

Delft University of Technology

Spline-based meshing techniques for industrial applications

Hinz, J.; Möller, M.; Vuik, C.

Publication date
2020
Document Version
Final published version
Published in
Proceedings of the 6th European Conference on Computational Mechanics

Citation (APA)
Hinz, J., Möller, M., & Vuik, C. (2020). Spline-based meshing techniques for industrial applications. In R.
Owen, R. de Borst, J. Reese, & C. Pearce (Eds.), Proceedings of the 6th European Conference on
Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th European
Conference on Computational Fluid Dynamics, ECFD 2018 (pp. 1033-1044). (Proceedings of the 6th
European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018
and 7th European Conference on Computational Fluid Dynamics, ECFD 2018). International Centre for
Numerical Methods in Engineering, CIMNE.
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

6th European Conference on Computational Mechanics (ECCM 6)
7th European Conference on Computational Fluid Dynamics (ECFD 7)

1115 June 2018, Glasgow, UK

SPLINE-BASED MESHING TECHNIQUES FOR
INDUSTRIAL APPLICATIONS

J. Hinz1∗, M. Möller 1 and C. Vuik1

1Delft University of Technology, Delft Institute of Applied Mathematics (DIAM) Mourik
Broekmanweg 6, 2628 XE Delft, Netherlands
{j.p.hinz*, m.moller, c.vuik}@tudelft.nl

Key words: Isogeometric Analysis, Elliptic Grid Generation, (Re-)parameterization

Abstract. Isogeometric Analysis (IgA) has become an accepted framework for the mod-
elling, simulation and optimization (MSO) of engineering processes. However, the fully
automatized generation of analysis-suitable parameterizations of geometries as they arise
in practical workflows is still a challenging task, which often requires application-specific
parameterization approaches.
In this article we present a practical approach [6] based on the principles of Elliptic Grid
Generation (EGG) for the efficient on-demand generation of analysis-suitable spline-based
parameterizations. Starting from a (point cloud) description of the boundary provided by
the existing MSO-pipeline, an inverse nonlinear Poisson-type problem is solved to obtain a
folding-free (planar) parameterization of the entire domain. The non-linearity is efficiently
treated with a globalized hierarchical Newton approach. Automatized boundary contour
reparameterization techniques are employed to improve the parametric properties from
a numerical viewpoint, such as orthogonal isolines and equally-sized cells. The use of
curved instead of straight-sided elements allows us to arrive at an accurate description of
the target domain with fewer elements and thus potentially lower computational effort.
Numerical experiments with screw-compressor geometries demonstrate that the proposed
algorithm reliably produces high-quality parameterizations typically within 3−4 Newton-
iterations, even in the presence of extreme aspect-ratios. This makes it particularly at-
tractive for the on-demand application within an automatized industrial MSO-pipeline.
To support the demands of modern high-performance computing hardware, only a moder-
ate number of sufficiently large and structured patches is generated which can be mapped
one-by-one to the different devices (CPUs/GPUs) with only little communication over-
head. Topology changes are avoided in time-dependent and shape-optimization settings.
Finally, the spline-based geometry description can be transformed into a classical mesh by
performing a large number of function evaluations in the mapping operator. Its continuous
nature allows for feature-based (structured and unstructured) refinement and arbitrary
element densities without increasing the complexity of the meshing process.

1

J. Hinz, M. Möller and C. Vuik

1 INTRODUCTION

Since the onset of Isogeometric Analysis (IgA) [7], spline-based parameterization ap-
proaches have received an increasing amount of interest. Generally, the CAD-pipeline
only provides a spline-description of the contours ∂Ω of the target geometry Ω, so the
goal is to generate a bivariate parameterization by appropriately selecting the inner con-
trol points of the mapping function x : Ω̂ → Ω. Upon completion, x is used to perform
a pull-back of the PDE into the computational domain where it is solved using stan-
dard FEM-techniques. Even though in our applications ∂Ω generally comes in the form
of a discrete point cloud input, a continuous contour description, as is mandatory in
IgA-applications, can be achieved by performing a regression with a p ≥ 2 spline-basis.
Besides yielding the many advantages of a continuous geometry description, this may
reduce the required amount of elements for an accurate approximation of Ω compared
to an (exact or approximate) linear fit of the input data. As a result, the minimal in-
ner element density is reduced, too. We are particularly interested in the application of

