1%01¢

120013

iMii;N bl

"iHHIINI I

i h!&ii'::%!;‘;ﬁﬁiﬁrh’ﬂ Hﬁi%
Fat bR i
R

i
il "mf
R REY
il

1628
21014

Bibliotheek TU Delft

i

213104




APPLICATIONS OF THE HILBERT
PROBLEM TO PROBLEMS OF
MATHEMATICAL PHYSICS

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN
DE TECHNISCHE WETENSCHAP AAN DE TECHNISCHE
HOGESCHOOL TE DELFT, KRACHTENS ARTIKEL 2 VAN
HET KONINKLIJK BESLUIT VAN 16 SEPTEMBER 1927,
STAATSBLAD NO 310, OP GEZAG VAN DE RECTOR
MAGNIFICUS DR O. BOTTEMA, HOOGLERAAR IN DE
AFDELING DER ALGEMENE WETENSCHAPPEN, VOOR
EEN COMMISSIE UIT DE SENAAT TE VERDEDIGEN OP
WOENSDAG 5 NOVEMBER 1958 DES NAMIDDAGS TE 4 UUR

DOOR

JOHAN ADOLF SPARENBERG

GEBOREN TE AMSTERDAM




DIT PROEFSCHRIFT IS GOEDGEKEURD DOOR DE PROMOTOR:
PROF. DR R. TIMMAN




Aan de nagedachtenis van mijn Quders

Aan Paula




Contents

Introduction
Chapter 1. The Hilbert problem
1«1 The formulae of Plemelj
1.2 The Hilbert problem for an arc
13 Singular integral equations
Chapter 2. The Wiener-Hopf type integral equation
241 Transformation of the equations
2.2 Solution of the homogeneous integral equation
of the second kind
2+3 The inhomogeneous equation of the second kind
and the equation of the first kind
2.4 Examples
Chapter 3. A shrink-fit problem for a half infinite
range of contact
341 Formulation of the problem, determination of
Green's function for the tube
3e2 Solution of the integral equation for the
contact pressure
3¢3 Numerical calculation of the shrink-fit
stresses
3.4 The limiting case of an infinitely thick tube
3¢5 Discussion of the results
Chapter 4. The homogeneous first order integro-
differential equation of the Wiener-Hopf type
L1 The general equation, case 1
L.2 Case 1 with a, * O, a, = 0 and b, # O
L.3 The general equation dase 2
L4 Example
Chapter 5. A Wiener-Hopf type integro differential
equation with fourth order derivatives
5¢1 Fourier transformation of the equation
5.2 The asymptotical expansion of E(A)
5¢3 The expansion of £(0)/f'(0)

U= =

NO O N N

-

14
17

21
22
23

25

25
28
30
32

35
35

L5




Chapter

6. The finite dock

Formulation of the problem

Derivation of the integral equation
Determination of w(x)

Calculation of &(x)

Construction of the solution for prescribed
incoming waves

Numerical calculation of the reflected and
transmitted wave for the case that no
breaking occurs

T7e On the influence 6f the cross-section form
of a ship on the added mass for higher order -
vibrations

Formulation of the problem for the case of a
strip

Derivation of the integral equation

The cases o = 0 and o =+ O

The case O = o

The case of finite a

The added mass for the strip

The added mass for a vibrating infinite
cylinder

Discussion of the numerical results




INTRODUCTION

Problems arising in mathematical physics,can in general
be classified from different points of view. From the
physical formulation a classification to several branches
of physics and mechanics is obvious. From a mathematical
point of view, problems, originating in different parts of
physics,can sometimes be submitted to a uniform treatment
by the same mathematical method. The problems dealt with in
this thesis have in conmmon, that they all can be formulated
in terms of the Hilbert problem. This problem can be treated
by the use of sectionally holomorfic functions (refe.1),which
concept is based on a set of formulae derived by Plemelj.

These functiorsare regular in the whole complex domain with
the exception of a discontinuity on a curve. In chapter 1 we
give a short survey of the notations and results of this
theory.

The chapters 2-5 are concerned with Wiener-Hopf type
integral and integro-differential equations. Usually these
equations are solved under the condition that there exists
some strip of convergence for the Fourier-transformations
(ref. 2,3). Using however, the theory of sectionally holo-
morfic functions it becomes clear that a strip is not essential
and we need only to demand convergence on a line. In chapter 3
we shall discuss an application of the theory on a problem of
shrink-fit stresses. The stresses are calculated by a method
which is equivalent to the procedure for obtaini approximate
solutions described in an article by W.T. Koitern%ref. 4). In
the next chapter we discuss the homogeneous Wiener-Hopf type
integro-differential equation with first order derivatives.iie
conclude the treatment of Wiener-Hopf type equations by conside-
ring an integro-differential equation with a fourth order deri-
vative which occurs under the sign of integration. This equa-
tion is a result of considerations about the anomalous skin -
effect of electrons in a metal (ref. 5) and is a generalisation
of an equation discussed by Reuter and Sondheimer (ref. 6).

In the chapters6 and 7 we discuss two problems on the motion
of water with a free surface. First the two dimensional problem
of the reflection and transmission of progressing waves, when a
part of the surface of the water is fixed by introducing on the
surface a rigid strip of infinite length. This is the so called
finite dock problem. A proof of the existence of the solution
has been given by H. Rubin (ref. 7), while Mac Camy (ref. 8) dis-
cusses the pressure under the dock. Here we have to solve a
Hilbert problem for a function which possesses some prescribed
discontinuity on the strip. The second problem of this part
considers the forces exerted by the water when the strip executes
a vertical flexural vibration of high frequency. The results
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are compared with the forces at a half immersed cylinder
which executes a vibration with shear deformation. This has
been done in order to obtain a check on the three dimensional
correction coefficient for the added mass, used in naval
architecture (ref. 9). The question arose whether this correc-
tion coefficient, derived from the added mass of a vibrating
ellipsoid of revolution, would be accurate enough for ships

of shallow draught. We have to consider a singular integral
equation which can be reduced, by the theory of sectional
holomorfic functions, to an integral equation of the Fredholm

typee.




Chapter I

THE HILBERT PROBLEM

The formulae of Plemelj, the Hilbert problem and singular
integral equations are discussed thoroughly in ref. 1., For
direct reference, however, we shall state some results. We
shall not enter into details but consider the theory to an
extent necessary for understanding the applications.

1+1 THE FORMULAE OF PLEMELJ

Let L be a smooth arc, in the complex plane, defined by
x=x(8), y=y(s), s 5838, (1e141)

where s is a parameter and x(s) and y(s) have continuous first
order derivatives which do not vanish simultaneously. Also we
assume L to be simple; this means that never x(s1) = x(sz) and

Z=q

Fig.1.1.1 Arc of discontinuity for a sectionally
holomorfic function,

s < <
y(s1) = y(s2) for values s, S8, *8,% 5.,
On this arc we consider a function ¢=¢(t) which satisfies
the HOlder condition
- o % 4

where t=t(s) is a point of L which corresponds to the para=-
meter value sand A and U are positive constants. Then we form
the Cauchy integral

i 5(z) = 5-17?1-4 2L at, (1.1.3)
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From this definition we see that ¢(z) is an analytic function
in the entire complex domain with the exception of the arc L.
At L -the values of $(z) exhibit a jump by passing from one
side of L to the other. Introducing on L a positive direction
for increasing values of the parameter s we call the left hand
side of L the positive "+" side and the right hand side the
negative "-" side. The limiting values of $(z) are denoted
respectively by . .(t) and Q_(E% (fige 1e141)« The values of
¢(z§ are continuoﬁs up to L, with exception of the ends of L
for which ¢(t) #+ 0 and satisfy, as is proved in ref. 1, the
following relations of Plemel]

$.(t,) - o_(t,) = (1) (141.4)
and
= ke t
o, (t,) + 2_(t,) = 25 S’-i—l_to at. (1.1.5)
The integral is to be taken in the sense of Cauchy
f %_Lz)-dt=11m / %_%)-dt, (14146)
o ¢—0 o
L L=-¢
where ¢ is a part of L with ends t1 and t2 in such a way that
8, <8, <8, and Itz-tol = Ito-t1|.

Formulae (1.1.4) and (1.1.5) can be verified directly in
the case that ¢(t) represents the values on L of a function
¢(z) analytic in a neighbourhood of L. In this case we may
deform L slightly (fig. 1.1.2) in order to calculate for

Figy1.1+2. Deformation of L when ¢(z) is analytic,

instance the limit value

sp(t):EnLi 2{ %E%dt+%cp(to). (1e147)
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o_(t,) = 5%; £f %é%ﬁ at - e (t,). (14148)

?ubtragting these formulae yields (1.1.4), adding yields
1.1'5 @

Now we cometo the definition of a sectionally holomorfic
function. A function will be called sectionally holomorfic
when it is holomorfic in each finite region which does not
contain points of some smooth line L, while it is continuous
up to L with possible exception of the ends of L.

It is proved in ref. 1. that #(z) is such a function.

1.2 THE HILBERT PROBLEM FOR AN ARC

The problem is to find a sectionally holomorfic function
¢(z) which satisfies the relation

o_(t) - a(t) o _(t) = g(t) (16241)
on a smooth arc L, where G(t) and g(t) are given functions ,

which satisfy the HOlder condition and G(t) # O on L.
First we consider the homogeneous equation

v_(t) = G(¢) ¥, (t). (1.2.2)
We solve this by trying to find a sectionally holomorfic

function ¥(z) without zero's in the whole complex domain.
Then 1n ¥(z) is also sectionally holomorfic and has to

satisfy
{1n 27(t)}, - {1n #(%)}_ = -1n G(t) {1 n2a3)
on L. Comparing (1.2.3) and (1.1.4) we find as a solution of

(1.2.2)
¥(z) = exp - EL_J:J l—n(%%% dt. (1.2.4a)

However by multiplying this function by an arbitrary ratiorel
function P (z), which may possess poles only at the ends of
L, we do ndbt disturb relation (1+2.2). Hence

¥(z) ={ exp - E%E l%f%%§l at} P1(z) (1.244p)

is a more general solution of (1.2.2).
In order to deal with the inhomogeneous equation,we write
(1.2.1) in the form

o _(t) o ,(t)
v (t) W:(t) = af%%} . (1.2.5)
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Hence again by (1.1.4) we obtain

$(z) = = %£§1{I/.§:r%§%%:;7 at + Py(2)}, {1+2.6)

where it is assumed that WEzg is chosen in such a way that
the integral converges, P,(z) is again an arbitrary rational
function with the same reStriction as P (z) in (1,24D).

In ref. 1 it is shown that (1.2.6) ahd (1.2.4b) are the
general solutions of the problems (1.2.1) and (1.2.2) when
the behaviour at infinity is prescribed to be algebraic.

When the arc L becomes an infinite line, for instance
parallel to the real axis,the sectionally holomorfic function
¥(z) in (1.2.4) is cut into two separate functions T+(z) and
¥ _(z) which are analytic in the half planes S, and 'S_,
situated at the + and - side of L. Assuming that the integral
in (1.2.4) is convergent for this line we see that the
solution of (1.2.2) yields the "factorisation" of a function
@(t) defined on L

a(t) = ¥_(t)/ ¥ (¢) (1s247)

into two functions ¥ (t) and ¥ _(t) which are boundary values
of functions ¥ _(z) and ¥_(z) regular and without zero's in
S, and S_ respedtively and continuous up to L. It is clear
that we have to take z in S _ or S_ when we calculate ¥ (z)
or ¥_(z) with the use of 21.2.&;.

The next step done in (1.2.6) is to form, under the
assumption of convergence, the integral

t
ei(z) = ﬁJWﬁ&"LZT dt, z in Si. (1.2.8)

This means for an infinite line L that we "split" the functim
g(t)/¥_(t) defined on L

g(t)/g_(t) = 6+(t) - 6_(t) (1.2.9)

into two functions 6+(t) and ©_(t) which are boundary values
of functions 6 (z) and 6_(z) regular in S, and S_ and
continuous up to L.

Sometimes it.is necessary to multiply G(t) by a simple
function in order to produce convergence of the integral in
(1+2.4)s This will be demonstrated later on (para. 2.3).

The solution of (1.2.1) for an infinite line can now be
described very briefly as follows. First, factorize Gét),this
yvields (1.2.5). Second, split the right hand side of (1.2.5).
Third, compare the parts analytic in the same half planes ,
with the result

v
¢:(z)= - ,%é;i {[ itx§§%%:57 at+ P2(z)}, z in st.(1.2.1o)
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13 SINGULAR INTEGRAL EQUATICNS

At last we discuss in this chapter the relation between
singular integral equations and the Hilbert problem. 1In
chapter 7 we shall have to treat a singular integrsl equation
of the form

+4

i %ET%=E;7 + k(t=t )} ¢ (t)at = £(t,), (1.3.1)

where ¢(t) is the unknown function and k(t) and f(t) are
given functions, k(t) is bounded at the interval [t] < 2,
Pirst we consider the "dominant" part of this equation,defined

as
+1

E% -f T%é%i7 at = £(s.), (143.2)

which is closely related to the theory of sectional holomorfic
functions. Introducing

ﬁ(z) =

+1
t

s | Tt dt (1.3.3)

we find from (1.1.5) and Z1.3.2)
$,.(t) + o_(t) = £(t). (1.3.4)

Substitution of th) = =1 in (1.2.4) shows that we may take
as a solution ¥(z) of the homogeneous part of (1.3.4)

¥(z) = —ls— . (143.5)
(1=-2°)2
The solution of (1.3.4) becomes by using (1.2.6)

+1 1
£(+) (1-t2)Z dt
o) = —d sy | [ U=t ® ot (), (1.3.6)

where we have fixed the values of ¥(z) by taking
v (t) = -] (1-t2)%], t s 1. Then by (1e1.44)

1 £(t) (1-t%)7
t )= { at + al. P
el ol (5.7

Here we have chosen for the arbitrary polynomial P(z) the

arbitrary constant “

A=1 f o(t)at, (1.3.8)
-1

in order that (1.3.7) satisfies (1.3.2).
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Now we return to (1.3.1) which we write in the form

+1 +
,-}Ij T&%‘B‘ at = £(t, )= / o(t) k(t-t )dt. (13.9)
-1

Then apparently each solution of #
1 Lo(t)k(t~r)at(1-r2)ar
B 1 -1
o(t.)= - + . (t )+ T
O mi(1-tD)F 40 py(4-t2)? )

(13.10)

where ¢.(t.) is a solution of the dominant part and B is some
arbitrafy Qonstant, satisfies also (1.3.9). This can be veri-
fied by deviding both sides of (1.3.10) by (t-t_) and inte-

grating from -1 to +1 with respect to t_. Instefd of (1.3.10)

we may consider
+

£(t,)= n—ﬂ-;—i—g); +¢d(t°)(1-t§)%+'[ £(t) K(t,t)at  (1.3.11)
where

£(t,) = o(t,)(1=t2)%
and »

2y%
K(t,t )= 1 KA ) ar. (1.3.12)
e ni(1-t§)4(1-t2)%_[ %

This integral equation is of the second kind and the known
function and the kernel are quadratic integrable., Hence the
theories on the Neumann expansion of the solution and the
replacement of the kernel by approximating kernels of a
simpler type can be applied.
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Chapter 2.

THE WIENER-HOPF TYPE INTEGRATL

EQUATTION.

We now shall give a treatment of Wiener-Hopf type integral
equations, which resembles the classical procedure. It
deviates however at one point since we shall not demand a
strip of convergence of the Fourier integrals to be used,but
only a line., This is an immediate consequence of the fact
that we start from the concept of the sectionally holomorfic
function.

2.1 TRANSFORMATION OF THE EQUATIONS

The following three equations are considered , the
homogeneous equation of the second kind

£(x) - 7 k(x=) r£(&)af = 0, {2t al)
the inhomogeneous qugtion of the second kind
£(x) - / k(x~£) £(£)ag = n(x), (2.1.2)
and the equat%gn of ghe first kind
[k<x-§> £(£)aE = n(x), (2.1.3)
A

where k(x=£) is the kernel of the equations, h(x) is a
function known for x > O and f(x) is the unknown function.
The equations are valid for all values =« < X < +w, hence
we shall have to determine in equation (2.1.3) alsc the
values of h(x) for x<o.

