic overview of the
complete system archi- tecture. Second, in offering the necessary agility to adjust and reconfigure the formulated
MDO systems, such to support the iterative and evolutionary nature of their development process. Finally, by
dramatically accelerating the setup time of the MDO system, thanks to the automation of the complex, lengthy
and repetitive operations involved in the partitioning and coordination process, and to the effective support in
inspecting and resolving the eventual inconsistencies in the data flow, arising every time tools are added or
modified, or different solution strategies are implemented.

* Corresponding author.
E-mail address: g.larocca@tudelft.nl (G. La Rocca).

1 Ph.D. Student.
2 Ph.D. Student.
3 Knowledge Engineer.
4 Researcher Engineer.
5 Associate Professor.

Contents lists available at ScienceDirect

Progress in Aerospace Sciences

journal homepage: http://www.elsevier.com/locate/paerosci

https://doi.org/10.1016/j.paerosci.2020.100642
Received 2 June 2020; Accepted 13 June 2020

mailto:g.larocca@tudelft.nl
www.sciencedirect.com/science/journal/03760421
https://http://www.elsevier.com/locate/paerosci
https://doi.org/10.1016/j.paerosci.2020.100642
https://doi.org/10.1016/j.paerosci.2020.100642
https://doi.org/10.1016/j.paerosci.2020.100642
http://crossmark.crossref.org/dialog/?doi=10.1016/j.paerosci.2020.100642&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Progress in Aerospace Sciences 119 (2020) 100642

2

1. MDO challenges and the AGILE paradigm

Multidisciplinary Design Optimization (MDO) has been a promising
design methodology for decades. Despite its promise, MDO is not as
widely applied as was expected at its birth more than three decades ago
[1–3]. Both technical and non-technical challenges have hampered its
successful exploitation, and eventually reduced its scope to cases
involving either a limited amount of disciplines or the application of
low-fidelity analysis tools. At date, success stories of MDO application to
full aircraft design in a true industrial setting are not available. Still the
community acknowledges the large benefits such design methodology
can potentially deliver, especially when applied to novel aircraft con-
figurations, for which design drivers and multidisciplinary synergies are
still unknown or unexploited. Through a systematic effort of identifi-
cation and resolution (or at least mitigation) of the aforementioned
challenges, the MDO (or MDAO) community has succeeded in evolving
its arsenal of tools and methods throughout two generations of MDO
environments [4,5].

First generation environments included software applications and
strategies limited to the setup of monolithic computational systems
operated by a single user. Second generation environments have
improved workbenches, enabling the distribution of the analysis capa-
bilities on dedicated computational facilities, under the coordination of
a centralized design and optimization process. A third generation MDO
environment is currently being shaped within AGILE (Aircraft 3rd
Generation MDO for Innovative Collaboration of Heterogeneous Teams
of Experts) [6], an EU research project under the funding scheme Ho-
rizon 2020, of which this paper presents a key contribution. AGILE’s
goal is to extend the current set of applications, strategies and data
schemas such to enable distributing all the tasks involved in the
formulation and operation of an MDO system, thereby enabling a truly
collaborative environment for discipline experts, system architects and
final users.

In this paper, by MDO environments we intend the ecosystems in
which MDO systems are assembled using MDO frameworks as work-
benches. Hence, the framework presented in this paper is one of the
implemented workbenches to be used within the broader 3rd generation
environment. By MDO system we intend a representation of the set of
design competences (tools), exchanged data and process relations

necessary to perform multidisciplinary design, analysis and/or optimi-
zation of a given product. In this sense, the term MDAO (Multidisci-
plinary Design Analysis and Optimization) might be more suitable to
express the fact that some of the MDO systems addressed in this paper do
not necessarily include optimization, and could be limited to sole
multidisciplinary analysis. Yet, the term MDO will be used here to
maintain consistency with existing literature.

According to the AGILE paradigm, an MDO system evolves
throughout five stages, as further elaborated later in this paper,
involving the following three main phases in the utilization of the MDO
environment (see Fig. 1):

Each phase presents specific challenges and, accordingly, puts
different demands on the MDO environment that is used for developing
the given MDO system. The goal of the setup phase is to gather into a
coherent and consistent repository different design competences (e.g. in
the form of disciplinary design tools, or pre-assembled workflows of
tools), which are often provided by different departments within the
same organization, or even by multiple organizations. The first technical
challenge here is to “let the design competences speak to each other”,
hence to enable the necessary input/output data flow. This is typically a
challenging task even when using design competences that are available
in the same design team. Its complexity grows exponentially when the
tools to connect are distributed across large and heterogeneous teams,
not geographically collocated. This is not only difficult and time-
consuming, but intellectual property protection, tool accessibility and
security issues can make any technical solution practically unfeasible.

In the operation phase the MDO environment is used by the design
team to define first the MDO problem to be solved, then to determine the
right strategy to solve it and, finally, to implement such strategy as an
executable workflow. This second phase too presents a mix of technical
and non-technical challenges. A first main technical challenge, obvi-
ously, concerns the ability to formulate a complex MDO system
involving a large number of design competences. The second concerns
the integration of the MDO system formulation into an ex- ecutable
computational process (e.g. using a PIDO tool). A third technical chal-
lenge, specifically addressed by AGILE, is the homonym agility chal-
lenge, that is the ability to reconfigure a previously assembled MDO
system, such to support designers exploring new insights acquired after
the first computation runs, to include new or modified design

Nomenclature

ADF AGILE Development Framework
AGILE Aircraft 3rd Generation MDO for Innovative Collaboration

of Heterogeneous Teams of Experts
API Application Programming Interface
AR Aspect Ratio
ATR Average Temperature Response
BLISS Bi-Level Integrated System Synthesis
CA Collaborative Architecture
CIAM Central Institute of Aviation Motors (Russia)
CMDOWS Common MDO Workflow Schema
CO Collaborative Optimization
CPACS Common Parametric Aircraft
Configuration Schema DLR German Aerospace Center
DOC Direct Operating Cost
DOE Design Of Experiments
DUT Delft University of Technology
IDEaliSM Integrated & Distributed Engineering Services framework

for MDO
IDF Individual Discipline Feasible
ISA International Standard Atmosphere

KA Knowledge Architecture
KADMOS Knowledge- and graph-based Agile Design for

Multidisciplinary Optimization System
MDAO Multidisciplinary Design Analysis and Optimization
MDO Multidisciplinary Design Optimization
MDF MultiDisciplinary Feasible
MLM Maximum Landing Mass
MTOM Maximum Take-Off Mass
PAX Passengers
PIDO Process Integration and Design Optimization
PoliTo Politecnico di Torino
RCE Remote Component Environment
RWTH Rheinisch-Westfälische Technische Hochschule
S Wing surface area
SL: Sea Level
TOFL: Take-Off Field Length
TsAGI Central Aerohydrodynamic Institute (Russia)
UID Unique IDentifier
VISTOMS VISualization TOol for MDO Systems
XDSM eXtended Design Structure Matrix
XML: eXtensible Markup Language
Λ Wing sweep

I. van Gent et al.

Progress in Aerospace Sciences 119 (2020) 100642

3

requirements, or to change or add some design competences to the
already established automated design process.

A fundamental non-technical challenge originates from the loss of
top-level overviews the various MDO system stakeholders may suffer, as
a consequence of the high workflow complexity. This can make it hard to
find possible in- consistencies in the automated design process and
hampers the identification of design trends and decision making. On top
of that, the fact that disciplinary tools and other design competences
involved in a distributed MDO system are used outside the direct control
of the disciplinary experts, can undermine the trust on the reliability of
the obtained results and, eventually, on the benefit of the MDO
approach, at all.

A survey of recent MDO-oriented projects performed within DLR
(German Aerospace Center) as well as in the context of other European
research initiatives, highlighted that an astonishing 60–80% of the
overall project time is used for assembling the first automated chain of
multidisciplinary analyses [7], hence to reach the end of the operation
phase in Fig. 1 for the first project iteration, without any reconfigura-
tion. A similar conclusion was drawn by Refs. [8]; who compared the
traditional design method used in the aerospace industry with the novel
MDO approach and found that, using MDO, the first design iteration
took 133% more time. Although the MDO approach was able to produce
tenfold more iterations and in a very short time, it was noted that the
time increase to achieve the first result was putting a huge burden on the
designer and dramatically increasing the risks involved in the project.

The solution phase challenges are mostly of technical nature and
concern the capability to reach convergence of the executable workflow
and identify robust optima within the allocated time. New optimization
algorithms and MDO architectures are continuously developed to
address these issues [9–11]. Recently, quite some developments are
happening also concerning the computational infrastructure, for which
software solutions are being devised to cloudify computationally
expensive workflows [12]. Intellectual property, software licensing
policies and security issues, again, hamper the practical usability of such
technical solutions. After the third phase the design project is finished
and needs to be stored in a systematic manner to be useful for future
reference or if modifications turn out to be necessary.

The excessive time to formulate and integrate an MDO system, the
lack of reconfiguration agility during deployment, and the struggle to
maintain overview and control have been identified by AGILE as the
main limitations of the first two generations of MDO environments. To
address these fundamental challenges, AGILE is proposing a new
methodological approach, the so-called AGILE paradigm, which is built
on top of two main cornerstones: the knowledge architecture (KA) and the
collaborative architecture (CA). The KA provides the structured approach
and workbench to formulate, (re)configure and inspect any automated
design process, including fully specified MDO systems that are ready to
be converted into executable computational systems. The CA includes
the methods and tools to assemble and deploy executable MDO work-
flows across distributed networks. More specifically, it provides the
means to connect simulation tools in a service-oriented scenario,
including solutions for the cross- human (e.g. disciplinary specialists

need to stay in control of their own tools) and cross-organizational (e.g.
intellectual property restrictions and firewalls) issues occurring in a
collaborative distributed process. Fig. 2 schematically illustrates the
whole AGILE paradigm and provides a qualitative representation of the
targeted time reductions in the three phases of the MDO process: a 40%
reduction in time needed to configure a multidisciplinary system by a
team of heterogeneous specialists in the setup and operation phases and
a further reduction of 20% in time to find an (optimized) design
solution.

For a detailed description of the AGILE project, its background, ob-
jectives and organization, the reader is referred to Ref. [7]. The CA
within the AGILE paradigm is fully elaborated in Ref. [13]. The KA is the
main focus of this paper. First a description of the KA, as a non- domain
specific methodology to architect collaborative and distributed MDO
systems, is provided in Section 2. Then, its specific implementation to
support the AGILE aircraft design campaigns is discussed in Section 3.
Finally, the whole approach is demonstrated in Section 4, by means of a
realistic aircraft design case.

2. Knowledge architecture: conceptual description

Fig. 3 provides a schematic of the Knowledge Architecture (KA), as
defined within the overall AGILE paradigm. The KA features a hierar-
chical four- layer structure. In the top layer development process all the
tasks required to define, monitor and manage an MDO system are
compiled into one business pro- cess. Hence, this development process
layer serves as “the cockpit” of the KA from which lower layers are
controlled and all other applications are used “under the hood”. The
intermediate layer automated design provides the means to formalize the
computational architecture of the automated design system. The bottom
layer design competences hosts the actual synthesis and analysis tools
contributed by the various discipline experts involved in the collabo-
rative design process. A fourth transverse layer data schemas provides
the other three with one product and one workflow data schema to
support, respectively, the input/output data exchange between the
various design competences and the progressive integration of the
overall MDO system. Interfaces guarantee cohesion between the layers,
as clarified in the forthcoming subsections.