Figure 1: Rotary-screw compressor (Wikipedia, file: Lysholm screw rotors.jpg) (left) and
a cross section showing the rotor profiles with casing (right).

spline-based parameterizations to rotary-screw compressor geometries (see figure 1, left).
The 3D-geometry can be sliced into many planar geometries by taking cross sections (see
figure 1, right). They, in turn, can be parameterized in the plane and stacked in order to
retain a volumetric parameterization. The precomputed database of slices can be used to
generate volumetric parameterizations with a variable rotor-pitch. The steepness of the
rotor pitch can be controlled by a wider or tighter stacking of the slices. This enables
shape-optimization on the pitch-function.
The individual slices (in particular the fluid-part between rotors and casing) feature many
challenging characteristics such as tiny clearances and rapidly changing gap sizes. To the
best of our knowledge, there exist two commercial mesh generators: Twin-Mesh [10] and
SCORG [8], both operating with classical (i.e., straight-sided) structured grids.
While these software-packages reliably produce analysis-suitable classical grids, we prefer
spline-parameterizations since we have found their continuous nature to greatly facilitate
our pursuit for full automation of the MSO-pipeline. Even though most IgA parame-
terization methods rely on the minimization of a quality functional [5, 11], we utilize

2

J. Hinz, M. Möller and C. Vuik

a PDE-based approach that leads to a root-finding problem F(c) = 0 which can even
serve as an additional constraint within the shape-optimization formulation. As a result,
both the geometry generation and the solution of the PDE-problem can be tackled with
the same numerical technique (i.e., IgA), leading to a symbiosis of both processes and
reducing the software demands. Finally, the full system, comprised of quality-functional
optimization and root-finding, can be differentiated symbolically with respect to the shape
parameters. This facilitates the application of gradient-based optimization algorithms.
Outside of the IgA-context, the mapping x can be transformed into a classical (structured
or unstructured) mesh with arbitrary element density and/or feature-based refinement by
performing a large number of function evaluations. It can be used to produce grids with
elements whose number exceeds the cardinality of the spline-basis by several orders of
magnitude without adding to the computational costs of the meshing process.
The reader not familiar with the basics of (B-)spline functions is referred to [7]. In sec-
tions 2 to 6 we introduce the features of the algorithm, while in section 7, we will focus
on its applications to rotary-screw compressors.

2 ELLIPTIC GRID GENERATION

In order to produce analysis-suitable parameterizations for geometries Ω from no more
than a description of ∂Ω, we employ the technique of Elliptic Grid Generation (EGG).
Assuming Ω is topologically equivalent to the unit quadrilateral Ω̂ = [0, 1] × [0, 1], there
exists a bijective mapping x : Ω̂ → Ω that satisfies x|∂Ω̂ = ∂Ω. The goal of EGG is to
yield a PDE-based equation for x that guarantees its bijectivity while featuring favorable
parametric properties from a numerical perspective, such as evenly-spaced grid lines and
equally-sized cells. To this purpose, the Laplace equation is imposed on the components
of x−1, with x−1|∂Ω = ∂Ω̂. Denoting the free topological variables of x−1 = ξ(x, y) by the
tuple (ξ, η), the equation takes the form{

∆ξ(x, y) = 0
∆η(x, y) = 0

s.t. x−1|∂Ω = ∂Ω̂. (1)

Equation (1) is scaled and inverted to yield an equation for x(ξ) that is suitable for a
computational approach.The resulting equations read [1]{

L(x, y, x) = 0
L(x, y, y) = 0

s.t. x|∂Ω̂ = ∂Ω, (2)

where

L(x, y, z) = g22zξξ − 2g12zξη + g11zηη, (3)

with g11(x, y) = ‖xξ‖2, g12(x, y) = xξ · xη and g22(x, y) = ‖xη‖2.
The imposition of the Laplace equation on the entries of ξ(x, y) rather than x(ξ, η) follows
from the observation that the target space of ξ is always convex. As a result, the exact
solution of (2) is bijective [1]. Therefore, any sufficiently accurate computational approach
with the purpose of approximating x by a discretized mapping operator xh, also guarantees
the bijectivity of xh.