We introduce the notation for the Fourier transformation
of a function f(x)

+wo
-
= f f(x)e

-0
and for the one sided transforms

AX gx = P(A) (241 .44)




1 iA 1 , o 10

;%% J.f(x)el X 4x = B+(K), (26145)
O .

] /f(x)el“ ax = T_(A). (2.1.6)

2n

(s}
In order to apply a Fourier — transformation to (2¢1.1),
(241+2) and (2.1.3§ it ie sufficient to assume that

e M k(x), e h(x) ana e ™ f(x)belong to L (-eo, +00).
On these assumptions the Fourier transform K(A) of k(x)
exists for Im A = x4 and the one sided transforms of k(x) and
£(x) denoted by H+(A), F _(A) and H_(A), F_(A) exist for
Im A = 4 and are regular in S, with Im A > o resp. S_ with
Im A < i .

By the convolution theorem equations (2.1.1), (2.71.2) and
(2eie3) are equivalent to the following Hilbert - problems

F_(A)+t1=-wor k(MY F (A) = 0, {8l T
F_(A)+{1= N2z K(A)}F, (A)=i (A)+H_(A), (2+1.8)
F,(A) v2z K(A) - H_(A) = H (A), (2.1.9)

holding on the line L of infinite length with Im A = u,
where F_(A), F _(A) and H_(A) are unknown functions.In (2.1.8)
we consider F_{A) - H_(AJ as one unknown function.

We assume that the known functions K ('A) and o, (N)
in (2,1,7), (2,1,8) and (2,1,9) satisfy the Hélder condi-
tion (1,i,2) on L, in which case we can apply the theory
of chapter i.

2¢2 OSOLUTICN OF THE HOMOGENEOUS INTEGRAL EQUATION COF THE
SECOND KIND

We first consider the Hilbert problem (2.1.7) which
corresponds to the homogeneous equation (2.1.1) and assume a
strip 3 of convergence for the integral (2.1.4) for k(x).The
case of a line of convergence will be discussed at the end of
this paragraph. In g we choose a line L parallel to the real
axis in the A plane, on which no zero of {1-N2n K(A)} lies.
The line L with a positive direction (viz. Re A = +w) defines
the half planes S _ and S_.

Of course we have no knowledge a priori whether the
Fourier-transformation of (2.1.1) actually holds on L.However,
if the transformation holds on some line L in 8 we may de-
termine this line afterwards and construct the solution to
our problem (2.1.1).
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In order to be able to apply the theory of para. 1.2. it
is necessary that the integral in (1.2.4) converges for the
line L of infinite length. This is the case when

lim 1n {127 K(A)} = o, (2.2.1)
Re A-*oo

On first sight this seems to be true because K(A) is a
Fourier—transform and hence K(A) - O for Re A = *x. It re-
mains however possible that

lim 1In{1=27 K(A)}- lim 1n{i—-v2n K(A)}=-2nmi (2.2.2)
Re A-+4wo Re A-—co

where n is an integer. If we consider instead of (2.1.7) the
problem

v (A) + {12 K(A)} %%:212 y+(x)=o (2.2.3)

-b)?

where a is a point in S, and b a point in S_, then ( 2.2.1)
is satisfied. e can write down at once the solution of
2.2.3§ with the aid of (1.2.4) and the discussion above
1 .2.7

o 10l 1R K(n)} {2=8ln
T:(A)=:{exp - 5%; / =

aniP(A), A in Sye

N (n=A)

i (2.2.4)
Hence also the functions
F,()=(2=0)"" ¥ (&), F_(A)=(r=a)™" ¥_() (2.2.5)(2.2.6)

are analytic in S+ and S_ respectively and are solutions of
the Hilbert problem (2.1.7

e wish to obtain functions F_(A) and F_(A) which are
Fourier-transforms, this restricfs P(A), because for
Re A » *o F_(A) and F_(A) must tend to zero.

Now suppose that, for the case of a strip g of convergence
of' the transform of the kernel k(x), the function
{1-v27 K(A)} has zero's Ay3 Agseees in the S, part of 4,

arranged according to increasing imaginary parts. Ve
investigate the functions

‘ F,(2) F_(2)
FL,(A)= ™7 P, ()= %7 ° (2.2.7)(2.2.8)

These functions are regular in the regions S and S, _ ,

which are situated each on one side of a line L,, whlch is

parallel to L but lies between the zero's A, anli A,, That
(A) is holomorfic in S, . is obvious and that F, 2(A) is

hofomorfic in S, - follows' From cquation (2.1.7) bélause
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F_(A) and {1427 K(A)} must have the same zero's in the s,
part of B. So it is possible, by moving up L parallel to the
real axis, to construct new functions F +%A) and Py _(A)sssny
which are of lower order for |A| = « anﬁ which satisfy
equation (2.1.7) on new lines Liy Ly eoee o

In the case that F (A) and F_(A)“are not Fourier-trans-
forms, it is possible that F ¥ or F,,, F esses Will Dbe.
So the most direct way to ob%ain'ail so1ftion§Tis to take the
line L above the zero with the largest imaginary part within
the strip of regularity of XK(A) and to evaluate f(x) by the
inverse transformation. However it may be more convenient
to take for L, if possible, the real axis, in view of the
evaluation or approximation of the integrals in (2.2.4) and
to translate 1L afterwards into the correct positione.

When the transformation of k(x) is only permitted on a
line L, while {4127 XK(A)} has no zero on L we can use the
above theory., If in this case {1=-N27 K(A)} does possess zero's
on L we can also solve the problem, this will be discussed
in para. L.4.

2.3 THE INHOMOGENEOUS EQUATION OF THE SECOND KIND AND THE
EQUATION OF THE FIRST KIND

We are now in a position to solve the inhomogeneous
equation (2.1.8). It is assumed that the line L, on which we
consider the Hilbert problem, is within the strip B8 and above
the zero of {1-¥2m K(A)} with the largest imaginary part
within gB.

First we consider the case that the integer n defined 1in
(24242) is positive or zero. We select a suitable solution af
the homogeneous equation (2.1.7) from the set provided by
(2+245) and (2.2.%) by taking for P(A) some polynomial of
degree n without zero's on L. Denoting this solution by Y+(A)
and Y_(A) we may assume

1fm T LA) =1. {251
Re Aotoo ~

We can rewrite (2.1.8) in the form

[F_(A)-E_(A)} P,(A) H,(A)
Y_(A) YO T OO (2.3.2)

This equation has by (1.2.10) the solution

7 E5) H, (n)
F,(M)= - 53 J. T GIGRy @7 A in S, (B33

F_(A)=H_(A)=-

Y_(2) H,(n)
2l [ Y rita) Sis & A8 3. (2.3s4)
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In this case (n 2 0) the solutions (2.3.3), (2.3.4) can be
interpreted as Fourier-transforms and we find the solution
of (2.1.2) by the inverse transformation.

For n < O we cannot find functions ¥ (A) and ¥_(A) with
the property (2.3.1) and in general we Cannot interpret in
this case (2.3.3) and (2.3.4) as a Fourier transform. Only
for special functions H,(n) (2.3.3) and (2.3.4) will tend to
zero for Re A =+ * w,

We now shall treat equation (2.1.9) which reads

This equation differs from (2.1.8) in a rather significant
way, Vvize. the function ¥2m K(A) which is here the factor of
F+(A) tends to zero when Re A + *w. This means that we can-
not use (1.2.4) because the integral will not exist for the
line L which is infinite. We assume the existence of a
function K¥(A) with the properties

1im K(A)/ K*(A) =1, {258 )
Re A » *

IM(A)=1] = IK(A)/K*(A)=1] < e.< 1, (2.3+7)

for A on L, Further we assume that the function K*(A) can be
"factorized" by inspection in the following way

K*(A) = K*(A)/KX(A), (2.3.8)

where K:(A) and K¥(A) are functions which behave algebraicly
at |Al > « and are regular and without zero's in S, and S_
respectively. Then we consider the equation

vor x (A) u(d) - x_(A) = H,(A) KE(}) (24349)

which is of the type (2.1.8), while the integer n (2.2.2)
is zero. Hence the problem can be treated in the indicatead
waye. The solutions of the original equation (2.3.5) then
become

F,(A)=X,(A)/K2(A) ,  F_(A)=X_(A)/KX(A). (2.3.10)

When &, defined in (2.3.7) can be made sufficiently small
we can use this method for obtaining approximate solutions.
This will be demonstrated in chapter 3, where we discuss a
shrink-fit problem.
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2.4 EXAMPLES

First we consider an equation which is solved in ref. 2
by the method of Wiener and Hopf

oo

£(x) = m([ eIl re)as. (2.41)
We assume O < m < §. After transformation we find
P (A) {1- =21+ F_(A) = 0. (2.4.2)
b (1+A2)
The zero's of {{- —20 } are A, = = (2mr1)% A= +(2m-1)%
(1 +)\2) 1 ? 2 2

where we assume Im A, > O, The strip of convergence for the
Fourier-transfornmtign of the kernel is =1 < Im A < + 1, In
this strip we choose the real axis as the line L, on which we
have to solve the Hilbert problem (2.4.2)s On this line

f1- 2:2 } >0 and hence the number n in (2.2.2) is zero. The
1+
integral in (2.2.4) becomes
+w 1nf1- 2m2 } +oo
141 2m
- @ = 1n (n-A) 1ln{1- J / =
(n=A) -
+oo +oo
_ 1n (n-A) R s o e di f n 1n |n=A]
Lo = (1®)? L (14n®) (14n°=2m)
14n

This last integral can be calculated by residues, where we
have to take care that our contour does not enclose the
branch point 7 = A. Substitution of the results in (2.2.4)
yields

F,(A) = . PA) , Ains,, (Bulie3)
1
~(AAy)
F_(a) = =l P(A) , A ins_. (2elely)

These two functions do not tend to zero for Re A - *o and
hence cannot be interpreted as Fourier-transforms., However,
by translating L upwards over a distance between Im 12 and
1, and dividing F_ A) and F_(A) by (A-Az) we obtain
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F+(}") = T%%f%‘(%% 9 F__(?\)= - P_?: . (20“05)

It is obvious that P(A) must be a constant. By the inverse
transformation we find the solution of (2.&.1?.

£(x) = C {cos ((2m=1)Z x) + 20 ((2mt)Zx) o
(2m=1)2 (2.4.9
f(X) = 0 ex 9y X< Oa
As a second example we consider the equation
f(x)-m /’—-ﬁiL_é d§ = h(x)’ m <% . (20“07)
d 1+(x=§)

This equation cannot be solved with the method of Wiener and
Hopf because the Fourier-transform of the kernel converges
only on the real axis.

Fourier-transformation yields the equation

P, {i-mre” MY 4 p_0)=r, (1) + H_(A). (2.4.8)

The function {1—mne~'x|} is positive on the real axis and
hence n §2.2.2; is zero. The solution of the homogeneous
part of (2.4.8) is obtained from (2.2.4) and this solution
can not be interpreted as a Fourier-transform. However, by
taking P(A) = 1, we may obtain the solution of the
inhomogeneous equation by the procedure outlined in para.2.3.
In the present case

5 Frod a0l )
Y:(K)=exp ol =y f ——LTE:XT————l an, A in S:. (2.449)

Then the solutions (2.3.3) and (2.3.4) may be interpreted as
a Pourier-transform, The solution of (2.4.7) can now be
evaluated by the inverse transformation.




L.

Chapter 3

A SHRINK~-FIT PROBLEM FOR A HALTF
INFINITE RANGE OF CONTACT

We consider an infinite elastic tube which is shrunk onto
a semi infinite rigid shaft. In dealing with this problem we
aim exclusively at the contact pressure between shaft and
tube, for which an integral equation of the Wiener-Hopf type
is established. The integral representing the contact pressure
is approximated numerically by a method equivalent to the one
developped in ref. L4, which rests on approximating the kerrel
of the governing integral equation.

3.1 FORMULATION OF THE PROBLEM, DETERMINATION OF GREEN'S
FUNCTION FOR THE TUBE

Let (F,@,i) be cylindrical coordinates such that the X _
axis_coincides with the axis of the tube {fig.3.1.1). Let a
and b be the inner and outer diameter of the tube,respectiwly
Assume that the uniform radial shrinkage of the tube is 3.,
The stress distribution in the tube for the case to be
considered here is then governed by the following boundary
conditions:

for r=Db, ~w<X<+w, T, =0,0,=0, (901 )
for r = a, X < 0, Tox = Oy 0, = 0, {5:4 «2)
for r=a, £ » O, Tox = Os u=93, L3t 635

where o_(r,x) and T __(r,X) are the normal and the tangential

: X =" : g <
stresses_rgspectlvefyl and u is the radial displacement. iie
seek o, (a,X) for O < X < «w appropriate to the stress
distribution governed by (3.1¢1), (3.1.2) and (3.1.3). To
this end we note that this normal stress must satisfy the
integral qugtion

3 - [ G, (-2)0,(3,8)dZ, (3.1.4)

o
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where u_(X) is a Green function which will be defined
presentiy.

‘r
—
b a N a+¥
5 % ™ =
- — < ~ - X
\\s\ L
N \
. % R N\
7 2 S N
o i 10 7S A
!
Fige3e1.1. Infinite elastic tube shrunk onto a semi-

infinite rigid shaft.

The function u_(X) is the radial displacement of the
inner wall of the tube corresponding to the following
singular loading conditions:

for r=50, -w<X <+ o, Tag = 0»0. =0, (36145)
for P =438, =o0<X<+ o, T = 050, = a(x), (3.1.6)
for as7sh, X too, Tt Tps Oys 0g= O, (31 67)

in which 6(x) is the delta function of Dirac. The rotational
symmetry of this problem suggests an approach by means of
Love's stress function (ref. 10) ¢(r,x) which satisfies the
differential equation

2 2 2
A2¢ = (__.(2__2_ + j: % + —2_-’.—> ) q) = O. (3-1.8)
or r or ox”

The associzted stress field is given by

(55 = 2 (v - 2o (5,5,
X or
(34149)

2
2 [ (2-v)8 - ]9 (7,%),

e (F5) = 2 =
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2] ¢ (F,5),

0y(7,%) = = [va -
o or

X

T

(3e1.9)

7 (F,%)= ﬁ% [ (1-v)a

52 = e
;)-c_é] @ (PyX}s

where v designates Poisson's ratio, which we take equal to
0,25 in numerical calculations.
The corresponding radizl and axial displacements appear as

2. 1= =
AUT,%) = - ﬂ%"l 9%(r,x) , (3¢1410)

dToX
2 —-— -
3(7,%) = A (1-2v)a L+ L2l (E,D. (3.1411)
§ 4 r or

Thus we need to determine a function ¢ (F,i) which meets
23.1.83 and is such that the stresses (3.1.9) conform to
2¢165)y (3¢146) and (3+.1.7). The desired kernel T (X)

in (3.1.4) is then obtained from o

: (3.1412)

_ () 52¢o(;,§) I
HyX

(8 = 885 - - Ll e

Wle now establish ¢ (r,X) with the aid of the Fourier -

transform. Let elxx¢(5,§) be absolutely integrable with
respect to X in the interval (-w, +w ) for #1 < ImA < Koy
then the Fourier transform

+o0

eihx

- 1 - -
S(T,A)= —F-_ p(r,x)ax, u, < ImA < p,, (3.1413)

27
-0
exists and (3.1.8) is carried into
0%

: B
(== + L2 - 2% o(F,2) = o. (3.1414)
or< r Or

The general solution of (3e1.14) admits the representation

450(5,1) = A, (A)KO(A:E) + 1;2(7\)751{1 (A7) +

+ By (M) I (A7) + By(A)ATI, (AF), (3.1.15)

where IO(AF), I1(A§) and K (Ar), K1(AF) are modified Bessel-
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functions of first and second kinrd, respectively, Throughout
this work we shall use the definitions for these functions
given in ref. 11. The arbitrary functions 4, (A), AZ(A),B A)
and B,(A) are to be determired consistent with the transtorms
of thé boundary conditions (3.15) and (3.1.6). This process
yields four linear equations in the four unknowns A1, A2, B1,
B, Thus ¢ (r,A) is completely determined.

