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I N T R O D U C T I O N 

Problems arising in mathematical physics,can in general 
be classified from different points of view. From the 
physical formulation a classification to several branches 
of physics and mechanics is obvious. Prom a mathematical 
point of view, problems, originating in different parts of 
physics,can sometimes be submitted to a uniform treatment 
by the same mathematical method. The problems dealt with in 
this thesis have in common, that they all can be formulated 
in terms of the Hilbert problem. This problem can be treated 
by the use of sectionally holomorfic fxinctions (ref.1),which 
concept is based on a set of formulae derived by Piemelj. 
These functioiEare regular in the whole complex domain with 
the exception of a discontinuity on a curve. In chapter 1 we 
give a short survey of the notations and results of this 
theory. 

The chapters 2-5 are concerned v/ith Wiener-Hopf type 
integral and integro-differential equations. Usually these 
equations are solved under the condition that there exists 
some strip of convergence for the Fourier-transformations 
(ref. 2,3). Using' however, the theory of sectionally holo­
morfic functions it becomes clear that a strip is not essential 
and we need only to demand convergence on a line. In chapter 3 
we shall discuss an application of the theory on a problem of 
shrink-fit stresses. The stresses are calculated by a method 
which is equivalent to the procedure for obtaining approximate 
solutions described in an article by W.T. Kolter (ref. U). In 
the next chapter we discuss the homogeneous Wiener-Hopf type 
integro-differential equation with first order derivatives.We 
conclude the treatment of Wiener-Hopf type equations by conside­
ring an integro-differential equation with a fourth order deri­
vative which occurs under the sign of integration. This equa­
tion is a result of considerations about the anomalous skin -
effect of electrons in a metal (ref. 5) and is a generalisation 
of an equation discussed by Reuter and Sondheimer (ref. 6). 

In the chapters 6 and 7 we discuss two problems on the motion 
of water Y/ith a free surface. First the two dimensional problem 
of the reflection and transmission of progressing waves, when a 
part of the surface of the water is fixed by introducing on the 
surface a rigid strip of infinite length. This is the so called 
finite dock problem. A proof of the existence of the solution 
has been given by H. Rubin (ref. 7), while Mac Gamy (ref. 8) dis­
cusses the press\u?e \inder the dock. Here we have to solve a 
Hilbert problem for a function which possesses some prescribed 
discontinuity on the strip. The second problem of this part 
considers the forces exerted by the water when the strip executes 
a vertical flexural vibration of high frequency. The results 

file:///inder


are compared v/ith the forces at a half immersed cylinder 
which executes a vibration with shear deformation. This has 
been done in order to obtain a check on the three dimensional 
correction coefficient for the added mass, used in naval 
architecture (ref. 9). The question arose whether this correc­
tion coefficient, derived from the added mass of a vibrating 
ellipsoid of revolution, would be accurate enough for ships 
of shallow draught. We have to consider a singular integral 
equation v/hich can be reduced, by the theory of sectional 
holomorfic functions, to an integral equation of the Fredholm 
tjrpe, 



1. 

C h a p t e r I 

T H E H I L B E R T P R O B L E M 

The formulae of Piemelj, the Hilbert problem and singular 
integral equations are discussed thoroughly in ref. 1 . For 
direct reference, however, we shall state some results. We 
shall not enter into details but consider the theory to an 
extent necessary for understanding the applications. 

1 .1 THE FORMULAE OP PLEMELJ 

Let L be a smooth arc, in the ccmplex plane, defined by 

x=x(8), y=y(s), s^Ssfis^, (1.1.1) 

v/here s is a parameter and x(s) and y(s) have continuous first 
order derivatives which do not vanish simultaneously. Also we 
assijme L to be simple; this means that never x(s, ) = x(s2) and 

•.(to J 

Pig.l ,^ .1 Arc of discontinuity for a sectionally 
holomorfic function. 

y(s>| ) = y(s2) for values ŝ ^ ̂  ŝ  î  Sg ̂  ŝ .̂ 

On this arc we consider a function (p=(p{t) which satisfies 
the Holder condition 

I9(t2)-9(t^)l <A|t2-t^ 1^ , (1.1.2) 

where t=t(s) is a point of L which corresponds to the para­
meter value s and A and jJ. are positive constants. Then we form 
the Cauchy integral 

Hz) = ^ l-^it. (1.1.3) >il{Tf^"-



2, 

Prom this definition we see that *(z) is an analytic fixnction 
in the entire canplex domain with the exception of the arc L. 
At L -the values of ̂ (z) exhibit a jump by passing from one 
side of L to the other. Introducing on L a positive direction 
for increasing values of the parameter s we call the left hand 
side of L the positive "+" side and the right hand side the 
negative "-" side. The limiting values of *(z) are denoted 
respectively by *.(t) and *_(ty (fig. 1.1.1 ). The values of 
*(z; are continuous up to L 7 with exception of the ends of L 
for which ?>(t) #0 and satisfy, as is proved in ref. 1 , the 
following relations of Piemelj 

*+(to) - *_(to) = <p{t^) (l.1.i+) 

and 

The integral is to be taken in the sense of Cauchy 

(f f ^ d t = lim I fér^dt, (1.1.6) 
J o i-*o J o 
L L-« 

where f Is a part of L with ends t. and tp in such a way that 
1̂ *̂  ̂ o ̂  ̂ 2 ̂ ^ ' *2~*o' - ' *o"*1 ' • 

Formulae {^ ,^ ,k) and (1.I.5) can be verified directly in 
the case that 9(t) represents the values on L of a function 
?>(z) analytic in a neighbourhood of L. In this case we may 
deform L slightly (fig. 1.1.2) in order to calculate for 

Fig ,1 .1 .2 . Deformation of L when <fi{z) i s ana ly t i c . 

instance the limit value 

^(*o) = 2k ƒ f ^ ^ * - 4 ^ ( V - (̂ •̂ •7) 



3. 

Analogous 

*-(*o) = é ï f ï^<i*-i''(to)- ^^-^-8) 
Subtracting these formulae yields (l.l.U), adding yields 
(1.1.5). 

Now we come to the definition of a sectionally holomorfic 
function. A function will be called Bectionally holomorfic 
when it is holomorfic in each finite region which does not 
contain points of some smooth line L, while it is continuous 
up to L with possible exception of the ends of L. 

It is proved in ref. 1 . that *(z) is such a function. 

1.2 THE HILBERT PROBLEM FOR AN ARC 

The problem is to find a sectionally holomorfic function 
*(z) which satisfies the relation 

«_(t) - a(t) *^(t) = g(t) (1.2.1) 

on a smooth arc L, where G(t) and g(t) euce given fxmctions , 
which satisfy the Holder condition and G(t) # 0 on L. 

First we consider the homogeneous equation 

yjt) = G(t) W^it). (1.2.2) 

We solve this by trying to find a sectionally holomorfic 
function iP'(z) without zero's in the whole coniplex domain. 
Then In ̂ (z) is also sectionally holomorfic and has to 
satisfy 

[m F(t)}^ - [m F(t)]_ = -m a(t) (1.2.3) 

on L. Comparing (1.2.3) and {^ ,1,k) we find as a solution of 
(1.2.2) 

Hz) = exp - ̂  ƒ ^\lil] dt. (I.2.i,a) 

However by multiplying this function by an arbitrary ratiomL 
function P.(z), which may possess poles only at the ends of 
L, we do not disturb relation (l.2.2). Hence 

y(z) ={ exp - - ^ j ^ f t T ^ dtj P^(z) (l.2.Ub) 

is a more general solution of (1.2.2). 
In order to deal with the Inhoraogeneotis equation,we write 

(1 .2.1 ) in the form 
*_(t) *^(t) ,^) 

FJtX "• FTt7 = ?_tTT • ^^-^'^^ 
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Hence again by (l .1.U) we obtain 

*(-) = - if^ 1 f r.(ji(lz) 'it.P2(z){, (1.2.6) 

where it is assumed that ^(z) is chosen in such a way that 
the integral converges, PpCz) is again an arbitrary rational 
function with the same restriction as P., (z) in (l.2J+b). 

In ref. 1 it is shown that (1.2.6) and (l.2.Ub) are the 
general solutions of the problems (l.2.l) and (1.2.2) when 
the behaviour at infinity is prescribed to be algebraic. 

When the arc L becomes an Infinite line, for instance 
parallel to the real axis,the sectionally holcxnorfic function 
¥{z) in (1.2.U) is cut into two separate functions V {z) and 
i?_(z) which are analytic in the half planes S and S_, 
situated at the + and - side of L. Assuming tnat the integral 
in (1.2.U) is convergent for this line we see that the 
solution of (1.2.2) yields the "factorisation" of a function 
a(t) defined on L 

G(t) = F_(t)/ F^(t) (1.2.7) 

into two functions ï̂ .(t) and !̂ _(t) which are boundary values 
of functions if ,(z) and y_(z) regular and without zero's in 
S and S_ respectively and continuous up to L. It is clear 
that we have to take 2 in S or S when we calculate !". (z) 
or F_(z) with the use of (i;2.Ij.).~ 

The next step done in (1.2.6) Is to form, under the 
assumption of convergence, the integral 

®±̂ ^̂  = 2^: ƒ i^,(tfit-z) ^^' ^ ^" s±- ^' -^-ö) 

This means for an inf ini te l ine L that we "spl i t" the functJiai 
g ( t )A_( t ) defined on L 

g(t)/iP_(t) = e^(t) - e_(t) (1.2.9) 

into two functions ©.(t) and 0_(t) which are boundary values 
of ftmctions 9.(z) and 0_(z) regular in S^ and S_ and 
continuous up to L. "" ~ 

Sometimes it.is necessary to multiply G(t) by a simple 
function in order to produce convergence of the integral in 
(1.2.I1.). This will be demonstrated later on (para. 2.3). 

The solution of (1.2.1) for an infinite line can now be 
described very briefly as follows. First, factorize a-(t),this 
yields (1.2.5). Second, split the right hand side of (1.2.5). 
Third, compare the parts analytic in the same half planes , 
with the result 

*±(2)= - - f S r ̂  I W (tS(t-z) ̂*'*" ̂ 2^^^^' ̂  ̂ " 3^.(1.2.10) 
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1 .3 SINGULAR INTEGRAL EQUATIONS 

At last we discuss in this chapter the relation between 
singular integral equations and the Hilbert problem. In 
chapter 7 we shall have to treat a singular integral equation 
of the form 

+1 

j{ ^i^t-t ) "" ^Ct-t^)l ?)(t)dt = t{%), (1.3.1) 

where <ip(t) is the unknown function and k(t) and f(t) are 
given functions, k(t) is bounded at the interval |t| < 2. 
First we consider the "dominant" part of this equation,defined 
as 

+1 
_i i .M^at = f(tj, (1.3.2) 

which i s closely related to the theory of sectional holomorfic 
functions. Introducing 

^U) = ^ f r f ^ d t (1.3.3) 27tl I ( t -z) 

we find from (1.1.5) and (l .3.2) 

*+(t) + *_(t) = f(t). (1.3.U) 

Substitution of G(t) = -1 in (l.2.i4.) shows that we may take 
as a solution V{z) of the homogeneous part of (l .^.k) 

Hz) = T"^-p-T . (1.3.5) 
(l-z2)2 

The solution of (l .3.4) becomes by xising (1.2.6) 

.(z) = ; . . Tf ^tt)(|-tydt ^ p(̂ )ĵ  (,.3,,) 
27ri(l-z'̂ )̂  J, ^^ ̂ ^ 

where we have fixed the values of !f(z) by taking 

b £ ^Jt) = -|(l-t^)^l, t S 1. Then by (l .1 .U) 

Here we have chosen for the arbitrary polynomial P(z) the 
arbitrary constant 

A = i ƒ ?>(t)dt, (1.3.8) 

—1 

in order that (l.3.7) satisfies (l,3.2). 
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Now we retTirn to (I.3.1) which we write in the form 

+1 +1 

^ i Tt^ «̂ ^ = ̂ ^*o)- ƒ «'(*) k(t-t^)dt. (1.3.9) 

Then appso'ently each solution of .̂j 
+1 /?>(t)k(t-^)dt(l-T:^)MT 

(1.3.10) 

where f^i'^^) is a solution of the dcsninant part and B is some 
arbitrary constant, satisfies also (1.3.9). This can be veri­
fied by deviding both sides of (I.3.10) by (t-t ) and inte­
grating from -1 to +1 with respect to t̂ .̂ Instead of (1.3.IO) 
we may consider 

+1 

^^*o)= , ̂  o^X. •^d(*o^^^-*o^^+ I ^̂ *̂  K(t,t )dt (1.3.11) 
° Jri(l-t;)* ^ ° Ji 

f(t„) =^(t„)(l-t2)i 

K(t,tJ= , 1 .X f^^nUn'^^ ^•'' ^' -3.1 2) 
° ni(l-t2)*(l-t2)^J ^^-*o^ 

This integral equation is of the second kind and the known 
function and the kernel are quadratic integrable. Hence the 
theories on the Nevunann expansion of the solution and the 
replacement of the kernel by approximating kernels of a 
simpler type can be applied. 

where 

•ft +. \ - m( +. W i -•̂ , 

and +1 
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C h a p t e r 2. 

T H E '.V I E N E R-H O F F T Y P E I N T E G R A L 

E Q U A T I O N . 

iVe now shall give a treatment of «Ylener-Hopf type integral 
equations, -.viiich resembles the classical procedure. It 
deviates however at one point since we shall not demand a 
strip of convergence of the Fourier integrals to be used,but 
only a line. This is an iimediate consequence of the fact 
that we start from the concept of the sectionally holomorfic 
function. 

2.1 THj\NSFORI/iATIOK OP THE EQUATIOIIS 

The following three equations are considered , the 
homogeneous equation of the second kind 

f(x) - k(x-f) f(f)dé^ = 0, (2.1.1) 

o 
tlie inhomogeneous equation of the second kind 

f(x) - ƒ k(x^) f(f)df = h(x), (2.1.2) 
o 

and the equation of the first kind 

ƒ k(x-^) f(f)df = h(x), (2.1.3) 
o 

where k(x-f) is the kernel of the equations, h(x) is a 
function known for x > 0 and f(x) is the unknown function. 
The equations are valid for all values -« < x < +oo, hence 
we shall have to determine in equation (2.1.3) also the 
values of h(x) for x<o. 

We introduce the notation for the Fourier transformation 
of a function f(x) 

+0O 

> J ^ J 
t{x)e^^'^ dx = P(A) (2.1 .U) 

and for the one sided transforms 



ö. 

- ^ f f(x)ei'^^ dx = F^(A), (2.1.5) 

o 
o 

- ^ f f(x)ê '̂ ^̂  ox = F (A). (2.1.6) 
/̂27r J 

In order to apply a î 'ouriei" - transformation to (2.I.1), 
(2.1.2) and (2.1.3) it is sufficient to assume that 
e"'^ k(x), e~^^ h(x) and e"'̂ ^ f(x)belong to L (-00, +00). 
On these assumptions the Fourier transform K.(A) of k(x} 
exists for Im A = t̂ and the one sided transforms of k(x) and 
f(x) denoted by H_|_(A), P^(A) and H_(A), F_(A) exist for 
Im A = ^ and are regular in 3 with Im A > /.i resp. 3_ r;ith 
Im A < /i . ~ 

By the convolution theorem equations (2.I.1), (2.1.2) and 
( 2 . 1 . 3 ) a r e e q u i v a l e n t t o tiie fo l lov/ ing Hiltaei ' t - problems 

F _ ( A ) + [ 1 - V 2 ^ K(A)j P^(A) = 0 , ( 2 . 1 . 7 ) 

P _ ( A ) + h - -^2^ K(A)lF^(A)=n^(A)+H_(A), ( 2 . 1 . 8 ) 

F^(A) V2i K(A) - H_(A) = H^(A), ( 2 . 1 . 9 ) 

holding on the line L of infinite length with Im A = M, 
where F_(A), P (A) and H (A) are unknovm functions.In (2.1.8) 
vife consider P_tA) - H_(A7 as one uiiknov/n function. 

We assume "that the knov;n functions K ( X ) and H ( X ) 
in (2,1,7), (2,1,8) and (2,1,9) satisfy the Holder condi­
tion (1,1,2) on L, in which case we can apply the theory 
of chapter i. 

2.2 SOLUTION OF THE HOMOGENEOUS INTEGR.\L EQUATION OP THE 

SECOND KIND 

We first consider the Hilbert problem (2.I.7) which 
corresponds to the homogeneous equation (2.1.1) and assume a 
strip /? of convergence for the integral (2.1.̂ 4-) for k(x).The 
case of a line of convergence will be discussed at the end of 
this paragraph. In p we choose a line L parallel to the real 
axis in the A plane, on which no zero of 11-V2Jï K(A)| lies. 
The line L with a positive direction (viz. Re A -» +DO) defines 
the half planes S and S_. 

Of course v/e have no knowledge a priori whether the 
Fourier-transformation of (2.1.1) actually holds on L.However, 
if the transformation holds on some line L in /3 we may de­
termine this line afterwards and construct the solution to 
our problem (2.1.1). 
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In order to be able to apply the theory of para. 1.2. it 
is necessary that the integral in (1.2.̂ 4) converges for the 
line L of infinite length. This is the case v/hen 

lim In h-^^'^ K(A) j = 0. (2.2.1) 
Re A->-±oo 

On first sight this seems to be true because K(A) is a 
Fourier-transform and hence K(A) -> 0 for Re A -* i». It re­
mains however possible that 

lim ln{^-J^ K ( A ) ] - lim ln{ 1-NTST K(A)j=-2njri (2.2.2) 
Re A-*+oo R e A->-co 

where n is an integer. If we consider instead of (2.1.7) the 
problem 

W (A) +{1-V'^ K(A)J ^ ^ ~ ^ ) " i?^(A)=0 (2.2.3) 
(A-b)^ + 

where a is a point in S and b a point in S_, then ( 2.2.1) 
is satisfied. /*e can write down at once the~solution of 
(2.2.3) with the aid of (1.2.4) and the discussion above 
(1.2.7) ^ 

^ ^ ^ . ^ . ln[Ii^ ' l^ Kiv)l -fe^rr] 
if^jA)=±ïexp - ^ L Z L Ü _ dr7lP(A),A i n S , . 