3

J. Hinz, M. Möller and C. Vuik

3 DISCRETIZATION

Traditionally, (2) is approximately solved using a finite-difference approach [9]. A col-
lection of grid points (ξi, ηj), (i, j) ∈ {1, . . . , n} × {1, . . . ,m} is selected from the unit

quadrilateral Ω̂, and the second order derivatives in (2) are replaced by a central approx-
imation. The objective of the numerical approach is to approximate x(ξi, ηj) ≡ xi,j. The
resulting nonlinear equations is tackled with a Picard-based iterative approach.To acquire
a (B-)spline-based description of our target geometry Ω, we could perform a spline-fit of
the parametric values (ξi, ηj) against the grid points xi,j. However, we have noted the
following shortcomings:

1. With p > 1 interpolation bases, bijectivity is often lost even though a p = 1 spline-fit
leads to a classical mesh without self-intersections.

2. The input point cloud or a piecewise-linear regression thereof dictates the amount
of unknown grid points and, by that, the complexity of the approach. Meanwhile,
the required amount of degrees of freedom (DOFs) for a very accurate spline fit to
the xi,j tends to be much lower.

Therefore, we would like to devise a numerical scheme in which the spline-fit is carried
out sooner rather than later in the process. To this purpose, we first discretize (2) with
a Galerkin-approach. We select a p ≥ 2 B-spline basis Σ = {w1, . . . , wn} with global
C1-continuity. Defining Σ0 = {wi ∈ Σ | wi|∂Ω̂ = 0}, the discretization is carried out as
follows:

∀wi ∈ Σ0 :

∫̂
Ω

wiL(xh, yh, xh)dξ = 0∫̂
Ω

wiL(xh, yh, yh)dξ = 0
, s.t. xh|∂Ω̂ ' ∂Ω, (4)

where xh = (xh, yh)
T denotes the approximation of x. Let I0 = {i ∈ N | wi ∈ Σ} and

I = {i ∈ N | wi ∈ Σ \ Σ0}; then xh takes of the following form:

xh =
∑
i∈I0

ciwi︸ ︷︷ ︸
unknown

+
∑
j∈I

djwj︸ ︷︷ ︸
known

. (5)

Here, the boundary control-points dj follow from the approximation of ∂Ω (see Section
4). The discretization from (4) leads to a nonlinear root-finding problem of the form
F(c) = 0, where the vector c contains the unknown inner control points ci.

4 CONTOUR APPROXIMATION AND CHOICE OF BASIS

As stated in Section 1, we are predominantly working with point cloud inputs. There-
fore, ∂Ω is only discretely available, which necessitates an exact or approximate spline-fit
to the data. Given the four input point clouds Pα = {piα}Iαi=1, α ∈ {s, e, n, w} corre-
sponding to each of the four sides of ∂Ω, we first select four monotone increasing se-
quences {ξiα}Iαi=1, α ∈ {s, e, n, w}, each starting on ξ̂1

α = 0 and ending on ξ̂Iαα = 1. Let

4

J. Hinz, M. Möller and C. Vuik

ms(ξ) = (ξ, 0), me(ξ) = (1, ξ), mn(ξ) = (ξ, 1) and mw(ξ) = (0, ξ). We select a coarse
initial basis Σ� and minimize the functional

R(∂Ω,d) =
1

2

∑
α∈{s,e,n,w}

Iα∑
i=1

∥∥xh(mα(ξiα))− piα
∥∥2

(6)

over the vector d = (. . . ,dj, . . .)
T , while constraining the corner control points to the

corners of the input point cloud to avoid mismatches. Unfortunately, the boundary l2-
projection from (6) tends to be unstable when a basis resulting from two arbitrary knot-
vectors is taken. This is usually a result of the local amount of DOFs exceeding the
amount of points. We stabilize (6) by adding a least-distance stabilization term, leading
to the following minimization problem:

1

2

∑
α∈{s,e,n,w}

(
Iα∑
i=1

∥∥xh(mα(ξiα))− piα
∥∥2

+ λ

∫
γα

(
∇̂x · t̂

)2

dξ

)
→ min

d
, (7)

where ∇̂ denotes the nabla-operator in local coordinates and t̂ the unit tangent vector. By
γα, we denote the subset of ∂Ω̂ that corresponds to side α. Here λ > 0 is a small penalty
term whose value should be chosen small enough to not noticeably alter the outcome of
(7) while avoiding instabilities.
The l2-projection residual can, in turn, serve as a local refinement criterion. Knots can
be added to the knot-vector(s) wherever the local residual exceeds the approximation
tolerance ε > 0. We recommend initializing the procedure with uniform knot-vectors
while halving the size of elements on which the residual is too large. This ensures that the
knots are not arbitrarily placed, which has several advantages that will become apparent
in Section 7.

5 COMPUTATIONAL APPROACH

Upon reaching the approximation tolerance ε > 0, we are in the possession of coarse
and fine bases Σ� and Σ with corresponding boundary control points. This leads to
two root-finding problems F�(c�) = 0 and F(c) = 0. An initial guess c0

� for the coarse
problem is constructed using transfinite interpolation [2]. The coarse problem F�(c�) = 0
is solved utilizing a truncated Newton-approach. Instead of performing the full Newton-
step after each iteration, it is truncated with a damping factor δ ≤ 1 whose optimal value
is estimated from the current and updated tangents and residuals. Upon convergence,
we are in the possession of the coarse-grid mapping operator x�. Its control points are
prolonged to Σ, and the discrepancy between the prolonged coarse grid boundary control
points and the di corresponding to xh ∈ span Σ is imposed as a Dirichlet boundary
condition to a linear-elasticity [3] problem acting on the prolonged coarse grid geometry.
Upon solution of the resulting linear system, the di coincide with the boundary control
points of the manipulated coarse grid mapping. Its inner control points then serve as an
initial guess for the fine-grid root finding problem F(c) = 0.
In practice, the nonlinear coarse-grid problem typically converges within 4− 6 iterations,

5

J. Hinz, M. Möller and C. Vuik

Figure 2: Planar cross section of the twin-screw setup and the aimed-for topology

whereas the fine-grid problem requires only 2− 3 iterations. For more information about
the solution process, see [6].

6 PARAMETRIC MATCHING

In Section 4, we discussed how the input data is fit to the employed spline-basis. Given
an input point cloud Pα = {piα}Iαi=1, we have to select the corresponding parametric values
{ξiα}Iαi=1. By default, they are chosen as a cord length parameterization corresponding to

Pα, which shall henceforth be denoted as C(Pα) = {ξ̂iα}Iαi=1. In the presence of extreme
aspect ratios (narrow gaps), however, we have found a naive cord length parameterization
to lead to unsatisfactory results.
Let Pα and Pβ be two input point clouds corresponding to opposite sides. Whenever
a tuple of points (piα,p

j
β) ∈ Pα × Pβ is close (in terms of Euclidean distance), it is

important that the same parametric value is assumed on both sides. Therefore, we ap-
ply the matching algorithm proposed in [6]. Upon completion, we are in the posses-
sion of a number of matching tuples Im = {(i, j) | piα and pjβ have been matched} with

{(0, 0), (Iα, Iβ)} ⊆ Im. We assign the parametric value ξ̂iα to index j whenever (i, j) ∈ Im.

For the best result, we match ξ̂iα with the parametric value ξ̂jβ. This leaves us with the

set Iξ = {(ξ̂jβ, ξ̂iα) | (i, j) ∈ Im}. Finally, we use a cubic monotone interpolation [4] of

the matched ξ̂jβ versus the corresponding ξ̂iα and evaluate it in the {ξ̂iβ}
Iβ
i=1 to yield the

{ξiβ}
Iβ
i=1.

