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Summary

Modelling of fluid-structure interactions (FSI) plays a key role in many engineering applica-
tions. However, due to the interaction between fluid and structure the computational cost
related to high fidelity models (especially for strongly coupled systems) limits the direct use
of current FSI simulation techniques in industry. Since a thorough knowledge of FSI phe-
nomena is very important in design processes, efficient simulation techniques that combine
low cost with high accuracy need to be developed. To this end, the use of the space mapping
optimization technique as coupling approach for partitioned FSI simulations is investigated.

The space mapping technique is a collection of efficient optimization approaches which use a
low fidelity coarse model to accelerate the evaluation of expensive high fidelity fine models.
A surrogate model, whose response resembles the fine model response, is build by defining a
parameter mapping that is obtained through the iterative optimization and updating of the
coarse model. In this way the computational effort is shifted from the high fidelity model to
the much faster to evaluate coarse model without any losses in accuracy. As a result, only a few
fine model evaluations (for calibration) are required to obtain high fidelity solutions. Several
space mapping methods can be found in literature. Of these, four methods were identified
to be potential candidates for the use as coupling method for partitioned FSI simulations.
Those methods (aggressive space mapping (ASM), generalized space mapping (GSM), output
space mapping (OSM) and implicit space mapping (ISM)) are implemented for the 1D piston
problem on a fixed domain and the 2D panel problem.

ASM defines a surrogate that consists of the coarse model in conjunction with an input map-
ping. Every iteration starts with a fine model evaluation, after which the mapped fine model
variable is obtained by matching the particular fine and coarse model responses. The sub-
sequent estimate for the fine model solution is then obtained by applying an approximation
for the inverse mapping (using a first order Taylor series) to the coarse model optimal solu-
tion. It is found that ASM is successful in performing strongly coupled FSI simulations for
the considered test problems. Savings in computational cost up to 30% with respect to a
conventional Quasi-Newton (QN) method are achieved.
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GSM employs a predefined combination of input and output mappings. First the misalign-
ment between both models is minimized over a region of interest by utilizing a linear input
mapping. Afterward, an output mapping is used which locally matches the surrogate re-
sponse with the fine model response and which minimizes the deficit between their first order
derivatives. The mapping parameters are obtained by means of a parameter extraction (PE)
process where a choice can be made between single point PE, multipoint PE, gradient PE and
constrained PE. The next iterate is then found by optimizing the resulting surrogate model.
A Taylor series expansion of the mapping parameters during the surrogate optimization is
proposed to improve the convergence properties of GSM. This is found to be very effective.
GSM is applied to both test problems. The method succeeded in obtaining strongly coupled
solutions, but the efficiency gains are small or even non-existing with respect to QN. This is
due to the parameter extraction process which appears to be very expensive for large systems.
Moreover, GSM is complicated to implement due to the large choice in PE approaches and
weighting factors, both of which have a large influence on the overall convergence rate.

Based on GSM, an output space mapping approach is developed in this work which predicts
the deficit between the fine and the coarse model. This is done by adding a first order Taylor
series approximation for the deficit to the coarse model, where the Jacobian is approximated
using Broydens rank one scheme. In this way a locally perfect mapping is obtained which
exhibits both excellent approximation and extrapolation properties. This method is success-
fully applied to both test problems. OSM is found to be up to 50% more efficient than QN.
Moreover, the method is simple and robust.

Finally, the use of ISM was tested. ISM builds a surrogate by altering physical parameters
of the coarse model like mass, stiffness or density. The optimal values for those preassigned
parameters are obtained using a PE process, after which the resulting surrogate is optimized
to find the next iterate. This method was not successful for the considered test problems.
The influence of the preassigned parameters is too small to obtain a sufficient match between
both models. Moreover, ISM does not allow for the use of black box solvers. Therefore it is
found that ISM is not suitable for FSI simulations.

Of all coupling methods that were implemented, OSM is found to be the most efficient. It
exhibits by far the largest convergence rate. This method is validated by applying it to
other combinations of fine and coarse models. The piston problem on a deforming domain is
considered, for which OSM yielded very good results as well. Moreover, coarse models that
consist of the fine model on a coarse grid are used for the 1D and 2D test problems. Again
OSM was able to obtain strongly coupled solutions, although the obtained efficiencies were
lower than for coarse models that are based on simplified physics. The latter made clear that
a successful implementation of OSM requires a coarse model that is both cheap (W̄c/W̄f < 1%
is advised) and reasonably accurate. For the current test problems OSM became inefficient
for cases where the average error of the coarse model is > 25%. More research is required in
order to be able to identify optimal coarse models.
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Chapter 1

Introduction

1.1 Introduction to the project

Modelling of fluid-structure interactions (FSI) plays a key role in many engineering appli-
cations. Examples of these include wind interaction with cable stayed bridges, bio-fluids in
deformable vessels and flutter/buffeting of wings or buildings [11]. Being able to analyze
those systems with high accuracy is very important, not only to predict the performance of
fluid-structure systems, but also to investigate the instability of coupled (dynamical) systems.
However, due to the interaction between fluid and structure the computational cost related
to high fidelity models (especially for strongly coupled systems) limits their direct use in in-
dustry. So in order to be useful, efficient simulation techniques that combine low cost with
high accuracy need to be developed.

Since a thorough knowledge of fluid-structure interaction phenomena is very important in the
design of future aircraft, the FFAST project (future fast aeroelastic simulation technologies,
[16]) aims at improving the efficiency of aeroelastic computations. The FFAST project will
develop, implement and assess a range of candidate numerical simulation technologies to
accelerate the aircraft design process. The research is conducted in three major areas, being

• fast identification of critical load cases,

• extraction of aerodynamic and aeroelastic reduced order models (ROMs),

• reduced order model acceleration of full order models.

To achieve these objectives, complementary experiences and expertise are gathered to form a
trans-national consortium consisting of universities, research agencies and aerospace compa-
nies. Within this context, Delft University of Technology researches the acceleration of high
fidelity aeroelastic simulations using aeroelastic reduced order models and will implement
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these algorithms in a generic coupling shell. In addition to this goal the constraint of software
modularity is identified. This allows CFD and CSM communities to develop their own codes
using their own expertise. So a partitioned approach is favoured over a monolithic solution.
Moreover, the final solution will have to be robust, minimal intrusive and generic.

As part of this FFAST project T.P. Scholcz [27] looked into different techniques that might
lower the computational cost of fluid-structure interaction calculations by combining a fast
but inaccurate coarse model with a highly accurate but expensive fine model. Expensive in
this context means that the computational effort to solve the system is large with respect to
both time and cost. He found that especially space mapping, a surrogate based optimization
technique mainly used for electromagnetic design, has high potential in achieving this goal.
The space mapping technique was first introduced by Bandler et al. in 1994 [4] and the idea
behind it is to establish a connection between a coarse and a fine model through a parameter
mapping. This mapping is then used to find an optimal set of parameters such that the
response of the coarse model resembles the response of the fine model as good as possible.
The optimization is then performed using the coarse model such that considerably less fine
model iterations are needed, leading to savings in computational cost up to 90% [21; 20].

In this report a closer look is taken at the application of the space mapping method for strongly
coupled partitioned fluid-structure interaction problems. After a description of the method
in Chapter 3 the implementation and performance of several space mapping approaches are
investigated in Chapters 4 to 8. This is done by application to two commonly used test
problems, being the one-dimensional piston problem and the two-dimensional panel problem.
Both are introduced in Chapter 2. However, this chapter continues with a general introduction
to fluid-structure interaction simulations first.

1.2 Introduction to computational fluid-structure interaction

1.2.1 General problem formulation

When designing aircraft one has to take into account aeroelastic phenomena. Those arise
when structural deformations induce changes on aerodynamic forces. These additional aero-
dynamic forces cause an increase in the structural deformations, which in turn influence the
aerodynamic forces in a feedback process. So when investigating aeroelastic effects one has
to solve a coupled fluid-structure system. A schematic representation of the FSI problem is
shown in Fig. 1.1.

A FSI problem consists of the fluid domain Ωf and the structure domain Ωs. Along the
boundary ΓI between those two domains both displacements and pressure/stresses should
match, leading to a kinematic

df = ds or vf = ḋs (1.1)

and a dynamic

nf · τf = −ns · τs (1.2)
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1.2 Introduction to computational fluid-structure interaction 3

Figure 1.1: Schematic representation of the fluid-structure domain.

boundary condition. In (1.1) and (1.2) d represents the displacement, v the velocity and τ
the stress tensor at the interface. The subscripts f and s indicate the fluid and the structure
variables respectively, and n is the unit normal vector of the boundary pointing outward.

So in order to allow interactions between both systems information should be transferred
across the interface. However, structural equations are usually formulated in material (La-
grangian) coordinates whereas the fluid dynamics are typically expressed using spatial (Eu-
lerian) coordinates. To allow for the transfer of information both representations should
coincide at the interface. This is done by rewriting the fluid equations in the Arbitrary La-
grangian Eulerian (ALE) formulation [11]. In this approach the observation scheme is not
fixed in space nor moves with the material but has an arbitrary motion in order to follow the
boundary conditions. The ALE discretization therefore can be locally Eulerian (mainly in the
far field), purely Lagrangian (near the interface) or something in between. Modelling the in-
teractions between the structure and the fluid can now be done according to two approaches:
monolithic or partitioned.

Monolithic FSI approach When a monolithic approach is used the flow and structural
dynamics are solved simultaneous using a single solver, such that their mutual influence can
be taken into account directly. The aim is to put all the necessary components, including the
physical models, discretizations and solution algorithms for the fluid as well as the structure,
into a single computational model,

M(ws,wf ) = 0, (1.3)

with ws and wf the discrete states of the structure and fluid. This simulation approach
is favourable from a stability and accuracy point of view, but impractical since a certain
monolithic solver is only applicable for one specific type of problems. A new, complicated
solver has to be build for every new FSI problem to be analyzed. Moreover, it is very hard
to keep the solver up to date with the latest developments in each research field.

Partitioned FSI approach Contrary to a monolithic approach, when applying a parti-
tioned approach to perform FSI calculations the governing equations for the flow and struc-
ture are solved separately using distinct solvers. This eliminates the problems encountered for
monolithic simulations, since software modularity is preserved and therefore the most suitable
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solvers for both the fluid and the structure can be chosen independent of each other. How-
ever, a partitioning error is introduced since the implicit system of equations is now split up
and thus not solved simultaneously. A coupling algorithm, which allows for the interaction
between both solvers, therefore is required to assure the matching conditions at the fluid-
structure interface. By iterating over the interface the partitioning error can be minimized.
This coupling method determines to a large extent the overall accuracy and efficiency of the
simulation.

Comparing both approaches to the requirements set for the FFAST project, it is clear that a
partitioned approach should be used. This is why issues regarding monolithic FSI approaches
are not considered here.

In a partitioned approach, the fluid and structure solvers can be considered to be arbitrary
units generating a desired output from a given input and are often referred to as “black
boxes”. Denoting the black box fluid solver by F , generating a pressure y from a certain
displacement x, and the black box structure solver by S, generating a displacement from a
given pressure distribution,

y = F (x) and x = S(y), (1.4)

the FSI problem can be formulated as a nonlinear problem in the discrete interface position
with all other variables internal to the black box solvers. So the goal of the coupling algorithm
is to enforce

R(x) = S ◦ F (x)− x = 0 (1.5)

along the interface. If only one iteration is performed, the problem is referred to as being
loosely coupled. This can be the case if e.g. the structure is very stiff. However, for flexible
structures loose coupling will result in a large partitioning error. As this is undesirable,
multiple iterations are required until (1.5) is satisfied. Those cases are referred to as being
strongly coupled. In the current work, the aim is to obtain strongly coupled solutions using
as few iterations as possible.

1.2.2 Coupling approaches

Two kinds of coupling at the interface have to be ensured when performing FSI calculations:
spatial coupling and temporal coupling, both of which allow for the transfer of information
between the fluid and the structural domain.

Spatial coupling

The goal of spatial coupling is to deal with non-matching meshes at the interface, such that
data can be transferred. Usually the fluid and structure meshes do not match at the interface
due to the different mesh requirements posed on the flow and the structure (e.g. the flow
generally requires a finer grid than the structure) and the use of independent solvers. Several
approaches which can be applied to ensure spatial coupling can be found in the work of de
Boer [12]. Most widely applied are
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• Nearest neighbour interpolation,

• Weighted residual method, and

• Radial basis function (RBF) interpolation.

For the test problems used in this work the fluid and structure meshes match at the interface
hence no spatial interpolation is required.

Temporal coupling

On the other hand, temporal coupling aims at ensuring (1.5) in time, so updating the solution
from time level n to n + 1. Three schemes which are often used to couple both black box
solvers are the additive Schwartz (or block-Jacobi) method, multiplicative Schwartz (or block-
Gauss-Seidel) method and the midpoint staggered scheme. Those approaches are visualized
in Fig. 1.2. Note that the block-Jacobi and block-Gauss-Seidel methods allow for subiterating
whereas the midpoint staggered scheme is only applicable for loose coupling. For strongly

(a) Block-Jacobi (b) Block-Gauss-Seidel (c) Midpoint staggered

Figure 1.2: Temporal coupling methods [11], the dotted arrows indicate the subiterations for
strong coupling.

coupled problems either a block-Jacobi or a block-Gauss-Seidel method with sub-iterations to
ensure a perfect match between the displacements and stresses (pressure) along the boundary
can be considered. This sub-iteration process can be accelerated by making use of a suitable
iterative method. Commonly used approaches include

• fixed point iterations,

• Aitken relaxation,

• the Newton-Raphson method,

• Richardsons method,

• Incremental quasi-Newton (QN),

• Newton-Krylov methods.
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For the FSI simulations performed in this work a Gauss-Seidel temporal coupling approach
is used, which first evaluates the fluid and then uses the pressure output of the fluid solver
as input for the structure solver. The Gauss-Seidel partitioning scheme is preferred over
the block-Jacobi method since it generally needs only half the number of subiterations. A
drawback over block-Jacobi is that the fluid and structure solvers cannot be evaluated in
parallel. However, since the required computing time for the structure is in general much less
than for the fluid solver, this does not increase the total computing time. A fully coupled
solution will be obtained by performing space mapping subiterations, where a QN method is
used as reference.

1.2.3 Efficiency improvements for strongly coupled FSI problems by means
of reduced order models (ROM)

Although the solution of strong coupling procedures converges to the monolithic solution if
sufficient subiterations are applied, thus decreasing the partitioning error and thereby increas-
ing the accuracy, subiterating increases the computational cost to a large extend. Even when
an appropriate method is applied to perform the subiterations, the flow and structure have
to be solved multiple times per timestep, leading to a large computational cost. Therefore,
much research is conducted regarding methods that can improve the efficiency of partitioned
FSI simulations lately. A large amount of this research focuses on the construction and appli-
cation of reduced order models (ROM’s). In those methods, the original high-order system of
governing equations (called the fine model) is transformed to a system of much lower order,
whereby only the most important or dominant part of the system dynamics is preserved. By
combining the information obtained by solving both the fine and the coarse models the num-
ber of required subiterations is reduced. Several methods to construct those ROM’s and to
use them in order to accelerate the coupling procedure are available, an overview of which can
be found in [23; 25; 26; 31]. Although promising results are obtained by these new methods,
most of them do not satisfy all constraints as identified by the FFAST project [16], being
software modularity, minimal intrusiveness, robustness and genericity. Moreover, a lot of
the existing reduced order model methods require access to the mathematical or conceptual
abstraction level of the fine model and are therefore not suitable for use as generic coupling
algorithm. The space mapping method however is believed to satisfy all those constraints
[28].

1.3 Research plan

The current research deals with the application of the space mapping technique to FSI prob-
lems. The goal of it can be summarized as:

”To reduce the computational cost required to obtain a fully coupled solution for par-
titioned fluid-structure interaction problems by means of a space mapping method.”
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The desired output of this research is a space mapping algorithm which only needs a fraction of
the number of subiterations required by conventional coupling algorithms like QN to eliminate
the partitioning error, without increasing the computational effort per subiteration. Moreover,
the resulting algorithm should be relatively simple to implement and allow for the use of black
box fluid and structure solvers. The following approach is applied in order to reach this goal:

• Performing a literature survey in order to identify different space mapping methods
currently employed in other research areas and investigating which methods are most
likely to be useful for FSI problems. This part of the project can be found in [15].

• Implementation of the most promising space mapping approaches for two academic
test problems, a one- and a two-dimensional. The details regarding the applied test
problems can be found in Chapter 2 and a description and the results of the implemented
algorithms are gathered in Chapters 4 to 7.

• Comparison of the implemented space mapping methods with QN as reference, for
different fluid-to-structure mass ratios and different timesteps (see Chapter 8).

• Validation of the space mapping approach which yields the highest efficiency by appli-
cation to some other fine-coarse model combinations (see Chapter 9).

1.4 Efficiency measures

For all methods a fully coupled solution will be computed such that the partitioning error will
be zero for all methods. Hence, the algorithms will be judged purely on the computational
effort required to obtain this solution. The most efficient approach therefore is the method
which proves to be the cheapest to obtain the required solution. The computational cost of
each method is normalized with respect to the average CPU time required to perform one
fine model evaluation (W̄f ) and is defined as

WSM (tn) = NSM
f (tn) +

W̄c

W̄f
NSM
c (tn) and WQN (tn) = NQN

f (tn). (1.6)

In the above Nf (tn) and Nc(tn) are the number of fine and coarse model iterations evaluated at
time tn respectively, W̄c is the average cost of one coarse model evaluation and the superscripts
SM andQN indicate that use has been made of a space mapping method or the Quasi-Newton
method to perform the subiterations. Making use of (1.6), the total normalized computational
cost thus becomes

WSM
tot =

tfinal/∆t∑
n=1

(
NSM
fn +NSM

cn

W̄c

W̄f

)
and WQN

tot =

tfinal/∆t∑
n=1

NQN
fn

(1.7)

for the space mapping and Quasi-Newton method respectively. Here the subscript n denotes
the time levels. As long as the coarse computational cost is small compared to the fine
computational cost, the number of fine model evaluations required per timestep is a good
indication for the overall efficiency of the method.
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8 Introduction

Apart from the total computational cost, also the relative efficiency with respect to the Quasi-
Newton method can be calculated for every space mapping method under consideration. The
time dependent and total efficiency are defined as

η(tn) = 1− WSM (tn)

WQN (tn)
and ηtot = 1− WSM

tot

WQN
tot

. (1.8)

If η > 0 the space mapping method appears to be more efficient than the Quasi-Newton
method.
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Chapter 2

Test Problems

This chapter contains a description of the fluid-structure interaction problems which will be
used to test several space mapping methods and to compare their numerical performance to
conventional coupling approaches. A simple one dimensional problem, the frequently used
piston problem, as well as a more complicated two dimensional problem are presented below.
These test problems are the same as the ones used by Scholcz in [29].

2.1 The 1D piston problem

The one dimensional piston problem describes a compressible inviscid fluid (with equilibrium
density ρ0 and speed of sound c0) in a closed section which is in interaction with a piston
having a certain mass m and stiffness k, see Fig. 2.1.

(a) Conceptual domain. (b) Computational domain.

Figure 2.1: Visualization of the piston problem, [29].
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10 Test Problems

2.1.1 Governing equations

The conceptual domain is discretized using a central finite volume scheme with a transpi-
ration boundary condition on the fluid-structure interface, the piston. This results in the
computational domain as visualized in Fig. 2.1. The structural model is given by a simple
linear mass-spring system, which in nondimensional form looks like

m̄¨̄xp + k̄x̄p = ∆p̄, (2.1)

with xp the piston displacement. Since the fluid is considered to be one-dimensional, com-
pressible, inviscid and isentropic it is governed by the Euler equations

∂

∂t
q +

∂

∂x
F(q) = 0 (2.2)

with the state and flux vectors give by

q =

(
ρ
ρu

)
and F(q) =

(
ρu

ρu2 + p

)
. (2.3)

In (2.3) ρ represents the fluid density and u the horizontal fluid velocity. Applying the finite
volume method to the integral form of (2.2), both the structure and fluid dynamics equations
can be transformed into a semi-discrete nonlinear system of equations

∂

∂t

(
wf

ws

)
+

(
Af Afs

Asf As

)(
wf

ws

)
= 0 (2.4)

where wf = ( qT1 qT2 . . . qTNv
)T and ws = ( x̄p ˙̄xp )T are the state vectors of the fluid

and structure respectively, Af and As the fluid and structure discretization matrices and Afs

and Asf are the fluid-structure coupling matrices. The fluid dynamics are solved iteratively,
using Aitken relaxation with a convergence tolerance εfluid = 1 · 10−15.

The semi-discrete structure and fluid equations of motion (2.4) are integrated using the BDF-
2 time-integration scheme. The tolerance in the coupling algorithm is set to a very small
value ε = 1 · 10−12, resulting in a strongly coupled solution. When the BDF-2 scheme is used,
the piston velocity is derived from the piston displacement as

˙̄xn+1
p =

3
2 x̄

n+1
p − 2x̄np + 1

2 x̄
n−1
p

∆t
(2.5)

such that the piston displacement can be assumed to be the only unknown during the coupling
iterations.

2.1.2 Coarse model

When applying space mapping in order to solve the fluid-structure interaction problem, a
coarse model governing the same physics but which is much faster to solve (hence less accurate)
should be available. Here a coarse model corresponding to the piston problem is found
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2.1 The 1D piston problem 11

from linearizing the fluid flux vector F(q) with respect to the equilibrium state of the fluid
(q0 = ( ρ0 0 )T ). The fluid is governed by

∂

∂t
q′ +

∂

∂q
F|q=q0

∂

∂x
q′ = 0 (2.6)

with ∂
∂qF the Jacobian of the nonlinear flux vector and q′ the perturbation with respect to

q0. The structural model remains the same as above since the computational effort required
so solve it is only a fraction of the cost of the fine fluid model. So the coarse fluid dynamics
are now governed by the linear semi-discrete system

∂

∂t
wf
′ + Afwf

′ + Afsw̃s = 0 (2.7)

with the coarse state vector w̃s = ( x̄p ˙̄xp )Tc . For this linear piston problem an exact
solution exists which can be found in [24; 32].

2.1.3 1D Testcases

The numerical parameters and initial conditions for both the fine and coarse model are gath-
ered in table 2.1, where P represents the (non-dimensional) coupled period of the fluid-
structure model.

Fine model Coarse model

Initial piston displacement x̄0
p 0.5 0.5

Initial fluid density ρ̄0 2/3 -1/3

Number of fine volume cells Nv 64 64

Number of timesteps Nt 10 ∪ 20 ∪ 30 10 ∪ 20 ∪ 30

Timestep ∆t P/10 ∪ P/20 ∪ P/30 P/10 ∪ P/20 ∪ P/30

Table 2.1: Nondimensional initial conditions and numerical parameters for the 1D piston problem.