(2 .2 .U) 
Hence a l s o t h e f i m c t l o n s 

P^ (A)=(A-b ) -^ i?^(A), P_(A) = ( A - a ) - ^ i?_(A) ( 2 . 2 . 5 ) ( 2 . 2 . 6 ) 

are analytic in S and S respectively and are solutions of 
the Hilbert problem (2.177) 

VVe wish to obtain functions F (A) and F_(A) which are 
Pourler-transfoims, this restricts P(A), because for 
Re A -» ±co P (A) and F_(A) must tend to zero. 

Now suppose that, for the case of a strip fi of convergence 
of the traiisform of the kernel k(x), the function 
[^-^f2n K ( A ) ] has zero's A ; A ;.... in the S_^ part of /3, 

arranged according to increasing imaginary parts. VVe 
investigate the f\mctions 

F (A) F (A) 

,+(A)=-(^=X7T ' ^^J^^-T7:r^• (2.2.7)(2.2.8) F 

These functions are regular iii the regions S. and S _ , 
whicii are situated each on one side of a line L. , which is 
parallel to L but lies between the zero's A and Ap. That 
P. (A) is holomorfic in S. is obvious and that P.,_(A) is 
holomorfic in S. _ follows from equation (2.1.7) because 
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P_(A) and l^-*f2ït K ( A ) ] must have the same zero's in the S 
part of /3. So it is possible, by moving up L parallel to the 
real axis, to construct new functions F^^(A) and F._(A)...., 
which are of lower order for |A| -+ co and v/hich satisfy 
equation (2,1.7) on new lines L , L-

In the case that F (A) and P_(A) are not Fourier-trans­
forms, it is possible that F. ,, F.i or F2+» Pp •••• will be. 
So the most direct way to obtain ill solutions'^is to take the 
line L above the zero with the largest imaginary part within 
the strip of regularity of K(A) and to evaluate f(x) by the 
inverse transformation. However it may be more convenient 
to take for L, if possible, the real axis, in view of the 
evaluation or approximation of the integrals in (2.2.i4-) and 
to translate L afterwards into the correct position, 

When the transformation of k(x) is only permitted on a 
line L, while [^-'f2n K(A)} has no zero on L we can use the 
above theory. If in this case []-*f2M: K(A)] does possess zero's 
on L we can also solve the problem, this v/ill be discussed 
in para. U.U. 

2.3 THE INHOMOGENEOUS EQUATION OP THE SECOND KIND Al® THE 

EQUATION OF THE FIRST KIND 

We are now in a position to solve the inhomogeneous 
equation (2.1.8). It is assumed that the line L, on which we 
consider the Hilbert problem, is within the strip /3 and above 
the zero of {^-*f2JC K(A)] with the largest imaginary part 
within /3. 

First we consider the case that the integer n defined in 
(2.2.2) is positive or zero. We select a suitable solution of 
the homogeneous equation (2.1.7) from the set provided by 
(2.2.5) and (2.2.6) by taking for P(A) some polynomial of 
degree n without zero's on L. Denoting this solution by Y^(A) 
and Y_(A) we may assume 

lim Y+(A) = 1 . (2.3.1) 

Re Â 'loo -

Vife can r e w r i t e (2 .1 . 8 ) i n t h e form 

IP_(A)-H_(A)i P^(A) _ H^(A) 

TJI) YTIAT - Y_(A) • (2.3.2) 

This equation has by (1.2.10) the solution 

Y+(A) . Ĥ (r7) 
^(^)= - -2ïïr / Y_(r7)(r7-X) '̂ '̂ ̂  ^^ ̂ ' (2.3.3) 

Ï (A) r niv) 
P_(A)-H_(A)=- -^^^ / y [rj){T}-X) '^^' ^ ^"^ ^-' (2.3.4) 
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In this case (n = O) the solutions (2.3.3), (2.3.U) can be 
interpreted as Fourier-transforms and we find the solution 
of (2.1.2) by the inverse transformation. 

For n < 0 we cannot find functions i?' (A) and if_(A) with 
the property (2.3.1 ) and in general we èannot interpret in 
this case (2.3.3) and (2.3.Uj as a Fourier transform. Only 
for special functions Ĥ (77) (2.3.3) and (2.3.U) will tend to 
zero for Re A -+±00. 

We now shall treat equation (2.I .9) which reads 

P^(A) ^̂ 2S K(A)-H_(A) ^H^(A). (2.3.5) 

This equation differs from (2.1.8) in a rather significant 
way, viz. the function >f2n K(A) which is here the factor of 
F (A) tends to zero when Re A -+±00. This meaJis that we can­
not use (1.2.4) because the integral will not exist for the 
line L which is infinite. We assume the existence of a 
function K*(A) with the properties 

lim K(A)/ K*(A) = 1 , (2.3.6) 

Re A -> ±00 

and 

|M(A)-1| = |K(A)/K*(A)-1| < e.<1, (2.3.7) 

for A on L. Further we assimie that the function K*(A) can be 
"factorized" by inspection in the following way 

K*(A) = K*(A)/K*(A), (2.3.8) 

where K*(A) and K*(A) are functions which behave algebraicly 
at |A| -• 00 and are regular and without zero's in S and S_ 
respectively. Then we consider the equation ~ 

42^ X^(A) M(A) - X_(A) = H^(A) K*(A) (2.3.9) 

which is of the type (2.1.8), while the integer n (2.2.2) 
is zero. Hence the problem can be treated in the indicated 
way. The solutions of the original equation (2.3.5) then 
become 

P^(A)=X^(A)/K*(A) , F_(A)=X_(A)/K*(A). (2.3.10) 

V/hen £, defined in (2.3.7) can be made sufficiently small 
we can use this method for obtaining approximate solutions. 
This will be demonstrated in chapter 3, where we discuss a 
shrink-fit problem. 
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2.4 EXAMPLES 

First we consider an equation which is solved in ref. 2 
by the method of Wiener and Hopf 

f(x) = m [ e"'^"^' f(f)df. (2.4.1) 

We assume 0 < m < ̂ . After transformation we find 

P^(A) h ^ ] + F _ ( A ) = 0 . (2.4.2) 
"• ( 1 + A 2 ) 

1 
The zero's of [l ~ - ] are A = - (2m-i)2, A = +(2m-l)2, 

d+A'^) ^ "^ 

where we assume Im A > 0. The strip of convergence for the 
Fourier-transformation of the kernel is -1 < Im A < + 1 . In 
this strip we choose the real axis as the line L, on which we 
have to solve the Hilbert problem (2.4.2). On this line 

il =~r ] >0 and hence the number n in (2.2.2) is zero. The 
l+A'̂  

integral in (2.2.4) becomes 
•K= mil- - ^ ! •» 

/ —u;^— *> = 1" c-̂ ) 1"!'- 3 i / -

+00 +00 

i [ 1 - - ^ 1 (1+7,2)2 ] {^^V^){^+v^-2m) 
1 +r?2 

This last integral can be calculated by residues, v̂ here we 
have to take care that our contour does not enclose the 
branch point r? = A. Substitution of the results in (2.2.4) 
yields 

P+(A) = x ê x 4 • ^^^^ ' ^ i^ 3^ , (2.4.3) 
-(A_A„) 

P_(?̂ ) = (X.i) . P(A) , A in S_ . (2.4.4) 

These two functions do not tend to zero for Re A -* ± oo and 
hence cannot be interpreted as Fourier-transforms. However, 
by translating L upwards over a distance between Im A- and 
1 , and dividing P,(A) and F_(A) by (A-A„) we obtain 
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It is obvious that P(A) must be a constant. By the inverse 
transformation we find the solution of (2,U.l). 

ji_ 

f(x) = C Icos ((2m-l)^ x) + Sin ((2m-l)^x)^ , x > 0, 
(2m-l)^ 2̂.i4.a 

f (x) = C e-̂  , X < 0. 

As a second example we consider the equation 

Kx-f) 
f(x)-ra I ^^^^ „ d̂ ^ = h(x), m <l . (2.1+.7) 

; 1+(x-6)^ ^ o 
This equation cannot be solved with the method of Wiener and 
Hopf because tlie Fourier-transform of the kernel converges 
only on the real axis. 

Fourier-transformation yields the equation 

F̂ (A)ri-mjie"''̂ '} + P_(A)=H^(A) + H_(A) . (2.4.8) 

-I A I 
The function [l-mjre ' j is positive on the real axis and 
hence n (2.2.2) is zero. The solution of the homogeneous 
part of (2.4.8) is obtained from (2.2.4) and this solution 
can not be interpreted as a Fourier-transform. However, by 
taking P(A) = 1 , we may obtain the solution of the 
inhomogeneous equation by the procedure outlined in para.2,3. 
In the present case 

Y,(A)=exp - ̂  ƒ ^^^|;!^f i ÖT,, A in S^. (2.4.9) 

— D O 

Then the solutions (2.3.3) and (2.3.4) may be interpreted as 
a Fourier-transform. The solution of (2.4.7) can now be 
evaluated by the inverse transformation. 
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C h a p t e r 3 

A S H R I N K-P I T P R O B L E M F O R A H A L F 

I N F I N I T E R A N G E O F C O N T A C T 

We consider an infinite elastic tube which is shrunk onto 
a serai infinite rigid shaft. In dealing with this problem we 
aim exclusively at the contact pressure between shaft and 
tube, for which an Integral equation of the Wiener-Hopf type 
is established. The integral representing the contact pressure 
is approximated numerically by a method equivalent to the one 
developped in ref. h, v/hich rests on approximating the kernel 
of the governiJig integral equation. 

3.1 PORIvIULATION OF THE PROBLEM, DETERMINATION OP GREEN'S 

FUNCTION POR THE TUBE 

Let (r,ö,x) be cylindrical coordinates such that the x 
axis_coincides with the axis of the tube •(fig.3.1 .1 ). Let a 
and b be the inner and outer diameter of the tubcrespecti'rely. 
Assume that the uniform radial shrinkage of the tube is 5 . 
The stress distribution in the tube for the case to be 
considered here is then governed by the following boundary 
conditions: 

for r = b , - o o < x < + o o , T^^ = 0, cr = 0, (3.1.1) 

for r = a, x < 0, T^^ = 0, cr̂  = 0, (3.1.2) 

for r = a, x > 0, r^^ = 0 , ü = 5, (3.1.3) 

where o" (r,x) and '^^^(^^'^^ -^^ *^® normal and the tangential 
stresses_respectiveiy2^ and ü is the radial displacement. V/e 
seek cr (a,x) for 0 < x < « appropriate to the stress 
distribution governed by (3.1.1), (3.1.2) and (3.1.3). To 
this end v/e note that this normal stress must satisfy the 
integral equation 

^ = ƒ ÜQ(x-?)o-p(a,^)df, (3.1.4) 
o 
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where ü (x) i s a Green function vriiich v/i l l be defined 
p r e s e n t ï y . 

r 

Pig.3.1.1 . Infinite elastic tube shrunk onto a semi-
infinite rigid shaft. 

The function ü (x) is the radial displacement of the 
inner v/all of the tube corresponding to the following 
singular loading conditions: 

for 

for 

for 

b, - CO < X < + <«, T^^ = 0,0-̂  = 0, 

a, - M < X < + 00, T^^ = 0,0-̂  = ó'ix), 

a i r S b, X^ioo, T^^, 0-^, <r^, CTg 0 , 

(3.1.5) 

(3.1.6) 

(3.1.7) 

in which ó'ix) is the delta function of Dirac. The rotational 
symmetry of this problem suggests an approach by means of 
Love's stress function (ref. 10) (p{r,x) which satisfies the 
differential equation 

>2„ - 2̂ 1 a . a2 ,2 

or r dr dx^ 

The associated stress field is given by 

(3.1.8) 

cr. • (r,x) = -:: [vA --] 9 (?,x), 
^ ÖX dr"^ 

cr^{v,x) = 4: [ (2-v)A - 4 ö ] ?> (r,2), 
dx dx 

(3.1.9) 
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dx V ör 
(3.1.9) 

•r̂ (̂?,x)= 4: [ (l-v)4 - 4^] <p (?,x), 
^^ ör ax'̂  

where v designates Poisson's ratio, which we take equal to 
0,25 in numerical calculations. 

The Gorrespondir̂ ; radial and axia.l displacements appear as 

ü(?,x) =.h^È5Lil^ , (3.,.,0) 
^ a?öx 

v(?,x) = -Ü^[(l-2v)4 + 4 ^ +i4.]9(?,x), (3.1.11) 
dr" r Or 

Thus we need to determine a function 9 (r,x) which meets 
(3.1.8) and is such that the stresses ti.l.9) conform to 
(3.1.5)» (3.1.6) and (3.1.7). The desired kernel ü (x) 
in (3.1 ,k) is then obtained, from 

drdx 'a,x 

We now establish m (r,x) v/ith the aid of the Fourier -

transform. Let e''" <p{r,x) be absolutely integrable v/ith 
respect to x in the interval (-00 , +00 ) for M̂  < Im A < ̂  , 
then the Fourier transform. 

+00 

*(?,A)= -rr: l e^^^cpir,x)öl, M. < Im A < ^i , (3.1.13) 
^/25r J 

—00 

exists and (3.1.8) is carried into 

(4ö + ± — - A^)^ *(?,A) = 0. (3.1 .14) 

dr*̂  r or 

The general solution of (3.1.14) adirdts the representation 

#Q(?,A) = A^(A)KQ(A?) + A2(A)A?K (̂A?) + 

+ B^(A)I^(A?) + B2(A)A?I^(A?), (3.1.15) 

where I (Ar), I.(Ar) and K (Ar), K.(Ar) are modified Bessel-



1 7 . 

f u n c t i o n s of f i r s t and second k i n d , r e s p e c t i v e l y . Throughout 
t h i s work v/e s h a l l u se t h e d e f i n i t i o n s f o r t h e s e f u n c t i o n s 
g i v e n i n r e f . 1 1 . The a r b i t r a r y f u n c t i o n s A . ( A ) , A2(A),B.(A) 
and B„(A) a r e t o be de te rmined c o n s i s t e n t v/l th t he t r a n s f o r m s 
of t he boundary c o n d i t i o n s ( 3 . 1 . 5 ) and ( 3 . 1 . 6 ) . T h i s p r o c e s s 
y i e l d s four l i n e a r e q u a t i o n s i n t he fou r unknov/ns A, , A„, B, , 
B„. Thus * ( r , A ) i s c o m p l e t e l y d e t e r m i n e d . 

Upon i n v e r s i o n of * ( r ,A) and s u b s t i t u t i o n i n ( 3 . 1 . 1 2 ) we 
o b t a i n a f t e r some computa t ion 

2 +" 

J AD(a,b,A) 
—oo » » » # 

v/ith 

N(S,b ,A) = Ab[K^(AS)lQ(Ab) + KQ(Ab)l^(Aa)]2 -

. [ 2 i l ^ + Ab][(K ( A S ) I . ( A b ) - K . ( A b ) l , ( A i ) ] 2 - X , (3 . . , .^ 7) 
Ab 1 1 1 1 ^^ 

D(S,b,A) = X^l^ilziLl +Aa][K. (A5) l„(Ab)+K„(Ab) l , ( A i ) ] 2 + 
Ai 1 0 0 1 

+ Xa[ 2 ( ^ : ^ ^ +Ab][K. (Ab)l (AS) + K „ ( A 5 ) T (Ab) ]2 -
Ab 1 0 0 1 

- A2 Sb [K^(Ab)l^(AS) - K^(A5) l^ (Ab)]2 -

_ [ 2 Ü ^ ^ ^ - j [ 2 1 1 ^ , ^^-^ ^ 

.[K^(Ab)l^(AS)- K^(AS)I ( A b ) ] 2 . [ i Ü ^ + 1 + 1 ] . (3.1.18) 
A a b b a 

3.2 SOLUTION OF THE INTEGRAL EQUATION FOR THE CONTACT 

PRESSURE. 

At this stage it is convenient to introduce the dimension-
less variables _ 

x=x/a, f=f/a, b=b/i;, ö=Vi, p(x)= - ^^^Z^ ̂  (r il,x). 
E 

( 3 . 2 . 1 ) 

Then (3.1 .4) can be v/ritten 
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1 * = -ir I Hx-S) p(f) öS , (3.2.2) 

where 
+t» 

—oo 

The integral equation (3,2.2) is of the Wiener-Hopf type. 
We first investigate whether the Fourier transform K(A) of 
the kernel k(x) possesses a strip of regularity in the confOex 
A-plane. From (3.2.3) we obtain 

^(^)=i!ft±x}- (3.2.4) 
Using known expansions of the modified Bessel-functions, we 
find 

K(o)=-7-ST ̂ %1^-T-^^^ ' (3.2.5) 
2(1-v'̂ ) (b -1 ) 

K'(0) = 0 (3.2.6) 

and 

K(A) = iXj- + 0(A~2) as Re A -»±oo , (5.2.7) 

The function K(A) has no poles on the real axis of the A -
plane, because otherwise a cosine loading of the innerwall 
of the tube would cause infinite displacements. A point of 
singularity which can be expected, however, in view of the 
branch points of K (A) and K.(A) is the origin A = 0. This, 
however, is not the case. Consider for instance a typical 
part of the function N(l,b,A), 

K.,(A)lQ(Ab) + K^(Ab)l^(A). (3.2.8) 

Using here a representation of K (A) and K. (A) in the 
neighbourhood of the origin (ref. 11), we find that the 
logarithmic singularities of K (A) and K.(A) cancel each 
other. Hence K(A) possesses a strip of regularity around 
the real axis. This means that the kernel k(x) decreases 
exponentially for x -* ± m. Because the lefthand side of 
(3,2.2) is a constant for x > 0 we take Im A > 0 and 
sufficiently small when we apply a Fourier-transformation 
to this equation. Then we obtain the Hilbert problem 

P (A) K(A) - e_(A) = — i ^ (3.2.9 ) 
+ /̂2E A 
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valid on a line L just above the real axis in the A-plane. 
This equation is of the form (2.3.5) and v/ill be treated by 
the same procedure. First of all we have to find the function 
K*(A). Because k(x) is an even function, it is clear that 
K(A) is also even. We nov/ consider in correspondence to ref.ij. 

