TU Delft

Energy Implications of Test Prioritisations in the Continuous Integration Process

Rohan Cyr Lambert!

Supervisor(s): Carolin Brandt', Xutong Liu'

'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
January 25, 2026

Name of the student: Rohan Cyr Lambert
Final project course: CSE3000 Research Project
Thesis committee: Carolin Brandt, Xutong Liu, Benedikt Ahrens

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Test Prioritisation (TP) is one among many dif-
ferent methods to optimise pipelines in Continuos
Integration (CI). However very little research has
been performed on the energy usage of this process.
This paper documents the simulation of TP on mul-
tiple Java open source projects and presents the en-
ergy consumption of this part of the pipeline. The
results of the experiment show that the costs of per-
forming this CI technique under realistic conditions
outweigh the benefits in terms of energy spending.
Other Ci optimisation processes such as Test Selec-
tion may prove more valuable and combining them
with TP might be redundant.

1 Introduction

In the field of Continuous Integration (CI), development
teams push code changes on a frequent basis. Those changes
are then checked through a pipeline that will, among other op-
erations, run a plethora of tests to check the code for errors or
bugs, making sure new additions do not break the previously
built codebase.

While for a small team, running the pipeline for every code
change is feasible, this does not scale well to larger projects
which have much more numerous teams leading to large
amounts of commits, with in some cases like with Google
projects a commit every second[1]. This combined with
larger and larger test suites means running the full pipeline
can be costly both in terms of time that the developers have
to wait, and in terms of computational resources which will
also be referred as ”Energy” within this paper.

To save this energy, specifically in regards to testing for
errors, there are multiple techniques, this paper will focus on
Test Prioritisation (TP), by ordering the tests and running the
ones more likely to fail first, the energy usage can be reduced
in the cases where some of the tests fail as the rest of the
pipeline does not need to be processed once an error is found.

This among other techniques of optimisation of the CI
pipeline has not been explored thoroughly yet, earlier works
have for example demonstrated the energy usage of the whole
process together[2] but individual elements of it have not
been measured on their own.

These narrower parts of the process are important to check
individually to help build insight into this field and justify
their use as a way to save money as well as well as reduce
the environmental impact and help the sustainability of future
projects. As such this paper will focus on TP and try to an-
swer the following question: “What is the Energy Impact
of Test Prioritization during CI Pipeline?”

In order to reach a conclusion on the aforementioned ques-
tion, this research will be split into 4 subquestions to lead to
a thorough answer:

1. What is the Energy Impact of Training Test Prioritisation
models?

2. What is the Energy Impact of Ranking Tests using Test
Prioritisation models?

3. How does the Energy Impact of Running a Test Suite
with Test Prioritisation compare to the Energy impact of
Running a Test Suite without?

4. How does the combined Energy Impact of using Test
Prioritisation compare to not performing this CI tech-
nique?

This paper is organised in the following manner: section 2
will explore related works; section 3 will describe the exper-
iment and related information; section 4 will present the re-
sults; those results will then be discussed in section 5; sec-
tion 6 will explore the ethical considerations of this paper; in
the end section 7 will close this paper and look to the future
of research in this domain.

2 Related Works
2.1 Test Selection

Test Selection is the concept of running only part of your tests
suite by “selecting” to run only the relevant tests. It is always
an option to run the entire test suite (Retest-all) and if de-
veloper wait time was the only concern, then implementing
Regression Test Selection (RTS) would be unnecessary in a
majority (62%) of average projects[3]. Still, it is the case that
in a majority of projects (56%), static class level test selec-
tion based on code changes will perform significantly better
in terms of time.

There will also be no significant losses in in failure detec-
tion at class level, but there are still improvements to be made
as tests can slip through the cracks if external libraries are ex-
cluded or due to reflection (code manipulating is own struc-
ture at runtime). Research into Dynamic RTS is also starting
to be developed as an alternative.[4]

Another option for Test Selection is to also predict failure
detection in tests from past data. This method can be useful
in for example system testing as “Traceability links between
code and test cases are not always available or easily accessi-
ble when test cases correspond to system tests.”’[5]; adaptive
methods such as reinforcement learning are currently being
studied in these cases, though they need special considera-
tions for when new tests are introduced.

