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Abstract
The common use of cost minimisation to support energy system design decisions hides
from view many economically comparable design options that stakeholders may prefer.
Modelling to generate alternatives (MGA) is increasingly popular as a way to go beyond
least-cost designs, providing stakeholders with diverse portfolios to appraise. However,
generating all the feasible designs is not computationally viable; modellers must choose
what design features to generate diversity around, despite not knowing which trade-
offs matter the most in practice. Therefore, MGA alone cannot ensure the generation of
design options that match stakeholder needs. To address this shortcoming, we propose a
human-in-the-loop (HITL) approach that automatically integrates stakeholder preferences
into MGA. We elicit preferences by letting stakeholders interact with a tentative MGA
design space. Hence, we decode those preferences to feed them back to the MGA algo-
rithm and perform a guided search. This search produces a human-trained design space
with more designs that mirror the elicited preferences. A synthetic experiment for the
Portuguese energy system shows that HITL-MGA may facilitate consensus formation,
promising to accelerate technically and socially feasible energy transition decisions.

1. Introduction
Despite the urgency of climate mitigation, progress on the energy transition remains insuf-
ficient [1]. One of the key reasons for such insufficient progress is the difficulty in finding
carbon-neutral energy system designs that are both technically feasible and acceptable for the
many involved stakeholders, from citizens to industry, system operators, and policymakers
[2]. Energy system optimisation models are increasingly looked at as a way to support these
complex planning decisions, but severe limitations hamper their effectiveness. In particular,
previous work has shown that the conventional practice of optimising the system design for
cost hides from view many other feasible designs that are economically comparable – i.e., they
are marginally more costly, or within the cost uncertainty range – while potentially having
other un-modelled benefits that make them substantially more practically viable [3].
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Approaches known as ‘Modelling to Generate Alternatives’, or MGA, first developed in theavailable on Zenodo at DOI:
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late 70s [4] make it possible to go beyond few, cost-optimal solutions and enlarge the deci-
sion space to hundreds of different possibilities, giving room for stakeholders to discuss and
identify a consensus solution [5,6]. They have thus seen a spike in popularity: in the last few
years, novel versions of MGA have been proposed for the specific needs of state-of-the-art
large-scale energy system optimisation models that, representing large geographical regions
at a high spatial resolution, entail countless degrees of spatial and technological freedom to
achieve a feasible system design. Such novel MGA versions aim, for instance, at generating
distinct spatial configurations of infrastructure deployment [3] or at providing more homoge-
neous samples of the very large space of feasible decisions [7,8]. Increasingly, MGA is recog-
nised as a critical tool to deliver meaningful, more transparent results [9]; however, there are
computational trade-offs in the use of MGA. For models of very large size, it is not yet com-
putationally affordable to generate all the relevant design alternatives, and MGA algorithms
need to decide what kind of diversity to prioritise in the design space. For instance, they must
decide whether to focus more on discovering alternative technology mixes or different spa-
tial configurations of technology deployment, for a given available amount of computational
power [10]. And yet, determining which design options are more worth focussing on, insofar
as they may be more relevant than others in facilitating real-world consensus formation, is not
trivial and should not be dealt with by modellers alone to avoid biases [11].

From this perspective, stakeholder engagement has untapped potential as a way to ensure
that the customisation of the MGA algorithm’s search strategy goes in the direction required
by real-world information needs [10]. A stakeholder-informed MGA search could enable a
targeted, efficient use of limited computational power while simultaneously answering the
increasing calls for tighter integration between scientific and practical knowledge in the co-
creation of model results [12]. Finke et al. [13] highlight how stakeholder knowledge could be
beneficial at various stages of an MGA workflow, for instance, informing what design features
to prioritise and what boundaries to set for such features in the exploration of alternatives.
They advocate for future work to investigate explicitly how to implement a similar exchange of
knowledge more systematically. Similarly, Rosenberg [14] envisions that fast MGA workflows,
enabled by ex-post sampling techniques, may facilitate the refinement of the design space via
iterative interaction between modellers and stakeholders in a live setting. While acknowledg-
ing that such an interaction is paramount, they do not provide systematic methods to imple-
ment it. A recent pre-print by Lau et al. [15] follows in the same footsteps, leveraging dimen-
sionality reduction and metric interpolation techniques to make MGAmore computationally
efficient, and thereby possible to refine in a live setting based on stakeholder feedback. The
underlying assumption is that stakeholder knowledge and preferences are critical to guiding
MGA towards meaningful design options, but it remains unclear how such information could
be systematically streamlined, particularly in a multi-stakeholder setting. Overall, although
the potential for consensus formation brought about by stakeholder integration is increasingly
clear, it is yet to be understood how exactly modellers may effectively incorporate multiple
stakeholders’ knowledge of the problem into an MGA-based modelling workflow.