1 '̂1 (̂ )̂ K*(A)= --^-4;-r - 4 - ^ , (3.2.10) 
(A^+S'^)^ T2(A2) 

p p 
v/here s is a real constant and T. (A ) and T2(A ) are 
polynomials in A with the same term of the highest degree. 

From this v/e see that 

K*(A)= -4-|- + 0(|Ar3) as Re A "•ioo, (3.2.11) 

v/here | Im A| < s. Hence ^y (3.2.7) the leading term of the 
asjTiiptotic expansions of K(?0 and K*(A) is the same. Next we 
choose s and the coefficients of T (A2) and T„(A2) SO that 

|M(A)-1| = |K(A)/K*(A) -1 I < e < 1, (3.2.12) 

v/here e is some prescribed positive quantity. That this is 
possible follows from the theorem of Tschebyscheff on the 
approximation of continuous functions by rational functions 
(ref. 12, pages 55 and 65). Then we have to solve in 
accordance to para. 2.3. 

X,(A) l.i(A) - X_(A) = - ^ K*(A). (3.2.13) 
* "Jin X 

The homogeneous part of (3.2.13) yields as a solution which 
satisfies condition (2.3.1) 

WM= exp - 2H ƒ " T F Ö ^ ^ ' ^ "^ ̂ i* (3.2.14) 

Herewith the inhomogeneous equation has the solution 

P*(A) r i^ Ktiv) 

[TE T¥J^JTUFXJ^' ^i^2±- (3.2.15) 
X.(A)= 

27ri 

and the s o l u t i o n of ( 3 . 2 . 9 ) becomes 

P+(A) = X^(A)/K*(A), e_(A) = X_(A)/K*(A). ( 3 . 2 . 1 6 ) 

The path of integration in (3.2.15) can be closed in the way 
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Fig.3.2.1. Contour or integration. 

indicated in fig. 3.2.1 . Because K^irj) and i"_(?7) are analytic 
in S we find v/ith (3.2.16) ~ 

i_& K*(0) Ï̂ (̂A) 
P̂ (A) = ̂ =r YJÖJ ' 

hence 
K*(0) 

A K*(A) 

g-lAx (-̂^ 

P(-) = 2ÏÏ iriöj I , ,.(,) dA. 

(3.2.17) 

(3.2.18) 

Because of the occurrence of i? (A) in the integrand, this 
integral is too involved for num.erical calculations. It can 
however, be expected (ref. k) that, if e is sufficiently 
small, we obtain a good approximation p*(x) of p(x) v/hen we 
put i?̂  (A) and ï̂ _(A) equal to unity for all A, this yields 

p*(x) =^ K*(0) 
r -lAX 
.' e dA. 

^"^ '"'" l( A K*(A) 

Even v/hen we choose more specifically 

K*(0) = K(0) 

we can easily ehovi 

p(x) - p*(x) ~ 0(x°), X - 0 

and 
p(x) - p*(x) -• 0 

(3.2.19) 

(3.2.20) 

(3.2.21) 

(3.2.22) 

Consider 

p(x)-p*(x) 2n Kf(0) 
^-lAx F (A) 

^ ?Töy "̂ *̂̂ * (3.2.23) 
A K*(A) 
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Then it can be shown by estiniatinf; (3.2.14) that the function 
between brackets under t]ie Integra], sign in (3.2.23) is 
absolutely integrable. This implies (3.2.21) and (3.2.22). 

3.3 l̂ULERIG/d. Gi\lCULATIGK C? THE 3:-fflINK-FIT STRESSES 

As lias been suggested in para. 3.2. v/e shall use instead 
of the exact funcïtion K(A) (3.2.4) cm approxim8.te function 

, ? , i(. -.6 . a +a„A +ai A +a/-A 
K*(A)= T~2^^ 2 ^ h 6̂  ' (3.3.1) 

(A'̂ +s'̂ )2 b^+bgA'^+b^^A^bgA'' 

v/here the coefficients are given in table I for several 
values of the diiner^ionless outer diameter b. The values of 
s are assumed, v/hile the values of a and b are computed 

TABLE I , coeff icients of K*(A) 

3 1.25 1.00 -0.725 0.290 0.00553 1.00 -0.756 0.334 0.00553 
2 5.00 5.11 2.32 0.332 0 1.00 0.3ii2 0.332 0 
1.5 6.CO 9.12 0.2W* 0.0285 0 1.00 0.0178 0.C285 0 
1.2 10.0 30.9 0.0963 0.00303 0 1.00 0.00685 0.C03C3 0 

by collocation. The relative deviation of K*(A) from K(A) is 
less than hfo for the whole real axis. By determining the 
roots of the polynomials in (3.3.1 ) v/e can easily obtain the 
factorization (2.3.8) of K * ( A ) . Using these functions in the 
integral (3.2.19) v/e find the values of table II for the 
apijro.ximate shrinJc-fit stresses. 

TABLE II, p*(x),/9. 

b t 0.03125 

3 
2 

1.5 
1.2 I.Ul 

0.0625 

2.83 
2.U0 
• .77 
0.716 

0.125 0.1875 

2.19 
1 .80 
1.18 
0.2U2 0.133 

0.25 0.375 

1 .75 
1.39 
0.71*3 
C.IU9 0.253 

0 . 5 

1.U2 
1 .0-
0.538 
0.308 

1 

1.30 
0.921 
0.6i9 
0.321* 

o» 

1.25 
0.981* 
0.658 
0.321* 

Frori ( 3 . 2 . 1 5 ) ;/e o b t a i n by ( 3 . 2 . 2 i ) and ( 3 . 2 . 2 2 ) 
p ( x ) , p*(x) = 

p Q 

= — 1^('7 ^ - ^ ^^^^-^ P ' + c o n s t . a s x ^ O , ( 3 - 3 . 2 ) 
sTx " Sb '^d+v) + ( l - v ) | 

and 
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P(x), p*(x) 2H^-v^) (b^-1) 
[b2(i+v) + {^-v)] 

as X {5.3.3) 

Formula {3.3.3) agrees with the result v/hich we obtain from 
the elementary theory when an ir̂ finite tube is shrunk on to 
an infinite shaft of uniform diameter and contact occurs for 
their whole length. 

3.4 THE LIMITING CASE OF Alv INFINITELY THICK TUBE 

We now consider the limit as b -• <». We shall again have 
to determine Green's function u (x) of the inner v/all. In 
this case v/e shall have to take the unknovm functions B (A) 
and B2(A) in (3.i.15) equal to zero in order to avoid a 
singularity at infinity. This problem was discussed in ref. 
13 so that we may v/rite dov/n at once the integral equtition 
with the dimensionless variables (3.2.1) 

v/here 

k ( x ) = ^ 

d 

+00 

>j27i 
k(x-f) p(f) df, 

e"^^^ K 2 ( | A | ) 

2,,2 ^ ^ J - A X ( I A I ) +^^"+2(1-10] Kf(lAl) 
dA. 

(3 .4 .1 ) 

(3 .4 .2 ) 

Here a complication arises. The kernel k(x), for finite b, 
possesses a strip of regularity around the real axis in the 
A plane. This is no longer true in the limit as b -• 00. The 
function 

K(A) = 
K((|A|) 

2T^2 -A'^K^(IAI) + 1A^+2(1-V)]K:^(|A|) 
(3.4.3) 

is not analytic. 
Prom the point of view of mechanics, hov/ever, it is not 

necessary to consider these difficulties in detail. Por it 
is evident that the shrink fit stresses of an infinitely 
thick tube are the limit of the stresses produced by tubes 
of increasing thickness. Then, from continuity consideraticns 
we can calculate the approximate stresses of the infinitely 
thick tube by approximating the function K(A) in (3.4.3). 
Also the asymptotic relations (3.3.2) and (3.3.3) remain 
valid. 

Now the course of the calculation is the same as before; 
the coefficients of (3.3.1) are 

1.5 1.83 0.0853 0 

"o "2 "4 "6 

1 2.16 0.0853 0 
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the error in this case being less than 1.5%. We find for the 
stresses 

X = 0.0625 0.125 0.25 0.5 i « 

p*(x)/ö = 3.13 2.44 1.97 1.73 1.58 1.50. 

3.5 DISCUSSION OP THE RESULTS 

The contact pressures are plotted in fig. 3.5.1 , which 
shows p*(x)/d for various thickness ratios b/a. The ratios 
chosen are b/a = 1.2; 1.5; 2; 3 and 00. The stresses tend to 
infinity as x -» 0, the order of the singularity being 
independent of the thickness of the tube, as is clear from 
(3.3.2). The interesting region for the variable x, in which 
the stresses change rapidly, is approximately 0 - x - 1 . 
Here we see from fig, 3.5.1 . that for b/a = 2, 3 and «> the 
shrink-fit pressure is a monotonically decreasing function 
for increasing values of x < 1 . However, for b/a = 1 .2 and 
1,5 there exists a minimum which becomes negative for suf­
ficiently thin tubes. Since negative shrink-fit stresses 
cannot exist, this means that our theory ceases to be 
applicable. This behaviour is to be expected from the theoy 
of beams on an elastic foundation. 

o 02 0.4 0,6 0,8 X 

Pig.3,5.1. The contact pressure p.(x)/i^ for various 
thickness ratios b/a. 
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Finally we want to make a remark on the accuracy of the 
numerical results given here. On the basis of observations 
made in ref. k- the relative deviation of the approximate 
values p*(x) from the exact values p(x) ought to be approxi­
mately one half of the corresponding relative deviation of 
K*(A) from K(A). For this reason the calculated shrink - fit 
stress p*(x) is apt to be accurate within 3^. 
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C h a p t e r 4 

T H E H O M O G E N E O U S F I R S T O R D E R 

I N T E G R O - D I F F E R E N T I A L E Q U A T I O N 

O P T H E W I E N E R - H O P F T Y P E . 

V/e shall discuss an integro-differential equation with 
first order derivatives of the unknown fTinction, which occur 
both under and outside the integral sign. Equations of this 
kind sometimes arise in physics (ref. 5). In this chapter 
the method of solution is exposed for this simple form,it is 
an extension of methods described in chapter 2. A solution 
can be obtained even when the kernel k(x) decreases 
algebraicly for |x| -•oo while at the same time the solution 
does not tend to zero for x -+ + oo. 

The following cases are treated separately: 
Case 1. The kernel k(x) decreases exponentially |k(x)|<e 
with a > 0, for |x| -+ oo and the solution has the asjmptotical 

behaviour |f(x)| =^(e^ ), with y < a for x -• + oo. 
Case 2. The kernel decreases algebraicly k(x) =^|x|~ , 
n > 1 for |x| -• 00. 

Vifhenever we need explicite information about the 
singularity of the kernel at x = 0 we shall assume that k(x) 
is an even function with respect to x (para. 4.2.). 

U.I THE GENERAL EQUATION, CASE 1 

Our integro-differential equation has the following form 
oo 

a^ f(x)+a^ f'(x) =J [b^ f(f)+b^ f'(f)} ii{x-S)öS. (4.1.1) 

When we have found a function f(x) for x > 0 which satisfies 
this equation we have to solve a simple first order differen­
tial equation in order to find f(x) for x < 0. Prom the 
assumption of the exponential behaviour of k(x) at infinity 
we find 

U Q f(x)+a^ f'(x)| < C e"^'^' , X - - 00. (4.1 .2) 

Hence if we consider the left hand side of (4.1 .1) as one 
function h(x) we can apply a Fourier-transformation to this 
equation. We use the notations of para. 2.1. and assume that 
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A remains on a line L with Im A = ̂ x, within the strip P, 
y < Im A < a. 

Applying a Pourier-transformation to (4.1.1) we obtain 

H (A)+P^(X){a -ia.A - •f2ji K(A)(b -ib.X)]= ^^^{a.-\i.»r^ S(A)J - + o 1 o 1 ,f^ 1 1 

(4.1 .3) 
where 

u 

H_(A) = - ^ [ U „ f(x)+a. f(x)Je^^ dx. (4.1.4) 
—CO 

First we consider the related homogeneous equation 

Y_(A)+Y^(A) Uo-ia^A - ̂ /^ K(A)(b^-ib^ A)} = O. (4.1.5) 

This means that we seek solutions of (I4..I .1 ) with f (o) = O. 
"We assume further that L has been chosen in such a way that 
there lies no zero of the factor of Y (A) on L. 

Analogous to the procedure in para 2.2, we consider the 
expression 

m G(A)=ln [^{a^-ia^A- ^m K(A)(b^-ib^A)} ̂ — ^ + 1 ̂  ' 

(4.1.6) 

where a is in 3 and b in 3_. The integer n can be 
determined in such a way that the principal value of In G(A) 
for HeA-» ± a> on L tends to zero. 

We then find for the solution of (4.1.5) 

Y^(A) = ^ (A-b)-^-'' Jr̂ (A) P(A). (4.1.7) 

Y_(A) = (A-a)"""̂  F_(A) P(A), (4.1.8) 

where 

rj(A)= ± exp - - ^ f ̂ ^ ^ Ö7J, A in 3, , (4.1 .9) r^l^M 
and P(A) is an arbitrary polynranial. Again we consider the 
zero's, A = A (m=1 .... q) of 

Uo-ia^A - Vai K(A)(bQ-ib^A) } (4.1.10) 

within the strip /9 and above the line L. Then also the 
functions ^ (A) Y (A) 

Y+(A)= ~ , Y_(A)= —-= , (4.1.11)(4.1.12) 

m=1 IDjel 
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are solutions of (4.1.5), but now on a line L v/ith Im A < 
Im A < /3. In the case (n+q) S 1 we find a solfttion of '^ 
(4.1.5) which can be interpreted as a Pourier-transform,while 
an arbitrary polynomial P(A) of degree (n+q-1 ) can be taken 
as a factor. 

Now we return to the inliomogeneous equation (2+.1 .3) and 
try to obtain a solution. The general solution can then be 
found by adding solutionsof the homogeneous equation. We 

in 
in 

and 
v/fite instead of (4.1.3) 

found by adding solutions oi the homogeneous equation. 
choose some solution Y (A) and Y _ ( A ) , assuming P(A) = 1 
(4.1.7) and (4.1.8) in order to avoid zero's of Y+(A) 
S + ( A ) , from the set provided by (4.1.11) and (4.1^12) : 

H_(A) P^(A) ^(0) {a -b Nr5?EK(A)j 

^:^"W^iir YjA) = e^(A)-e_(A).(4.1.13) 

Here v/e have introduced the functions ©. (A) and ©_(A) which 
are discussed in para. 1.2 and which result from splitting 
the right hand side of (4.1.13) into two parts regular in S 
and 3_ respectively. They are determined within an additive 
term consisting of an arbitrary polynomial and can easily be 
calculated without recourse to the general integral 
representation (1.2.8), in terms of Y (A) and Y _ ( A ) . By 
definition we have 

Y_(A)+Y^(A) la^-ia^ A - */^ K(A)(b^-ib^ A )] = 0 (4.1.14) 

hence 

^/^ K(A) 1 ( 1 , (̂ o~̂ 1̂ ̂  ̂  , /, . . O 
Y_(A)' = (b^-ib^A) * YTIAT ̂  Y_(A) ̂• ^^'^ -̂  5) 

Combining (4.1.13) and (4.1.15) and assumir.g for instance 
i b^ 
r-— in S , we find, since Y+(A) have no zero's in S + 
D., + 

+>Cn̂  (a. b^-a„b,) b. 

^/^(b^-ib^ Y-(^^ Y^(-i^) (4.1.16) 

2̂5r(b -ib.A) S(^-' Y (-i % 
+ ̂  b. ' 1 

i b 
where Q(A) is an arbitrary polynomial. The case r — in S_ 

1 " 
can be treated entirely analogous. The solution of (4.1.13) 
and hence of (4.1.3) becomes 
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H_(A)=-eiA)Y_(A)= — £ l ^ Ĵa.b̂ -a b - ̂1 ̂ "f V Q(A)Y_(A) 
Nr2Ïr(b̂ -ib̂ A) ^ ° ° -• Y^i-i^) 

^ (4.1.18) 

F ^ ( A ) = ^,(A)Y^(A)=- ;(°) 1-b^. ^ ^ ^ ^ ] - Q(A)Y^(A). 

^ ( ^ O - ^ ^ ) YJ-i r^) 
^ ^ (4.1.19) 

In this result we may take Q(A) = 0 because this term only 
furnishes a solution of the homogeneous equation. Apparently 
when Y_(A) is bounded at infinity we may interprete (4.1.18) 
and (47l .1 9) as Poin-ier-transforms. 

4.2 CASE 1 WITH a^ ^ 0, â  = 0 AND b^ ^ 0 

Equation (4.1 .3) now reads 

H_(A)+F (A)U„-*^2^ K(A)(b -ib A)]=-.£i^ b «/^ K(A) (U.2.1 ) 

and the homogeneous equation 

Y_(A)+Y^(A)Uo-^/2S K(A)(b^-ib^A)}= Y_(A)+Y^(A)T(A)=0,(4.2.2) 

where we have introduced the abbreviation T(A). There is a 
difference between the equations (4.1.5) and (4.2.2). In 
(4.1.5) the factor of P.(A) is of the order A when 
Re A -• ± oo while in (4.2.2; the asymptotic behaviour of this 
function, T(A), depends on the behaviour of K(A) for 
Re A -• ± oo. We now remind the assuniption that in such cases 
we shall consider only kernels k(x) which are even functions 
of X, hence also K(A) is even in A. 

