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Summary

This thesis report presents a concept methodology to quantify the energy release associated with strain
bursting in underground excavations based on the size of the failed zone and the elastic strain energy stored
in the rock mass prior to failure. A strain burst implies potential harm to people and machinery and may
lead to economic loss. An increased understanding of the amount of released energy rock support systems
are subjected to allows for more convenient excavation design and risk mitigation.

Rock tunnels subjected to high in situ stresses may host strain bursts, a stress induced failure mechanism
where elastic strain energy is released with the failing rock through the violent ejection of fragments. As it
is often not practicable to prevent the occurence of strain bursts mitigation measures are required so that
the consequences can be kept at an acceptable level. This means that the energy released with the failing
rock has to be dissipated by a rock reinforcement system (e.g. rock bolts and steel wire mesh) to obtain a
stable situation after a burst. To date quantification of the released kinetic energy (Etot) is assessed based
on the equation Etot = 1

2mrockv
2
e , in which mrock is the mass of the ejected rock and ve the ejection velocity.

Because ve is squared in this formulation Etot is most dependent on this parameter. Therefore, effords were
made to back calculate its quantity from the trajectory of ejected rock (Tannant et al. (1993)). It was found
that burst damage becomes evident if the ejection velocity exceeds 3m/s, is most likely to be in the range
of 4 − 6m/s but can be up to 10m/s for small rock fragments. This large variety makes approximation of
the total energy release uncertain and implies a need for an alternative method to assess energy release
associated with strain bursting.

According to the methodology proposed in this thesis the total energy release is calculated as: Etot = E1V .
In this formulation E1 equals the energy release per unit of failing rock and V the volume of failing rock. In
order to investigate this approach case studies from Sweden, China and Peru were selected to get realistic
input parameters of conditions in which strain bursts occur (e.g. stress state, excavation geometry, rock
mass strength).

The energy release per unit of failing rock is determined by the surface under the elastic share of the stress
strain curve in a unconfined compressive strength (UCS) test up to the loading rate corresponding with the
in situ strength. When elaborating data from test tunnels presented by Martin et al. (1999) it showed that
the in situ strength amounts approximately 40% of the UCS. A major advantage of the proposed approach
is that the energy release is a function of just the UCS and the stiffness Emod of the rock mass, parameters
that are relatively easy to derive.

Support systems consisting of (dynamic) rock bolts and steel mesh are considered most effective in burst
prone conditions. Therefore steel mesh and a bolting pattern of 1m× 1m using split-set, rebar and D-Bolts
were considered to study the response of the support system to dynamic loading from strain bursting.
An analytic analysis of the convergence-confinement equilibrium for burst prone rock masses was set
up. It showed that because of the low stiffness and support pressure derived from such support systems
the only purpose it serves is retaining the failed rock by dissipating the released energy. Because mesh
supplies so called ”loose retention” the rock mass will shift before being retained. This makes it uncertain
whether there is a support stress from the failed rock on the intact rock. Therefore the depth of failure from
an unsupported excavation is considered a proper estimator for the depth of failure in a supported excavation.

To assess the size and geometry of the localised failed zone by means of numerical analyis the methodology
as proposed by Martin et al. (1999) was adopted. Based on this approach the depth of failure in unsupported
excavations can be derived using the generalised Hoek-Brown failure criterion with m = 0 and s = 0.11
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assuming linear elastic material behavior. A major advantage of this approach is that the geometry of the
failed zone is approximated as a part of the solution. This allows for assessment of sufficient bolt length,
and the number of bolts that are considered responsible for stabilising the failing rock mass (nbolt). With
the dynamic performance (e.g. Energy Dissipation Capacity, EDCb) of the bolts being approximated from
lab tests, deriving the dynamic performance of the system as a whole is a very straight forward exercise.
The factor of safety (FOS) in engineering design can be calculated according to:

FOS = nboltEDCb/Etot (1)

It is suggested in recent publications that for excavations made by means of drilling and blasting the in
situ strength may be underestimated because stress concentrations are more localised increasing the overal
brittle strength of the rock mass (e.g. Cai and Kaiser (2014a)). Case studies of underground excavations
where strain bursts occured are adopted to get an understanding of the setting in which such events happen
(excavation geometry, stress state and rock mass properties). The results from all these cases show that the
total energy release decreases with an increasing in situ rock mass strength σf . This means that a potential
underestimation of the in situ strength when an excavation realised by means of drilling and blasting is
considered leads to a conservative assessment with regard to the total released energy.

In order to verify whether the output of the alternative method is satisfactory, or in short ’makes sense’, the
output of the analysis is compared with a physical quantity that is measured: the ejection velocity ve. For all
cases, with an in situ strength ranging from 40−60% of the UCS, ejection velocities were back calculated and
values ranging from 3.3−7.1m/s were found, which is in good agreement with the measured ejection velocities.
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Symbol Definition Unit

Greek letters
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-
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Chapter 1

Introduction

There is a large interest in understanding the behavior of underground excavations through massive rock
masses subjected to high in situ stresses. In such a setting stress induced failure mechanisms, such as
strain bursting, may be triggered. In a tunnel or mine drift this violent failure mechanism is the result of
accumulated elastic strain energy that is released from the rock mass after excavation through the ejection
of fragments. In underground operations a rock burst implies a danger to people and machinery, may cause
downtime and potential economic loss.

When excavating highly stressed rock masses it is often not practicable to prevent the occurrence of a rock
burst. In such cases mitigation measures that keep the consequences at an acceptable level are required. Rock
bursting is associated with energy release from the rock mass when failure occurs, which means that sufficcient
energy dissipation by the reinforcement system has to take place in order to obtain a stable situation after
failure. At this moment measures are available to mitigate the consequences of strain bursting. For example
dynamic rock support is already applied in some burst prone settings (e.g. D-bolt in the Kiruna mine,
Sweden, Li (2010)).

1.1 Problem Definition

Currently the recommended way to assess energy release associated with strain bursting is based on the
kinetic energy of the ejected rock mass, according to: Etot = 1

2mrockv
2
e (e.g. Kaiser et al. (1996)). From test

results a large variety in ejection velocities are found, which leads to difficulties when selecting appropriate
input parameters. Also, assessment of the mass of rock that is involved in the burst event is up to the
engineering judgment of the person designing the excavation. From a physical point of view the stated
relationship to derive the energy release is not considered wrong, but the derivation of the input parameters
(mrock, ve) is very unsatisfying.

1.2 Research Question

In this research an alternative method to approximate the energy release is proposed, based on the energy
release per unit of failing rock (E1) and the volume of rock (V ) involved with failure (Etot = E1V ). From
this the following research questions follow:

• Can input parameters for this proposed method be derived, and how?

• Is the derivation procedure for the input parameters convenient?

• Is the outcome of energy release assessment satisfactory when using the proposed method?

• How can the proposed method be implemented in support design and excavation design?

1.3 Hypothesis

A method to approximate the energy release during strain bursting based on the volume of failing rock and
the energy release per unit of failing rock will allow for better assessment than based on Etot = mrockv

2
e . The
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Chapter 1. Introduction

size of the failed zone and the energy release at failure are a function of the depth of failure when a burst
occurs, the stress strain behavior of the rock and the in situ strength of the rock mass. These parameters
can be quantified with sufficient accuracy using currently available methods and knowledge to allow for
(preliminary) assessment of the total energy release.

1.4 Definition of Strain Burst

When consulting different literature sources, various definitions on strain bursting are found. Examples of
definitions are: ”Violent spalling with ejection of fragments” - Ortlepp and Stacey (1994), ”A sudden and
violent failure of overstressed rock resulting in the instantaneous release of large amounts of accumulated
energy” - Whyatt et al. (2002), ”Strain bursting is the violent rupture of a volume of wall rock under high
stress (...) it is the instability created by the formation of paralell and thin spall slabs that provides for the
sudden energy release” - Diederichs (2007). Spalling is described by Fairhurst and Cook (1966) as tensile
splitting parallel to the major principal compressive stress.