In order to study the performance of the space mapping methods, various levels of coupling
strength are considered. This is done by varying the fluid-to-structure mass ratio

ζ =
ρ0L

m
, (2.8)

while keeping the ratio of characteristic time scales

λ =
Lω

c0
(2.9)

constant. In (2.9) ω =
√

k
m is the natural frequency of the mass-spring system. Three

testcases with increasing fluid-to-structure mass ratios will be used, which are given in table
2.2.
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12 Test Problems

Similarity parameters Structural parameters Fluid parameters
P

ζ[−] λ[−] m[kg] k[ kg
ms2

] L[m] ρ0[ kg
m3 ] c0[ms ]

FSI-1 1/2 0.85 4 64300 2 1 300 6.19

FSI-2 2/3 0.85 3 48225 2 1 300 5.96

FSI-3 2 0.85 1 16075 2 1 300 5.04

Table 2.2: Physical and similarity parameters of the testcases for the 1D piston problem.

(a) ∆t = P/20 (b) ∆t = P/200

Figure 2.2: Nondimensional density field for the fine model, testcase FSI-2.

(a) ∆t = P/20 (b) ∆t = P/200

Figure 2.3: Nondimensional density field for the coarse model, testcase FSI-2.
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(a) ∆t = P/20 (b) ∆t = P/200

Figure 2.4: Piston displacement and velocity for both the fine and coarse model, testcase FSI-2.

In Figs. 2.2, 2.3 and 2.4 the density field, piston displacement and piston velocity are shown
for both the fine and the coarse model. Because the pressure wave departing from the piston
requires a small timestep size in order to be resolved completely, the results are given for both
∆t = P/20 and ∆t = P/200. Large differences in the resulting fluid density are observed
between both the fine and the coarse model and the small and the large timesteps. However,
when looking at the piston response it can be seen that the coarse model approximates the
fine model well, the observed deficits for both the amplitude and frequency are rather small.
The piston responses are also alike for both timestep sizes, the only differences occur at the
moments the pressure wave departs from the piston and when it hits the piston again. For
the other testcases the same behaviour is observed.

Because decreasing the applied timestep seems to have little influence on the deficit between
the fine and coarse piston response, in the following chapters rather large timesteps are used
to analyze the performance of different space mapping methods. Only in Chapter 8 time
integration with ∆t = P/200 is used again. This is done in order to save computing time
when looking at the space mapping performance over multiple periods. Finally, it is found
that the computational cost to perform one coarse model evaluation (so including both the

structure and fluid dynamics) is approximately W̄c

W̄f
= 0.3% of the cost of one fine model

evaluation.

2.2 The 2D panel problem

The two-dimensional panel problem [29; 30] considers a flexible panel clamped at both ends
and in interaction with an inviscid fluid at supersonic speed, see Fig. 2.2. Here M∞, a∞, p∞
and ρ∞ are the free stream Mach number, speed of sound, pressure and density respectively.
tp, ρp, E and ν are the panel thickness, density, Young modulus and Poisson ratio. The
vertical displacement of the flexible panel is given by w(x). On the fluid-structure interface
a slip boundary condition holds, which results from the impermeability of the interface.
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(a) Conceptual fluid domain. (b) Computational fluid domain.

Figure 2.5: Visualization of the panel problem, [29].

2.2.1 Governing equations

The structural dynamics of the flexible panel are described by the Euler Bernoulli beam
equation

ρptp
∂2w

∂t2
+

∂2

∂x2

[
EI

1− ν2

∂2w

∂x2

]
= −∆p(x) (2.10)

with moment of inertia I = 1
12 t

3
p and forcing term ∆p = p(x)− p∞. Using the finite element

method with Hermite polynomials as basis functions [30] the beam equation is transformed
to a linear system of equations

Mppäp + Kppap = fp. (2.11)

Note that the superscript p refers to the panel, whereas the superscript f will be used to
indicate the fluid. In (2.11) Mpp and Kpp are the panel’s mass and stiffness matrices, fp is
the external force acting on the panel and the vector ap contains the discrete state of the
panel. The fluid is governed by the two-dimensional unsteady linearized potential equation

(1−M2
∞)

∂2φ

∂x2
+
∂2φ

∂y2
− 1

a∞

(
∂2φ

∂t2
+ 2u∞

∂2φ

∂x∂t

)
= 0 (2.12)

where φ denotes the perturbed fluid potential and

u = u∞ +
∂φ

∂x
and v =

∂φ

∂y
. (2.13)

The potential equation (2.12) is discretized using the finite difference method on an equidistant
grid (visualized in Fig. 2.2), resulting in the semi-discrete system

Mff äf + Cff äf + Kffaf = ff (2.14)

where af is the discrete state of the fluid, containing the potential values at the grid points.
The external fluid force depends on the state of the panel via the coupling matrices Cpf and
Kfp and is given by

ff = −Cfpȧp −Kfpȧp. (2.15)
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The pressure difference along the panel is given by

∆p(x, t) = −ρ∞
(
∂φ

∂t
+ u∞

∂φ

∂x

)
(2.16)

such that the external force in (2.11) can be expressed as

fp = −Cpf ȧf −Kpfaf . (2.17)

The coupled fluid-structure problem is now described by (2.11), (2.14), (2.15) and (2.17).

The fluid and structure equations for the coupled problem are integrated using a Newmark-
β time-integration scheme, which is second order accurate and unconditionally stable for
γ = 1/2 and β = 1/4. See [29] for a pseudocode. For the 1D test problem, only the interface
displacement was assumed to be unknown at each timestep in the time integration procedure.
However, here the computation of the fluid force ff requires both the panel displacement and
velocity. Therefore every coupling iteration does also require the derivation of the interface
velocity from the interface displacement, which is also done using the Newmark-β scheme.

2.2.2 Coarse model

In order to accelerate the evaluation of the fine 2D FSI problem described above, first order
piston theory will be used as the coarse model. In this case the pressure difference over the
panel is given by

∆p(x) = ρ∞a∞
∂w

∂t
+ ρ∞M∞a

2
∞
∂w

∂x
(2.18)

such that the forcing term in the beam equation can be expressed in terms of the discrete
state of the panel

fp = −Cfopȧp −Kfopap. (2.19)

This leads to a compact dynamical system for the panel state,

Mcoarseäp + Ccoarseȧp + Kcoarseap = 0 (2.20)

which is cheaper to solve than the fine model due to the smaller dimensions of the coupling
matrices. In (2.20) Mcoarse = Mpp, Ccoarse = Cfop and Kcoarse = Kpp + Kff .

2.2.3 2D testcases

The numerical parameters and initial conditions for both the fine and coarse model are gath-
ered in table 2.3. The initial panel displacement is expressed as a function of the flutter mode
ξ and the timestep depends on the non-dimensional critical coupled period

Pcr =
2πa∞
ωcrL

. (2.21)
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Fine model Coarse model

Initial panel displacement w0 0.1ξ/‖ξ‖ 0.1ξ/‖ξ‖
Fluid grid size Nx ×Ny 321× 193 -

Number of timesteps Nt 10 ∪ 30 ∪ 50 10 ∪ 30 ∪ 50

Timestep ∆t Pcr/10 ∪ Pcr/30 ∪ Pcr/50 Pcr/10 ∪ Pcr/30 ∪ Pcr/50

Table 2.3: Nondimensional initial conditions and numerical parameters for the 2D panel problem.

For this two-dimensional problem the fluid-to-structure mass ratio and the ratio of charac-
teristic time-scales are defined as

ζ =
ρ∞L

ρptp
and λ =

1

a∞L

√
EI

ρptp
. (2.22)

Testcases 4 to 6 (table 2.4) are again chosen such that ζ varies while λ remains constant.
For each testcase the panel is excited in the flutter mode at the critical Mach number, such
that the panel would vibrate exactly at the critical frequency ωcr in the absence of physical
damping.

Similarity parameters Structural parameters Fluid parameters

ζ[−] λ[−] ρs[
kg
m3 ] E[ kg

ms2
] L[m] tp[m] ρ∞[ kg

m3 ] a∞[ms ]

FSI-4 5.47 E-2 1.47 E-2 2.71 E3 8.67 E10 0.5 1.35 E-3 0.4 300

FSI-5 7.41 E-2 1.47 E-2 2.00 E3 6.40 E10 0.5 1.35 E-3 0.4 300

FSI-6 3.00 E-1 1.47 E-2 5.00 E2 1.60 E10 0.5 1.35 E-3 0.4 300

Table 2.4: Physical and similarity parameters of the test cases with fixed time-scales for the 2D
panel problem.

Mcr ωcr Pcr

FSI-4 2.27 460 8.2

FSI-5 2.28 536 7.0

FSI-6 2.33 1075 3.5

Table 2.5: Critical parameters for the two-dimensional testcases.

To visualize the behaviour of the panel in time an additional generalized coordinate

ag(t) = ξTap(t) (2.23)

is introduced, which is the projection of the panel displacement on the flutter mode. This
results in the graphs shown in Fig. 2.6, which shows ag for both the fine and coarse model. It
can be seen that the coarse model is less damped than the fine model, resulting in larger os-
cillations. For testcases 5 and 6 flutter occurs for both models, however, the panels amplitude
increases faster for the coarse model. For testcase FSI-4 on the other hand the panel vibrates
nicely at the critical frequency for the fine model. Furthermore it is observed that the coarse
model gets out of phase for testcase FSI-4, whereas for the other testcases the largest deficits
are observed in the amplitude. The cost of one coarse model evaluation is found to be 0.03%
of the cost of one fine model evaluation.
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(a) FSI-4 (b) FSI-5

(c) FSI-6

Figure 2.6: Evolution of the fine and coarse model generalized coordinate for different testcases
with ∆t = P/50.
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Chapter 3

Space mapping theory

The space mapping technique is a collection of efficient optimization approaches which use a
low fidelity (coarse) model to solve otherwise expensive optimization problems. The iterative
optimization and updating of these coarse models, which are cheap to evaluate but not very
accurate, replaces the direct optimization of the accurate but computationally expensive
high fidelity (fine) model of interest. In this way the computational effort is replaced from
the fine model to the much faster coarse model, such that only a few fine model evaluations
are required to obtain satisfactory results, thereby decreasing the overall simulation time to
a large extent.

The technique was first described by Bandler et al. in 1994 [4] after which it became
widely applied in the field of electromagnetics and microwave circuit design in particular.
The current work aims at investigating the application of the space mapping optimization
technique as coupling algorithm for fluid-structure interaction problems. To this end a
literature survey was performed [15] which resulted in the identification of some promising
approaches, which are applied in the following chapters. First, this chapter starts with a
general introduction to space mapping.

3.1 General principle of the space mapping technique

Space mapping aims at solving optimization problems like

x∗ = argmin
x
U(R(x)) (3.1)

while minimizing the need for expensive evaluations of R(x), the fine model. In (3.1) R is the
vector with responses of the model, x a vector containing the n parameters to be optimized
and U is the objective function for the optimization. For FSI applications the input vector x
contains the interface displacements, R is the residual as defined in (1.5) and the objective
function U equals the norm of the response vector. Space mapping solves (3.1) by creating a
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Figure 3.1: Illustration of the input space mapping procedure [13].

suitable surrogate model that combines the low computational cost of a certain coarse model
(with response Rc and input variable xc) with the accuracy of the fine model (with response
Rf and variable xf ). Building this surrogate is done by enhancing the coarse model with a
parameter transformation (mapping), denoted as P ,

xc = P (xf ) such that Rc(P (xf )) ≈ Rf (xf ), (3.2)

that establishes a link between the fine model and coarse model parameter spaces (Xf and
Xc respectively), see Fig. 3.1. The term surrogate model is used to denote the combination
of coarse model and mapping, such that at a certain subiteration j

Rs
(j)(xf ) = Rc(Pj(xf )). (3.3)

The mapping P in (3.2) is determined using an iterative process and is chosen such that the
response of the surrogate model resembles the output of the fine model as much as possible
within some local modeling region around the optimal fine model solution xf

∗. When the
latter holds an estimate xf

(j) for the fine model optimal solution can be obtained by simply ap-
plying the inverse mapping to the coarse model optimal solution, xc

∗ = argminxc ‖Rc(xc)‖,
such that

xf
(j+1) = P−1

j (xc
∗). (3.4)

When the mapping function Pj maps xf
∗ exactly onto xc

∗, so if xc
∗ = Pj(xf

∗), the mapping
is said to be perfect. However, having only an input mapping as in (3.2) often does not
suffice to achieve an exact match between the fine and coarse model responses. Therefore the
surrogate can comprise, apart from the coarse model and an input mapping, also an output
mapping O(Rc). In the latter case the entire mapping is often denoted as Q which depends
on the coarse model response, the fine model input vector and a set of preassigned parameters
xp,

Qj(Rc,xp
(j),xf ) = Rs

(j)(xf ) ≈ Rf (xf ). (3.5)

The preassigned parameters contained in xp
(j) are the parameters that define the mapping

at iteration j. They can be artificial like the coefficients defining a linear mapping as well as
physical model variables used to adapt the coarse model itself like density, mass and stiffness.
By making use of an appropriate combination of input and output mappings the surrogate
is always able to match the fine model response at least locally. The amount of parameters
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in xp determines the flexibility of the surrogate model. Surrogates with a large number of
preassigned parameters are very flexible and thus provide very good local matching. However,
very good approximation properties often lead to lower extrapolation properties and thus to
poor matching elsewhere. The flexibility of the surrogate should therefore be chosen carefully.
Once the nature of the mapping and the preassigned parameters are identified, selection of
the adequate value for the mapping parameters in xp is done during a parameter extraction
process.

3.2 Parameter extraction approaches

Parameter extraction (PE) is one of the most important steps in the space mapping opti-
mization process, where the parameters xp that define the mapping or surrogate to match
the fine model are extracted. Special care should be given to the uniqueness of the solution,
since non-unique solutions may cause the algorithm to converge slowly, oscillate or fail to
converge at all. Moreover, a balance has to be found between the approximation and extrap-
olation properties of the resulting surrogate. Therefore several PE approaches are available,
an overview of which can be found in, among others, [3; 13].

3.2.1 Methods to perform the PE

Single point extraction (SPE) The most basic way of PE calibrates the mapping locally
by matching the responses of both models at only one fine model point xf

(j). Assuming the
mapping is determined by the parameters xp, this approach looks like

xp
(j) = argmin

xp

‖Rf (xf
(j))−Rs(xp,xf

(j))‖. (3.6)

In general, SPE has excellent approximation properties since a perfect match at the considered
fine model point can usually be obtained. However, the extrapolation quality of the obtained
surrogate is expected to be rather low since only one point is taken into account to determine
to mapping parameters. This formulation yields a unique solution if the number of elements
in xp is smaller or equal to the number of elements in the response vectors Rf and Rs, so if
np ≤ nf . If np > nf however, the system is underdetermined and regularization is necessary
to obtain a unique solution. This can be done by using one of the following methods.

Multipoint extraction (MPE) MPE aims at improving the uniqueness of the PE solution
by overdetermining the problem. This is done by simultaneously matching the responses at
multiple fine model points, taking into account appropriate weighting factors, as shown in
(3.7).

xp
(j) = argmin

xp

‖[ ω0e
T
0 ω1e

T
1 . . . ωNeTN ]T ‖ (3.7)

with

ei = Rf (xf
(i))−Rs(xp,xf

(j)) , i = 1, . . . , N. (3.8)
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The number of fine model points taken into account is given by N . The choice of the weighting
coefficients ωi determines which points are taken into account and to what extent. A possible
choice can be

ωi = αN−i (3.9)

where α is a constant smaller than one [19]. Apart from enhancing the uniqueness of the
solution, this MPE formulation does also increase the region of applicability of the mapping
(extrapolation quality). The latter is especially beneficial in the early stages of the optimiza-
tion when the solution estimate may not be close to the optimal solution yet. However, in
order to apply MPE several fine model evaluations should have been performed, which is
generally not the case at the start of the algorithm. Since it is undesirable to determine a
set of base points at the start of each new timestep, one can start with using SPE for the
first iteration and increasing the number of points taken into account every subsequent it-
eration. When applying MPE the amount of coarse model evaluations increases by a factor
equal to the number of fine model points taken into account. Therefore it might be desirable
to limit the number of points used for MPE. Furthermore, since the mapping parameters
are based on multiple points it is not possible to extract a perfect mapping. Consequently,
the unique extraction process and improved extrapolation quality comes with the cost of
decreased approximation properties.

Gradient parameter extraction (GPE) GPE [9] enhances the uniqueness of the param-
eter extraction process by taking into account derivative information. For this approach only
one fine model point is required, so it can be applied from the first iteration on. This also
implies that GPE results in a local mapping. However, due to the derivative information the
region of applicability is still larger than for SPE. Moreover, it can be extended by combining
GPE with MPE. The gradient parameter extraction procedure looks like

xp
(j) = argmin

xp

‖[ eT0 ωeT1 . . . ωeTn ]T ‖ (3.10)

with

e0 = Rf (xf
(j))−Rs(xp,xf

(j)) and E = Jf (xf
(j))− Js(xp,xf

(j)), (3.11)

where ω is a weighting factor, E = [ e1 e2 . . . en ] , n the number of fine model de-
sign variables, Jf the fine model Jacobian and Js the surrogate model Jacobian. For FSI
simulations usually no Jacobian information is available such that both Jf and Js have to
be approximated. This evidently decreases the accuracy of the GPE approach considerably.
Moreover, approximating the fine and surrogate model derivatives requires at least two fine
model responses, such that in this case GPE can only be used from the second iteration on.
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Constrained parameter extraction An easy and computationally inexpensive technique
which can be used to assure unique PE is the addition of constraints for the mapping param-
eters,

xp
(j) = argmin

xp

(
‖Rf (xf

(j))−Rc(xp)‖+ ω‖xp − xp0‖
)

(3.12)

where xp0 is the objective. For example, one can enforce the mapping to be as close as
possible to the unit mapping or the previous mapping. The latter approach is expected to be
most suitable for use when time increases and therefore the deviation between fine and coarse
model increases. Apart from SPE, as shown here, constraints can be added to all previously
mentioned parameter extraction techniques. However, care should be taken when selecting
the weighting factor. Too large values for ω cause poor agreement between fine and coarse
model, whereas a too small ω may be ineffective in alleviating PE non-uniqueness. According
to Bandler et al. [6] values between 0.05 and 0.2 are most effective.

Statistical parameter extraction Another way to perform parameter extraction is statis-
tical PE [7]. This method is designed to be used in cases where non-uniqueness is a problem.
It extracts the optimal solution by utilizing several starting points to initiate the PE process.
Those starting points are statistically generated within a certain exploration region,

xp ∈ [xp0 − 2|δ(j)|,xp0 + 2|δ(j)|] , δ(j) = xp
(j−1) − xp0. (3.13)

For all starting points SPE is performed. If the same values for the extracted parameters
xp

(j) are found the solution is unique. If not, the resulting solutions are ranked according to
the value achieved for the objective function and the best solution is taken as the final result.
A large drawback of this PE approach consists of the computational cost, which increases by
a factor equal to the number of starting points used. This makes the cost of statistical PE
comparable to the cost required for MPE, while the resulting surrogate has the quality of
SPE (good approximation but bad extrapolation properties).

3.2.2 Implementation

Since the function to be minimized in the previous expressions is generally nonlinear, usually a
nonlinear least squares method is used to extract the desired parameters. To this end the build
in Matlab R© function lsqnonlin is used, which is designed to provide a numerical solution to the
problem of minimizing a function over a space of function parameters. This function employs
a trust-region-reflective algorithm but switches to the Levenberg-Marquardt algorithm when
the system of equations is underdetermined. The tolerance on the parameter extraction
process is kept at the standard value of 1 · 10−6. This is done for two reasons. First of all this
slightly lowers the approximation quality in favour of the extrapolation properties, which is
believed to be beneficial for the convergence of the space mapping algorithm. Secondly, this
way the coarse computational cost is kept low. This is especially important for 2D problems
where the number of extractable parameters and thus the required coarse model evaluations
will be high. Apart from lsqnonlin also other minimization methods were tested, like fconmin
and fminimax, but it was found that lsqnonlin yields the best results.
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3.3 Updating the solution estimate

The goal of space mapping is to find the solution of the fine model using as few as possible
fine model evaluations. So when a good mapping is found the second step consists of using it
to establish a good estimate for xf

∗. In [14] two approaches are identified to do this. Primal
space mapping on the one hand defines the next estimate xf

(j+1) by minimizing the residual
vector fj ,

fj(xf ) = Pj(xf )− xc
∗, (3.14)

so by performing an optimization

xf
∗ ≈ xf

(j+1) = argmin
xf

‖Pj(xf )− xc
∗‖ (3.15)

in the coarse input space Xc. The solution of (3.15) consists of applying the inverse mapping
to xc

∗, as already shown earlier in (3.4). This means that when the inverse of the mapping is
available (or a reasonably accurate approximation of it) and xc

∗ ∈ Pj(Xf ) no optimization is
required to determine the next estimate xf

(j+1). It is clear however that this primal approach
can only be utilized for cases where only an input mapping is applied. If also an output
mapping is applied or physical parameters are adapted to align both models, xc

∗ is no longer
constant but changes every iteration such that (3.15) is not appropriate for use anymore. An
alternative approach therefore consists of defining the next estimate as the optimal solution
of the surrogate model,

xf
(j+1) = argmin

x
‖Rs

(j)(x)‖, (3.16)

since Rs is constructed such that its response resembles the fine model response. This dual
space mapping approach is very general and can be used in all cases. A drawback is that
it requires two optimization steps (parameter extraction and surrogate optimization) during
every iteration whereas the primal approach only needs one in most cases. So especially for
the dual space mapping method it is very important that the computational cost of the coarse
model is low.

From the foregoing it is clear that the space mapping technique comprises three major steps,
which are repeated until the optimization requirements are satisfied. Those main steps are:

1. Fine model evaluation (verification)

2. Updating the surrogate / mapping by means of parameter extraction (calibration)

3. Determination of the next estimate

As the above steps are rather vague, it is obvious that there exist several approaches that
can be used to accomplish them. Step 1, the verification, is straight forward. For step 3 one
distinguishes between the primal and dual approach as explained before. The largest variation
in space mapping methods follow from the calibration step, which is also the crucial part. By
varying the kind of mapping and the way in which the corresponding mapping parameters are
extracted a large amount of different algorithms can be identified. Different space mapping
variations are discussed in the following chapters.
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3.4 Convergence improvements

Although the space mapping technique has shown to be a reliable and efficient method,
convergence is not guaranteed in general [20]. The algorithm may exhibit fast initial progress
but can stagnate as the number of iterations increases due to a lack of convergence and
oscillations in the matching error. In this section, two measures which may improve the
convergence properties of the algorithm are presented, the first one already being proposed
in literature.