7 APPLICATIONS

As stated in Section 1, we would like to apply the discussed techniques to the geometry
from figure 1 (right), which represents a cross section of a rotary twin-screw compressor,
where the two rotors are counter-rotating and form a very small gap in the middle cham-
ber. It should be noted that the rotors never touch so that the physical topology does not
change over time. Our goal is to automatically create multi-patch parameterizations for
all cross sections, all having the same topology, namely the one in figure 2 (left). Figure 2
(right) reveals that, besides the input boundary contours, we require two curves for each
CUSP-point, connecting them to both rotors. The resulting region shall henceforth be
referred to as the separator. The dotted splitting-curve that divides the separator into

6

J. Hinz, M. Möller and C. Vuik

two parts constitutes the final ingredient.
Thanks to rotational symmetry, the starting point is again reached after a rotation of
θ = π/2 instead of 2π on the left rotor. In the following, θ will always refer to the rota-
tion angle of the left rotor such that the tuple (θl, θr) is given by (θl, θr)(θ) =

(
θ,−2

3
θ
)
. Let

m be the number of (uniformly spaced) discrete angles from the interval [0, π/2] at which
we aim to parameterize the target geometry. We first generate two O-grids of the separate
rotors with casing at all m discrete angles. We start by generating cord-length parame-
terized exact spline-fits for both rotor (Rr, Rl) and casing (Cl, Cr) point clouds, denoted
by cl,r(ξ) and rl,r(ξ), respectively. The functions cl,r and rl,r are then evaluated in N
equally-spaced points over the parametric interval [0, 1]. The resulting point clouds serve
as an input for the parametric matching procedure discussed in Section 6. Keeping the
parametric properties of the casing unchanged (i.e., the casing corresponds to Pα in Sec-
tion 6), the matching algorithm produces reparameterization functions ξ′l,r : [0, 1]→ [0, 1]
that improve the parametric properties at the narrow gaps. If N is small, the match-
ing will be cheap but the result will be worse while the converse holds for N large. At
θ = 0, the functions cl,r and rl,r are evaluated at n uniformly-spaced points {ξi}ni=1. This
serves as to improve the stability of the contour approximation (see Section 4). Unlike
the original input point clouds, which stem from external tools and cannot be controlled,
the points will be roughly equally-spaced. By Pα, we denote the tuple of input points
with corresponding parametric values for side α. The contour approximation is initialized
with the coarse basis Σ� possessing a periodic knot-vector in the η-direction with left and
right point clouds

left:

{
Pw =

(
{rl(ξi)}ni=1 , {ξ′l(ξi)}

n
i=1

)
Pe = ({cl(ξi)}ni=1 , {ξi}

n
i=1)

right:

{
Pw = ({cr(ξi)}ni=1 , {ξi}

n
i=1)

Pe = ({rr(ξi)}ni=1 , {ξ′r(ξi)}
n
i=1)

.

(8)

For O-grids we disregard Pn and Ps and do not add any further constraints.
For angles θ 6= 0, we act with the canonical rotation matrix on the control points of the
rl,r. Let

al,r = (ξ′)
−1
(
θl,r
2π

)
(mod 1) (9)

and

ξ̃l,r(ξ) = ξ ∓ al,r (mod 1). (10)

In order to retain the same parametric properties as for θ = 0, we form the new rotor
point clouds by evaluating {(rl,r◦ ξ̃l,r) (ξi)}ni=1 and assigning to them the parametric values

ξil,r =
(
ξ′l,r ◦ ξ̃l,r

)
(ξi)−

(
ξ′l,r ◦ ξ̃l,r

)
(0) (mod 1), i = 1, . . . , n (11)

(see figure 3). The casings are kept unchanged.
As a result, the grid is held fixed at the casings while the rotors slide along (see figure

7

J. Hinz, M. Möller and C. Vuik

Figure 3: For θ 6= 0, the reparameterization function needs to be shifted.

Figure 4: The grid is attached to the casings (black) while the rotors slide along (red).