Summarizing these definitions the following becomes clear:

• Strain bursting is associated with brittle spalling.

• The release of energy that is associated with a strain burst is causing the failing rock mass to be ejected
from the excavation boundary into the drift or tunnel.

• The development of a strain burst is a sequential process that starts with the formation of spall slabs
and eventually followed by failure of these slabs.

Simply adding up the different elements presented in these definitions gives a proper but elaborate definition
of a strain burst: ”A failure event that originates from an highly stressed rock mass in which tensile splitting
has taken place after which the accumulated strain energy is suddenly released from a formed slab through
ejection into the tunnel.” A visual representation of this mechanism is given in Figure 1.1.

Figure 1.1: Development of strain burst failure (from: Qiu et al. (2014))

A characteristic of rock masses is that the quality tends to increase with depth, which means in practice that
they become more massive (Martin (1994)). In the research described in this thesis massive rock masses
in high stress conditions are considered, as they tend to facilitate spalling and strain bursting (Broch and
Sørheim (1984)).

Two forms of rock burst can be distinguished in practice, being strain bursting and fault slip type bursts.
Only the prior is considered in this research. In the case of a fault slip rock burst energy is released when
shear slip occurs along a fault, causing damage to an excavation situated at a distance from the slipping
fault (Ortlepp and Stacey (1994)).
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Chapter 2

Theoretical Background

This chapter presents an overview of the theory on which this research is based. When a more elaborate
explanation is given in an appendix, a reference is stated.

2.1 Rock Mass Failure

In underground excavations through rock generally two modes of failure can be identified, being structurally
controlled failure (e.g. wedge failure) and stress induced failure (e.g. shear failure and spalling). Stress
induced failure of brittle and moderately jointed to massive rock masses (GSI 70) loaded in compression
will occur in the form of spalling (Diederichs (2007)). According to Kaiser (2006) the dominant mode of
failure depends on the ratio between the maximum tangential stress around the underground opening (σθ)
divided by the uniaxial compressive strength (UCS) of the intact rock (σci). This ratio is denoted using the
dimensionless stress level parameter SL, as shown in Equation 2.1.

SL =
σθ
σci

(2.1)

Stress induced failure starts to be the dominant failure mechanism rather than structurally controlled failure
when SL & 0.8. When SL & 1.15, stress induced failure is commonly the critical failure mechanism. Strain
burst, being a violent form of spalling, is associated with high stress levels (Palmström (1995)).

Failure of brittle rocks in compression is characterized by a sudden drop in mobilised strength. Linear elastic
brittle plastic (LEBP) behavior as opposed to linear elastic perfectly plastic (LEPP) behavior is displayed in
Figure 2.1. The residual strength of a failed brittle rock mass is a function of the confinement the failed rock
experiences. This topic will be discussed in detail later in this chapter. When failed rock does not experience
confinement (e.g. UCS testing or unsupported excavation) the residual rock mass strength is zero.

Figure 2.1: LEPP and LEBP behavior (from: Sharan (2003))
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Chapter 2. Theoretical Background

Before excavation an in situ stress is acting on a rock mass at a certain depth. After excavation the rock mass
is subjected to a compressive tangential stress (σθ = σ1) parallel to the excavation boundary in combination
with no confining radial stress (σr = σ3 = 0) when the excavation is unsupported. For example, when
considering a hydrostatic in situ stress σh = σv = p, a circular excavation and plain strain conditions, the
tangential stress σθ equals two times the in situ stress (Figure 2.2, see Appendix C). It is because of this
stress state that the behavior of brittle rocks in UCS testing is of major importance to understand the in situ
behavior of a brittle rock mass close to the excavation boundary in high stress conditions after excavation.

Figure 2.2: Stress distribution elastic material behavior, note: a = ri, (from: Brady and Brown (2007), adjusted)

In order to understand the behavior of brittle rock in compression, it is important to comprehend that
processes in which tensile cracks are formed play a major role. The boundaries between grains are flaws or
micro defects, and act as zones of weakness from where tensile cracks will start to form when rock is loaded
in compression (Griffith (1921)). The occurrence of tensile forces at a grain boundary under compressive
loading is visualized in Figure 2.3.

Figure 2.3: Tensile stresses in rock under compressive loading (from: Hoek and Martin (2014))

Cracks start to form when the compressive stress in a rock mass is sufficiently high. It is well documented
that the in situ crack initiation stress in brittle rock masses corresponds with the crack initiation stress
in UCS testing and amounts 30-50% of the UCS of an intact rock sample (Goodman (1989), Diederichs
(2007), Hoek and Martin (2014), Cai and Kaiser (2014b) and Appendix A). In the crack initiation stage
the cracks are formed randomly and are mostly separated from each other (Eberhardt et al. (1998)). When
compression increases the cracks start to propogate, which tends to happen in the direction parallel to the
major principal stress (Hoek and Bieniawski (1965)). When in the roof or wall of a tunnel tensile cracking
occurs on a micro scale, the formed cracks can develop to a macro scale causing the formation of rock slabs
parallel to both the major principal stress and excavation boundary (Fairhurst and Cook (1966)). Failure
of the formed slabs is referred to as spalling. When considering the definition of strain bursting presented
in chapter 1 the phenomenon is referred to as a form of violent spalling. When cracks have formed in the
rock mass, it can still carry loads paralell to the formed slabs Diederichs (2007). When stresses built up
in the slab sudden and violent failure can occur as the result of buckling: a strain burst. The sequence
of tensile cracking, slab formation and slab buckling is displayed in the introduction of this report (Figure 1.1).

As opposed to strain bursting non violent failure of spall slabs may occur as well, when lower stresses
accumulate prior to failure. This is referred to as slabbing (Li (2017b)). An example of mild spalling in
a hard and massive rock mass is shown in Figure 2.4. If an underground excavation is subjected to a non
hydrostatical in situ stress state the damaged area tends to develop along the direction of minimum principal
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in situ stress due to stress concentrations, resulting in the characteristic triangular shaped failed area like
displayed in Figure 2.4.

Figure 2.4: Mild spalling of wall rock in a raise boring shaft (from: Hoek and Brown (1980b))

2.2 Modeling Spalling Behavior

Strength criteria such as the Mohr-Coulomb (MC) and Hoek-Brown (HB) failure are based on the idea that
the ultimate strength of rock is a function of a cohesive and the frictional component. Both criteria are
not elaborated in this chapter but an explanation can be found in Appendix B. The MC criterion is based
on c and φ denoting the cohesion and friction angle respectively. The Hoek-Brown failure criterion is an
emperical strength criterion based on a large set of tensile, uniaxial and triaxial test data on different rock
types and describes the ratio between the principal stresses σ1 and σ3 at failure (Hoek and Brown (1980a),
Appendix B). As a consequence the parameters s and m are also empirical and unitless. However, s and m
are often referred to as the HB version of the frictional and cohesive parameter respectively. This is because
s determines whether the rock has a tensile strength capacity and m determines the slope of the failure
envelope (Equation 2.2). Both the MC and HB failure criterion are explained in detail in Appendix B.

σ1 = σ3 + σci

(
m
σ3
σci

+ s

)a
(2.2)

When using the MC or HB criterion it is indirectly assumed that the cohesive and frictional component of
the rock mass strength are simultaniously available, which is not in agreement with the behavior of rock
masses that fail through spalling. This is because cracking of rock is considered a loss on internal cohesion
whereas the frictional component does not play a significant role in this process leading to spalling failure
(Martin et al. (1999)). Since the frictional strength of brittle rock masses is not mobilised in situ, the
original HB peak strength envalope is suppressed in low confinement conditions (Figure 2.5). After failure
the broken rock is expected to behave as a rock fill with a certain friction angle but all internal cohesion is
lost (Hoek and Brown (1997)).