The asymptotic behavioiir of K(A) for Re A -• ± oo depends 
on the behaviour of k(x) in the neighbourhood of x = O. We 
asstmie k(x) to be continuously differentiable for 0 < e, < x 
for each e. . We consider several possibilities for the 
behaviour of k(x) in the neighbourhood of x = 0. 
a) Let k(x) be continuously differentiable for 0 - x < £„, 
ê  < Eg» ^̂ hen 

lim K(A) =^|A|'^ , 1 < m. (4.2.3) 
Re A -• ± oo 

b) Let k(x) be the sum of a logarithm and a continuously 
differentiable function for 0 S x < e„, e. < e_ then 
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lim K(A) ~ AlAI"^ , (4.2,4) 
Re A -» ± oo 

c) Let k(x) be the sum of x {O < & < ^) and a continuously 
differentiable function for O i x < e^, e < e then 

lim K(A) ~ B|A|'^*^ . (4.2.5) 
Re A -» ± oo 

The formulae (4.2.3) and (4.2.5) follow directly from ref. 
14 while (i|.2.4) can be deduced by subtracting from k(x) the 
function C K (x) where K (x) is a modified Bessel-fiinction 
and G some suitable constant, then we arrive again at case a. 

The difficulties which can occur in the cases a, b and c 
are concentrated in finding appropriate functions analogous 
to (4.1.6). We shall now state these functions. 
a) In this case the factor T(A) of Y_̂ (A) in (U.2.2) tends 
to a for Re A -• ± 00, hence instead of (U.1 .6) we can use 

m G(A) = m { ̂  T(A) -^^^^ 1 , (U.2.6) 
% (A-b)^ 

b) T(A) t e n d s t o a ± i ifSi A b . f o r Re A -> ± oo, we t a k e 

. a +i»i/aT Ab. 

-Pr^^ A . """ 2 ^ ^"^a„-W^u'Ab ) 
m G(A):=lni ^ t A | (A^) o 1 },(i,.2.7) a +i'»/2Jr Ab. o 1 

c) T(A) t e n d s t o ± i iTSr b , B | A r , 0 < d" < 1 f o r Re A-•loo, 
we t ake ' 

m G(A)=lnl T(A) AA-ax ^^^^ |^ (^^2.8) 
i</Sr b . B 

1 

The values of the multivalued functions which are the factors 
of T(A) are to be fixed in such a way that the principal 
value of In G(A) for Re A -• ± oo on L tends to zero. 

The essence of the formulae above is that we have multi­
plied T(A) by functions which can be factorised by inspection 
into functions regular and without zero's in S and S . We 
find the following solutions for the homogeneous equation 
(4.2.2) 

^) Y+(^> = , bx-n / ̂  , ̂  (4.2.9) 
(X - °) ̂  y (X) P(A) , 

Y (A) = ^ - (4.2.10) 

(A-

(A-

n+ 
•a) 

•b )^ 

(1-^) 
2 

{^^') 
2 
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''̂ Ŷ (A) = .̂ , _1_ i„ ̂ V ^ i E i V (4.2.11) 
(A - ̂ ) 2^i ̂ " U^-iVarAb^; j,̂ (̂ ) p̂ ^̂ x 

Y_(A) = ^ - (4.2.12) 

e) 
Y+(A) = _n_ lli£i (4.2.13) 

^ ^ (A - ^ ) 2 y^(^) p(^)^ 
Y_(A) = ^ - (4.2.14) 

where S'̂ +(A) is defined in each case by the integral (4.1 .9) 
with thë corresponding G(A). 

Following the treatment of the preceeding paragraph below 
form (4.1 .9) we arrive again at formulae analogous to (4.1.18) 
and (4.1 .1 9). 

The case a. =0, b. =0, a ^ 0, b ^ 0 is the homogeneous 
Wiener-Hopf e4uation with exponentially decreasing kernel and 
is discussed already in chapter 2. 

4.3 THE GENERAL EQUATION CASE 2 

The treatment given in para. i|.l is also largely applicable 
to the case of equations with kernels which are only trans­
formable on a line L. However, there are differences, for in 
the latter case we cannot translate L and hence (4.1.11) and 
(4.1.12) cannot be used. Further if there is a zero of (4.1.10) 
on L this cannot be avoided by translating L slightly. 

We now discuss a method to obtain solutions of {^•.^ .3)when 
(4.1.10) has zero's on L. To demonstrate the procedure we 
shall treat the case of one zero A = v of the first order. An 
extension to several zero's and zero's of higher order does 
not offer principal difficulties. 

Prom (4.1.11) and (4.1.12) we see that a zero A of (/+.1.10) 
-iA^x 

introduces a teiro of the form ĉ  e in the solution of the 
integro-differential equation. In our case with a zero v on 
the line of transformation it seems reasonable that the 
solution of the integral behaves as c„e for x -• + oo. Hence 
we try to find a constant A in order that the fvmction 

v(x) = f (x) - A e"^^^ -• 0, X -• + oo. (4.3.1 ) 

The integro-differential equation for v(x) can be derived 
easily from (4.1.1), we find 

00 

a^v(x)+a^v'(x)= ƒ [bQv(f)+b^v'(f)] k(x-f)df -

o oo (4.3.2) 
- A(a^-ia^v)e~^'''^ +A(bQ-ib^v) j e"^^^ k(x-f)df , x > 0. 
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Under the assumption that v is a zero from (U.I .1 O) we see 
that the last two terms of the right hand side of (4.3.2) 
cancel each other for x -• + oo. Applying a Fourier-transfor­
mation to (4.3.2) we obtain 

W (A)+V (A) l a - i a A - V2Ïi K(A) (b - i b A) j = 
+ ° ^ 0 1 (4.3.3) 

v(O^) ^ Ai 
= - - ^ {a - b . ^ ^ K(A:f {a-ia.vW2k K(A) (b - i b . v ) } , 

iy/2n ' ' >J2n{X-v) ° ^ ° ^ 

v/here v(0 ) is the value of v(x) when x tends to zero throi0i 
positive values and 

o 
W_(A)=^ ƒ e-^^|a^v(x)+a.,v'(x)+A(a^-ia^v)e-i^^}dx. (U.3.4) 

—00 

The solutions Y+(A) of the homogeneous equation 

[ a -iaA-V2Jr K(A) (b -ib. A) ] 
Y_(A)-HY^(A) ° ^ (x-v) - 0 (̂ .3.5) 

^^^ -n 
Y,(A) = (A - ̂ ) F^(A), (4.3.6) 

where 

In 
â -iâ 7?-̂ 2̂w K(7?) (b^-ib^??) (77-a)^ 

r.(A)=±exp-^ I ^" '̂  "1 ̂ -̂̂ ^ (^-M" d.;. 
J (rj-A) 
^ (4.3.7) 

Herewith (4.3.3) can be written in the form 

W (A) a, (A-y)V^(A) , „z^-, ., 

-ia^v - ̂ ^S^ K(A.)(bQ-ib^ v )]] = e^(A) - e_(A), (4.3.8) 

where we have introduced 6 (A) and 0_(A) v/hich result from 
the splitting of the right hand sideT Under the assumption 
that p = i b /b., for instance, in S we find analogous to 
the procedure in para. U.I 

[v(0)b. (A-v)+Ai(b -ib.v)Hi-Y^(A)A_(p)! i P(A)Y (A) 
Y (x)= I 0 1 •'' I ,., T 

^̂ 25? (A-y)(b -ib^A) ^ (̂ "̂^ ' 
° ^ (4.3.9) 
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(a b -a,b„) Y (A) 
W ( A ) - ^ (A-v(O)), ° ]. l y + =̂^ . 

>J^ ^bo""l^'' >r^ (bQ-ib^A)Y^(p) 

.fv(0)ib^ a^(A-v)-A a^(bQ-ib^v)l+P(A) Y_(A). (U.3.10) 

When n > O we can interprete (U.3.9) and (U.3.10) as Fourier-
transforms while we can admit an arbitrary polynomial of the 
degree (n-l). For the ease n = 0 we can consider these 
functions as Fourier transforms when 

v(0) a, 
P(A) = ' 1- . (U.3.11) 

'JW Y^{p) 

Prom (U.3.9) we observe that we have to choose A in such a 
way that the singularity A = v disappears, this yields 

-V»i P(v) Y_̂ (v) Y (p)a., 
^ = (Y_(p)-Y^(v) ) " » (̂ .3.1 2) 

Hence we have determined a solution of (U.3.3) and by the 
inverse transformation and (U.3.1) also a solution of (U.I.1 ) 
with in general f(0) ^ 0. An analogous treatment can be given 
for p = -i b Vb. in S_. 

If we want to solve an equation with several and higher 
order zero's of (U.1.10) the analysis becomes much more com­
plicated. Assimiing zero's A= v (r=1 ... N) of the order p , 
we shall have to consider the integro-differential equation 
for the function 

N Pr -±v X 
v(x) = f(x) - L{£ A _ ^)e ^ . (U.3.13) 

r=1 m=1 '• 

By an analogous reasoning as before we can obtain relations 
for the coefficients A . 

The discussion of para. U.2 can also be extended in the 
way of para. U.3 to kernels which decrease algebraicly at 
infinity, this we shall not do here. However, to show the 
applicability of the ideas of this paragraph we shall discuss 
an example. 

U.U EXAMPLE 

We consider the ordinary V/iener-Hopf integral equation 
which we have discussed to some extent in para. 2.U 

oo 

f(x) = m f — £ ^ df, (4.4.1) 
/ - (x-f)2 
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however, the range of the parameter m is different we take 
here m > \/n. Formal transformation of (U.U.I) yields 

P_(A) + P+(A) h- mree"'^'} = 0. (U.U.2) 

— I A I 
The function {l-mree" j possesses two zero's on the real 
axis which we call A = ±v . The asymptotical behaviour of the 
solution is then asstimed to be 

f (x) » Ae " ^ ^ ^ + Be^'^^, lim x -• -h». (4.4.3) 

Hence we consider instead of (U.4.1) the equation for the 
imknown function 

v(x) = f(x) - (Ae"^"^ + Be^''^), (4.4.4) 

which reads 

,^^)^l^dn^ _ (Ae-i'̂ .̂Beî )̂+mf <̂ "̂'"̂ ^̂ f "^) df. 
é1+(x^)2 J 1+(x^)2 l4.4. 

Transformation of this equation yields 

W_(A)+V^(A)ll-m7re-'^'j= "1 ^ + ^ ] [l-m/re"'^'j , 
'^^{'^-v) «^(A+v) (U.U.6) 

where 
o W (A)= - L . f e+i^^ [v(x)+Ae-i^^+Be^^^Idx. (U.U.7) 

'f^ J 
—oo 

We now wri te (U.U.6) in the form 

Y _ ( A ; Y^ (A; Y_(A) ,f^(^x-v) </2Ïr(A+v) 
(U.U.8) 

where Y4.(A) are the solutions of 
-I A | 

Y_(A)+| I ' l ^ l ^ }Y^(A)=0, (U.U.9) 
(A -V ) 

Y^(A) = (A+i) i?̂ (A), Y_(A) = (A-i)"^ wjx) (4.4.10) (4.4.11 ) 

and 
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+ooln[(l-rmre-l^l)%ill-j 

yjA)= ± exp - -5^ f ^n -^ ) d77, A in S,. 
^ ^ i (rj-A) 

"°° (U.U.12) 

From (U.U.8) we obtain with the use of (U.U.9) 

W (A) V (A) o 9 H 1 

^ I A 7 - Y7(iy ^̂  -^ )= ^ ^̂ ^̂ -̂ ^̂  " ^^^-^^^- Yjixy-^'^-^-^^^ 

Hence 

V,(A)= ^ ^p p [A(A+v)+B(A-v)+P(A) Y,(A)}, (U.U.I U) 
* </25r(A2-v2) + 

W_(A) = - ^ i ^ Y_(A). (U.4.1 5) 
»/2?r 

In connection with (U.U.Il) we see that we have to take 
P(A) = C. Further we have to compensate the singularities 
A = ± V in (U.4.14). This yields 

A - # Y+(^) . (4.4.16) 

B = •g;Y^(-v). (4.4.17) 

Hence the solution of (4.4.1) is determined. 
We have given two different discussions of equation 

(U.4.1)» depending on the values of m. Por m < I/TT the 
equation was discussed in para. 2.4, while here we considered 
m > ̂  . The case m = l/ir cannot be solved directly, however. 
it is possible to give an asjonptotic expansion of A (U.U.I 6) 
and B (4.4.1 7) for small values of v. 
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C h a p t e r 5 

A W I K N E R - H O P P T Y P K I N T K G B O -

D I P P E R E N T I A L B Q U A T I O H W I T H 

P O Ü H T H O R D E R D E R I V A T I V E S 

We shall discuss an integro-differential equation, which 
Is an extension of an equation discussed by Reuter and 
Sondheimer (ref. 6) which arises In considerations about the 
anomalous slrinn effect (ref. 5). Although the derivatives 
occurring In this equation are of the second and fourth acöec 
we can follow closely the line of thought of para.4.1 and 
para 4.2. It was asked to expand the quotient of the 
solution and its first derivative for the value zero of the 
independent v^iable in terms of a small parameter fi. The 
case that this parameter is zeiK> is discussed by Reuter and 
Sondheimer. It turns out that this quotient does not depend 
analytically on fi, there arises a term of the form fi In fi» 

5.1 P0URI3R TRAN3P0HMATI0N OP THE EQUATION 

The integral eqtiation has the form 

(2) r (4) 
f (x)=itx ƒ {f(t)-i/3f (t)lk(x-t)dt (5.1.1) 

° (2) (4) 
where a and fi are positive real numbers. By f (xj and t (x) 
are denoted the second and fourth order derivatives of f(x). 
The kernel k(x) reads 

oo 

k(x) = ƒ (J - -I5) erp (-c|x|8)dB, (5-1.2) 

where c is in general a complex number with a positive real 
part, 'tie shall determine the physically ixnportant quantity 

(1) 
f(0)/f(oj , (5.1.3) 

and obtain its asymptotical expansion for B -» 0, 
(2) (U) 

It will be assumed that f(x), t (x) and f (x)are bouided 

for X -• + 00. Prom (5.1 .1 ) we deduce that f (x) is of the 



36. 

ex 
order e when x -• - oo. Then it is allowed to apply a Povirier-
transformation to (5.1 .1 ) when A remains on a line L above and 
sufficiently close to the real axis in the complex A plane.We 
find 

H_(A)-P_|_(A)}A2+ia«/2fr K(A)(l-i;3 A^)] = 

= -L-lf (0)-iAf(0)l+a^ K(A)l-f (0)+iAf (0)+A2f (o)-iA3f(o)j , 

^ (5.1.4) 
where 

o (2) 
H_(A)=-1:: ; f (x) e^^^ dx, (5.1.5) 

-co 

and 

K(A)= -^ I Hx)e^^ dx= - ^ r - ^ +i(j: + 4 l^(dcTT§)^ 

"~ (5.1.6) 

the logarithm is defined by 

1^ (-X+iĉ  -> - rti, ReA-+oo, A on L. (5.1.7) 

First we consider the homogeneous part of (5.1.4) 

Y (A)-Y^(A)[A2+ia«/2S K(A)(l-i/3 A^) j =Y (A)-Y^(A) T(A)=0, 
* ' •" (5.1.8) 

where, as in para. 4.2, we have introduced the abbreviation 
T(A). In the following we shall use the notations of that 
paragraph. The asymptotic behaviour of K(A) is 

K(A)« % a A-^ = _!_ J« il£ + Ss! - ̂ l . R e A - + oo,A on L, 
n=1 - V ^ ^ A 2 A3 ^ (̂ ^̂ 5̂) 

hence 

T(A) ~ a/3 w A2 I A|, Re A -• ± oo on L. (5.1.10) 

The function In G(A) can be taken in the form 

InG(A) . inl^'-^^f^/(^)0-l^/^)| , (5.,.,,) 
a/3K(A'̂ +p'̂ ) (A'̂ +p̂ )2 

where p is an arbitrary real positive number. We find for 
the solutions of (5.1.8) 
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VJX) ^ , 
Y (A)= i -. Y (A)=ir_(A)(A-ip)'^X^, (5.1.12) 

a/3;i(A+ip)VX+ip' 

where 

î jA) = exp - ̂  ƒ ^0^6,. (5.1.13) 
We now write (5.1.4) 

H (A) P^(A) , , (1) (3) 
TIJJ - Y ^ = Y^^^iiÉ ^^ (O)-iAf(O)} +o«3 K(A){-f (O) . 