To address this gap, we develop a first-of-its-kind human-in-the-loop (HITL) approach
that seamlessly and automatically integrates stakeholder preferences into an MGA-based
workflow. We propose eliciting stakeholders’ system design preferences through a first inter-
action between stakeholders themselves and an initial, tentative MGA-based design space.
Then, we feed such preferences back to the MGA algorithm to perform a ‘guided search’
[16], which produces an updated design space with a higher share of designs that match the
elicited stakeholder preferences. As the new design space stems from integrating human
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preferences and knowledge of the problem in the automated search, we can call it a ‘human-
trained design space’. We hypothesise that this design space facilitates the identification of a
consensus solution that compromises between the many and possibly conflicting stakeholder
preferences.

To test the above hypothesis, we perform an experiment under synthetic conditions in
a case study of the Portuguese energy system. For our experiment, we rely on the SPORES
MGA algorithm [3], which lends itself to the proposed guided search due to its high degree
of customisability, as we highlighted in previous work [10]. The synthetic conditions, repre-
sented by our use of synthetic stakeholder preferences, allow us to have a clear benchmark to
quantitatively assess the relative merits of the updated, human-trained design space in terms
of its degree of alignment with the assumed preferences and its capacity to facilitate con-
sensus formation. Our results substantiate that the novel HITL-MGA approach comes with
the expected advantages, and shows promise for generalisability and real-world application
as a means to support the acceleration of technically and socially feasible energy planning
decisions.

2. Methods
In the following sub-sections we illustrate in greater detail the proposed HITL-MGA work-
flow and the experimental set up by which we test its effectiveness (sub-section 2.1). This
includes a discussion of the specific version of the SPORES MGA algorithm we use (2.1.1),
and the original automated method we devise for translating human preferences into a guided
SPORES search (2.1.2). Second, we discuss the energy system model of Portugal we employ
for testing the workflow (sub-section 2.2).

2.1. HITL-MGA workflow and synthetic experiment setup
The idea of the proposed HITL-MGA workflow is to refine the system design space gener-
ated via MGA by leveraging human preferences and knowledge of the problem, which get
translated into machine-readable parameters. The steps to implement the idea, summarised
in Fig 1, are the following.

First, we generate an initial, best-guess MGA system design space. (We provide some dis-
cussion on what MGA formulations might work best for an initial exploration of the design
space in previous work [10] .) Second, we let stakeholders explore this initial design space, for
instance, via a web interface similar to what we proposed in previous work [9], and ask them
to select their favourite system design options. For example, stakeholders may prefer systems
with a lower import dependency or perceived as more decentralised. We call these ‘high-level’
preferences because they do not necessarily relate to concrete, particular features of the sys-
tem but can be more abstract or concerned with the macro system. For our method to work,
it is not necessary to understand the rationale behind the expressed preferences; the method
only requires a list of the most-selected designs. From this, we use automated decoding, which
we discuss further in sub-section 2.1.2, to determine the technical features inherent to a given
‘high-level’ preference. For example, the decoding may allow us to recognise that substan-
tial amounts of offshore wind power combined with significant domestic power-to-hydrogen
capacity and little expansion of cross-border electricity transmission lines are the key features
of a system design highly favoured by stakeholders. This might represent the high-level pref-
erence for ‘low import dependency’. Unlike the high-level preference, the technical features it
can be decomposed into can be translated into parameters for a customised MGA search that
favours or penalises the detected features while simultaneously generating different ways of
doing so. The resulting customised MGA search gives rise to an updated system design space,
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now richer in designs that fulfil stakeholders’ preferences to varying degrees and by means of
a diverse range of spatial and technological system configurations.

In this study’s synthetic experiment, we test the method based on synthetic high-level
stakeholder preferences, which allows us to benchmark the outputs in a way that would not
be possible if interacting with real-world stakeholders whose high-level preferences, as antici-
pated above, may be unknown. We assume five high-level preferences:

1. A low dependency of the system on energy imports from abroad.
2. A limited concentration of onshore wind farms in any given region.
3. A limited overall deployment of new infrastructure to achieve the energy transition.
4. A limited reliance on large-scale infrastructure that requires central planning, such

as onshore wind farms, and thus, an increased possibility for bottom-up community
initiatives to lead the transition.

5. A low reliance on hydrogen.

We consider these five high-level preferences to be plausible based on the insights from
our SEEDS project (seeds-project.org), which included interviews with stakeholders in Por-
tugal on this matter. We filter the initial design space generated through the combination of
an energy system model of Portugal (2.2) and our MGA SPORES algorithm (2.1.1) to alter-
natively subset it to only those system designs that perform within the top 10% of all designs
on each of these high-level features. Table A in S1 Text provides further details on how we
quantitatively assess a given design’s performance with respect to each preference. Within
each of these top-10% subsets of designs, we randomly select one option as the representa-
tive most preferred or top-rated design for a given high-level preference, ultimately leading to
a set of five synthetic top-rated designs. In a real-world case, we would have such a selection
of designs based on stakeholder ranking, without knowing what high-level preferences the