Crack propagation and therefore in situ spalling behavior is limited by the so called spalling limit, denoted
by the point where the in situ strength envelope starts to bend towards the original HB peak strenght
envelope. This is due to the fact that crack propagation at higher degrees of confinement is suppressed. At
higher degrees of confinement a stress state compared to the stress state in a triaxial test setting is obtained,
which causes the rock mass to fail through shearing.

In order to find the in situ peak strength of brittle rock masses case studies on different excavations were
studied and summarised by Martin et al. (1999). A data set is compiled out of observations from several
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Figure 2.5: In situ failure mechanism brittle rock mass, solid line = origininal HB peak strength envalope, dashed
line = in situ HB peak strength envalope brittle rock mass, σc = σci, (from: Diederichs (2003))

unsupported (test) tunnels in which spalling occurred (Kaiser et al. (1996), Kirsten et al. (1979), Jiayou
et al. (1989), Martin et al. (1989), Ortlepp and Gay (1984), Pelli et al. (1991) and Stacey (1977)). When
the depth of failure with respect to the tunnel radius is plotted as a function of the maximum tangential
stress at the excavation boundary σθ,max over the UCS (σci) the image presented at the left hand side of
Figure 2.6 is obtained.

Figure 2.6: (L) Relation depth of failure and stresses. (R) Approximation based on proposed HB elastic parameters.
(Note: x = σmax/σci, σc = σci, σθ,max = σmax and a = ri) from: Martin et al. (1999))

From Figure 2.6 it can be derived that stress induced damage at the excavation initiates (Rf/ri = 1) when
σθ,max ≈ 0.4σci. An approach to assess the depth of failure in spalling tunnels using the Hoek-Brown failure
criterion is presented below.
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2.3. Localised Failure

As discussed the process of spalling is dominated by the cohesive strength of the rock mass. In line with this
observation m, earlier described as the HB version of the friction angle φ, is taken to be 0. With this m value
the expression for the peak strength of the rock mass (Equation 2.2) becomes as displayed in Equation 2.3.
As suggested earlier the unconfined strength (σ3 = 0) amounts approximately 40% of σci, this corresponds
with s = 0.16.

σ1 =
√
sσci + σ3 (2.3)

From a hypothesis stated and researched by Cai and Kaiser (2014a) and Guo et al. (2016) it follows that
the aforementioned derivation of the in situ strength underestimates the brittle strength of tunnels and
drifts excavated by means of drilling and blasting. Due to the rough excavation surface as the result of over
break the stress concentrations at the excavation boundary will be local, rather than along a certain stretch
of a smooth excavation boundary. This discontinuous stress state causes tensile cracks under compressive
loading to be formed only locally, while a higher stress is required to cause brittle failure on a larger scale
(spalling). As a result, tunnels excavated by means of drilling and blasting can have a higher in situ strength
than would be predicted based on current practice. This hypothesis is discussed in chapter 5.

When LEBP rock mass behavior is applied, like in the analytic analysis in this thesis research, the residual
frictional strength is a function of the confinement the failed rock experiences. Crowder and Bawden (2004)
present guidelines suggested by Hoek on the resedual strength of brittle rock masses. As discussed it is
assumed that there is no cohesion in failed brittle rock. In line with this the residual cohesion sr = 0, and the
residual frictional strength parameter mr is proposed to be put to 1. This assumed value for mr is introduced
by Hoek et al. (2000) and according to the author an educated guess based on the thought that the internal
cohesion is lost in combination with a strong reduction of the m with respect to the value of mi due to the
fact that the rock has failed (e.g. for quartzite, mi = 20± 3, Figure B.4). Because the UCS of intact rock is
used in the residual strength criterion, mr being reduced value with respect to m should be looked at as a
’penalty’ given to the failed rock mass (see Appendix B). With these mr and sr values the expression for the
residual strength of the rock mass (Equation 2.2) becomes as displayed in Equation 2.4. An example plot of
the peak and residual strength envelope are given in the model output presented in Figure 4.5.

σ1 = σ3 + σci

(
σ3
σci

)a
(2.4)

2.3 Localised Failure

When the in situ stress state is not hydrostatic failure is localised and the analytic models cannot be applied.
Efforts were made by the author to implement LEBP material behavior in numerical finite element models
(FEM), but without success. A discussion on the shortcomings of the obtained trial results is presented in
chapter 5.

Alternatively numerical models based on purely elastic rock mass behavior were set up trying to find a
value for the cohesional strength s corresponding with the closest fit so that the depth of failure could be
approximated. It was found that the depth of failure could be approximated reasonably well when a value
of 0.11 is adopted for s (Figure 2.6, right hand side). The corresponding failure envelope with these input
parameters is shown in Figure 2.7.

When using the proposed values for s and m the size and geometry of the damaged or plastic zone around
an excavation is not the same as that of the zone involved when spalling or strain bursting occurs, but does
describe the depth of failure (Figure 2.8). Only in the exceptional theoretical case of a circular excavation
through a homogeneous massive rock mass subjected to a hydrostatic in situ stress state the failed zone is
formed around the entire excavation.
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Figure 2.7: (L) Failure envelope generalised HB with s = 0.11 and m = 0 (from: Martin et al. (1999)) (R) Linear
stress strain behavior

Figure 2.8: Damage and failure zone as a function of principal stress ratio K0 (from: Martin et al. (1999))

As shown in Figure 2.8 the size and geometry of the failed zone are derived as a part of the solution. However,
the amount of rock involved in a strain burst is denoted as a volume V . This volume is derived based on the
surface area of the failed zone (A) in combination with the out of plane bolt spacing sl, which determines
the length of the section along the tunnel to be supported by an in plane row of bolts (Equation 2.5). This
means that the calculated volume is not the absolute volume of failing rock but the volume of failing rock
which is supported by a single row of bolts. Bolt types and the assumed bolt spacing are introduced later in
this chapter.

V = Asl (2.5)
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2.4. Energy Release at Failure

2.4 Energy Release at Failure

In a lab setting a stress-strain curve will be obtained when conducting a UCS test on a cylindrical rock
sample. The amount of energy consumed per volume of rock material is equal to the surface under this curve
up to that point (deformation from point A to point B on the curve, according to Equation 2.6 and Figure 2.9).

E1 = α

∫ B

A

σ(ε)dε (2.6)

Deformation can be either elastic (reversible) or plastic (permanent) and during testing of a rock sample
both will occur. Elastic energy can be described as a form of spring energy that is released when the rock
fails in a brittle manner.

Lee et al. (2004) state that from intact volcanic and metamorphic rocks little plastic behavior is obtained
when conducting a cyclic uniaxial compressive test. This is confirmed by Li (2017b), stating that
approximately 90% of the deformation is elastic and recoverable at failure of such rock types. A consequence
of this observation is that the primary loading curve and unloading curve roughly overlap prior to failure.
From this it is assumed that the modulus of elasticity Emod of the material can be approximated from the
primary loading curve (Martin (1994)).

Figure 2.9: Energy released per unit of brittle failing rock (modified from Li (2017b))

The difference in angle between the primary loading line AB and unloading line BC originates from the fact
that only elastic deformation is recovered when unloading, as plastic deformation is permanent. As discussed,
α = 0.9 is considered an appropriate value for a first estimation. Note that E1 then equals the surface of
the area designated with diagonal red stripes (BCD) displayed in Figure 2.9 and can be approximated with
Equation 2.7. Note that as mentioned before the unit of E1 is kJ/m3. Likewise, the white area ABC in the
latter image represents the plastic energy absorbed per unit volume of rock mass prior to failing.