In the spirit of supporting the collaborative work of heterogeneous
teams of experts, five different agents have been defined within the
AGILE paradigm. The identification of these agents, with their specific
needs, competence and responsibility in the various utilization phases of
the MDO environment is one of the key aspects of the AGILE paradigm.

Customer: The target user/beneficiary of the MDO system to be
developed within the MDO environment. The customer is responsible for
specifying the top-level requirements for the product to be designed/
analyzed/optimized (including performance indicators to be maxi-
mized, constraints to be respected, etc.), as well as key limitations on its
development process, for example the expected scope and lead time. The
customer is also responsible for providing feedback on the results pro-
duced by the developed MDO system and, if required, for revising the
initial requirements and scope.

Fig. 1. The five different stages (grey blocks) an MDO system can have within an MDO environment, their relation (black arrows), their position in different project
phases (green text and lines) and the required reconfigurations (grey arrows) for a typical MDO project.

I. van Gent et al.

Progress in Aerospace Sciences 119 (2020) 100642

4

Fig. 2. AGILE Paradigm - Conceptual overview.

Fig. 3. The AGILE Knowledge Architecture (KA) to support automated design in large, heterogeneous teams of experts.

I. van Gent et al.

Progress in Aerospace Sciences 119 (2020) 100642

5

Architect: This is the agent responsible to define a suitable auto-
mated design system architecture to fulfill the customer’s needs. Thus
the architect is responsible to translate the MDO problem defined by the
customer into a fully formalized computational architecture, containing
the necessary design competences.

Integrator: This is the agent responsible to convert the MDO system
formulation provided by the architect, into an executable computational
workflow to be deployed across the distributed computational infra-
structure. Thus, this agent is the technical manager responsible for
encoding the neutral MDO system formulation into the Process Inte-
gration and Design Optimization (PIDO) platform of choice and for
testing the obtained executable. The integrator is also responsible for the
integration of design competences within the KA (hence for coupling
inputs and outputs of the various design competences), which is actually
the first step towards the set up of any MDO system.

Competence specialist: Typically multiple such agents are
involved, each one responsible for the functionality, availability and
usability of one or more of the design competences to be integrated in
the MDO system, such as design synthesis tools, disciplinary analysis
tools and optimization services.

Collaborative engineer: Responsible throughout the project phases
for providing technical support for the integration of design compe-
tences. In the setup phase, the collaborative engineer supports the
competence specialist in making their design competence compliant to
the requirements for integration. Also, this agent provides solutions to
make competences accessible and executable in the MDO workflow.
This includes the secure integration of design competences from
different networks. In addition, the collaborative engineer is the solution
provider for the intellectual property protection and data transfer
security.

The specific roles of the various agents in the KA layers are discussed
in more detail in the forthcoming sections and examples are provided in
the demonstrator Section 4.

The identification of the four key concepts mapped to the KA layers,
namely, organization, simulation workflow, tool and data, as funda-
mental aspects of any collaborative design process, is not new in liter-
ature [14]. However, the way they are brought together into one
comprehensive methodological approach, including the key operating
agents, is original of the AGILE and IDEaliSM projects [15]. The latter is
a recent, almost concurrent, predecessor of AGILE, involving several
common partners.

The four layers of the KA with their relative interfaces are discussed
in the next subsections.

2.1. Development process layer

The development process layer can be seen as the cockpit or decision
room where the setup and execution of a new multidisciplinary design
problem take place. A business type of process is defined here to allow
all the aforementioned agents to collaborate and interact during the two
main phases of the MDO system development: formulation and execu-
tion. This process, named the AGILE development process, is organized
in five main steps, which are illustrated in Fig. 4 and listed below:

Step I: Define design case and requirements. Information and
requirements are collected concerning the product to design/analyze/
optimize, the MDO system to be developed and the available design
compe- tences (tools and experts) from the design competences layer
(Section 2.3).

Step II: Specify complete and consistent product model and
design competences. The consistency of the collected information is
verified and validated. The design competences are linked to the com-
mon product model from the data schemas layer (Section 2.4) and the
connections are verified.

Step III: Formulate design optimization problem and solution
strategy. This is the formal link to the automated design layer (Section
2.2), where the automated design process is formalized based on the

requirements and design competences identified in the preceding steps.
Step IV: Implement and verify collaborative workflow. This is the

link between the KA and CA of the AGILE paradigm. The common
workflow schema from the data schemas layers (Section 2.4) is used to
enable the translation of the formulated (inexecutable) automated
design process into an executable workflow for the PIDO platform of
choice.

Step V: Execute collaborative workflow, select design solution
(s) and/or go back to an earlier step for reconfiguration. This is the
final phase of the development process, where results are generated and,
in case, a reconfiguration of the development process is triggered in light
of the obtained insights.

Next to the five steps of the AGILE development process shown in
Fig. 4, the specific involvement of the aforementioned five agents and
the software applications developed and/or selected in AGILE to support
the proposed methodology are also depicted. These so-called KA appli-
cations, namely KE-chain.

KADMOS, VISTOMS, cpacsPy, provide the necessary functionality
for the execution of the five-step approach. For example, KE-chain is the
main application in the development process layer and provides the
platform to model and manage the execution of the five steps; KADMOS
is a graph-based package used for the formulation of automated design
processes (step III); and VISTOMS is a visualization tool (steps II and III).
In step IV and V the CA applications Optimus and RCE are PIDO plat-
forms that are used for the integration of executable computational
workflows. All these applications are not domain specific, thus endow
the AGILE paradigm with the necessary neutrality to allow its applica-
tion to different engineering areas. The KA applications involved in the
first three steps will be further discussed in Section 3, where the
implementation of the AGILE paradigm in the aircraft design domain is
discussed. For details on the last two steps and the involved CA appli-
cations, the reader is referred to Ref. [13].

2.2. Automated design layer

As illustrated in Fig. 3, two instances of the automated design process
reside in this layer: the inexecutable formulation of the automated
design process defined in step III of the development process and the
executable collaborative workflow that is instantiated in step IV.

This automated design process is assembled by invoking multiple
design competences from the design competences layer and orches-
trating them according to the specific MDO architecture selected in the
development process. This can be the architecture of an automated
design process for design convergence studies, design space explorations
or full fledged MDO. It may regard the overall design synthesis of a
complete product (e.g. an aircraft), or the optimization of a specific
component (e.g. a wing). The non-executable formulation (Fig. 3, left)
represents the blueprint of the automated design process and can be
generated by the KA application KADMOS. Such a blueprint contains the
formalization of the data and process flow of the automated design
process. It is a neutral representation of the MDO system, in the sense
that it does not contain any specific method for instantiating the actual
workflow using some specific PIDO platform. In the MDO community, a
widely used visualization standard for this sort of formalization is the
eXtended Design Structure Matrix (XDSM), originally proposed by
Ref. [16]. As shown later in this paper, the XDSM is regularly used
within AGILE, not only to visualize MDO architectures, but any form of
automated design process. VISTOMS is the KA application developed in
AGILE to provide the necessary visualizations. Based on the automated
design process blueprint, the executable counterpart (Fig. 3, right) is
instantiated automatically using a PIDO platform (e.g. Optimus, RCE,
OpenMDAO, etc.). This automated link between formulation and
execution is a key feature of the KA. Without this link the formulation
performed in steps I-III would be disconnected from the execution in
Step V, meaning that any reconfiguration of the automated design
process would require manual adjustments of the executable workflows.

I. van Gent et al.

Progress in Aerospace Sciences 119 (2020) 100642

6

The link between formulation and execution of the automated design
process, which takes place in Step IV, is enabled through the afore-
mentioned common workflow data schema, from the data schemas
layer, which is discussed in more detail in Section 2.4.

2.3. Design competences layer

The design competences layer of the KA includes the actual design
and analysis tools contributed by the various competence specialists. In
order to take part in this layer, hence to become available to the other
layers, all design competences must comply with the following
guidelines:

• All design competences should make use of the shared product
schema defined in the data schemas layer (details in Section 2.4) to
extract all the necessary inputs and to store all their outputs. This
requires the adopted shared product schema to be sufficiently
comprehensive or extensible to allow all design competences to ex-
change all relevant data with it.

• Competence specialists are expected to wrap the shared product
schema around their tools with support from the collaborative en-
gineer. Thus, the service provided by a competence team should use
and produce data with respect to the shared product schema 6.

• Competence specialists are expected to provide their tools together
with a standard set of information, such as service description,

availability, remote access details and fidelity level. These tool
metadata are necessary information for the system integrator that, in
Step IV, has to plug the given design competence in the computa-
tional workflow.

At the same time, design teams are granted the following rights:

• Competence specialists can bring in the design competences layer
their tools of choice, either commercial or self developed.

• Competence specialists can bring in the design competences layer
also workflows of tools, (pre-)assembled using any integration sys-
tem of their choice.

• Competence specialists can keep their tools running on their own
systems/networks and only expose them as a fully controlled web
service to protect their intellectual property.

In step II of the AGILE development process all the design compe-
tences contributed by the competence specialists are stored in a virtual
repository.

2.4. Data schemas layer

Data schemas are used in all layers of the KA (see Fig. 3). The project
schema used in the development process layer is outside the scope. The
other two schemas are briefly discussed here, namely the workflow
schema used in the automated design layer and the common product
schema used in the design competences layer. These two schemas are
used to facilitate the exchange of data between design competences and
KA applications, respectively. The use of such schemas is based on the

Fig. 4. Five-step AGILE development process with the first three steps highlighted as they are enabled by the KA applications. The final two steps are mainly
involving CA applications.

6 The effort required to wrap a disciplinary tool, such to transform it in a
useable design.

I. van Gent et al.

Progress in Aerospace Sciences 119 (2020) 100642

7

“common model integration” approach which enables the efficient
integration of different components with a minimal amount of interface
links, as is illustrated for the product schema in Fig. 5a and b. Both
schemas will ultimately enable a faster integration of the automated
design process in the development process layer.

Within the AGILE paradigm, all design competences require a com-
mon product schema, such that they all can read from and write to a
single file. This makes any ad-hoc and direct couplings between design
competences unnecessary and results in a minimal amount of interfaces.
The concept of the common product schema is visualized in Fig. 5b. In
addition to facilitating design competence integration, the use of a
common schema keeps the domain-specific knowledge within the design
competences layer, meaning that the layers built on top of it are
completely unaware of the type of product that is under consideration.
Hence, it does not matter for the automated design layer whether
competence for the MDO system can vary significantly, from almost no
effort up to many weeks of work. It depends on the tool’s compatibility
with the selected product schema, but, more importantly, on the de-
velopers’ experience with the product schema and the creation of
wrappers for it.

The product under consideration is a car, an aircraft, a satellite, or a
wind turbine, as long as their design competences are integrated with a
common product schema. Thereby, the AGILE KA does not only account
for the heterogeneity of a team within a certain (knowledge) domain,
but also the heterogeneity of product type for which automated design
processes might be of interest.

Within the aircraft design community, a dedicated product schema is
available, called the Common Parametric Aircraft Configuration Schema
(CPACS) by Ref. [17],7 which is further discussed in Section 3.2. In the
constructions domain, BIM8 is a widely used common data schema for
buildings and infrastructure in general. A similar development is
currently performed for offshore wind farms and turbines in a collabo-
rative wind energy project by the International Energy Agency.9

The second schema of interest is the workflow schema. This schema
enables the storage of the inexecutable automated design process (i.e.
MDO solution strategy) in a neutral format. It is not only the completed
automated design process that can be stored using the workflow schema;
the different stages (Fig. 1) of the MDO system before the MDO solution
strategy can be stored as well. This means that the repository of design
competences of step II can also be stored, as well as the MDO problem
formulated in step III on the basis of the available competences. This
storage is required in order to be able to benefit from the different KA
applications, such as multiple design competence repositories, auto-
mated design process formulation tools, visualization packages, devel-
opment process integration environments and PIDO platforms. As is
depicted in Fig. 5c, a workflow schema can facilitate the exchange of the
same MDO system between a heterogeneous set of KA applications.
Where the workflow exchange between an automated design process
formulation tool and a PIDO platform is possibly the most relevant
achievement in view of bridging the gap between the formulation and
execution of any MDO system.