Fig 1. Conceptual representation of the proposed HITL-MGA workflow and of the synthetic experiment we carry out in this study
to test the workflow.The theoretical framework we propose envisions that we collect the high-level system design preferences arising
from a first iteration of an MGA design space with stakeholders. Then, we decode which technical features underlying such preferences
and translate them into parameters that may inform and re-tune the MGA search for design options. The resulting updated design
space is richer in design options that align with stakeholders’ high-level preferences, and it facilitates consensus formation. In our
synthetic experiment, we replace stakeholder interaction with synthetic high-level stakeholder preferences, from which we derive five
top-rated designs to initiate the HITL-MGA workflow. This way, we can test the outputs of the HITL-MGA workflow against the initial
high-level preferences in a way that would not be possible if interacting with real-world stakeholders whose high-level preferences are
typically unknown.

https://doi.org/10.1371/journal.pclm.0000560.g001
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designs represent. We feed the set of designs into the HITL-MGA workflow outlined above,
which produces an updated design space for Portugal. Finally, we test this new design space
against the initial synthetic high-level preferences, assessing whether there are more or fewer
design options that match those preferences. In addition, as a proxy for the likelihood of con-
sensus formation, we quantify how many design options exist in the neighbourhood of the
design that ensures the best compromise between all preferences.

To quantify the above capacity of a system design to compromise between the different
high-level preferences, we use a simple Multi-Crtieria Decision Analysis (MCDA) approach.
In particular, we rely on a typical weighted-sum model [17], in which we assess the perfor-
mance of the given system design for each of the five assumed synthetic high-level stake-
holder preferences, then we sum these performances together with equal weights, as per
Eq. 1.

Aq
MCDA-score =

n
∑
k=0

wkaqk (1)

where Aq
MCDA-score is thus the total score obtained by a given alternative design option Aq

when considering all high-level stakeholder preferences simultaneously (n = 5); this corre-
sponds to our proxy for the likelihood of consensus formation of the given design. aqk is the
performance of the design Aq in terms of the high-level preference k, and wk is the weight of
preference k compared to the others. In our case, we assume all high-level preferences have
equal weight.

2.1.1. SPORESMGA algorithm. For this study, we use a specific MGA algorithm,
SPORES, which we presented in earlier work [3] and then continuously developed [9,
10]. The key feature of SPORES is that it targets both technological and spatial diversity
of system designs, under the assumption that not only what technologies are deployed
but also, and in particular, where they are deployed is critical for real-world consensus
formation. What is more, compared to other MGA algorithms, SPORES is highly cus-
tomisable [10] and thus lends itself to being adapted for the guided search informed by
stakeholder preferences.

Fig 2a illustrates the high-level implementation of the algorithm, which envisions one
default run with a single MGA objective and several parallel runs with a multi-objective MGA
formulation aimed at generating alternatives from different corners of the near-optimal solu-
tion space. The basic idea underpinning this formulation is the following. We identify the
cost-optimal solution as a starting point. Then, the algorithm searches for new feasible sys-
tem designs that are different in terms of both what technologies are deployed and where
compared to what is found in the previous solution(s). Mathematically, we achieve this by
incrementally assigning penalties, or weights, to spatially explicit capacity investment deci-
sion variables that featured prominently in previous solutions. In those runs that feature a
multi-objective MGA formulation, we combine the search for spatially and technologically
distinct feasible system designs with the intensification of specific design features, such as
the high or low deployment of a particular technology. We define ‘intensification’ as push-
ing the given feature either towards its minimum or maximum feasible value, depending on
whether it is a desired or undesired feature. As illustrated elsewhere [10], this ensures that
extreme technological boundaries of the design space are captured and that otherwise hard-
to-discover design options are generated. In all cases, the newly generated feasible solutions
are constrained to be only marginally more costly than the least-cost feasible solution (in this
study, we assume this means a 10% cost increase is acceptable, in line with previous work
[9,18]).
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Fig 2. Stylised representation of the SPORES algorithm, in its standard (a) and HITL (b) formulations. Starting
from the cost-optimal solution, the algorithm iteratively looks for additional feasible and only marginally costlier
system designs in parallel batches. The standard formulation (a) foresees S parallel batches that generate alternative
designs based on the sole objective of making them spatially and technologically distinct from previously found solu-
tions. Each of these S batches targets decision variables pertaining to a specific energy sector, such as power, heating,
mobility or synthetic fuels. At the same time, 2xM additional batches generate (in parallel) alternatives around the
intensification of specific features of the design space, for instance, the very high or very low deployment of offshore
wind power overall. In the HITL formulation (b), each parallel batch is informed by a high-level stakeholder pref-
erence M and intensifies one or more technical features that underlie such a preference while also targeting spatial
and technological distinctiveness from previously found solutions. One additional batch (M+1) targets all the given
high-level preferences simultaneously.

https://doi.org/10.1371/journal.pclm.0000560.g002

In mathematical terms, we can formulate the generic SPORES-MGA problem as in Eq. 2.

min Y = a ⋅ ∑
j
∑
i
wijx

cap
ij ± b ⋅ ∑

j
xcap
ij

s.t. costn ≤ (1 + s) ⋅ cost0
Ax ≤ b
x ≥ 0,

(2)

where i and j indicate the i-th technology type and the j-th location within the model; xcapij is
the capacity investment decision variable for the ij-th location-technology pair; and xij is the
capacity decision variable associated with the technology under intensification. The a and b
coefficients are the weights associated with the different components of the objective function:
when b has a positive sign, the technology under intensification is minimised; for a negative
sign, it is maximised. Finally, if b is null, the formulation collapses into the default case with a
single objective (see Fig 2a). A, b, are a matrix and a vector of coefficients that give rise to the
physical constraints alongside the decision variables’ vector x; costn is the total annualised sys-
tem cost, which is bound to remain within a marginal relaxation of the optimal cost (cost0);
and s is the accepted cost relaxation, also known as cost slack.