2 ypon infersion of ¢ (r,A) and substitution in (3.1.12) we

obtain after some computation
+co
2 o - - e
ﬁ(;g)z_w[el“ N(a,bA) 5 { %:1 5 16)
o Tk - g e
2 AD(a,b,A)

with

N(s,B,4) = AB[K, (AB)I (AB) + K (AB)I, (A7)]% -
~[2U=2) 4 AR (x, (A8)1, (AB)- K, (AB)T, (AZ)1%- L, (3.1.17)
Ab Ab

L(3,5,A) = AB [ é%:—v-l a][K, (AZ)I,(AB)+k (AB)I, (Aa)]2 +
a

+ 28 [ 2U4=2) B[k, (AB) I, (A5) + K (A&)I, (AF)]2 -
Ab

- A% &6 [k, (AB)I_(Ad) - K (AE)I (AB)]2

—[2%:—1’-1+A§][21;—'_'_31+7\6] .
a b

[x, OB)1, (A5)- K, (A8) T, (A5) ]2~ [ HL=k) ], (3.1.18)
A< ab

o'l o1
+
ol [og ]

32 SOLUTION OF THE INTEGRAL EQUATION FOR THE CONTACT

PRESSURE.,

At this stage it is convenient to introduce the dimension-
less variables o
x=%/a, £=£/a, b=b/a, ©=8/3, p(x)= - 4L ¢ (&,%).
{3e2¢1)

Then (3+1.4) can be written
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6 = -Ji?_;t([k(x-f) p(€) a , (3.2.2)
where
b ir N(1,b,A
1 -iAx
K(x)= 75§;£ e SRR o (3.2.3)

The integral equation (3.2.2) is of the Wiener-Hopf type.
We first investigate whether the Fourier transform K(A) of
the kernel k(x) possesses a strip of regularity in the conmlex
A-plane. From (3.2.3) we obtain

K(A) = § Sl (3.2.4)

Using known expansions of the modified Bessel=-functions, we
find

K(0)m o 22(1av) + (1-v)

2(1=v2) (b%-1) ’ .
K'(0) = 0 (3.2.6)

and
K(A) = TJKT + 0(A™2) as Re A >t oo , (3.2.7)

The function K(A) has no poles on the real axis of the A -
plane, because otherwise a cosine loading of the innerwall
of the tube would cause infinite displacements. A point of
singularity which can be expected, however, in view of the
branch points of K _(A) and X, (A) is the origin A = 0. This,
however, is not thé& case. Coﬁsider for instance a typical
part of the function N(1,b,A),

K1(A)10(Ab) + Ko(lb)11(1). (3.2.8)

Using here a representation of Ko(l) and K, (A) in the
neighbourhood of the origin (ref, 11), we Iind that the
logarithmic singularities of K _(A) and K, (A) cancel each
other. Hence K(A) possesses a gtrip of régularity around
the real axis. This means that the kernel k(x) decreases
exponentially for x -+ * . Because the lefthand side of
(3¢242) is a constant for x > O we take ImA > 0 and
sufficiently small when we apply a Fourier-transformation
to this equation. Then we obtain the Hilbert problem

=
D

P,(A) K(A) - 6_(A) = (3.2.9 )

y
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valid on a line L just above the real axis in the A-plane.
This equation is of the form (2.3.5) and will be treated by
the same procedure, First of all we have to find the function
K*(A). Because k(x) is an even function, it is clear that
¥(A) is also even. We now consider in correspondence to ref.h

K*(?\)— 1 T1 ()\2)
- (12+52)E TZ(AQ)

(3.2410)

where s is a real constant and T (12) and T (Az) are
polynomials in A with the same %erm of the“highest degree.
From this we see that

K*(A)= T%T + 0(IA177) as Re A = * o, (3e2.11)

where |Im A] < s. Hence by (3+2.7) the leading term of the
asymptotic expansions of X(X) and K*(ég is the same. Next we
choose s and the coefficients of T1(A and TZ(K ) so that

IM(A)=1] = |K(A)/K*(A) =1 < e <1, {5:2.72)

where &€ is some prescribed positive quantity. That this is
possible follows from the theorem of Tschebyscheff on the
approximation of continuous functions by rational functions
(ref. 12, pages 55 and 65). Then we have to solve in
accordance to para. 2.3

%, (A) A) = x_(A) = F_Z—iﬂ— K*(A). (3.2.13)

The homogeneous part of (3.2.13) yields as a solution which
satisfies condition (2.3.1

v,(A)= exp - ze= [ 1nnT an, A in S,. (3.2.1L)

Herewith the inhomogeneous equation has the solution

7,(A) i9 K*(n)
X,(M)= =377 v 7 ¥.(n)(n-2) ans

and the solution of (3.2.9) becomes

Ain S,. (3.2415)

P,(A) = X,W)/K*(A),  ©_(A) = X_(A)/KE(A).  (3.2.16)

The path of integration in (3.2.15) can be closed in the way
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Fig.3.2.1. Contour of integration.

indicated in fig. 3.2.1. Because K¥*(n) and ¥_(n) are analytic
in S_ we find with (3.2.16)

.o K2(0) ¥ ()

P A = —== » g o
+(A) Vo P_(0) * K*(2) e
hence iA
10 KX(0) T v, () ar St
- — ——— ‘ . . 8
p(x) = 53 ¥_(0) { A K*(R) R

Because of the occurrence of W+(A) in the integrand, this
integral is too involved for numerical calculations. It can
however, be expected (ref. 4) that, if & is sufficiently
small, we obtain a good approximation p*(x) of p(x) when we
put W+(A) and ¥Y_(A) equal to unity for all A, this yields

-iAx

j f
p*(x) ='§§ K*(0) | =2 aa. (3.2.19)
A KX(2)
Even when we choose more speciiically
K*(0) = K(0) (3u2.20)
we can easily show
p(x) - p*(x) ® 0(x°), x -0 (3.2.21)
and
p(x) - p*(x) » 0 y X o o (3.2:22)
Consider

*(x) = 22 x*(0) g 7, () ar (3.2
p(x)=-p*(x) = = K_( n/ ;—EEE;; { ?:r—y -1} . 542193
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Then it can be shown by estimating (3.2.14) that the function
between brackets under the integral sign in (3.2.23) is
absolutely integrable. This implies (3.2.21) and (3.2.22).

33 MNULERICAL CALCULATICH CF THE SHRINK-FIT STRESSES

As has been suggested in para. Z.2. we shall use instead
of the exact function XK(A) (3.2.4) an approximate function
a +a,12+alku+a Aé
% _ 1 O 2 L‘- 6
k()= 2 2\% 2. Al 20
(7\ +S ) bo+b2>\. +bL}.A +b6

’ (303.1)

where the coefficients are given in table I for several
values of the dimensionless outer diameter b, The values of
s are assumed, while the values of a, and bn are computed

TABLE I, coefficients of K*(A)

b 8 a, ay ah ag bo b2 bl& b6
3 1.25 1.00 =0,725 0.290 0.00553 1,00 =0,756 0,334 0.00553
2 5.00 5,11 2.32 0,332 (o] 1,00 0,342 0,332 0
1.5 6,00 9.12 0.24Y4 0,0285 (¢} 1.00 0.0178 0,0285 0
1e2 10,0 30.9 0,0963 0,00303 [¢] 1400 0,00685 0,00303 (o]

by collocation. The relative deviation of K*(A) from K(A) is
less than 4% for the whole real axis. By determining the
roots of the polynomials in (3.3.1) we can easily obtain the
factorization (2.3.8) of K*(A). Using these functions in the
integral (3.2.19) we find the values of table II for the
approximate shrink-fit stresses.

TABLE II, p%(x)/8.

p X 0.03125 0.0625 0.125 0.1875 0.25 0,375 0.5 1 o
3 2.83 2419 1.75 1.42 1430 1425
2 2.40 1,80 1.39 104 0,921 0.984
1«5 1477 118 0.743 0.538 0,619 0.658
1.2 1ol 0.716 0,242 0,135 C.1L9 0,253 0,308 0,324 0.324

Frorm (3.2.1S) we obtain by (3.2.21) and (3.2.22)
plx)s P*ix) =

_ 8 2241-7;2) (°=1)
Vi T p2(1e) + (1-v)]

1
}2+const.as x+0, (3.3.2)

and
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28(1-v2) (p%=1)
p2(1+0) + (1-v)]

Formula (3.3.3) agrees with the result which we obtain from
the elementary theory when an infinite tube is shrunk on to
an infinite shaft of uniform diameter and contact occurs for
their whole length.

as x = o« , (3.3.3)

p(x), p*(x) -

2.4 THE LIMITING CASE OF AK INFINITELY THICK TUBE

We now consider the limit as b - «, We shall again have
to determine Green's function u_(x) of the inner wall. In
this case we shall have to take the unknown functions B, (A)
and B,(A) in (3.1.15) equal to zero in order to avoid Y
singufarity at infinity. This problem was discussed in ref.
13 so that we may write down at once the integral equation
with the dimensionless variables (3¢2.1)

- A T - e
8 @ém £) p(€) a&, (3ele1)
where +oo -iAx .2
k(x)= ol 10 Choli)

]
n
Jﬁﬁ_i -xzxg(lxl) +HA242(1-v)} Kf(lll)

Here a complication arises. The kernel k(x), for finite b,

possesses a strip of regularity around the real axis in the
A plane. This is no longer true in the limit as b - . The

function

KZ(1A )

= .u‘
AZKE(IAL) + [AZr2(1-0)}KE(IAD) -2

K(A)

is not analytice.

From the point of view of mechanics, however, it is not
necessary to consider these difficulties in detail. For it
is evident that the shrink fit stresses of an infinitely
thick tube are the 1limit of the stresses produced by tubes
of increasing thickness. Then, from continuity considerations
we can calculate the approximate stresses of the infinitely
thick tube by approximating the function Kik) in  (3e4e3).
Also the asymptotic relations (3.3.2) and (3.3.3) remain
valid.

Now the course of the calculation is the same as before;
the coefficients of (3.3.1) are

s a, a, au ag bO b2 bh b6

1¢5 1 1.83 0,0853 O 1 2,16 0,0853 0
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the error in this case being less than 1 e5%. We find for the
stresses

0.0625 0125 0.25 0.5 1 )
3e13 2.44 197 173 1.58 1450,

X
p*(x)/8

I

1

3¢5 DISCUSSION OF THE RESULTS

The contact pressures are plotted in fige 3¢5.1, which
shows p*(x)/8 for various thickness ratios b/a. The ratios
chosen are b/a = 1.2; 1.5; 2; 3 and =« The stresses tend to
infinity as x -+ 0O, the order of the singularity being
independent of the thickness of the tube, as is clear from
(3.3.2)« The interesting region for the variable x, inwhich
the stresses change rapidly, is approximately O S x s,
Here we see from fig. 3.5.1. that for b/a = 2, 3 and « the
shrink-fit pressure is a monotonically decreasing function
for increasing values of x < 1, However, for b/a = 1.2 and
1+5 there exists a minimum which becomes negative for suf-
ficiently thin tubes. Since negative shrink-fit stresses
cannot exist, this means that our theory ceases to be
applicable., This behaviour is to be expected from the theay
of beams on an elastic foundation.

N

; |
') \\Qj\\ _J
\\\\\\~ 3
NN

~ . |
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(e] Q2 04 06 o8 x

|
'J4L

Fig.3.5s1. The contact pressure p*(x)/¢ for various
thickness ratios b/a.
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Finally we want to make a remark on the accuracy of the
numerical results given here., On the basis of observations
made in ref. 4 the relative deviation of the approximate
values p*(x) from the exact values p(x) ought to be approxi-
mately one half of the corresponding relative deviation of
K*(A) from K(A). For this reason the calculated shrink - fit
stress p¥(x) is apt to be accurate within 3%.
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Chapter L

THE HOMOGENEOUS FIRST ORDER
INTEGRO-DIFFERENTIAL EQUATION
OF THE WIENER-HOPPF TYPE.

We shall discuss an integro=-differential equation with
first order derivatives of the unknown function, which occur
both under and outside the integral sign. Equations of this
kind sometimes arise in physics (ref. 5). In this chapter
the method of solution is exposed for this simple form,it is
an extension of methods described in chapter 2. A solution
can be obtained even when the kernel k(x) decreases
algebraicly for |x| - o while at the same time the solution
does not tend to zero for x = + oo,

The following cases are treated separately: p—
Case 1. The kernel k(x) decreases exponentially |k(x)]|<e
with ¢ > 0, for |x| = o and the solution has the asymptotical

behaviour |f£(x)] =0 (e?*), with v < a for x - + oo, -
Case 2. The kernel decreases algebraicly k(x) =@ |x| ",
n >1 for |x| = .

Whenever we need explicite information about the
singularity of the kernel at x = O we shall assume that k(x)
is an even function with respect to x (para. 4.2.).

L1 THE GENERAL EQUATION, CASE 1

Our integro-differential equation has the following form
0
2 Tlx)ray £1(0) = [ [og 2(€)+by (6] K(x-£)ag.  (utet)
When we have found a function f£(x) for x > O which satisfies
this equation we have to solve a simple first order differen-
tial equation in order to find f(x) for x < O. From the
assumption of the exponential behaviour of k(x) at infinity
we find

lag £(x)+a, £'(x)| < C ezl o . (Le142)

o

Hence if we consider the left hand side of (4.1.1) &8s one
function h(x) we can apply a Fourier=transformation to this
equation. We use the notations of para. 2.1. and assume that
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A remains on a lire L with Im A = pu, within the strip B8,
Yy <ImA < a.
Applying a Fourier-transformation to (L4.i.1) we obtain

H_(7L)+F+(A)[a0-ia17\ - N2n K(?L)(bo-ib17l)}= %{ﬁ-bﬂrfﬁ x(2)}
(Le1.3)

where

() = L {a, £(x)+a, £'(x)}e?* ax. (ba1.k)

First we consider the related homogeneous equation
Y_(A)+Y, () la -ia, A - ¥27 XK(A)(b~ib, A)} = oO. (La1.5)

This means that we seek solutions of (L.1.1) with £(0) = O.
ve assume further that L has been chosen in such a way that
there lies no zero of the factor of Y (A) on L.

Analogous to the procedure in para 2.2, we consider the
expression

1n G(A)=1n [i—{ ao-ia17t- Non K(?\)(bo—ib17t)} -(Q:a))?l_P 1,

(Le1.6)

where a is in S+ and b in S5_. The integer n can be
determined in such a way that the prln(:lpal value of 1n G(A)
for ReA-» * » on L tends to zero.

We then Tind for the solution of (L4ei.5)

L) = 2= 00)™7 v, () 2(), (4e1.7)
Y_(A) = (A-a)™® #Z_(a) P(A), (1.1.8)

where
y:(A)= * exp - ét—l 1nnG dny, A in °+ ’ (4e1.9)

and P(A) is an arbitrary polynomial. Agair we consider the
zero's, A = Ay (m=A .... @ of

fa-ia A = W27 X(A)(b-ib,A) } (Le1.10)
within the strip A and above the line L, Then also the
functions Y+(l) Y_(A-)
Y, (A)= y Y_(A)= =, (4a1.11) (L1 .12)

q q
q A= a o (A=A
m[=I1 ( }‘m) mx1 ( m)
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are solutions of (L4+1.5), but now on a linre L_ with Im A _ <
Im A < B. In the case (n+q) 2 1 we find a solftion of ¢
(u.1.5) which can be interpreted as a Fourier-transform,while
an arbitrary polynomial P(A) of degree (n+g-1) can be taken
as a factor.