E1 = α
σ2
f

2Emod
(2.7)

In the latter formula σf equals the in situ unconfined strength of the rock mass. The value of σf is
found by putting σ3 = 0 in Equation 2.3, which leads to Equation 2.8. It is important to comprehend
that confinement does increase the in situ strength of the rock but has no influence on E1. This is
because the additional strength due to confinement leads to the formation of additional cracks in the rock
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(i.e. plastic deformation) which does not lead to additional elastic strain energy release at failure (Li (2017b)).

σf =
√
sσci (2.8)

With the the average energy released per unit of rock and size of the failure zone, respectively E1 and V ,
calculated the total energy released at failure can be calculated according to Equation 2.9.

Etot = V E1 (2.9)

The energy dissipation capacity (EDC) of a single in plane row of bolts equals the energy dissipation capacity
of a single bolt (EDCb) multiplied by the number of bolts that are involved in stabilising the ejected rock
mass (Equation 2.10). In Figure 2.10 an example is given where two rock bolts are considered responsible
for stabilising the ejected rock, displayed as a triangular block. Note that the volume (V ) of ejected rock
stabilised by these two bolts is a function of the out of plane bolt spacing (Equation 2.5). Between the bolts
wire mesh has to be installed in order to retain broken rock and direct the released energy to the bolts.
Because it is assumed that the wire mesh is only a retaining element (i.e. does not dissipate energy) it is not
displayed in the image below. Different bolt types and retaining elements to be applied are introduced in the
next section.

Figure 2.10: Roof bolting patern responsible for arresting ejected rock block, image from: Li (2017a), adjusted

EDC = nboltEDCb (2.10)

If EDC is larger than the released energy the dissipation has been successful, and a stable situation is
obtained. This is the case if the following condition is met (Equation 2.11):

EDC > Etot (2.11)

Alternatively, a stable situation is obtained in theory if the factor of safety (FOS) exceeds 1 (Equation 2.12):

FOS =
nboltEDCb

Etot
=
EDC

Etot
(2.12)

However, it is strongly advised to design a reinforcement system aiming for a factor of safety which is higher
(e.g. FOS = 2). A discussion on the considerations involved in selecting a factor of safety is presented in
chapter 5.
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2.5 Rock Reinforcement Systems

A rock reinforcement system consists out of multiple components, for instance: rock bolts, (reinforced)
shotcrete and steel wire mesh. As discussed in chapter 5 systems including shotcrete are excluded from this
research. This is because experience points out that shotcrete is unlikely to successfully retain bursting rock.
A discussion on the applicability of shotcrete is presented in chapter 5. When support systems consisting
out of bolts and steel wire mesh are considered it is assumed that the dynamic performance of the rock bolts
is critical for the rock reinforcement system as a whole. In other words, it is assumed that bolt failure is
considered failure of the system.

Three bolt types are considered, being: split set, grouted rebar and the D-bolt. These are all so called
passive bolt types, which means that the support pressure is mobilised through deformation of the rock mass
they are installed into. The response of a bolt to strain bursting in a lab setting can be modeled as a crack
opening up by installing the bolt through two concrete blocks that are moved apart during a test. This can
be done slowly or quickly in order to obtain either the static or dynamic response of the bolt (Appendix E).
The characteristic static stress strain curve of these bolts is shown in Figure 2.11. The area under the
load-deformation curve up till failure equals the amount of energy a particular bolt can consume before failing.

The three named rock bolt types exist in various geometries and versions (e.g. galvanised, non-galvanised,
lengths and cross section diameter) which has an influence on strength properties. Also, when bolts are
tested in a lab setting a certain variation in these properties is obtained. In this research a single but
representative value for the strength, stiffness and energy dissipation capacity of the considered bolt types
when loaded dynamically is used.

Figure 2.11: Static pull test split set bolt, ds = 20mm grouted rebar and 1 meter section of a D-bolt (from: Li
(2010), adjusted)

Background theory on how the dynamic performance of bolts and their stiffness is derived can be found in
Appendix E. Application of the reinforcement system in the confinement curve of the convergence confinement
method is elaborated in Appendix D.

2.5.1 Split Set bolt

The split set bolt is a rock bolt that is installed by pushing it into an undersized hole, causing a tight
interlock between the bolt steel and the rock mass. When loaded axially, the bearing capacity of the bolt is
the result of the skin friction that is mobilised (Scott et al. (1977)). A typical characteristic of the bolt is
that the stress remains constant when the peak is reached, meaning that the bolt is slipping through the
hole. In this way a split set bolt is capable of withstanding large deformations without the bolt itself failing.
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An image of a split set bolt is displayed in Figure 2.12.

Figure 2.12: Split set bolt (image from: Li et al. (2014))

When testing Split set bolts in either a static or dynamic test a large variety in strength is obtained (Tomory
et al. (1998), Player et al. (2009)). Li et al. (2014) presents observations by Stjern (1995) that for a 1 meter
long SS46 (Split Set 46mm cross section diameter) bolt a pull out strength of approximatelly 50kN/m is
representative. According to Player et al. (2009), the peak strength per meter of bolt has to be reduced by
50% to obtain a representative value for the peak strength in the case of dynamic loading (i.e. 25kN/m). On
top of that, it was found that the energy dissipation capacity of an galvanised SS46 is approximately 11kJ
per meter of embedment. In this research 2.5 meter long galvanised SS46 bolts are considered. Based on the
aforementioned properties of the bolt the strength and energy dissipation capacity of this bolt is assumed to
be as presented in Table 2.1.

2.5.2 D-Bolt

The D-Bolt is a smooth bar with multiple anchors along its length that is fully grouted when installed.
The schematic layout of the D-Bolt is presented in Figure 2.13. When the bolt is loaded as the result of
a burst (simualated as a crack opening up in a lab setting, Figure E.1) the stress is distributed evenly
along the loaded smooth section between two anchors, which allows for full mobilisation of the strength and
deformation capacity of the steel material (Li (2010), Li and Doucet (2012), Li (2012)).

Figure 2.13: Layout of the D-bolt (image from: Normet (2014))

When a strain burst occurs the rock reinforcement system is subjected to dynamic loading, which causes the
dynamic properties of the system to be mobilised. Normet (2014) presents typical responses of D-Bolts in
static and dynamic conditions, as displayed in Figure 2.14. Visual assessment of these stress strain curves do
show slight variations between both cases, but generally speaking it can be stated that the dynamic stress
strain curve can be approximated with the stress strain curve representing the static performance.
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Figure 2.14: Typical static and dynamic performance D-bolt (from: Normet (2014))

2.5.3 Grouted Rebar Bolt

A grouted rebar (short for reinforcement bar, Figure 2.15) bolt is a rock bolt with a relatively high load
bearing capacity but low deformation capacity once yielded (Figure 2.11). This behavior is the result of the
fact that the stress accumulates in a short loaded section, causing the bolt to respond in a stiff manner. The
deformation of a grouted rebar before failure is in the order of 30mm, regardless of the initial length of the
bolt. Logically, the tensile strength of the bolt is directly proportional to the size of the cross section. It is
assumed that the rebar bolt fails through the bolt steel.

Figure 2.15: Schematic layout of an installed grouted rebar bolt (from: Li (2007))

For the D-Bolt it is displayed in Figure 2.14 that the static performance is a good estimator for the dynamic
performance of the bolt. It is assumed that the static performance is a good estimator for the dynamic
performance of grouted rebar bolts as well, when both bolt types fail through the bolt steel.

2.5.4 Bolt Property Summary

The maximum dynamic load as well as the energy absorbing capacity of the considered bolt types is
summarized in Table 2.1. In this table Tbf represent the strength of the bolt when loaded dynamically.
The stated parameters are based on the considerations presented in the previous sections. For all bolts a
stiffness Eb = 150MN/m is used (see Appendix E).