3.4.1 Adaptively constrained parameter extraction

The flexibility of the surrogate model is an important parameter which determines the conver-
gence properties of the space mapping method to a large extend. Often the suitable amount
of flexibility is selected by trial and error, which obviously is both inefficient and not user
friendly. Therefore Koziel et al. [22] introduced an adaptively constrained parameter extrac-
tion process that adapts the parameter space of the surrogate model, and thus its flexibility.
The method is initiated by selecting an over-flexible surrogate model which, without any
constraints on the bounds for parameter extraction, is able to approximate the fine model
with sufficient accuracy. As a rule of thumb it is stated that the number of parameters in
xp should be larger than the number of design variables in xf . During the first iteration,
parameter extraction is performed with loose lower and upper bounds that allow for a large
flexibility of xp, such that l(j) ≤ xp ≤ u(j). The bounds are defined as

l(j) = xp
(j−1) − δ(j) (3.17)

u(j) = xp
(j−1) + δ(j), (3.18)

were δ(1) is a user-defined vector representing the initial parameter space size. From the
second iteration on the parameter extraction bounds are tightened if the approximation error
ε is sufficiently small and the bounds are loosened otherwise. This is done according to

ε(j) = ‖Rf (xf
(j))−Rs

(j)(xf
(j))‖, (3.19)

• ε(j) ≤ αdecr · εmax then δ(j+1) = δ(j)/βdecr (3.20)

• ε(j) > αincr · εmax then δ(j+1) = δ(j) · βincr. (3.21)

In the above εmax represents the maximum allowed deficit between the fine and surrogate
model (which is user defined) and αdecr, αincr, βdecr and βincr define the adaptation of the
bounds. The values used by Koziel et al. [22] are: αdecr = 1, αincr = 2, βdecr = 5 and βincr =
2. Under normal circumstances δ is reduced from iteration to iteration, such that closeness
of xp

(j) and xp
(j+1) is enforced. Although this method does not guarantee convergence, it

has been shown that it is able to substantially improve the space mapping performance.
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3.4.2 Taylor expansion of preassigned parameters

Here a new convergence improvement is proposed. When applying methods like GSM and
ISM (Chapters 5 and 7) preassigned parameters are extracted that ensure a match between
the fine and coarse model at the currenct evaluation point. Those extracted parameters
define the new surrogate model which is subsequently optimized in order to define the next
fine model iterate xf

(j+1). However, the surrogate model is defined such that its response
mainly resembles the response of the fine model for xf

(j). Therefore it is not ensured to
be accurate at the new estimate. By defining the set of preassigned parameters such that
they depend on the quantity that is to be optimized, in this case xf , it is expected that this
inaccuracy is minimized. This is accomplished by using a first order Taylor series expansion
around xp

(j) instead of xp
(j) itself for the determination of the next iterate. So

xp
(j+1) ≈ x̃

(j)
p = xp

(j) +∇xf
xp

(j) ·∆xf (3.22)

where ∆xf = xf − xf
(j), such that the next iterate is defined as

xf
(j+1) = argmin

xf

‖Rs(xf , x̃
(j)
p (xf ))‖. (3.23)

The gradient of the preassigned parameters with respect to the fine model design variable xf

is updated every iteration by means of Broyden’s method,

∇xf
xp

(j) = ∇xf
xp

(j−1) +
xp

(j) − xp
(j−1) −∇xf

xp
(j−1) ·∆xf

∆xf
T∆xf

∆xf
T . (3.24)

In (3.24) ∆xf = xf
(j) − xf

(j−1) which implies that this Taylor expansion improvement can
only be applied from the second iteration on. For the 1D test problem, where xf is a scalar,
the gradient becomes a vector with length equal to the number of preassigned parameters m.
For the 2D test problem on the other hand xf is a vector of length n, such that the gradient
in (3.22) becomes a matrix with size m×n. However, in practice the method is implemented
for each preassigned parameter separate. In the case of GSM (see Chapter 5) one gets

xf
(j+1) = argmin

xf

∥∥∥Rs

(
xf , Ã

(j)(xf ), B̃
(j)(xf ), c̃

(j)(xf )
)∥∥∥ . (3.25)

Since this method predicts the next values of the preassigned parameters by taking into
account an approximation to their derivatives, it is expected that its influence is largest
for algorithms that do not take into account any derivative information yet, like algorithms
applying SPE or MPE. For those cases where surrogate derivative information is already
utilized, e.g. when using GPE, the gains are expected to be much smaller.
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3.5 Space mapping as coupling technique for partitioned fluid-
structure interaction simulations

In section 1.2 it was explained that for strongly coupled problems that are solved in a parti-
tioned fashion subiterating is necessary to obtain accurate solutions. However, this increases
the computational cost drastically, thereby limiting the direct use of such algorithms in in-
dustry. Although several acceleration techniques can be found in literature, none of them
fully satisfies the requirements for a general and efficient FSI simulation technology as iden-
tified in the FFAST project [16; 27]. The space mapping technique, however, has shown
to be very efficient in expensive electromagnetic optimization while being minimal intrusive,
robust, generic and allowing for software modularity. Therefore in the remainder of this work
the application of the space mapping technique to FSI problems is investigated.

3.5.1 FSI problem formulation for space mapping

When solving a fluid-structure interaction problem, it is required that the interface displace-
ments in both the fluid and solid domain match. So

R(x) = S ◦ F (x)− x = 0 (1.5)

should be satisfied for every timestep (where S and F represent respectively the black box solid
and fluid solvers and x is the interface displacement). This requirement can be reformulated
as an optimization problem which aims at finding the optimal interface displacement x∗,

x∗ = argmin
x
‖R(x)‖. (3.26)

Which corresponds to equation (3.1) with the objective function U equal to the norm of
the response vector. In order to be able to apply space mapping to solve this optimization
problem, an appropriate coarse model is required which is based on the same physics but is
much cheaper to evaluate. This is done by using separate approximate black box fluid and
structure solvers and keeping the interface residual formulation unchanged. In general the
fine and coarse models look like

Rf (xf ) = Sf ◦ Ff (xf )− xf and Rc(xc) = Sc ◦ Fc(xc)− xc (3.27)

where xf and xc denote the vectors of fine and coarse design variables, which are the interface
displacements in this case. Note that the vectors xf and xc can have different dimensions.
Due to the definition of the residual, this means that in the latter case the response vectors
Rf and Rc will have different dimensions too. Therefore some kind of interpolation method
may have to be added to the coarse model to allow for the transfer of information between
both models. The coarse models which will be used in this work are presented in Sections
2.1.2 and 2.2.2. By Koziel et al. [21] it is advised that for space mapping to be successful the
cost of the coarse model should be less than 1%, and preferable even less than 0.1%, of the
cost of the fine model. This is satisfied for both the 1D and 2D test problems.
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When applied to fluid-structure interaction simulations, space mapping replaces the conven-
tional subiterating process to ensure temporal coupling. The implementation of space map-
ping within this dynamical process is illustrated in Fig. 3.2, where the background colour
intensity represents the computational cost of that step.

Figure 3.2: Illustration of the implementation of the space mapping method in the temporal
coupling process.

Compared to the conventional statical applications of space mapping, the fact that FSI sim-
ulations are dynamical has some consequences for the application of the method. First of all
the required amount of fine model evaluations is expected to be rather low. The reason for
this is that due to the time stepping an initial estimate to start the optimization which is
already within the neighbourhood of the final solution is likely to be found, especially when
the applied timestep is rather small. As a consequence, approaches that require several fine
model evaluations in order to build the initial surrogate are not likely to be suitable for use
in this case. Secondly, the time stepping will cause the initial misalignment between the fine
and coarse model to grow in time. The expected consequence of this is that when the mis-
alignment becomes large, an input mapping alone might not be able to match both models
and an output correction (and therefore dual space mapping) is advised. So in general the
required flexibility will increase with time. Algorithms which might be suitable for use are
presented in Chapters 4 to 7, but first several possibilities to define the initial estimate are
identified.
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3.5.2 Approaches to define the initial estimate

The determination of the initial estimate xf
(1)
n is an important step in the FSI simulation

since an initial estimate which is far off the final solution will increase the number of required

iterations. When space mapping is applied the number of possibilities to determine xf
(1)
n

increases due to the presence of the surrogate and coarse models. Several approaches are
presented below.

Approach 1 The initial estimate equals the converged result of the previous timestep:

xf
(1)
n = xf

∗
n−1 (3.28)

This is the easiest way to initialize the next timestep and is often used in conventional FSI
simulations, which yields good results as long as the timesteps are small.

Approach 2 Instead of using only the solution of the previous timestep, one can also base

xf
(1)
n on the history of fine model solutions. This approach is often referred to as state

extrapolation. So

xf
(1)
n = f(xf

∗
n−1,xf

∗
n−2, . . .) = xf

∗
n−1 + δn (3.29)

with the penalty term δ defined by

δn ≈ xf
∗
n − xf

∗
n−1 (3.30)

= δn−1 +∇tδ ·∆t. (3.31)

A correction term is added to the previous solution, which consists of a prediction of the deficit
between the solution at the current timestep and the solution at the previous timestep. The
gradient of this correction δ is calculated by using upwind finite differences which looks like
(3.32) or (3.33).

1st order: ∇tδ =
δn−1 − δn−2

∆t
(3.32)

2nd order: ∇tδ =
3δn−1 − 4δn−2 + δn−3

2∆t
(3.33)

Approach 3 Taking advantage of the available coarse model, one can define the first esti-
mate for the fine model solution of the next timestep to be the optimal coarse model solution.

xf
(1)
n = xc

∗
n (3.34)

Although accurate for the first few timesteps, this approach is likely to be inefficient when
time evolves and the misalignment between the fine and coarse models increases, resulting in a
bad initial estimate. Although space mapping is supposed to be able to deal with this, strong
misalignment will nevertheless decrease the efficiency of the algorithm since more iterations
will be required to satisfy the termination condition.
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Approach 4 The misalignment problem can be minimized by utilizing the surrogate model
solution as initial estimate,

xf
(1)
n = argmin

x

∥∥Rs
∗
n−1(x)

∥∥ , (3.35)

so combining the coarse model with the optimal mapping one timestep prior. By using the
optimal surrogate model found during the previous timestep, which at that particular time
instant yielded a match with the fine model, the misalignment is likely to be minimized
throughout time. A drawback of this method is that it requires an additional coarse opti-
mization.

Approach 5 Similar to approach 1, approach 4 can be improved by taking into account a
correction term which aims at predicting the deficit between the estimate and the optimal
solution. So

xf
(1)
n = argmin

x

∥∥Rs
∗
n−1(x)

∥∥+ δn (3.36)

where

δk ≈ xf
∗
k − argmin

x

∥∥Rs
∗
n−1(x)

∥∥ (3.37)

= δk−1 +∇tδ ·∆t. (3.38)

Since it is known that δn−1 = 0 the gradient of the correction term is now given by (3.39) or
(3.40).

1st order: ∇tδ = −δn−2

∆t
(3.39)

2nd order: ∇tδ =
−4δn−3 + δn−4

2∆t
(3.40)

Note that when using this approach, the correction term is determined by looking at how well
the surrogate obtained at the previous solution represents the fine model at nearby moments
in time whereas for approach 2 the deficit is followed in time. This implies that multiple
additional surrogate optimizations are required, increasing the coarse computational cost.

Approach 6 Something similar can be done for approach 3. The correction term added to
(3.34) now accounts for the difference between the fine and coarse model optimal solution.
So δn is given by

δn ≈ xf
∗
n − xc

∗
n (3.41)

= δn−1 +∇tδ ·∆t (3.42)

with ∇tδ as in approach 2, given by (3.32) or (3.33).
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Chapter 4

Aggressive space mapping (ASM)

4.1 The aggressive space mapping algorithm

The aggressive space mapping approach was proposed by Bandler et al. [5] in 1995 and
incorporates a quasi-Newton iteration in conjunction with first-order derivative approxima-
tions. High convergence rates are obtained and no initial set of fine model results is required,
thereby making it a very efficient and popular method. ASM applies only an input mapping
and therefore utilizes a primal approach to update the fine model solution estimate.

Every ASM iteration starts with determining the value of the mapped fine model point
Pj(xf

(j)). This is done by matching the particular fine and coarse model responses in the
single point parameter extraction process

Pj(xf
(j)) = xc

(j) = argmin
xc

‖Rf (xf
(j))−Rc(xc)‖, (4.1)

which yields a unique solution as long as nc ≤ nf . It can safely be assumed that this is always
the case, since coarse models with nc > nf would be computationally too expensive. This
mapping is perfect at the point xf

(j), where the responses are matched, but unknown at other
points. Therefore a general mapping is approximated by means of a first order Taylor series

Pj(xf ) ≈ Pj(xf
(j)) +∇xf

Pj · (xf − xf
(j)). (4.2)

The approximation of the inverse mapping, necessary to apply the primal space mapping
update, thus becomes

P−1
j (xc) ≈ xf

(j) + (∇xf
Pj)
−1 · (xc − xc

(j)). (4.3)

The next estimate for the fine model solution is now obtained by applying this inverse mapping
to the coarse model optimal solution xc

∗ = argminxc ‖Rc(xc)‖. This can be written as a
quasi-Newton iteration like

xf
(j+1) = xf

(j) + Jp
(j)−1

f (j) (4.4)
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where the (approximated) mapping Jacobian Jp and the mapping residual f are given by

Jp
(j) ≈ ∇xf

Pj and f (j) = xc
∗ − Pj(xf

(j)). (4.5)

The key to a successful implementation of this algorithm is the determination of the latter
Jacobian matrix. This is usually done by means of the Broyden rank one scheme,

Jp
(j) = Jp

(j−1) +
Pj(xf

(j))− Pj−1(xf
(j−1))− Jp

(j−1)∆xf

∆xf
T∆xf

∆xf (4.6)

which ensures that the accuracy of the approximation increases with every iteration. In (4.6)
∆xf = xf

(j) − xf
(j−1). In the rare cases where both the Jacobians of the fine and coarse

models are available, one can also use a Jacobian based update of Jp,

Jp = (Jc
TJc)−1Jc

TJf . (4.7)

Note that the parameter extraction approach used in (4.1) is SPE, which can be evaluated
using fixed-point iterations in combination with Aitken underrelaxation to enhance the sta-
bility. Multipoint extraction cannot be used to improve the region of applicability of the
mapping because in that case the mapping would no longer be locally perfect, such that ex-
pressions (4.2) and (4.3) loose their validity. GPE on the other hand is possible in theory,
however, no exact Jacobians are available for FSI simulations such that the expected gains are
low. Moreover, for 1D problems the Broyden update reduces to an ordinary first order finite
difference approximation. Hence for methods that obtain locally perfect mappings (as ASM)
the distinction between SPE and GPE vanishes when approximate derivatives are used.

The foregoing space mapping optimization method is repeated until Rf (xf
(j)) ≈ 0, as visu-

alized in figure 3.2. If the latter is satisfied the current timestep is resolved and one has to
switch to the next. For this specific case approach 4 to determine the next initial estimate
becomes

xf
(1)
n = argmin

xf

‖Rc(P∗n−1(xf ))‖. (4.8)

Because ASM applies only an input mapping, expression (4.8) can be evaluated without the
need to optimize the surrogate model. The initial estimate (when applying approach 4) is
determined as

xf
(1)
n = P∗

−1
n−1(xc

∗
n) = xf

∗
n−1 + Jp

∗−1

n−1

(
xc
∗
n − P∗n−1(xf

∗
n−1)

)
(4.9)

which does not increase the coarse computational cost since ASM requires the coarse model to
be optimized anyway. For approach 6 a correction term is added which can also be calculated
without a coarse optimization.
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4.2 1D piston problem results

The ASM algorithm described above has been successfully applied to a typical one dimensional
fluid-structure interaction problem, being the piston problem as described in section 2.1, by
T.P. Scholcz [29]. The numerical performance of ASM for this simple single interface point
problem is investigated by using three testcases (FSI-1, FSI-2 and FSI-3), at three different
timestep sizes (∆t = P/10, ∆t = P/20 and ∆t = P/30). In this way the influence of
the fluid-to-structure mass ratio ζ and the size of the applied timestep (thus the amount of
numerical damping) is analyzed. The total relative cost (with respect to the application of
the Quasi-Newton method) and the average final residual values for testcase FSI-2 (for which
the nondimensional period P = 5.96) are gathered in Table 4.1. The results for the other
testcases appear to be similar and can be found in Appendix B.

The table below contains six different variations of the ASM method which differ in the
approach that was used to define the initial fine model point at the start of every timestep.
Those approaches can be found in Section 3.5.2 and are based on previous solutions of the fine
model (1 and 2), the coarse model (3 and 6) or the mapped coarse model (the surrogate, 4 and
5). It is expected that especially for small timesteps the approaches based on previous fine
model solutions will show good behaviour, since the new solution will be in the neighbourhood
of the previous one. For large timesteps however the accuracy of these methods decreases
and an initial estimate based on the (mapped) coarse model may prove to be more efficient.

∆t = P/10 ∆t = P/20 ∆t = P/30

Approach Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av
QN 100 6.5 E-16 100 2.2 E-16 100 2.3 E-15

1: xf
(1)
n = xf

∗
n−1 98.1 8.5 E-16 103.3 3.3 E-16 111.3 9.5 E-16

2: xf
(1)
n = xf

∗
n−1 + δn 89.0 2.4 E-15 85.5 2.8 E-15 94.8 2.2 E-16

3: xf
(1)
n = xc

∗
n 96.3 4.4 E-16 100.7 4.0 E-16 107.8 1.5 E-15

4: xf
(1)
n = xs

∗
n−1 94.8 3.2 E-16 95.3 1.2 E-15 100.5 7.5 E-15

5: xf
(1)
n = xs

∗
n−1 + δn 84.4 1.1 E-14 85.9 2.1 E-15 96.5 4.1 E-16

6: xf
(1)
n = xc

∗
n + δn 83.8 1.1 E-14 85.9 1.6 E-15 95.8 4.7 E-16

Table 4.1: Relative computational cost and corresponding accuracy for different approaches to
define the initial estimate, ASM testcase FSI-2.

From the results in Table 4.1 it can be seen that for most cases the computational cost of ASM
is well below the cost required when performing the same simulations with a Quasi-Newton
method. Note that for the Quasi-Newton method applied in this work state extrapolation
(approach 2) is used to define every first fine iterate. Especially for large timesteps ASM
proves to be more efficient than QN, leading to savings in computational cost up to 17%.
Apart from the timestep size, the relative efficiency of ASM with respect to QN also increases
with increasing fluid-to-structure ratio. The higher efficiency of ASM is visualized in Fig.
4.1, which shows the number of fine and coarse model evaluations per timestep and the
relative efficiency η as function of time for testcase FSI-2 with ∆t = P/20. It is seen that
ASM decreases the amount of required fine model iterations with one almost every timestep.
Moreover, the amount of coarse model evaluations is very low, indicating that the parameter
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extraction procedure is very efficient. The latter also implies that, because the cost of one
coarse model evaluation is approximately 0.3% of one fine evaluation, by far the largest part
of the computational effort is due to the fine model. A saving of one fine model iteration per
timestep therefore indicates a large increment in efficiency for the overall coupling method.

(a) Fine model evaluations

(b) Coarse model evaluations

(c) Relative efficiency w.r.t. Quasi-Newton

Figure 4.1: Comparison of different approaches to define the initial estimate for the 1D piston
problem (testcase FSI-2), applying ASM with ∆t = P/20.

Looking at the convergence within one timestep for the different methods in Fig. 4.2, it is
seen that the overall convergence rate is higher for ASM than for QN. The largest difference
in convergence rate occurs at the first iterate. This first drop in ‖Rf‖ is much larger for ASM
than for QN. Afterward the convergence rates of both methods are more alike. From this it
can be concluded that the use of ASM might also be beneficial for loosely coupled simulations,
since for one iteration the resulting partitioning error is much smaller.
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(a) ∆t = P/10 (b) ∆t = P/20 (c) ∆t = P/30

Figure 4.2: Convergence at t = 6P for different timesteps for testcase FSI-2.

For all methods the norm of the first residual value is shown in Fig. 4.3. Here it can be
seen that all approaches show an oscillatory behaviour in their initial residual value. For
approaches 1 and 2 this is due to the velocity of the piston (see Fig. 2.4). When the velocity
is high, the previous solution is further off. For approach 4, where the previous mapping is
used, the opposite occurs. In the regions where the piston has a high velocity the behaviour
of the piston is almost linear such that the linear mapping is very accurate, resulting in a
good initial estimate. For the other approaches the oscillations are proportional to the deficit
between the fine and coarse model piston displacement, which is shown in Fig. 4.4. In all
cases the correction term δn is very efficient and damps the amplitude of the oscillations.

From Table 4.1 as well as Figs. 4.1, 4.2 and 4.3 it is clear that the ASM variations which
yield the best results are

• Approach 2: the first estimate is a function of previous results (state extrapolation),

• Approach 5: the optimal mapping of the previous timestep is applied to the coarse
model solution at the current timestep in combination with a penalty term,

• Approach 6: the first estimate equals the coarse model solution at the current timestep
in combination with a penalty term.

Approaches 5 and 6 are the most efficient when the applied timestep is large, like ∆t = P/10.
For slightly smaller timesteps the efficiency of approach 2 increases and tends to outperform
all other approaches. This is as expected and is also observed for testcases FSI-1 and FSI-
3. For this combination of fine and coarse models the coarse model response resembles the
fine model response relatively well, especially early in the simulation. Therefore also the
approaches based on the coarse and surrogate model without any correction term perform
reasonably well. However, both when time (and thus the deficit) increases and for coarse
models which resemble the fine model less, those approaches are likely to become less efficient.
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(a) ∆t = P/10

(b) ∆t = P/20

(c) ∆t = P/30

Figure 4.3: Initial residual value for several approaches to define the initial estimate xf
(1)
n (test

case FSI-2).

Figure 4.4: Difference between the fine and coarse model piston displacement.
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Apart from the relative computational cost, also the average fine residual value at the end
of every timestep, ‖Rf‖av, is included in Table 4.1. This value is a measure of the average
partitioning error, which in these simulations is required to be less than ε = 1 · 10−12 in order
to have a fully coupled solution. This quantity is included since it might alter the conclusions
when only looking at the computational cost. For example, if the cost of two methods is similar
one method might still be considered more efficient over the other if its average partitioning
error is smaller and thus its accuracy higher. If the bound on the partitioning error would
be loosened, this method would require less subiterations and thus have a lower cost than
the less accurate method. For the current simulation results, all partitioning errors are well
below the required value of 1 · 10−12. Looking at the applied ASM approaches it is observed
that the final partitioning error is in general slightly larger than for QN. Therefore the actual
savings in computational cost might by a little lower for other applications.

4.3 2D panel problem results

The aggressive space mapping method is also applied to the two-dimensional panel problem
for testcases FSI-4, FSI-5 and FSI-6. Detailed results for testcase FSI-5 are presented in the
current section, the other cases can be found in Appendix B. This 2D problem is different
from the 1D testcases in that it has multiple interface points. The parameter extraction
process therefore is expected to be more expensive. Moreover, from Section 2.2 it is seen that
the deficit between the fine and coarse model is much larger, especially after a few periods.
This testcase therefore is useful to investigate the robustness of the aggressive space mapping
method.

∆t = P/10 ∆t = P/30 ∆t = P/50

Approach Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av
QN 100 1.2 E-13 100 1.3 E-13 100 1.3 E-13

1: xf
(1)
n = xf

∗
n−1 77.9 2.8 E-13 89.3 2.7 E-13 103.6 2.3 E-13

2: xf
(1)
n = xf

∗
n−1 + δn 74.5 2.3 E-13 77.1 2.6 E-13 88.6 2.0 E-13

3: xf
(1)
n = xc

∗
n 76.6 2.6 E-13 91.3 3.2 E-13 110.7 1.7 E-13

4: xf
(1)
n = xs

∗
n−1 76.0 2.7 E-13 87.9 2.7 E-13 103.1 2.3 E-13

5: xf
(1)
n = xs

∗
n−1 + δn 73.8 3.0 E-13 84.5 2.4 E-13 94.9 1.8 E-13

6: xf
(1)
n = xc

∗
n + δn 76.6 2.6 E-13 91.3 3.2 E-13 110.7 1.7 E-13

Table 4.2: Relative computational cost and corresponding accuracy for different approaches to
define the initial estimate, ASM test case FSI-5.