In this study, we apply SPORES to a model of the Portuguese energy system (see sub-
section 2.2). Following the logic outlined in Fig 2a, we generate a total of 80 SPORES in four
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parallel batches using the default single-objective mode applied to decision variables per-
taining to different energy sectors (S = 4): power (N = 50 SPORES), heating, mobility and
synthetic fuels (N = 10 per sector). Then, we generate a total of 180 SPORES across multi-
objective batches that alternatively maximise (N = 10) or minimise (N = 10) one of the fol-
lowing (M = 9) key technology assets: wind onshore, wind offshore, wind overall, open-field
solar PV, roof-mounted solar PV, biofuels, battery storage, electrolysis and transmission
capacity. This leads to a total of 260 (80+180) different system design options, or SPORES, of
which about 70% adopting a multi-objective MGA formulation.

2.1.2. Decoding of technical features and translation into MGA parameters. As per
the workflow in Fig 1, once an MGA-generated design space is available, stakeholders may
explore it and select their favourite design(s) based on their high-level preferences. Out of
the pool of individual stakeholder preferences, we quantify the top five most frequently pre-
ferred, or ‘top-rated’ designs. Hence, the core of the HITL-MGA approach takes place, decod-
ing the technical features underlying these top-rated designs and translating those into MGA
parameters for a new, human-trained MGA step.

In practice, for each of the top-rated designs, we compute the statistical distribution of
capacity investment decision variables in key system assets across the entire decision space.
The specific design and research question at stake should guide the definition of what a ‘key
system asset’ is. In our case, looking at the design options for a carbon-neutral energy sys-
tem at the country scale, we consider the following key system assets: all renewable energy
generation capacity, battery storage capacity, electricity transmission capacity and electrol-
ysis capacity (as a proxy for the overall role of hydrogen and synthetic fuels in the system).
Hence, we assess how these key capacity decision variables play out in the given top-rated
design compared to the statistical distribution of the entire design space. Any key system asset
decision variables that substantively (which we define as ≥ 15%) deviate from the mean of
the distribution across all initial designs are flagged as distinctive (either positively or nega-
tively) for the design under scrutiny and, therefore, likely to contribute majorly to the high-
level characteristics of the associated system that may have driven stakeholders’ preference.
In this study, we also perform a sensitivity analysis for a stricter (10%) threshold in deter-
mining when a given system asset can be considered to deviate from the distribution mean
substantively.

Then, we translate the identified distinctive technical features into parameters for the
MGA search, leveraging the same approach used to intensify generic system features in Eq.
2. Positively distinct features (featuring more prominently than in the mean) are maximised,
whilst negatively distinct features are minimised. Unlike in Eq. 2, though, we now allow
for the simultaneous intensification of multiple features. The objective function changes as
in Eq. 3.

min YHITL = a ⋅ ∑
j
∑
i
wijx

cap
ij + b ⋅ ∑

j
xcap
ij

– c ⋅ ∑
j
xcap
ij (3)

where the coefficient preceded by a positive sign (b) multiplies the decision variables corre-
sponding to features to be minimised system-wide, and the coefficient preceded by a negative
sign (c ) refers to features to be maximised. More than one feature at a time can be maximised
and minimised, which can be obtained by simply adding additional b and c coefficients with
the corresponding signs.

We repeat the approach of decoding underlying technical features and translation into
parameters for Eq. 3 for each of the top-rated designs; in this case, five (M = 5). In addition,
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we set up one problem in which all the preferences reflected in the five top-rated designs are
taken into account simultaneously, except for those preferences that are mutually exclusive (as
outlined in Fig 2b, where we envision M+1 parallel runs).

In practice, this leads to six (M = 5, +1) different MGA runs that can be dealt with in par-
allel, similar to the original SPORES workflow. The number of designs to be generated within
each of these parallel runs can be fine-tuned to match the same size of the original design
space. In this study, we generate N = 45 design options per parallel run, further distributing
these 45 design options in three parallel batches of 15 designs each, in which we adopt differ-
ent MGA weights (wij) to further increase diversity as done in previous work [10]. More pre-
cisely, we adopt, in one case, a simple integer weighting method; in another, a method based
on deployment relative to maximum potential; and in the last case, a method based on the
distance from the evolving average weight (see the Supporting Methods for further details).
In total, we obtain a design space of 270 system designs, slightly larger than the original one.
This similarity in size between the original and the HITL-MGA option spaces is purposeful so
that we can assess potential benefits for a comparable computational effort. Both the original
and the HITL-MGA option space are computed on the DelftBlue high-performance computer
[19].