2.2 Test Prioritisation

Apart from a few papers [6], Test Prioritisation is almost al-
ways performed alongside Test Selection.The data required
for the latter can also be used for the former and various
test prioritisation methods such as dissimilarity as a criterion
(where tests similar to those with high priority will lower
in the ranking to increase diversity as early as possible) do
not scale as well as test selection techniques, though there is
promising research on the topic [7].

Another method of prioritisation is machine learning, there
are multiple avenues of improvement to the Learning To Rank
(Train a model to then use on further data) strategies being ex-
plored by for example adding quality, similarity [8], or fault-
proneness based metrics[9] to the standard model.

Another avenue is Ranking To Learn (RTL), where the
model is trained progressively by ranking which is explored
in a 2020 study by Bertolino et al[10]. While this current

research does not implement the RTL strategies present in
Bertolino’s paper its framework and data are heavily reused..

2.3 Energy Measurements in Continuous
Integration

There are currently very few studies focused on the topic
of energy consumption in CI, the work by Zaidman et al[2]
presents worrying data such as Elastic Search consuming 161
kWh in 2022, roughly equivalent to 9.7% of the average
household yearly energy consumption. And with the technol-
ogy sector between 15% to 20% of worldwide energy con-
sumption, and still growing, this is not negligible data.

Another study looks at the energy implications of generat-
ing tests, also investigating the energy costs of running auto-
matically generated tests and showing they are equivalent if
not better than manually created tests at runtime.[11]

2.4 Research Gap

While the topic of Energy usage in CI is starting to be investi-
gated, there are many further steps to be taken. This research
aims to advance on this path by looking at one of the sub-
section of the pipeline that happens on build, which is only
ever evaluated as a whole in Zaidman’s paper. By looking at
individual sections, they can be refined to optimise the whole.

3 Experimental Setup

3.1 Tools and basic setup

EnergiBridge

In order to inspect the "Energy Impact” of our prioritisation
methods, this research will make use of a tool called EnergiB-
ridge [12]. Using this tool allows to measure the energy con-
sumption and power usage of software processes during ex-
ecution. However this tools measures this consumption for
the whole machine, hence the following precautions will be
taken to obtain consistent data:

* Every operation is run on the same machine in the
same environment (Intel(R) Core(TM) i7-8750H CPU,
Kubuntu) as it is first and foremost comparative.

* The device will have unneeded processes reduced to a
minimum, and will stay plugged throughout the opera-
tions to reduce noise, one of the processes will require
Wi-Fi so this is on of the features that will stay active
during the whole experiment.

* Each measurement will be run 30 times to obtain a good
average and get rid of outliers that could be caused by
external factors.

* To avoid the previous measurements from affecting the
future ones, the runs will be measured with a wait be-
tween each to stop the computer from heating up.

* To avoid the external environment from affecting the
measurement, the machine will be kept in a closed room
with constant temperature and the different configura-
tions will be randomly alternated so that if the environ-
ment varies it doesn’t affect only one of the configura-
tions as a block.

Understand

Understand by Scitools [13] is a multi-tool with features to
assist the production of code such as static analysis and an
integrated IDE. Mirroring the study by Bertolino et al [10], it
is used in this study to perform dependency and static code
analysis. The dependency search will be performed when
looking at commit to perform Test Selection by looking up
which tests will be affected by the file changes. The static
code analysis will then used to extract data on the tests that
have been selected such as cyclomatic complexity, line count,
or code to comment ratio. These features will then be used to
train the models and to rank the tests.

3.2 Data

This research will be performed on 4 JAVA open source
projects:

* Commons-Codec
* Commons-Imaging
e Commons-lo

e Commons-Lang

Some of the data from Bertolino et al’s [10] paper will be
reused, notably the datasets post Test Selections for between
300 and 650 commits ranging from 2011 to 2019 for each of
the projects. This data will be reused to save on processing
power and time usage as well as allowing for better compari-
son and referencing between the two studies. These datasets
will be used for the training and so none of those commit
should be used to actually rank and run their tests, therefore
the test selection will be performed forward from the latest
commit of this data to obtain both the next commit with at
least one test selected and the next commit where the selected
tests fail, these two will be refereed to as next commit and first
failure respectively.