(2) p (1) , 
+ iAf (O) + A'̂  f (O) - i A3 f(0)}] =e^(A)- e_(A).(5.1.l4) 

The functions 6 (A) and © (A) can be calculated exactly in 
the same way as in para. 5,1 by splitting K(A)/Y (A) with 
the aid of (5.1,8). We find 

H_(A)=- ^ "* L I. i - X V (0)+iA3^ f (0)+ if (0)+A f(0)} + 
•t/lJr̂ Â -M*) 

Y_(A) -R., i-iJ.) +± R., {-±n) + R2(M) 

' i;;:;:;̂ ^ -̂̂ -'̂ ^^^ '̂̂ '̂ Y_(-iM)(A+iM) * Y^(^)^HX-^) ' 

i RgdM) 
+ ^-5 }, (5.1.15) 
Ŷ (i/x)M'̂ (A-iM) 

. (3) (2) „ (1) , 
^M)= - -==ririr:^ -^ (o)+iAf (O)+A'^ f (o)-iA3 f(o)j + 

YJPO^ -R^(-M) i R., (-iM) + RgC^) 

%^0^^;ïïü^"Yjrï]roTïjrY>)M2(A-M) ' 

i RO(1M) 

+ , 7 2, : ̂ ' (5.1.16) 
Ŷ (iM)M'̂ (A-i/i) 

*̂ '̂'̂  P (3) . (2) (1) 
R.,(A)= -A'̂ /Sf (0)+i A^^f (0)+i f (0)+Af(0), (5.1.17) 
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R2(A)= - f (0)+iAf (0)+ A2 f (0)-i A3 f (o) (5.1.18) 

-i i 1 ^ . 
and iJ. = 13 e is a zero of the function (l-i/3Â ). The 
solution, (5.1.15) and (5.1 .16) are essentially the same as 
(h.1.18) and (4.1.19). Because we want\to obtain a function 
f(x) whose fourth order derivative f (x) possesses a one 
sided Fourier-transform for 0 S x - 00 

^ T (̂ ) lAx 1 , (3) (2) p (1) . , K 
- ^ f (x)ê '̂' dx= ̂ - f (0)+iA f (0)+A2 f io)-±X^t{0)]+X^M 
'f2nJ >PSt 

° (5.1.1?) 

it follows that the second term of the right hand side of 
(5.1.16) must tend to zero more quickly than A'"4 for 
Re A -• ± 00. In the general form in which it stands it tends 
to zero as lAI" ^ , Hence we shall have to satisfy the 
following conditions 

-R (-M) i R. (-iM) Rp(M) i Rp(iM) 
V l.u\ + Y -i/.\ + ^~9 + ^ — 9 - = ° (5.1 .20) 
Y_(-M) Y_(-iM) Ŷ (Ai)M̂  Y^dM)^^ 

R. (-M) R.(-iM) Rp(M) Rp(iM) 
yV-7Y + Y l^uiS + ? p = °' (5*1 «21) 
Y_(-/̂ ) Y_(-iM) Ŷ (/i)M̂  Y^(iM)M^ 

When (5.1.20) and (5.1.21) are satisfied, the second term of 
the right hand side of (5.1.16) tends to zero aslAF V 2 for 
Re A-> ± 00, TJiis, however, generates a singularity of the form 
x~'̂  for f Tx) as X -• 0^, which cannot be tolerated for 
physical reasons, hence we have to go one step further and 
demand 

-R (-M) iR. (-IM) Rp(M) i Rp(iM) 
y I ,A vTrrTT— + — 9 5 =0. (5.1.22) 
Y_(-M) Y_(-iM) Y^(M)M^ Y^(iM)M^ 

These three linear equations, in the four unknowns f(0) , 
(1) (2) (3) 

f (0), f (O) and f (O), determine the ratio 

f(0) ^^ lY^(iM)-i Y^(M)J +/i"2{Y_(-iM)+i Y_(-/x)} , 
M-TTT" = ~ö 1:9 • (5.1.23) 
f̂ li) M^ lY^{ifi)- Ŷ (M)i - n'HYj-±t^)+Yj~^)l 
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Prom (5.1.12), (5.1.13) and (5.1.23) we see that the asymp-
(1) 

totical expansion for yS -• 0 of f(0)/f (o) can be calculated 
directly from the asymptotical expansion of 

E(A) = f â 7r(r? -np ) ̂  +P ) ' ^yj, (5.1.24) 
J (n-A) 

where we take instead of L the real axis in the A plane as 
line of integration, 

5,2 THE ASYMPTOTICAL EXPANSION OF E(A) 

Instead of (5.1 .24) we can write 

?»LnJ ^̂ -Hcx ̂ r2^ K(v)h-±/3v^)^ 
E(A)=2^/ "p"' ̂  ̂ 3 ^ (5,2,1 ) 

j (.̂ -Â ) 
where we have taken for p the value zero. This limit process 
must also be made in (5.1.12). We now consider 

E(uc^'^)-2L^^uf'^"^'^^"^"'^^~^^ 7^+lnh+ia^^ K(77)7?"2(i-iu"V) H^^^ 

_ _ i _ 

where u = /3 and q> assumes the values ̂ , -r-, -^ °^~s ^̂ "̂  

it is asked to determine E(U ê**") for large values of u. 
We shall treat the three terms of the integrand of(5.2.2) 

separately. First we consider 
00 

-2 e ''u ln(ajni~^) / —5—^ p^ = + i j r lnaTru , ue '''in S + , 
i ^'-'-'' ' (5.2.3) 

next 
00 +00 o 

-' ̂ 'V T^fir, '"-''-17:^^ ^ ̂ ^̂ 'V ?AHJ • 
o ' -00 ' -00 ' 

(5.2.4) 
The path of integration in the first integral on the right-
hand side of (5.2.4) is the real axis with a small semicircle 
above the point J? = 0 . We find 

-2 e^fJ 2̂ "̂̂  T±<p = '̂(-«'- f)"^'^ 1^ ̂' ^«^^ in S,. (5.2.5) 
J 77 —u e ^ 
o 
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The last term in the integrand of (5.2.2) causes more trottie. 
We divide the interval of integration as follows: 

l n } l + l a « y ^ K(77)77"^( l - iu" \^ )^ 

/ 
2 2 2±<p ^ = 

T) - u e ^ 
s r 

u u -= / . . . . dJ7 + / . . . . dn + I . . . . dJ7 = I + I I + I I I , 
J J 8 J.r ( 5 . 2 , Û  4r (5.2.6) 

where s = ^ + £ and r = 3 + <̂» £ and ó being arbitrary but 
sufficiently small real quantities. We shall treat the 
integrals I, II and III separately 

iS 

^ f lnln-iaV2ffK(7?)77"^(l-iu"V){ ^ ^ 
"'• ~ / 2 2 2±(p 

u^ 

= -u'^e"^^** f [ln|l+ia«/2sK(77)77"̂ l + 

o 

+ lnl l - . « ^ ^ ( 7 7 ) 2 ^ 3 ^(4e-2i*')"dr,.(5.2.7) 
1 +ia«/2?rK(r?)7j '̂  n?:0 u 

The expansion of the denominator is possible on account of 
the special range of integration. The first logarithm of 
the integrand in (5.2.7) multiplied by the general term of 
the expansion gives 

B 

"^ 2(^+^ ) I n^^ m {1+ia^^K(77)r7"'2id7?. (5.2.8) 

o 
For a f u r t h e r r e d u c t i o n of t h i s foi-m we need t h e expans ion 
of t h e l o g a r i t h m f o r TJ -+ + oo; u s i i i g ( 5 . I . 9 ) we o b t a i n 

I n i l + i a ' / S r K(T?)77"^} ~ L b ^ T J " ^ , 77 r e a l ( 5 . 2 . 9 ) 
n=3 " 

2 
w i t h b , = ian ; b. = - i a 4 c : b ^ = iajïc ; Hence we 
can w r i t e i n s t e a d % f ( 5 . 2 . 8 ) ^ 

- 2 ( n + l ) i 9 ?° _ o 2n _^ b _ ^ . 
=S^-^—jZ[ rj^^ [ l n ( l + i a ^ K ( r , ) 7 7 - 2 ) _ ^ ,̂ - m . g ^ ^ jdT?^ 

u2*-^+^'' J m=3 7?"̂  (77+1) 

8 

^ m=3 "" V'^^{v+^) 

u 

/ 
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oo p , 

- f 7,2̂  lln(1+iâ 2̂5? K(r,)77-2)- L b 77""̂ - ' ^^^ M , 
L m^3 " 77'̂ ''(7?+l) (5 
uS 

(5.2.10) 

where we have supposed n £ 2. Por n = O or n = 1 we have to 
change (5.2.1O) slightly, because then we need fewer conver-

fence-producing terms or none at all, see (5.2.13) and 5.2.14). The first integral is independent of u. After Inte­
gration we find for the second integral terms of the form 

s s 
u u T?-"- 1 , 1 S 1 Ê 2n - 2 and ln(77+1 ) | (5.2.11 ) 

or 

u^^ and m (u^+1) = s In u - L (-1)"̂  u"™. (5.2.12) 
m=l 

Because the final result must be independent of s, we can 
omit these terms from the beginning. If now we expand the 
logarithm in the third integral of (5.2.10) and integrate,we 
see that only terms of the t5^e of (5.2.12) arise, hence we 
can also neglect this integral. It willtiu?n out that for our 
purpose it is sufficient to consider quantities up to the 
order u~°; then we obtain from (5.2.10) for the values n = 0 
1 and 2 

^u"^ f In h+ia '/2K K(77)7?"̂ Jd77 =-e"^^%"^A, n=0, 
i (5.2.1 

-'̂ -̂ i'̂ r̂' , „ _ ^. 3 . « _ , 
(5.2.13) 

- e - ^ % - ^ ƒ [7?2 ln[lH-ictV25ÏK(y,)77-2j- ^]ö.v ^-e'^^'P u"^ B, 

° n=1 (5.2.IU) 

00 2 

_^-6i¥>^-6 ƒ ^^U^^ [i+ia'«rSiK(77)77"2}-icxOT?+ia4c - ^ ^ - ]óJi = 

o 

=-e"^^«'u-^G, n = 2 . (5 .2 .15) 

The second logarithm in (5.2.7) gives, with the general term 
of the expansion of the denominator 

u2(n+^^ J ^+±a.'J^2hK{v)v^ 
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Por the range O S r? S u i t i s allowed to expand the logarilhm , 
from which r e s u l t s » 

e-̂ ;̂ " !̂̂ ^ r'2n I IHÜÜ ^-W j_^j22Kl7Üalj m 
u2(n*1 J J "̂  n i l ^ 1-Hia^K(7,)7,-2^ T 5 . 2 . 1 7 ) 

Now we need the expansion 

[ <^^K(^h; jHi ~ 2 c^ Ir̂ l-n (̂  real), (5.2.18) 
1+ia^^^K(7?)77 "^ n=-m ™'" 

where 
P 

c-l -1=*^ > °-i 0= "^°5 °1 1 = ««° ; (5.2.19) 

Using (5 .2 .18) and ( 5 . 2 . 1 9 ) , the terra with m = 1 of (5.2.17) 
reads 

^2(n+^) j 1+ia^^25rK(77)7?"2 i=H ^ ' ^ (77+1)772^ 
o 

-' 2n f 772n I r c. ,77-1 . ^i^^^Sii- }d77 -
i 1=-1 ^ ' ^ (77+1)77211 

_ 7 2n ^ «^r2iK(7?)7?2 _ 2n ^l^^^Sil-} d77]. 
J 1+ia^/2iK(77)77 '̂  1=-1 ''"^ (77+1)77'̂ " (5.2.20) 
o 

U 

These integrals have the same character as those of (5.2.10) 
hence we can conclude that only the first one contributes to 
the final result. For the value n = 0 we find 

oo 

-e"2^y ft__aV;^U77)77£_ ^^ ^ , ajTc^ , _ 

u^ 6 ^+ia>J2hK{v)v ^ ^ ^ 

= _e-2i9>u-^ D. (5.2.21) 

The contributions of (5.2.17) for larger values of n or of 
m can be neglected. 

We will now treat the second range of integration 

^̂  ̂  I m ?1+ia^/2-KK(77)g-2(i-iu-V)i a77. (5.2.22) 
J 77 - u e ^ 

u^ 
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We observe that for the whole interval of integration the 
argument of the logarithm is in the neighbourhood of 1 ; this 
neighbourhood decreases with increasir.g values of u. Expansicn 
of the logarithm and of K(77) and using the identity 

i=e ** results in 
r 

e-2i%-2| I i=lfi^a>r^ I a.-'^-^)^{,.vr^n^e-^^'<')'^. 
J m=1 n=l " 

u^ 

.(l-u-2 77 2e-2i^)"^-^ d77.(5.2.23) 

The integration can be carried out and we obtain terms of the 
form of (5.2.12). Hence it is allowed to omit (5-2.22). 

Finally we investigate the last integral in (5.2.6): 

III = f l n h + l a ^ K ( ^ ) ^ - 2 ( l - i u - V ) i a77 = (5.2.2U) 

u 

-21<p -u~ / [ i n (1+u~^arc77) + 

la^n L a^77-^(77-2-iu-\^)+ia7r77-3 ^ 2m 2mi9 

+ m [1+ "-^, •!, . n ^̂  ^ H ^ ^^. 
(1 +u airr\) m=1 77 

( 5 . 2 . 2 5 ) 

The first logarithm in the integrand of (5.2.25), with 
the general term of the expansion of the denominator as 
factor, gives after partial integration 

^2(m-l)^2(m-l)jp _ _^ J J ^-h^^ 
" (-2m+1) ^"^ \n{\^^ ^a7r77) - 77 '^ ĵj d77j. 

^ '^ ' '' ]. Jp (1+U ̂cac77) 
"^ "" (5.2.26) 

If we nov/ expand the first expression between the square 
brackets in {'3,2,26), we see that there is one term for the 
lower boundary u^ which is independent of r, viz. 

which gives a contribution within the desired order of 
accuracy for m = 1 

ajru"^ . (5.2.28) 
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The integrand of the integral which occurs in (5.2.26) can 
be split into partial fractions, in general 

1 (-l)^(u"^aa:)^ ^ L u l Ü l u l i W ) ^ ^ 
^ L = ' ' l!̂  ' + ' ' J, + . . . . 

77 ( l + u ^OOT?) 1 + u ^aïTT? ' ( 5 . 2 . 2 9 ) 

The first two terms only are of importance, the other terme 
cannot contribute to the final result (see 5.2.12). Taking 
1 = (2ra-1 ) in (5.2.29) we find for the integral in (5.2.26) 
including the minus sign: 

„2(m-1 )^2(m-1 )i?) i, _i, orr, o « T 
=^—. 'J^\ u-^«(u-^cx^)2™-2 m (—::?—-) . (5.2.30) 

The upper bound^y oo yields a term which is independent of 
V ; for m = 1 we obtain 

-u"̂ ajr m (u"^a;r); (5.2.31) 

larger values of m can be neglected. We now investigate the 
second part of the integral (5.2.25). Expanding the logarithm 
and taking the general term of the expansion of the denomina­
tor we obtain 

.g2(m-l)iV(m-l) F .2m f 2 i : ^ ^ 
Jr 1=1 •'• 
u 

i a V ^ 2 a r7~''̂ (77~ - i u " ^ )+iaJrr7~3 

[ as2 _ ]i-iar,, 
^^^ «^^ (5.2.32) 

If we consider the case m = 1 = 1 we see, by lusing (5.2.29) 
that the result is of the order u~°, which can be neglected; 
also larger values of m and 1 give results of higher order 
than u~". 

So we find for our expansion of (5.2.2), if we make use of 
the relation e~4i9> = i, 

E(ue^«')~ (5.2.3)+(5.2.5)+2e^M(5.2.13)+(5.2,l4)+(5.2.15) + 

+(5.2.21 )+(5.2.28) + (5.2.3l)} = 

=7r(±9- |)+i3r lnWu~3-2e"^''u"''A-2u"3e^'P,{iB+cür ln(e"''u~̂ cür)l + 

- 2u~5 e"̂ *'[iC + D|, ue^*' in S^, (5.2.33) 
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(1) 
5.3 THE EXPANSION OP f(0)/f (O) 

The expansion of 

«̂ .(uê **) = exp - - ^ E(ue^*') (5.3.1 ) 

can now be written as 

ir̂ (uei*')s (a7m-3)-* e^(-^-^''>[l-ie"^*'(Ku-'')A+e^^(jru3)-^ (B-im. 

.ln(cx7ru-V^))+e-^«'(«u5)-''(c-iD)+^{-e-2i''(;rV)-'' A^ ^ 

-2i(3ï2u^)"'' A(B-ia3r. ln(a7ru"V''))}+ J{-ê «'n:"3u"3 A3-3e"^r3u-5^ 

• (B-iotJi ln(otjru"̂ e"̂  ))} + 

+ -^ [i TTK"^ A^] + jL. le-^f>^-^u-^ A5J], ue^'f in S,.(5.3.2) 

With (5.3.2) we can calculate the quantities Y+(ue''"'') (5.1 .1 2) 
which must be substituted into (5.1.23). This calculation can 
be simplified by showing that only the terms of (5.3.2) 
between sqtiare brackets which are independent of <p contribute 
to the mimerator of (5.1.23), while those with a factor e~^f 
contribute to the denominator. The result is 

f(0)/f^(0)=- |[i-;3il£±iCi + -i|(B-icmln(cm/3e-^))- " ^ L-.J. 

(5.3.3) 

The first term of (5.3.3) agrees with the result foiind in 
ref. 6 where the same problem with /9 = 0 was solved, 
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C h a p t e r 6 

T H E F I N I T E D O C K 

This chapter deals with two dimensional siu?face waves of 
a deep sea in the presence of a strip or dock of finite 
extent. The dock is supposed to be in rest on the level of 
the undisturbed v/ater surface. At one side at infinity there 
is a prescribed incoming wave with crests parallel to the 
edges of the dock. This wave is pa rtly reflected and can 
partly pass under the dock. We shall calculate the reflection 
and transmission coefficients. 

Following H. Rubin (ref. 7) the problem is transformed by 
a Babinet principle into a problem for the motion of water 
between two semi-infinite docks. This can be formulated as a 
Hilbert problem for a segment of finite length. Its solution 
yields a Fredholm integral equation of the second kind,which 
can be solved nijmerically. 