2.2. Model of the Portuguese energy system
Themodel used to generate the results (named ‘Calliope-Portugal’) uses the open-source
Calliope modelling framework [20] and on the model data for all European countries avail-
able as part of the Euro-Calliope project. In particular, Calliope-Portugal inherits the full
characterisation of energy sectors (electricity, heat, transport and industry) from the Sector-
Coupled Euro-Calliope model [21], but implements (exclusively for Portugal) the higher
spatial granularity for wind and solar available from the electricity-only Euro-Calliope
model [22].

The model accounts for Portugal’s entire energy demand across all sectors, spatially dis-
tributed between two macro-nodes, North and South. The model’s task is to design the system
in such a way as to satisfy the demand for a full year of operation based on carbon-neutral
energy technologies, which broadly consist of renewables, sustainable biofuels, and green
hydrogen and derived e-fuels, whose costs take into account projections towards 2050. The
model only considers the final system design, or a ‘snapshot’ of what the system could look
like in 2050, disregarding capacity deployment pathways through time on the way to such a
final design. The two macro-nodes of North and South are connected via electricity transmis-
sion based on the network topology available from the Sector-Coupled Euro-Calliope. Within
each node, however, renewable power capacity can be deployed in several sub-regions (18 in
total), corresponding to the country’s administrative regions, with different land availability
and capacity factors. Countries outside of Portugal are eliminated from the model and substi-
tuted with a simple representation of import and export options for electricity and hydrogen
at a fixed price. For electricity, the price is set based on the historical average electricity price
for trade with neighbouring Spain. For hydrogen, the price per kWh is calculated assuming a
market price of 1.5 EUR/kg for green hydrogen in 2050 and 33.3 kWh/kg as the lower heat-
ing value. In this study, we use 2016 as the reference weather year, since we quantified it as a
‘typical’ year for Portugal within those available from the Euro-Calliope dataset.

All the other model assumptions and their underlying rationale are available from the orig-
inal publication that featured the Sector-Coupled Euro-Calliope model [9], to which we refer
the reader for additional information. The Calliope-Portugal model files are publicly available
on Zenodo [23]: zenodo.org/records/12784284.
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3. Results and discussion
To assess the proposed HITL-MGA workflow, we first look at whether the human-trained sys-
tem design space is richer in designs that align with the assumed synthetic high-level stake-
holder preferences. We do so for the reference case of a 15% deviation from the mean as a
threshold for feature distinctiveness and provide a sensitivity analysis for the case of a nar-
rower (10%) threshold. Second, we analyse those designs that best ensure a compromise
between all stakeholder preferences, for both the original and the human-trained design
spaces. In doing so, we look for illustrative design options that are available in the human-
trained design space and that may be particularly attractive to stakeholders and that are not
available in the original design space.

3.1. The human-trained designs better align with high-level preferences in
most cases

As outlined in sub-section 2.1.2, our HITL-MGA workflow is grounded in the automated
decoding of the distinctive technical features underlying each of the top five system designs
preferred by stakeholders in their initial appraisal of the solution space. Fig 3 illustrates the
results of the decoding step. For instance, for the system design that we chose to represent
the high-level preference ‘low regional concentration of onshore wind farms’. Using the sta-
tistical decoding logic discussed in sub-section 2.1.2, the overall deployment of onshore
wind power is detected as an undesired feature, whilst the deployment of wind offshore is
detected as desired. Fig 3 also provides the outcome of the procedure for each of the other
top five preferred designs that we chose as representatives of their respective high-level pref-
erence. These results illustrate how, even for those high-level preferences that have a less
abstract nature, the decoding procedure may provide additional nuances to guide the MGA
search. For instance, for the highly-rated design embodying the preference for a low reliance
on hydrogen, the decoding detects the deployment of electrolysers as undesired, but along-
side a high deployment of solar PV farms and an expansion of the electricity grid – comple-
mentary features that would have been difficult to guess based on the high-level preference
alone.

As anticipated in section 1, the new design space incorporates human preferences and
knowledge of the problem, so we refer to it as the ‘human-trained design space’. It results
from feeding the SPORES MGA algorithm with the decoded technical features that repre-
sent a high-level preference, plus all the (non-mutually-exclusive) features decoded across
all preferences simultaneously. This produces a richer set of designs that align with the given
high-level preferences, as can be seen in the comparison shown in Fig 4. In particular, the
human-trained design space has substantially more designs matching those high-level pref-
erences with a more direct connection to the deployment of specific technologies, such as the
low use of hydrogen or the limited reliance on large-scale infrastructure that requires cen-
tral planning. More nuanced preferences, such as the low regional concentration of wind
farms, do improve, but less markedly. Finally, the high-level preference for a system design
entailing a limited overall deployment of new infrastructure, represents an exception for
which the human-trained design space falls short in increasing the number of design options.
This is a consequence of the method’s design, which relies on the intensification of features
(Eq. 3) to guide the search. These features are the capacities of technologies to be deployed.
Thus, pushing technology capacities to their low or high extremes, especially when not diluted
by doing so for multiple features at once, easily leads to more solutions with an overall high
deployment of capacity, compared to the original design space that also entailed 80 solutions
generated without any intensification (see sub-section 2.1.1).
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Fig 3. Results of the automated decoding of distinctive technical features in each top-rated system design based on comparison with the statistical
distribution (represented by strip plots) of technical system features across the entire design space. In the figure, the reliance on each technical feature
is normalised with respect to the maximum deployment of the given feature experienced across the entire design space. ‘Desired’ features are highlighted in
blue, whilst ‘undesired’ ones are highlighted in red. In this case, the threshold for detecting a given feature as desired or undesired is set to a 15% deviation
from the distribution’s mean before normalisation.