3.3 Experiment

Test Prioritisation in the CI process is usually done secondary
to Test Selection which tends to be more evident in its ben-
efits, this experiment follows such pipelines and so Test Se-
lection and the data obtained and processed for it will not
be measured this paper will only look at the implications
of adding Test Prioritisation after that first operation. This
means that some steps that would need to be measured would
Test Prioritisation be used in a vacuum will be skipped.

All scripts, datasets, and results used in this paper can be
found at ... (will be added once on the server)

Training Test Prioritisation models
The two models to be used as rankers for the tests will be
created with Multiple Additive Regression Trees (MART)
and Random Forest (RF), these Learning To Rank (LTR) al-
gorithms having been identified as among the highest per-
forming in their Prioritization effectiveness (RPA) within
Bertolino et al’s [10] paper. The training of these two models
will be seeded both for the data split (done by commit) and
the actual training in order to minimise variance.

The models will be trained to rank test according to chance
failure, data which is obtained from previous failure rate, it

is assumed that a test that has failed more in the past is more
likely to fail again as it might be either fragile or critical. A
secondary feature for the ranking is speed, the idea of ranking
faster tests first is that more tests performed in the same time
is more likely to lead to a failure. If any given test at a commit
will fail or run in a timely manner is of course unknowable
without running said test so the model is trained to instead
predict those characteristics from the metadata of the tests
coming from the static code analysis.

The energy consumption of the code analysis will not be
necessary to be obtained in the context of making the dataset
for training, this is because this study follows a situation of
continuous integration and while starting the process of test
prioritisation deep in a project’s lifecycle would indeed have
be costly as it would require obtaining this metadata as well
as running the tests in the past commits to build the training
data, this is a one time cost and said data would be generated
progressively at each iteration of the process when ranking
and running the tests. Hence the only measurement in this
step is the cost of training the model with the chosen algo-
rithm on a given project.

Ranking with Test Prioritisation models

Should Test Selection not be performed then this step is where
the metadata of the tests would be calculated, however when
performing the dependency check required to find which tests
are affected by the changes in the code, Understand performs
the static code analysis that generates for each tests the fea-
tures upon which they will be ranked.

The Energy measurements that will be performed are rank-
ing the tests for both the next commit and the first failure with
each model on a given project.

Running Test with and without Prioritisation

The final measurements in this process is where the failure
and execution time of the data would be recorded for future
training once the the model becomes obsolete in a real life
scenario.

Finally will be measured the energy usage of simply run-
ning the tests (in alphabetical order for consistency of the
multiple measurement) as well as with the prioritisation or-
der for each combination of commits (next commit or first
failure), model and project.

Aggregation of the Data

Once the Energy usage of the individual steps of prioritisation
will have been collected, these measurements will be summed
to look at the combined costs of performing Test Prioritisation
in contrast to skipping it altogether. There are two cases, that
of next commit representing when there are no tests failing
leading to all tests running anyway and first failure represent-
ing when failures are actually found.

From the past data, an estimate of frequency of commits
where the tests fail will be established and the actual Energy
Impact of Test Prioritisation over time.

The hypothesis before looking at the data, is that on these
small core projects with rare failures, Test Selection is suffi-
cient and the Prioritisation process may cost more in terms of
Energy that what it saves.

4 Results

Once obtained, each of the 48 configurations results went
through an outlier removal script. Said script removed val-
ues over 3 standard deviations of the mean, and a single out-
lier point of data was deleted. The Shapiro P value was then
calculated with a threshold of 0.05 for each of group of mea-
surements. As such, it can be assumed that each configuration
follows a normal distribution.

4.1 What is the Energy Impact of Training Test
Prioritisation models?

In all instances of training (for all combinations of dataset

and algorithm), the RPA obtained with the split test set was

1. This means that the models had, at least within that limited

dataset, perfectly ranked the tests they were given.