6.1 FORIIULATION OF THE PROBLEM 

We assvime the water to occupy the half space y < 0. The 

kr 

>/////// 

+ b 

/////// '^^^^r^^ 

Pig.6.1.1. Situation of the dock on the watersurface. 

dock is on the level of the undisturbed water surface (fig. 
6.1 .1 ) and extends from x = -b to x = +b. Because we assume 
the m.otion of the water to be non rotational ,two dimensiCTHl 
and simply periodic, this_motion is governed (ref.15) by a 
potential 0(S,y,t) = (̂x,y)eî 'fc, vanishing at y -» - <», with 

(6.1.1) 

The velocities in the x and y direction u and v respectively 
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are found by d i f f e r e n t i a t i o n 

ae _ a© 

dx <3y 

The boundary c o n d i t i o n s f o r y = 0 a r e 

^ = 0 , | x | < b ; - a ; 2 d + g ^ = 0 , | x | > b , ( 6 . 1 . 2 ) 
öy óy 

where g is the acceleration of gravity. Introducing the 
dimensionless quantities 

X = x/b, y = y/b and i' = a;2 b/g (6.1 .3) 

we find, that the harmonic function ö(x,y) has to satisfy 
,fQr y = 0,the boundary conditions 

|| = 0, Ixl < 1 ; §1 - V* = 0, Ixl > 1 . (6.1.4) 

We consider the pressure function 

V(x,y) = §1 (x,y) - v&{x,y) (6.1.5) 

which has often been used in problems of this type (ref.15). 
The boundary conditions for this harroonic function for y= 0 
are 

- ^ 1 ^ + ̂  = 0' U l < i ; V = 0, Ixl > 1. (6.1.6) 

By introducing the conjugate function <p{x,y) related to 
V(x,y) by 

we replace (6.1.6) after integration in the x direction, for 
y = 0 by 

v<p + || = 0, Ixl < 1; ^ = 0, Ixl > 1. (6.1.8) 

where a constant of integration is absorbed in <p{x,y), 
At last we add two remarks about notations to be used. 

Firstly the boundary values for y = 0 of any function '?>(x,y) 
are denoted by 'P(x), secondly the notation 9 or <p denote 
that the fxinction is an even or odd function of x. 
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6,2 DERIVATION OP THE INTEGRAL EQUATION 

We shall now derive the integral equation for the a\ixiliay 
function 9(x,y), When <p{x,y) is harmonic for y < 0, then the 
same is true for fdy and we may assume 

|f=lm*(z), (6.2.1) 

Then y = 0 we have, by introducing a positive direction on 
the segment |x| < 1 of the real axis in the direction of 
increasing values of x, 

Ira *_(x) = -v(p{x), |x| <1; Im *_(x) = 0 , |x| > 1, (6,2,2) 

in accordance with the notation used in para, 1 ,1 , Extending 
the definition of *(z) to va lues of z with Im z > 0 by the 
principle of reflection 

*(z) = *(z) , Im z > 0, (6.2.3) 

we obtain a sectionally holomorfic fimction *(z) for which 
the part |x| < 1 of the real axis is a line of discontinuitjt 
This gives rise to the following Hilbert problem 

*^(x)-«_(x)=-2 i Im $_(x)=2i V9(x), y = 0, jx| < 1, (6,2,4) 

The solution follows inmediately from (l .1 ,4) and (l.1.3) 

*<̂ ) = Ï / T f ^ « * ^ f ^ ' («•^•5) 
-1 (2-1) ' (z+1) 2 

where m^ and m» are arbitrary integers and P(z) is an 
arbitrary polynomial. The addition of the rational function 
in (6,2,5) introduces singularities of the function <i>(x,y) 
at the points z = ±1 , It turns out that by taking 

*(z) = ̂  ƒ T f ^ - Tierr - TifïT ^ °' ^ -̂̂ -̂ ^ 
-1 

where c is some real constant, the behaviour of ?>(x,y) is 

9>(x,y)- I ln[ (x-1 )2+y2} f or x -» 1 , y - 0 (6,2,7) 

and 
<P{x,y)^ I In { (x+1 )2+y2} for x-* -1 , y -• 0, (6,2,8) 

From the point of view of hydrodynamics we may tolerate 
singularities of this strength because then the in- or out­
flow of raass at these points remains finite, 
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Now suppose 
(p{x,y) = Im H(z) (6.2.9) 

then 
^'P/dy = Im i H'(z) = Im «(z) (6,2,1 O) 

and by (6,2,6), integrating from an arbitrary point 
z„ = x„+i y„ o o '' o 

z +1 
^(x,y)-^(x^,y^)=lm -iA ^ ƒ ̂  df- ̂  - ̂ | d C +c(x-x^). 

% -1 (6,2,11) 

It will turn out, that the integral in (6,4.4) is only 
convergent if c = 0, Changing the order of integration in 
(6,2,11 ) we find 

+1 
9ix,y)~^j <p{S)lnl{S-x)^+y^]ö^-^ ln[{x-^)^+y^]^ lnKx+1 )2+y^+V, 

-T (6,2,12) 

where y is a constant of Integration, If y tends to zero for 
an arbitrary value of x, we obtain the desired integral 
equation for the function f{x), 

+1 

¥>(x)= I I 9{S) In U-fldf +a In |l-x| +p In |l+x|+y, (6,2,13) 0 = ^ /^9(f) 

This is an inhomogeneous Fredholm equation of the second 
kind, with a quadratic integrable kernel. Equation (6,2,13) 
can also be derived by using Green's function for a bipole, 

The homogeneous part of the integral equation if.2.13) 
possesses no positive eigenvalues. To prove this ' we show 

+1 +1 

: , / - / 
m U-^l v{x) ?>(f)dx df < 0 (6,2,14) 

for all functions ^(x). We expand In |x| into a cosine series 
oo 

In |x| = 2 a^ cos n -̂  x, |x| S 2, (6,2,15) 
0 '̂  

It is easily seen that the coefficients a < 0. Substitution 
of (6.2.15) into (6.2.14) yields the required result 

+1 +1 
1= -Sa^[i |¥)(x)cos nx dxl^+1 f <p(x)sin nx dxj^] S 0. (6.2.16) 

This proof is due to a remark of Prof. A.C. Zaanen. 
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Prom this it follows that (6.2.13) bas for each value v>0 
a unique solution, which will be calculated nimierically lata* 
on (para.6.6). Bach solution ?)(x) of (6.2.13) can be split 
into one odd function </>Q(X) and two even function ^^ .. (x) 
and f>g 2^^^* ' 

<p{x) =la=fil^^(x) +ia±^^^^^(x) +y9e,2(^) (6.2.17) 

which satisfy respectively 

?)o(x)= ̂  ƒ In |x-^|9>o(f)df + m h-xl-ln il+x|, (6.2.1&) 

f^ -i(^)=^ / 1^ '^-^1 f^ .(f)<3^ + In ll-x|+ m h+xl, 
®'̂  J-\^ ' (6.2.19) 

9e,2^''^ = ̂  ƒ m lx-^| 9e,2(^)^ "̂  ''* (6.2.20) 
-1 

By reasoning in the opposite direction, we can shov/ that 
the solutions of (6.2.18), (6.2.19) and (6.2.20) are the 
boundary values of potential functions which satisfy (6.1.8). 

6.3 DETERMIltlTION OF y){x) 

We assume that the solutions of (6.2.18), (6.2.19) and 
(6.2.20) are knov/n for several values of y > 0. Since our 
aim is to calculate ö(x,y) we shall have to determine first 
v(x,y), defined in terms of <p{x,y) by (6.1.7). The functions 
^(x,y) and V'(x,y) are related by 

H-f^ (6-3.1) 
where the directionss and n are orthogonal and can be ob­
tained from the x anu y directions by a rotation in the x,y 
plane over the same angle. 

For |x| < 1 we find for y = 0 
X X 

¥;(x) = - ƒ If (f ,0)df = V ƒ ?)(f )df, (6.3.2) 

where the lower boundary is chosen arbitrarily equal to 
zero, 

We shall have to be careful wlien the path of integration 
approaches the points x = +1 or x = -1 , which we encircle in 
the way of fig, 6,3.1. On account of the singular behaviour 
of 9{x,y) for these points the small semi-circles with 
radius r give a contribution for x = +1 and x = -1 resp. 

-j ^^^- Jj - ̂- = -, - ƒ 1^ ds= - Jf r d. = -^^^^3^3^ 
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> r, 

Pig.6.3.'« Path ol' integration for the determination of V(x). 

For |x| > 1 V^y (x,0) = 0 and hence v(x) remains constant. 
The construction of functions ^(x) satisfying the second 
equation of (6.1.6) can be done by using (6.2.18), (6.2.19) 
and (6.2.20). 

First we consider the odd solution <pAx) of (6.2.1 8).From 
(6.3.2) it follows that the resulting y?x) is an even 
function denoted by ̂  (x), the general behaviour of which is 
given in fig. 6.3.2. Hence by subtracting from v'p(x) an 
appropriate constant 

k ^ = v '?>o(ê')<̂  + ^ (6.3.4) 

Pig .6 ,3 .2 , Ljeneral behaviour of ^ ( x ) . 

we have found the boundary values of a harmonic function 
which satisfies the conditions (6.1.6) 

y>p{^) = vA^) - K (6.3.5) 

and (6.2.20). From 
the and y)^ ^{x) 

Now we consider the eq-uations (6.2.19) 
these we obtain two odd functions w . (x) 

»̂ o,1 ̂  ' 
general behaviour of which is di?awn in fig. 6.3.3. Because we 
have in (6.2.20) a continuous inhomogeneous part, it is clear 
that ̂ Q ^x) remains continuous for x = ± 1 . Again we have to 
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Pig.6.3.3. General behaviour of V .(x) and VQ - ( X ) . 

satisfy the second equation of (6.1.6). We conibine xp^ . (x) 
and Vo,2(^^ 

^o^^^ ~ ^o 1 (̂^ •*• ̂ o ^o 2^^^' (6.3.6) 

where k follows from 

1 1 

y j 9>e(e)'af = ^1 iVe,1 (̂ "̂'̂ o 9'e,2(^)^'^ = '""' (6.3.7) 
o o 

In this way for each value of u > 0 an even and an odd 
function ipAx) and VQ(X) are found, which are boundary values 

of harmonic functions satisfying (6.1.6), 

6,U CALCULATION OF e(x) 

From (6.1,5) we determine the boundary values *(x) of the 
desired potential function. This has been done already in 
ref, 1 , The method used here reduces (6,1,5) to an ordinary 
differential equation in the complex domain. 

Because *(x.y) and v(x,y) are harmonic there exist 
functions P.(z) and F2(z) so that 

d(x,y) = Re P.,(z), v>(x,y) = Im P2(z), (6.U.1 ) 

and from (6.3.1) P2(z) = ?>(x,y)+i v (x,y). The equation 
(6.1.5) becomes 

i P/(z) -i'P.|(z) = -i P2(z)+ic (6.U.2) 

where c is an arbitrary real constant, which can be neglected. 
The solution of (6.U.2; then becomes 
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z 

P^(z) = C e-i^^ -e-i^^ [ e^^^ F2'^C)ö.C, (6.U.3) 

where C = c.+Cpi is a constant of integration. Using (6.U.1) 
we obtain for y = 0 

X 

'?(x)= c. cos V x+Cp sin V x-/l ?)(f )cosv(x-f )+v(f )sin v(x-f )Idf. 

0 (6.U.U) 

The unknown constants c. and c^ are determined by putting 

§ 1 = ^ = 0 for X = y = 0. (6.U.5) 

This yields 

ĉ  = - i V(0,0), 02 = 0. (6.U.6) 

Equations (6.U.U) and (6.U.6) are equivalent with the result 
given in ref. 7. We can v/rite (6.U.U) in the form 

Hx) = - 4 ^ , Ixl < 1, (6.U.7) 

and X 
&{x) = I COB v(x-l)- / ¥)(f)cos v(x-f)df, x>1.(6.U.8) 

I n o r d e r t o i n v e s t i g a t e the convergence of t h e i n t e g r a l 
i n ( 6 . U . 8 ) when x -• ± oo, v/e obse rve from ( 6 . 2 . 1 8 ) 

+1 
%(̂ ^ -*l ƒ *'o(f̂  ^ 1^ 1̂ 1 ^ | . . . . j d ^ + 

-1 
+ l n h - f I ~ ^ ( x " ^ ) , X -* ± oo. (6.U.9) 

and from ( 6 . 3 . 7 ) , ( 6 . 2 . 1 9 ) and ( 6 . 2 . 2 0 ) 
+.1 

9Q{X) -̂  J / f>e(f) l l n | x | T | j d f + I n l x ^ - i l+k^, x ^ ± c», 

-1 (6 .U.10) 

hence we o b t a i n by ( 6 . 3 . 7 ) 

9^{x) -* -k^, X ^ ± « . (6 .U .11) 

Obviously for x -> ± » (6.U.8) represents a harmonic 
oscillating function, as can be expected from the physical 
situation. 
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With the aid of (6.4.9) and (6.U.II) we calculate the 
asymptotic behaviour of the fimction ö(x). First we consider 
the pair of functions 9>Q(X) and f^ix), these yield by (6i4J4) 

and (S.U.6) an even function &• . (x) v/ith the follov/ing 
asymptotical behaviour ' 

*.=. ̂  (x) -• i A. sin vx + B. cos v x , x -+ ± 00, (6.U.1 2) 

Where 00 

A., = + 2 sin V - ƒ 9o(f)sin vf df, (6.U.13) 

0 0 ^ 

B̂  = I cos V - f <p^{S) cos vf df. (6.U.IU) 

The asymptotical behaviour of the odd function Ö Ax), 
related to 9)„(x) and ̂ '„(x), becomes ' 

d Ax) -»• + Ap sin V X ± Bp cos v x, x -> ± 00, (6.4.15) 

where 5 00 

A2= f sin V- k^ ̂ 2S_£ _ ƒ l9g(f)-k^} sinvfdf (6.4.16) 

CO 

V ^o " ^ T ^ "̂  S °°^ ̂ " I ^'Pe^^^'K^ cosi^ df. (6.4.17) 

Prom (6.U.7) and (6.U.8) we see that both d .(x) and 

"̂o 2('''̂  ̂ ^® bounded for x -• + 1 , because 9_(x) and 'Pg(x) 

possess only logarithmic singularities. 'We can find from 
Ö (x) and ̂ ^ o(x) by derivation with respect to x other 
e , I ? 
solutions i?̂  ̂ (x) = Ö' (x) and * ,,(x) = *' „(x), which are o,j) e,i e,i4- o,^ 
odd and even respectively and which possess logaritlmiic 
singularities for x = ±1 . Their asymptotic behaviour follows 
also by derivation with respect to x from (6.U.12) and 
(6.U.15). 

6.5 CONSTRUCTION OP THE SOLUTION FOR PRESCRIBED INCOMING 

'WAVES 

We have the general solution 

U 
0(x ,O , t ) = S & Ax) [a s i n cut + b cos w t j , (6.5.I ) 

n=:1 

where we have dropped the subscripts e and o of d .(x).... 
e,i 
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* , (x) under the sign of summation. This is a superposition 
e,i4-
of standing waves. We impose the following condition at 
infinity for x -• + oo 

0(x,O,t) -> A cos (vx+ctJt)+R. cos (vx-üJt)+R„ sin (vx-cüt), 
^ ^ (6.5.2) 

v/here A is prescribed and determines the incoming wave, while 
R. and Rp are unknown and determine the reflected wave, 
tor X -> - CO 

e(x,0,t) -+ T. cos {vx+cot) + T2 Bin {vx+ut), (6.5.3) 

where T. and Tp are the coefficients of the luiknown trans­
mitted wave. No incoming wave excists at this side. 

The asymptotic behaviour of 6 .(x)... d i,(x) gives the 
e ,1 e,4+ 

following relations for the coefficients a and b of(6.5.1) 

B^a^ + -̂ î-l •*• ^2^2 "̂  -̂ 2̂ 2 '̂  -̂1 ̂ 3 " -̂ 1̂ 3 "̂  •̂ 2̂ U ~ ^^2^ ~ ° 
(6.5.U) 

-A^a^ + ^1^1 •" -'̂ 2̂ 2 "̂  ̂ 2^2 + B̂  »^ + ^^^^ + ^2% ^ "^2^4" ^ 
(6,5.5) 

-B^a^ " -̂ 1̂ 1 + ^2^2 "̂  -̂ 2̂ 2 "̂  "̂1 ̂ 3 " ^1^3 " -^2% "̂  ̂ 2^4 "^ ° 
(6,5.6) 

-A^a^ + B^^^ •*• -̂ 2̂ 2 ~ "̂ 2̂ 2 " 1̂ ̂ 3 " ''̂ 1̂ 3 * ^2^4 "*" -^2^ "^ ° 
(6,5.7) 

There are four linear equations for the eight unknowns a , 
b (n=1 ... U). For complete determination of the solution 
additional information is needed. 

By a simple experiment it is seen that, when the ampli­
tude of the incoming wave is sufficiently small no breaking 
occurs at the edges of the dock. This can be formulated 
mathematically (ref. 15) by the requirement that there are 
no singularities at the points (± 1,0). 

This gives: 

a^ = b^ = a^ = b^ = 0. (6.5.8) 

Then the remaining coefficients a., b, , a^ and bp are de­

termined uniquely from the equations (6.5.U)**'(6.5.7). 
When A increases, breaking is seen to occur only at the 

leading edge of the dock (+ 1,0). Por this it is necessary 
and sufficient 

a^ = a^ , b^ = b^ (6.5.9) 
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because then the singularities of Ö (x) and * Ax) cancel 
each other at the trailing edge. In this case however,further 
experimental information is needed about the relation betMreen 
strength and phase of the singularity and the amplitude and 
phase of the incoming wave. 