https://doi.org/10.1371/journal.pclm.0000560.g003
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Fig 4. Comparison of the original design space generated via standard MGA and the one generated with the HITL-MGA workflow in terms of percentage of
designs matching the assumed high-level stakeholder preferences.HITL-MGA results are shown both for the default case of a 15% threshold in the decoding
procedure and for the case of a stricter (10%) threshold.

https://doi.org/10.1371/journal.pclm.0000560.g004

One option to increase the number of features decoded as distinctive and hence intensi-
fied (i.e. minimised or maximised) simultaneously, is to reduce the distance-from-the-mean
threshold for decoding. S1 Fig shows the outcome of the decoding procedure for a reduced
(from 15% to 10%) threshold, which results in the design space labelled as ‘stricter’ in Fig 4.
As expected, in this case, the percentage of designs with limited overall deployment of new
infrastructure improves compared to Fig 4, although it is still marginally less than in the orig-
inal design space. Moreover, the percentage of designs aligned with a preference for limited
central planning decreases, due to the ‘noise’ introduced by the additional features to be min-
imised or maximised alongside the push for less-centralised technologies, such as rooftop
solar PV. There is hence a trade-off in having a stricter or more relaxed threshold for the
decoding of distinctive technical features.

Regardless of the chosen threshold, the increase in design options that align with high-
level preferences across most categories far exceeds the marginal decrease experienced in a
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single category, which suggests that the potential for consensus formation likely increases as
well. We now dive deeper into this aspect.

3.2. The potential for consensus formation increases substantially
Having assessed the overall increase in system designs that align with specific high-level pref-
erences, we move on to quantifying to what extent the human-trained design space may
improve the likelihood of consensus formation. As anticipated in section 2.1, as a proxy for
this likelihood, we use the overall score obtained by a given system design when applying a
multi-criteria decision analysis (MCDA) to the five synthetic high-level preferences, which
are weighted equally. The more a design performs well across all the five assumed high-level
preferences, the higher its MCDA score and its potential to represent a compromise between
conflicting preferences. After applying the MCDA and obtaining an aggregate score for all
designs, we first select the overall best-performing design across both the MGA and HITL-
MGA design spaces. In our case, this design happens to lie in the human-trained (HITL-
MGA) space. We then analyse which and how many designs exist that perform nearly as well,
which we define to be those scoring no less than 25% below the overall best design. We call
these design options the ‘near-highest-consensus’ designs.

Fig 5 shows the shape of both the original and the human-trained design spaces alongside
the results of the MCDA analysis. The near-highest-consensus designs are much more abun-
dant in the human-trained design space, about 18% of whose designs are close to the best per-
forming one, compared to just about 1% in the original design space. In fact, while the origi-
nal design space provides a more homogeneous distribution of design options in some cate-
gories – for instance, the deployment of electrolysers –, by its very layout, the human-trained
design space creates an abundance of design options precisely in those areas of the feasible
design space towards which human inputs guided it – such as the design space characterised
by a low deployment of electrolysers. As a result, while the updated design space is apparently
less diverse overall, it offers more degrees of freedom around features of interest, exactly as
envisioned with the conceptualisation of the algorithm. In addition, this targeted search for
design features underlying certain high-level preferences is complemented by a search that
targets simultaneously all the features decoded across all high-level preferences (as synthe-
sised by Fig 2 and discussed in sub-section 2.1.2). This additional search was envisioned to
generate in-between options that could facilitate consensus formation. S2 Fig confirms the
effectiveness of this algorithm design choice, since the system designs generated in the above
run contribute substantially to the near-highest-consensus subset.

When it comes to facilitating consensus formation, the human-trained design space thus
provides several designs that allow achieving a good compromise between all the five high-
level preferences outlined in sub-section 2.1, and that still do so in different ways, leaving
room for further discussion. In practice, this means that the updated design space opens up
possibilities for real-world discussion that were missed by the initial MGA exploration. As an
illustrative example, we may look at the case of the share of wind farms in any given region
that, in our experimental setup, stakeholders prefer to limit. The human-trained design space
provides a substantial degree of flexibility with respect to wind farms concentration even
within the subset of near-highest-consensus designs (Fig 5). If we select, within such a subset
and for each design space, the design that provides the best performance in terms of limited
concentration of wind farms, its spatial configuration of infrastructure deployment looks
strikingly different in the two cases, as shown in Fig 6.