Although the two schemas have the same goal of improving inter-
operability (between design competences in the case of the product
schema and between KA applications in the case of the workflow
schema), there is a fundamental difference in their nature. A product
schema is always domain specific (e.g. CPACS for aircraft, BIM for
buildings), while a workflow schema for MDO systems is completely
product domain independent. The workflow schema used in AGILE is

called the Common MDO Workflow Schema (CMDOWS) by [36] 10. The
use of CMDOWS within an AGILE paradigm implementation is more
elaborately discussed in Section 3.4.

Although the use of data schemas at the different layers of the KA
matches well with the heterogeneity of teams, products, and workflows,
it could also be seen as a constraint that is put on the three KA layers.
This is the paradox of standardization: while the data schemas help the
integrator tremendously in his task, individual competence specialists
might feel they are loosing some freedom in defining their own
competence, since any data that needs to be exchanged between mem-
bers of the heterogeneous teams will have to meet schema definitions.
However, the schema compliance was found to be crucial for enabling
the definition and execution of collaborative workflows in large teams
and therefore in the AGILE paradigm its benefits are assumed to
outweigh the burden. To lighten the burden of schema compliancy,
every data schema that is used should be accompanied by an ecosystem
of tools, such as a schema operations library (also indicated in Fig. 5), as
further discussed in Section 3.

2.5. Development process/automated design interface

The interface between the development process and automated
design layer is indicated in Fig. 3 using dashed lines. This interface needs
to be bidirectional. In downward direction (development process auto-
mated design) the development process tasks can control the automated
design process by changing settings (e.g. a change in design re-
quirements or a tool replacement). In upward direction (automated
design development process) the specification of the automated design
process needs to be brought to the development process layer, to give the
agents operating in that layer the opportunity to inspect, validate and
discuss the automatically generated MDO solution strategies.

2.6. Automated design/design competences interface

The bidirectional interface between the automated design and design
competences layers is also shown in Fig. 3 using dashed lines. In
downward direction (automated design competences) the automated
design process should be able to call the different design competences.
To respect the competence domain of the discipline specialist, the
automated design process should only be allowed to ask for the execu-
tion of a design competence, while leaving the actual execution and
feedback up to the competence specialist. This interface will prevent the
automated design process to demand the execution of a design compe-
tence in ways that are outside the “comfort zone” of the design
competence team.

The upward direction in this interface (design competences auto-
mated design) entails that the full definition of all design competences is
made available to the automated design layer. This repository of design
competences should contain the product schema, the information used
and produced by each design competence with respect to this schema,
and metadata on the design competence that might be relevant for the
automated design process definition (e.g. how to call, average execution
time, fidelity level, accuracy).

Within the AGILE paradigm it is of key importance to make this
interface robust in order to “get things right”, since the automated
design process that is created will be large and complex, and it is difficult
to find any mistakes or inconsistencies that it might contain. Firstly, an
example of such a hidden inconsistency is the situation that all design
competences are basing their analysis on the same product schema, but
they might interpret its contents differently. A simple example being the
assumed unit of the analysis results stored in the schema. Secondly, to
handle the size and complexity of the automated design process a system

7 CPACS is an open-source initiative, publicly available at: http://cpacs.de
(accessed: May-2018).

8 https://www.nationalbimstandard.org/(accessed: May-2018).
9 http://windbench.net/iea37 (accessed: May-2018).

10 CMDOWS is an open-source initiative, publicly available at: http://cm
dows-repo. Agile-project.eu (accessed: May-2018).

I. van Gent et al.

http://cpacs.de
https://www.nationalbimstandard.org/
http://windbench.net/iea37
http://cmdows-repo
http://cmdows-repo

Progress in Aerospace Sciences 119 (2020) 100642

8

needs to be available that can represent the repository of coupled design
competences, such that this representation can be used to inspect the
repository, and can also be manipulated to formulate the MDO problem
and solution strategy stages of the MDO system. The KA applications
developed in AGILE that tackle these type of issues are discussed in the
next section.

2.7. Relevance of the KA

A coherent and comprehensive formalization of the collaborative
MDO process is something that has been on the wish list of the MDO
community for a long time, as expressed in the report on the 2011 MDO
workshop [18] and the more recent workshop on Complex Systems
Integration presented at the ICAS 2016 [19]. In particular, the shift from
structured processes to knowledge modeling is envisioned as a key
enabler for the development of the next generation of aerospace prod-
ucts. The panel of experts present in two aforementioned workshops
have estimated a required development time between ten and twenty
years. The KA proposed within the AGILE paradigm and its specific
implementation in the aircraft domain represent a first fundamental
advancement towards such envisioned conceptual model.

This section concludes the description of the AGILE paradigm and its
KA, as a generic methodological approach to support MDO. Its specific
implementation in the aircraft MDO domain, called the AGILE Devel-
opment Framework (ADF), is described in Section 3. The functionality of
the ADF will be demonstrated in Section 4 through the formulation of a
design space exploration workflow for a passenger jet aircraft.

3. Knowledge architecture implementation: the AGILE develop-
ment framework for aircraft MDO

The Knowledge Architecture described in the previous section,
together with the Collaborative Architecture, represents one of the
fundamental concepts of the AGILE paradigm. This paradigm provides
the abstract formalization of a generic methodology to develop MDO
systems, independently of the application field. Within the AGILE
project, such methodology has been specifically implemented to develop
a dedicated MDO framework for aircraft design, the so-called AGILE
Development Framework (ADF), which is the focus of this section. The
ADF, whose architecture is visualized in Fig. 6, is built on top of the
following technology enablers and data schemas, all developed or
extended during the course of the AGILE project (the institute/company
that developed the item is indicated between square brackets):

• KE-chain [KE-works]: a commercial web-based platform providing
the development process environment.
•Common Parametric Aircraft Configuration Schema (CPACS)
product schema [DLR]: an open-source, de-facto standard data
schema for conceptual and preliminary aircraft design.
•cpacsPy [DLR]: a dedicated operation library to support the use of
CPACS (only available within AGILE and the DLR).
•Common MDO Workflow Schema (CMDOWS) [Delft University of
Technology (DUT)]: a proposed new open-source standard schema to
store and exchange MDO systems.
•Knowledge- and graph-based Agile Design for Multidisciplinary
Optimization System (KADMOS) [DUT]: an open-source, graph-

Fig. 5. Conceptual visualization of the two main data schemas used in the AGILE KA. The product schema in (b) enables the integration of an arbitrary amount of
design competences (typical aircraft design tools are given as examples) using a significantly lower amount of interface links than without a schema as illustrated in
(a). Similarly, the workflow schema in (c) enables the efficient connection of different types of KA applications.

I. van Gent et al.

Progress in Aerospace Sciences 119 (2020) 100642

9

based package used to enable the configuration, formalization and
manipulation of MDO systems.
•VISualization TOol for MDO Systems (VISTOMS) [RWTH Aachen
University]: a web-based package to enable the visualization and
inspection of large MDO systems.

These key enablers, together with the interfaces between the ADF
layers are discussed in detail in the following subsections and later in
Section 4.

3.1. Development process environment: KE-chain

KE-chain is a web-based collaborative environment, developed by
KE-works11 to support the integration of collaborative and hybrid pro-
cesses, thus combining business-type processes that require manual
input and user interaction with fully automated engineering simulation
workflows. The environment provides access to a single project for
multiple end users through a user-based authentication system, offers
functionality to facilitate the management of project data, the integra-
tion of automation solutions within the business process, and moni-
toring of progress. Because of these characteristics, KE-chain provides
the most suitable solution for the implementation of the KA develop-
ment process layer.

(Fig. 3). Through its web-based graphical user interface (see
screenshot in Fig. 7), KE-chain provides control over the setup of the
MDO system, based on the five-step approach discussed in Section 2.1.
In other words, it provides the ADF cockpit, where the users interac-
tively define all the aspects related to the MDO system development and
constantly monitor both the development progress and the operation of
the MDO system.

To achieve the aforementioned functionality, KE-chain exploits its
native project model where both data and process information are
stored. When the ADF is deployed, five main KE-chain steps are defined

within the project, thus one for each step in the aforementioned five-step
approach. The screenshot in Fig. 7 shows an overview of the defined
steps broken down in substeps. Each design step has its own custom
view, which allows users to edit and view data defined in the project’s
data model.

In step I, substeps are defined to gather the design competences
available through the various competence specialists in the team and to
collect the customer’s requirements. In step II, substeps are defined to
set up the repository of available design competences and its input/
output relations with the aircraft product model, based on the CPACS
schema. In steps III and IV, other sub- steps are defined to trigger and
operate KADMOS (Section 3.5), which is in fact the main application in
the overall automated design layer of the ADF for defining the MDO
solution strategy and supporting the integration of the executable MDO
workflow. In these steps, through the integration of the VISTOMS
application (Section 3.6), it is also possible to visualize and inspect the
automatically generated MDO system formulations. In step V, substeps
are de- fined to allow inspecting the generated design results, through
the integration of Noesis’s post-processing tool id812. In Section 4, the
use of these design tasks is explained in more detail for the first three
steps.

3.2. Product schema: CPACS

The Common Parametric Aircraft Configuration Schema (CPACS) is
the common product schema used in the ADF. It is developed and sup-
ported by DLR and distributed as open source.13 CPACS is based on an
XML schema definition, which makes it both human and machine
readable, and provides a hierarchical structure to store all the relevant
aspects (geometry, performances, flight conditions, etc.) used in con-
ceptual and preliminary aircraft design. Since the main purpose of
CPACS is to provide one common data model for multiple analysis tools,

Fig. 6. Overview of the agile development framework (ADF).

11 http://www.ke-works.com (accessed: May-2018).

12 https://www.noesissolutions.com/our-products/id8 (accessed: May-2018).
13 https://github.com/DLR-LY/CPACS (accessed: May-2018).

I. van Gent et al.

http://www.ke-works.com
https://www.noesissolutions.com/our-products/id8
https://github.com/DLR-LY/CPACS

Progress in Aerospace Sciences 119 (2020) 100642

10

as illustrated in Fig. 5b, the data in the schema were selected by the
CPACS developers in order to provide a product representation that is
acceptable for a large variety of disciplines, while avoiding any data
redundancy. An example of the way CPACS stores aircraft data is
depicted in Fig. 8.

Multiple aircraft can be defined in a single CPACS file and each of
them can include an arbitrary number of wings. Each wing is defined by
sections and segments. Sections are aerodynamic profiles (the

normalized airfoil profiles are stored in another part of the schema)
which are scaled, rotated and positioned in space, whereas segments
define the connection of two individual sections to form a lofted wing
surface.

While this generic geometry definition allows describing a large
range of wings, typical high-level parameters such as span or aspect
ratio, both commonly used in aircraft conceptual and preliminary
design, are actually not stored in CPACS to avoid redundancy. The

Fig. 7. Screenshot of KE-chain’s web-based GUI with some key features: (1) project’s navigation panel to view tasks, the work breakdown overview (currently
displayed view), data model, etc. (2) breakdown of manual and automated development process tasks and sub-tasks, (3) progress, status and user assign-
ment overview.

Fig. 8. CPACS wing segments and sections.