4). This way, we avoid a sliding interface within the separator region of figure 2 (dotted
red line). With the principles of Section 5, a mapping for the first 6 angles is computed.
Upon completion, the mappings of the previous 6 angles are prolonged to one unified
knot-vector and used to build a 5-th order extrapolation for the current angle. The ex-
trapolated mapping is restricted to the current knot-vector and the inner control points
are taken as an initial guess for the root-finding problem at the current angle.
Upon completion, we are in the possession of m mappings for the separate rotor O-grids.
If not yet present, p+ 1 knots are added to the O-grids at the η-values that correspond to
both CUSP-points. In this way, the O-grids are each split into two parts, one of which is a
C-grid (see figure 5 left). Cutting the O-grid along the parametric lines in the ξ-direction
(assuming the O-grid is bijective), ensures that the resulting curve never intersects with
the rotor contour a second time (which could not be prevented else since the rotor con-
tours do not fence off a convex region). The other pieces originating from the cut are
turned back into a uniformly-spaced point cloud and combined into one boundary point
cloud that serves as an input for the separator (see figure 5 right). As a result, we are
in the possession of m boundary contour descriptions for the separator at each discrete
angle. Choosing some 1 < k � m, we again run the matching algorithm from Sec-
tion 6 for each k-th contour, yielding the reparameterization functions ξ′i, i = 1, k, . . . ,m
(keeping, for instance, the left side fixed). Upon completion we construct a global repa-
rameterization function ξ′ : [0, 1] × [1,m] → [0, 1]. This is accomplished by imposing
ξ′(ξ, i)|i=j = ξ′j,∀j ∈ {1, k, . . . ,m}, while smoothly interpolating the ξ′i for the remaining
angles using smooth blending functions. We do not build a reparameterization function at
each discrete angle due to its discrete nature: since the algorithm is based on the matching
of points, consecutive contours may have a different matching pattern and can therefore
exhibit quite different parametric properties. Since we would like to achieve some degree

8

J. Hinz, M. Möller and C. Vuik

Figure 5: The two separate O-grids are each cut into a C-grid and the remaining part
between the CUSP-points (left). Combining the remaining rotor parts with the cuts yields
a boundary description for the separator (right).

of continuity in the angle θ, we overcome this downside by blending the discrete data.
As a next step, we compute parameterizations for each k-th geometry using the reparam-
eterization function ξ′ in conjunction with the principles of Section 5. Upon completion,
our database is partially filled with parameterizations. These parameterizations, in turn,
are prolonged to one unified knot-vector after which a 5-th order interpolation of the
control points is performed in θ. As in the case of the O-grids, we build an initial guess
for the remaining geometries by restricting the inner control points of the interpolation
function to the current knot-vector and combining them with the corresponding boundary
control points.
The boundary elements of the separator parameterizations formed this way are not con-
forming to the boundary elements of the two C-grids. To simplify the implementation of
the solution coupling between the different patches, we favour the two parameterizations
along a shared interface to be the same. Furthermore, the separator is parameterized by
only one patch with global C≥1-continuity. We would like to parameterize it using two
patches with a C0-continuity by the CUSP-points.
Therefore, we generate separating curves that split the separator into two parts (dotted
red line in figure 2). We walk across the domain from the local counterpart of one CUSP-
points to the other, leaving a splitting curve in our wake. Thanks to the continuous nature
of our geometry description, this does not have to be a straight line but can be any non
self-intersecting curve. The curve is selected such that its image passes the small gap in
the middle with equal distance to the two rotor profiles. Upon completion, we are in the
possession of m splitting-curves. They, in turn, are combined with the separator contours
to form two new contours for the two-patch parameterization of the separator for each
discrete angle.
Again, the parametric values assigned to the input point clouds are based on the princi-
ples of Section 6 while keeping the splitting curve arc-length parameterized in both cases
(to ensure that the elements on the left and on the right side are conforming). Finally,
a database of parameterizations for both sides of the separator are computed using the
same approach as for the single-patch parameterized separator.

9

J. Hinz, M. Möller and C. Vuik

(a) The two C-grids at θ = θ1. (b) The two C-grids at θ = θ100.