1.1: Model Training

CODEC IMAGING

5
50 —_—

47 —_—
9

Energy (J)

o

5 3
Energy ()

p

[

\y st (v L
MAR! - du“‘fores MAKS “a“du“\fo(es

a o o
g2 2 g 8
2
8

Energy ()
s w
3

Energy ()

@ oo o
8 & 9 8 8

P
<

&

v v U x
MAK! N“do“\gm» MAK! o qomFore®

Figure 1: Energy consumption of training the models

Regarding the energy usage of training the models with
the two algorithms, Mart outperforms Random Forest in all
datasets with an effect size (Cohen’s d) ranging from 2.6 to
5.75. This represents a considerable influence, with a welch
p value for statistical significance much smaller than the re-
quired 0.05 for each dataset. The energy consumption of
training can be seen in Figure 1.

1.2: Test Ranking (Least and Most Significant)

IMAGING (Next Commit)
Least Significant

10 (Next Commit)
Most Significant

308 3075

306 30.50

_ 3025

S302

z 30.00
30.0

g

Energy (J)

5208 e —_—

29.50

29.6

292 29.00

MART RandomForest MART RandomForest

Figure 2: Energy consumption of ranking with the models

4.2 What is the Energy Impact of Ranking Tests
using Test Prioritisation models?

As similarly seen with training, the energy usage of ranking
the tests is much higher for Random Forest than for Mart,
with effect size ranging from 0.56 to 1.48, and with a sta-
tistical significance still below 0.05. While these values are
indeed still in Mart’s favor as a model, they are already much
closer. Imaging nc and Io nc can be found in Figure 2 as the
least and most statistically significant both under 0.05.

4.3 How does the Energy Impact of Running a
Test Suite with Test Prioritisation compare to
the Energy impact of Running a Test Suite
without?

At first when running Next Commit (nc) there is in most cases
no statistical significant in consumption between the three
scenarios (No prioritisation, prioritisation with Mart, and Pri-
oritisation with Random Forest). There are exceptions, no-
tably between the Control group and Mart, with the IO dataset
where Mart had an effect size of -0.55. This is again seen be-
tween the Control and Mart with the Lang dataset, however
in this instance Mart’s effect size is positive, by 0.58.

When running First Failure (ff) the significance depends on
the dataset. There were no significant statistical differences
between the scenarios with the IO and Lang dataset. Nonethe-
less, there were some significant results with the other two.

With the Codec dataset, Random Forest performed signif-
icantly better with an effect size of -0.92 and -0.93 towards
the control and Mart respectively. Both are statistically sig-
nificant.

For the Imaging dataset, Mart outperformed the control
with a statistically significant effect size of -1.15 but Random
Forest outperformed both it and the control with an effect size
of -0.49 and -1.80 respectively.

The specific values are present in Table 1

4.4 How does the combined Energy Impact of
using Test Prioritisation compare to not
performing this CI technique?

When summing together all of the energy usage from the dif-
ferent steps, the controls has significantly lower energy usage.
Welch p values are omitted from Table 2. This is because for
all comparison with the control, the values were so low they
showed as 0.

While the energy consumption of the Test Prioritisation is
proportionally closer to the control with the commit where
tests fail (ff) for Imaging and Lang, that is not consistent with
IO nor Codec.

5 Discussion

5.1 What is the Energy Impact of Training Test
Prioritisation models?

On average, training the models on dataset ranging form 300
to 600 commits cost around 45 to 60 joules, Mart training
outperformed Random Forest by a pretty significant margin
These values are pretty low, especially considering the fact
that once a model has been trained it can be used for multiple