Now we return to the inhomogeneous equation (Leie3) and
try to obtain a solution. The general solution can then be
found by adding solutions of the homogeneous equation. We
choose some solution Y (A) and Y_(A), assuming P(A) =1 in
(Lbe147) and (4e1.8) in order to avoid zero's of Y,,(Ag in
5,.(A), from the set provided by (L.1.11) and (Le1s12) and
wPite instead of (L.1.3)

H_(?\) F+(A) f(O) iall -b1 N2m K(A)}
EALCO I S e Y_X)

=6, (A)-6_(A)«(La1413)

Here we have introduced the functions ©,(A) and €_(A) which
are discussed in para. 1.2 and which refult from splitting
the right hand side of (L.1.13) into two parts regular in S,
and S_ respectively. They are determined within an additive
term consisting of an arbitrary polynomial and can easily be
calculated without recourse to the general integral
representation (1.2.8), in terms of Y. (A) ana Y_(A). By
definition we have

Y_(A)+Y,(A) fa -ia, A - ¥2r K(A)(b -ib, A )} = O (Lot o1ly)

hence
(ao-ia‘l A)

\Zz K :
Y_A\) T (o ~1b, %) {YJM tyoy e (Betatd)

Combining (Le1e13) and (L4.1.15) and assuming for instance
b

- 2 in S,, we find, since Y,(A) have no zero's in S,
1 - -
(a,b_-a_b b
o_(a)= - = — S Cy] ) L1+ a(d)
7(bg=1bN - Y, (-1 52 (Le1.16)
1

b b
A;.-——LL = 1 1 A el e
e,) Ay { Tt Y+(_i§2 b+ Q) s (Le1a17)
1

ib
where Q(A) is an arbitrary polynomial. The case - 5 2 in S_

1
can be treated entirely analogous. The solution of (Le1e13)
and hence of (L4e1.3) becomes
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A
H_(A)=-e(A2)Y_(A)= £(0) {a1bo—aob1— El—zﬁé—l}- R(A)Y_(A)

N2r(b -ib,A) Y+(-139)
T (4.1.18)
R ()= 0, ()Y, (A)em —EOL (g o 21 Y*? I- a(M)Y, ().
N2r (b ~ibA)

- =2
¥, b1) (4e1.19)

In this result we may take Q(A) = O because this term only
furnishes a solution of the homogeneous equation. Apparentl
when Y_(A) is bounded at infinity we may interprete %u.1.18
and (431.19) as Fourier-transforms.

4.2 CASE 1 WITH a_ * O, a

- 4 = O AND b1 +0

Equation (4.1.3) now reads

H_(A)+F, (M) [~ K(A) (b ~1b,A)}=- % b, W3 K(A) (he21)

and the homogeneous equation

Y_(A)+Y, (M) {a 2 K(A) (b -ib,A)}= Y_(A)+Y, (A)T(A)=0, (L4.2.2)

where we have introduced the abbreviation T(A). There is a
difference between the equations (4.1.5) and (4.2.2). In
(4Le1e5) the factor of F kg is of the order A when

Re A » * o while in (4.3.2) the asymptotic behaviour of this
function, T(A), depends on the behaviour of K(A) for

Re A =+ * ». We now remind the assumption that in such cases
we shall consider only kernels k(x) which are even functions
of x, hence also K(A) is even in A.

The asymptotic behaviour of K(A) for Re A -+ * = depends
on the behaviour of k(x) in the neighbourhood of x = 0. We
assume k(x) to be continuously differentiable for O < ey < X
for each €,. We consider several possibilities for the
behaviour 'of k(x) in the neighbourhood of x = O.

a) Let k(x) be continuously differentiable for O s x < 62,

€, < €,y then

1im KO) =T 1AI™, 1 < m. (4e243)
Re A-’ioo

b) Let k(x) be the sum of a logarithm and a continuously
differentiable function for O S x < Epy &y < &, then
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1im k(A) = ala|™t . (L.2.4)
Re A=t

c) Let k(x) be the sum of xqf (0 < ¢ < 1) and a continuously
differentiable function for O = x < €oy &4 < &, then

-1+4

1im X(A) ® B|A| (4e2.5)

Re A=+t

The formulae (4,2.3) and (L4.2.5) follow directly from ref.,
14 while (L.2.4) can be deduced by subtracting from k(x) the
function C K _(x) where K _(x) is a modified Bessel~-function
and C some sQitable cons%ant, then we arrive again at case a.
The difficulties which can occur in the cases a, b and ¢
are concentrated in finding appropriate functions analogous
to (4e1.6)s We shall now state these functions.
a) In this case the factor T(A) of Y+§A) in (4.2.2) tends
to a, for Re A » * w, hence instead of Le1.6) we can use

1n G(A) = 1n{ 2= T(A) (-a) g, (4e2.6)
o (A=p)™?

b) T(A) tends to a, t 1 N2 A b, for Re A - * o, we take
a _+iN2m Ab

= E%T ln(ao-{VEn ADb )

1n G(?\):lni—-lm—— (A_-_a) 1, (4e2.7)

a +NDT Ab, A=

c) T(A) tends to * i N2m b, BIA[€, 0 <d <1 for Re A— #x,

we take
- .U.zil
1n G(A):ln{—nl‘)— {2=a) (lyai2.8)

: RE
lﬁd—f b1B (A_b)n+ 112_)'

The values of the nultivalued functions which are the factors
of T(A) are to be fixed in such a way that the principal
value of 1n G(A) for Re A + * «» on L tends to zero.

The essence of the formulae above is that we have multi-
plied T(A) by functions which can be factorised by inspection
into functions regular and without zero's in S, and S_. We
find t?e following solutions for the homogeneous equation

.2.2

a)  Y,() = s (42.9)
Y_(A) Gl T B Ok (4.2.10)
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b) (a_+iN2m Ab,)
Y+(A) = -+ 1 1n ao+ 1 (Ll»n2o11 )
) = 2 TR ) M 22)
c)
Y () = b =T (G ;‘0”_1 (4.2.13)
A - ¥, (A) P(A),
Y. (A) = o) ) B (4e2.14)

where ¥,(A) is defined in each case by the integral (lL.1.9)
with th& corresponding G(A).

Followi the treatment of the preceeding paragraph below
form (u.1.3? we arrive again at formulae analogous to (L.1.18)
and (4.1419).

The case a,=0, b, =0, a, # 0, b, # O is the homogeneous
Wiener-Hopf e&uatiok with exponen%ially decreasing kernel and
is discussed already in chapter 2.

L.3 THE GENERAL EQUATION CASE 2

The treatment given in para. L.1 is also largely applicable
to the case of equations with kernels which are only trans-
formable on a line L, However, there are differences, for in
the latter case we cannot translate L and hence (L.1.11) and
(4e1+12) cannot be used. Further if there is a zero of (Ld.10)
on L this cannot be avoided by translating L slightly.

We now discuss a method to obtain solutions of (L4.1.3)when
(4e1.10) has zero's on L. To demonstrate the procedure we
gshall treat the case of one zero A = v of the first order. An
extension to several zero's and zero's of higher order does
not offer principal difficulties.

From (4.1.11) and (4.1.12) we see that a zero Am of (le1410)

-1 X
introduces a term of the form c,e in the solution of the
integro-differential equation. In our case with a zero v on
the line of transformation it seems reasonable that the
solution of the integral behaves as c¢ e VX sor x =+ + . Hence
we try to find a constant A in order %hat the function

ivx

v(x) = £f(x) - 4 e~ + 0, X = + coe (4e3.1)

The integro-differential equation for v(x) can be derived
easily from (L4.1.1), we find
[s°]
aov(x)+a1v'(x)= / {bov(§)+b1v'(§)} k(x=-g)ag -
o 0o : (LLQZ).2)
- A(a-1a,v)e™* 4a(b -ib, v) / e k(x-g)ag , x > O.
°




e

Under the assumption that v is a zero from (4e1.10) we see
that the last two terms of the right hand side of (L.3.2)
cancel each other for x -+ + ~. Applying a Fourier-transfor-
mation to (4.3.2) we obtain

W_(A)+v, (A) la -ia,A - ¥om K(x)(bo-ib1 A} o=

(LL. 3.3)
v(0,) {a,-b, ¥ZT K(A}'———la_~ia v=Zu K(A)(b_~ib,v)]}
= P / - - ’
= o o .

where v(0.) is the value of v(x) when x tends to zero through
positive values and

o
) 1 -iAx ' i -ivx
N_(l):—;; e Iaov(x)+a1v (x)+A(ao 1a1v)e Yaxe. (L.3.4)
-C0
The solutions Y,(A) of the homogeneous equation

fa —iagrviﬁ K(A)(bo-ib1x)}

Y_(A)+Y, (2) =2 =y =0 (4e3.5)
are P
L) = (A -0 £, (1e3.6)
where
‘ ao—ia1n—J§i K(n)(b -ib, n) (n- 2 ;
¥, () =texp- 2;1 1n if a1 (p=v) (g=p)" s
- (n=A)
(Le3.7)

Herewith (L4.3.3) can be written in the form

W_(A) a1(A-v)V+(A)
3% S Y _(A)

- ¥0) (o —p N7m AL g
Ty [ (20 KL " )

-ia,v = N2 K(A) (b =ib, v )}] = @, (A) - €_(A), (L4e3.8)

where we have introduced © (A) and ©_(A) which result from
the splittlng of the right hand side. Under the assumption
that p = 8/b}I, for instance, in S, we find analogous to

the procedur para. L.l
)= {V(O)b1(l-v)+Ai(b0-ib1v)}{1_y+(x)/y_(p)} i P(A)Y+(A)
o Ner (A=v) (b, -1ib,) +a1 ) ?

(4.3.9)

]
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(a0b1-a1bo) Y_(A)

W_(A)=—— (a-v(0

.{v(O)ib1 a1(l—v)-A a1(bo—ib1v)}+P(A) Y_(A). (4e3410)

When n > O we can interprete (4.3.9) and (L.3.10) as Fourier-
transforms while we can admit an arbitrary polynomial of the
degree (n-1). For the ease n = O we can consider these
functions as Fourier transforms when

P(A) = —v(ﬁ)—f-’— . flia3at )

vor Y (p)
From (L.3.9) we observe that we have to choose A in such a

way that the singularity A = v disappears, this yields

~Em P(v) Y, (v) Y_(aR,
A = (Y_(p)—Y+(V) ) ] (14.,3.1 2)

Hence we have determined a solution of (L4.3.3) and by the
inverse transformation and (L.3.1) also a solution of (L.1.1)
with in general f£(0) # O. An analogous treatment can be given
for p = =1 D in S_.

If we wan t$ solve an equation with several and higher
order zero's of (L.1.10) the analysis becomes much more com-
plicated. Assuming zero's A= v_ (r=1 ... N) of the order p_,
we shall have to consider the Entegro-differential equatioﬂ
for the function

N P -i
v(ix) = £(x) = = ( ):r A e “rt g (Le3e13)

r=1 m=1

By an analogous reasoning as before we can obtain relations
for the coefficients A_ .

The discussion of pgpa. L.2 can also be extended in the
way of para. 4.3 to kernels which decrease algebraicly at
infinity, this we shall not do here. However, to show the
applicability of the ideas of this paragraph we shall discuss
an example.

4.4 EXAMPLE

We consider the ordinary Wiener-Hopf integral equation
which we have discussed. to some extent in para. 2.4

£(x) = m [ —E&D o, (Labsat)
4 1+(x-€)
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however, the range of the parameter m is different we take
here m > 1/%., Formal transformation of (4.L4.1) yields

F_(A) + F,(A) {1- mx e'm} = 0. (Lhoo2)

The function {1-m1re-,A'} possesses two zero's on the real
axis which we call A = *v , The asymptotical behaviour of the
solution is then assumed to be

ivx ivx

£(x) » Ae” + Be™"", 1im x - +4oo. (Lolse3)

Hence we consider instead of (u.h.1) the equation for the
unknown function

v(x) = £(x) - (ae”F 4 Be!V¥), (lalial)
which reads
v(x)m([—vE')'g‘% - (ae”XiBeV®)im (Ae'i"§+BgiV§) d§
‘|+(X-§) 1+(x-§) L‘-'LI--5)

Transformation of this equation yields

& - L Ai . Bi _ =2l
A Bl s T T sty
where o

w_(A)= ;%5'/ o tirx iv(x)+Ae-ivx+Beivx}dx. (4elta7)

"8
We now write (4.4.6) in the form

o) v, o, o Ai Bi -p
s vyl avy) (Ac=v<)= ﬁﬂi@(l-v) +~/—2—1r(?\+v)}“ me '},

(4.4.8)
where Y,(A) are the soluti?ns of
= {2
Y_(A)+{—2EE——1 Y (A) = O, (kes9)

(Az-vz)

v.(A) = (A+1) ¥, (A), Y_(A)=(a-1)7 v_(A)  (4.4.10)(Lalrett)

and




3)-:'.
+oo 1ni(1-mﬂe-,n')in——-l-

2)

wi(x)= * exXp = 37 -y an, A in S,.
n—

B (Lalta12)
From (4.4.8) we obtain with the use of (L.4.9)

wWw_(a) v ,(d)
Ty " T %) (A2=v2)= L= [a(r+v) + BOA-0)E. —-(7;7 (lokia13)

N2n
Hence
v,(A)= @(iz-v% [A+)+B(A=v) +P(A) Y, (M)}, (Lobatls)
i =109 A). i,
W_(A) = Y_(A) (Lielin15)

In connection with (Lelte11) we see that we have to take
P(A) = C. Further we have to compensate the singularities
A=*vin (Lebe1l4). This yields

c ,
A = = -517 Y+(v) ’ ’ \LL-Ll»o16)
B = % Y+("'v)o (L".L".“?)

Hence the solution of (4.4e1) is determined.

We have given two different discussions of equation
(4elte1), depending on the values of m. For m < 1/ the
ecuatlon was discussed in para. 2.4, while here we considered

m > i « The case m = 1/% cannot be solved directly, however
it i8 possible to give an asymptotic expansion of A (L.l 165
and B % Lelte17) for small values of v,
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Chap ter 5

A WIENER-HOPF TYPE INTEGRO -
DIFPFERENTIAL EQUATION WITH
FOURTH ORDER DERIVATIVES

We shall discuss an integro—differential equation, which
is an extension of an equation discussed by Reuter and
Sondheimer (ref. 6) which arises in considerations about the
anomalous skinn effect (ref. 5). Although the derivatives
occurring in this equation are of the second and fourth order
we can follow closely the line of thought of para.hj.1 and
para 4.2. It was asked to expand the quotient of the
solution and its first derivative for the value zero of the
independent vgriable in terms of a small parameter B. The
case that this parameter is zero is discussed by Reuter and
Sondheimer. It turns out that this quotient does not depend
analytically on B, there arises a term of the form g 1n B.