Figure 6

8 RESULTS

With the principles of Section 7, we generate parameterizations for m = 200 discrete
angles θi. After the first 6 parameterizations have been completed, extrapolation reduces
the amount of iterations required until convergence to only one. Figure 6 shows the C-
grids acquired upon cutting the O-grids after θ = θ1 and θ = θ100. As a next step, we
generate single-patch parameterizations of the separator for every 5-th (k = 5) discrete
angle and build an interpolation function that serves as an initial guess for the remaining
angles. In our experience, the algorithm typically converges after one iteration with a
maximum of two.
Figure 7 shows the C-grids with the single-patch separator and the computed splitting-
curve at θ1 and θ100.
Finally, figure 8 shows the two-patch parameterization of the separator along with its
parametric properties by the splitting curve.

9 CONCLUSION

In this article, we have presented a PDE-based method for the parameterization of com-
plex geometries using C≥1-continuous spline-functions. We have successfully applied it to
a planar rotary-screw compressor geometry, being able to parameterize it for 200 discrete
angles from the interval [0, π/2] (after which the initial position is reached again). This
shows that the algorithm is particularly well-suited to handle the challenging features of
geometries of this type, including extreme aspect-ratios. Furthermore, it is worth not-
ing that the parameterization (apart from setting input parameters) did not require any
manual interaction, making it a promising approach for the fully automated parameter-
ization of rotary-screw type geometries. On the other hand, figure 8 reveals that there
still exist elements with steep angles at the interface between separator and C-grids. We
may conclude that the properties of the splitting-curve have to be optimized further in
order to make a trade-off between the steepness of the angles at the C-grid to separator
interface and the angles made at the two-patch separator interface.
The feasibility of the approach is significantly improved by database-driven inter- and
extrapolation principles, owing largely to the continuous nature of nested spline-spaces.
Furthermore, the generation and subsequent optimization of the splitting-curve was made

10

J. Hinz, M. Möller and C. Vuik

(a) The 3-patch parameterized geometry at θ = θ1.

(b) The 3-patch parameterized geometry at θ = θ100.

Figure 7

(a) The conforming two-patch separator. (b) A zoom-in on the narrow part.

Figure 8

11

J. Hinz, M. Möller and C. Vuik

possible by their powerful properties.
Finally, it remains to mention that the proposed computational approach is not limited
to rotary-screw compressor geometries but may serve as a general parameterization tool
for similar settings, particularly in those that require the generation of a large number of
mappings.

10 ACKNOWLEDGEMENTS

This project (MOTOR) has received funding from the European Unions Horizon 2020
research and innovation programme under grant agreement No 678727.

REFERENCES

[1] B. N. Azarenok. Generation of structured difference grids in two-dimensional non-
convex domains using mappings. Computational Mathematics and Mathematical
Physics, 49(5):797–809, 2009.

[2] S. A. Coons. Surfaces for computer-aided design of space forms. Technical report,
DTIC Document, 1967.

[3] R. Falk. Finite element methods for linear elasticity. 1939, 01 2008.

[4] F. N. Fritsch and R. E. Carlson. Monotone piecewise cubic interpolation. SIAM
Journal on Numerical Analysis, 17(2):238–246, 1980.

[5] J. Gravesen, A. Evgrafov, D.-M. Nguyen, and P. Nørtoft. Planar parametrization
in isogeometric analysis. In International Conference on Mathematical Methods for
Curves and Surfaces, pages 189–212. Springer, 2012.

[6] J. Hinz, M. Möller, and C. Vuik. Elliptic grid generation techniques in the framework
of isogeometric analysis applications. Computer Aided Geometric Design, 2018.

[7] T. J. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: Cad, finite
elements, nurbs, exact geometry and mesh refinement. Computer methods in applied
mechanics and engineering, 194(39):4135–4195, 2005.

[8] SCORG. Screw compressor rotor grid generator. http://pdmanalysis.co.uk/

scorg/. [Online; accessed 2018-03-24].

[9] J. F. Thompson, B. K. Soni, and N. P. Weatherill. Handbook of grid generation.
CRC press, 1998.

[10] Twin-Mesh. Twin-Mesh Software. https://www.twinmesh.com/. [Online; accessed
2018-03-24].

[11] G. Xu, B. Mourrain, R. Duvigneau, and A. Galligo. Parameterization of computa-
tional domain in isogeometric analysis: methods and comparison. Computer Methods
in Applied Mechanics and Engineering, 200(23):2021–2031, 2011.

12