Table 1: Pairwise Energy Usage Comparisons Between Control,
Mart, and RF

Combination Comparison Welchp Cohen’sd
ioff control vs mart 0.31 0.26
io_ff control vs 1f 0.75 0.08
io_ff mart vs rf 0.51 -0.17
io_nc control vs mart 0.036 -0.55
io_nc control vs 1f 0.24 -0.30
io_nc mart vs rf 0.29 0.27
codec_ff control vs mart 0.36 0.24
codec_ff control vs 1f 0.0008 -0.92
codec_ff mart vs rf 0.0007 -0.93
codec_nc control vs mart 0.17 -0.36
codec_nc control vs 1f 0.65 -0.12
codec_nc mart vs rf 0.41 0.22
imaging_ff control vs mart 0.00004 -1.15
imaging_ff control vs 1f 4.07e-9 -1.80
imaging_ff mart vs rf 0.061 -0.49
imaging_nc control vs mart 0.93 -0.02
imaging_nc control vs 1f 0.47 0.19
imaging_nc mart vs rf 0.36 0.24
lang _ff control vs mart 0.44 -0.20
lang_ff control vs 1f 0.98 0.01
lang _ff mart vs rf 0.38 0.23
lang_nc control vs mart 0.029 0.58
lang_nc control vs 1f 0.17 0.36
lang_nc mart vs rf 0.32 -0.26

Table 2: Pairwise Energy Usage Comparisons Between Control,
Mart, and RF for the entire Test Prioritisation Pipeline

Combination ~Comparison Mean Difference Cohen’s d
codec_ff mart vs control 77.73 2.58
codec_nc mart vs control 70.47 2.24
codec_ff rf vs control 68.65 2.95
codec_nc rf vs control 75.28 2.18
imaging_ff mart vs control 61.89 1.94
imaging_nc mart vs control 75.99 2.32
imaging_ff rf vs control 60.31 2.12
imaging_nc rf vs control 82.36 2.60
io_ff mart vs control 80.31 2.16
io_nc mart vs control 69.41 2.12
io_ff rf vs control 81.74 2.17
io_nc rf vs control 76.69 2.33
lang_ff mart vs control 80.86 1.93
lang_nc mart vs control 94.25 2.07
lang_ff rf vs control 88.53 2.13
lang_nc rf vs control 94.38 2.25

commits, how long it stays relevant depends on the amount of
changes to the code that happen but it will often stay useful
for a long time.

5.2 What is the Energy Impact of Ranking Tests
using Test Prioritisation models?

Ranking using the models had an energy consumption rang-
ing from 29 to 31 joules, this is still a low number but accu-
mulates as it is required to be performed at every commit.

5.3 How does the Energy Impact of Running a
Test Suite with Test Prioritisation compare to
the Energy impact of Running a Test Suite
without?

When running the test there were two cases, either the Test
Prioritisation was irrelevant, costing a similar energy usage
to simply running the tests, or the Test Prioritisation was a
success. When that was the case, the energy saved was up to
20 at the extreme but closer to 10 joules for a normal success.
This is less than the energy required to rank the tests to begin
with.

The running of the tests itself cost between 260 and 570
joules.

5.4 How does the combined Energy Impact of
using Test Prioritisation compare to not
performing this CI technique?

Overall the Test Prioritisation did not reduce the energy con-
sumption but rather increased it by 60 to 90 joules. The costs
vastly outweighing the gains. Additionally, the times when
there were gains are not always frequent. The data from
Bertolino et al’s [10] paper had at most 2.32% of commits
containing tests failing, which means that the scenario where
the prioritisation is successful would happen quite rarely.

There are important caveats to the results obtain by this
experiment however:

* The datasets fairly narrow. The datasets being limited to
Java Commons library not give a variety of cases, these
projects are managed in a similar way, they also by their
nature do not tend to have errors on the main branch
often because the failing test would be resolved on indi-
vidual dev and feature branches.

* Test Selection could be overwhelming the prioritisation.
Test Selection is performed as part of the pipeline for
this experiment, this is quite realistic to a real life envi-
ronment as prioritisation is rarely done alone. Since it
is performed, the commits only have a few tests to run,
less than 20 in the commit with the most to run (Which
is also the best performing case for test prioritisation)
and sometimes only a single test, upon which test priori-
tisation is undeniably a waste of resources.

* There are few measurement A total of 8 situations are
taken in count in this experiment from having 2 com-
mits each for 4 datasets, the prioritisation was compared
to running the tests alphabetically, in the 4 cases where
there were failing tests, it is not impossible that the tests
that fail come earlier alphabetically and thus the control

runs as fast by hitting the failing test immediately. This
could have happened the other way as well, leading to
test running the failures at the end too. This uncertainty
is one of the problems with this study.