In the case of the original design space (Fig 6a), two regions host most of the onshore wind
power capacity. In the system design selected from the human-trained design space for the
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Fig 5. Solution space generated by the original simple MGA and the HITL-MGA workflows from the perspective of technical (system-wide capacity deployment
of a given technology) and social system features of stakeholder interest.We show the designs (x-axis) by their performance on a given metric compared to the
maximum experienced across both design spaces for the same metric (y-axis). To ensure comparability, results for each metric are re-scaled between 0 and 1 based on
the minimum and maximum values experienced across either design space (an approach also known as min-max normalisation). In each design space, the designs
highlighted in red are those that we define as ‘near-highest-consensus’. They are within 25% of the system design option that, across both design spaces, ensures the best
performance across all synthetic high-level preferences (see sub-section 2.1).

https://doi.org/10.1371/journal.pclm.0000560.g005
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Fig 6. Spatial deployment of renewable energy generation capacity, system-wide deployment of electrolysers and degree of reliance on imports in the sys-
tem’s primary energy supply.The results are shown for two illustrative system design options, namely the options – in the original and in the human-trained
(HITL-MGA) option spaces – with the best performance in terms of limited regional concentration of wind farms among the subset of overall best-performing, or
‘near-highest-consensus’, options. The geodata source to produce the maps is GISCO-Eurostat [24].

https://doi.org/10.1371/journal.pclm.0000560.g006

same criterion (Fig 6b), instead, onshore wind capacity is much more fairly distributed across
regions, even though the overall capacity is nearly identical (~20 GW) compared to the previ-
ous case. At the same time, the system design selected from the human-trained design space
has a comparable (marginally better) performance in terms of electrolysers deployment, total
deployment of new infrastructure (a proxy for the rate of transition) and import dependency.
The share of decentralised technologies, such as rooftop solar PV, which may limit central
planning in favour of bottom-up, citizen-led initiatives is also comparable between the two
designs. Thus, the design option made available by the human-trained design space substan-
tially outperforms any option available in the original design space in terms of limiting the
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regional concentration and the total amount of onshore wind power capacity, while simulta-
neously ensuring an equally good performance across all other high-level stakeholder prefer-
ences. This example illustrates how consensus formation can be facilitated by the HITL-MGA
approach.

Conclusion
With this work, we set out to investigate whether an innovative human-in-the-loop approach
to MGA could generate energy system design options that better align with stakeholder pref-
erences and facilitate consensus formation compared to conventional, modeller-driven MGA.
The results obtained by our original HITL-MGA workflow for a case study of the Portuguese
energy system under synthetic conditions (i.e., synthetic stakeholder preferences) show that
this is the case, while also highlighting areas for further development.

In particular, our results highlight that setting up a HITL-MGA workflow can be achieved
by combining two key ingredients. First, a statistics-based automated decoding of the techni-
cal features underlying given high-level stakeholder preferences. Second, a recalibration of the
MGA objective function’s parameters to perform a guided search. While we demonstrated the
MGA recalibration for the specific case of the SPORES MGA algorithm, the parameters we
manipulate in SPORES are common to most other recent MGA approaches applied to energy
models literature [8,25,26] and are otherwise trivial to include in the objective function.

Moreover, we show that our HITL-MGA workflow effectively generates more designs that
match the initial hidden high-level stakeholder preferences. Nonetheless, as an exception,
we also detect that the intensification of features envisioned by our HITL-MGA workflow is
structurally bound to conflict with potential high-level preferences for limited new infras-
tructure deployment. In other words, intensifying a given technical feature comes with a sub-
stantial deployment of the related infrastructure. In our experiment for the case of Portugal,
the only high-level preference for which the human-trained design space does not produce
an improvement is the preference for a low rate of infrastructure deployment, which in our
model setup coincides with less deployment overall. This is not surprising, since the nature of
the energy system model used here is to model the deployment of technologies, and we use
intensification (maximisation or minimisation) of technology capacity as the way to decode
stakeholder preferences. Future work should examine the use of simple additional statistical
measures to detect a preference for limited new infrastructure and ways to translate that into
the guided search. A possible translation could be reducing the strength of the b and c coef-
ficients in Eq. 3, representing the intensification of desired and undesired features, relative
to coefficient a, aiming at the diversification of the system design. In previous work, we have
already shown that such a manipulation effectively mitigates the degree of intensification of
technical features [10].