Bolt type Tbf [kN] EDCb [kJ] source note

Grouted Rebar 200 5 Ortlepp and Stacey (1994) ds = 22mm
Split Set 62.5 27.5 Player et al. (2009), Li et al. (2014) SS46
D-bolt 200 56 Li and Doucet (2012) ds = 22mm

Table 2.1: Dynamic peak load and energy absorbing capacity considered bolt types (length=2.5m)

13



Chapter 2. Theoretical Background

2.6 Rock Mass Support Interaction

A visual representation of the required support pressure to stabilise the excavation as a function of the tunnel
wall displacement is referred to as the convergence curve. This curve represents the tunnel deformation (u)
as a function of the support pressure (pi) for the considered cross section. Because support stress is derived
from the presence of the face, this method allows for the inclusion of 3D effects in a 2D analysis. Figure 2.16
shows the theoretical Longitudinal Deformation Profile (LDP ) along a tunnel in front of and behind the
face. Convergence of the rock mass initiates at a distance of approximatelly one time the tunnel diameter
ahead of the face. Roughly 1

3 of the final displacement has taken place at the face and at a distance of two
to three times the tunnel diameter (D) from the face the unsupported final displacement is obtained. The
loss of support pressure or confinement as the result of the face moving away from the considered cross
section explains this observation. Vlachopoulos and Diederichs (2009) point out that the convergence that
has taken place when the rock reinforcement system is installed depends on the distance from the face at
which this is done.

Figure 2.16: Support stress derived from the presence of the face, (from: Li (2016))

In theory the support stress will become zero if no rock support is applied. When the convergence curve
is presented by a straight line the unloading behavior is linear. When the support pressure is reduced
after the critical support pressure is reached plasticity occurs forming a plastic zone around the excavation.
Deformation of the tunnel mobilises the support pressure of the reinforcement system. The origin of the
support reaction curve (SRC) depends on distance from the face at which the support is installed. In the
analytic analysis in this study it is assumed that reinforcement system is installed right at the face when 1

3
of the final deformation has taken place already (installation at a certain distance from the face will cause
the SRC to shift to the right). When equilibrium is reached tunnel wall deformation does not proceed. An
example of such a convergence curve and convergence confinement equilibrium are shown in Figure 2.17.
The formulation of the confinement curve is given and explained in Appendix D.
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2.6. Rock Mass Support Interaction

Figure 2.17: Convergence of tunnel (L) Convergence-Confinement equilibrium (R) (from: Hoek et al. (2000))

McCreath and Kaiser (1992) summarise that rock reinforcement systems serve three purposes, being:
reinforcing, stabilising and retaining the rock mass. All purposes are briefly discussed individually underneath:

• Reinforcing: Deformation of the rock mass after excavation (convergence) causes the support stress
of the reinforcement system to be mobilised. Since strength is confinement dependent the rock mass
strength will increase when subjected to a confining support stress.

• Stabilising: When the support pressure from the reinforcement system equals the support pressure
required to keep the rock mass from deforming any further a stable situation is obtained. Therefore
the presence of a reinforcement system in theory limits deformation of the rock mass compared to a
scenario in which no rock reinforcement is installed.

• Retaining: When rock yields while deforming it can be so that loose fragments are ejected from
the excavation boundary. The rock reinforcement system supplies a physical barrier that keeps these
fragments from entering the excavation (Figure 2.18).

Figure 2.18: Loose rock fragments retained by mesh and bolts (from: Simser (2001))
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Chapter 2. Theoretical Background

2.7 Past Attempts To Assess Energy Release

When a strain burst occurs the accumulated strain energy is turned into kinetic energy and released with
the failing rock. In the past efforts have been made trying to quantify the kinetic energy release based on
Equation 2.13.

Etot =
1

2
mrockv

2
e (2.13)

In line with this approach the ejection velocity was backcalculated after a burst based on the trajectory of the
ejected rock, as displayed in Figure 2.19. The ejection velocity was then estimated according to Equation 2.14
(Tannant et al. (1993)).

Figure 2.19: Back calculation ejection velocity from trajectory ejected rock (Tannant et al. (1993))

ve = d

√
g

2h cos2 θ + sin θ
(2.14)

From these tests it was found that burst damage becomes evident from an ejection velocity of 3 m/s. The
ejection velocity of large rock blocks was 4-6 m/s and could be up to 10 m/s for small pieces. As the velocity
is squared in Equation 2.13, this range of possible ejection velocities also presents a wide range of possible
quantities of energy released.

Ortlepp and Stacey (1994) provide a practical example giving an insight in the importance of a dynamic
approach when assessing the performance of rock reinforcement systems. When considering a single rebar
bolt with a static loading capacity of 190kN, the energy dissipation capacity amounts approximately 5kJ
(Figure 2.20, right hand side). The theoretical static loading capacity allows the bolt to carry the dead
weight of a freely hanging 19,000kg rock block. When this bolt is expected to arrest a 2000kg rock block
ejected at a velocity of 10m/s, 100kJ has to be dissipated (Figure 2.20, left hand side). This is about 20
times the energy dissipation capacity of the bolt which will snap as a consequence, whereas carrying the
dead weight of the rock block would not have been a problem.

The measured ejection velocities are applied in tests to determine the dynamic response of rock bolts in lab
tests. As explained in Appendix E the dynamic response is measured by dropping a weight from a certain
height which loads the bolt dynamically when striking the bolt with a certain velocity simulating a rock burst
(Figure E.2). Dynamic tests on the D-Bolt were set up such that the block strikes at an velocity of 5,4m/s,
which is within the presented range of expected ejection velocities (Li and Doucet (2012)).

2.8 Backcalculation Ejection Velocity

Based on the alternative method to calculate the energy release presented in this thesis work based on the
size of the failed zone (V ) and the amount of energy released per unit of failing rock (E1) a new expression
can be derived to explain the ejection velocity (Equation 2.15, Equation 2.16, Equation 2.17, Equation 2.18,
Equation 2.19, Equation 2.20, Equation 2.21):

16



2.8. Backcalculation Ejection Velocity

Figure 2.20: Hypothetical case to assess energy release (from Ortlepp and Stacey (1994))

Etot = V E1 (2.15)

Etot =
1

2
mrockv

2
e (2.16)

V E1 =
1

2
mrockv

2
e (2.17)

mrockρE1 =
1

2
mrockv

2
e (2.18)

ρE1 =
1

2
v2e (2.19)

ve =

√
2E1

ρ
(2.20)

with:

E1 = α
σ2
f

2Emod
(2.21)
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Chapter 3

Formulation of the Model

The derivation of the methodology to assess the energy release based on the size of the failed zone and the
elastic strain energy stored in the rock mass prior to failure is presented in this chapter. This is done by
combining the outcome of an analytic analysis and a numerical analysis, which are introduced individually.

3.1 Step I: Analytic Analysis

The convergence confinement equilibrium of reinforced brittle rock masses can be described by means of
an analytic solution under the assumption that a circular excavation through a massive rock mass under a
hydrostatic stress state is considered. When the stress in the rock mass exceeds the in situ strength a plastic
or broken zone is formed around the excavation. The in situ strength is defined in the previous chapter based
on the HB failure criterion (see Equation 2.2). After failure the stress in the broken zone is limited by the
residual strength of the rock mass (see Equation 2.4). The considered situation is displayed in Figure 3.1.