In the end, the only conclusion available to this paper is that
post Test Selection, Test Prioritisation is not a worthy invest-
ment. It may become more worthwhile with larger projects,
or if Test Selection is not an option. But for projects similar to
the ones used in this paper it is unnecessary if not detrimental
to the project’s Energy usage.

6 Responsible Research

6.1 Standard considerations

This project does not involve any participants beyond the au-
thor and thus does not need to take the related ethical consid-
erations such as consent, privacy, or data protection. While
the author tried to stay objective in their work, they are un-
aware of all the biases they may have which notably could
have affected their discourse and conclusion. To minimise
this factor, this paper tries to make clear what is factual data
versus interpretation, the author also received feedback on the
content of the paper from multiple sources.

Much of the code used in this paper, though a large pro-
portion of it has been heavily modified, comes from the study
by Bertolino et al [10] which is openly hosted on github. The
datasets used in this study are open source and accessible to
everyone.

6.2 Reproducibility

All scripts, datasets, and results used in this paper can be
found at (Will be stup once on the server), while the code it-
self allows for a similar experiment to be performed there are
several caveats to reproducibility that need to be mentioned:

¢ The measurements depend on the machine upon which
they are collected, and so any outputs from a different
machine and system will not be directly comparable to
the results of this paper’s experiment.

* EnergiBridge is an open source tool, however Under-
stand is a paid service, while most people who would
want to reproduce this study would likely be researchers
or students, giving them access to Understand for free,
that is not the case for all people who may want to do so.

6.3 Large Language Models usage

GitHub Copilot and ChatGPT were used to assist develop-
ment and modification of the scripts to process the data in
this paper. No large language models were used to assist the
writing of this document, the research process.

The analysis of the data was assisted by the usage of
LLMs, however interpretation was done completely by the
researcher.

7 Conclusions and Future Work

7.1 Conclusion

This paper looked to examine Test prioritisation as a tool to
save Energy however it has found that Test Prioritisation after

performing Test selection is more costly than Energy saving.
In the case of this study costing up to 9 times more than the
Energy saved.

While the results obtained by this study are difficult to gen-
eralise, it does suggest that there can be too much optimisa-
tion leading to a waste of Energy rather than achieving the
reductions that are aimed for.

7.2 Future Research

There are numerous avenues of further studies from here.
First and foremost, this field is scarcely explore yet, a sim-
ilar experiment to the one performed in this study could be
done on bigger datasets, or within a process without Test Pri-
oritisation.

There is also an option to research Test Prioritisation on
branches other than master, there tend to be more cases of test
failing there and companies often refuse to run the pipeline
at all on these branches until feature complete as the costs
can stack up a lot. But by running Test Prioritisation on these
partial changes it might be possible to catch errors early rather
than at the end of that feature’s development, which could
maybe reduce cost and environmental impact at in the later
steps of development.

Finally other Test Prioritisation methods could be at-
tempted to see if the results correlate to those of this paper.

References

[1] A. Memon et al., “Taming Google-scale continuous
testing,” en, in 2017 IEEE/ACM 39th International
Conference on Software Engineering: Software Engi-
neering in Practice Track (ICSE-SEIP), Buenos Aires:
IEEE, May 2017, pp. 233-242, 1SBN: 978-1-5386-
2717-4. por: 10.1109/ICSE-SEIP.2017.16. Accessed:
Nov. 19, 2025. [Online]. Available: http://ieeexplore.
ieee.org/document/7965447/.

[2] A. Zaidman, “An Inconvenient Truth in Software
Engineering? The Environmental Impact of Testing
Open Source Java Projects,” in Proceedings of the 5th
ACM/IEEE International Conference on Automation
of Software Test (AST 2024), ser. AST ’24, New York,
NY, USA: Association for Computing Machinery, Jun.
2024, pp. 214-218, 1SBN: 979-8-4007-0588-5. DOI:
10.1145/3644032.3644461. Accessed: Nov. 18, 2025.
[Online]. Available: https://dl.acm.org/doi/10.1145/
3644032.3644461.