We also observe that the need to define a threshold for the automated decoding of statisti-
cally distinctive technical features in a given top-rated design entails a certain degree of uncer-
tainty in the outcome of the decoding and, in turn, the human-trained design space. A tighter
threshold, which we also examined, results in the decoding step detecting more features as
distinctive, spreading and diluting the intensification objectives in Eq. 3 across more features.
This may work in favour of some high-level preferences, such as the one for limited infras-
tructure deployment overall, but less so for others. In general, the exact value of the threshold
cannot be easily connected to any objective measure and, therefore, should be tested and cali-
brated beforehand, for instance, by means of a synthetic experiment like the one we carry out
in this study, in such a way as to match the needs of the model and research questions at stake.
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Regarding the likelihood of consensus formation, which we approximate via a simple
MCDA analysis aligned with the assumed stakeholder preferences, the HITL-MGA work-
flow largely outperforms conventional MGA. In particular, the share of designs with an
MCDA score within 25% of the highest score achieved in either design space increases from
1% to 18% when human inputs are integrated into the MGA loop. This is because the major
improvements recorded in the number of stakeholder-appealing designs across most high-
level preferences substantially counterpoise the marginally lower number of designs match-
ing the ‘low-rate of deployment’ preference discussed above. In practice, the human-trained
design space provides design options that allow stakeholders to compromise between their
conflicting preferences, which were entirely missed by the original design space. For instance,
designs that significantly limit the regional concentration and the overall deployment of
onshore wind power capacity while simultaneously performing well on all the other assumed
high-level preferences. Nonetheless, it is critical to underscore how, in a real-world setting,
a computational approach that generates more middle-ground options by incorporating and
synthesising multiple human inputs is an enabler but not a guarantee of the higher likelihood
of consensus formation [27]. It is paramount to complement the computational side with
a collaboration with experts in stakeholder engagement and participatory action research
that may ensure appropriate representation of all the stakeholder groups and a constructive
deliberation process [28,29].

In our synthetic experiment, we purposefully assume that the top-rated designs in the ini-
tial MGA space match some immediately understandable and not multifaceted preferences
because this facilitates our testing and assessment of the improvements brought about by the
HITL-MGA workflow. However, the workflow is entirely agnostic to the initial preferences
and does not require any understanding of the rationale behind them. It only requires a list
of the most-selected designs, which makes it applicable to any set of multifaceted real-world
preferences. It is also worth noting that, while we run the HITL-MGA workflow to decode
and implement back into the MGA search system-wide technical features only, high-level
preferences may well refer to specific features at the local scale. For instance, some stakehold-
ers may be against a certain technology in a certain region, such as the deployment of electrol-
ysers in regions affected by water scarcity, despite not opposing that technology per se. Even
though we have not looked into this possibility in this first synthetic experiment, nothing pre-
vents modellers from running the same workflow for spatially explicit variables. Future work
may further explore this possibility and its potential advantages. Another interesting possibil-
ity that future work may explore is the discretisation of the degree of (un)desirability of those
distinctive technical features underlying a given top-rated design. Rather than simply flagging
a feature as (un)desired, the method could accommodate incremental weights to further dif-
ferentiate between highly or only moderately (un)desired features. Such discretisation would
require a decision on how to define the discrete degrees of (un)desirability, further contribut-
ing to the need for calibration discussed earlier for the current threshold for feature distinc-
tiveness. At the same time, it may further improve the accommodating of conflicting stake-
holder preferences and the identification of middle-ground options. Finally, the HITL-MGA
workflow in this study leverages the latest developments in terms of computationally effi-
cient generation of MGA design spaces. However, the MGA field is continuously and rapidly
evolving, and the proposed HITL-MGA would only benefit from any further computational
advancements. Promising avenues for the further enhancement of HITL-MGAmay be tech-
niques such as the ex-post dimensionality reduction and metric interpolation proposed by a
recent pre-print [15] or artificial intelligence techniques that are already common in the sister
field of energy system multi-objective optimisation [30].
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The improved consensus-formation capabilities enabled by the HITL-MGA approach, and
its very nature of integrating human preferences and knowledge of the problem into a compu-
tational workflow, align with the increasing demands for a tighter cross-fertilisation between
engineering and other disciplines in tackling energy transition challenges at the interface
between policy and science [11,12]. Our human-trained search for design options answers the
call for more ‘fair and unbiased algorithms’ [11] supporting energy transition decisions. And
it does so by leveraging the principles of co-creation [12,31] and providing a computational
platform for their direct application.

Overall, this study is the first to propose and successfully test a human-in-the-loop
approach to MGA under synthetic conditions. Future work should explore the possible
improvements of the method outlined above and test it further in a ‘field’ experiment with
real-world stakeholders. The results of our synthetic experiment show that HITL-MGA is a
promising way to ensure that the generation of system design options matches stakeholder
needs and facilitates consensus formation, thereby enabling and accelerating a just practical
implementation of the energy transition.

Supporting information
S1 Fig. Automated decoding of distinctive technical features for a stricter threshold. Com-
plements Fig 3. the threshold for detecting a given feature as desired or undesired is set to a
10% deviation from the distribution’s mean before normalisation.
(TIF)

S2 Fig. Individual contribution of each parallel run to the HITL-MGA design space. Com-
plements Fig 5 by showing the individual contributions of each of the M = (5+1) parallel runs
of the HITL-MGA workflow in populating the human-trained option space. As detailed in
sub-section 2.1.2, given M top-rated system designs, the workflow envisions M+1 parallel
runs. M runs are each ‘trained’ to target the technical features decoded for one of the top-
rated system designs (in this study, M = 5); additionally, one more parallel run targets simul-
taneously all of the non-mutually-exclusive features decoded across all the top-rated system
designs.
(TIF)

S1 Text. Supporting methods.
(PDF)
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