I. van Gent et al.

Progress in Aerospace Sciences 119 (2020) 100642

11

responsibility to determine their values on the basis of the actual CPACS
wing definition (e.g. using the definition of the various sections) is left to
the competence specialists. Any “translation” of the CPACS representa-
tion into high-level design parameters (and vice versa), apart from.

Requiring some data processing effort, can introduce errors and in-
consistencies into the design process if not properly done [20]. For
example, if one would want to evaluate the high-level parameter wing
span by computing the distance between the innermost and outermost
wing section stored in CPACS, this would lead to a wrong value in case,
for example, the root or tip sections are rotated, or the root section is not
defined at the fuselage center line (as conventionally) but at the
wing-fuselage intersection, as shown in Fig. 9.

In order to exploit the benefits of the central data model approach
while avoiding any design inconsistency caused by possible different
interpretations of a CPACS file, a dedicated library of so-called design
concepts has been developed. These are discussed in the next subsection.

3.3. Design concepts: cpacsPy

When exchanging data in collaborative design processes, it is
fundamental that the provider and recipient of information have the
same understanding of transferred data. Both need to make sure they
interpret the shared data based on the same concepts,14 otherwise in-
consistencies can arise and invalidate the obtained results. In AGILE the
Python library cpacsPy, developed at DLR, was used to access CPACS

data through predefined concepts, such as the use of trapezoid wing
segments to determine top-level design parameters like sweep, taper
ratio, aspect ratio and wing area. CpacsPy can simply be used as an
external wrapper component for data conversion as illustrated in
Fig. 10. The main role of cpacsPy is to simplify the exchange of data
between CPACS.

Within AGILE different design studies have been performed
involving wing planform parameters as design parameters for the opti-
mization. While the optimization parameters were typically high-level,
such as wing span and wing aspect ratio, the analysis methods
involved in the design process required a much more detailed descrip-
tion of the wing shape. Therefore it was decided to generate a detailed
shape from a baseline configuration and to morph that shape using the
planform parameters typically used in conceptual design. For this task a
simple wing concept from cpacsPy was used which allows to access a
CPACS wing model using parameters such as span, aspect ratio, area,
sweep, root chord, tip chord and taper ratio and to modify the detailed
baseline wing shape accordingly, by mapping the concept parameters
onto the detailed CPACS model. A description of the cpacsPy capability
to support this specific task is given in Section 4.

Due to its modular structure additional concepts can be added as
individual modules to cpacsPy, provided that all assumptions made for
the mapping are documented in the concepts module description.

3.4. Workflow schema: CMDOWS

CMDOWS is an open-source,15 XML-based schema, developed at
DUT. As CPACS enables communication among the various design
competences, similarly CMDOWS enables the interoperability of the
different KA applications within the ADF, as illustrated in Fig. 5c. The
main KA applications connected through CMDOWS are the aforemen-
tioned KE-Chain, plus KADMOS and VISTOMS (Fig. 6), which will be
addressed in the next two subsections. In practice, CMDOWS serves as a
dynamic storage schema where CMDOWS instances contain the
evolving definition of the MDO system during its development process
throughout the five-step approach described in Section 2.1. In partic-
ular, CMDOWS instances are generated from Step II to Step IV, as
described below and illustrated in Fig. 11:

Step II: At the end of step II, KE-chain produces a first instance of a
CMDOWS files containing the list of design competences contributed by
the various competence specialists, together with their input and output,
expressed as links to the specific CPACS nodes.

Step III.1/2/3 First, KADMOS receives the CMDOWS file; second,
based on the definition of the optimization problem specified in KE-
chain by the user, it removes the unnecessary design competences
from CMDOWS; third, it enriches it by adding the MDO problem

Fig. 9. CPACS wing with rotated tip section. The span-wise location of the
reference point of the tip section is not necessarily the most outboard point
defining the wing span and design competences. When done properly even the
gap between design competence of different fidelity can be closed easily.

Fig. 10. CPACS wrappers.

14 [34] define concepts as: “structured mental representations that encode a
set of necessary and sufficient conditions for their application, if possible, in
sensory or perceptual terms”. 15 Available at: http://cmdows-repo.agile-project.eu (accessed: Jul-18).

I. van Gent et al.

http://cmdows-repo.agile-project.eu

Progress in Aerospace Sciences 119 (2020) 100642

12

definition (e.g. design variables, objective, constraints), as specified in
KE-chain by the architect.

Step III.4: Such modified CMDOWS file is further processed by
KADMOS, to formalize the fundamental optimization problem accord-
ing to the available MDO architecture, selected by the architect, still via
KE-chain.

Step IV: The CMDOWS file, now containing the complete description

of the MDO system, is passed to the Collaborative Architecture block of
the AGILE environment, where it is used to trigger the automatic gen-
eration of the executable MDO workflow, in one of the selected PIDO
platforms (e.g. Optimus or RCE).

At each (sub-)step, the CMDOWS file can be accessed by VISTOMS
(Section 3.6) to generate convenient visualizations of the MDO system
throughout its progressive development. This will offer all ADF

Fig. 11. Top-level overview of KADMOS and its relation to the five-step approach in the development process (all visualizations are based on the Sellar problem
[21]) not (fully) machine-readable and thereby cannot be used for any further automated analysis, integration, or manipulation of the MDO system. Concerning the
representation of workflows and computational frameworks in general, some of the commonly used visualizations methods include N2 charts [22], functional
dependency tables [23] and (extended) design structure matrices (XDSM) [16,24]. While, in principle, a visualization method such as the XDSM offers a compre-
hensive method to capture the full description of an MDO system, including system couplings and service execution order, in practice it is not readily applicable to
large and complex problems. A drawback of the aforementioned matrix-based representations is the fact that, due to their static form, they are not arbitrarily scalable
to large system representations, thus their readability degrades with the size.

I. van Gent et al.

Progress in Aerospace Sciences 119 (2020) 100642

13

stakeholders the possibility to inspect and maintain oversight of MDO
systems of any complexity. From Step IV description, it becomes evident
that CMDOWS is not only playing the role of hub for the various ADF
applications, but it is also the bridge between the formulation and the
execution phases of the AGILE paradigm, as indicated in Figs. 3 and 6.

The neutral representation of the MDO system stored in CMDOWS is
used to automatically generate executable workflows in PIDO platforms,
by means of CMDOWS parsers specifically developed for these plat-
forms. These parsers translate the neutral elements and processes
defined in CMDOWS to platform- specific elements and processes,
resulting in an executable workflow. This parsing process is further
discussed in a companion paper by Ref. [13] and in earlier work by [37].

The description of the full CMDOWS is discussed in detail in [36].
The root of the schema and its six main elements are shown in Table 1.
Their use for the different MDO system stages is also shown in the table,
including a basic description. At the final stage of the formulation phase
of the MDO system (i.e. MDO solution strategy), the full schema is used
to describe the data and process flow required to solve the given MDO
problem. The definition of CMDOWS is structured based on the notion
that any MDO system can be represented as a directed graph. A directed
graph is a mathematical construct in which nodes and connections are
used to describe a system and where additional information can be
added as well, either on the graph itself, or its nodes and edges. This
relation between CMDOWS and directed graphs is indicated in the last
column of Table 1 and will be further discussed in the next section.

3.5. Graph-based formulation support: KADMOS

KADMOS [25] is an open-source16 Python package, developed at
DUT to tackle the challenge of formulating large collaborative MDO
systems, while providing users with necessary overview to stay in con-
trol of their complexity [26] and offer the agility to adjust and scale
them 17 to achieve that, KADMOS supports the following three tasks:

The use of KADMOS within the ADF is depicted in Fig. 11. In this
figure the small MDO benchmark “Sellar problem” [21] is used in the
third and fourth column to clarify the ADF steps and substeps. KE-chain
is used to define the repository of design competences in step II and
passes that information to KADMOS through a CMDOWS file. At the
beginning of step III, KADMOS establishes the repository connectivity
graph (henceforth referred to as repo graph), which represents the sys-
tem of coupled design competences in a directed graph. The repo graph
can be checked and manipulated and the updated repository stored
again as a CMDOWS file. Based on the MDO problem definition passed
again by KE-chain, the repo graph is transformed into the fundamental
problem graph (henceforth referred to as problem graph) using KAD-
MOS methods to, for example, remove unnecessary design competences
from the graph, indicate which of the elements from the product schema
have special roles (design, objective, constraint), and establish a basic
order of execution for the design competences. Again, a new CMDOWS
file can be generated and used also for inspection work. Four main dif-
ferences between the implementations are: KADMOS.

(1) supports the central product schema approach.
(2) supports the import and export of the graphs to the neutral

CMDOWS format,
(3) is based on different graph-theoretic conditions and
(4) has a more sophisticated handling of complex situations (e.g.

variable collisions) in the graph.

As final transformation step, KADMOS can automatically impose an

MDO architecture on the problem graph, leading to the generation of
two new graphs, namely the MDO data and process graph. These two
graphs together provide the complete formulation of the automated
design process to be executed: the MDO solution strategy. They are
stored again in the form of a complete CMDOWS file, ready to be
translated into executable workflows (as well as for inspection). A key
advantage of KADMOS is that it fully separates the formulation of the
MDO problem and the solution strategy used to solve it. Hence, on the
same optimization problem definition, different MDO architectures can
be imposed, provided that the problem itself contains characteristics
required for the architecture that is selected, e.g. some distributed ar-
chitectures expect both local and global design variables to be present.
Currently, KADMOS supports the formulation of the automated design
process for two monolithic MDO architectures [11], Multidisciplinary
Feasible (MDF) and Individual Discipline Feasible (IDF) and two
distributed MDO architectures, Collaborative Optimization (CO) and
surrogate-based Bi-Level Integrated System Synthesis (BLISS-2000).
Besides, it can also impose MDA architectures such as design point
convergence and design of experiments (DOE).

It should be noted that in the ADF, KADMOS is executed through the
user interface provided by KE-chain. Hence, in Fig. 3 KADMOS provides
the upward design competences/automated design interface for formal
workflow specification. In other words, whereas KE-chain provides the
ADF cockpit, KADMOS is the engine running under the hood. The graphs
created and manipulated by KADMOS use or affect all layers of the KA.
The creation and manipulation of the graphs by KADMOS are a matter of
seconds for the majority of cases, with a maximum evaluation time of up
to 1 min for very large MDO systems in combination with the most
complex manipulations the package can perform. Where there would
normally be a gap between the specification of the automated design
process to be executed and the actual executable collaborative work-
flow, KADMOS and CMDOWS enable a design team to go, in an agile
way, from a repository of design competences to a fully configured
workflow in Optimus or RCE, as depicted in the last row of Fig. 11.

3.6. Visualization of large, complex MDO systems: VISTOMS

The number of design competences and especially the typical
amount of exchanged data within a collaborative MDO system can be so
large that is nearly impossible to comprehend all underlying, relevant
information at a glance. As a consequence, keeping oversight and con-
trol (hence trust) on the overall MDO system and the ability to inspect
and debug it, is an extremely challenging job for the integrator.
Rendering the relevant information in a human-intelligible way, by
means of effective visualizations is of paramount importance. In current
practice, different approaches are used. For example, a mix of spread-
sheets and text documents are used to describe the various design
competences, with all their input and output. However, these need to be
updated manually and are difficult to keep consistent. Moreover, such
manually created overviews are not (fully) machine-readable and
thereby cannot be used for any further automated analysis, integration,
or manipulation of the MDO system. Concerning the representation of
workfows and computational frameworks in general, some of the
commonly used visualizations methods include N2 charts [22], func-
tional dependency tables [23] and (extended) design structure matrices
(XDSM) [16]. While, in principle, a visualization method such as the
XDSM offers a comprehensive method to capture the full description of
an MDO system, including system couplings and service execution
order, in practice it is not readily applicable to large and complex
problems. A drawback of the aforementioned matrix-based representa-
tions is the fact that, due to their static form, they are not arbitrarily
scalable to large system representations, thus their readability degrades
with the size.