First of all it is observed that ASM is also very effective for this more expensive 2D problem,
as the obtained efficiencies are even higher than for the 1D test problem. For the piston
problem the savings in computational cost were maximum 17%, whereas in this case savings
up to 33% are obtained. This is caused by the presence of the Broyden approximation, which
reduces to a less accurate finite difference approximation for one-dimensional problems. Again
the efficiency is highest for large timesteps and for strongly coupled problems. Moreover, the
partitioning errors for ASM are all of the same order of magnitude as for QN, thus similar
efficiency results are expected for other values of the coupling strength ε.

M.Sc. Thesis Liesbeth Florentie



38 Aggressive space mapping (ASM)

The number of fine and coarse model evaluations per timestep as well as the relative frequency
as a function of time are shown in Fig. 4.5. Every timestep at least one and often two fine
model evaluations are saved by using ASM. This comes at the cost of a large amount of
coarse model evaluations, about five times as much as were required for the 1D test problem.
This is due to the increased number of interface points which causes the parameter extraction
process to be more expensive. However, the coarse model is also cheaper (about 0.03% of a
fine evaluation) such that the coarse cost is still only a fraction of the fine cost. Furthermore
it can be seen that the algorithm is able to perform the coupling between fluid and structure
several periods after the first occurrence of flutter, where the deficit between the fine and
coarse model is very large, without a decrease in efficiency. This proves the robustness of
ASM.

(a) Fine model evaluations

(b) Coarse model evaluations

(c) Relative efficiency w.r.t. Quasi-Newton

Figure 4.5: Comparison of different approaches to define the initial estimate for the 2D panel
problem (test case FSI-5), applying ASM with ∆t = P/30.
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(a) ∆t = P/10

(b) ∆t = P/30

(c) ∆t = P/50

Figure 4.6: Initial residual value for several approaches to define the initial estimate xf
(1)
n (test

case FSI-5).

Figure 4.7: Difference between the fine and coarse model panel displacement.
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(a) t = 2P (b) t = 4P

Figure 4.8: Convergence during one timestep at different moments for test case FSI-5 with
∆t = P/30.

Finally, in Fig. 4.6 the initial residual values are shown for the different approaches that
are used to define the first fine iterate. State extrapolation (approach 2) clearly is the most
efficient, even for large timesteps. Approaches based on the (mapped) coarse model are less
effective here due to the large deficit between both models.

4.4 ASM conclusions

Overall it can be concluded that the use of aggressive space mapping to perform strongly
coupled fluid-structure interaction simulations works very well, for the 1D as well as the
2D test problem. The method can handle a wide range of fluid-to-structure mass ratios
with relatively large timesteps. Even when the fine and coarse model differ considerably the
method still shows good performances. The largest savings in computational cost are obtained
for strongly coupled problems for which large timesteps are used. The method is also more
efficient for 2D than for 1D problems.

From the previous results it is also concluded that the most efficient way to define the first
estimate of every new timestep is to use a function of solutions of previous moments in time,
here corresponding to approach 2. Although for large timesteps (mapped) coarse model
based approaches might yield better results, in general approach 2 is considered to be most
applicable for use due to its simplicity and reliability.
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Chapter 5

The generalized space mapping framework
(GSM)

In this chapter the use of the generalized space mapping (GSM) framework for fluid-structure
interaction problems is investigated. GSM is fundamentally different form ASM in that it is
a dual method which uses both input and output mappings.

5.1 The GSM algorithm

5.1.1 The surrogate model

A first example of dual space mapping is the generalized space mapping framework [8; 17].
It consists of a family of surrogate models which utilize an input mapping to reduce the
misalignment between the coarse and fine models over a region of interest. Furthermore, an
output mapping is used to ensure matching of responses and first-order derivatives between
the mapped coarse model and the fine model at the given iteration point. The general form
of the surrogate is given in (5.1), with mapping parameters xp = (A,B, c,d,E).

Rs
(j)(x) = A(j) ·Rc(B(j) · x + c(j)) + d(j) + E(j) · (x− xf

(j)) (5.1)

The mapping parameters are obtained in three stages. First of all the input mapping param-
eters A, B and c at iterate j are calculated by performing the parameter extraction process

(A(j),B(j), c(j)) = arg min
(A,B,c)

ε(j)(A,B, c) (5.2)

which aims at matching the coarse with the fine model residual. This is done by minimizing a
certain matching condition ε(j), which is given in (5.7). Afterward, a perfect match between
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the responses of the surrogate and the fine model is ensured by the addition of the output
mapping

d(j) = Rf (xf
(j))−A(j) ·Rc(B(j) · xf

(j) + c(j)). (5.3)

Finally, GSM aims at matching the first order derivatives of the surrogate and the fine model
through the last term in (5.1). The mapping parameter E(j) is defined as

E(j) = Jf (xf
(j))−A(j) · Jc(B(j) · xf

(j) + c(j)) ·B(j). (5.4)

As mentioned before, the fine and coarse model derivatives are not available for FSI simu-
lations. Therefore the output term E(j) in (5.4) cannot be determined exact. However, a
fairly accurate approximation can be obtained by applying Broyden’s method. When apply-
ing Broyden’s method to approximate both Jf and Jc, the subsequent calculation of E(j) is
based on two first order approximations. This will diminish the accuracy of the output term
in the GSM framework aimed at matching the first order derivatives, causing the term to be
of little use. A better approach consists of approximating E(j) directly. With A(j), B(j) and
c(j) constants and noting that E(j) is actually the derivative of d(j),

E(j) =
∂Rf

∂xf
(xf

(j))−A(j)∂Rc

∂xf
(B(j) · xf

(j) + c(j))

=
∂

∂xf

(
Rf (xf

(j))−A(j) ·Rc(B(j) · xf
(j) + c(j))

)
=

∂

∂xf
d(j), (5.5)

the approximation of E(j) becomes

E(j) ≈ E(j−1) +
d(j) − d(j−1) −E(j−1)∆xf

∆xf
T∆xf

∆xf
T . (5.6)

Note that this Broyden method is not reliable if ∆xf → 0. Therefore E = 0 is used if this
happens, such that no derivative information is taken into account anymore.

5.1.2 Parameter extraction

The matrices A(j) and B(j) and the vector c(j) have to be obtained by means of parameter
extraction applied to a suitable matching condition ε(j). In literature [8; 17] it is found that
A(j) should be diagonal. However, B(j) is usually a full matrix. This means that a total of
n2
f + 2nf parameters have to be extracted during the parameter extraction process. When

the number nf of elements in the fine model response vector is large, as is the case for FSI
simulations, the computational cost of the parameter extraction process becomes excessively
high, thereby causing the entire space mapping optimization to be inefficient. Moreover, such
a large amount of extractable variables causes the system to be severely underdetermined.
To prevent those problems, B(j) is assumed to be diagonal as well in the remainder of this
work. The total number of extractable parameters thus becomes 3nf . The system therefore
is still underdetermined. However, the use of a suitable parameter extraction approach can
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alleviate this problem. In general the applied matching condition ε(j) looks like (5.7), which
accounts for MPE, GPE and constrained PE.

ε(j)(A,B, c) =

j∑
k=1

wk‖Rf (xf
(k))−A ·Rc(B · xf

(k) + c)‖

+

j∑
k=1

vk‖E(k)‖ (5.7)

+ ω‖A−A0‖+ ω‖B−B0‖+ ω‖c− c0‖

In (5.7) the coefficients wk and vk are weighting factors which allow to choose the points
where the responses and derivatives are matched. The value of ω determines whether or not
and to which extend the mapping parameters are constrained to be close to their objectives.
Those objectives are chosen equal to the initial value of xp, such that the mapping closest
to the unit mapping is favoured. The penalty terms are effective to ensure uniqueness of
the parameter extraction process as long as not enough fine model evaluations have been
performed to determine the system or to use GPE. However, the coefficient ω should be small
such that its influence is small compared to the primary matching criteria, being matching
responses and/or derivatives.

5.1.3 Implementation

The general surrogate model defined by (5.1) allows for a broad range of different surro-
gate models. By preconditioning some of the mapping parameters different surrogates with
different flexibility (the ability to match the fine model, which depends on the number of
model parameters) can be created. For example, when no derivative information is available
one can set E = 0 and vk = 0. Choosing the proper amount of flexibility is an important
issue, since it affects the uniqueness of the parameter extraction process as well as the ex-
trapolation properties of the model. Models with a too high flexibility may provide excellent
matching at the current iteration point, but poor matching elsewhere (so poor extrapolation)
and therefore slow down or even prevent convergence of the algorithm. A possible solution
to ensure convergence consists of the adaptive bounds approach, see section 3.4. By adapting
the bounds for the extractable parameters relative to the obtained match, the flexibility of
the model is decreased every iteration, thereby ensuring convergence to unique and suitable
mapping parameters.

Note that this dual space mapping approach requires twice as many coarse/surrogate opti-
mizations per timestep as fine model evaluations. This means that the coarse computational
cost will be at least twice as high compared to the aggressive space mapping method. This
method will therefore only be beneficial when less iterations are required to resolve a timestep
and the cost per coarse model evaluation is small. However, due to the combination of both
input and output mappings the current surrogate model can be very flexible. Hence, it is
expected that GSM might still be applicable at times where ASM fails.
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5.2 1D piston problem results

The generalized space mapping framework is tested by application to the one-dimensional
piston problem. Several variations with respect to parameter extraction, convergence im-

provements and the definition of the first estimate xf
(1)
n are compared such that the best

approach can be identified. Only results for testcase FSI-2 are presented here, testcases FSI-1
and FSI-3 can be found in Appendix C.

5.2.1 Parameter extraction

First several approaches to perform the parameter extraction are compared with each other.
Distinction is made between single point extraction (SPE), multipoint extraction (MPE) and
gradient parameter extraction (GPE). For those methods also the influence of the addition
of a penalty term, thereby constraining the extracted parameters to be close to a certain
objective, is investigated. The results for testcase FSI-2 (the cost and average final residual
values) are presented in table 5.1 for different PE approaches with different timesteps.

For SPE only the fine and coarse residual values at the most recent iteration point are matched.
The system to be minimized during parameter extraction is always underdetermined since
three mapping parameters have to be extracted in order to define the surrogate. In this
case a Levenberg-Marquardt algorithm is used to perform the parameter extraction since
this method can deal with underdetermined systems. However, as can be seen from Table
5.1, using standard SPE as parameter extraction approach is not very efficient. Therefore
constraints are introduced which make sure that the extracted parameters do not only match
the residual values, but also that the obtained surrogate model is as close to the standard
coarse model as possible. Thus ‖xp

(j)
n − xp0‖ is minimized as well, thereby making the

system determined again such that a nonlinear least squares method can be used to extract
the mapping parameters. The weight which is used for this penalty term is ω = 0.01, since it is
found that this value is large enough to improve the convergence of the system but also small
enough to keep the surrogate flexible. It is found that this form of constrained SPE improves
the standard SPE approach a lot. Other possibilities for the implementation of constrained
SPE would be to use xp

∗
n−1 instead of the unit mapping xp0 as objective for xp

(j)
n , or the use

of a variable weighting factor which depends on the difference between the fine and coarse
residual. Both were tested but did not yield additional convergence improvements.

The second parameter extraction approach which is tested for the piston problem is multipoint
extraction (MPE). Since three mapping parameters have to be extracted, also three test points
are required in order to make the system determined. This is only possible from the third
iteration on, so during the first and second iteration the Levenberg-Marquardt method is
used. From the third iteration on lsqnonlin is used where the three most recent iteration
points are taken into account. Since the most recent iteration result should have the most
influence on the matching condition, the weighting factor wk is defined similar to (3.9), so

wk = αj−k with k = j − 2, j − 1, j. (5.8)
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This implies that the weight of the last iteration point is largest (and equal to 1) and decreases
for earlier iteration points. It was found that the influence of the value of α is small. Here
α = 0.3 is used since this is in the range proposed by Koziel [19] and good results are obtained
for this value. As can be seen in Table 5.2, this form of MPE performs well and is more efficient
than QN for large timesteps. Since this parameter extraction method is underdetermined for
the first two iterations, it is tested whether the use of constraints, similar as for SPE, improves
the performance of GSM with MPE. However, it is found that it does not: the addition of
constraints during the first two iterations has an adverse effect on the rate of convergence.

Finally, GPE is considered as the parameter extraction approach. In this case the system
becomes determined from the second iteration on, since then two points can be used to
match the residuals and enough information is available to approximate the Jacobian E. In
this work, vj = 1 and vk = 0 for k = 1, · · · , j − 1 such that the Jacobians are matched
at the last iteration point only. This is similar as done in [8]. Applying this parameter
extraction approach to GSM does not lead to good performances. The computational cost is
much higher than when MPE is used. It is believed that this is due to the absence of exact

derivative information. The Jacobian E(j) = ∂d(j)

∂xf
is approximated using Broydens method,

which causes an approximation error which is present in both the parameter extraction process
and the output mapping term. Moreover, the function d(xf ) changes every iteration which
lowers the accuracy of the approximation of E(j). This way the accuracy of the surrogate
model and therefore the rate of convergence decreases. Again, also the effect of applying
constraints for the parameter extraction at the first iteration is investigated. This does yield
some improvements for small timesteps, but GPE still performs worse than QN.

∆t = P/10 ∆t = P/20 ∆t = P/30

Approach Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av
QN 100 6.4 E-16 100 2.2 E-16 100 2.3 E-15

SPE 176.5 7.8 E-14 242.4 3.6 E-14 284.4 3.1 E-14
Constr. SPE 104.9 5.1 E-15 104.7 3.1 E-15 107.6 9.7 E-15
Constr. SPE + TE 97.1 1.4 E-15 97.3 3.2 E-15 105.2 2.9 E-15
Constr. SPE + AB 102.2 1.5 E-15 104.4 6.9 E-16 107.9 4.7 E-16

MPE 3pt. 95.9 3.1 E-15 92.5 6.6 E-15 102.4 3.7 E-16
Constr. MPE 3pt. 112.0 2.9 E-15 111.1 6.9 E-15 110.7 1.1 E-14
MPE 4pt. 96.0 3.0 E-15 92.7 6.5 E-15 102.4 3.6 E-15
MPE 3pt. + TE 98.3 1.8 E-15 95.7 1.0 E-14 103.6 4.6 E-16
MPE 3pt. + AB 95.9 2.5 E-15 93.1 6.5 E-15 102.0 4.0 E-15

GPE 2pt. 135.2 5.3 E-16 186.1 2.6 E-16 200.4 2.1 E-16
Constr. GPE 2pt. 155.9 4.5 E-16 166.7 1.1 E-15 177.6 9.1 E-16
GPE 3pt. 122.0 4.7 E-16 127.1 9.3 E-16 151.4 8.2 E-16
GPE 2pt. + TE 98.7 6.9 E-16 99.7 2.4 E-15 105.0 5.5 E-16
GPE 2pt. + AB 135.2 2.4 E-15 185.6 1.5 E-15 200.4 1.8 E-15

Table 5.1: Relative computational cost and average final accuracy for different PE approaches
for GSM, testcase FSI-2 (TE = Taylor expansion and AB = adaptive bounds).
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The approximation quality of the different parameter extraction approaches is visualized in
Fig. 5.1, which shows the matching error between the fine and coarse model residuals at
the most recent iteration point after PE, both without and with constraints. As expected,
standard SPE yields the best match whereas d is much larger for MPE and GPE. This is due
to the fact that other factors are implemented in the matching condition. When constraints
are added the matching error is of the same order of magnitude for all methods. Note that
the difference is largest for SPE, which is also the PE approach for which the addition of
constraints is the most beneficial. Fig. 5.1 and Table 5.1 clearly show for SPE that good
approximation properties yield worse extrapolation properties, thus slow convergence.

(a)

(b)

Figure 5.1: Quality of the parameter extraction, testcase FSI-2 with ∆t = P/20.

5.2.2 Convergence improvements

From the foregoing results it is concluded that MPE performs best, whereas the performance
of GPE is rather disappointing. However, in Section 3.4 some measures which are likely to
improve the convergence are introduced. Those measures consist of predicting the values of
the mapping parameters in xp for the next iteration by means of a first order Taylor series
expansion, and introducing upper and lower limits for xp which are adjusted every iteration
with respect to the quality of the mapping. Those convergence improvements are applied to
GSM with constrained SPE, MPE and GPE. The results are also included in table 5.1 and
the number of required iterations for every PE approach is visualized in Fig. 5.2.

It is observed that the use of a Taylor series expansion for xp has a positive effect on both
SPE and GPE, where the improvement is especially large for GPE and rather small for SPE.
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For both methods the computational cost is now comparable to the cost of MPE and thus
more efficient than QN. No positive effect is observed for MPE. On the contrary, MPE even
performs slightly worse in combination with a Taylor expansion. Also here, ∇xf

xp
(j) = 0 is

used if ∆xf → 0.

The addition of adaptive bounds to the parameter extraction process on the other hand does
not yield any noticeable effects for constrained SPE, MPE and GPE. In [22] two conditions
for the application of adaptively constrained bounds are identified: the surrogate should be
over-flexible and be able to approximate the fine model with sufficient accuracy. The first
condition is satisfied. The second condition however, is only satisfied when standard SPE is
used (see Fig. 5.1), as done in [22]. For all other PE approaches some kind of measure to
reduce the approximation quality in favour of the extrapolation quality of the surrogate is
applied, thereby eliminating the effect of adaptive bounds. However, the algorithm applied
for PE does not handle bound constraints when the system is underdetermined such that no
adaptive bounds can be applied for standard SPE.

(a) Fine model evaluations for SPE

(b) Fine model evaluations for MPE

(c) Fine model evaluations for GPE

Figure 5.2: Number of fine model evaluations per timestep for the 1D piston problem (test case
FSI-2), applying GSM with different PE approaches and ∆t = P/20.
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Apart from a Taylor series expansion for the mapping parameters and adaptive bounds during
parameter extraction, it is also tested whether taking into account more points than strictly
necessary improves the convergence properties of MPE and GPE. This way the region of
applicability of the surrogate would be increased. For MPE this does not effect the compu-
tational cost, as any savings in fine evaluations are counteracted by the increased number of
coarse evaluations. This could have been expected, since the next iterate will be closer to
the current point than the previous one. Increasing the region over which the surrogate can
be used to approximate the fine model from three to four points therefore has little use. For
GPE on the other hand, the computational cost is lowered significantly. Here originally only
two points are used, and thus the third point that is added is still close enough to the current
iterate.

Although the convergence properties of SPE and GPE can be improved significantly by using
constraints, a Taylor series expansion and an additional point during the parameter extraction,
it is found that combining those convergence improvements does not always lead to additional
savings in computational cost. For constrained SPE for example, the addition of a Taylor
series expansion for xp still leads to minor improvements, but for GPE this is not the case.

5.2.3 General performance of GSM

Comparing all three parameter extraction approaches and their variations, one sees from Table
5.1 that standard MPE appears to be the most efficient method for the parameter extraction
process, exhibiting both the lowest computational cost and highest accuracy. Standard GPE
performs surprisingly bad whereas the results of constrained SPE are much better than ex-
pected, even close to the performance of MPE. Those results are also visualized in Fig. 5.3,
which shows the number of fine and coarse iterations required to resolve each timestep and the
resulting efficiency. It can be seen that for constrained SPE with a Taylor series expansion
for the mapping parameters the computational cost is comparable to the cost of standard
MPE, while it requires more fine iterations per timestep than MPE. This is however balanced
by the coarse computational cost, which is lowest for SPE. Looking at MPE, approximately
150 surrogate evaluations per timestep are required to perform the parameter extraction and
subsequent surrogate optimization. Since the cost of one surrogate evaluation is about 0.3%
of a fine model evaluation, this implies that the surrogate cost per timestep equals almost half
the cost of one fine evaluation (45% for 150 surrogate evaluations). So for GSM the number
of fine iterations does not represent the total cost of the algorithm. However, it is a good
measure to compare different types of the same parameter extraction approach.

For completeness, in Fig. 5.5 the evolution of all mapping parameters (so A, B, c, d and E
of equation (5.1)) for the different GSM approaches is shown. A clear distinction is observed
when constraints are applied, even for GPE where they are used during the first iteration
only. In those cases A and B change little from their nominal values and the match is mainly
enforced by c, which is rather large. The addition of one extra point during the parameter
extraction for MPE does not change the obtained surrogate model. As mentioned before
however, the influence of one additional point is larger for GPE, which can be seen in Fig.
5.5. Note that gaps are present in Fig. 5.5(o). At those points ∆xf became too small at the
end of the iterative process such that E = 0 was used.
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(a) Fine model evaluations

(b) Coarse model evaluations

(c) Relative efficiency w.r.t. Quasi-Newton

Figure 5.3: Computational cost of the GSM method for the 1D piston problem (FSI-2, ∆t =
P/20), applying different parameter extraction techniques.

(a) ∆t = P/10 (b) ∆t = P/20 (c) ∆t = P/30

Figure 5.4: Convergence at t = 6P for different timesteps for test case FSI-2.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 5.5: Evolution of the mapping parameters for GSM applying different PE approaches and
convergence improvements, testcase FSI-2 with ∆t = P/20.

Liesbeth Florentie M.Sc. Thesis



5.2 1D piston problem results 51

5.2.4 Initial estimate

The previous simulations were performed using state extrapolation (approach 2, (3.29)) to
define the initial estimate for every timestep. For completeness, the results for 3-point MPE
(which appears to be the most efficient and reliable parameter extraction approach for GSM)
for the other initial estimate approaches are presented in Table 5.2. In Fig. 5.6 also the first
residual values are shown, which indicate the effectiveness of the initial estimate approaches.
As for ASM, approach 2 together with approach 6, where the coarse model solution in com-
bination with a correction term is used to predict the fine model solution, appear to be the
most efficient. For small t, where the difference between the coarse and the fine model is
still small, approach 6 is the most efficient, whereas approach 2 tends to perform better than
approach 6 when time increases. From Table 5.2 it can also be seen that when the size of
the timestep decreases the efficiency of QN increases and all GSM methods tend to be less
efficient than QN.

∆t = P/10 ∆t = P/20 ∆t = P/30

Approach Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av
QN 100 6.4 E-16 100 2.2 E-16 100 2.3 E-15

1: xf
(1)
n = xf

∗
n−1 107.9 2.8 E-15 114.1 2.4 E-15 124.6 6.2 E-16

2: xf
(1)
n = xf

∗
n−1 + δn 95.9 3.1 E-15 92.5 6.6 E-15 102.3 3.5 E-15

3: xf
(1)
n = xc

∗
n 105.2 4.6 E-16 110.6 1.4 E-15 121.6 1.6 E-15

4: xf
(1)
n = xs

∗
n−1 100.4 8.0 E-16 103.1 1.2 E-15 110.7 4.9 E-15

5: xf
(1)
n = xs

∗
n−1 + δn 94.9 6.8 E-15 95.4 7.3 E-15 104.2 5.2 E-15

6: xf
(1)
n = xc

∗
n + δn 91.0 1.4 E-14 92.6 8.1 E-15 103.1 3.1 E-15

Table 5.2: Relative computational cost and corresponding accuracy for different approaches to
define the initial estimate, GSM with 3-point MPE, testcase FSI-2.