[3] T.YuandT. Wang, “A Study of Regression Test Selec-
tion in Continuous Integration Environments,” in 2018
IEEE 29th International Symposium on Software Re-
liability Engineering (ISSRE), ISSN: 2332-6549, Oct.
2018, pp. 135-143. po1: 10.1109/ISSRE.2018.00024.
Accessed: Jan. 25, 2026. [Online]. Available: https://
ieeexplore.ieee.org/document/8539076.

[4] O.Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D.
Marinov, “An extensive study of static regression test
selection in modern software evolution,” in Proceed-
ings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
ser. FSE 2016, New York, NY, USA: Association for

(5]

(6]

(7]

(8]

[9]

(10]

Computing Machinery, Nov. 2016, pp. 583-594, 1SBN:
978-1-4503-4218-6. DOI: 10.1145/2950290.2950361.
Accessed: Jan. 25, 2026. [Online]. Available: https://
dl.acm.org/doi/10.1145/2950290.2950361.

H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige,
“Reinforcement learning for automatic test case prior-
itization and selection in continuous integration,” en, in
Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, Santa
Barbara CA USA: ACM, Jul. 2017, pp. 12-22, I1SBN:
978-1-4503-5076-1. pOI: 10.1145/3092703.3092709.
Accessed: Nov. 16, 2025. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3092703.3092709.

A. Karatayev, A. Ogorodova, and P. Shamoi, Fuzzy
Inference System for Test Case Prioritization in Soft-
ware Testing, arXiv:2404.16395 [cs], Apr. 2024. DOTI:
10.48550/arXiv.2404.16395. Accessed: Jan. 25, 2026.
[Online]. Available: http://arxiv.org/abs/2404.16395.

B. Miranda, E. Cruciani, R. Verdecchia, and A.
Bertolino, “FAST approaches to scalable similarity-
based test case prioritization,” en, in Proceedings of
the 40th International Conference on Software En-
gineering, Gothenburg Sweden: ACM, May 2018,
pp- 222-232, 1SBN: 978-1-4503-5638-1. DOI: 10.1145/
3180155.3180210. Accessed: Nov. 16, 2025. [Online].
Available: https://dl.acm.org/doi/10.1145/3180155.
3180210.

F. Palma, T. Abdou, A. Bener, J. Maidens, and S. Liu,
“An Improvement to Test Case Failure Prediction in
the Context of Test Case Prioritization,” in Proceed-
ings of the 14th International Conference on Predic-
tive Models and Data Analytics in Software Engineer-
ing, ser. PROMISE’18, New York, NY, USA: Asso-
ciation for Computing Machinery, Oct. 2018, pp. 80—
89, 1SBN: 978-1-4503-6593-2. DOT: 10.1145/3273934.
3273944. Accessed: Nov. 18, 2025. [Online]. Avail-
able: https://dl.acm.org/doi/10.1145/3273934 .
3273944.

M. Mahdieh, S.-H. Mirian-Hosseinabadi, K. Etemadi,
A. Nosrati, and S. Jalali, “Incorporating fault-
proneness estimations into coverage-based test case
prioritization methods,” Information and Software
Technology, vol. 121, p. 106269, May 2020, ISSN:
0950-5849. por: 10.1016/j . infsof . 2020 . 106269.
Accessed: Nov. 18, 2025. [Online]. Available: https:
/] www . sciencedirect . com / science / article / pii /
S0950584920300197.