Therefore, within the ADF, a web-based visualization package called
VISTOMS (VISualization TOol for MDO Systems) has been created by
RWTH Aachen University, which is able to translate any MDO system

16 Available at: http://kadmos-repo.agile-project.eu/(accessed: Jul-18).
17 Conceptually, the graph-based approach in KADMOS is based on the

approach proposed by Ref. [26]; though the technical implementation varies
significantly from their.

I. van Gent et al.

http://kadmos-repo.agile-project.eu/

Progress in Aerospace Sciences 119 (2020) 100642

14

information, as stored in a CMDOWS file, into dynamic, interactive and
human-readable plots and diagrams, in a web-based interface. The open-
source18 tool is accessible via any web browser and can be used without
installing additional software. In VISTOMS, visualization techniques
such as XDSMs [16,27], Sankey diagrams [28–30] and hierarchical edge
bundles [31,32] are utilized and enhanced with help of D3.js, an
open-source JavaScript library. D3.js is specifically tailored for the dy-
namic visualization of any kind of data [32] and therefore enables the
desired capabilities for the ADF. Large and complex XDSMs can, for
instance, be expanded or collapsed in order to set the focus on certain
aspects of the MDO system. Couplings between services or variable in-
terdependencies can be analyzed in human-readable diagrams, in which
it is possible to dynamically reveal or hide detailed information, for ex-
ample via mouse clicking or hovering. This enables insight into infor-
mation that could either not be visualized at all, or too confusing to
comprehend when visualized all at once. Thus, VISTOMS can be used as
an effective debugging environment, in which an MDO architects and
integrators are able to examine the created solution strategies (stored as
CMDOWS instances), review the steps of the product development
process and detect possible issues. Several examples of produced visu-
alizations can be found in the next section on the ADF demonstrator and
in Ref. [33].

4. AGILE Development Framework demonstrator: formulation of
an aircraft MDO system problem

The demonstrator of the ADF is based on the work performed in one
of the design campaigns of the AGILE project. The design campaign
targeted the conceptual and preliminary design of a medium-range twin-
engine jet airliner (Figure 12). A heterogeneous collection of CPACS-
compliant design competences has been used to set up a distributed

automated design process. In this section, the first three steps (formu-
lation) of the AGILE development process (Fig. 4) will be used to
demonstrate how the ADF comes into play in a realistic design case. The
last two steps (execution) will be addressed only briefly, details can be
found in Ref. [13]. For each step, the following information will be
provided: description of the main function, associated deliverable,
deployed KA applications and main agents involved.

4.1. Step I: define design case and requirements

Function: The design (and optimization) case is identified and the
requirements, both for the system to be developed and the development
process itself, are defined and managed. This step includes also the
definition of all the design competences contributed by the various
discipline specialists in the team.

Agents: Customer, Architect, Competence specialists.
KA applications: KE-chain.
Deliverable: A description of the design case stored, editable, and

inspectable in KE-chain.
Substeps: The step is divided into three substeps, in which the

following actions are performed:
Step I.1 Definition of the MDO system requirements. The main in-

formation on the design case is collected from the involved customer,
and translated by the architect into a set of requirements. These include
performance specifications for the product and process, and corre-
sponding means of compliance. The main product-related requirements
specified in this demonstrator are the top-level aircraft requirements for
the design of a medium-range jetliner (see table in Fig. 12). The main
requirement on the development process included in the demonstrator
concerns the scope of the design study, which in this case is the con-
ceptual design of the full aircraft, with special attention to the wing-
engine integration. A second example of requirement on the develop-
ment process regards the target lead time for the project.

Step I.2 Listing the design competences and variables. A set of
competences available for the resolution of the design case is collected

Table 1
Tabular top-level overview of the CMDOWS schema for MDO system representations.
• Create: Enabling the specification of large, complex MDO systems by means of graphs, starting from the definition of the design competence repository, to the

formulation of the MDO problem, and concluding with the complete MDO solution strategy, corresponding to the first three stages in Fig. 1, respectively.
• Inspect & debug: Enabling different experts (i.e. competence specialists, integrators) to inspect sections of the system that are relevant to them, in order to validate

it, thereby increasing the level of trust in the system. In addition, KADMOS provides automated validation functions to check whether a valid MDO system is
specified based on strict conditions on the graph construct (e.g. all design competences should have at least one output, all nodes should be connected, etc.).

• Manipulate: Automatically manipulating the generated MDO system specification using graph-based analysis and dedicated algorithms. These computerized
manipulations, apart from providing drastic time reductions, also reduce the chances of errors and inconsistencies in the system by eliminating repetitive
error-prone human tasks. Examples of simple manipulations are the processing of changes in the input or output variables of a design competence. Examples of
more advanced manipulations are the automated transformations required to go from one MDO system stage to the next, i.e. from a repository of design
competences to an op- timization problem definition and from that to a complete formulation of the MDO solution strategy according to a selected MDO
architecture.

Schema Description Used to describe MDO
system stage (Fig. 1)

Graph element
type

Root elements repo problem strategy

header Metadata about the file (e.g. creator, creation date, version, etc.) ✓ ✓ ✓ information
Problem Definition Definition of the MDO problem to be solved (design competences used,

design variables, constraints, etc.)
⨯ ✓ ✓

executableBlocks Design
Competences

Function definition (inputs, outputs, metadata) of executable blocks that are
not simple mathematical relations.

✓ ✓ ✓ nodes

Mathematical
Functions

Function definition (inputs, outputs, equations) of executable blocks that can
be described by a set of mathematical relations.

✓ ✓ ✓

parameters All elements from the product schema that are used as inputs or outputs of
the executableBlocks.

✓ ✓ ✓

Architecture Elements Additional elements that are required to solve an MDO problem according to
a certain architecture, such as initial guesses, copy variables for convergers,
etc.

⨯ ⨯ ✓

workflow Data Graph All data input (e.g. parameter x → executableBlock F) and output (e.g.
executableBlock F → parameter y) connections of an MDO system

✓ ✓ ✓ connections

Process Graph Full process description of an MDO solution strategy using connections and
step numbers between exectable Blocks (e.g. F –(step 3)-→ G)

⨯ ⨯ ✓

18 The source code of VISTOMS is available inside the KADMOS repository [6]:
bitbucket.org/imcovangent/kadmos (accessed: Jul-18).

I. van Gent et al.

Progress in Aerospace Sciences 119 (2020) 100642

15

by the architect and the competence specialists. The information pro-
vided (e.g. fidelity level, expected runtime) supports the selection of
design competences in a later stage, and the identification of any missing
ones. At this stage, also a set of special variables relevant to the design
process is assembled, as well as their roles within the design and opti-
mization task (e.g. objective of the design and design variables). In a
later stage these variables are mapped to elements of the product schema
and become the variables of the MDO problem. Eleven relevant design
competences were gathered from the team, see Table 2. The selected
design variables were wing area, sweep and aspect ratio. The objective
variables were the two key performance indicators direct operating cost
(DOC) and the Average Temperature Response (ATR), used to measure
the environmental impact of the design.

Step I.3 Requirements management. The architect keeps track of the
requirements compliance during the execution of the entire develop-
ment process. This step is continuously updated throughout the project
execution.

4.2. Step II: specify complete and consistent product model and design
competences

Function: The purpose of the second step is to define a complete,
consistent and compliant repository of design competences. Therefore,
the variables and competences gathered in the first step are assembled
such that at least one complete process can be obtained. The assembly of
the variables and competences is based on the product schema CPACS.

Hence, the definition of the design competences with respect to that
schema plays an important role in this step. Furthermore, special vari-
ables such as design variables and objective/constraints listed in Step I
have to be mapped to the corresponding elements in CPACS.

Agents: Architect, Integrator, Competence specialists, Collaborative
engineer.

KA applications: KE-chain, VISTOMS, KADMOS.
Deliverable: A CMDOWS file containing a complete and consistent

repository.
Substeps: Five substeps have been identified, namely:
Step II.1 First, a so-called base file is instantiated by the integrator.

This base file is a CPACS file that contains the definition of the aircraft
geometry under consideration and the elements from the schema that
are expected to be used to store analysis results (e.g. aerodynamic co-
efficients, weights). This base file is created to assure that all compe-
tence specialists use and produce data with respect to the expected XML
elements of the full CPACS.

Step II.2 The competence specialists should develop (or check
existing) CPACS-compliant design competences using the base file and
provide the integrator with one CPACS input and one CPACS output file
for each design competence. In this task, they are supported by the
collaborative engineer. The input file should contain only the elements
that a design competence needs for its execution. The output file should
contain only the specific elements from the schema that the design
competence is adjusting or creating. The integrator then imports these
CPACS-compliant competences into a repository in KE-chain. Using

Fig. 12. Impression of the medium-range twin-engine jet airliner under consideration for the demonstrator (left) including the top-level aircraft requirements
(TLARs) listed in a table (right).

Table 2
Design competences used in the demonstrator. All the design competences have intellectual property restrictions and can therefore not be made available on one server
environment that is shared with other partners.

Design competence Name Description Tool Provider

Aircraft Synthesis Aircraft initialization & overall aircraft synthesis DLR, Germany Hamburg,
Morphing Aircraft geometry morphing DLR, Germany Hamburg,
Aerodynamics Calculation of aerodynamic performance map DLR, Germany Hamburg,
Structural Mass Analysis of structural masses DLR, Germany Hamburg,
On-Board Design Systems Design and analysis of on-board system architecture PoliTo, Turin, Italy
Engine Detailed engine design & performance map calculation CIAM, Russia Moscow,
Nacelle Design Aero Integration Design & integration of engine nacelles. Aerodynamic analysis of nacelles TsAGI, Zhukovsky, Russia
Mission Simulation Performance analysis of aircraft flight mission DLR, Germany Hamburg,
Mass Budget Update of mass breakdown for consistency of data set DLR, Germany Hamburg,
Cost Analysis Calculation of non-recurring, recurring & operational costs RWTH, Germany Aachen,
Emission Analysis Calculation of exhaust emissions & climate metrics RWTH, Germany Aachen,

Of design competences which are compliant with CPACS.

I. van Gent et al.

Progress in Aerospace Sciences 119 (2020) 100642

16

these CPACS input and output files, KE-chain builds up a native project
model containing the design competences and product model
definitions.

Step II.3 The architect can now edit the design competence re-
pository in consultation with the competence specialists to fix any in-
consistencies that might have been found in the coupling between
design competences. In practice, this step is used to fix inconsistencies in
the project model from step II.2 that are found in a later stage, for
example when inspecting the model using VISTOMS.

Step II.4 The integrator can now generate the CMDOWS file to enable
other KA applications to access the definition of the tool repository.

Step II.5 Finally, the competence specialist should specify the
competence execution method and availability (i.e. as a local tool that
can be installed and run locally or a remote service that needs to be
called through a service-oriented architecture). This final step is meant
to prepare all information required for execution and inspection of the
MDO solution strategy in steps IV and V and it is added to the CMDOWS
file once it becomes relevant in step IV.