Figure 5.6: Initial residual value for several approaches to define the initial estimate xf
(1)
n for the

1D piston problem using GSM (test case FSI-2 with ∆t = P/20).
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5.3 2D panel problem results

The generalized space mapping framework is also applied to the more complex two-
dimensional panel problem. The choice of the parameter extraction approach is very im-
portant in this case, since the number of parameters to be extracted is much larger and
it is observed that the method does not converge for every parameter extraction approach.
Furthermore, it is found that solving an underdetermined system by means of the Levenberg-
Marquardt method does not work well for this amount of mapping parameters. Therefore
constraints are applied for SPE as well as for MPE and GPE as long as the system is under-
determined. The computational cost and average accuracy for testcase FSI-5 can be found
in Table 5.3 for those PE approaches as well as the combination with a Taylor series expan-
sion for the mapping parameters. Similar to the one-dimensional test problem, the addition
of a Taylor series expansion improves the efficiency of the method. Note that these results
are computed over a time span of two periods. After this moment flutter occurs and the
performance of GSM decreases drastically.

∆t = P/10 ∆t = P/30 ∆t = P/50

Approach Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av
QN 100 7.4 E-14 100 1.3 E-13 100 1.4 E-13

Constr. SPE 94.2 5.0 E-13 97.7 1.9 E-13 104.2 6.1 E-14
Constr. SPE + TE 86.6 2.9 E-13 87.9 2.1 E-13 103.2 6.2 E-14

Constr. MPE ∞ ∞ 122.2 2.2 E-13 126.7 5.9 E-14
Constr. MPE + TE 136.5 3.3 E-13 107.8 2.4 E-13 124.5 6.3 E-14

Constr. GPE 121.7 3.5 E-13 126.6 1.4 E-13 148.5 7.0 E-14
Constr. GPE + TE 107.3 3.3 E-13 114.4 1.6 E-13 125.9 6.8 E-14

Table 5.3: Computational cost and average final accuracy for the 2D panel problem applying
GSM (testcase FSI-5, taking into account 2 periods).

The number of fine and coarse model evaluations required per timestep is shown in Fig. 5.9.
All GSM methods require less iterations than the Quasi-Newton method for t < 3P . After
three periods both models deviate too much to build an accurate surrogate and the rate of
convergence decreases rapidly. After approximately four periods the deficit becomes too large
to handle and the algorithm fails to converge. It is seen that GPE crashes first, followed by
SPE and MPE respectively.

Although GSM is able to reduce the required number of iterations for the first few periods,
the efficiency gains are small. This is due to the excessive number of coarse evaluations that
are required to obtain these savings in fine computational cost. 3nf parameters have to be
extracted and nf (the number of interface points) is large, causing the parameter extraction
process to be very expensive. For SPE almost 3000 coarse evaluations are required per
timestep, leading to an additional cost of almost one fine model evaluation. For MPE and
GPE this is even twice as much. This results in the low efficiencies as shown in Fig. 5.7(c),
even before flutter occurs.
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(a) Fine model evaluations

(b) Coarse model evaluations

(c) Relative efficiency w.r.t. Quasi-Newton

Figure 5.7: Computational cost of the GSM method for the 2D panel problem (FSI-5, ∆t =
P/30), applying different parameter extraction techniques.

In Fig. 5.8 the evolution of the mapping parameters is displayed. As time increases and
both models start to deviate more, the mapping parameters deviate further from their initial
values. This proceeds until it is no longer possible to obtain a good match and the coarse
model input becomes unphysical. Note that the different parameter extraction approaches
result in different values for A whereas B and c are the same for all cases. Also the resulting
output parameter d differs, where it is clearly seen that SPE and GPE experience difficulties
with the parameter extraction first.
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(a) (b)

(c) (d)

Figure 5.8: Variation of the mapping parameters for GSM for the 2D panel problem, FSI-5 with
∆t = P/30.

Figure 5.9: Convergence of the GSM algorithm at t = 1.5P for testcase FSI-5.
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5.4 Conclusions regarding GSM for FSI applications

Looking at the results of the GSM algorithm discussed in the previous sections it is seen that
it is a space mapping method which is able to yield an improved efficiency over the Quasi-
Newton method for large timesteps. When the temporal resolution is high, QN proves to be
more efficient. However, even for large ∆t the efficiency gains are small (less than 5% and 14%
for 1D and 2D respectively) and the correct parameter extraction approach has to be chosen.
The latter is very important since the amount of parameters that have to be extracted in
order to build the surrogate is large, resulting in large coarse computational costs.

For the 1D piston problem it is found that MPE for which the last three iteration points
are taking into account is the optimal approach for parameter extraction. However, also
constrained SPE with a Taylor series expansion to improve the convergence properties yields
good results. For the 2D panel problem on the other hand, MPE performs much worse. For
very large timesteps it does not converge without the addition of a Taylor series expansion for
the mapping parameters. For this test problem constrained SPE + TE is found to perform
the best. The application of adaptive bounds during PE did not yield any improvements in
efficiency.

However, no general statements concerning the efficiency of GSM and the optimal approach
to implement it can be made. Further investigation to the influence of all coefficients has to
be performed and more test problems should be considered before one can draw conclusions
regarding the applicability of GSM for FSI problems.
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Chapter 6

Output space mapping (OSM)

6.1 The OSM algorithm

Comparing aggressive space mapping to the generalized space mapping framework presented
in the previous chapter, one notices that ASM resembles a special case of GSM. Defining

B(j) = Jp
(j) (6.1)

and

c(j) = Pj(xf
(j))− Jp

(j) · xf
(j), (6.2)

ASM reduces to that particular case of GSM where only an input mapping is applied (so
Rs(xf ) = Rc(B·xf +c)). However, due to the distinction in the determination of the mapping
(B and c are calculated instead of extracted) and the next estimate for the fine model solution
(primal instead of dual) both methods are generally considered to be completely different.

If the subset of GSM surrogates containing only an input mapping changes the entire algo-
rithm in such a drastic way, utilizing only an output mapping might do the same. Therefore
in this chapter a new surrogate is considered which only consists of the coarse model and an
output penalty term depending on the design variable,

Rs(x) = Rc(x) + O(x). (6.3)

This space mapping method is called output space mapping (OSM). Note that this surrogate
requires xc to be in the same parameter space as xf , so the coarse model should contain
some kind of interpolation if this is not the case. Therefore in the remainder of this chapter
no distinction is made and the variable x is used for both the fine and the coarse model.
Furthermore, the presence of the output term requires the use of a dual approach to determine
the next estimate for the fine model solution.
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The output term O(j)(x) in (6.3) is defined such that the surrogate model response as well as
its first derivative matches with the fine model at point x(j). Similar to the generalized space
mapping framework an output term O(j) is defined as

O(j)(x) = d(j) + E(j) · (x− x(j)) (6.4)

with d(j) and E(j) given by (6.6) and (6.7) respectively.

d(j) = d(x(j)) = Rf (x
(j))−Rc(x(j)) (6.5)

(6.6)

E(j) =
∂

∂x
(Rf (x)−Rc(x)) =

∂d

∂x
(6.7)

Where E(j) is again approximated by Broydens rank one scheme (5.6). Note that, as men-
tioned before, the Broyden approximation for E(j) looses its accuracy when ∆x → 0. When
this happens E(j) = 0 is used, which does not have a negative influence on the convergence
of the algorithm since for those cases d(j+1) ≈ d(j).

Comparing this OSM method with the surrogate used for GSM (equation (5.1)) it is clear
that this method corresponds to the case of GSM where A = I, B = I and c = 0. These
restrictions simplify the method to a great amount. Due to the absence of an input mapping,
a parameter extraction process (which was the most expensive part of GSM) is no longer
required. Building the surrogate now only demands one coarse model evaluation, after which
the mapping parameters d and E can be calculated directly. In this way, a locally perfect
mapping at x(j) is obtained in a cheap way. Moreover, due to the Broyden update used
to determine the first derivative term E, information of previous iterations is still taken
into account thus improving the extrapolation properties of the surrogate. Furthermore, the
absence of a parameter extraction process means that the function d(x) does not change for
different iterations or timesteps, making the output term E more effective than for GSM.

This space mapping method thus requires only one optimization step per iteration, opti-
mizing the surrogate (6.3) in order to determine the next estimate. As a result, the coarse
computational cost per iteration of this OSM method consists of only a fraction of the cost
required for GSM, comparable to the coarse cost of ASM. An additional advantage of OSM
is its simplicity: the lack of parameter extraction makes this method easy to implement and
no tuning of coefficients is required.

Other than a special case of GSM, OSM can also be regarded as a method which enhances
the coarse model with a prediction term. The output term O(x) actually predicts the deficit
between the fine and coarse model at a certain point x. Looking at (6.4) one recognizes a
first order Taylor series expansion of d(x) around the point x(j), such that O(j)(x(j+1)) is a
first order approximation of d(j+1).
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6.2 1D piston problem results

As for the ASM and GSM algorithms, the output space mapping method is applied to a
one-dimensional (the piston problem, section 2.1) and a two-dimensional testcase (the panel
problem, section 2.2). The numerical performance of OSM is investigated by application to
testcases with different fluid-to-structure mass ratios and timesteps. The results of testcase
FSI-2 (1D) are presented below. The results of the other testcases can be found in Appendix
D.

In the previous chapters it was found that the best approach to define the initial estimate at
the start of every new timestep is using state extrapolation. Therefore this is the approach
which is used in Figs. 6.1, 6.3 and 6.2 to compare the performances of OSM with QN. For
completeness also the cost and average partitioning error for the other approaches is included
in Table 6.1.

∆t = P/10 ∆t = P/20 ∆t = P/30

Approach Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av
QN 100 6.4 E-16 100 2.2 E-16 100 2.3 E-15

1: xf
(1)
n = xf

∗
n−1 101.7 5.2 E-16 105.7 8.3 E-16 117.4 3.8 E-16

2: xf
(1)
n = xf

∗
n−1 + δn 92.4 2.6 E-15 89.3 2.5 E-15 97.6 6.7 E-16

3: xf
(1)
n = xc

∗
n 99.3 3.8 E-16 103.6 7.7 E-16 116.3 5.1 E-16

4: xf
(1)
n = xs

∗
n−1 88.7 2.2 E-15 92.5 2.3 E-15 104.3 1.5 E-15

5: xf
(1)
n = xs

∗
n−1 + δn 87.1 2.7 E-15 90.4 2.3 E-15 99.5 1.8 E-15

6: xf
(1)
n = xc

∗
n + δn 89.9 2.7 E-15 90.0 1.9 E-15 98.8 1.4 E-15

Table 6.1: Relative computational cost and corresponding accuracy for different approaches to
define the initial estimate, OSM test case FSI-2.

First of all it is observed that OSM performs better than QN for this test problem. Savings in
computational cost up to 16% are achieved, where the best results are obtained for problems
with a high fluid-to-structure mass ratio and for large timesteps. The final partitioning error
is much smaller than the benchmark value of 1 · 10−12, but still larger than the error for QN.
Therefore the actual savings in computational cost to obtain solutions with the same accuracy
might be slightly lower than the values indicated here. This can also be seen from Fig. 6.2:
for timesteps where both methods require the same amount of fine evaluations the accuracy
of OSM is higher, but when OSM saves an iteration its accuracy is lower than for QN.

The number of required fine and coarse model evaluations to obtain the fully coupled solution
is visualized in Fig. 6.1 for 10 periods. It can be seen that for approximately half of the
timesteps OSM needs one fine evaluation less whereas for the other half of the timesteps both
methods need the same number of iterations to obtain the required accuracy. The moments
at which no savings in computational cost are achieved correspond to the times at which
a pressure wave hits the structure. Due to the additional coarse cost OSM is slightly less
efficient than QN at those moments. At all other moments however, OSM yields savings over
QN up to 20% such that overall OSM is much more efficient than QN. Finally, also the values
of the mapping parameters d and E are shown in Fig. 6.3.
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(a) Fine model evaluations

(b) Coarse model evaluations

(c) Relative efficiency w.r.t. Quasi-Newton

Figure 6.1: Computational cost for the 1D piston problem (testcase FSI-2) applying OSM with
∆t = P/20.

(a) ∆t = P/10 (b) ∆t = P/20 (c) ∆t = P/30

Figure 6.2: Convergence of the OSM method at t = 6P for testcase FSI-2.
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(a)

(b)

Figure 6.3: Evolution of the parameters defining the output mapping for OSM, testcase FSI-2
with ∆t = P/20.

6.3 2D panel problem results

OSM is also applied to the two-dimensional panel problem, where it performs very good.
Savings in computational cost up to 55% compared to the Quasi-Newton method are obtained
while the partitioning error is of the same order of magnitude for both methods. Again, the
largest savings are obtained for problems with high values for ζ where the applied timestep
is rather large. Fig. 6.4 shows the convergence rate for both OSM and QN, where the curve
for OSM is clearly steeper than for QN, proving the large difference in convergence for both
methods. The high efficiency of OSM is also shown in Fig. 6.5, from which it is clear that
the required amount of fine model evaluations to obtain the fully coupled solution is almost
halved. Furthermore, since the cost of a coarse evaluation is approximately 0.03% of the cost
of a fine model evaluation, the additional coarse computational cost is very small. Note that
where the deficit between both models increases with time, which is visualized by the value
of d in Fig. 6.6, the efficiency of OSM improves. This is a very beneficial property of OSM,
since it indicates that the method does not put stringent requirements on the coarse model
in order to obtain high efficiencies. Even when flutter is observed the computational cost to
resolve the problem does not increase, proving the robustness of the method.

Note that the good performance of OSM for this 2D problem compared to the piston problem
is not a coincidence. The output term E(j), which should ensure matching derivatives and
good extrapolation properties, reduces to a simple finite difference approximation for one-
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dimensional problems. This means that the term E(j−1) drops from (5.6) and the derivative
information of previous iterations is not taken into account anymore. So OSM bases its
surrogate on the last two iterations only for 1D problems, whereas more information can be
taken into account for 2D problems. This results in a higher accuracy and wider range of
application for the two-dimensional surrogate, thus a higher efficiency for OSM in 2D. The
difference in convergence rate between 1D and 2D OSM is visible when comparing Figs. 6.2
and 6.4.

Similar as for the one-dimensional problem, the different approaches to define xf
(1)
n are applied

for the panel problem, the results of which can be found in Table 6.2. Again it is found that,
especially when the size of ∆t decreases, state extrapolation is the most efficient.

∆t = P/10 ∆t = P/30 ∆t = P/50

Approach Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av
QN 100 1.2 E-13 100 1.3 E-13 100 1.3 E-13

1: xf
(1)
n = xf

∗
n−1 49.1 3.9 E-13 63.3 1.5 E-13 74.8 1.2 E-13

2: xf
(1)
n = xf

∗
n−1 + δn 48.0 3.5 E-13 56.0 2.5 E-13 69.9 1.3 E-13

3: xf
(1)
n = xc

∗
n 50.6 3.2 E-13 68.0 1.9 E-13 82.1 1.2 E-13

4: xf
(1)
n = xs

∗
n−1 48.9 3.4 E-13 67.9 1.9 E-13 81.2 8.7 E-14

5: xf
(1)
n = xs

∗
n−1 + δn 48.4 3.5 E-13 67.7 1.7 E-13 78.9 9.7 E-14

6: xf
(1)
n = xc

∗
n + δn 47.8 3.6 E-13 62.9 1.1 E-13 71.1 1.7 E-13

Table 6.2: Relative computational cost and corresponding accuracy for different approaches to
define the initial estimate, OSM test case FSI-5.

Figure 6.4: Convergence of the OSM method at t = 2P for testcase FSI-5.
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(a) Fine model evaluations

(b) Coarse model evaluations

(c) Relative efficiency w.r.t. Quasi-Newton

Figure 6.5: Computational cost for the 2D panel problem (test case FSI-5) applying OSM with
∆t = P/30.

Figure 6.6: Evolution of the output parameter d for testcase FSI-5, ∆t = P/30.
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6.4 Conclusion

The output space mapping method is successfully applied as a coupling method to both a
one-dimensional and a two-dimensional fluid-structure interaction problem. The method is
able to obtain a fully coupled solution with the same accuracy as the Quasi-Newton method
while requiring less fine model evaluations. The additional coarse cost is negligible, less than
1% of the cost of a fine evaluation per timestep for the panel problem and approximately 5%
for the piston problem.

Whereas for the 1D piston problem OSM is less efficient than QN at the moments the pressure
wave hits the structure, for the 2D panel problem large savings in computational cost are
obtained at all time. Moreover, the efficiency of OSM even increases for the 2D problem
when flutter occurs and the deficit between both models increases. The reason why OSM is
so much more efficient for the 2D problem is because the output term E reduces to a finite
difference approximation for one-dimensional problems, which has a large effect on the quality
of the surrogate.

Overall it is found that OSM is able to solve the partitioned FSI problem, where the total
efficiency increases with fluid-to-structure mass ratio and the size of the timestep. Moreover,
OSM appears to perform best for multi-dimensional problems.
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Chapter 7

Implicit space mapping (ISM)

7.1 The ISM algorithm

Another commonly used dual space mapping approach is implicit space mapping, introduced
by Cheng et al. in 2004 [10; 13]. The key to ISM is the concept of preassigned parameters
(xp). These are model parameters, different from the design parameters (the interface dis-
placement), which are normally fixed during the optimization process but do have a significant
influence on the optimal solution. By varying those physical parameters for the coarse model
the flexibility of the surrogate model increases thereby allowing a better match with the fine
model. For this case of dual space mapping the surrogate model looks like

Rs
(j)(x) = Rc(x,xp

(j)), (7.1)

where the preassigned parameters xp
(j) used to calibrate the coarse model are extracted from

xp
(j) =argmin

xp

(
j∑

k=1

ωk

∥∥∥Rf (xf
(j))−Rc(xf

(j),xp)
∥∥∥

+

j∑
k=1

vk

∥∥∥∥ ∂

∂xf

(
Rf (xf

(j))−Rc(xf
(j),xp)

)∥∥∥∥ (7.2)

+ω
∥∥xp − xp0

∥∥) .
Similar as for GSM one can choose between MPE, GPE, constrained parameter extraction
or a suitable combination. In this case especially constrained PE might be useful since it
is advised to keep the physical preassigned parameters as close as possible to their original
values. This in order to prevent unphysical situations for which the coarse model fails.

In (7.2) the second term on the right hand side should be approximated. This is done using
Broydens method, which is similar to (5.6) when denoting the deficit between the fine and
surrogate model as d.
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The next estimate for the fine model optimal solution is now found in a dual fashion, so by
optimizing the coarse model with the adapted preassigned parameters

xf
(j+1) = argmin

x
‖Rs

(j)(x)‖ = argmin
x
‖Rc(x,xp

(j))‖. (7.3)

Similar to GSM, ISM requires two coarse model optimizations per iteration, thereby leading
to a coarse computational cost which is at least twice as large as for ASM and OSM. Therefore
the number of required fine model evaluations will have to be smaller than for the case of
ASM/OSM in order to be efficient.

Implicit space mapping is a very simple optimization approach where the next iterate is found
by updating (physical) coarse model parameters. It has been applied for several electromag-
netic applications with great success. There it was found that it is especially useful in cases
with severe misalignment between the fine and coarse models.

7.2 Selection of the preassigned parameters

Many successful examples of the application of ISM are found in literature. Therefore it seems
worthwhile to investigate the use of it for fluid-structure interaction simulations. To do so,
first a closer look is taken at the influence of the physical parameters on the coarse model
solution in order to be able to identify appropriate preassigned parameters. For simplicity and
to prevent additional computational work, parameters defining the domain and the spatial
and temporal discretizations are not allowed to be changed. It is found that for the 1D piston
problem only the (nondimensional) spring stiffness and piston mass

m̄ =
m

ρ0L
, k̄ =

kL

ρ0c2
0

(7.4)

are suited as preassigned parameters. Adapting those preassigned parameters corresponds to
locally changing the fluid-to-structure mass ratio ζ, the natural frequency of the mass-spring
system ω and the characteristic time-scale λ,

ζ =
ρ0L

m
, ω =

√
k

m
, λ =

Lω

c0
. (7.5)

The influence of these parameters on the coarse model solution is shown in Fig. 7.1. For every
parameter the piston displacement and velocity are shown for different values, with reference
to the standard (fine model) value of the particular parameter.

Similar as for the 1D piston problem, for the 2D panel test problem the mass and stiffness
matrices are chosen as preassigned parameters. In order to avoid inconsistencies, those
matrices are adapted by multiplying them with a scalar coefficient which equals one for the
standard case. The influence of those coefficients (cm for the mass matrix and ck for the
stiffness matrix) is shown in Fig. 7.2.
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(a) Influence k̄ on piston displacement (b) Influence k̄ on piston velocity

(c) Influence m̄ on piston displacement (d) Influence m̄ on piston velocity

Figure 7.1: Influence of the nondimensional spring stiffness and piston mass for the coarse 1D
piston problem, testcase FSI-2.

As expected, changing m̄ and k̄ (or equivalently for 2D ck and cm) has a large influence on
both the frequency and amplitude of the final solution. However, because the preassigned
parameters are physical, it is not possible to assign them every arbitrary value. To start with,
they all should be positive. Moreover, they cannot be excessively small or large, as is clearly
visible in Figs. 7.2(a) and 7.2(b) where flutter occurs much sooner for small values of ck (so
low panel stiffness). Which boundaries should be applied depends on the problem.
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(a) Influence ck on interface displacement (b) Influence ck on interface velocity

(c) Influence cm on interface displacement (d) Influence cm on interface velocity

Figure 7.2: Influence of scaling the stiffness and mass matrices for the 2D panel flutter problem,
testcase FSI-4.

7.3 ISM results

In this section the implicit space mapping method is tested by applying it to the one-
dimensional piston problem with preassigned parameters k̄ and m̄ that alter the stiffness
and mass of the structure. Just as for GSM, the space mapping method is tested with differ-
ent parameter extraction approaches. Since the number of unknowns to be extracted during
the parameter extraction process is two for this case, MPE is applied using the last two
points and GPE is used in combination with SPE. The computational cost and the average
partitioning error are gathered in Table 7.1 for testcase FSI-2.