Figure 3.1: Pressures that influence the radial displacement of a tunnel wall (from: Hoek et al. (2000))

The analytic method that describes the static equilibrium presented in the situation displayed above is given
in Appendix C after the derivation and explanation given by Hoek and Brown (1980b), Brown et al. (1983),
Brady and Brown (2007). In this analysis the Hoek-Brown linear elastic brittle plastic strength criterion is
applied (Appendix B). According to this criterion the strength of a rock mass can be expressed in terms of
the two strength parameters m and s, denoting the Hoek-Brown version of the friction angle and cohesion
respectively as discussed in chapter 2. The Hoek-Brown failure criterion is stated in Equation 3.1. In this
expression the parameter σci represents the theoretical UCS of intact rock as well as the rock mass, because
a massive rock mass is assumed.
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Chapter 3. Formulation of the Model

σ1 = σ3 + σci

(
m
σ3
σci

+ s

)a
(3.1)

In Appendix D the stress equilibrium method according to the convergence confinement principal is derived
and explained. This analysis shows that the radius of the broken rock zone can be calculated according
to Equation 3.2, Equation 3.3 and Equation 3.4. In these equations pi equals the support pressure at the
convergence confinement equilibrium. Also, it is shown that the axial and tangential stress distribution
around the circular opening are as displayed in Figure 3.2 when a failed zone exists around the excavation.

re = ri exp

[
N − 2

mrσci
(mrσcip+ srσ

2
ci)

0.5

]
(3.2)

with:

N =
2

mrσci
(mrσcip+ srσ

2
ci −mrσ

2
ciM)0.5 (3.3)

and:

M =
1

2

[
m

4
+m

p

σci
+ s

]0.5
− m

8
(3.4)

Figure 3.2: Stress distribution around circular opening according to elastic brittle plastic material behavior (from
Brady and Brown (2007), adjusted), Note: a = ri

From the analysis the surface (A) of failed rock is derived. As explained in the previous chapter this surface
is transferred into a volume based on the longitudinal spacing of the bolts (Equation 3.5):

V = (πr2e − πr2i )sl (3.5)

In order to repetitively run the model with varying input parameters (UCS, p) in a convenient manner a
Python code was written. This code is provided in Appendix D.

3.1.1 Limitations to the Model

When executing the models from the previous sections the outcome is considered invalid in two situations:

1. The maximum confining stress (σr or σ3) in the failed zone exceeds the 1
10σci. It is stated by Kaiser and

Kim (2015) that when the confining stress is higher than this threshold spalling is surpressed (spalling
limit) and the model does not account for spalling behavior anymore as the failure mechanism starts
to change towards shear failure (Figure 2.5).

2. The unrealistic situation in which the residual strength (defined by Equation 2.4) at the boundary
between the broken and the intact rock exceeds the peak strength of the rock mass (defined by
Equation 2.2).
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3.2. Step II: Numerical 2D Solution

3.2 Step II: Numerical 2D Solution

This section describes the considerations based on which the numerical analysis was set up.

3.2.1 Analysis Type and Rock Mass Parameters

The software package RS2 9.0 is used to set up a numerical model to analyse the depth of failure and geometry
of the failed zone. The rock mass is modeled to be massive using the elastic generalised HB failure criterion.
In order to derive the size and geometry of the failed zone the required input parameters are: σci, m, s, Emod
and ν. As part of the analysis s and m are fixed to be 0.11 and 0 respectively (see chapter 2).

3.2.2 Excavation Geometry

The excavation shapes can be defined using the so called ”Tunnel Wizard” option available in RS2 9.0.
Selecting the wanted geometry can then be done easily. Circular excavations can be set up easily by selecting:
excavation boundary > circ > radius.

3.2.3 Excavation Boundary

A so called radial mesh (8 noded square elements) is used creating a circular shaped outer boundary.
Throughout this research a element length and width of 0.1m is applied, which are the smallest possible
dimensions. Excavations that are made by means of the excavation wizard option as described in the previous
subsection are defined as so called material boundaries. In order to be able to use the radial mesh option
the excavation has to be converted to an excavation boundary, which can be done by selecting the option
boundary > convert boundary. The size of the mesh is defined using the so called expansion factor. In this
research an expansion factor of 10 is applied. This factor locates the boundary at a distance of 10 times the
equivalent diameter of the excavation. Fixed boundaries are used by default, which means that the horizontal
and vertical movement are restricted at the boundary whereas free rotation is allowed. An expansion factor
of 10 was maintained throughout, which makes the model large, potentially slow to compute, but guarantees
that boundary effects do not influence the outcome of the analysis. However, because linear elastic material
behavior is applied the model computes within seconds.

3.2.4 Field Stress

The center of excavations subjected to strain bursting are usually located at relatively large depth, which
means that the stress increase along the height of the model is small with respect to the in situ stress at the
excavation. It is assumed that the stress increase which occurs along the height of the model does not have
a significant influence on the outcome of the analysis. Therefore a constant field stress is applied throughout
this research.

3.3 Realisation Sequence

The model is run after being set up according to the procedure described in the previous sections. When the
execution is successful the interpret environment of RS2 is selected. In this environment the option is selected
that the strength factor contour around the excavation is displayed. The depth of failure is defined by the
depth of the strength factor = 1 contour along the direction of the minor principal stress (As explained in
Figure 2.8). A polygon is drawn to find the triangular shape of the failed zone. When turning on the so
called data tip option the area of the failed zone is displayed when hovering over the drawn polygon. From
the output of the analysis the number of bolts considered responsible for retaining the bursting rock can be
derived. An representative example of a model output is given in chapter 4.

3.4 Outcome Validation

In order to check whether the model output is realistic data from tunnels in which strain bursts occurred and
the corresponding performance of the rock reinforcement system is required (see chapter 5). Though, as such
data is not available an alternative approach is adopted to make a preliminary validation. As explained in
chapter 2 the rock ejection velocity is in the range of 3-10 m/s and most likely to be in the range of 4-6 m/s.
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Chapter 3. Formulation of the Model

Using the alternative derivation for the ejection velocity, as reproduced underneath, the ejection velocity is
back calculated. When the back calculated velocities are within the range found from tests this is considered
an indication that the applied method is valid (Equation 3.6 and Equation 3.7).

v =

√
2E1

ρ
(3.6)

with:

E1 = α
(
√
sσci)

2

2Emod
(3.7)
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Chapter 4

Model Validation

In order to validate the approach introduced in the previous chapter (Etot = E1V ) three cases have been
adopted in this study. First the different cases are introduced followed by a step wise explanation of the
obtained model output for every case.

4.1 Considered Cases

The setting at every individual case is discussed in the upcoming sub sections. Note that the major principal
stress is the horizontal stress (σh = σ1) as its magnitude exceeds the value of the vertical in situ stress, which
is the minor principal stress (σv = σ3, see chapter 2). In this report every case is referred to using the name
of the country the case is from.

4.1.1 Case Sweden

The case study presents a strain burst event which occurred at an underground mining operation in Sweden
(Li (2017b)). For exploration drilling purposes a drift was made at a depth of 1000 meters through massive
quartzite. The cross section of the drift was horse shoe shaped and both the height and a width were 6
meters (Figure 4.1).

Figure 4.1: Geometry of exploration drift case Sweden

The strength of intact rock was measured by means of point load tests (PLT), where an average UCS of 140
MPa was found. The in situ stresses were as displayed in Table 4.1.

As outlined in chapter 2 stress induced damage tends to develop along the direction of the minor principal
stress, which is the vertical stress in the considered case. In this case the principal stresses had rotated 25
degrees. The applied rock reinforcement system consisted out of grouted rebars in combination with steel
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Chapter 4. Model Validation

Parameter rock mass orientation value unit

σh Horizontal, perpendicular strike drift 38 [MPa]
σv Vertical 27 [MPa]
σz Horizontal, out-of-plane stress 62 [MPa]

Table 4.1: Principal stresses at 1000 meters depth, case Sweden

fiber reinforced shotcrete. This system not was capable of retaining the failed rock mass after a strain burst
occurred. As a consequence, a new rock reinforcement system had to be installed to stabilise the excavation.