When the coefficients a and b are determined , we can 
calculate the reflected ana transmitted waves by comparing 
(6.5.1) with (6.5.2) and (6.5.3). We find 

2R^ = +A^a^+B^b^+A2a2+B2b2-B^a^+A^b^-B2a^+A2b^, (6.5.10) 

2R2 = -B^a^ +-̂ -1̂ -1 - \^2 •*• •'̂ 2̂ 2 " •'^1^3"^1^3"^2%~^2^U' 
(6.5.11) 

2T^ = +A^a^+B^b^-A2a2-B2b2+B^a^-A^b^-B2a^+A2b^, (6.5.12) 

2T2 = B^a^-A^b^-B2a2+A2b2-A^a^-B^b^+A2a^+B2b^ , (6.5.13) 

The reflection coefficient p and the transmission coefficient 
T can then be defined by 

(R^ + R | ) ^ _ (T̂ ^ + T^)^ 
T = — I ^ ^ . (6.5.14) 

6.6 NUMERICAL CALCULATION OF THE REFLECTED AI© TRANSMITTED 

WAVE FOR THE CASE THAT NO BREAiaNG OCCURS 

In the case of no breaking a^=b^=a. =b. = 0 and we can solve 

(6.5.4) ... (6.5.7), for a^, b., a2 and b2. Substitution of 

these values in (6.5.1O) ... (6.5.13) yields 

R̂  = -A(A2 A 2 - B^ Bp. D""" (6.6.1) 

R2 = +A1A^B^(A|+B2)+A2B2(A^2+B2)J,D"'' (6,6,2) 

T., = -A (A^ B^ - A | B2).D"^ (6,6,3) 

T2 = -AjÂ B̂  {Al+Bp-A2B2{A^+B^)],ir^ (6,6,U) 

where 

D = (A^ + B̂ 2)(Â  + B | ) , (6.6,5) 

We shall not give the niomerical calculation in full detail 
but discuss only the procedure followed. First of all are 
solved the integral equations (6,2,18)(6,2,19) and (6,2,20), 
Because the first two of these equations have solutions with 
logarithmic singularities we have introduced new continuous 
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unknown funct ions 

f^(x) = <PQ{X) - In | l - x | + In | l + x | , (6 .6 .6) 

f« . ( x ) = <P^ Ax) - In h - x | - In | l + x | , (6 .6 .7) 

satisfying integral equations which can easily be determined. 
Then we have approximated the functions t^{x), f^ ^(x) and 

<p p(x) by odd or even polynomials with five unknown 
coêrficients, calculated by collocation. 

Next (6.3.7) yields the nuanber k . Hence the functions 
?) (x) and ^„(x) are knovm for |x| < 1. These functions arenav 
to be calculated for x > 1 . This can be done respectively 
with the integral equation (6.2.18) and with 

9)g(x)=^f In |x-^|¥>g(f)df+ln |l-x|+ln M+xl+k^ , (6.6.8) 

v/hich is a linear combination of (6.2.19) and (6.2.20). 
Now v/e can calculate by (6.U.I 3), (6.U.1U), (6.U.I 6) and 

(6.U.I 7) the quantities A., B,, , A^ and B^ which determine 
the asymptotic behaviour of the elementary solutions.Finally 
(6.6.1) ... (6.6.5) and (6.5.1U) yield the reflection and 
transmission coefficients P and T. 

In order to obtain a representation of p and T in the 
neighbourhood of v = 0 we have also calculated the asympto­
tical expansions of these quantities for v -*0. This can be 
done by a straight forward computation of the first terms of 
the Neumann series expansions of 9>„(x) and <p„(x) from the 

integral equations (6.2.18) and (6.6.8). Using (6.U.13), 
(6.U.1U), (6.U.I 6) and (6.U.17) we obtain 

A^ « +27r, B̂  « f , A2 ~ + ̂  , B^~(y{v°). (6.6.9) 

Herewith we find 

p = 2v , T K 1-2v^. (6.6.10) 

The calculated reflection and transmission coefficients are 
given in the follov/ing table, while they are plotted in 
fig. 6.6.1. 

Table III, T and p . 

v= 
T = 

P = 

3n 
0 ,02 
0,99 

1,5/1 
0,1U 
0,99 

ji 

0 ,22 
0,98 

0,571 
0,U7 
0,88 

0,25/1 
0,59 
0,81 
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Fig.6.6.1 . Calculated values of, the reflection coefficient p 
denoted by O, the transmission coefficient T , denoted by . and 
of the asymptotic expansions- - -. 

We can interprete the parameter v as Jr, width of docl?/ 
length of incoming wave. This means that whenv = jr the 
length of the incoming wave equals the width of the dock, 
In this case only U,8 % of the energy can pass under the 
dock. We have not drawn an interpolating line through the 
calculated points because of the unknov/n extrema which 
this curve is apt' to possess, Hov/ever, the plotted points 
give a rough information about the ~ influence of the finite 
dock on incoming waves, 
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C h a p t e r 7 

O N T H E I N F L U E N C E O F T H E C R O S S -

S E C T I O N F O R M O F A S H I P O N T H E 

A D D E D M A S S F O R H I G H E R O R D E R 

V I B R A T I O N S . 

The main cause of ship vibrations is the engine. A 
difficulty in the calculation of these vibrations is caused 
by the motion of the water, generated by the vibrating hull. 
The influence of this motion is effectively an additional 
mass. Generally, naval architects' assimie a tv/o-dimensional 
v/ater motion. Calculations made v/ith this tv/o-dimensional 
model are corrected with a coefficient, obtained from the 
three-dimensional flow around a vibrating ellipsoid of 
re'TOlution. (ref. 9). Hov/ever, ship forms occur with shallow 
draught. The purpose of the following calculation is to 
investigate a possible difference between the three dimensional 
correction coefficient of ships v/ith shallow draught and ships 
with a full cross-section. This is done by comparing the resute 
of the three-dimensional theory for a vibrating flat strip, 
situated at the surface of the water and a vibrating circular 
cylinder which is half immersed. Strip and cylinder are both 
infinite, hence three-dimensional effects caused by the bow 
and the stern are neglected. It seems that these latter effects 
are negligible for vibrations v/ith more than about five nodes. 

7.1 PORtiULATION OP THE PROBLEM FOR THE CASE OF A STRIP. 

The water_occupies the half space y < 0.. The strip is 
situated at y = 0 for |x| < b and stretches along the z Eixis. 

Fig.7,1.1. The vibrating strip. 

* This chapter belongs to research carried out for the 
"Studiecentruin T.N.O. voor Scheepsbouw en Navigatie". 
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We assume that the motion of the v/ater is non rotational and 

simple periodic and hence can be described by a potential 

e(x,y,z,t) = 5(x,y,z)e^'^ with 

(-l| + 4 | + 41) (̂x,y,5) = 0, (7.1 .1 ) 
öx'=̂  dy^ dz'̂  

and which vanishes for y -• - oo. The velocities u,v and w in 
the X, y and z direction are 

09 d© Ö© ,-, , -V 

u = -::, v = - 3 , w = - ^ . (7.1 .2) 
dx dy ÖZ 

On the water surface ^ = 0 we prescribe the displacement in 
the y direction 77(x,z,t), for |x| < b 

^ _ ^ i / 1*4* » 

77(x,z,t) = e cos a z e , |x| < b, (7.1.3) 

and the pressure P(x,z,t), for |x| > b 

P(x,5,t)= - p ( § | + g77) = 0, Ixl > b, (7.1.4) 

where p is the specific mass of the water and g the accele­
ration of gravity. Introducing the dimensionless quantities 

x=x/b, y=y/b, z=z/b, a=ab, v=arb/g, 

ö(x,y) cos a z = 5(x,y,z)/ia)be, (7.1.5) 

p(x,y) cos a z e = P(3c,y,z,t)/p eg, 

we obtain the following botmdary value problem 

a£|,ai|.^2^ ^0 (7,,.g) 
ax'̂  ay y -

^ = 1, Ixl < 1; 3|-vd= 0, Ixl < 1; y = 0, 

& -* 0, y -• - oo. 
(7.1.7) 

An estimate of the values of the parameters a and v which 
occ\iP in practice, follows from 

length of ships 200 - 50 meter (7.1.8) 

width of ships 2 5 - 1 0 meter (7.1.9) 

frequency of the vibration 1 - 1 5 Herz . (7.1.10) 
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From 7.1 .8 follov/s the range of the relevant wave-length of 
the strip, from 200 meter for the vibration v/ith tv/o nodes 
for the largest length to 25 meter for the vibration v/ith 
towc nodes for the smallest length. Hence 

v/ave length strip 200 - 25 meter. (7.1.11 ) 

The dimensj 
ing values 

2 
The dimensionless parameters a and v then assu/ne the follov/-

a^ = 0,6 - 6, (7.1 .12) 

V ^ 1CC - 9000. (7.1 .13) 

Since the parameter a, which is a measure for the three 
dimensional behaviour of the flow, is of the order of 
mag-nitude of unity, v/e can expect some influence of this 
behaviour at the added mass of the strip. Further, v being-
much larger than unity, we replace the second boundary 
condition in (7.1 .7) by the high frequency approximation 

& = 0 , |x| > 1 , y = 0. (7.1 .14) 

7.2 DERIVATION OF THE INTEGRAL EQUATION 

The boundary value problem, posed in the preceding para­
graph 

^ + ^ - ah = 0 (7.2.1) 
ax^ dy^ 

d& 
dy 

1 , |x| < 1 ; d = 0 , |x| > 1 ; y = 0, 

(7.2.2) 
Ö -» 0, y - - «, 

is solved by application of a Pourier-transforraation to 
(7.2.1). This gives for the solution of this problem the 
representation 

Hx,y)= ^ [ HS)öS j e-i^(^-^) e(^^^')'ydA, y < 0, 
-{ -J (7.2.3) 

where ö(x) is the unltnown limit of ö(x,y) for y -» 0 and 
|x| < 1 . 

Replacement of the first exponential by a cosine, differen-
tation with respect to y and integration v/ith respect to x 
yields 
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/i|(e,y)df= 1 ƒ HS)öë ƒ Sin X(x^) i ^ % i i i e^^ ' - ' )^ y dA, 
° - 1 0 (y ^ O) (7 .2 .4) 

where we have xxsed the fact that d(^) is a synmetric function. 
We investigate the limit y -• O of (7.2.4). The left hand side 
tends to 

X 
(f,y)de = X, Ixl < 1. (7.2.5) 

o 
Now remains to consider 

li,7 3in X X i ^ % a ^ e^^'^')* y dA = 

00 2 

= lim f sin A X [ — p p 1 + :^^-ö-r U^^ <iA = 

y*0 i (A24a2)^ A(A24<X2)2 

° ax 
= a K^(ax) + a ƒ K^dTjDdJ?, x > 0, (7.2.6) 

o 
where K (x) and K.(x) are the modified Besselfunctions of the 
second Kind. Because the kernel of the integral equation 
(7.2.U) is an odd function with respect to x, we have to 
define the values of K.(ax) in (7.2.6) for x < 0 by 

K^(-ax) = -K^(ax), x > 0. (7.2.7) 

We write (7.2.6) in the following form 

ax 
J + {a K^(ax)- ̂  + a ƒ K̂ ( IT? | )d77'l = ̂  + k(x), (7.2.8) 

o 
where we have introduced the abbreviation k(x). From the 
series expansion of K.(ax) in the neighbourhood of x = 0 we 
see that k(x) is a bounded function of x, which tends to zero 
uniformly on each finite interval when a -•O. 

In this way (7.2.U) can be written as the following singu­
lar integral equation 

+1 +1 
X = i- <f •rë^öS+^ f ö(f) k(x^)df, (7.2.9) i f T I ¥ } ^ ^ ^ /;(^)^( 

where the first integral must be taken in the sense of Cauchy. 
The first integral in (7.2.9) is independent of a, while 

the second integral is zero for a = 0, hence this one repre­
sents the influence of the secondary flow. 
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7.3 THE CASES a = 0 AND a->0. 

First we consider a = 0 and hence k(x) H 0. Herewith 
(7.2.9) changes into 

+1 

x = l ƒ ^ a ^ , « = 0. (7.3.1) 

-1 

The solution of this simple singular integral equation is 
given in para. 1,3, 

Hx) = —\r - —^ 1 ̂ H ^ •̂ ' (̂•3-2) ;r(l-x"̂ )2 ^{^-x'^)^ J ''^^^ 

where & is some arbitrary number. Using the known integral 

n 

I cos n t ^+ _ „ s i n n s /-, , , \ 
cos t -cos s '̂ ^ - '̂  s i n s \f'3.3) 

o 
we find 

^(x) = ^ % I + j^-^^1 . (7.3.U) 
n{^-x^^)^ 2(1-x2) 2 

+1 
Now we determine the \inknown constant * = /ö(x)dx by requiring o 

-1 
that the square root singularities of d(x) for x = ± 1 vanish, 
This yields d = ̂ /2 and (7.3.U) changes into 

*(x) = (l-x2)4 , a = 0. (7.3.5) 

Next we consider the case a -• 0 and reduce (7.2.9), by the 
method described in para. 1.3, to a Fredholm integral equation 
with a quadratic integrable kernel. 
Equation (7.2.9) can then be written as 

+1 
d-x^)* = f(x)- -^ j t{T,) K{x,T})ö.v, (7.3.6) 

-1 

f(x) = Hx) (l-x2)i (7.3,7) 

where "'' 

and 
+1 

file:///inknown
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Nov/ it is allowed (ref. l6), for values of a which are 
small enough, to expand the solution of (7.3.6) into a Neumann 
series. From this series v/e shall calculate the first two 
terms. 

Before doing this we determine from the fimction k(x) 
(7.2.8) the first term of the asymptotic expansion for a -• 0. 
This can be done by using the known expansions of K (x) and 
K, (x) in the neighbourhood of x = 0. VVe obtain 

2 
k(x) ~ ^ [ - l n a+ I + In 2-r -InUI] = 

= 4^iG(a)-ln Ixl] , (7.3.9) 

where v = 0,5772157 is Eulers constant. Substitution of 
(7.3.9) into (7.3.6) and determination of tlie first two terms 
of the Neumann series yields 

&{x) = ^rrT + (l-x^)^ + 
d-x")^ 

+ «^ )' (1-7?^)^ (e--r;)lc(a)- ln|g-r?n (l-.?")^ d? d77. 
27r2(i_x2)2 I (x-f) 

(7.3.10) 

The integrals in this expression can be calculated v/ith the 
aid of (7.3.3) and 

1 
(l-7?2)? m 7; dr? = =^ (4- + In 2). (7.3.11) ƒ U 

iVe ai^rive after a straightforward calculat ion a t the r e s u l t 
2 I' 

d(x)=(i-x2)-^+ — a _ _ ^ J _ ^H-x2(-A m a+m 2+ - ^ - ^) + 
? r i - x ^ ) 2 ^ i<i ^ 

where we have talcen for d* 

-:-(-:^ + ̂ - m ? + J)i(7.3.i2) 

Prom (7.3.13) we see that & + 5*, which quantity is 
proportional to the resultant force under the strip, decreases 
for increasing values of a. This is to be expected because the 
three-dir.;ensional theory is less restrictive for the water 
motion than the two-dimensional one. 
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7.4 THE CASE a -• °° 

The limit case a -* M can also be dealt with analytically. 
We start from the original boundary value problem defined by 
(7.1.1), (7.1.3) and (7.1.4) and consider the limit b -• 00 , 
which is equivalent to a -» 00. The boundary conditions then 
become 

•n=E COS a z e'̂ '̂ *, x < 0; P = 0, x > 0; y = 0. (7.4.1 ) 

We introduce the function <p{x,y) by 

V)(x,y)cos a z = - j ^ 5 (x,y,z). (7.4.2) 

Herewith and using the high frequency approximation the 
boundary value problem can be virritten as 

^ + ^ - a2^ = 0 (7 .4 .3) 
dx"^ dy'^ 

^ = 1 , 3 c < 0 ; 9 = 0 , x > 0 ; y = 0. (7 .4 .4 ) 
dy 

Applying a Fourier transformation to (7.4.3) and (7.U.U) we 
obtain 

*(A,y) = P_(A) e^^ +a )^ y ^ (^^^^5^ 

where 
•kxi 

*(A,y)= - ^ I e^^ <i>{x,y) dx , Ira A < 0 (7.U.6) 
V27r. J 

-vo 

and P_(A) is the, still unknov/n, transform of <p{x,G) for 
X < 0, which is regular in a lov/er half-plane. Bv transfor­
mation of the first boundary condition of (7.U.U) and sub­
stitution into (7.U.5) after differentiation with respect to 
y v/e obtain the simple Hilbert problem 

(A2+a2)4 P_(A) = GJA) - - - ^ , (7.U.7) 
•̂  •/27r A 

valid on a line L below and sufficiently close to the real 
axis in the A plane. Here G (A) is the transform of 

-2 (x,0) for X > 0. Solution of (7.U.7) yields, using the 
dy 
inverse transformation 
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, y -ixx 
95(x,0) = =-^— / — T dA, X < O, 

27r«/ïa J A(A-ia)2 
(7.U.8) 

where the square roo t s are defined by */Ta = >1' ^'^ l̂ /"a| and by 
i ^2 

Re (A-ia)^ -•+00 for Re A -• + <» on L, Because x < O we can 
complete the path of i n t e g r a t i o n i n (7.U.8) in the v/ay desigied 
i n f i g . ( 7 . U . I ) . 

amx=o 

?ig. 7.i+.l. The path of integration. 