When looking at the different parameter extraction approaches the observations are in line
with the results for GSM (see Table 5.1). SPE performs best when constraints are added
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∆t = P/10 ∆t = P/20 ∆t = P/30

Approach Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av
QN 100 6.4 E-16 100 2.2 E-16 100 2.3 E-15

Constr. SPE 160.2 1.1 E-13 151.5 1.5 E-13 159.1 1.1 E-13
Constr. SPE + TE 153.9 1.2 E-13 147.1 1.1 E-13 154.7 1.4 E-13
MPE 153.5 1.1 E-13 152.4 1.2 E-13 159.8 1.1 E-13
MPE + TE 161.3 9.1 E-14 152.1 1.2 E-13 159.6 1.0 E-13
GPE 164.8 1.0 E-13 154.8 1.5 E-13 163.2 1.1 E-13
GPE + TE 160.5 1.2 E-13 156.4 1.2 E-13 157.4 1.2 E-13

Table 7.1: Relative computational cost and corresponding accuracy for different approaches to
perform the parameter extraction, ISM testcase FSI-2.

to keep the preassigned parameters as close as possible to their nominal values and in order
to prevent an underdetermined system, whereas for MPE this yields an adverse effect. For
GPE the influence of constraints during the first iteration is negligible. Furthermore, is was
found for GSM that the addition of a Taylor series expansion for the preassigned parameters
during the surrogate optimization has a positive effect on the convergence of the algorithm.
However, for ISM the benefits are much smaller. Only for SPE clear benefits are observed
when applying TE. It is believed that this is due to the influence of the constraints on the
result of the parameter extraction. This causes the changes in preassigned parameters to be
smoother than for MPE for example, such that the Broyden approximation of their Jacobians
is more accurate. The obtained values for k̄ and m̄ at the end of every timestep are shown in
Fig. 7.3 together with the final matching error. Especially the values for the nondimensional
mass appear to be smoother for SPE than for MPE. Furthermore, the final matching error
is large, comparable to the error when no ISM is applied (see Fig. 6.3). This indicates that
although the nondimensional mass and stiffness have a large influence on the behaviour of
the piston, they do not alter the solution considerably from one timestep/iteration to the
next. This causes the differences in performance between the applied parameter extraction
approaches to be small.

Since the preassigned parameters do not succeed in aligning both models, the performance of
implicit space mapping is rather bad. From the results shown in Table 7.1 and Fig. 7.4 it is
seen that Quasi-Newton is much more efficient than ISM. ISM requires at some points almost
twice the number of iterations required by QN. Also the coarse cost necessary to perform
the parameter extraction is high, adding approximately 30% of the cost of one fine model
evaluation every timestep. This therefore results in an average computational cost which is
about 50% higher than for QN, while the accuracy of the final solution is up to three orders
of magnitude lower.

It is concluded that, although ISM is able to obtain a fully coupled solution for the piston
problem, its performance is not good enough to be an alternative for conventional coupling
methods. In this case ISM is not able to obtain a surrogate model which sufficiently resembles
the fine model. Moreover, the attempt to do so is rather expensive, resulting in a computa-
tional cost which is much higher than for the Quasi-Newton method used as reference.
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(a) Variation of nondimensional stiffness k̄. (b) Variation of nondimensional mass m̄.

(c) Final matching error d

Figure 7.3: Variation of the preassigned parameters and the resulting matching error between
the fine and coarse model for ISM, FSI-2 with ∆t = P/20.
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(a) Number of fine model evaluations (b) Number of coarse model evaluations

(c) Relative efficiency w.r.t. Quasi-Newton (d) Convergence at t = 4P

Figure 7.4: Results for the 1D piston problem (testcase FSI-2 with ∆t = P/20), applying ISM
with different parameter extraction approaches.
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7.4 Combination of ISM with other mappings

Implicit space mapping can be used by itself, but often it is combined with another form of
space mapping, thereby allowing for a surrogate model with a larger flexibility. For example,
one can combine ISM with an output mapping as identified in section 6.1. The resulting
surrogate then looks like

Rs
(j)(x) = Rc(x,xp

(j)) + O(j)(x). (7.6)

Due to the output mapping a locally perfect match with the fine model can be achieved, while
the computational cost stays approximately the same as for standard ISM. The output term
O(x) does also improve the extrapolation properties of the surrogate, as seen in Chapter 6.

Another example consists of combining ISM with GSM, leading to the so-called Generalized
Implicit Space mapping framework GISM [18]

Rs
(j)(x) = A(j) ·Rc(B(j) · x + c(j),xp

(j)) + d(j) + E(j) · (x− xf
(j)). (7.7)

This approach leads to an even higher flexibility of the surrogate model than when only an
output mapping is added, and can increase the region of applicability considerably. However,
the number of extractable parameters increases (from 2 to 5 for the piston problem) which
causes a large increment in the coarse computational cost per iteration.

7.4.1 ISM with OSM results

Since implicit space mapping in itself does not work well for the 1D problem due to the limited
influence of k̄ and m̄ on the solution, it is investigated whether or not the combination of
ISM with an output mapping (so using a surrogate model as defined by (7.6)) improves the
results. Note that for this case constrained GPE is used instead of normal GPE since that
approach is found to be more efficient here, although the difference is small.

From Fig. 7.5 and Table 7.2 it is seen that the application of the output mapping improves
the performance of ISM a lot. The number of required fine model evaluations has decreased
significantly, and therefore also has the coarse cost. This causes the combination of implicit
and output space mapping to be more efficient than QN at some moments. However, the
overall gains in computational cost are small or even non-existing, while the accuracy is
lower than for QN. Moreover, looking back to the performance of OSM only in Section 6.2
it is observed that although OSM has a positive influence on ISM, the addition of ISM to
standard OSM lowers the efficiency.
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∆t = P/10 ∆t = P/20 ∆t = P/30

Approach Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av
QN 100 6.4 E-16 100 2.2 E-16 100 2.3 E-15

Constr. SPE 104.8 4.5 E-15 99.2 2.4 E-15 103.6 3.4 E-15
Constr. SPE + TE 98.6 1.2 E-15 91.9 4.0 E-15 101.8 8.1 E-16
MPE 106.9 2.1 E-15 104.2 2.1 E-15 106.6 4.3 E-15
MPE + TE 104.8 7.3 E-16 96.6 4.8 E-15 104.8 8.1 E-16
Constr. GPE 111.3 2.5 E-15 103.1 2.1 E-15 106.1 2.7 E-15
Constr. GPE + TE 109.8 8.2 E-16 101.5 1.8 E-15 106.4 6.4 E-16

Table 7.2: Relative computational cost and corresponding accuracy for ISM with OSM, FSI-2.

(a) Fine model evaluations (b) Coarse model evaluations

(c) Relative efficiency w.r.t. Quasi-Newton (d) Convergence at t = 4P

Figure 7.5: Results for the 1D piston problem (testcase FSI-2 with ∆t = P/20), applying ISM
in combination with OSM.
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(a) (b)

Figure 7.6: Variation of the output output mapping parameters for the combination of ISM and
OSM, testcase FSI-2 with ∆t = P/20

7.4.2 ISM with GSM results

In this section the results for the combination of ISM and GSM applied to the piston problem
are presented. Note that due to the presence of GSM the amount of extractable mapping
parameters is increased to 5. Therefore 5 points are taken into account for MPE and GPE is
combined with 4-point MPE.

Just as for the combination with OSM, GISM succeeds in lowering the required number of
fine model evaluations per timestep. However, Nf is not lowered enough to be below the
level for QN. Especially when taking into account the coarse computational cost required to
build the surrogate, GISM is less efficient. The coarse cost is very large in this case since the
amount of extractable parameters is high, making the PE process expensive.

∆t = P/10 ∆t = P/20 ∆t = P/30

Approach Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av
QN 100 6.4 E-16 100 2.2 E-16 100 2.3 E-15

Constr. SPE 115.0 5.4 E-15 107.1 3.9 E-15 109.9 6.9 E-15
Constr. SPE + TE 103.1 8.5 E-16 102.7 2.2 E-15 109.7 1.4 E-15
MPE 126.2 1.1 E-16 121.5 9.6 E-16 143.9 2.9 E-16
MPE + TE 110.7 3.3 E-16 107.4 1.4 E-15 109.6 3.7 E-16
GPE 145.2 2.3 E-14 143.3 7.1 E-14 169.4 4.1 E-14
GPE + TE 135.8 6.6 E-14 122.5 1.0 E-13 142.4 6.5 E-14

Table 7.3: Relative computational cost and corresponding accuracy for different approaches to
perform the parameter extraction, ISM with GSM testcase FSI-2.
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(a) Fine model evaluations (b) Coarse model evaluations

(c) Relative efficiency w.r.t. Quasi-Newton (d) Convergence at t = 4P

Figure 7.7: Results for the 1D piston problem applying GISM for FSI-2, ∆t = P/20.

When looking at the parameter values which determine the surrogate model in the case of
GISM, see Fig. 7.8, it is seen that k̄ and m̄ barely change. The local alignment of the
surrogate and fine model is accomplished mainly by the GSM parameters A, B and c. The
presence of the nondimensional mass and stiffness as preassigned parameters only causes an
increase in coarse computational cost while their effect on the final surrogate is minimal. It
is found that the addition of GSM to ISM is beneficial compared to standard ISM, but GSM
without ISM performs better (see Table 5.1).
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 7.8: Variation of the mapping parameters for GISM, testcase FSI-2 with ∆t = P/20.
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7.5 ISM for the 2D panel problem

For the 2D panel problem a stiffness-coefficient ck and a mass-coefficient cm are used as
preassigned parameters for the application of ISM. However, it is found that their influence
is not large enough to obtain a sufficient match between both models. Whereas for the one-
dimensional problem ISM did still converge, this is not the case for the panel problem and no
solution applying only ISM can be obtained.

The only way in which ISM works for the panel problem is when it is combined with OSM
or GSM. However, as found for the piston problem, the reason for this is just the good
performance of the latter two space mapping methods. The combination with ISM does not
yield any benefits those methods. Therefore no 2D results are presented for ISM.

7.6 Conclusion

ISM does work but is not efficient. Combining ISM with OSM or GSM improves the efficiency
a lot. However, when comparing to OSM and GSM without ISM one notices that the addition
of those extra model parameters does not yield an improved match. The number of fine model
iterations does not reduce and since two extra parameters have to be extracted the coarse
cost increases. So ISM on itself is rather inefficient and it does not improve the efficiency
when adding it to other methods.

The way ISM was programmed in this work required access to the structure solver, thereby
violating the black box approach. In theory it would be possible to apply ISM to black box
solvers, however, that would require rebuilding the system matrices every coarse iteration
thus increasing the computational cost dramatically.

Overall it is concluded that ISM does not work particularly well for FSI problems. Moreover,
since it is hard to implement for black box solvers it does not satisfy the FFAST requirements.
Therefore this method will not be considered anymore in the remainder of this work.
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Chapter 8

Comparison of the space mapping methods

In this section the previously discussed space mapping algorithms which yield the best results
are compared to each other and to the conventional Quasi-Newton method. It is investigated
how well every method performs in obtaining strongly coupled partitioned fluid-structure
interaction solutions. The methods which are considered here are:

• ASM: Aggressive space mapping

• GSM: Generalized space mapping (using 3-point MPE for the piston problem and con-
strained SPE with a Taylor series expansion for the 2D panel problem)

• OSM: Output space mapping

• QN: Quasi Newton

Approach 2 (see equation (3.29)) is used to determine the initial estimate for each timestep
since this approach was found to yield the best results for longer periods of time. For both the
1D piston problem and the 2D panel problem three testcases with variable fluid-to-structure
mass ratios are considered (see Chapter 2) for both small and large timesteps.

8.1 1D piston problem

Table 8.1 contains the computational cost (as fraction of the cost required for the Quasi-
Newton method) and the average partitioning error at the end of each timestep for the three
space mapping methods that were successfully implemented. Testcases FSI-1, FSI-2 and FSI-
3 are considered for ∆t = P/20 and ∆t = P/200, where the latter timestep size is interesting
since the amount of numerical diffusion is small and thus the effect of the pressure wave is
visible (see Figs. 2.2, 2.3 and 2.4).
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Testcase Method
∆t = P/20 ∆t = P/200

Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av

FSI-1

QN 100 1.3 E-15 100 6.5 E-16
ASM 89.6 1.5 E-15 98.4 1.2 E-16
GSM 96.9 3.7 E-15 132.1 4.8 E-17
OSM 92.7 2.1 E-15 99.6 3.6 E-16

FSI-2

QN 100 2.2 E-16 100 1.1 E-15
ASM 85.5 2.8 E-15 98.4 1.8 E-16
GSM 92.5 6.6 E-15 131.3 5.5 E-17
OSM 89.3 2.5 E-15 99.3 5.6 E-16

FSI-3

QN 100 2.4 E-16 100 5.5 E-15
ASM 84.4 6.5 E-15 97.5 8.9 E-16
GSM 92.1 1.1 E-14 128.2 1.1 E-16
OSM 88.7 4.9 E-15 99.2 3.1 E-15

Table 8.1: Relative computational cost and average final accuracy for different space mapping
methods for the 1D piston problem.

First of all it is observed that ASM proves to be the most efficient coupling method for all
cases, closely followed by OSM. The efficiency gains with respect to the Quasi-Newton method
are largest for strongly coupled problems which are solved using large timesteps, making space
mapping the method of choice for those FSI problems. However, the space mapping efficiency
decreases with the size of the applied timestep. This is especially the case for GSM, where the
method becomes much slower than QN for ∆t = P/200. So it seems like for one-dimensional
problems which require a high temporal resolution space mapping does not yield noticeable
improvements and in particular the use of GSM is not advised.

Looking at the composition of the computational cost for ∆t = P/20 if Fig. 8.1, it is observed
that QN requires the most fine model evaluations each timestep to obtain the fully coupled
solution whereas ASM and GSM require the least. The difference in performance between
the latter two space mapping methods is caused by the coarse cost necessary to lower the
number of fine model evaluations. This cost is much larger for GSM (approximately 10% of
the total cost) than for both ASM and OSM (less than 1.5%). This makes that overall ASM
is most efficient and OSM performs better than GSM although more fine model evaluations
are required. However, if a coarse model evaluation would be made cheaper, it is likely that
GSM would be more efficient than OSM for this case. This is also confirmed by the rate of
convergence shown in Fig. 8.3 where the curve for GSM lies just below the curve for OSM.

For the piston problem with a high temporal resolution the graphs in Fig. 8.2 look completely
different. Now no space mapping method is able to reduce the required number of fine model
evaluations significantly. GSM even needs more iterations than the other methods, while its
coarse cost is still high. The coarse cost of ASM and OSM also causes those methods to be
less efficient than QN at most moments. Only when a pressure wave hits the piston a peak in
efficiency is observed for space mapping, making the overall performance of ASM and OSM
still a little better than QN.
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The disappointing performance of space mapping for problems that are solved using very
small timesteps is not a surprise. ASM, GSM and OSM all make use of available input-
output information of both the fine and coarse model to build a surrogate that approximates
the fine model sufficient (at least locally) to predict its fully coupled interface displacement.
So when the timestep is that small such that already the first estimate is close to the final
solution and thus few iterations are required, little can be improved. In those cases the
surrogate is not accurate enough yet to yield huge improvements. For GSM this even slows
down the algorithm since the next iterate is determined using a surrogate that is not accurate
enough yet. This also explains why space mapping is more efficient for strongly coupled FSI
problems. For those cases more iterations are required to solve the problem, thus enough
information is available to build an accurate surrogate model and still save some iterations.

(a) Fine model evaluations

(b) Coarse model evaluations

(c) Relative efficiency w.r.t. Quasi-Newton

Figure 8.1: Computational cost of the space mapping methods for the 1D piston problem, test-
case FSI-2 with ∆t = P/20.

M.Sc. Thesis Liesbeth Florentie



82 Comparison of the space mapping methods

(a) Fine model evaluations

(b) Coarse model evaluations

(c) Relative efficiency w.r.t. Quasi-Newton

Figure 8.2: Computational cost of the space mapping methods for the 1D piston problem, test-
case FSI-2 with ∆t = P/200.
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(a) t = 5P , ∆t = P/20 (b) t = 0.5P , ∆t = P/200

Figure 8.3: Convergence of the space mapping methods for the 1D piston problem, testcase
FSI-2.

8.2 2D panel problem

The computational cost and average partitioning error of the different space mapping methods
for the two-dimensional panel problem are shown in Table 8.2. Results for different coupling
strengths and different temporal resolutions are obtained. It is observed that all methods
perform well, especially for strongly coupled problems with large timesteps. OSM is by far
the most efficient method, its computational cost is less than half of the cost required for
QN for large timesteps. When the timestep decreases its efficiency decreases as well, but
still savings of more than 30% are observed. As seen from Fig. 8.4 ASM and GSM have
approximately the same rate of convergence, in between OSM and QN. The difference in
efficiency for those methods is caused by the coarse cost. The parameter extraction process
is very expensive for GSM and rather cheap for ASM. Moreover, ASM does not require an
additional surrogate optimization but obtains the next estimate for the fine model solution
by approximating the inverse of the mapping.

The number of fine and coarse model evaluations together with the relative efficiency with
respect to QN is shown in Fig. 8.5 for ∆t = P/10 and Fig. 8.6 for ∆t = P/50. The
most salient detail is the performance of GSM. For small deviations between the fine and
the coarse model its required number of iterations is almost the same as for ASM. Its coarse
cost however is excessive, approximately 4000 evaluations which is equivalent to 1.2 fine
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evaluations, resulting in a lower efficiency. However, after a few periods GSM is not able
o perform the coupling anymore and its cost drastically increases until the algorithm fails.
The other coupling methods (QN, ASM and OSM) on the other hand are not significantly
influenced by the occurrence of flutter, keeping the efficiency relatively constant.

Note that space mapping appears to be more efficient for two-dimensional than for one-
dimensional problems. Two reasons are identified. First of all, the Broyden Jacobian approx-
imation which is used several times in the different space mapping methods reduces to a first
order finite difference approximation in 1D. Only information of the last two iterations is taken
into account, which obviously lowers the efficiency considerably. This especially influences
OSM, since there the surrogate is determined to a large extend by a Broyden approximation.
Also the effectiveness of the addition of a Taylor series expansion for the mapping parameters
lowers significantly for 1D. So space mapping, and especially OSM, cannot be applied in its
optimal form for one-dimensional problems. A second reason for the higher space mapping
efficiencies in 2D consists of the required number of iterations. Two-dimensional problems
are generally more complex, hence they usually require more subiterations in order to obtain
a fully coupled solution than 1D problems. Since space mapping requires some iterations for
initialization before it is able to perform optimal, this means that more room for improve-
ments is left for 2D problems with low temporal resolutions. The latter also explains the
higher efficiencies for problems with large fluid-to-structure mass ratios.

Testcase Method
∆t = P/10 ∆t = P/50

Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av

FSI-4

QN 100 1.8 E-13 100 2.9 E-13
ASM 71.7 4.5 E-13 96.9 8.6 E-14
GSM 84.1 4.8 E-13 108.5 3.5 E-14
OSM 51.6 2.7 E-13 70.5 9.3 E-14

FSI-5

QN 100 9.7 E-14 100 1.1 E-13
ASM 74.5 2.3 E-13 88.6 2.0 E-13
GSM 86.6 2.9 E-13 103.2 6.2 E-14
OSM 48.0 3.5 E-13 69.9 1.3 E-13

FSI-6

QN 100 2.3 E-13 100 8.0 E-14
ASM 66.9 3.4 E-13 84.5 2.7 E-13
GSM 84.6 5.4 E-13 100.4 2.0 E-13
OSM 44.7 3.3 E-13 68.9 3.5 E-13

Table 8.2: Relative computational cost and average final accuracy for different space mapping
methods for the 1D piston problem.
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(a) t = 2P , ∆t = P/10 (b) t = 2P , ∆t = P/50

Figure 8.4: Convergence of the space mapping methods for the 2D panel problem, testcase FSI-5.

(a) Fine model evaluations

(b) Coarse model evaluations

(c) Relative efficiency w.r.t. Quasi-Newton

Figure 8.5: Computational cost of the space mapping methods for the 2D panel problem, testcase
FSI-5 with ∆t = P/10.
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(a) Fine model evaluations

(b) Coarse model evaluations

(c) Relative efficiency w.r.t. Quasi-Newton

Figure 8.6: Computational cost of the space mapping methods for the 2D panel problem, testcase
FSI-5 with ∆t = P/50.

8.3 Conclusion

In this chapter the different space mapping algorithms that were discussed previously are
compared to each other and the reference method, Quasi-Newton. It is found that space
mapping is effective in lowering the computational cost in order to obtain a fully coupled
solution for the 1D piston problem and especially for the 2D panel problem. Overall, output
space mapping is found to show the best performance, closely followed by aggressive space
mapping. Especially for 2D problems, where space mapping can be applied in its optimal
form, the gains are large: OSM proves to be twice as efficient as QN. Generalized space
mapping on the other hand has a convergence rate which is comparable to ASM, but fails to
be efficient due to its huge parameter extraction cost.
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Chapter 9

Validation

In the previous chapters several space mapping methods are discussed and applied to both a
one- and a two-dimensional test problem. From the comparison of those different approaches
in Chapter 8 it is found that for the 1D piston problem both aggressive space mapping
and output space mapping yield the best results. For the 2D panel problem output space
mapping performs the best. This analysis is performed for the fine-coarse model combinations
as presented in Chapter 2. However, the question arises whether this good performance is
a general property of ASM and OSM or whether it depends on the choice of this specific
fine-coarse model combination. Therefore in the current chapter the general applicability of
output space mapping is investigated by applying this method for different fine-coarse model
combinations. This validation is performed for OSM because this method yielded by far the
best performance for the 2D problem while the difference with ASM was small for the piston
problem. Moreover, OSM is a new method which is very simple to implement and is therefore
believed to be a very promising alternative for the standard coupling methods.

9.1 Fine-coarse model combinations for the piston problem

As seen from Section 2.1, the structural dynamics are much cheaper to solve than the govern-
ing equations for the fluid. So the overall cost of the FSI problem mainly depends on the fluid
model. Therefore only the governing fluid equations will be varied when defining different fine
and coarse models, and the structural dynamics remain the same. For the one-dimensional
piston problem, OSM will be applied to the following combinations of fine and coarse models:

1A. Fine: Nonlinear Euler equations on a fixed grid,
Coarse: Linearized equations on the same grid.

1B. Fine: Nonlinear Euler equations on a fixed grid,
Coarse: Nonlinear Euler equations on a fixed but coarser grid.
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2A. Fine: Nonlinear Euler equations on a deforming domain,
Coarse: Linearized equations on a fixed grid.

2B. Fine: Nonlinear Euler equations on a deforming domain,
Coarse: Nonlinear Euler equations on a fixed but coarser grid.

The first fine-coarse model combination is the same as used before and which is described in
detail in section 2.1. The other combinations are discussed below.

9.1.1 Coarse grid coarse model for the nonlinear piston problem on a fixed
domain

This is the original fine model. In Chapter 8 it is seen that OSM performs well for the case
where the coarse model is a linearized version of the fine model. However, since the fine model
is nonlinear it might be beneficial to take into account nonlinear effects for the coarse model
as well. This is done by using the same physical model for the coarse as the fine model but
with a lower spatial accuracy, so using less finite volume cells. This implies that the coarse
model takes into account the large scale nonlinear phenomena, but neglects the smaller scales
of the solution. Due to the one-dimensionality the FSI problem has only one interface point
and hence no spatial coupling is required when using different meshes for the fine and coarse
models. Since for one-dimensional problems the computational cost scales linearly with the
number of cells, coarsening the mesh only will not lead to coarse models with a computational
cost of less than 1% compared to the fine model, as is advised by Koziel et al. [21]. Therefore
also coarsening of the convergence tolerance for the fluid dynamics is considered. The coarse
grid coarse models which are investigated here are gathered in Table 9.1.