A. Bertolino, A. Guerriero, B. Miranda, R. Pietran-
tuono, and S. Russo, “Learning-to-rank vs ranking-
to-learn: Strategies for regression testing in contin-
uous integration,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineer-
ing, ser. ICSE °20, New York, NY, USA: Association
for Computing Machinery, Oct. 2020, pp. 1-12, ISBN:
978-1-4503-7121-6. DOI: 10.1145/3377811.3380369.
Accessed: Nov. 18, 2025. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3377811.3380369.

https://doi.org/10.1109/ICSE-SEIP.2017.16
http://ieeexplore.ieee.org/document/7965447/
http://ieeexplore.ieee.org/document/7965447/
https://doi.org/10.1145/3644032.3644461
https://dl.acm.org/doi/10.1145/3644032.3644461
https://dl.acm.org/doi/10.1145/3644032.3644461
https://doi.org/10.1109/ISSRE.2018.00024
https://ieeexplore.ieee.org/document/8539076
https://ieeexplore.ieee.org/document/8539076
https://doi.org/10.1145/2950290.2950361
https://dl.acm.org/doi/10.1145/2950290.2950361
https://dl.acm.org/doi/10.1145/2950290.2950361
https://doi.org/10.1145/3092703.3092709
https://dl.acm.org/doi/10.1145/3092703.3092709
https://dl.acm.org/doi/10.1145/3092703.3092709
https://doi.org/10.48550/arXiv.2404.16395
http://arxiv.org/abs/2404.16395
https://doi.org/10.1145/3180155.3180210
https://doi.org/10.1145/3180155.3180210
https://dl.acm.org/doi/10.1145/3180155.3180210
https://dl.acm.org/doi/10.1145/3180155.3180210
https://doi.org/10.1145/3273934.3273944
https://doi.org/10.1145/3273934.3273944
https://dl.acm.org/doi/10.1145/3273934.3273944
https://dl.acm.org/doi/10.1145/3273934.3273944
https://doi.org/10.1016/j.infsof.2020.106269
https://www.sciencedirect.com/science/article/pii/S0950584920300197
https://www.sciencedirect.com/science/article/pii/S0950584920300197
https://www.sciencedirect.com/science/article/pii/S0950584920300197
https://doi.org/10.1145/3377811.3380369
https://dl.acm.org/doi/10.1145/3377811.3380369
https://dl.acm.org/doi/10.1145/3377811.3380369

[11]

[12]

[13]

F. Kifetew, D. Prandi, and A. Susi, “On the Energy
Consumption of Test Generation,” in 2025 IEEE Con-
ference on Software Testing, Verification and Valida-
tion (ICST), ISSN: 2159-4848, Mar. 2025, pp. 360—
370. por: 10.1109/ICST62969.2025.10989001. Ac-
cessed: Jan. 25, 2026. [Online]. Available: https://
ieeexplore.ieee.org/document/10989001.

T. Durieux, Energibridge: Energy measurement tool,
Accessed: 2026-01-25, 2023. [Online]. Available:
https://github.com/tdurieux/EnergiBridge.
Understand: Static code analysis tool, SciTools, 2024.
[Online]. Available: https://scitools.com.

https://doi.org/10.1109/ICST62969.2025.10989001
https://ieeexplore.ieee.org/document/10989001
https://ieeexplore.ieee.org/document/10989001
https://github.com/tdurieux/EnergiBridge
https://scitools.com

	Introduction
	Related Works
	Test Selection
	Test Prioritisation
	Energy Measurements in Continuous Integration
	Research Gap

	Experimental Setup
	Tools and basic setup
	EnergiBridge
	Understand

	Data
	Experiment
	Training Test Prioritisation models
	Ranking with Test Prioritisation models
	Running Test with and without Prioritisation
	Aggregation of the Data

	Results
	What is the Energy Impact of Training Test Prioritisation models?
	What is the Energy Impact of Ranking Tests using Test Prioritisation models?
	How does the Energy Impact of Running a Test Suite with Test Prioritisation compare to the Energy impact of Running a Test Suite without?
	How does the combined Energy Impact of using Test Prioritisation compare to not performing this CI technique?

	Discussion
	What is the Energy Impact of Training Test Prioritisation models?
	What is the Energy Impact of Ranking Tests using Test Prioritisation models?
	How does the Energy Impact of Running a Test Suite with Test Prioritisation compare to the Energy impact of Running a Test Suite without?
	How does the combined Energy Impact of using Test Prioritisation compare to not performing this CI technique?

	Responsible Research
	Standard considerations
	Reproducibility
	Large Language Models usage

	Conclusions and Future Work
	Conclusion
	Future Research