Introducing a new variable of integration § = -i(A-ia) we 
find for (7.U.8) 

<Pi^fO) = i - I 
ax 

a n'Ja 
J^ 

(e+a) Vf 
Of. (7.U.9) 

By substitution of f = tr into (7.U.9) this integral can be 

(7.U.10) 

calculated in terms of the error integral, 

«p(x,o) = ̂  E(^^::^) 

where 
E(x) 

-fn J 
' ^' d^. (7.4.11) 

_ Assuming_a strip situated on the water surface between 
X = -b and x = +b, b sufficiently large, v/e find as a first 
approximation of the dimensionless potential 6(x,y) in the 
dimensionless coordinates of para. 7.3 

e(x,0) =}- E(<»ra(l-|x|) ) , Ixl < 1. (7.4.12) 

Prom this we find 
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+1 
& = ^= |*(x,0)dx= I ƒ E(^/'5TT^ ) tlx » I [1+ ̂  ƒ lE(̂ /•y)-1ldy] = 

-1 o 6 

= f (1 - ^ ) . (7.4.13) 

7.5 THE CASE OP FINITE a. 

The case of a finite value of a will be treated approxiraa-
tively. This can be done by approximating k(x), defined in 
(7.2.8), with the aid of a polynomial 

k(x) ~ I a x2^-^ (7.5.1) 
n=1 

â  = i,3110a2; a2=-0,6543«^; a^=0,24l 65 ĉ ; a^=-0,OUl 51 «^; 

Here v/e use the coefficients 

a^=0,0025940c , which yield an approximatioh within 1 ,k% for 

|x| < 1 and 0 S a S 1 ,25. ̂ ^ 
In the followir.g way it can be seen, that 'the solution of 

our approximate problem tends to the solution of the exact 
problem by increasing the accuracy of (7.5.1 ). Equation 
(7.2.9) was reduced to a non homogeneous Fredholm integral 
equation (7.3.6) v/here both kernel and known functions are 
quadratic integTable. From this equation v/e know (ref. 16) 
that by approximating the kernel with increasing accuracy 
the approximate solution tends to the exact solution, with 
possible exception for a domain with measure zero. Since 
(7.3.6) and (7.2.9) are equivalent this will be true also 
for our singular integral equation. 

We now consider the following approximate equation 

X = i I - ^ ^ - i ^ l HS) J â (x-f)2n-1<3e. (7.5.2) 

It is possible to solve this equation exactly. Carrying out 
the integrations ^.^ 

\ = /d(f)f ""d^, (7.5.3) 

where the * are as yet unknown constants, we can write 
(7.5.2) as "̂  

+1 5 
^n 

x) 
'The method as well as the numerical values for this 
approximation are due to Mr, H.J, Nunnlnk, 

_j( T^f} ^f • - i ' ^ ' " " " ' '̂ •̂ •''> 
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where 

b̂  = â  ̂ ^ + 3a2*2 + ^^fi, + f^^e * ^^5*8 " "' 

^2 = ̂ 2*o + ^^^3^2 "" ^^%\ •" ̂ ^^5*6 

^3 = ̂ 3*o * ^^%^2 +''2635̂ ^ (7.5.5) 

^U = V o + 36a5d2 

5̂ = Vo-

Because *(x) is symmetric with respect to x = 0,the quantities 
& with odd values of n are dropped. By solving (7.5.U) (para 
1 .3) we can express 6(x) in terms of the unknovm constants b , 

d +1 ^•b^S^''~\^-e^)^ 
Mx)= — ^ ^ . .. ^ : f ^̂ ^ n-c^ df. 

'̂o , 1 f n=1 " 
/r(l-x2)*"„2(._^2)ij H E : ^ 

(7.5.6) 

The i n t e g r a l s occiirring in (7 .5 .6) 

h^(x)= ƒ ̂ ""li^jf ̂^ dg, (7.5.7) 
-1 

can easily be calculated by means of the following recursion 
formula 

x^h (x)-h (x) - n (l+2)(l+2.2),..fl+(n-l)2i ^ 2 

Herewith we obtain 

h., (x) = jr(x̂ -i) 

h2(x) = n{x^-ix^- ^) 

h^{x) = n{x^-^x^- ^x2- Jg) (7.5.9) 

h^(x) = n{x^-ix^- ^x^- f^x2 - ^ ) 

h3(x) = .(^°-4xö- ̂ 6 - J^x^ - -1^x2 - ̂ ) , 

and we write (7.5.6) in the form 

^(x) = ^ ° ̂ -L -̂  2, 2v^ ^ ^n^n(^). (7.5.10) 
jr(l-x2)2 n^(i-x2)2 n=1 " "̂  

In order to determine the constants b (*Q=bc/ac), we 
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multiply both sides of (7.5.10) by x ^ (k=0;1 ;2;3;U) and inte­
grate v/ith respect to x 

^ !^1 ..J^_,J- I ̂  1 J^_x^ax.{7,3.u) 
1^ (l-x^)" ^^ n=1 ""j^ (l-x̂ )2 

Introducing the quantities 

*] hAx) p, 
B(k,n) = " p i x'^ dx, (7.5.12) 

I^ d-x^)^ 
we can write (7.5.11) as 

^ 5 
*2k = IT A(k) + J^ 2 b^B(k,n), (7.5.13) 

where 

B(k,1) = jrU(k+1 )—2A(k) ] 

B(k,2) = :n:{A(k+2)-M(k+1 )- ^A(k)l 

B(k,3) = 7rU(k+3)-iA(k+2)- •^(k+l)- f^A(k)l (7.5.1 U) 

B(k,U) = jrU(k+U)-iA(k+3)- •5A(k+2)- :j^A(k+1)- ^ A ( k ) ] 

B(k,5) = Jr{A(k+5)-èA(k+U)- ̂ A(k+3)- :i-^A(k+2)- :p|^A(k+1)- 25S^(^)^ 

and 

A(l,)= f - ^ ^ dx= ^d+2)(l+2,2),..ll^(k-l)2l^ ^(0)^ „^ 
i d-x"^)"^" k!2^ /^ e .. (7.5.15) 

Using (7.5.5) we have obtained fo-ur equations (k=i ,2,3 and U) 
for ö_... Ö0. Because B(0,n)= 0 the equation for k=0 yields 
the identity & = & , In order to obtain another relation 
between the öp° we require again that ö(x) has no singularities 
for x=±i. From (7.5.10) we find 

,̂ 5 
*o + ;̂  2 b h^d) = 0. (7.5.16) 

n=1 

Hence v/e have found five linear equations for the five 
unknowns &^ ... i?g. Then by (7.5.5) and (7.5.10) the solution 
of (7.5.2) is determined. 
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7.6 THE ADDED MASS POR THE STRIP 

We shall now calculate the added mass for the strip. Since 
in ship building the added mass is only of importance for a 
whole cross section of the ship, we shall integrate the pres­
sure, which is a fimction of x, with respect to x. Because we 
have used the high frequency approximation we may virrite the 
resultant force K as 

+b +b +1 

K= / P(x,Ö,z,t)dx= -p ƒ T-rdx=pa) b e cos az cos wt / i?(x,0)dx= 

-i -b -1 

= p ÜJ b £ ^Q cos az cos wt. (7.6.1 ) 

V<le seek fictitious mass m(z) and resistance y(z) 
distributions on the strip, which yield the same forces as are 
exerted by the water. Then we obtain the relation 

K =pw b £ îQ cos az cos wt = -m(z) ff - 'y(z)^ . (7.6.2) 

Substitution of the real part of (7.1 .3) into this equation 
results in 

m {z)= b^p ö„, v(i) 5 0. (7.6.3) 

The vanishing of the resistance is caused by the fact that at 
infinitely high frequences no energy can be transported along 
the water surface. 

7.7 THE ADDED MASS POR A VIBRATING INFINITE CYLINDER. 

We now treat the same problem as in the preceeding section 
but replace the strip by a half cylinder with radius b (fig. 
7.7.1) 

Pi-ü. 7.7.1 • The cylindvr on the water surface. 
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Because we have a boundary condition for r = b we start with 
the potential equation on circular cylindrical coordinates F< 
<p and z. Using the high frequency approximation we arrive at 
the following boundary value problem 

Id /- dGx ^ j_ d% ^ d% ^ (-7 -? A\ 
t — (r 5») ̂  ̂  — 2 -̂  ̂  = °' ^7.7.1) 
r dr r <j<p az 

•q = e cos az e''"'̂*, r = b ; e = 0, tp = n , <p= 0. (7.7.2) 

The first boundary condition can be written as 

— = - 77 sin <p = -iw £ cos az e sin 9, r = b.(7.7.3) 
dr 

The general solution of (7.7.1) for the case that 9(r,z,9,t) 
has the form 

© = 5(?,?)) cos az ê '̂ * (7.7.U) 

and which remains bounded at infinity is 

« 00 

Hv,9)= 2, K^(ar) \ A ^ COS nq> + B^ sin n^]. (7.7.5) 
n;=0 

Herewith the boundary condition for r = b becomes 

— (!•,?>) =~ 2 "̂  ̂ n̂-1 ̂ ®̂ "̂*'̂ n+1 ̂^^^^^-^1 °°^ ̂ 'P+^n ^^" "*'̂  = 
r=b "^^ a? 

= - i o i e s i n ?). ( 7 . 7 . 6 ) 

Hence 

© ( ? , i , 9 , t ) = a [ K ^ ( I b ) " K | ( a b ) l K^(a?)co8 a5 s i n ? , e j ^ * . ^^^ 

Integration of the vertical component of the pressure exerted 
on the cylinder yields the resultant force K, 

n 

K = Re -p / TT (b,i,<p,t) sin 9 b d̂o = 

p (jfis-hn K. (ab) 

= a[K^(ab)+K2(ab)l °°^ ̂ ^ °°s '̂ *- (7-7.8) 

By formula (7.6.2) we find in this case for the added mass 
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v/here a = ab. When a tends to zero we find by expanding 
Kj^(a), K (a) and K2(a) in the neighbourhood of a = 0 

m(z) « ̂ ^-%^ {H«2 (ina- m 2 +y)j. (7.7.10) 

When a tends to infinity we find for the asymptotic behaviour 

m(z) « 2 - | ^ . (7.7.11) 

7.8 DISCUSSION OP THE NUTAERIGAL RESULTS 

In fig. 7.8.1 we have drawn the results of the numerical 
calculations. On the vertical axis is plotted the dimension­
less added mass m/h^p and on the horizontal axis the 
dimensionless quotient a/n of the width of the strip (or 
cylinder) and the wave length. Prom the asymptotical expans­
ions about the origin a = 0 (7.3.i3) and (7.7.10) it is clear 
that the graph (l) for the strip as well as the graph (3) for 
the half immersed cylinder start with a horizontal tangent 

0 Q5 _L _15 2 o< 2.5 
IT ir K n n Ti 

Pig. 7.8.1. Relation "between dimensionless added masG, 

^/h p and (dimensionless wavelength) ' , -^/n, 
(l) strip. (2) asymptotical behaviour strip 
and (3) half inimersed cylinder. 

from the point nv^ p = n/2. The line (1 ) has been calculated 
by the method described in para. 7.5, its asymptotic behaviour 
(2) follows from para.7.4, while (3) represents (7.7.9). Some 
values are given in the following table: 
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Table IV, '"/t>'^P. 

v« 
strip 

'h-ip 
cylinder 

0 

1=1,57 

1 = ;,57 

C,25 ' 

,5 

,ii2 

,38 

'i » 2 3 

°'7V. 

1 ,2i|. 

1,06 

'A-

, ; • . 

0,92i* 

1 .25,, 

i ,00 

0,8iÉ 

•"5A 

C, 908 

0,735 

2 ̂  

0,750 

0,598 

, 

0 , bî .O 

0,505 

The value of m/b p for the strip for a/zr = 'v^ has been 
obtained from the interpolating dotted line and the values 

for <x/n = /;r ajid 'vre come from the asymptotical behaviour 
(7.4.13). 

Apparently the decrease in the added mass, caused by the 
tiiree-dimensional motion of the v/ater is more pronounced for 
the cylinder than for the flat strip. This should mean that 
for ships of shallow draught the influence of the three-
dimens ional effects is smaller than is expected from the 
correction coefficient based on the three-dimensional flow 
around a vibrating half immersed ellipsoid of revolution. 
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S U M M A R Y 

In this thesis we have discussed several problems which 
are related closely to the Hilbert problem, of which a short 
survey is given in chapter 1 , 

Chapter 2 deals with the Wiener-Hopf type integral equa­
tion by means of the theory of sectionally holomorfic func­
tions. The assumption of a strip of convergence for the 
Fourier transforms, needed in the classical theory, could be 
replaced by the assumption of a line of convergence. In 
chapter 3 an application is made to the shrink-fit problem 
of an infinite tube shrunk onto a semi infinite rigid shaft. 
The resulting shrink-fit stresses were calculated. It turned 
out that for tubes which are sufficiently thin there occurs 
a region where tube and shaft are out of contact. 

In chapter U we gave some general considerations about 
integro-differential equations of the first order and indicated 
a method to obtain solutions of the equation for the case that 
the kernel decreases algebraicly while the solution has a 
smoidal behaviour at infinity. Next a special integro-differen­
tial equation was considered with a derivative of the fourth 
order,which occurred under the sign of integration. It was 
asked to obtain the first terms of the asymptotical expansion 
of a certain physically important quantity with respect to a 
small parameter b. This expansion possesses a logarithmic 
branch point at b = 0. 

The calculations made in the chapters 6 and 7 were concerned 
with the motion of water with a free surface. First we 
considered the influence of a fixed dock on incoming waves. We 
found for instance that, under certain circumstances, when the 
length of the incoming wave equals the width of the dock only 
U,8 % of the energy can pass, the remaining part is reflected. 
In the last chapter we considered the virtual raass of a vibra­
ting strip on the surface of the v/ater. The aim was to check the 
use of a vibrating ellipsoid of revolution in ship building, for 
obtaining a three dimensional correction coefficient. It turned 
out that there exists a difference of about 20 % between the 
virtual mass of the strip and a half immersed cylinder, when the 
wave length of the strip is about two times its width. This 
means a possible overrating of the three dimensional effects for 
a ship of shallow draught by using the correction coefficient 
based on the flow around an ellipsoid of revolution. 



S T E L L I N G E N 

1. Het vergelijken van het probleem van een planerende cyli-nder 
die zicii loodrecht op een beschrijvende voortbev/eegt over 
het v/atercppervlalc, met een overeeniiomstig indr'aiaiingspro­
bleem uit de elasticiteits theorie, levert op eenvoudige 
wijae inzicht in de singulariteiten van d^e druk die het 
water op de cylinder uitoefent. 

L.N. Sretenski, Buil.Dep.Techn.Sci. U.S.S.R., 7,3,1940. 

2. Problemen over de invloed v-an de aardrotatie op diffractie 
verschijnselen van getijde golven kunnen,bij bepaalde 
geometrie van de obstalcels, terug,? ebracht worden tot beken­
de vraagstul'ken. Dit geschiedt door invoering van een 
nieuwe onbekende functie -//aaruit later de gezochte functie 
door een eenvoudige integratie is te bepalen. 

J. Crease, J. Fluid Mech. 1, 86, 1956. 

3. Een cirkelvormige plaat waarin stationaire thermo-elastische 
spannii^gen optreden, die ontstaan door gelijlcmatige warmte 
toevoer aan de rand en een even g'rote v/armte onttrekking in 
het midden, kan niet in een rotatie symmetrische vor.T. uit-
knilLken. 

U. De theorie van Reissner toegepast op een dunv/andige buis (bv. 
dikten tot een derde van de binnen diameter) levert voor het 
kri:rip-spannings probleem van hoofdstulc 3 van dit proefschrift 
een qualitatief goed beeld van de krimpspanningen. Op een af­
stand van ongeveer twee maal de v/anddikte van het eindvlak van 
de kern '//ijken de resultaten minder dan 3 % SLP van de in hoofd­
stuk 3 berekende waarden. 

5. Bij bepaalde harmonische excitaties van een harmonische oscil­
lator met een aan één zijde begrensde amplitude is het niet 
mogelijk de be-veging te beschrijven met trillings vormen die 
nul of één keer per periode van de bev/eglng aantikken. 

J.A. Spai'enberg, Appl.sci.Res. A6, 53, 1956. 

6. De lineaire differentiaal-vergelijkingen,die het resultaat 
zijn van de methode van de equivalente linearisatie voor het 
vericrijgen van een benaderde periodieke oplossing van quasi-
lineaire differentiaal vergelijkingen,zijn ook toepasbaar op 
sterk niet lineaire differentiaal vergelijkingen mits de in­
vloed van het niet lineaire gedeelte voor de beschouwde op­
lossing klein genoeg is. 



7. De door Ales Tondel gegeven conclusie over gevaarlijke ge­
bieden voor de omwentellngssnelheid van een rotor in ver­
band met het niet lineaire elastische gedrag van de kussen-
blokken, volgt niet-uit zijn mathematische analyse van het 
probleem. 

Ales Tondel, Revue de Mecaniaue Appliquée, 2, 128, 1957. 

8. Verschillende physische problemen lamnen op eenvoudige wijze 
benaderend behandeld v/orden met de methode beschreven in 
para. 7.5 van dit proefschrift. 

9. De methode van Mac Camy voor het bepalen van de oplossing 
van een bepaald type integraal vergelijkingen dient aange-
•vuld te word-en met een benaderings methode die in het in-
v/endige van het definitie gebied nauwkeuriger resultaten 
levert. 

Mac Camy, Techn. Rep. No 2, Dep. Math. University of 
California, 1955. 

10. De resultaten gegeven door Chi-Ghang Chao voor de sommering 
van reeksen van Fourier van een bepaald type kunnen ook ver­
kregen v/orden door een eenvoudige toepassing van de Fourier 
reeksen voor sin ax en cos ax, -n < x < + n, 

Chi-Chang Chao, Quart.J.Meeh.App.Math. U, 508, 1956. 

11. Het is v/enselijk dat op het college gewone differentiaal­
vergelijkingen aan de studenten inzicht wordt gegeven over 
de instabiliteits gebieden die optreden bij differentiaal 
vergelijkingen van de tweede orde met periodieke coëffi­
ciënten. 

1 2. Het verdient aanbeveling dat het vermenigvuldigen van 
proefschriften door instellingen van hoger onderwijs kan 
v/orden verzorgd. 