Model Nv εfluidc εRc W̄ c/W̄ f ∆t = P/20 ∆t = P/200
|E|abs |E|rel |E|abs |E|rel

fine nonlinear 64 1E-15 1E-12 - - - - -
1A linear 64 1E-15 1E-12 0.3 % 0.022 4.4 % 0.025 5 %

1B-1 nonlinear 8 1E-15 1E-12 11.9 % 0.014 2.8 % 0.016 3.2 %
1B-2 nonlinear 8 1E-8 1E-12 6.8 % 0.014 2.8 % 0.016 3.2 %
1B-3 nonlinear 8 1E-8 1E-8 6.8 % 0.014 2.8 % 0.016 3.2 %
1B-4 nonlinear 4 1E-8 1E-12 4.3 % 0.030 6.0 % 0.041 8.2 %

Table 9.1: Coarse models which are used for the nonlinear piston problem on a fixed fluid domain.

For those coarse models the fluid density field and the piston response are shown for one
period in Figs. 9.1 and 9.2 for ∆t = P/20. The results for ∆t = P/200 are shown in
Appendix E. Note that in Fig. 9.2 the piston response of coarse models 1B-2 and 1B-3 is not
included. The reason for this is that the difference with model 1B-1 is only caused by the
different convergence criteria. However, this results in a difference in piston response which
is less than εfluidc , so less than 1 · 10−8, which is negligible and would not be visible in the
response graphs. The accuracy of the applied coarse models is also included in Table 9.1,
which contains both the average absolute and relative errors |E|abs and |E|rel. Those errors
are calculated with respect to the fine solution on a dense grid with Nv = 64 considering a
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time span of 1 period. As time increases so will the errors between the models. Note that
the average errors are slightly larger for ∆t = P/200. This is caused by the influence of the
pressure wave on the piston, which the coarse models cannot resolve accurately.

(a) Coarse model 1B-1, Nv = 8 (b) Coarse model 1B-4, Nv = 4

Figure 9.1: Nondimensional fluid density on a coarse grid, FSI-2 with ∆t = P/20.

(a) Piston displacement (b) Piston velocity

Figure 9.2: Nonlinear piston response for different models, FSI-2 with ∆t = P/20.

Comparing models 1B-1 and 1B-4 in Fig. 9.3, it is seen that, as expected, coarsening the
grid increases the required fine computational cost to obtain a fully coupled solution. This
makes sense, since it is harder to build an accurate surrogate for less accurate coarse models.
However, since model 1B-4 is cheaper to evaluate its coarse cost is lower, resulting in a higher
efficiency than for model 1B-1. So for this case the additional fine cost when using a coarser
grid is compensated by the reduced coarse cost.

However, the coarse computational cost of model 1B-1 can be reduced by loosening the
convergence criteria. When allowing a larger error during the time integration of the fluid,
the coarse cost is effectively lowered by almost 50% without affecting the fine cost. On the
other hand, increasing also the allowable coarse partitioning error (resulting in less coarse
evaluations per iteration) has a strong adverse effect on the fine work. The reason for this
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is that the output space mapping method makes use of a surrogate model (which resembles
the output of the fine model) for which the interface optimization is performed. Hence, if the
coarse model is not fully coupled more work has to be performed by the fine model to obtain
a fully coupled solution. Due to the increased number of required fine iterations in total more
coarse evaluations have to be performed.

(a) Number of fine model evaluations.

(b) Additional coarse model work.

(c) Efficiency w.r.t. Quasi Newton

Figure 9.3: Computational cost for the nonlinear piston problem on a fixed domain, OSM with
different coarse models, FSI-2, ∆t = P/20.
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Overall it is observed that the use of a coarse model consisting of a coarser grid version of
the fine model does work for output space mapping and yields good convergence results. For
this one-dimensional problem, no savings in computational cost are obtained compared to a
Quasi-Newton coupling method. However, it is shown that a fully coupled solution can be
obtained using a limited number of fine and coarse model evaluations. Therefore it is expected
that for higher dimensional problems, where the computational cost scales quadratic or even
cubic with the number of finite volume cells, the influence of the coarse evaluations on the
total cost will be limited and coarse grid OSM might perform better than Quasi-Newton
methods or even better than OSM with a linearized coarse model.

∆t = P/20 ∆t = P/200
Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av

QN 100 2.2 E-16 100 1.1 E-15
OSM: 1A 89.2 3.9 E-15 99.3 5.6 E-16
OSM: 1B-1 144.0 2.5 E-15 188.8 1.0 E-16
OSM: 1B-2 119.9 2.6 E-15 161.5 9.7 E-17
OSM: 1B-3 125.1 1.4 E-13 178.3 8.9 E-14
OSM: 1B-4 115.3 1.4 E-15 150.8 8.5 E-16

Table 9.2: Relative computational cost and corresponding accuracy for different coarse models,
OSM testcase FSI-2.

9.1.2 The nonlinear piston problem on a deforming domain

Whereas in the previous section an alternative coarse model is presented, here a substitute
for the fine model is discussed. The structural model remains the same, but the simplification
that the fluid domain does not deform is dropped. So the length of the fluid domain and hence
the size of the finite volume cells changes with the movement of the piston. This implies that
the governing equations for the fluid are given in the Arbitrary Lagrangian Eulerian (ALE)
formulation in integral form by

∂

∂t

∫
Ω(t)

q dV +

∮
∂Ω(t)

F(q, κ) · n dS = 0, (9.1)

with Ω(t) the deforming control volume, n the unit normal of the boundary ∂Ω(t) pointing
outward and q and F the state and flux vectors. The latter are defined as

q =

(
ρ
ρu

)
and F(q, κ) =

(
ρ(u− κ)

ρu(u− κ) + p

)
. (9.2)

Here κ is the time-dependent velocity of the boundary. Since (9.1) should hold for every
arbitrary domain, the governing fluid equations can be written as the semi-discrete system

∂

∂t
(wf∆x) + Afwf + Afsws = 0, (9.3)

with again wf = ( qT1 qT2 . . . qTNv
)T and ws = ( x̄p ˙̄xp )T , Af containing the fluid

discretization and Afs the influence of the structure on the fluid dynamics. This is similar
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to the semi-discrete fluid system obtained for the fixed domain problem (2.4). However, now
the grid size varies with time and should therefore be taken into account into the BDF2 time
integration scheme:

∂

∂t
(wf∆x) =

3(wf∆x)n+1 − 4(wf∆x)n + (wf∆x)n−1

2∆t
. (9.4)

The velocity κ at the boundary of each finite volume cell is chosen such that the geometric
conservation law (GCL) is satisfied. This law requires that a uniform flow is preserved on a
moving mesh and is given by

∂

∂t

∫
Ω(t)

dV−
∮
∂Ω(t)

κ · n dS = 0. (9.5)

For this case where a BDF2 scheme is used to perform the time integration, the discrete GCL
results in a BDF2 scheme for κ as well

κi+1/2 =
3xn+1

i+1/2 − 4xni+1/2 + xn−1
i+1/2

2∆t
. (9.6)

Since for the first iteration of every new timestep the domain did not change, κn,(1) = κn−1

to ensure continuous mesh velocities. The boundary conditions at the interface are

uI = κI = ẋp and
∂ρI
∂x

= 0. (9.7)

However, for a partitioned integration scheme in general κI 6= ẋp. Both velocities are only
equal when a fully coupled solution is obtained. If using uI = κI as boundary condition, the
matrix Afs drops from (9.3) and results in a cheaper fluid solve than when using uI = ẋp.
However, it is found that this has an adverse effect on the convergence speed and thus more
subiterations are required to obtain a fully coupled solution. Therefore the boundary condition
uI = ẋp is used in the remainder. Note that from the boundary conditions it follows that at
the interface κ = u and thus a locally purely Lagrangian formulation is obtained.

The density field, piston displacement and piston velocity for this nonlinear piston problem on
a deforming domain are shown in Figs. 9.4, 9.5 and 9.6 respectively for both a high temporal
resolution, thus resolving the smallest nonlinearities, and a lower temporal resolution. The
piston displacement is large and therefore the obtained density field differs considerably from
the density field obtained on a fixed mesh (which is shown in Fig. 2.2). Note that due to the
deformation of the fluid domain the period of the motion is decreased slightly compared to
the static fluid domain case. So when using space mapping for this nonlinear fine model in
combination with a coarse model on a fixed mesh, the difference in frequency between both
models will be larger compared to the fixed domain case used in the previous chapters of this
report.
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(a) ∆t = P/20 (b) ∆t = P/200

Figure 9.4: Density field of the nonlinear piston problem on a deforming domain, FSI-2.

(a) ∆t = P/20 (b) ∆t = P/200

Figure 9.5: Piston displacement of the nonlinear piston problem on a deforming domain, FSI-2.

(a) ∆t = P/20 (b) ∆t = P/200

Figure 9.6: Piston velocity of the nonlinear piston problem on a deforming domain, FSI-2.
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Output space mapping is applied to improve the convergence speed of this nonlinear problem.
The coarse models which are used are the same as for the nonlinear piston problem on the
non-deforming domain. They include the linearized piston problem on a fixed fluid domain
and the nonlinear problem on a fixed but coarse domain. The details of the coarse models
are gathered in Table 9.3. Note that, since the computational cost of the piston problem on
a deforming domain is slightly larger, the ratios of the coarse and fine costs are smaller for
this fine model. Also the errors differ, they are larger now due to the different computational
domains.

Model Nv εfluidc W̄ c/W̄ f ∆t = P/20 ∆t = P/200
|E|av |E|rel |E|av |E|rel

fine nonlin., moving 64 1E-15 - - - - -
2A lin., fixed 64 1E-15 0.2 % 0.029 5.8 % 0.037 7.4 %

2B-2 nonlin., fixed 8 1E-8 4.2 % 0.020 4.0 % 0.029 5.8 %
2B-4 nonlin., fixed 4 1E-8 2.6 % 0.034 6.8 % 0.047 9.4 %

Table 9.3: Coarse models which are used for the nonlinear piston problem on a deforming fluid
domain.

The space mapping method is applied to the test problem with settings FSI-2 for two timestep
sizes, ∆t = P/20 and ∆t = P/200. For both cases OSM is able to obtain a fully coupled
solution, see Table 9.4. Moreover, for all coarse models the efficiency is found to be higher
than for the Quasi-Newton method, while yielding a partitioning error which is approximately
two orders of magnitude smaller. The achieved savings in computational cost are especially
large for large timesteps, since then the Quasi-Newton method converges slowly. For small
timesteps QN does not experience convergence problems, but still OSM proves to be the most
efficient method. The computational cost of both the OSM and QN methods are visualized
in Fig. 9.7 for ∆t = P/20 and in Fig. E.4 for ∆t = P/200. This test problem shows again
that OSM is especially very efficient for those cases that would normally require a relative
large amount of subiterations.

With regard to the optimal coarse model it is again found that the linearized piston problem
on a fixed grid yields the best performance. This is due to its low coarse model evaluation
cost in combination with a reasonable error. However, now also the coarse grid nonlinear
models yield higher efficiencies than QN. When the number of QN subiterations is high the
output space mapping algorithm has enough time to build an accurate surrogate model and
still save computing time. For those cases OSM is able to save computing time even when
the quality and cost of the coarse model are not optimal.

From the previous results it is found that, for 1D problems, OSM does also work well for
different fine-coarse model combinations. Furthermore, it is shown that coarse grid coarse
models can be suited for use with OSM if the required number of iterations is high. When
higher dimensional problems are considered coarse grid coarse models might even outperform
linearized coarse models since their evaluation cost decreases drastically when an extra di-
mension is considered. The choice of grid size in those cases is important to obtain optimal
results. As observed large cells are preferred since they have a low computational cost while
the additional fine work is minimal (model B-4).
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∆t = P/20 ∆t = P/200
Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av

QN 100 1.9 E-13 100 9.1 E-14
OSM: 2A 51.8 4.1 E-15 75.2 2.0 E-16
OSM: 2B-2 63.3 4.0 E-15 88.3 1.2 E-15
OSM: 2B-4 57.8 1.4 E-15 82.8 1.5 E-15

Table 9.4: Relative computational cost and corresponding accuracy for different coarse models,
OSM, deforming domain testcase FSI-2.

(a) Number of fine model evaluations.

(b) Number of coarse model evaluations.

(c) Efficiency w.r.t. Quasi Newton

Figure 9.7: Computational cost for the nonlinear piston problem on a deforming domain, OSM
with different coarse models, FSI-2, ∆t = P/20.
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9.2 Coarse grid models for the two-dimensional panel problem

In the previous section it is found that for the one-dimensional piston problem OSM with
a coarse model consisting of a coarse grid version of the same fine model is able to reduce
the required number of subiterations. Since for one-dimensional problems coarsening the grid
does not reduce the evaluation time to a very large extend, no savings in overall computational
cost are achieved for the piston problem on a fixed domain. However, for two-dimensional
problems the evaluation time scales quadratically with the mesh size and thus the efficiency
of OSM with a coarse grid coarse model is expected to be higher.

For the piston theory coarse model (which is used in the previous parts of this report) the
same grid is used as for the fine model. Hence, the interface points coincide and thus the
coarse model solution can be transferred directly to the fine model variable space and vice
versa. When a coarse grid is used for the coarse model however, different meshes are obtained
for both models and thus interpolation is required when transferring data between both
parameter spaces along the panel. Therefore it is advised to choose the coarse mesh such
that the number of finite volume cells along the interface for the fine model is a multiple of
the number of coarse interface cells. In this case the transformation of variables from the
fine to the coarse variable space is fast and exact, see Fig. 9.8(a). To transfer coarse data to
the fine grid linear interpolation is used. This means that both the fluid and the structural
dynamics are evaluated for coarse input data, after which the output is transferred to the fine
parameter space. The coarse interface residual is then calculated in the fine space (see Fig.
9.8(b)), just as the mapping parameters d and E = ∂d

∂x .

(a) Fine and coarse interface
mesh.

Remove!

Extract xc from xf (exact)

Evaluate S ◦ Fc(xc)
on coarse grid

Transform S ◦ Fc(xc) to fine grid
using linear interpolation

Calculate Rc(xf ) = [S ◦ Fc(xc)]f − xf

Remove!

Coarse model
evaluation

xf

Rc(xf )

(b) Evaluation of Rc(x).

Figure 9.8: Illustration of the spatial coupling between the fine and the coarse interface mesh.
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Two coarse grid models are considered to accelerate the fluid-structure coupling by means of
OSM, models 3B-1 and 3B-2 where model 3B-2 has the coarsest mesh, see Table 9.5. The
average coarse computational cost used to calculate the ratio W̄ c/W̄ f includes all steps shown
in Fig. 9.8(b), so also the linear interpolation. Note that the low coarse cost comes with a
large error in panel response, especially when the temporal resolution is high. This is also seen
in Fig. 9.9 which shows the deviations of the different models for ∆t = P/30. For ∆t = P/10
the errors will be a bit smaller due to the low temporal accuracy whereas for ∆t = P/50 the
errors increase.

Model Nv W̄ c/W̄ f ∆t = P/10 ∆t = P/50
|E|av |E|rel |E|av |E|rel

fine lin. pot. eq. 64 - - - - -
3A piston theory 64 0.03 % 0.010 6.7 % 0.011 7.3 %

3B-1 lin. pot. eq. 16 2.08 % 0.031 20.7 % 0.043 28.7 %
3B-2 lin. pot. eq. 8 0.36 % 0.056 37.3 % 0.093 62.0 %

Table 9.5: Coarse models which are used in combination with OSM for the 2D panel problem.

(a) The generalized coordinate ag (b) Time derivative of the generalized co-
ordinate, ȧg

Figure 9.9: Evolution of the generalized coordinate for ∆t = P/30 for different models.

The output space mapping results for these combinations of fine and coarse models are gath-
ered in Table 9.6 and Figs. 9.10 and E.5. The efficiency of OSM in combination with the
coarse grid models is rather disappointing. Due to the large errors for those models multiple
iterations are necessary to build an accurate surrogate. Therefore combination 3B-1 does
only save two subiterations for ∆t = P/10, whereas combination 3A succeeded in saving 6
subiterations per timestep. For model 3B-2 the error is even that large that OSM becomes
less efficient than QN. Moreover, due to the large error the grid cannot be coarsened a lot,
resulting in coarse costs that are still rather large. This cancels the savings obtained by 3B-1
to a large extend such that eventually the overall efficiency improvement is small for this OSM
variant. This example thus shows that the gains which can be achieved by the application of
OSM depend on both the coarse computational cost and the accuracy of the coarse model. It
is desired that the coarse evaluation cost is < 1% of the fine model evaluation cost. For this
example it appears that the error should be < 25%, but it is expected that the allowable error
increases if the number of subiterations required to solve the problem increases. However, the
latter statement requires further investigation.
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∆t = P/10 ∆t = P/50
Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av

QN 100 1.1 E-13 100 1.1 E-13
OSM: 3A 48.0 2.3 E-13 69.9 1.3 E-13
OSM: 3B-1 93.3 4.1 E-13 102.5 1.6 E-13
OSM: 3B-2 112.1 3.9 E-13 103.0 1.3 E-13

Table 9.6: Relative computational cost and corresponding accuracy for different coarse models
for different methods to solve the 2D panel problem.

(a) Fine model evaluations

(b) Coarse model evaluations

(c) Efficiency w.r.t. Quasi-Newton

Figure 9.10: Performance of the OSM method for the 2D panel problem when using coarse grid
models, FSI-5 with ∆t = P/10.
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Chapter 10

Conclusions and Recommendations

This thesis contains an investigation to the use of the space mapping technique as coupling
algorithm for fluid-structure interaction simulations. The aim was to identify a generic and
robust method that is able to obtain a fully coupled solution for partitioned problems while
lowering the required computational cost with respect to conventional methods. To this end
four promising space mapping approaches were identified, implemented and compared to a
Quasi-Newton coupling algorithm for two academic test problems, being the one-dimensional
piston problem and the two-dimensional flexible panel problem.

10.1 Conclusions

Space mapping is a technique which combines the accuracy of an expensive fine model with
the computing speed of a less accurate coarse model. By building a surrogate based on the
coarse model whose output resembles the response of the fine model, most of the optimizing
computational effort is effectively shifted from the expensive fine model to the cheap coarse
model without any loss of accuracy. The space mapping approaches which were believed to
yield high efficiencies for FSI simulations are aggressive space mapping (ASM), generalized
space mapping (GSM), implicit space mapping (ISM) and output space mapping (OSM).

ASM Aggressive space mapping makes use of an input mapping for the coarse model where
an approximation to the inverse mapping is used to obtain an estimate for the fine model
solution. It is found that

• ASM performs well in obtaining strongly coupled FSI solutions. It can handle a wide
range of fluid-to-structure mass ratios for both low and high temporal resolutions and
its efficiency does not decrease when the deviation between the fine and coarse model
increases.
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• ASM lowers the computing time with respect to QN, where the gains are largest for the
2D problem with a large fluid-structure coupling that is evaluated using a low temporal
resolution.

GSM GSM builds a surrogate by employing a combination of both input and output map-
pings which are predefined. The optimal values for the mapping parameters are obtained in
a parameter extraction (PE) process. GSM was successfully implemented for both problems
where the following is observed:

• Several parameter extraction approaches are possible. However, no general conclusion
regarding the optimal approach could be drawn: for the piston problem multipoint
extraction was most efficient whereas for the panel problem constrained single point
extraction yielded the best results.

• The convergence of GSM can be improved by applying a first order Taylor series ex-
pansion for the mapping parameters during the surrogate optimization.

• GSM is able to reduce the required number of subiterations and thus the fine cost with
respect to QN. However, the PE process is very expensive (due to the large amount of
parameters to be extracted) which reduces the overall efficiency gains: the improvement
over QN is small for low temporal resolutions and GSM is less efficient than QN when
the applied timestep is small.

• GSM is hard to implement due to the large number of choices that can be made for the
PE approach and weighting factors. Convergence strongly depends on the choice you
make and is not guaranteed. Moreover, GSM is not robust: its performance diminishes
with increasing deviation between both models and it fails when the deficit becomes too
large.

OSM The output space mapping method developed in this work employs only an output
mapping. Therefore no parameter extraction process is required, making it simple to imple-
ment.

• OSM is found to be very successful for both test problems. The largest reduction in
computational cost ( > 50% with respect to QN) is achieved for the 2D problem for high
fluid-to-structure mass ratios and large timesteps. For single interface point problems
OSM performs not optimal but is still very efficient.

• OSM is simple, stable and robust. The efficiency remains constant, even when the
deficit between both models increases.

ISM This space mapping method tries to align both models by extracting the optimal
values for some physical parameters of the coarse model. The method has not been found
successful.
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• The influence of the preassigned parameters does not suffice to obtain a (local) match
between both models. For the piston problem ISM does converge but is very inefficient.
For the 2D panel problem ISM does not converge and thus no solution can be obtained.

• The performance of ISM can be improved by combining it with GSM or OSM. However,
in both cases those methods are more efficient without ISM.

• Due to the adaptation of physical parameters of the coarse model it is very hard to
implement ISM for black box solvers.

Furthermore it is found that, although accurate surrogate models are present at the end of
every timestep, state extrapolation is the most efficient approach to determine the initial
estimate for the following timestep.

Overall it is concluded that both ASM and OSM are very suited to be used for FSI simulations,
where output space mapping is found to be the most promising. Therefore, a validation is
performed for OSM in order to investigate its performance for different combinations of fine
and coarse models: coarse grid versions of the fine model are considered as coarse model
and OSM is also tested for the piston problem on a deforming domain. This resulted in the
following observations:

• The good performance of OSM seems to be model independent; it performed well for
all testcases.

• The largest gains in efficiency are obtained for problems which would normally require
a large amount of subiterations.

• Coarse grid coarse models can be used for OSM. However, it is hard to make those
models both cheap and sufficiently accurate. When the model is cheap (W̄c/W̄f < 1%
is advised) but very inaccurate few iterations are saved but the coarse cost is low. When
on the other hand the model is reasonably accurate but rather expensive many iterations
can be saved but the coarse cost is relatively high. Therefore, coarse grid models can
be used for problems that require much subiterations with conventional methods, but
are not advised for FSI problems that are already cheap to solve using conventional
methods.

M.Sc. Thesis Liesbeth Florentie



102 Conclusions and Recommendations

10.2 Recommendations and future work

Since the new FSI coupling algorithms presented in this work are only tested for some simple
academic problems, further research is required in order to be able to make general statements
regarding their performances:

• Both OSM and ASM should be tested for more complex problems. Apart from one- and
two-dimensional problems, also three-dimensional testcases have to be investigated.

• A coarse model analysis has to be performed in order to identify requirements that
should be met for a successful implementation. Limits for the coarse-to-fine cost ratio
and the coarse model error have to be obtained. This has to be done for both OSM and
ASM. The desired output of this would be a framework that helps to identify the most
suitable coarse model for every FSI problem under consideration.

• If from the above recommendations OSM and/or ASM are found to be very effective, it
would be beneficial to develop a general coupling shell for black box solvers which uses
space mapping to perform the subiterations.