5.1 TFOURIZR TRANSFORMATION OF THE EQUATION

The integral equation has the form

f(a)ﬂa / {£(t)-18 f(lg;)lk(x—t)dt (5¢1.41)
o

(4)
where a and 8 are positive real mmbers. By £ (x) and f x;
are denoted the second and fourth order derivatives of f(x).
The kernel k(x) reads

k(x) = [ - %) exp (~clxlelas, (5.1.2)
1

where ¢ is in general a complex number with a positive real
part. We shall determine the physically important quantity

(1)
f(o)/f(o) ’ (5-1 03)
and obtain its asymptotical expansion for 8 -(+ ()).
2
It will be assumed that f(x), £ (x) and f ’tx)are bounded

2
for X » + o, From (5.1.1) we deduce that £ (x) is of the




36.

order e¢°* when x -+ - o, Then it is allowed to apply a Fourier-
transformation to (5.1.1) when A remains on a line L above and
sufficiently close to the real axis in the complex A plane.We

find

H_(A)-F+(7\){‘A2+1a~l'§z K(A)(1-18 x“)} =

” -1—-if(1(c)))-17\f(o)}+a.3 K(A){-f(%()))uxf(%z))+12f(1(()))-17\3f(o)} :

van (541.4)
where
o ‘
(2],
H (7\): L / b ig (x) e x dx 5e1 -5) ‘
= wm ’ (
and
il i 2 A+i
KA )= 2= | k(x)eM® ax= 1—{==E 41(+ + &) 1n(RdCy}
M= = I a2 A T3 TheRee
- (5¢146)
the logarithm is defined by
in (_Aiig) -+ -ni, Re A-+ o, A on L, (54147)

First we consider the homogeneous part of (5.1 .4)

Y_(A)=¥, (M) IA%+1a8Bm K(A) (1-1821)} =¥_(A)-¥, () T(?\)?O, S
501-

where, as in para. 4.2, we have introduced the abbreviation
T(A). In the following we shall use the notations of that
paragraph. The asymptotic behaviour of K(A) is

I 2 3
K(A)= = 8«7\-n=—1_[n-&9+@—- },Re A+ wyA on L
hence

T(A) ¥ aBuA®|Al, ReA - * w on L. (541410)
The function 1ln G(A) can be taken in the form

{A2+ N2z K(A) (1-ig At

5 (5¢1411)
apn(A2+p?) (A%4p2)2

in G(A) = 1n

where p is an arbitrary real positive number., We find for
the solutions of (5.1.8)
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¥ (A) v ()

= ’ Y (A)=¥ (A. A=i )“::-' ’ (5-1-12)
* oBa(A+ip)NA+1ip it e P

where
¥,(A) = exp - EILIL/ 1nnf an. (541413)

We now write (5.1.4)

H(A) F.(A) (1) (3)
f(ﬂ " ﬁﬂ - Y_jm[—;g {fr 1(0)-iAf(0)} +ag K(A){-r (0) +

+ iA f(%())) + A2 f(1(2)) - i 22 £(0)}] =0 _(A)= 6_(A).(5.1.14)

The functions 6+(7;) and © (A) can be calculated exactly in
the same way as in para. L.1 by splitting K(A)/Y_(A) with
the aid of (5.1.8). We find

H_(l):— :%%;i;ﬁ:;ﬁ;i -Azﬁf(%%)+1135 f(%g)+ if(}g)+x f(O)} +
Y_(A) =R, (-u) +1 R, (-ip) + R,(p)

¥ +
. LuNTR Y (=) (A+p) ° Y_(=ip)(A+ipy) Y+(u)u2().-p.)

i R,(ip)

+ 2 }’ (501 01 5)
Y, (1) p(A-1p)

F (A)= - m{ -f(%())):fi?\r(%()))nz f(1(2))-113 £(0)} +

Y,0) R (=p)  1R(-1p)  +B,(4)
" iz AR CEGORTA 0 2 o)

1 Ry()

}9 (5-1.16)
Y+(iu)u2(7t-i.u)

o+

where
R, (A)= -Azﬁ f(%g))»fi ;\3ﬁ f(%()))ﬂ. f(}()))+7sf(0), (5¢117)
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RZ(A)= - f(%%)+ih f(%%)+ A2 f(}%)-i A £(0) (5.1418)

- i gjr L
and u =8 e is a zero of the function (1-i8A~). The
solution, (5¢1+15) and (5.1.16) are essentially the same as
(?.1.18) and (L.1.19). Because we wap, )to obtain a function
f(x) whose fourth order derivative f %x) possesses a one
sided Fourier-transform for OS XS o

co LI» .
}1:-/ f((;)nel"x dx= F1—“5 -f(%()))ﬂ.?u RrwE f(1(é)-i?»3f(0)}+7\4F+Q»)
2ng 2n
(541419)

it follows that the second term of the right hand side of

(5¢1416) must tend to zero more quickly than A=4 for

Re A » * o, In tg? general form in which it stands it tends
2

to zero as |A|” . Hence we shall have to satisfy the
following conditions

R, (-#) iR, (-ip) R, (1) i R,(1k)
FELCT7) I € 77) I Y, (w2 * Y, (12 =P (5.1.20)
R, (-#) R, (-1u) R, (#) R, (1#) - et 1

+ + =
YA DY) Ty () oy ()i

When (5.1.20) and (5.1.21) are satisfied, the second term of

the right hand side of (5.1.16) tends to zero asl|Al /2 for

Re A= % . %;}s, however, generates a singularity of the form
big

£
x 2 for X) as x - 0,, which cannot be tolerated for
physical reasons, hence we have to go one step further and
demand

-R, (-¢) 1R, (-ip) R, (1) i R,(in)

L ) 1 N - = s (5e1.22)
Y_(-u] — Y_(~i4) v (e® Y, (ke

These three linear equations, in the four unknowns f£(0) ,

(1) 2 3
£ (0), f (0) and f (0), determine the ratio
2 . -2 - P -
e(o) _ KUY, (3p)-1 Y (u)} +u7TlY_(=1p)+i Y_( u){ .

£ zo) s (Y, ()= Y, (W)} = 1 ™2(Y_(=1p)+Y_(=p)}
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From (5e¢1+12), (5¢1¢13) and (5.1.23) we see that the asymp~

4
totical expansion for 8 - O of £(0)/f (0) can be calculated
directly from the asymptotical expansion of

2,30 N2 K(n) (1-1

4o 1nf T
E(7\)=f ~agn (r20%) (n%ep?)’ an, (5412L)
2 (n=2)

where we take instead of L the real axis in the A plane as
line of integration.

5.2 THE ASYMPTOTICAL EXPANSION OF E(A)

Instead of (5.1.24) we can write

2 L
oy n_+ia ND1 K‘ ZZ! ‘1 -1@71 2
E(A):QZ[ nt Zopu } an (54241)

(n2-A%)

where we have taken for p the value zero. This limit process
must also be made in (5.1.12). We now consider

% -4 -2 -4 L
ipy_, i@ |-1n§anu )=1n g+lnl1+iad2n X(n)n (1=iu ™7y [il
E(ue™7")=2e""u 55 8ip dn,
o R % (54242)
~4 ; - -
where u = 8 and ¢ assumes the values %?, %?, 7% or %? and
it is asked to determine E(u ei¢) for large values of u.

We shall treat the three terms of the integrand of(5.2.2)
separately. First we consider

(=]
-2 1%y 1n(a1m—14)[ —-2—% =% in lnomu_“', uel®in S.»
[o} s (50203)
next o F. "
igp / in 7 __ig / in 7 3 iwf dn
-2 e " — dn==e~"u dn +imue o
) 772_u2621qo 2 n2_u2621¢ n2_u2e21¢
(5.2.4)

The path of integration in the first integral on the right-
hand side of (5.2.4) is the real axis with a small semicircle
above the point 7 = O, We find

o0

—2 ey ABIAL. _ p(+o- D)TigInu, uel® ins,. (5.2.5)
22,219 2 *
°




—

Lo,

The last term in the integrand of (5.2.2) causes more troule.
We divide the interval of integration as follows:

1n{1+iad Ksn)n ( 1-iu Ez 2}
n2 u2e21<p

T
oo

u
=focoo dn"“/‘..-.d]]"’/.--. 677 I+II+III
o u® uf 2.6)

where s = ¥ + € and r = 3 + 6‘ € and ¢ being arbitrary but
sufficiently small real quantlties. We shall treat the
integrals I, IT and III separately

1 / 1n{4 +ioW2rK(n)n" g-iu _1_2 H
2_u2e2i<p

= —u"2e"219 / [1n{1+1nBaK(n)n"2} +

N Dy L"K(n)n =2ig\n
+1nf{1+ & } s (17— Py ane(5.2.7
1 +iaN 27_1'K(n)77-2 n=0 u? )

The expansion of the denominator is possible on account of
the special range of integration. The first logarithm of

the integrand in (5.,2.7) multiplied by the general term of
the expansion gives

_.—2(n+1)ip
-im— 2n 1n {1+1avZHK(n)n " 21an. (5.2.8)

For a further reduction of this form we need the expansion
of the logarithm for n - + «; using (5.1.9) we obtain

In {1+ioN2x K(n)n_z} ~ Z b, n™®, n real (5.2.9)
n=

with by, = iamw ; b, = = ialbe;

5 = iomcz, essess Hence we
can write instead of (5.2. 85

-2(n+1 )1¢ _ - "
2(n+1 2n {1n(1 +ioW2nK(n)n 2)_ 2 bmn-m- 2in+1 Yan+
m=3 N (n+1)

u
b
+jn2n{2 oo™ 4 2n2n+1 1 dn -
r n<(n+1)
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r 2n b
-/nmihM+mﬁEKmhf%—z mmﬂh;ﬁﬁi—}w%
s m=3 7= (n+1) 5¢2410)
u

where we have supposed n 2 2, For n =0 or n = 1 we have to
change (5.2.10) slightly, because then we need fewer conver-
ence-producing terms or none at all, see (5.2.13) and
%5.2.1&). The first integral is independent of u. After inte-
gration we find for the second integral terms of the form

s 8
LU u
ne ], 12 1 s2n - 2 and 1n(n+1) | (5.2411)
o o
or
o0
w3l ana 1n (uB+1) = s lnu = I (=)0 ™50, (5.2.12)

m=1

Because the final result must be independent of s, we can
omit these terms from the beginning, If now we expand the
logarithm in the third integral of é5.2.10g and integrate,we
see that only terms of the type of (5.2.12) arise, hence we
can also neglect this integral. It willturn out that for our
purpose %t is sufficient to consider quantities up to the
order u~°; then we obtain from (5.2.10) for the values n = O
1 and 2

—e 2102 j 1n {1+ia N2z K(n)n_z}dn =—e-21¢u_2A, n=0,
{ GuZet 3)

[e}

n+1

o0
R f (72 1n{1+ioNZAK(n)n "2 - 2&]an =-e™419 4™ 3,
d n=1 (5.2414)

PV, - —
-~e~039,"6 / [n*1n (1 +10¥B7K (n)n "2} -tam+iake - L2E Jan =
(o]

g OO0 & = B, (5.2415)

The second logarithm in (5.2.7) gives, with the general term
of the expansion of the denominator

u
-l 2
J 1+1cN 27K (n)n
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For the range O = nn S u® it is allowed to expand the logarithm ,
from which results,

)
-2(n# )ip P oo m 2
e on (=1)"  ~hm a NorK(n)n m

n $>; u { —} a:
w2(n+) 4 m=t O 1 +iaW K (n )n~2 ?5.2.17)

Now we need the expansion

2 oo
aJEiK(n)ﬂ_z " 2 Cpopn |7l % (n real),(5.2.18)
1+ioN 21K (n)n n=-m ’
where
" - " = 2
01 ’_1m H 01 ’o— -lnc, 01 ’1 arce jyeceee (5.2.19)

Using (5.2.18) and (5.2.19), the term with m = 1 of (5.2.17)
reads

o [o°]
—e~2(n+1)ip 20 [ oNZrK(1)n> %n o, nle —da2ntiya
'-—ﬂ
gl oy 1+10NZTK(n)n"2 1== 121 (n+1)n ="
us on C,
[ oo (5 o v St g
d 1= . (n+1)n
- -]
on oV 27K (n)n° - -1 Za2ns
_[oem — - L o ni- ==} an].
s 1 +ioW27K(n)n 1=—1 ’ (n+1)n (5.2.20)

These integrals have the same character as those of (5.2.10)
hence we can conclude that only the first one contributes to
the final result., For the value n = O we find

[o~]

_.~2ig 2 2
e z ‘/i a@% - ann + Ll—ac - %Zf }dn =
u> ¢ 1 +iaN2nK(n)7n

—e~219,76 g (502.21)
The contributions of (5.2.17) for larger values of n or of

m can be neglected.
We w1ll now treat the second range of integration

/ _@&JM ane. (5.2.22)

2 21¢
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We observe that for the whole interval of integration the
argument of the logarithm is in the neighbourhood of 1; this
neighbourhood decreases with increasing values of u. Expansian
of the logarithm and of K(7) and using the identity
i:e-ui¢ results in

r

—2ip =2 [ % (=)@ = -n-2 -2 2 =24

e~ <Py / z L—J)—-(iaJEE 2 an PT2)M(g "o ce TPy |

m=t 7 n=t

u

(=2 2em2i) 4 (5.2.23)

The integration can be carried out and we obtain terms of the
form of (5.2.12). Hence it is allowed to omit (5.2.22).
Finally we investigate the last integral in (5.2.6):

i =2 cas Ul
TIT = /MMH_LM an = (5.242L)
uI'

n2 - u2e21¢

oo
= e~219 =2 [ [1n (1+u_uann) +
r

co
ioWor £ a.nm n(n-z—iu'un2)+iaﬂn 5 :
n=2 1. oo uZmeZmJ.gp
+ 1n {’1+ i }] z —— dne.
(14" o) m=1 7

(5¢2.25)

The first logarithm in the integrand of (5.2.25), with
the general term of the expansion of the denominator as
factor, gives after partial integration

2(m=1) 2(m=1) _ w © "
U ( ﬂ In_@”1lnﬁ+uLhmﬂ|-/n om+ _u o il

e r °p (1+u "ann)
e (5.2426)

If we now expand the first expression between the square
brackets in (5.2.26), we see that there is one term for the
lower boundary ur which is independent of r, viz.

e2(m=1)ip ) 2m=1

R ’

(57

which gives a contribution within the desired order of
accuracy for m = 1

u2(m—1)e2(m~1)i¢ u-han)Zm-1 u-6m+2
(-2m+1) ST—2m+1 )] = (2m=1)2

amu™ . (5.2.28)
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The integrand of the integral which occurs in (5.2.26) can
be split into partial fractions, in general

1 " (=1 (u™am)t . (=) 17 (uHomr) 11
ﬁ1(1+u—haﬂn) 1 +u o 5

+ ecee

(5¢2.29)

The first two terms only are of importance, the other terms
cannot contribute to the final result (see 5.2.12). Taking
1 = (2m=1) in (5.2.29) we find for the integral in (5.2.26)
including the minus sign:

:Ez(mzliﬁff?-1)i¢ u o (u Yar) 2072 1 0"Tﬁf"') |. (5.2.30)

1+u “amn -

The upper boundary « yields a term which is independent of
r 3 for m =1 we obtain

- %qn 1n (u-uan); (5e2431)

larger values of m can be neglected. We now investigate the
second part of the integral %5.2.25). Expanding the logarithm
and taking the general term of the expansion of the denomina-
tor we obtain

—e2(m=1) 10 2(m~1) f g2 [ Z (=T,
r 1= 1

iWBE cxnn-n(17""2-111'4"'172)+i.nt1t'r)_3
n=2 }1]6.
B Me
R (5.2.32)

If we consider the case m = 1 = 1 ge see, by using (5.2.29)
that the result is of the order u~°, which can be neglected;
also 1agger values of m and 1 give results of higher order
than u=°,

So we find fﬁr our expansion of (5.2.2), if we make use of
the relation e~4i¥ = i,

{

E(uel®) 2 (5.2.3)+(542.5) +2e1Puf (5.2413) +(5.2.14) +(5.2415) +
+(502421)+(542428)+(5.2.31)} =

=n( 2p- %):ijranuruf3—2e—i¢u-1A-2u_3ei¢.{iB+aa ln(e-1u-uaﬂ)}+

- 2u™? e_i¢{ic + D}, uel? in S,e (5¢2433)
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(1)
5.3 THE EXPANSION OF £(0)/f (0)
The expansion of

Wt(uei¢) = exp - E%T E(ue1¢) (5.341)
can now be written as

v, (uel?) % (ama3)*% 1 (232034 _1 o710 (2™ ) ave 1 (wu?) ! (B,
.n(omu™*e™")) +e 1P (u2) ™! (C-1D) +3{ e "21P (2 2u2) ! A2 -
-21(z%a*)™! A(B-tam. 1n(ami™e™))}+ F-elPz 303 A3-3e71%73u5,
«(B-ia 1n(oamue™ 1))} +

+ ﬁﬂ {1 ot Au} + 7%5 {e™1Pr™2y™> ASI], wel® in S,+(5.3.2)

With (5.3.2) we can calculate the quantities Y+(uei¢)(5.1.12)
which must be substituted into (5.1.23). This Galculation can
be simplified by showing that only the terms of (5.3.2)
between square brackets which are independent of ¢ contribute
to the numerator of (5.1.23), while those with a factor e~i?
contribute to the denominator. The result is

f<o)/f(1<3>)=- %[ -priRtic) ;%(B-iaﬂln(wrﬁe-“))- ;,;i"}* -

(543.3)

The first term of (5.3.3) agrees with the result found in
ref., 6 where the same problem with 8 = O was solved.
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Chapter 6

THE FINITE DOCK

This chapter deals with two dimensional surface waves of
a deep sea in the presence of a strip or dock of finite
extent. The dock is supposed to be 1in rest on the level of
the undisturbed water surface. At one side at infinity there
is a prescribed incoming wave with crests parallel to the
edges of the dock. This wave is pa rtly reflected and can
partly pass under the dock. We shall calculate the reflection
and transmission coefficients.