The rock mass parameters are elaborated in Table 4.2. Equivalent MC parameters are provided in
Appendix B.

Parameter Value unit

UCS 140 MPa
Emod 46, 000 MPa
ν 0.2 −
γ 27 kN/m3

Table 4.2: Rock mass properties, case Sweden

Not all input parameters required to model the stated case are provided. In order to overcome this issue
representative values for quartzite are used from literature. Based on data from UCS tests on scandinavian
quartzite Nilsen and Palmström (2000) state the relationship displayed in Equation 4.1 between the elasticity
modulus and UCS.

Emod = 328σci (4.1)

In the analytic analysis of the convergence confinement equilibrium only case Sweden is considered in this
report. An explanation and discussion on this decision are presented in the next section of this chapter and
chapter 5. In order to find a hydrostatic in situ stress p which corresponds with the non hydrostatic in situ
stress from case Sweden a value was selected such that the maximum tangential stress right at the excavation
boundary (σθ) is the same for both in situ stress states. From this p = 40MPa was found to correspond with
the in situ stress state for case Sweden (see Appendix C). The analysis was also run with a p value ranging
from 20 to 70 MPa to research how the energy release behaves as a function of the in situ stress and allow
for comparison with results from the numerical analysis.

4.1.2 Case Peru

As part of realisation of a Hydro power plant a waterway tunnel was constructed through massive granite
and gneiss (Sayah et al. (2016)). The tunnel was constructed by means of drilling and blasting and grouted
rebar bolts were applied in combination with short cone bolts and shotcrete. At a depth of 800 meters a
severe strain burst occurred completely destroying the rock reinforcement system. An image of the situation
right after the burst is shown in Figure 4.2:

The vertical in situ stress is not given in the paper in which the case is described. However, it is stated that
the burst occured at a depth of 830 meter below the surface. The vertical in situ stress (σv) is a function
of the density of the overlying geology and the considered depth. The vertical stress (σv) is the product of
the depth (H) and the average density of the overlying geology (γ), as displayed in Equation 4.2 (Goodman
(1989)). For granite rock, a density of 27 kN/m3 is considered appropriate (?).

σv = γH (4.2)

It is stated that the coefficient of horizontal stress K0 equals 1.5, from which the horizontal in situ stress σh
can be calculated (Equation 4.3):

K0 =
σh
σv

(4.3)
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Figure 4.2: Situation after strain burst occured in roof of the waterway tunnel of the Cerro del guila Hydro Power
Plant (from: Sayah et al. (2016))

The approximate stresses at the location of the burst are as displayed in Table 4.3. Note that the major
principal stress is the horizontal stress as its quantity exceeds the vertical in situ stress, which is the minor
principal stress in the considered case. Because the out of plane stress is not given a stress level equal to σh
is assumed.

Parameter rock mass orientation value unit

σh Horizontal, perpendicular strike drift 33 [MPa]
σv Vertical 22 [MPa]
σz Horizontal, out-of-plane stress 33 [MPa]

Table 4.3: Principal stresses at 830 meters depth, case Peru

The Rock Mass Rating (RMR) of the granite rock was assessed to be around 60-90, which qualifies as a
good to very good quality rock mass (Bieniawski (1989)). The modulus of elasticity Emod is not given for
the granite rock mass, posting the need for an estimate to be made based on literature. Waltham (2009)
suggests that roughly a linear relationship exists between σci and Emod for different rock types. It is stated
that the average σci and Emod for granite amount 200MPa and 70,000MPa respectively, which comes down
to a Emod/σci ratio of 375. Goodman (1989) states that the Emod/σci ratio for Pikes Peak granite equals
312 and a value of 523 was found for Navada test site granite, which averages to 418. This average value is
of the same order of magnitude as the value suggested by Waltham (2009). A rounded intermediate value is
selected to determine to the value for Emod for case Peru (Equation 4.4).

Emod ≈ 400σci (4.4)

The used rock mass properties are given to be as presented in Table 4.4.

Parameter Value unit

UCS 100 MPa
Emod 40, 000 MPa
ν 0.2 −
γ 27 kN/m3

Table 4.4: Rock mass properties, case Peru
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4.1.3 Case China

During the construction of a waterway tunnel through dense bedded limestone as part of a hydropower
station multiple strain burst events were encountered (Jiayou et al. (1989)). The considered tunnel has a
diameter of 10 meters and was constructed by means of a tunnel boring machine (TBM) and left unsupported
afterwards. The damage to the excavation as the result of strain bursting occurred in both the roof and the
floor, but in this research only the roof is considered. A schematic image of the geometry of the cross section
of the tunnel after the strain burst is presented in Figure 4.3.

Figure 4.3: Situation after strain burst occured in roof of the waterway tunnel of a Hydro Power Plant in China
(from: Jiayou et al. (1989))

The burst occured at a depth of 440 meter, where the in situ stresses at the burst site were as presented in
Table 4.5. Because the out of plane stress is not given it is assumed that σh = σz.

Parameter rock mass orientation value unit

σh Horizontal, perpendicular strike drift 18 [MPa]
σv Vertical 12 [MPa]
σz Horizontal, out-of-plane stress 18 [MPa]

Table 4.5: Principal stresses at 440 meters depth, rounded, case China

The massive bedded limestone with a bedding plane orientation as presented in Figure 4.3. The rock mass
properties are elaborated in Table 4.6.

Parameter Value unit

UCS 80 MPa
Emod 30, 000 MPa
ν 0.3 −
γ 27 kN/m3

Table 4.6: Rock mass properties, case China
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4.1.4 General Parameter Selection Consideration

The author considers the wire mesh to be responsible for retaining failing rock. Though, wire mesh cannot
be applied tight to the excavation boundary and will deform prior to retaining the failed rock. Therefore
wire mesh allows for what is called loose retention, allowing the rock mass to shift before being retained.
Modelling the failing rock mass to dilate after failure may lead to overestimation of the confinement that is
derived from the presence of the failed rock. This is accounted for by putting the post failure dilation (f) to
0 when modelling spalling and bursting rocks masses (Diederichs et al. (2007)).

4.1.5 Equivalent Radius Determination

In chapter 2 it is stated that a linear relationship exists between Rf/ri and σmax/σci based on data from a
range of case studies. When a non circular excavation is considered a so called equivalent radius (ri,eq) is
derived by creating a circle that encloses the excavation geometry, as displayed in Figure 4.4.

Figure 4.4: Circle with equivalent radius as proposed by Martin et al. (1999) (adjusted) (R) Application on excavation
case Peru and Sweden (L)

Based on this methodology, the equivalent radius ri,eq of the excavations of the different cases are derived
(Table 4.7). Logically, ri = ri,eq for the Chinese case as a circular excavation is considered.

Case Sweden Peru China

ri,eq[m] 3.5 6.2 5.0

Table 4.7: ri,eq considered cases

Subsequently, maximum stress at the excavation boundary (σθ,max) is calculated according to Equation 4.5
(see Appendix C).

σθ,max = 3σ1 − σ3 (4.5)
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4.2 Step I: Analytic Analysis

Based on the way the derivation of the analytic solution is set up an unrealistic relation between the support
stress and the size of the plastic zone is obtained. The formulation implies that re → ∞ when no support
pressure is applied (pi = 0 MPa). A disussion on this is given in chapter 5. As a consequence it is not usefull
to set up the model for all cases and compare the outcome. Instead, only case Sweden is considered and
the outcome is treated qualitatively. A rebar bolt with a representative pullout strength of 200kN installed
at a 1 × 1m spacing supplies a support pressure of 0.2MPa when fully mobilised (Li (2017b)). Therefore
a constant support pressure of 0.2MPa is applied and it is assumed that the support system successfully
dissipates released energy, because the radius of the failed zone (pi) is infinite if the support system would fail.