• Although in this work GSM is not found to be efficient, its performance may be im-
proved by using a more efficient algorithm to perform the parameter extraction (here
the Matlab R© function lsqnonlin is used). Moreover, GSM has to be applied to more test
problems in order to draw general conclusions regarding the optimal PE approach and
coefficient values. Only when more research is performed general statements concerning
the performance of GSM for FSI problems can be made.
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Appendix A

Pseudocode of the space mapping algorithms

A.1 Pseudocode of the ASM algorithm

Aggressive space mapping

1: for t = 0 : ∆t : tfinal do
2: j = 1
3: ∇xf

P1 = I
4: xc

∗
n = argminx ‖Rc(x)‖

5: xf
1
n = xf

∗
n−1 + δn−1 +∇tδ ·∆t

6: Rf
1
n = S ◦ F (xf

1
n)− xf

1
n

7: while ‖Rf
j
n‖ > ε

8: P (xf
j
n) = argminx ‖Rc(x)‖

9: if j > 1

10: ∆x = xf
j
n − xf

j−1
n

11: ∇xf
Pj = ∇xf

Pj−1 +
P (xf

j
n)−P (xf

j−1
n )−∇xf

Pj−1·∆x

∆xT ∆x
∆xT

12: end if

13: xf
j+1
n = xf

j
n + (∇xf

Pj)
−1 · (xc

∗
n − P (xf

j
n))

14: Rf
j+1
n = S ◦ F (xf

j+1
n )− xf

j+1
n

15: j = j + 1
16: end while

17: xf
∗
n = xf

j
n

18: δn = xf
∗
m − xf

∗
n−1

19: ∇tδ = 3δn−4δn−1+δn−1

2∆t
20: n = n+ 1
21: end for

Table A.1: Pseudocode of the ASM algorithm
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A.2 Pseudocode for the GSM framework

For the generalized space mappig framework the number of mapping parameters is five, three
of which have to be obtained by means of a parameter extraction process. In the pseudocodes
presented below the vector xp

j is used to represent the collection of extractable parameters,
so xp

j = (Aj ,Bj , cj).

Matching condition ε(A,B, c) for GSM

1: if j < N then N = j
2: if N 6= 1
3: if (j ≥ 2 and vk 6= 0)
4: ω = 0
5: elseif j ≥ 3
6: ω = 0
7: end
8: end
9: ε = [ ]
10: for k = j −N + 1 : 1 : j

11: ε = [ ε ; αj−k · ‖Rf
k −A ·Rc(B · xf

k
n + c)‖ ]

12: end
13: if vk 6= 0

14: ∆x = xf
j
n − xf

j−1
n

15: ε = [ ε ; vk ·
∥∥∥Ej−1 + A·Rc(B·xf

j+c)−dj−1−Ej−1∆x
∆xT ∆x

∆xT
∥∥∥ ]

16: end
17: if ω 6= 0
18: ε = [ ε ; ω · ‖xp − xp0‖ ]
19: end

Table A.2: Pseudocode for the matching condition as used for GSM.
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Generalized space mapping framework

1: Initialize: A = I , B = I , c = 0 , d = 0 , E = 0 , n = 1
2: for t = 0 : ∆t : tfinal do
3: j = 1
4: xc

∗
n = argminx ‖Rc(x)‖

5: xf
1
n = xf

∗
n−1 + δn−1 +∇tδ ·∆t

6: Rf
1
n = S ◦ F (xf

1
n)− xf

1
n

7: while ‖Rf
j
n‖ > ε

8: Aj ,Bj , cj = argminlj<A,B,c<uj ‖εj(A,B, c)‖
9: dj = Rf

j
n −Aj ·Rc(Bj · xf

j
n + cj)

10: if (AB = 1 and dj < αdecr · dmax)
11: δj+1 = δj/βdecr
12: elseif (AB = 1 and dj > αincr · dmax)
13: δj+1 = δj · βincr
14: end if
15: lj+1 = xp

j − δj+1 and uj+1 = xp
j + δj+1

16: if j > 1

17: ∆x = xf
j
n − xf

j−1
n

18: Ej = Ej−1 + dj−dj−1−Ej−1∆x
∆xT ∆x

∆xT

19: if TE = 1

20: ∇jxf xp = ∇j−1
xf xp +

xp
j−xp

j−1−∇j−1
xf

xp·∆x

∆xT ∆x
∆xT

21: x̃jp(xf ) = xp
j +∇jxf xp · (xf − xf

j
n)

22: else

23: x̃jp = xp
j

24: end if
25: end if

26: Rs
j(x) = Ãj ·Rc(B̃j · x + c̃j) + d̃j + Ẽj · (x− xf

j
n)

27: xf
j+1
n = argminx ‖Rs

j(x)‖
28: Rf

j+1
n = S ◦ F (xf

j+1
n )− xf

j+1
n

29: j = j + 1
30: end while

31: xf
∗
n = xf

j
n

32: δn = xf
∗
m − xf

∗
n−1

33: ∇tδ = 3δn−4δn−1+δn−1

2∆t
34: n = n+ 1
35: end for

Table A.3: Pseudocode of the GSM algorithm
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A.3 ISM pseudocode

Implicit space mapping is a dual space mapping approach, just like GSM. Therefore the
pseudocode of the ISM algorithm is very similar to the pseudocode of GSM. The only dif-
ferences are the extractable parameters, which are now xp

j = (k̄j , m̄j) with xp0 = (1, 1),
and the surrogate model, now Rs

j(x) = Rc(x, k̄j , m̄j). When ISM is combined with OSM
also the output mapping parameters dj and Ej are taken into account, similar to as done
for the GSM algorithm. When ISM is combined with GSM the extractable parameters are
xp

j = (k̄j , m̄j ,Aj ,Bj , cj) and the surrogate becomes Rs(x) = Aj ·Rc(Bj · x + cj , k̄j , m̄j) +

dj + Ej · (x− xf
j
n).

A.4 Pseudocode for the output mapping algorithm

Output space mapping

1: Initialize: d = 0 , E = 0 , n = 1
2: for t = 0 : ∆t : tfinal do
3: j = 1
4: xc

∗
n = argminx ‖Rc(x)‖

5: xf
1
n = xf

∗
n−1 + δn−1 +∇tδ ·∆t

6: Rf
1
n = S ◦ F (xf

1
n)− xf

1
n

7: while ‖Rf
j
n‖ > ε

8: dj = Rf
j
n −Rc(xf

j
n)

9: if j > 1

10: ∆x = xf
j
n − xf

j−1
n

11: Ej = Ej−1 + dj−dj−1−Ej−1∆x
∆xT ∆x

∆xT

12: end if

13: Rs
j(x) = Rc(x) + dj + Ej · (x− xf

j
n)

14: xf
j+1
n = argminx ‖Rs

j(x)‖
15: Rf

j+1
n = S ◦ F (xf

j+1
n )− xf

j+1
n

16: j = j + 1
17: end while

18: xf
∗
n = xf

j
n

19: δn = xf
∗
m − xf

∗
n−1

20: ∇tδ = 3δn−4δn−1+δn−1

2∆t
21: n = n+ 1
22: end for

Table A.4: Pseudocode of the OSM algorithm
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Appendix B

Additional results for ASM

B.1 1D piston problem

∆t = P/10 ∆t = P/20 ∆t = P/30

Approach Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av
QN 100 3.7 E-16 100 1.3 E-15 100 2.5 E-15

1: xf
(1)
n = xf

∗
n−1 97.4 8.3 E-16 107.7 2.6 E-16 109.7 2.5 E-15

2: xf
(1)
n = xf

∗
n−1 + δn 88.5 2.7 E-15 89.6 1.5 E-15 96.9 1.2 E-16

3: xf
(1)
n = xc

∗
n 95.8 4.1 E-16 105.5 3.9 E-16 109.7 2.1 E-15

4: xf
(1)
n = xs

∗
n−1 93.3 6.7 E-16 99.1 1.5 E-15 102.8 4.8 E-15

5: xf
(1)
n = xs

∗
n−1 + δn 84.0 9.4 E-15 89.4 1.7 E-15 97.6 2.9 E-16

6: xf
(1)
n = xc

∗
n + δn 83.6 9.0 E-15 89.4 1.4 E-15 97.1 3.1 E-16

Table B.1: Relative computational cost and corresponding accuracy for different approaches to
define the initial estimate, ASM test case FSI-1.

∆t = P/10 ∆t = P/20 ∆t = P/30

Approach Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av
QN 100 3.4 E-15 100 2.4 E-16 100 8.2 E-16

1: xf
(1)
n = xf

∗
n−1 95.8 1.6 E-15 101.3 7.5 E-16 104.4 1.1 E-15

2: xf
(1)
n = xf

∗
n−1 + δn 87.1 3.1 E-15 84.4 6.5 E-15 88.3 8.2 E-16

3: xf
(1)
n = xc

∗
n 92.2 6.5 E-16 99.7 2.5 E-15 113.4 1.4 E-15

4: xf
(1)
n = xs

∗
n−1 89.9 8.8 E-16 93.7 1.2 E-15 99.7 1.4 E-15

5: xf
(1)
n = xs

∗
n−1 + δn 82.5 6.3 E-15 86.4 3.1 E-15 90.6 2.8 E-15

6: xf
(1)
n = xc

∗
n + δn 83.1 4.3 E-15 86.8 2.7 E-15 90.8 2.7 E-15

Table B.2: Relative computational cost and corresponding accuracy for different approaches to
define the initial estimate, ASM test case FSI-3.
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B.2 2D panel problem

∆t = P/10 ∆t = P/30 ∆t = P/50

Approach Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av
QN 100 1.8 E-13 100 1.8 E-13 100 3.0 E-13

1: xf
(1)
n = xf

∗
n−1 78.8 1.5 E-13 94.7 1.5 E-13 101.1 2.8 E-13

2: xf
(1)
n = xf

∗
n−1 + δn 71.7 4.5 E-13 80.1 1.8 E-13 96.9 8.6 E-14

3: xf
(1)
n = xc

∗
n 77.7 2.3 E-13 101.8 2.2 E-13 114.6 1.0 E-13

4: xf
(1)
n = xs

∗
n−1 77.3 1.7 E-13 95.2 3.3 E-13 102.8 2.9 E-13

5: xf
(1)
n = xs

∗
n−1 + δn 75.7 1.7 E-13 93.4 1.4 E-13 100.2 1.3 E-13

6: xf
(1)
n = xc

∗
n + δn 77.7 2.3 E-13 101.9 2.1 E-13 114.9 1.1 E-13

Table B.3: Relative computational cost and corresponding accuracy for different approaches to
define the initial estimate, ASM test case FSI-4.

∆t = P/10 ∆t = P/30 ∆t = P/50

Approach Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av
QN 100 2.3 E-13 100 1.9 E-13 100 7.8 E-14

1: xf
(1)
n = xf

∗
n−1 69.8 3.0 E-13 96.2 2.4 E-13 99.6 1.9 E-13

2: xf
(1)
n = xf

∗
n−1 + δn 66.9 3.4 E-13 85.0 2.5 E-13 84.5 2.7 E-13

3: xf
(1)
n = xc

∗
n 76.9 3.2 E-13 102.5 9.2 E-13 110.1 3.7 E-13

4: xf
(1)
n = xs

∗
n−1 75.7 3.1 E-13 101.2 2.9 E-13 107.2 2.3 E-13

5: xf
(1)
n = xs

∗
n−1 + δn 74.6 3.0 E-13 96.6 3.4 E-13 104.8 1.5 E-13

6: xf
(1)
n = xc

∗
n + δn 76.9 3.2 E-13 102.5 9.1 E-13 108.3 5.7 E-13

Table B.4: Relative computational cost and corresponding accuracy for different approaches to
define the initial estimate, ASM test case FSI-6.
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Appendix C

Additional results for GSM

C.1 1D piston problem

∆t = P/10 ∆t = P/20 ∆t = P/30

Approach Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av
QN 100 3.7 E-16 100 1.3 E-15 100 2.5 E-15

SPE 180.8 7.4 E-14 252.4 4.5 E-14 298.3 5.1 E-14
Constr. SPE 105.1 4.0 E-15 107.3 5.1 E-15 108.6 1.0 E-14
Constr. SPE + TE 98.6 1.9 E-15 108.4 1.3 E-15 110.5 2.0 E-15
Constr. SPE + AB 103.9 3.6 E-16 110.3 3.7 E-16 110.3 5.0 E-16

MPE 3pt. 96.4 2.7 E-15 97.4 3.7 E-15 104.3 1.8 E-15
Constr. MPE 3pt. 112.3 2.8 E-15 112.1 7.0 E-15 112.1 9.8 E-15
MPE 4pt. 96.5 2.7 E-15 97.4 3.7 E-15 104.3 1.7 E-15
MPE 3pt. + TE 99.6 2.0 E-15 102.2 1.9 E-15 105.1 3.3 E-16
MPE 3pt. + AB 96.4 2.5 E-15 97.3 4.4 E-15 104.2 2.4 E-15

GPE 2pt. 133.7 9.1 E-15 193.0 3.7 E-14 214.1 3.2 E-14
Constr. GPE 2pt. 154.3 6.7 E-14 172.6 1.1 E-13 178.9 1.3 E-13
GPE 3pt. 122.5 2.3 E-15 135.6 1.4 E-15 157.4 2.3 E-15
GPE 2pt. + TE 98.9 2.1 E-15 102.8 3.1 E-15 107.8 1.9 E-15
GPE 2pt. + AB 133.6 9.1 E-15 193.0 3.7 E-14 214.0 3.2 E-14

Table C.1: Relative computational cost and average final accuracy for different PE approaches
for GSM, testcase FSI-1 (TE = Taylor expansion and AB = adaptive bounds).
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∆t = P/10 ∆t = P/20 ∆t = P/30

Approach Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av
QN 100 3.4 E-15 100 2.4 E-16 100 8.2 E-16

SPE 152.6 2.5 E-14 ∞ ∞ ∞ ∞
Constr. SPE 103.5 6.9 E-15 105.5 4.8 E-15 108.9 4.2 E-15
Constr. SPE + TE 97.3 2.7 E-15 99.7 3.1 E-15 103.8 1.9 E-15
Constr. SPE + AB 103.7 4.6 E-16 111.1 2.6 E-16 115.4 3.4 E-16

MPE 3pt. 95.1 5.3 E-15 92.5 1.1 E-14 98.4 4.9 E-15
Constr. MPE 3pt. 111.8 2.3 E-15 108.6 5.4 E-15 109.8 4.3 E-15
MPE 4pt. 95.4 6.4 E-15 92.6 1.1 E-14 98.6 4.6 E-15
MPE 3pt. + TE 99.0 9.2 E-16 98.0 3.4 E-15 102.1 9.2 E-16
MPE 3pt. + AB 95.2 3.2 E-15 92.5 9.8 E-15 98.2 4.9 E-15

GPE 2pt. 136.4 2.2 E-14 164.3 1.5 E-14 206.2 3.5 E-14
Constr. GPE 2pt. 151.4 8.5 E-14 168.8 1.2 E-13 183.9 1.2 E-13
GPE 3pt. 120.6 2.9 E-15 139.4 5.8 E-15 185.6 6.1 E-15
GPE 2pt. + TE 99.2 1.1 E-15 97.6 6.4 E-15 100.3 2.6 E-15
GPE 2pt. + AB 136.4 2.2 E-14 164.3 1.5 E-14 206.2 3.5 E-14

Table C.2: Relative computational cost and average final accuracy for different PE approaches
for GSM, testcase FSI-3 (TE = Taylor expansion and AB = adaptive bounds).
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C.2 2D panel problem

∆t = P/10 ∆t = P/30 ∆t = P/50

Approach Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av
QN 100 2.0 E-13 100 9.2 E-14 100 2.7 E-13

Constr. SPE 98.4 3.3 E-13 96.8 2.0 E-13 108.2 2.7 E-13
Constr. SPE + TE 84.7 4.9 E-13 87.5 2.3 E-13 108.5 3.5 E-14

Constr. MPE ∞ ∞ 120.6 2.6 E-13 129.6 4.3 E-14
Constr. MPE + TE ∞ ∞ 107.2 2.5 E-13 130.6 3.5 E-14

Constr. GPE 123.5 3.4 E-13 128.2 1.6 E-13 144.9 8.1 E-14
Constr. GPE + TE 113.1 3.4 E-13 118.2 1.8 E-13 132.8 3.5 E-14

Table C.3: Computational cost and average final accuracy for the 2D panel problem applying
GSM (testcase FSI-4, taking into account 2 periods).

∆t = P/10 ∆t = P/30 ∆t = P/50

Approach Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av
QN 100 2.5 E-13 100 2.3 E-13 100 6.6 E-14

Constr. SPE 122.7 6.0 e-13 129.9 2.1 E-13 108.6 2.4 E-13
Constr. SPE + TE 84.6 5.4 E-13 103.2 1.7 E-13 100.4 2.0 E-13

Constr. MPE ∞ ∞ ∞ ∞ 146.8 1.9 E-13
Constr. MPE + TE ∞ ∞ 123.7 2.4 E-13 123.2 2.5 E-13

Constr. GPE 133.2 4.9 E-13 150.2 1.9 E-13 143.9 1.9 E-13
Constr. GPE + TE 120.4 9.4 E-13 131.9 2.1 E-13 139.9 2.2 E-13

Table C.4: Computational cost and average final accuracy for the 2D panel problem applying
GSM (testcase FSI-6, taking into account 2 periods).
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Appendix D

Additional results for OSM

D.1 1D piston problem

∆t = P/10 ∆t = P/20 ∆t = P/30

Approach Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av
QN 100 3.7 E-16 100 1.3 E-15 100 2.5 E-15

1: xf
(1)
n = xf

∗
n−1 107.9 3.3 E-16 110.0 4.6 E-16 118.7 3.4 E-16

2: xf
(1)
n = xf

∗
n−1 + δn 90.9 4.5 E-15 92.7 2.1 E-15 98.5 4.6 E-16

3: xf
(1)
n = xc

∗
n 99.8 2.3 E-16 108.6 6.3 E-16 119.3 3.6 E-16

4: xf
(1)
n = xs

∗
n−1 88.5 2.9 E-15 95.7 1.8 E-15 103.9 1.0 E-15

5: xf
(1)
n = xs

∗
n−1 + δn 87.0 3.1 E-15 93.3 1.6 E-15 100.1 9.7 E-16

6: xf
(1)
n = xc

∗
n + δn 88.9 4.7 E-15 93.3 2.0 E-15 98.5 1.9 E-15

Table D.1: Relative computational cost and corresponding accuracy for different approaches to
define the initial estimate, OSM test case FSI-1.

∆t = P/10 ∆t = P/20 ∆t = P/30

Approach Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av
QN 100 3.4 E-15 100 2.4 E-16 100 8.2 E-16

1: xf
(1)
n = xf

∗
n−1 99.9 1.3 E-15 104.9 2.2 E-15 110.9 1.4 E-15

2: xf
(1)
n = xf

∗
n−1 + δn 92.1 1.1 E-15 88.7 4.9 E-15 93.0 9.7 E-16

3: xf
(1)
n = xc

∗
n 94.8 5.8 E-16 101.6 1.3 E-15 113.7 9.7 E-16

4: xf
(1)
n = xs

∗
n−1 85.8 2.7 E-15 98.1 6.1 E-16 106.2 5.4 E-16

5: xf
(1)
n = xs

∗
n−1 + δn 84.0 3.1 E-15 96.4 4.7 E-16 101.5 7.0 E-16

6: xf
(1)
n = xc

∗
n + δn 87.1 3.1 E-15 90.4 2.0 E-15 96.1 2.1 E-15

Table D.2: Relative computational cost and corresponding accuracy for different approaches to
define the initial estimate, OSM test case FSI-3.
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D.2 2D panel problem

∆t = P/10 ∆t = P/30 ∆t = P/50

Approach Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av
QN 100 1.8 E-13 100 1.8 E-13 100 3.0 E-13

1: xf
(1)
n = xf

∗
n−1 51.2 2.9 E-13 67.1 1.6 E-13 75.8 1.6 E-13

2: xf
(1)
n = xf

∗
n−1 + δn 51.6 2.7 E-13 64.6 1.4 E-13 70.5 2.3 E-13

3: xf
(1)
n = xc

∗
n 52.7 2.9 E-13 72.4 2.1 E-13 85.8 1.1 E-13

4: xf
(1)
n = xs

∗
n−1 52.8 3.2 E-13 75.8 1.2 E-13 86.6 1.5 E-13

5: xf
(1)
n = xs

∗
n−1 + δn 52.4 3.3 E-13 72.2 1.4 E-13 83.7 1.3 E-13

6: xf
(1)
n = xc

∗
n + δn 52.3 2.5 E-13 66.4 1.7 E-13 81.3 1.2 E-13

Table D.3: Relative computational cost and corresponding accuracy for different approaches to
define the initial estimate, OSM test case FSI-4.

∆t = P/10 ∆t = P/30 ∆t = P/50

Approach Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av Cost [%] ‖Rf‖av
QN 100 2.3 E-13 100 1.9 E-13 100 8.0 E-14

1: xf
(1)
n = xf

∗
n−1 46.8 3.4 E-13 70.6 2.4 E-13 75.9 1.7 E-13

2: xf
(1)
n = xf

∗
n−1 + δn 44.7 3.3 E-13 66.0 1.5 E-13 69.0 3.5 E-13

3: xf
(1)
n = xc

∗
n 50.1 4.1 E-13 79.5 1.7 E-13 88.9 1.6 E-13

4: xf
(1)
n = xs

∗
n−1 48.9 4.1 E-13 75.0 2.4 E-13 85.1 2.9 E-13

5: xf
(1)
n = xs

∗
n−1 + δn 48.5 3.8 E-13 74.3 2.8 E-13 85.2 2.7 E-13

6: xf
(1)
n = xc

∗
n + δn 48.6 4.1 E-13 70.5 3.2 E-13 81.5 8.1 E-14

Table D.4: Relative computational cost and corresponding accuracy for different approaches to
define the initial estimate, OSM test case FSI-6.
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Appendix E

Additional validation results

E.1 Nonlinear piston problem, fixed domain

(a) Coarse model 1B-1, Nv = 8 (b) Coarse model 1B-4, Nv = 4

Figure E.1: Nondimensional fluid density on a coarse grid, FSI-2 with ∆t = P/200.

(a) Piston displacement (b) Piston velocity

Figure E.2: Nonlinear piston response for different grid sizes, FSI-2 with ∆t = P/200.
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(a) Number of fine model evaluations.

(b) Additional coarse model work.

(c) Efficiency w.r.t. Quasi Newton

Figure E.3: Computational cost for the nonlinear piston problem on a fixed domain, OSM with
different coarse models, FSI-2, ∆t = P/200.
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E.2 Nonlinear piston problem, deforming domain

(a) Number of fine model evaluations.

(b) Number of coarse model evaluations.

(c) Efficiency w.r.t. Quasi Newton

Figure E.4: Computational cost for the nonlinear piston problem on a deforming domain, OSM
with different coarse models, FSI-2, ∆t = P/200.
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E.3 Panel problem

(a) Fine model evaluations

(b) Coarse model evaluations

(c) Efficiency w.r.t. Quasi-Newton

Figure E.5: Performance of the OSM method for the 2D panel problem when using coarse grid
models, FSI-5 with ∆t = P/50.
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