Following H. Rubin (ref. 7) the problem is transformed by
a Babinet principle into a problem for the motion of water
between two semi-infinite docks. This can be formulated as a
Hilbert problem for a segment of finite length. Its solution
yields a Fredholm integral equation of the second kind,which
can be solved numericallye.

6.1 FORMULATION OF THE PROBLEM

We assume the water to occupy the half space § < O. The

%2
/7:b o +b X
> v Y25\ et
>~ TZT, T )7-//
Fig.6.1.1. Situation of the dock on the watersurface.

dock is on the level of the undisturbed water surface (rig.
6.141) and extends from X = =b to X = +b., Because we assume
the motion of the water to be non rotational ,two dimensiaml
and simply %eriodic, this_motion is governed (ref 15) by a

potential ©(%,¥,t) = ¢(X,y)ei?t, vanishing at y » - «, with
62 - -
(a 5 + 55 2) 8(X,y) = (6e141)

The velocities in the x and y direction u and v respectively
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are found by differentiation

00 00
u="_ V ==—=.
ox oy

The boundary conditions for ¥ = O are

0% - 0% =
— =0, |x|<b; -w2t9+g-—_-=0, %] » b, (6e142)
oy oy

where g is the acceleration of gravity. Introducing the
dimensionless quantities

X =%/b, y=75/band v =w b/g (641.3)

we find, that the harmonic function %(x,y) has to satisfy
s far y = O,the boundary conditions

0% o)
6_§=O’ Jxl <43 W-v9=0, Ixl > 1. (6e144)

We consider the pressure function
o8
?P(X’y) = ﬁ' (X,Y) - U‘S(X,y) (60105)

which has often been used in problems of this type (ref.15).
The boundary conditions for this harmonic function for y= O
are

2
gl o L 0, Ixl <1; p=0, Ix| >1. (64146)
oy dx2

By introducing the conjugate function ¢(x,y) related to
v(x,y) by

%% = %% ’ %% = %% ’ (60107)

we replace (6.1.6) after integration in the x direction, for
y:Oby

v¢+g—§=o, lx] <13 g:;:o, Ix] > 1. (641.8)

where a constant of integration is absorbed in ¢(x,y).

At last we add two remarks about notations to be used.
Firstly the boundary values for y = O of any function ¢(x,y)
are denoted by ¢(x), secondly the notation ¢e or ¢o denote
that the function is an even or odd function of x.
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6.2 DERIVATION OF THE INTEGRAL EQUATION

We shall now derive the integral equation for the auxiliay
function ¢(x,y). When o(x,y) is harmonic for y < O, then the

same is true for ?ay and we may assume
% = Im &(z). (6e241)
Then y = O we have, by introducing a positive direction on

the segment |x| < 1 of the real axis in the direction of
increasing values of x,

Inm $_(x) = =ve(x), Ixl<1; Im9o_(x) =0, |x| >1, (6.2.2)

in accordance with the notation used in para. 1.1. Extending
the definition of ¢(z) to va lues of z with Im z > O by th
principle of reflection ’

%(z) = 9(z) , Imz >0, (6.2.3)

we obtain a sectionally holomorfic function $(z) for which
the part |x] < 1 of the real axis is a line of discontinuitx
This gives rise to the following Hilbert problem

9 (x)=0_(x)=—2 1 Im $_(x)=21i vp(x), ¥y =0, |x| <1, (6.2.4)

The solution follows immediately from (1¢1.4) and (1.1e3)

+
o(z) = -;‘%/ '('?2(-% & + P(z) , (6.2.5)

m m
(z=1) T(z+1) 2
where and m, are arbitrary integers and P(z) is an
arbitra polyﬁomial. The addition of the rational function

in (6.2.5) introduces singularities of the function ¢(x,y)
at the points z = #1 ., It turns out that by taking

+1
o(z) = % | & - &y -y o (6.2.6)
-1

where ¢ is some real constant, the behaviour of ¢(x,Y) is

P(x,y)~ % 1n{(x-1)2+y23 forx—+1, y—+ O (662.7)

and
p(x,y)~ g ln {(x+1)2+y2} for x» -1, y = O, (6.2.8)

From the point of view of hydrodynamics we may tolerate
singularities of this strength because then the in- or out-
flow of mass at these points remains finite,
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Now suppose
p(x,y) = Im H(z) (642.9)

then
/oy = Im i H'(z) = Im &(z) (6.2.10)

and by (6.2.6), integrating from an arbitrary point

Hy = xo+i Yo

z +1
o(x,y)=9(x,,¥,)=Im -{/i = /.rﬁég% o= 72 - ?€73d£ +e(x=x_) .
S (642417

It will turn out, that the integral in (6.4.4) is only

convergent if ¢ = O. Changing the order of integration in

(6e2¢11) we find

+]

9(x,y) == / 9(£)1n] (£-x)2+y®}ag+ 1nf(x-1)2+y2}+8 1nf(x+1) 2433 4y,
- (6.2.12)

where ¥ is a constant of integration. If y tends to zero for

an arbitrary value of x, we obtain the desired integral

equation for the function ¢(x),
+

p(x)= = [1¢(§) 1n |x=£la€ +a 1n [1=x] +g 1n [M+x|+y. (6.2.13)

This is an inhomogeneous Fredholm equation of the second

kind, with a quadratic integrable kernel. Equation (6.2.13)

can also be derived by using Green's function for a bipole.
The homogeneous part of the integral equation ; e2e13)

possesses no positive eigenvalues., To prove this we show
+1 +
1 =/ In |x=£] ¢(x) ¢(S)dx &€ < 0 (6.2.14)
-1’ ~
for all functions ¢(x). We expand 1n |x| into a cosine series
(e
1n |x| = g a, cos n g x, Ix| = 2, (6e2415)

It is easily seen that the coefficients o < O, Substitution
of (6.2.15) into (6.2.14) yields the required result

+1 +1
I= ?zhﬁijé(x)cos nx dx}2+{[ o(x)sin nx dx}g] S 0. (6.2416)
o

X)This proof is due to a remark of Prof. A.C. Zaanen.
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From this it follows that (6.2.13) has for each value v>0
a unique solution, which will be calculated numerically later
on (para.6.6). Each solution ¢(x) of (6.2.13) can be split
into one odd function ¢o(x) and two even function ¢, , x)
and ¢, o(x), ’

p(x) = iﬁg@l 9o (x) + iﬁgél 9e,1(%) +vo, o(x)  (6.2.17)

which satis{y respectively
¢O(x)= % f 1in lx~§|¢o(§)d§ + 1n [1=-x|-1n |1+x], (6.2.16)

1
v
¢e’1(x)= = { In | x=£] ¢e'1(§)d§ + 1In [1=x|+ 1n [1+x],

“s (6.2419)
9e,0(x) = & / In 251 g o(£)AE + 1. (6.2.20)
-1

By reasoning in the opposite direction, we can show that
the solutions of (6.2.18?, (642419) and (6.2.20) are the
boundary values of potential functions which satisfy (6e1.8)e

6.3 DETERMINATICN OF wp(x)

We assume that the solutions of (6.2.18), (6.2.19) and
(6.2.20) are known for several values of v > O. Since our
aim is to calculate &(x,y) we shall have to determine first
wEx,yg, defined in terms of ¢(x,y) by (6+1.7). The functions

¢(x,y) and w(x,y) are relested by
o)
e S—% (6e341)

where the directionss and n are orthogonal and can be ob-
tained from the X and y directions by a rotation in the x,y
plane over the same angle.
For |x] <1 we find for y = O
X X

p(x) = -J%ﬂ; (€,0)a8 = v b[ P(€)at, (6.3.2)

where the lower boundary is chosen arbitrarily equal to

Zero.

We shall have to be careful when the path of integration
approaches the points x = +1 or x = =1, which we encircle in
the way of fig. 6¢3e¢1. On account of the singular behaviour
of ¥(x,y) for these points the small semi-circles with
radius r give a contribution for x = +1 and x = -1 resp.

n i
o) [« 9 8
= ds= | = r 4T = o, - ds= =- r At = -7
[ on z{r ; [3% O/I' 6.3.3)

7, _




e

Fig.6.3.1. Path of integration for the determination of ¥(x).

For |x| > 1 aw/By (x,0) = 0 and hence y(x) remains constant.
The construction of functions p(x) satisfying the second
equation of (6.1.6) can be done by using (6.2.18), (6.2.19)
and (6.2.20).

First we consider the odd solution ¢ (x) of (6.2.18).From
(6e3.2) it follows that the resulting yPx) is an even
function denoted by 3_.(x), the general behaviour of which is
given in fig. 6.3.2. flence by subtracting from we(x) an
appropriate constan*

ke = 'U([ ¢°(§)d§ + 7 (6.3.4)

Fig.6.3.2. General behaviour of ﬁe(x).

we have found the boundary values of a harmonic function
which satisfies the conditions (6.1.6)

ve(x) = ¥y (x) - k. (6.3.5)

Now we consider the equations (6.2.19; and (6.2.20), From
these we obtain two odd functions y, 1(x and p 2(x) the
14

’
general behaviour of which is drawn in fig. 6.3.3. Because we
have in (6.2.20) a continuous inhomogeneous part, it is clear
that wo’z(x) remains continuous for X = * 1, Again we have to
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Fig.6.3.3. General behaviour of \ao’1 (x) and zpo,z(x).

satisfy the second equation of (6.1.6). We combine Yo 1(x)
and w0’2(x) ’

¥olx) = vy 4 () + kg v, o(x), (6.3.6)

where ko follows from

1 1
v[ 008188 = v[ o 1 (€)+k, B, ,(E)10E = 7. (6.3.7)
(o]

In this way for each value of v > O an even and an odd
function we(x) and wo(x) are found, which are boundary values

of harmonic functions satisfying (6.1.6).

6.4 CALCULATION OF #(x)

From (6.1.5) we determine the boundary values 8(x) of the
desired potential function. This has been done already in
ref. 1. The method used here reduces (6.1.5) to an ordinary
differential equation in the complex domain.

Because ﬂzx y) and v(x,y) are harmonic there exist
functions F, (z) and F,(z) so that

8(x,y) = Re F,(z), v(x,y) = Im Fy(z), (6.l401)

and from (6.3.1) F2(z) = ¢(x,y)+i v (x,y)e The equation
(6+145) becomes

i F1'(z) =W P {a) =~ F2(Z)+ic (6e4a2)

where ¢ is an arbitrary real constant, which can be neglected.
The solution of (6.4.2) then becomes




53

V4

P, (2) = C e71V2 -e‘i”Zc/ 2 B (0)ac, (6.103)

where C = ¢, +c,i is a constant of integration. Using (Belyet)
we obtain fgr y =0

bid
8(x)= e, cosvx+c, sinllx—fﬁ¢(§)COSV(X~§)+w(§)Sin v(x=§)lag.
[e] (6.L:..LJ.)
The unknown constants 4 and c, are determined by putting
26 3%
Ty:m:O for x =y = 0. (6oLI-o5)
This yields
¢, ==L 90,0, o,-=o0. (6.:-6)

Equations (6.4.4) and (6.4.6) are equivalent with the result
civen in ref. 7. We can write (6.4.4) in the form

8(x) = - plx)

Ll ) <, (6.4.7)

and

X
%(x) = % cos v(x—1)—‘/ p(E)cos v(x-£)dS, x> 1.(6.4.8)

In order to investigate the convergence of the integral
in (6.4.8) when x - * «, we observe from (6.2.18)

p,(x) »Z [0 (&) {1n Ixl T £ ....0a8 +
+ 1n 11-—%....| 20(x1), x 2w (6.1.9)
and from (6.3.7), (6.2.19) and (6.2.20)
o (x) » 2 7%@) {1n 1xIT £ o...}df + Inlx®~1 14k, % » % «,
-1 (6.4.10)

hence we obtain by (6.3.7)
¢e(x) ~k, X - %, (6eh4411)

Obviously for x = * « (6.4.8) represents a harmonic
oscillating function, as can be expected from the physical
situation.
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With the aid of (6.4.9) and (6.4.11) we calculate the
asymptotic behaviour of the function #(x). First we consider
the pair of functions ¢ (x) and Ve (%), these yield by (6L4.dt)

and (6.4.6) an even functlon 8 (x) with the following
asymptotical behaviour

(x) A sinvx + B cos VX , x> % 00, (6elte12)
where ©
a = +Zsinv - [ v (E)sin vE af, (6l4a13)
[+ 2]
B, =Z cos v - [ 9 (§) cos VE . (6elhetls)

The asymptotical behaviour of the odd function 9 (x),
related to ¢ (x) ana wo(x), becomes

2(x) -+ + A, 8in vx ¥ B, coB VX, X > ¥ uw, (6eLe15)

where o
B ;.E sin v- k °°S L 1/ 9o(E)-k, } sinvEds (6.4.16)
B,= kg éi%—z + % cos v-‘/ {¢e(§)-kO} cos v df. (6.4417)

From (6.4.7) and (6.4.8) we see that both B¢ 1(x) and
’
80’2(x) are bounded for x - + 1, because ¢o(x) and @e(x)
possess only logarithmic singularities., We can find from
s 1(x) and & 2(x) by derivation with respect to x other
’
= ' & = t .

solutions SO,BZX) 86,1(x) and e,L‘(x) Go’z(x), which are

odd and even respectively and which possess logarithmic
singularities for x = *1, Their asymptotic behaviour follows

?lso by)derlvatlon with respect to x from (6.4.12) and
6ele15) 6

6.5 CONSTRUCTION OF THE SOLUTICN FOR PRESCRIBED INCOMING
WAVES

We have the general solution

L
0(x,0,t) = 2 ﬁn(x) {an sin wt + b cos wt}, (6e541)
n=1

where we have dropped the subscripts e and o of 66’1(x)....
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A u(x) under the sign of summation. This is a superposition
?

of standing waves. We impose the following condition at
infinity for X -+ + «

8(x,0,t) > A cos (vx+w1;)+R1 cos (vx-wt)+R2 sin (vx-wt),
(6.5.2)

where A is prescribed and determines the incoming wave, while
R, and R, are urknown and determine the reflected wave,
for x - = o

0(x,0,t) » T, cos (vx+wt) + T, sin (vx+wt), (6e543)

1

where T, and T, are the coefficients of the unknown trans-
mitted &ave. Ng incoming wave excists at this side.
The asymptotic behaviour of &, 1(x)... 8 u(x) gives the
9 14

following relations for the coefficients a, and bn of(6e541)

B1a1 + A.1b1 + B2a2 + A2b2 + A1a3 - B1b3 + Azau - B2bh =0
(6e5.4)
-A1a1 + B1b1 - A2a2 + sz2 + B1a3 + A1b3 + Bzau + AZbM= 2A
(6545)
--B1a1 - A1b1 + B2a2 + A2b2 + A1a3 - B1b_.5 - Azau + B2b)+ =0
(6.5.6)
-.A1a1 + B1b1 + A2a2 - B2b2 - B1a3 - A.1b3 + Bzal‘L + Azbu(= 0 ;
6657

There are four linear equations for the eight unknowns a_,
b, (n=1 ... 4). For complete determination of the soluti®n
aBditional information is needed.

By a simple experiment it is seen that, when the ampli-
tude of the incoming wave is sufficiently small no breaking
occurs at the edges of the dock. This can be formulated
mathematically (ref. 15) by the requirement that there are
no singularities at the points (% 1,0).

This gives:

a3 = b3 = j, = bu_ = O, (66548)

Then the remaining coefficients 8, b1, a, and b2 are de-

termined uniquely from the equations (6.5e¢4)ees(6.5.7)

When A increases, breaking is seen to occur only at the
leading edge of the dock (+ 1,0). For this it is necessary
and sufficient

a3 au ’ b = b}-l- (6.5-9)
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because then the singularities of & (x) and &_, (x) cancel
each other at the trailing edge. In téis case hSw%ver,furﬂer
experimental information is needed about the relation betwen
strength and phase of the singularity and the amplitude and
phase of the incoming wave.