4.2.1. Use of KE-chain in step II of the demonstrator
To assist the integrator and competence specialists in the definition

of a complete, consistent and compliant repository of design compe-
tences and product model, KE-chain provides engineering services to
easily build, manipulate and inspect the initial available design com-
petences. The first engineering service, used in step II.1, enables the
integrator to upload a single or multiple CPACS base-files, which contain
the full aircraft product parametrization and import this into the KE-
chain platform. Importing the CPACS data model in KE-chain provides
full inspectability and manipulation of attributes in a non-programmer
friendly environment. Based on the CPACS base-file, the integrator de-
fines input and output CPACS files for each available design compe-
tence. Alternatively, the integrator can also upload a CMDOWS file
containing the input and output definition of a design competence.

In step II.2, the integrator is supported by an engineering service
which parses the uploaded CPACS or CMDOWS file using XML tech-
nologies and uses them to configure the imported data schema elements
as input and/or output to construct an initial MDO system using pyke-
chain, KE-chain’s Python API19. This MDO system, a network of im-
ported design competences coupled through the various data schema
elements, can be fully inspected or manually manipulated in KE-chain as
is illustrated in the lower half of Fig. 13. The configuration of each
design competence can be manually edited further in step II.3.

In step II.4, an engineering service enables the integrator to generate
a CMDOWS file of the repository model defined in the previous steps.
KE-chain provides an interface to the integrator in which versions of the
generated CMDOWS file can be managed, and the connectivity of the
different design competences can be inspected in more detail through
the integration of VISTOMS, described in more detail in the next section.
The VISTOMS visualization of the design competence repository is
automatically created from KE-chain, and can be downloaded for local
use, or inspected in more detail directly in the browser. Finally, step II is
concluded by an editable table, in which information is gathered on the
execution details of each design competence which will be used in step
IV.

4.2.2. Use of VISTOMS in step II of the demonstrator
In this early stage of the problem formulation the MDO system is

represented by the repo graph, i.e. the graph containing the design
competences, product model elements, and the links between them, and
does not yet take into account a specific design problem having a
dedicated tool order, DOE or optimization behind it. A part of the repo

graph for the presented design case is shown in Fig. 14 using the XDSM
visualization of VISTOMS.

Note that the actual repo graph for the presented example is signif-
icantly larger than the extract shown in the figure. The blue overlay
boxes (not present in the actual VISTOMS package) have been added in
the figure to emphasize some of its visualization capabilities. One of
them is the option to detect element collisions, i.e. elements which are
written by multiple design competences simultaneously. Overlay frames
1 and 2 in Fig. 14 display for instance a so-called collided circular
coupling of the main wing. This occurs due to the fact.

The dynamic visualization capabilities combining different visuali-
zation elements such as XDSMs for the general layout, hierarchical tree
views for the data model (including different parameter categoriza-
tions), and the capability to highlight certain points of attention in the
MDO problem, together enable an efficient and effective visualization of
all the information stored in an MDO system that would normally be
implicit and almost impossible to access.

4.2.3. Use of cpacsPy package in step II of the demonstrator
By inspecting the connections between the available design compe-

tences, a missing link was identified between the high level design
variables (area, aspect ratio and sweep) selected to control the wing
geometry and the more detailed CPACS geometry used by some of the
design competences. In order to resolve this parametrization gap, a new
design competence, called the Morphing tool (see XDSM in Fig. 14) was
developed. The Morphing tool uses a simple description of a wing, based
on a single trapezoid element, whose planform is controlled by the
aforementioned high-level design variables. In order to cre- ate the
detailed geometry eventually required by the other design competences,
a baseline CPACS file was used, containing an initial detailed description
of a wing. The otherwise cumbersome transformations required to adjust
the detailed CPACS wing geometry representation (based on multiple
sections and segments), using few conceptual planform parameters, was
completely automated by the morphing tool making use of the trape-
zoidal wing concept, available in the cpacsPy library.

The mapping between the concept variables and the CPACS model is
defined as follows:

• The single trapezoid wing area is the sum of all segment areas. S =
ΣSi where Si is the area of the i-th wing segment.

• The single trapezoid wing sweep is the mean sweep of all segments
weighted with by their length. Λ = Σ(Λi⋅li) where Λi is the planform
sweep of the i-th segment, and li is the length of the i-th segment.

• The single trapezoid wing aspect ratio is defined as AR = Σli,spanwise2

where li,spanwise is the span-wise length of the i-th segment and S is the
wing area as defined above.

The cpacsPy trapezoidal wing concept allows users to define the start
and end segment of any wing defined in CPACS. This enables the
Morphing tool to exclude from the wing overall sweep definition the
eventual rectangular segment spanning from the fuselage center line to
the fuselage-wing intersection (see Fig. 15).

Because of the availability of the trapezoidal wing concept in the
cpacsPy library, the development effort for the Morphing tool was
minimal. The demonstrator proved that this new design competence
enables the quick and reliable modification of a large number of CPACS
parameters, based on a few high-level design parameters.

4.3. Step III: formulate design optimization problem and solution strategy

Function: The goal of this step is to go from a repository of design
competences to an automated design process formulation of the
collaborative workflow to be executed in step IV.

Agents: Architect, Integrator.
KA applications: KADMOS (accessed via KE-chain interface),

VISTOMS.

19 pykechain is a Python library for advanced users and KE-chain configura-
tions to connect and interact fully to all features of KE-chain http://pykechain.
readthedocs.io/en/latest/(accessed: Jul-18).

I. van Gent et al.

http://pykechain.readthedocs.io/en/latest/
http://pykechain.readthedocs.io/en/latest/

Progress in Aerospace Sciences 119 (2020) 100642

17

Deliverable: A CMDOWS file, with visualizations, containing the
full specification of the automated design process.

Substeps (see also Fig. 11): All substeps are performed by the ar-
chitect unless indicated otherwise:

Step III.1 First the repo graph is constructed in KADMOS using the
CMDOWS file from step II. This is simply a translation of the XML-based
CMDOWS format to the KADMOS native graph format.

Step III.2 The repo graph needs to be manipulated in order to arrive
at the problem graph. The goal of this process is to get the smallest
possible graph containing only those specific design competences, with
their data connections, that are strictly necessary to solve the MDO
problem at hand. To this purpose, KADMOS automatically removes from
the repo graph all the unnecessary design competences and multiple
design competences can be merged into a single service by the integrator
or architect.

Step III.3 The problem graph specification is finalized by assigning
certain CPACS elements a special role in the MDO problem, such as
design variables, objective values and constraint values.

Step III.4 The MDO architecture of choice is finally imposed on the
problem graph. In this demonstrator a DOE architecture is chosen, see
Fig. 18 and 19.

The formal mathematical definition of the MDO problem being
solved in this demonstrator is:determine: direct operating cost (DOC),

recurring cost, average temperature response (ATR) and fuel mass based
on: a latin hypercube sampling method.

with respect to: AR, Λ, S
with: 9.00 ≤ AR ≤ 11.0 25.0◦ ≤ Λ ≤ 31.0◦

75 m ≤ S ≤ 110 m
Based on the problem graph, KADMOS automatically sorts the

different design competences and includes the additional blocks, as
required by the given MDO architecture, e.g., the Coordinator, DOE and
Converger blocks in Fig. 18. This problem graph manipulation results in
two directed graphs: the MDO data graph containing the specification of
data exchanged by all the blocks in the MDO system, and the MDO
process graph with the specification of the blocks execution order.
Together these two graphs provide the complete automated design
process definition, which is stored in a CMDOWS file and checked by the
integrator.

4.3.1. Use of KADMOS in step III of the demonstrator
The CMDOWS file from step II contains eleven design competences

(Table 2) involving around 3700 unique elements from CPACS as in- and
outputs. The repo graph that is constructed by KADMOS in step III.1 is
primarily useful to build visualizations with VISTOMS. Furthermore,
KADMOS categorizes all the CPACS elements (e.g. inputs, outputs,
couplings, collisions, etc.) based.

Fig. 13. Screenshot of the KE-chain web-based interface for Step II.2: (1) inspection of available design competences, (2) management of input/output CPACS or
CMDOWS files, (3) live inspection of the aircraft data model, (4) inspection of coupled design competences using KE-chain on-platform utilities.

I. van Gent et al.

Progress in Aerospace Sciences 119 (2020) 100642

18

Fig. 14. Repo graph of the presented design case as VISTOMS XDSM view including data tree that two competences (AircraftSynthesis and Morphing) both modify
the wing geometry. These kinds of collisions have to be resolved (or at least noticed) by the integrator in order to keep the underlying product model (CPACS file)
consistent, which can be done with KADMOS in the subsequent step of the development process.

Fig. 15. The actual triple multi-segment wing defined in the CPACS file (left) with the selection of start and end wing segments indicated for the wing sweep
determination and the equivalent single trapezoidal segment wing definition in cpacsPy (right) which has an equivalent planform area, mean sweep, and aspect ratio
with respect to the multi-segment wing.

I. van Gent et al.

Progress in Aerospace Sciences 119 (2020) 100642

19

The results of the DOE will provide the design team with an indi-
cation of the most influential variables, based on which a surrogate
model could be constructed to perform an optimization, however, these
additional reconfigurations are discussed more elaborately in other
AGILE design case papers and considered out of scope for the work
presented here. on the amount of connections and the design team can
use these categorizations for closer inspection in the VISTOMS visuali-
zation of the design compe- tence repository, as was mentioned already
in Section 4.2.2. For example, in the demonstrator the CPACS data

element pointing to the Maximum Take-off Mass (MTOM) is a collision,
as it is both an output of the AircraftSynthesis and the MassBudget
design competences. It is then up to the design team to decide which
design competence is meant to provide this value. In this case the
MassBudget tool was set to provide the MTOW value; however, the less
accurate value produced by AircraftSynthesis could be used as initial
guess for MTOM, if MassBudget is part of a convergence loop with
MTOM as feedback variable.

In step III.2 the design competences are arranged according to a

Fig. 16. KE-chain provides an interface for KADMOS to the architect in step III.3 to support in assigning special roles to CPACS elements. This example shows that the
architect edits design variable wing aspect ratio (1) and selects its corresponding CPACS element through a search dialog (2) that filters through the entire set of
4371 elements.

I. van Gent et al.

Progress in Aerospace Sciences 119 (2020) 100642

20

convenient execution order and remaining issues on the data connec-
tions are solved. One such issue is visible in Fig. 14, where the wing
geometry (1337 connections, hence 1337 CPACS elements are used to
define the aircraft geometry and coupled as indicated in the figure) is
output of both AircraftSynthesis and the Morphing design competences,
and many design competences, including the Morphing tool itself, are
using the same geometry as input. This is not a case of redundant design
competences playing the same role of geometry provider. In this case, a
first instance of the wing geometry should be given to the Morphing tool
by the AircraftSynthesis tool. Then the Morphing tool should adjust this
geometry and provide a second instance of the wing geometry, to be
used by all the other tools that need geometry as input. KADMOS con-
figures this data flow by creating instances. A first instance of the wing
geometry is created by AircraftSynthesis and provided as input to
Morphing. In its turn, Morphing creates a second instance of the wing
geometry to be used by the following design competences. These two
geometry data instances are also visible in Figs. 18 and 19 where the
wing definition is included in the data connection blocks with 1337
connections. In step III.3 KADMOS assigns the special roles to selected
elements, according to the MDO architecture selected by the architect.
The architect is able to assign element roles through the interface in KE-
chain as is shown in Fig. 16. In case of the demonstrator DOE, wing area,
aspect ratio, and sweep have been assigned the role of design variables.
Those are indeed the top-level wing variables used as input by the
Morphing tool (see Fig. 18). All the other variables the design team
wants to keep track of in the overall process, are assigned the role of
‘quantities of interest’. These quantities could later become the objective
and constraints of an optimization process. The quantities of interest
selected for the demonstrator were: DOC and recurring cost from Cos-
tAnalysis, ATR from Emission Analysis, and fuel mass from Mission
Simulation.