When the coefficients a_ and b_ are determined , we can
calculate the reflected anB transBitted waves by comparing
(605.1) with (6.5.2) and (60503)- We find

2R, = +Aja, +B;b, +A,8,+B,b =B, az+A bs-Boa) +A5D) , (6+5.10)
ﬂ2=-@% +%b1-Bf2+A?2—Aﬁjﬁﬁjﬂfﬁﬁfw
(645.11)
2T, = +A &, +B;b, =A,8,=B,b,+B, 85-Ab=B,a) +A5b) , {B+5412)
2T, = Bya,=A b, =Bya,+A,b A, a5, bo+Asa) +Byb) (645.13)

The reflection coefficient p and the transmission coefficient
T can then be defined 9y

1
(RZ + R2)Z (12 + 12)7
p = __L_A_.g._, T = —l—A—-Lr (6e5¢14)

6.6 NUMERICAL CALCULATION OF THE REFLECTED AND TRANSMITTED
WAVE FOR THE CASE THAT NO BREAKING OCCURS

In the case of no breaking aj=‘03=a)+=bl‘L = 0 and we can solwe
(6050)4-) eee (6.507)} fOI' a1 9 b1 (] 32 aI]d b2. Substitution Of
these values in (6¢5¢10) ¢ee (6.5.13) yields

R, = -a(AZ A3 - B12 B3). D71 (64641)

R, = +AlA, B, (A2+B2)+4,B,(a2+BZ)}.0™" (6.642)

T, = -A (42 B3 - 42 B),p7 (646.3)

T, = -A[A B, (A5+B3)-A,B,(a%+B2)}D7" (6.64L)
where

D = (42 + BZ)(A3 + B3). (6.6.5)

We shall not give the numerical calculation in full detail
but discuss only the procedure followed. First of all are
solved the integral equations (6.2.18)(6¢2.19) and (6.2.20).
Because the first two of these equations have solutions with
logarithmic singularities we have introduced new continuous
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unknown functions

fo(x) ¢0(x) - 1n |4=x| + 1n [1+x], (6.6.6)

£, (x) = ¢e,1(x) - 1n |1=x| - 1n |1+x], (6.647)

€,1

satisfying integral equations which can easily be determined.
Then we have approximated the functions fo(x), fo 1(x) ané
’

®_ .(x) by odd or even polynomials with five unknown
cSé?ficients, calculated by collocation.

Next (6.3.73 yields the number k . Hence the functions
9 (x) snd ¢_(x) are known for |x| <%1. These functions are now
t8 be calcufated for x > 1. This can be done respectively

with the integpal equation (6.2.18) and with
<Pe(X)=%/ln |x-E19 (£)dE+1n |1=x]+1n |1+4x|+k, , (6.6.8)
-1

which is a linear combination of (6.2,19) and (6.2.20),
Now we can calculate by (6.4¢13), (6.Le14), (6.4.16) and
(6.4.17) the quantities A,y B,» A, and B, which determine

the asymptotic behaviour of the elementary solutions.Finally
(6e6¢1) oee (64645) and (6.5.14) yield the reflection and
transmission coefficients P and 7.

In order to obtain a representation of p and 7T in the
neighbourhood of v = O we have also calculated the asympto-
tical expansions of these quantities for v —0. This can be
done by a straight forward computation of the first terms of
the Neumann series expansions of ¢o(x) and ¢e(x) from the

integral e%uations (6.2.18) and (6.648). Using (6.4.13),

(6elsetly), (6ele16) and (6.4417) we obtain
A, S 427, B 2, Ay % 4 vl% ,» B, 20(0°). (6.6.9)

Herewith we find

p=2v , T®4=p0°, (6.6410)

The calculated reflection and transmission coefficients are
given in the following table, while they are plotted in
Tige 6¢6e1e

Table III, 7 and p .

U » D 0,25m
L 0,22 0,47 0,59
99 0,98 0,88 0,3
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Fig.6.6.1. Calculated values of, the reflection coefficient p
denoted by O, the transmission coefficient 7, denoted by e and

of the asymptotic expansions- - -,

(o

We can interprete the parameter v as mw., width of dock/
length of incoming wave. This means that whenv =% the
length of the incoming wave equals the width of the dock.
In this case only 4,8 % of the energy can pass under the
dock. We have not drawn an interpolating line through the
calculated points because of the unknown extrema which
this curve is apt' to possess., However, the plotted points
give a rough information about the influence of the finite

dock on incoming waves,
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Chapter 7

ON THE INFLUENCE OF THE CROSS -

SECTION FORM OF A SHIP ON THE

ADDED MASS FOR HIGHER ORDER
VIBRATION S.‘

The main cause of ship vibrations is the engine. A
difficulty in the calculation of these vibrations is caused
by the motion of the water, generated by the vibrating hull.
The influence of this motion is effectively an additional
mass. Generally, naval architects' assume a two-dimensional
water motion., Calculations made with this two-dimensional
model are corrected with a coefficient, obtained from the
three-dimensional flow around a vibrating ellipsoid of
revalution. (ref. 9). However, ship forms occur with shallow
draught. The purpose of the following calculation is to
investigate a possible difference between the three dimensiorsl
correction coefficient of ships with shallow draught and ships
with a full cross-section. This is done by comparing the resuls
of the three-dimensional theory for a vibrating flat strip,
situated at the surface of the water and a vibrating circular
cylinder which is half immersed. Strip and cylinder are both
infinite, hence three-dimensional effects caused by the bow
and the stern asre neglected. It seems that these latter effects
are negligible for vibrations with more than about five nodes.

7«1 FORMULATION OF THE PROBLEM FOR THE CASE -OF A STRIP.

The water_occupies the half space y < O.. The strip is
situated at ¥y = O for |x| < b and stretches along the z axis.

= +b x - z
~ : - — p.d - :
77 e ;;,/ ; Wy 7
ri
L———‘ 9
Fige7.1¢1« The vibrating strip.

* This chapter belongs to research carried out for the
"Studiecentrum T.N.O. voor Scheepsbouw en Navigatie".
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WNe assume that the motion of the water is non rotational and
simple periodic and hence can be described by a potential
o(%,%,2,t) = B(%,7,2)e %t witn

32 82 2 - -
) + =D + _2) g(xsy’z) =0, (7.1 .1)
ox oy z

and which vanishes for ¥y + - . The velocities u,v and w in
the x, ¥ and z direction are

u-_-g-?-’ V:Qg, W='a_.6_'o (7'102)
ax a9y o0z

On the water surface ¥ =0 we prescribe the displacement in
the y direction n(X,z,t), for |X|] <D

n(Z,Z,t) = € cos a z e¥® , |X| < b, (74443)

and the pressure P(X,z,t), for |X| > b

P(X,Z,t)= - p(§2 + gn) =0, IXl >, (71.4)

where p is the specific mass of the water and g the accele-
ration of gravity. Introducing the dimensionless quantities

x=%/b, y=y/v, z=2/b, a=ab, v=afb/g,

8(x,y) cos a z = 8(x,¥y,z)/iwbe, (7e145)

et - p(,7,2,t)/0 e,

31

p(x,y) cos a

we obtain the following boundary value problem

2 222
-—‘—a g + > - azﬂ =0 (7.106)
oxX oy

8 el
%:1, Izl <1; 53 -ve=0, Izl <1; y=0,

(Ts1:7)
9 = 0, Y & = e

An estimate of the values of the parameters o and v which
occur in practice, follows from
length of ships 200 = 50 meter (7.1.8)
width of ships 25 = 10 meter (701.9)
frequency of the vibration 1 - 15 Herz . (7.1.10)



From 7.7.8 follows the range of the relevant wave-length of
the strip, from 200 meter for the vibration with two nodes
for the largest length to 25 meter for the vibration with
four nodes for the smallest length. Hence

wave length strip 200 - 25 meter. (7o o171 )

The dimensionless parameters a2 and v then assume the follow-

ing values

2

o 0B = By (71442

10C = 9000, (7.1413)

v

[l

Since the parameter a, which is a measure for the three
dimensional behaviour of the flow, is of the order of
magnitude of unity, we can expect some influence of this
behaviour at the added mass of the strip. Further, v being
much larger than unity, we replace the second boundary
condition in (7.1.7) by the high frequency approximation

% =0, Ix] > 1, y = O. (7ot eilt)

7«2 DERIVATION OF THE INTEGRAL EQUATION

The boundary value problem, posed in the preceding para-
graph

2 i2E
-——-O g + 2 -~ azﬁ = 0 (7-2.1)
X oy

Izl <13 8=0; Izl »1; ¥=0,

(7s2.2)
79'-’0’ y 2 -

’

is solved by application of a Fourier-transformation to
(7+241)e This gives for the solution of this problem the

representation
+1 +co . o 2 %
s(ry)= g [8@)as [ PO LD T,y <o,
) o £7:8.3)

ThTre 8(x) is the unknown limit of ¢&(x,y) for y = O and
x < 1'

Replacement of the first exponential by a cosine, differen-
tation with respect to y and integration with respect to x
yields
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X +1 oo 8 & _12_ - %
/g%(f,y)d§= % / 8(£)as / sin A (x=E) i&_f&_l_ e(A +w«a“)? y ar,
) B ° (y < 0) (7e2.4)

where we have used the fact that 025) is a symmetric function.
We investigate the 1limit y - O of (7.2.4). The left hand side
tends to

X

08
1lim ’ = 9 ' l . 7-2.
¥-+0 5/6y(§¥)d§ x x| <1 (7.2.5)

Now remains to consider
[e ]

1lim sin A x S——3f1-l— e Yo =

0
° 2
=1im[sin7\x{ 221"' zazl}exyd]\=
y=0 (A%4a9)2  A(A%+ )2
0 ax
=a K, (ax) + o / K (Inl)an, x> 0, (7:2.6)

o

where K (x) and X, (x) are the modified Besselfunctions of the
second find. Becaﬁse the kernel of the integral equation
(7.2.4) is an odd function with respect to x, we have to
define the values 'of K1(ax) in (7.2.6) for x < O by

K, (max) = =K, (ax), x > O. {7:8:7}

We write (7.2.6) in the following form
ox
1 - 4L ~ P
5 + la K, (ax) x+afKo(Inl)dn}—x+k(x), (7.2.8)
o
where we have introduced the abbreviation k(x). From the
series expansion of K, (ax) in the neighbourhood of x = O we
see that k(x) is a boﬁnded function of x, which tends to zero
uniformly on each finite interval when a -0,
In this way (7.2.4) can be written as the following singu-
lar integral equation

+1 +1
x =7 f r,‘%.%'} o * fﬂ(f) k(x-€)ag, (7.2.9)
= -1

where the first integral nust be taken in the sense of Cauchye.

The first integral in (7.2.9) is independent of «, while
the second integral is zero for a = O, hence this one repre-
sents the influence of the secondary flow,.
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7«3 THE CASES ¢ = O AND -0,

First we consider a = O and hence k(x) = O. Herewith
(7+.249) changes into
+1

. 3 -
X = T f x—§ d§’ a = o. (703'1)
=
The solution of this simple singular integral equation is
given in para. 1.3,

8 +1 2.1
& = 01- 11 ] = ’ ede
=l n(1-x2)%  m(1-x2)? _[ §iT§§§}- = {745:2)

where 80 is some arbitrary number, Using the known integral

n
cos n t _ sin n s
/ cos t-cos 8 Y =7 Tgin 8 (74343)
S
we find
9(x) = %o + + (1'§§El s (7.3e4)
n(1-x2)2  2(1-x°)%

+1

Now we determine the unknown constant ¢ = jb(x)dx by requiring

=1
that the square root singularities of 8(x) for x = * 1 vanish,
This yields 8 = /5 and (7.3.4) changes into

8(x) = (1-x3)% , a=o. (7.3.5)

Next we consider the case a = O and reduce (7.2.9), by the
method described in para. 1.3, to a Fredholm integral equation
with a quadratic integrable kernel.,

Equation (7.2.9) can then be written as

+1
(1-x2)% = £(x)- L /ﬂmxumMm (7.3.6)
1 /
where =1
£(x) = 6(x) (1-x2)% (7.3.7)
and

+1 2.1
_ 1 k(&-7) (4 2
K(z,m)= gy _[ e g, (7.3.8)
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Now it is allowed (ref. 16), for values of a which are
small enough, to expand the solution of (7.3.6) into a Neumann
series, From this series we shall calculate the first two

terms.
Before doing this we determine from the function k(x)

(7.2.8) the rirst term of the asymptotic expansion for o - O.
This can be done by using the known expansions of Ko(x) and
Kﬁ(x) in the neighbourhood of x = O, We obtain

2x 4
k(x)‘zﬁg—{—ln at 3 + 1n 2=y -1n|x|} =

2
= &£ {c(a)-1n Ixl} , (7.3.9)
where Yy = 0,5772157 is Eulers constant. Substitution of
(7.3.9} inte (7.2.6) and determination of the first two terms
of the Neumann series yields

o 5.1
& = L+ (1=x°)7 4
(x) = (1=x°)
+ iz 1.7 (4’n2)% (E=mic(a)- lrd&rﬂl}Aiierlé A€ dn.
on®(1-x°)? 2 (x-£)

(743.10)

The integrals in this expression can be calculeted with the
gid of (7.3.3) and

1
=i

f (1—n2)% Inn dan = T (4 + 1n 2). (703.11)

(o]

We arrive after a straightforward calculation at the result

g L 2 xu 2 JL \
8(x)=(1=x") 24+ ==L [ = H=4x=(=} 1n a+ln 2+ s %; +

2(1—;{2)2

=2+ B8 an 2 4 D)](7.3012)

where we have taken for 6;

8= -a? 5 (-4, B2 %y, (723443)

From (7.3.13) we see that 6 _+ 8%, which quantity is
proportional to the resulteft fofce under the strip, decreases
for increasing values of aq. This is to he expected because the
three-dinensional theory is less restrictive for the water
motion than the two-dimensional one.
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7.l THEE CASE a =

The limit case a¢ = » can also be dealt with analytically.
We start from the original boundary value problem defined by
(7e141), (7.1.3) and (7.1.4) and consider the limit b >« ,
which is equivalent to a - ». The boundary conditions then
become

n=e cos a 7 e®Y, T <o0; P=0, X>0; F=0. (Ttet)

We introduce the function ¢(X,y) by

9(%,5)cos a 7 = - 2 T (%,7,2). (7eh2)

Herewith and using the high frequency approximation the
boundary value problem can be written as

2 2
9:% + Q:% -afp =0 (7eka3)

ox oy
=1y, X<0; ¢=0, X>0; ¥=0. (7oltols)

Gile

Applying a Fourier transformation to (7.4.3).and (7.4.4) we
obtain

s(0,5) = F (1) AT (7o4e5)

where

+D° B
o(A,¥)= ,7:; jeﬂx o(X,7)d%X , ImA < 0 (7.4.6)

and F_(A) is the, still unknown, transform of ¢(x,C) for
X < 0, which is regular in a lower half=-plane. By transfor-
mation of the first boundary condition of (7.4.4) and sub-
stitution into (7.4.5) after differentiation with respect to

y we obtain the simple Hilbert problem

(A24a2)% P_(1) = ¢,(A) - i (7u407)

valid on a line L below and sufficiently close to the real
axis in the A plane. Here G+(K) is the transform of

gg (x,0) for X > O. Solution of (7.4.7) yields, using the
y
inverse transformation
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G0 = i [ e <0 (7.1.8)
(P X = T X < et e
’ zw'i'a_[ox(x—ia)z ’

where the square roots are defined hy Nia = iﬁ;il IWa] and by
1 2

Re (A=ig)? » + o for Re A » + » on L, Because X < O we can

complete the path of integration in (7.4.8) in the way designed

in figo (7.&.1).

Fige 7+4.1s The path of integration.