Finally, the DOE architecture is imposed on the problem graph in
step III.4. The resulting XDSM is shown in Figs. 18 and 19. Two main
blocks are added on the diagonal: the DOE regulator and a converger.
The DOE regulator provides the design points to be analyzed and collects
the quantities of interest of the converged design. Inside the DOE loop,
every experiment provided by the DOE is converged based on the
feedback variables MTOM, total lift and drag coefficients (Cf,x and Cf,z)

of the aircraft. The specification of this automated design process is the
final result in step III that is stored in a CMDOWS file and visualized
using VISTOMS (Figs. 18 and 19).

4.3.2. Use of VISTOMS in step III of the demonstrator
The various CMDOWS files used to store the evolving definition of

the MDO system, from repo graph, to problem graph and finally the
combination of MDO data and MDO process graphs, can all be loaded
and visualized through the VISTOMS web-based graphical user inter-
face, as shown in Fig. 17. In Fig. 18 the CMDOWS file containing the
formulation of the demonstrator MDO system is visualized using a dy-
namic XDSM.

In Fig. 18, it can be observed how the competences have been
organized by KADMOS in a meaningful order, compared with the un-
organized repo graph from step II (Fig. 14). The process execution order
is indicated in the XDSM by the thin black lines and the numbers written
inside each block. The wing design variables selected for demonstrator
DOE are provided to the MDO workflow by the DOE block (Fig. 18,
overlay frame 1) and then translated into a full parametric CPACS ge-
ometry by the Morphing competence. Subsequently, the wing geometry
is processed to the downstream competences such as Aero- dynamics
and CostAnalysis. Here, it can be observed how the AircraftSynthesis
competence only provides an initialized aircraft geometry, while the
Morphing competence adjusts this geometry according to the given DOE
inputs. The four main quantities of interest of the performed DOE can be
examined in overlay frame 3, namely total recurring costs, fuel mass of
the specified flight mission, ATR, and DOC.

The hierarchical tree views displayed in overlay frames 1–3 of Fig. 18
can be accessed within VISTOMS via a right mouse-click operation on
the highlighted edges in the XDSM. In fact, there are multiple other
inspection options implemented in VISTOMS, which cannot be discussed
in detail in this paper. The interested reader is referred to Ref. [33] for
further information.

In Fig. 19 a closer insight to the design competence operating inside
the convergence loop is given, where the three previously mentioned
convergence variables MTOM, Cf,x and Cf,z are displayed. The MTOM
convergence is a typical iteration procedure in aircraft design, whereas
the iteration of the aerodynamic coefficients is added to account for the

Fig. 17. Home page of the VISTOMS graphical user interface.

I. van Gent et al.

Progress in Aerospace Sciences 119 (2020) 100642

21

adjustment of these coefficients by the nacelle design and integration
design competence (NacelledesignAeroIntegration).

4.4. Steps IV and V

The CMDOWS file from step III is used here to bridge the gap be-
tween formulation and execution by automatically translating the
neutrally stored MDO solution strategy into an executable workflow for
a PIDO platform of choice, see Fig. 20. The implementation details of
Steps IV and V are outside the scope of this paper, but can be found in
Refs. [13] and [25].

In a realistic design case, the found design solutions in the DOE will
probably trigger an iteration which goes back to one of the earlier steps
in the development process. Additional requirements might be acquired
(Step I), additional tools might need to be integrated (Step II), or the
collaborative workflow might need to be reconfigured using a different
MDO architecture (Step III). Since all steps are integrated within the top-

level development process environment KE-chain, the process that has
been set up in the development process environment acts as a custom-
made ‘AGILE framework app’ that can be used to collaboratively
reconfigure the project.

4.5. ADF impact and limitations

Recently, a survey was conducted [35] to quantify the impact of the
ADF presented in this paper as one of the cornerstones of the 3rd gen-
eration MDO environment. Thirty users with different roles in multiple
AGILE design cases positively reviewed the framework and provided
feedback on its individual components. An average time reduction of
39% to establish the first executable workflow in collaborative MDO
projects was estimated by the respondents to be contributed by the ADF
in comparison to previous MDO environment generations. Of the indi-
vidual components, KADMOS and VISTOMS were most highly valued
with time reductions of respectively 49% and 36%. KE-chain was

Fig. 18. Extract of the KADMOS MDO data and process graphs for the presented design case as VISTOMS XDSM view.

I. van Gent et al.

Progress in Aerospace Sciences 119 (2020) 100642

22

estimated to have a lower impact (17%), mainly because of the low
technology readiness level of the research-based KE-chain interface
compared to interfaces of other commercial software packages in which
most respondents work. Other components had estimated impacts be-
tween the KE-chain en VISTOMS scores.

Main limitations of the ADF that came forward in the survey were
related to two main topics: use of gradients and high-fidelity tools. The
use of gradients as output of the design competences has been consid-
ered outside the scope of work from the start. The reason for this is that
the approach in AGILE was to use design competences as they were
available at the start of the project in order to spend as little time as
possible on tool development. It was found that the majority of the
design competences that could be provided within the consortium did
not provide any gradient information. This is actually rather represen-
tative of reality in industry, where the majority of tools (often com-
mercial) are “black boxes”, unable to directly provide gradients. The
ability to account for gradients would require extensions for several of
the framework components.

Secondly, the use of high-fidelity tools is currently also problematic,
mainly because most high-fidelity tools require a very precise geomet-
rical definition of the product under consideration. However, the
employed CPACS data schema was originally developed to support the
conceptual and preliminary design phase of the aircraft, therefore lacks
support for a very detailed and accurate geometrical definition. Despite
this limitation, high-fidelity MDO can follow the same approach and use
the majority of the ADF without any large modifications, but would
clearly require an extended or altogether different product schema.

5. Conclusion

This paper has presented one of the main conceptual elements of the
AGILE paradigm: the Knowledge Architecture (KA). Together with the
Collaborative Architecture (CA), the KA is a cornerstone of a novel

methodology to support collaborative design and optimization within
large, heterogeneous and distributed teams of experts, as nowadays
necessary for the development of any complex product. The focus on the
knowledge-based approach to enable actual collaborative design makes
the AGILE paradigm extend the boundaries of current MDO and sets the
beginning of a 3rd generation MDO environment.

The AGILE paradigm is based on a five-step development process,
encompassing the main stages of the formulation and execution phases
of any automated design system. The KA is specifically supporting the
formulation phase by means of a hierarchical structure, based on four
main layers, namely the development process layer, the automated
design layer, the design competences layer, and the data schemas layer
which transverses the first three. Through their interfaces, these layers
offer a comprehensive framework that brings rationale and cohesion in
the complex endeavour of formulating a multidisciplinary design sys-
tem, where different actors are involved, including discipline specialists,
system architects and integrators.

The first layer provides an interactive user friendly environment to
integrate and streamline design aspects that are fundamentally human-
based with others that are based on design automation. The automated
design solutions are formulated in the second layer, making use of the
design competences available in the third layer. The fourth layer enables
data exchange between the various design competences and the means
to store the formalization of the complete MDO system, as ready to be
translated into an executable computational workflow (by means of the
CA). In its whole, the proposed KA addresses the need for formulating
complex design automation solutions, while granting designers full
oversight of the design system being developed and leaving competence
specialists in full control of their own tools, to guarantee their correct
utilization within the distributed multidisciplinary workflow. The
Knowledge Architecture (as well as the whole AGILE paradigm) is pro-
posed as a generic methodology to be applied to any engineering domain
that deals with the development of complex products (e.g. aerospace,

Fig. 19. VISTOMS generated XDSM showing details of the DOE system convergence loop.

I. van Gent et al.

Progress in Aerospace Sciences 119 (2020) 100642

23

automotive and wind energy), where automation is necessary to enable
trade-off studies, design space explorations, up to full multidisciplinary
optimizations in a collaborative environment.

One of the innovative aspects of the KA is provided by the intro-
duction of the automated design layer, where a neutral formulation of
the MDO system is generated first, before moving to the automated
integration of the computational system in a PIDO platform. Without
this conceptual layer, IT-wise one would still be able to create an

automated design process, but would quickly loose oversight of process
intricacies and the flexibility to adapt and reconfigure the system. Thus,
without this intermediate formal specification step, any automated
design process has the risk of becoming a large, complex black box that
none of the involved design team members can grasp, inspect, validate
and adjust. The definition of this intermediate layer improves the agility
of the design team in three ways:

Fig. 20. Screenshots of executable workflow instances for two different PIDO platforms. Both workflows are based on the same CMDOWS file that were provided by
KADMOS in Step III. 46.

I. van Gent et al.

Progress in Aerospace Sciences 119 (2020) 100642

24

• reduce the setup time for large and complex automated design
processes,

• enable systematic inspection and debugging of automated design
processes using a visualization tool,

• allow the manipulation of the automated design formulation so that
the creation and reconfiguration of optimization strategies can be
automated.

Yet, only a partial increase in agility could be gained without the
other main innovation: the workflow schema CMDOWS to store and
communicate MDO formulations. The possibility to translate such
neutral formulation into a fully executable workflow, effectively
streamlines the formulation and execution phase of any MDO process.
Dramatic reductions in lead time can be achieved, as well as more
flexibility in the selection of the PIDO system.

Within the AGILE project, the proposed methodology has been spe-
cifically applied to the aircraft design domain, resulting in the so-called
AGILE development framework (ADF). To this purpose a number of
software applications and two data schemas have been developed, either
from scratch (KADMOS, VIS- TOMS and CMDOWS) or by extending
existing solutions (KE-chain, CPACS, cpacsPy). Each one of these ap-
plications contributed to the realization of the four KA layers. The ADF
functionality has been demonstrated by applying the development
process to an MDO case of representative complexity for the aeronautic
industry, concerning the design space exploration of a conventional
passenger aircraft. To this purpose a repository of eleven CPACS-
compliant design competences has been used, contributed by five
partners, operating in five different locations in Germany, Italy and
Russia. The ADF proved able to dramatically speed up the setup of the
distributed multidisciplinary system, by reducing the effort required to
inspect and eventually resolve eventual inconsistencies in the data flow,
and by enabling a quick and fully automated formulation (and eventu-
ally reconfiguration) of the design process.

The KE-chain platform provided an intuitive and flexible environ-
ment to let customers, architects and discipline specialists collaborate
during the first three steps of the developed approach. KADMOS, under
the hood, applied its efficient knowledge- and graph-based approach to
fully automate the formulation of the MDO system, starting from the set
of design competences and design process requirements specified by the
system architect in KE-chain. VISTOMS enabled the discipline special-
ists, integrator and the architect to continuously inspect the system,
throughout all the development phases, by means of dynamic and
scalable visualizations, effective despite the sheer size of data to be
displayed. The initial investment for making all the design competences
CPACS-compliant paid off by practically enabling a plug & play
approach for all the synthesis and analysis tools. The development of the
cpacsPy library was however necessary to guarantee a coherent inter-
pretation of the CPACS data by the various discipline specialists.
CMDOWS provided the medium to store the MDO system definition
during its evolution from repository of design competences to complete
MDO solution strategy. Moreover, it played the role of hub for all the
other KA applications and provided the actual bridge between the
formulation and the execution phase of the MDO system.