Introducing a new variable of integration & = -i(A-ia) we
find for (7.4.8)

ax ¢ Ex
-.!O = 1' - = € Se olle
0(%,0) =L - &= | i @ (7u409)

By substitution of £ = 0 into (7.L.9) this integral can be

calculated in terms of the error integral,

9(%,0) ={5 E(W=-aXx) (7.4410)
h X 2
here E(x) = -fz- e¥ as. (7ek6017 )
NIL

_ Assuming_a strip situated on the water surface between
X = =b and X = +b, b sufficiently large, we find as a first
approximation of the dimensionless potential #(x,y) in the
dimensionless coordinates of para. 7.3

8(x,0) =& E(Wa(-Tx1)) , Ixl < 1. (7elte12)

From this we find
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+1 1 s
8 = ].B(X,O)dx= § [ E(WNa(1-x) ) dx ® § [1+ % / {E(Wy)=1lay] =
(e} (o]

o
=1

=2 (1 -2, (7.4.13)

€4

7.5 THE CASE OF FINITE a.

The case of a finite value of a will be treated approxima-
tively., This can be done by approximating k(x), defined in
(7.2.8), with the aid of a polynomial

N
k(x) ~ = a, x 2ot (7.5¢1)
n=1

Here we use the coefficients:

1:1 2 311 Oa2; 3.2=—0,65L¥ﬁu; a3=0,2)4-1 65&6; alJ.:-O’OLm Y] a8;

a5=0,00259hd10, which yield an approximatioh within 1,4% for

|x] <1 and 0 S a S 1,25, ¥
In the following way it can be seen, that the solution of
our approximate problem tends to the solution of the exact
roblem by increasing the accuracy of (7.5¢1)e Equation
7+2.9) was reduced to a non homogeneous Fredholm integral
equation (7.3.6) where both kernel and known functions are
quadratic integrable. From this equation we know (ref. 16)
that by approximating the kernel with increasing accuracy
the approximate solution tends to the exact solution, with
ossible exception for a domain with measure zero. Since
7.3.6) and (7.2.9) are equivalent this will be true also
for our singular integral equation.
We now consider the following approximate equation

+1 +1

5 -
x =1 f 8l ag 4 1;[ e B ap(x-6)T T ag. (7.5.2)

It ie possible to solve this equation exactly. Carrying out
the integrations +

8 = ]6(5)5 M ag, (7.5.3)

where the 9m are as yet unknown constants, we can write
(7.5.2) as
1

+
s : 2n-1
[15_%}@ - - 2 op T, (7.5.)

x)'I‘he method as well as the numerical values for this
approximation are due to Mr, H.Jd. Nunnink.
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where
b, = a160 + 3a262 + 5a364 + 7au66 + 9a568 -
by = a260 + 1Oa362 + 35&46h + 8&&506
b3 = a360 + 21ah62 +126a564 (7.545)
bLl- = all.BO + 36a582
b5 = 3560‘
Because 9(x) is symmetric with respect to X = O,the quantities
8 _ with odd values of n are dropped. By solving (7.5.4) (para
1.3) we can express 6(x) in terms of the unknown constants b_e
5 - 1
" ] an §2n1(1_§2)2
8(x)= —2— + l— [ 2= a.
w(1-x2)72 w2 (1=x2)%_ (x=¢)
(7+5.6)

The integrals occurring in (7.5.6)

1 one—q L
()= [ ﬁi-(-,‘,{?“cyz-)— %, (7.5.7)
-1

can easily be calculated by means of the following recursion
formula

1+2 +2.2 e}l +{n=1 2

xzhn(x)—hnf1(x) =z (1)t oh] s B z(i:s.g)
Herewith we obtain

n, (x) = a(x®~3

hy(x) = n(x-3x2- })
hy(x) = n(xb~gxt= a2 Ly (7.5.9)
hu(x) = n(xs-%x6- %xu- fzxz = ng)

hs(x) = n(2%1x8- %xe— fgxu - ngxz - E%g) ’

and we write (7.5.6) in the form

i) o e - + b 2 b n (x)s  (7e5ed0)
7(1=x2)2  22(1=x%)Z p= B D

In order to determine the constants bn (6o=b5/a5), we
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multiply both sides of (7.5.10) by x2X (k=0;4;2;3;4) and inte-
grate with respect to x

8 +1 ok 5 +1 ¥ (X)
2 (1=x%)% 7% n= 2 (1=x%)®
Introducing the quantities
+1
h_(x)
Ben) = [ B 2™ ax, (7.5.12)
2 k=x")F
we can write (7.5.11) as
80 4 5
o =7 AlK) + -5 2 n B(k,n), (7.5413)

where

B(k,1) = w{a(k+)-3A(k)}

B(k,2) = w{A(k+2)-A(Kk+ )= Fa(k)]

B(k,3) = n{A(k+3)-a(k+2)- $a(k+1)- oa(k)] (7.5.1L)
B(k,4) = m{AQkrs)=3A(K+3)- A(k+2)= Slpa(icr )= 2pAlK)]

B(k,5) = 7{A(k+5)=3A(k+l)~ Falk+3)= rA(k+2)- 2pa (ke )= sLza(k)

and

+i
A(k):/"'——_l_‘ Ax= T(1+42)(14+2e2) 0 0ol +(k=1)2 . A(O): 7.
-

x2k
v, k
(1 X )e k!2 (7'5.15)

Using (7.5.5) we have obtained four equations (k=1,2,3 and 4)
for 8 ... %5 Because B(0,n)= O the equation for k=0 yields

the ifentit¥ ¢ = 9 . In order to obtain another relation
between the 6 g we Tequire again that ©(x) has no singularities
for x=*1. Frofi*(7.5.10) we find

., 5
8, +-7'; Z v hn(1) = 0, (7.5416)
n=1

Hence we have found five linear equations for the five
unknowns & e.. 9g. Then by (7¢5.5) and (7.5.10) the solution
of (7.5.2) is detérmined.
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7.6 THE ADDED MASS FOR THE STRIP

We shall now calculate the added mass for the strip. Since
in ship building the added mass is only of importance for a
whole cross section of the ship, we shall integrate the pres-
sure, which is a function of x, with respect to x. Because we
have used the high frequency approximation we may write the
resultant force K as

+b +b +1
K= Z.P(E,G,E,t)di= -p / g%di=pw2 b2 e cos az cos wt / %(x,0)dx=
o v =1
= p wl ble 8, cos az cos wt. (7.641)

We seek fictitious mass m(z) and resistance y(z)
distributions on the strip, which yield the same forces as are
exerted by the water., Then we obtain the relation

2

K=pw ble 8, cos az cos wt = -m(z) 7 - y(Z)7 . (7.6.2)

Substitution of the real part of (7.i.3) into this equation
results in

0. (7.6.3)

m

m(z)= b2 8os v(2)

The vanishing of the resistance is caused by the fact that at
infinitely high frequences no energy can be transported along
the water surface,

7.7 THE ADDED MASS FOR A VIBRATING INFINITE CYLINDER.

We now treat the same problem as in the preceeding section
but replace the strip by a half cylinder with radius D (fig.

Tatal)

Fige 747.1. The cylindzr on the water surface.




T

Because we have a boundary condition for T = b we start with
the potential equation on circular cylindrical coordinates F,
.9 and z. Using the high frequency approximation we arrive at
the following boundary value problem

l"'a—'(fae +J—'ﬁ+a—2‘q=0 (707-1)
T oF 5% 72 0% 0% ’

7 = &€ COS az elwt, ; = b; e = 0, ¢ =7 ') ¢= O. (70702)

The first boundary condition can be written as

0 _ - sing = -iwe cos az e

ar
The general solution of (7.7.1) for the case that O(¥,z,p,t)
has the form

g sin ¢, ; = b'(7o703)

& = 8(r,p) cos az eVt (7.7e4)

and which remains bounded at infinity is

(%, 0)= OE Kn(af-) {An cos ng+ B sin no}. {7:725)

Herewith the boundary condition for T = b becomes

3 - (ab)+K . (ab) }{A cos ng+B_ sin nel=
n=0

08 - __a
Z Go)| -3 e
r =

=b
= -iwe sin @. (747+6)

Hence v
- - 2 i - - iwt
6(r,z,p,t) = _[_.(_Tm_ﬁr__ﬂ. K, (ar)cos az sinpe” .
2T a{K,(ab)+K,(ab 1 (7.7.7)

Integretion of the vertical component of the pressure exerted
on the cylinder yields the resultant force K,

X

T
Re -p!?ri (byz,p,t) sin ¢ b dp =

p wlebm K, (ab) -
= aTKo(ab)+K2(a'b)} cos az cos wte {7-T«B)

By formula (7.6.2) we find in this case for the added mass




K, (a)

T - (7.7.9)

2
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where a = ab. When a tends to zero we find by expanding
K (a), K, (a) and Kz(a) in the neighbourhood of a = 0

m(z) “ﬁ—-‘-a——;zhmz (lna=-1n2 +7v)}. (7.7.10)

When o tends to infinity we find for the asymptotic behaviour

2
m(E) ~ Zt—‘gai . (707011)

7.8 DISCUSSION OF THE NUMERICAL RESULTS

In fig. 7.8.1 we have drawn the results of the numerical
calculations. On thg vertical axis is plotted the dimension-
less added mass m/b2p and on the horizontal axis the
dimensionless quotient a/z of the width of the strip (or
cylinder) and the wave length. From the asymptotical expans-
jons about the origin a = O (7.3.13) and (7.7.10) it is clear
that the graph (1) for the strip as well as the graph (3) for
the half immersed cylinder start with a horizontal tangent

l5‘§>\
\
e ®

oS
o o5 T 15 2 = 25
L3 T T L3 T T
Fig. 7.8.1. Relation between dimensionless added mass,
m/t:2p and (dimensionless wavelength)™' , &/m.

(1) strip, (2) asymptotical behaviour strip
and (3) half inmersed cylinder.

from the point m/bzp = n/2. The line (1) has been calculated
by the method described in para. 7.5, its asymptotic behaviour
(2) follows from para.7.l4, while (3? represents (7.7.9). Some
values are given in the following table:



73

Table IV, m/‘mzp.
oz . €,25,0 0,5, 10,75, 1 4 10 |1425, 145,20 2, 205,
steip |%=1,57 | 1,50 | 1,38 | 1,24 | 1,51 | 1,000,908 [c,75C | 0,640
r.i/bq
“p 27
cylinder |Z = 1,57 |i,42 |1,23 | 1,06 |o,%24 |0,816 |0,735 [c,598 |0,505
2

The value of m/bzp for the strip for a/x = 1’5/n has been
obtained from the interpolating dotted line and the values

s
for a/n): 2/ﬂ and Z’J/ﬁ come from the asymptotical behaviour
70&0" 3 .

Apparently the decrease in the added mass, caused by the
three—-dimensional motion of the water is more pronounced for
the cylinder than for the flat strip. This should mean that
for ships of shallow draught the influence of the three-
dimens ional effects is smaller than is expected <from the
correction coefficient based on the three-dimensional flow
around a vibrating half immersed ellipsoid of revolution.
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SUMMARY

In this thesis we have discussed several problems which
are related closely to the Hilbert problem, of which a short
survey is given in chapter 1.

Chapter 2 deals with the Wiener-Hopf type integral equa-
tion by means of the theory of sectionally holomorfic func-
tions. The assumption of a strip of convergence for the
Fourier transforms, needed in the classical theory, could be
replaced by the assumption of a line of convergence. In
chapter 3 an application is made to the shrink-fit problem
of an infianite tube shrunk onto a semi infinite rigid shaft.
The resulting shrink-fit stresses were calculated. It turned
out that for tubes which are sufficiently thin there occurs
a region where tube and shaft are out of contact.

In chapter L we gave some general considerations about
integro-differential equations of the first order and indicated
a method to obtain solutions of the egquation for the case that
the kernel decreases algebraicly while the solution has a
sinoidal behaviour at infinity. Next a special integro-differen-
tial equation was considered with a derivative of the fourth
order,which occurred under the sign of integration. It was
asked to obtain the first terms of the asymptotical expansion
of a certain physically important quantity with respect to a
small parameter b. This expansion possesses a logarithmic
branch point at b = O,

The calculations made in the chapters 6 and 7 were concerned
with the motion of water with a free surface. First we
considered the influence of a fixed dock on incoming waves. We
found for instance that, under certain circumstances, when the
length of the incoming wave equals the width of the dock only
4,8 % of the energy can pass, the remaining part is reflected.
In the last chapter we considered the virtual mass of a vibra-
ting strip on the surface of the water. The aim was to check the
use of a vibrating ellipsoid of revolution in ship building, for
obtaining a three dimensional correction coefficient. It turned
out that there exists a difference of about 20 % between the
virtual mass of the strip and a half immersed cylinder, when the
wave length of the strip is about two times its width. This
means a possible overrating of the three dimensional effects for
a ship of shallow draught by using the correction coefficient
based on the flow around an ellipsoid of revolution.
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Het vergelijlien van het probleem van een planerende cylinder
die zich loodrecht op een beschrijvsnde voortbeweegt over
het wateropnpervlak, met een overeenkomstig indrulkkingspro-
bleem uit de elasticiteits theorie, levert op eenvoudigze
wijze inzicht in de singulariteiten van fe druk die het
water op de cylinder uitoefent.

L.N. Sretenski, Bull.Dep.Techn.Sci. UeSeSe.Re, 7,3,190.

Lielve

Problemen over de invloed van de aardrotatie op diffractie
verschijnselen van getijde golven kunnen,bij bepaalde
geocmetrie van de oobstakels, terugcebracht worden tot beken-
de vraagstukken. Dit geschiedt door invoering van een
nieuwve onbekende functie waaruit later de gezochte functie
door een eenvoudige integratie is te bepalen.

J. Crease, J. #luid Mech. 1, 86, 1956,

Een cirkelvormige plaat waarin stationaire thermo-elastische
spanningen optreden, die ontstaan door geli jkmatige warmte
toevoer aan de rand en een even grote warmte onttrekking in
het midden, kan niet in een rotatie symmetrische vorm uit-
knikken,

De theorie van Reissner toegepast op een dunwandige buis (bv.
dikten tot een derde van de binnen ulaneter) levert voor het
krinp-spannings probleem van hoofdstuk 3 van dit proefschrift
een qualitatief goed beeld van de krimpspanningen. Op een af-
stand van ongeveer twee maal de wandadikte van het eindvlak van
de kern wijken de resultaten minder dan 3 % af van de in hoofd-
stuk 3 berekende waardene.

Bij bepaalde harmonische excitaties van een harmonische oscil-
lator met een aan één zijde begrensde amplitude is het niet
mogelijk de beweging te beschrijven met trillings vormen die
nul of é8n keer per periode van de beweging aantikken.

JeA. 3Sparenberg, Appl.sci.Res. A6, 53, 1956,

De lineaire cifferentiagkvergelijkingen,die het resultaat
zijn van de methode van de equivalente linearisatie voor het
verkrijgen van een benaderde periodieke oplossing van quasi-
lineaire differentiaal vergelijiingen,zijn ook toepasbaar op
sterk niet lineaire differentizal vergelinlngen mits de in-
vloed van het niet lineaire gedeelte voor de beschouwde op-
lossing klein genoeg is,
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De door Ales Tondel gegeven conclusie over gevaarlijke ge-
bieden voor de omwentelingssnelheid van een rotor in ver-
band met het niet lineaire elastische gedragz van de kussen-
blokken, volgt niet.uit zijn mathematische analyse van het
probleems,

Ales Tondel, Revue de Mécanigue Appliquée, 2, 128, 1957.

Verschillende physische problemen kunnen op eenvoudige wijze
benaderend behandeld worden met de methode beschreven in
para. 7.5 van dit proefschrift.

De methode van lMac Camy voor het bepalen van de oplossing
vaen een bepaald type integraal vergelijkingen dient aange-
vuld te worden met een benaderings methode die in het in-
wendige van het definitie gebied nauwkeuriger resultaten
levert.
Mac Camy, Techn. Rep. No 2, Dep, Mathe. University of
California, 1955.

De resultaten gegeven door Chi-Chang Chao voor de sommering
van reeksen van Fourier van een bepaald type kunnen ook ver—
kregen worden door een eenvoudige toepassing van de Fourier
reeksen voor sin ax en cos ax, = < X < + 7,

Chi-Chang Chao, Quart.Jd.liiech.App.Math. L4, 508, 1956.

Het is wenselijk dat op het college gewone differentiaal-
vergelijkingen aan de studenten inzicht wordt gegeven over
de instabiliteits gebieden die optreden bij differentiaal
vergelijkingen van de tweede orde met periodieke coeffi-
cienten,

Het verdient aanbeveling dat het vermenigvuldigen van
proefschriften door instellingen van hoger onderwijs kan
worden verzorgd.