A survey was conducted to establish the impact and limitations of the
current framework based on the design cases performed in the AGILE
project. The survey results, containing responses from thirty users of the
ADF, indicated an estimated 39% time reduction in the setup and
operation phases compared to earlier MDO environment generations.
The two main limitations of the framework are its lack of support for
using gradients in the design competences and the problematic use of
high-fidelity tools. The latter is related to the use of the current CPACS
that was developed for conceptual and preliminary design. These limi-
tations are at the top of the priority list for the future development plans
of the framework.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

The research presented in this paper has been performed in the
framework of the AGILE project (Aircraft 3rd Generation MDO for
Innovative Collaboration of Heterogeneous Teams of Experts) and has
received funding from the European Union Horizon 2020 Programme
(H2020-MG-2014-2015) under grant agreement no. 636202. The au-
thors are grateful to the partners of the AGILE consortium for their
contribution and feedback.

References

[1] J. Agte, O. De Weck, J. Sobieszczanski-Sobieski, P. Arendsen, A. Morris, M. Spieck,
MDO: assessment and direction for advancement - an opinion of one international
group, Struct. Multidiscip. Optim. 40 (1–6) (2010) 17–33.

[2] R. Belie, Non-technical barriers to multidisciplinary optimisation in the aerospace
industry, in: 9th AIAA/ISSMO Symposium of Multidisciplinary Analysis and
Optimisation, 2002, pp. 4–6.

[3] S. Shahpar, Challenges to overcome for routine usage of automatic optimisation in
the propulsion industry, Aeronautical Journal 115 (1172) (2011) 615.

[4] P.D. Ciampa, B. Nagel, Towards the 3rd generation MDO collaboration
environment, in: 30th Congress of the International Council of the Aeronautical
Sciences, 2016.

[5] I. Kroo, V. Manning, Collaborative optimization: status and directions, in: 8th
AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,
2000.

[6] AGILE consortium. https://www.agile-project.eu, 2017.
[7] P.D. Ciampa, B. Nagel, The AGILE Paradigm: the next generation of collaborative

MDO, Prog. Aero. Sci. (2018). In this issue.
[8] F. Flager, J. Haymaker, A comparison of multidisciplinary design, analysis and

optimization processes in the building construction and aerospace industries, in:
24th International Conference on Information Technology in Construction, 2007,
pp. 625–630.

[9] A. Dener, P. Meng, J. Hicken, G.J. Kennedy, J. Hwang, J. Gray, Kona: a parallel
optimization library for engineering-design problems, in: 57th AIAA/ASCE/AHS/
ASC Structures, Structural Dynamics, and Materials Conference, 2016, p. 1422.

[10] N. Bartoli, T. Lefebvre, S. Dubreuil, R. Olivanti, N. Bons, J. Martins, M. Bouhlel,
J. Morlier, An adaptive optimization strategy based on mixture of experts for wing
aerodynamic design optimization, in: 18th AIAA/ISSMO Multidisciplinary Analysis
and Optimization Conference, 2017, p. 4433.

[11] J.R.R.A. Martins, A.B. Lambe, Multidisciplinary design optimization: a survey of
architectures, AIAA J. 51 (9) (2013) 2049–2075, https://doi.org/10.2514/1.
J051895.

[12] E. Heydari Beni, B. Lagaisse, W. Joosen, December, Adaptive and reflective
middleware for the cloudification of simulation & optimization workflows, in:
ARM 2017 - 16th Workshop on Adaptive and Reflective Middleware, 2017.

[13] E. Moerland, E.H. Baalbergen, others, Collaborative architecture supporting the
next generation of MDO in the AGILE paradigm, Prog. Aero. Sci. (2021). In this
issue.

[14] J. Berends, M. Van Tooren, E. Schut, Design and implementation of a new
generation multi-agent task environment framework, in: - (Ed.), 49th AIAA/ASME/
ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2008.

[15] S. van der Elst, E. Moerland, J. Lugtenburg, L.M. Hootsman, S. Deinert, M. Motzer,
C. Fernandez, D2.3: industrial service-oriented process methodology, Tech. rep.,
IDEaliSM project (2017).

[16] A.B. Lambe, J.R.R.A. Martins, Extensions to the design structure matrix for the
description of multidisciplinary design, analysis, and optimization processes,
Struct. Multidiscip. Optim. 46 (2) (2012) 273–284.

[17] B. Nagel, D. Böhnke, V. Gollnick, P. Schmollgruber, A. Rizzi, G. La Rocca, J.
J. Alonso, Communication in aircraft design: can we establish a common
language?, in: 28th International Congress of the Aeronautical Sciences, 2012
(Brisbane).

[18] T.W. Simpson, J.R.R.A. Martins, Multidisciplinary design optimization for complex
engineered systems: report from a national science foundation workshop, J. Mech.
Des. 133 (10) (2011), 101002.

[19] S.X. Ying, Report from ICAS workshop on complex systems integration in
aeronautics, 30th Congress of the International Council of the Aeronautical
Sciences (2016).

[20] J. Jepsen, P.D. Ciampa, B. Nagel, Avoiding inconsistencies between data models in
collaborative aircraft design processes, in: 65. Deutscher Luft- und
Raumfahrtkongress, 2016.

[21] R.S. Sellar, S.M. Batill, J.E. Renaud, Response surface based, concurrent subspace
optimization for multidisciplinary system design, 1996. AIAA paper 714, 1996.

[22] R. Lano, The N2 chart, Tech. rep., TRW. (1977).

I. van Gent et al.

http://refhub.elsevier.com/S0376-0421(20)30054-3/sref1
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref1
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref1
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref2
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref2
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref2
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref3
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref3
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref4
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref4
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref4
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref5
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref5
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref5
https://www.agile-project.eu
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref7
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref7
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref8
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref8
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref8
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref8
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref9
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref9
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref9
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref10
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref10
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref10
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref10
https://doi.org/10.2514/1.J051895
https://doi.org/10.2514/1.J051895
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref12
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref12
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref12
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref13
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref13
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref13
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref14
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref14
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref14
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref15
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref15
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref15
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref16
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref16
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref16
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref17
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref17
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref17
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref17
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref18
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref18
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref18
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref19
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref19
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref19
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref20
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref20
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref20
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref21
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref21
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref22

Progress in Aerospace Sciences 119 (2020) 100642

25

[23] T.C. Wagner, P.Y. Papalambros, General Framework for Decomposition Analysis in
Optimal Design, vol. 65, ASME DES ENG DIV PUBL DE., ASME, NEW YORK, NY
(USA), 1993, pp. 315–325.

[24] D.V. Steward, The design structure system: a method for managing the design of
complex systems, Engineering Management, IEEE Transactions on (3) (1981)
71–74.

[25] I. van Gent, G. La Rocca, Formulation and integration of MDAO systems for
collaborative design: A graph-based methodological approach, Aerospace Science
and Technology 90 (2019) 410–433. https://doi.org/10.1016/j.ast.2019.04.039.

[26] D.J. Pate, J. Gray, B.J. German, A graph theoretic approach to problem formulation
for multidisciplinary design analysis and optimization, Struct. Multidiscip. Optim.
49 (5) (2014) 743–760.

[27] R. Lafage, XDSMjs Package - XDSM Diagram Generator Written in Javascript,
2016. https://github.com/OneraHub/XDSMjs.

[28] H.R. Sankey, The thermal efficiency of steam engines, Minutes of the Proceedings
of the Institution of Civil Engineers (1896) 182–212.

[29] M. Schmidt, Der Einsatz von Sankey-Diagrammen im Stoffstrommanage- ment.
Beiträge der Hochschule Pforzheim, Hochsch. Pforzheim. (2006). https://books.
google.de/books?id=zhBbMgAACAAJ.

[30] N. Atkinson, bihisankey.js Package - BiDirectional Hierarchical Sankey Diagram,
2015. https://github.com/Neilos/bihisankey.

[31] D. Holten, Hierarchical edge bundles: visualization of adjacency relations in
hierarchical data, IEEE Trans. Visual. Comput. Graph. 12 (5) (2006) 741–748.

[32] M. Bostock, D3.js website. https://d3js.org/, 2015.
[33] B. Aigner, I. van Gent, G. La Rocca, E. Stumpf, L.L.M. Veldhuis, Graph-based

algorithms and data-driven documents for formulation and visualization of large
MDO systems, CEAS Aeronautical Journal (2018).

[34] E. Margolis, S. Laurence, Concepts: Core Readings, MIT PR, 1999.
[35] I. van Gent, B. Aigner, G. La Rocca, A critical look at design automation solutions

for collaborative MDO in the AGILE paradigm, in: 19th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, 2018.

[36] I. van Gent, G. La Rocca, M.F.M. Hoogreef, CMDOWS: a proposed new standard to
store and exchange MDO systems, CEAS Aeronautical Journal (2018) 607–627.

[37] I. van Gent, R. Lombardi, G. La Rocca, R. d’Ippolito, A Fully Automated Chain from
MDAO Problem formulation to Workflow Execution, EUROGEN 2017 (2017).

I. van Gent et al.

http://refhub.elsevier.com/S0376-0421(20)30054-3/sref23
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref23
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref23
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref24
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref24
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref24
https://doi.org/10.1016/j.ast.2019.04.039
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref26
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref26
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref26
https://github.com/OneraHub/XDSMjs
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref28
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref28
https://books.google.de/books?id=zhBbMgAACAAJ
https://books.google.de/books?id=zhBbMgAACAAJ
https://github.com/Neilos/bihisankey
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref31
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref31
https://d3js.org/
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref33
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref33
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref33
http://refhub.elsevier.com/S0376-0421(20)30054-3/sref34
http://refhub.elsevier.com/S0376-0421(20)30054-3/optgUW35meFoA
http://refhub.elsevier.com/S0376-0421(20)30054-3/optgUW35meFoA
http://refhub.elsevier.com/S0376-0421(20)30054-3/optgUW35meFoA
http://refhub.elsevier.com/S0376-0421(20)30054-3/optgRYflIMQyY
http://refhub.elsevier.com/S0376-0421(20)30054-3/optgRYflIMQyY
http://refhub.elsevier.com/S0376-0421(20)30054-3/optzVfke2VAxt
http://refhub.elsevier.com/S0376-0421(20)30054-3/optzVfke2VAxt

	Knowledge architecture supporting the next generation of MDO in the AGILE paradigm
	1 MDO challenges and the AGILE paradigm
	2 Knowledge architecture: conceptual description
	2.1 Development process layer
	2.2 Automated design layer
	2.3 Design competences layer
	2.4 Data schemas layer
	2.5 Development process/automated design interface
	2.6 Automated design/design competences interface
	2.7 Relevance of the KA

	3 Knowledge architecture implementation: the AGILE develop- ment framework for aircraft MDO
	3.1 Development process environment: KE-chain
	3.2 Product schema: CPACS
	3.3 Design concepts: cpacsPy
	3.4 Workflow schema: CMDOWS
	3.5 Graph-based formulation support: KADMOS
	3.6 Visualization of large, complex MDO systems: VISTOMS

	4 AGILE Development Framework demonstrator: formulation of an aircraft MDO system problem
	4.1 Step I: define design case and requirements
	4.2 Step II: specify complete and consistent product model and design competences
	4.2.1 Use of KE-chain in step II of the demonstrator
	4.2.2 Use of VISTOMS in step II of the demonstrator
	4.2.3 Use of cpacsPy package in step II of the demonstrator

	4.3 Step III: formulate design optimization problem and solution strategy
	4.3.1 Use of KADMOS in step III of the demonstrator
	4.3.2 Use of VISTOMS in step III of the demonstrator

	4.4 Steps IV and V
	4.5 ADF impact and limitations

	5 Conclusion
	Declaration of competing interest
	Acknowledgments
	References