The convergence-confinement equilibrium for case Sweden was investigated using the Python code presented
in Appendix D. An example output of this code is shown in Figure 4.5.

This code was run with a varying UCS and in situ stress p while making sure that the model limitations as
presented in chapter 3 are avoided. This means that an output is not included in the presented results if one
or both of the conditions are violated. The convergence curves that follow from this analysis are presented
in Figure 4.6 and Figure 4.7.

The corresponding energy release per unit of failing rock E1 and size of the failed zone V , and the total
energy release Etot are displayed in Figure 4.8 and Figure 4.9 respectively.

From the latter two results it follows that the total energy release goes down with an increasing UCS,
regardless of the in situ stress p.
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Figure 4.5: Analytic analysis output Python code case Sweden
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Figure 4.6: Convergence curve case Sweden, varying rock mass strength σf

Figure 4.7: Convergence curve case Sweden, varying in situ stress p

Figure 4.8: Analytic analysis output, case Sweden, E1 and V
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Figure 4.9: Analytic analysis output, case Sweden, Etot

4.3 Step II: Numerical Analysis

In the case of localised failure (non hydrostatic) in situ stress state, the methodology described in chapter 3
is applied by means of the numerical package RS2 9.0. The output of this model for case Sweden is given in
chapter 3 as an example.

As discussed in chapter 3 the number of bolts considered responsible for stabilising the ejected mass is a
function of the width of the failed zone. An example of such an analysis is given in Figure 4.11 using the
systematic bolting pattern option in RS2 9.0. From this image three bolts are considered responsible for
arresting the failing rock.

For all cases (Sweden, China and Peru) the depth of failure was calculated and plotted as σθ,max/UCS
against Rf/ri (Figure 4.12). From the linear trendline it showed that the intersection with the x-axis was at a
slightly lower σθ,max/UCS value compared to the relationship stated by Martin et al. (1999) (see Figure 2.6,
right hand side, predicted). The reason for this difference was found when repeating the analysis for every
case but with varying UCS values (Figure 4.13). The results showed that the suggested linear relationship is
not satisfied for low UCS values, and the data point for case Sweden was right at the onset of this non-linearity.

When investigating the relationship between the energy release per unit of failing rock (E1), volume of failed
rock (V ) and the total energy release (Etot) as a function of the UCS only UCS values are considered from
which a linear σmax/UCS − Rf/ri relationship is found in Figure 4.13. The results from this analysis are
displayed in Figure 4.14.

For all cases it is found that the size of the failed zone (V ) reduces and the energy release per unit of failing
(E1) rock increases with an increasing rock mass strength. However, for all cases the total energy release
Etot reduces with an increasing rock mass strength and will go to zero if the rock mass strength is so high
that the no failure will occur at all. This observation is qualitatively consistent with the results obtained
from the analytic analysis (Figure 4.9).

All results are elaborated in an online Dropbox folder, which can be shared after requesting the author
through his e-mail address: wik.breure@gmail.com
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Figure 4.10: Output numerical analysis case Sweden, geometry and size failed zone

Figure 4.11: Output numerical analysis case Sweden, bolting patern with 1m spacing
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Figure 4.12: Depth of failure considered cases (Sweden, China and Peru)

Figure 4.13: Depth of failure considered cases (Sweden, China and Peru), varying UCS
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Figure 4.14: Numerical analysis voor all considered cases, energy release per unit of failing rock (E1), volume of
failed rock (V ), and the total energy release (Etot)
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4.4 Support Design

For all cases the energy release is calculated and the energy dissipation capacity of the reinforcement system
using different bolt types (chapter 2). This allows for derivation of the factor of safety FOS which determines
whether the failing rock is retained successfully after bursting (Table 4.8).

Rebar V [m3] E1[kJ/m3] E[kJ ] Width[m] nbolt[−] EDCb EDC FOS

Sweden 1.9 31 58.9 4.2 3 5 15 0.25
Peru 7.8 18 140.4 8 7 5 35 0.25
China 0.96 15 14.4 2.1 1 5 5 0.35
Split-set

Sweden 1.9 31 58.9 4.2 3 27.5 82.5 1.40
Peru 7.8 18 140.4 8 7 27.5 192.5 1.37
China 0.96 15 14.4 2.1 1 27.5 27.5 1.91
D-bolt

Sweden 1.9 31 58.9 4.2 3 56 168 2.85
Peru 7.8 18 140.4 8 7 56 392 2.79
China 0.96 15 14.4 2.1 1 56 56 3.89

Table 4.8: Calculated factor of safety for different cases using varying bolt types (1m× 1m bolt spacing)

4.5 Back Calculated Ejection Velocity

In chapter 3 a derivation is presented from which follows that the ejection velocity of the failing rock can be
calculated with Equation 3.6 and Equation 3.7. From the theory presented in chapter 2 it follows that the
in situ strength amounts approximately 40% of the UCS but in more recent publications it is stated that
the in situ strength may be higher. In line with this observation the ejection velocities are back calculated
based on σf = 0.4σci and an arbitrary higher in situ strength σf = 0.6σci. From this the results presented in
Table 4.9 were found. These numbers are in good agreement with the obtained ejection velocities from tests,
from which it showed that results in the range of 4− 6m/s may be expected.

σf = 0.4σci σf = 0.6σci

Sweden 4.8 7.2
Peru 3.7 5.5
China 3.3 5.1

Table 4.9: Back calculated ejection velocities ve[m/s]
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Chapter 5

Discussion and Conclusion

In this chapter the results, applied methodology and applied theory are discussed, from which the conclusion
and discussion follow. Recommendations for future research are given as well.

5.1 Applicability of Analytic Analysis

In this thesis research the original LEBP analytic solution for the convergence curve based on the HB
criterion proposed as by Brown et al. (1983) is applied. After the introduction of this approach several
papers have been published proposing modified approaches (e.g. Wang (1996) and Sharan (2003)). In the
opinion of the author non of these alternative derivations present any proof that the method introduced by
Brown et al. (1983) is false. It is only stated by the more recent publications that different solutions to the
problem were found, admitting that it is unknown why their derivation differs from the original.

The derivation presented in Brown et al. (1983) is a tough act to follow, which may be an explanation
why other authors have derived different solutions but cannot tell why their solution differs. The author
has not been able to completely reproduce the derivation either using the Hoek Brown failure criterion.
However, the derivation based on the MC was succesfully reproduced (Brady and Brown (2007), Appendix D).

In both solutions (HB and MC), the support pressure (pi) at the excavation boundary is the boundary
condition for the radial stress in the rock mass at r = ri. When a plastic zone is formed the unconfined
residual strength of the failed rock is zero. As a consequence, no equilibrium radial stress is found at the
boundary between the failed and the intact rock which in theory leads to re = ∞. When reconsidering the
expression for the radius of the yielded zone ri based on the Hoek-Brown failure criterion (see Appendix D
for complete derivation):

re = lim
pi→0

ri exp

[
N − 2

mrσci
(mrσcipi + srσ

2
ci)

0.5

]
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But for Mohr-Coulomb:

re = lim
pi→0

ri

[
2p− σci
(1 + b)pi

]1/(d−1)
=∞ (5.4)

As a consequence of the formulation the solution based on the HB criterion does not satisfy the observation
re = ∞ when pi → 0 but the MC solution does. However, the idea that the size of the failed zone is
infinite if no rock support is applied is not realistic. Therefore the relationship between the support stress
at equilibrium and the formed plastic zone is not considered realistic either. Also, the size of the failed zone
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being circular is only the case if a circular excavation in a completely massive rock mass subjected to a
hydro static in situ stress state is considered. This is a situation that is very unlikely to be encountered in
practice. Martin et al. (1999) state that due to heterogenities in the rock mass failure will always be localised.

The author suggests that in future research the solution based on the MC failure criterion should be applied
when studying the analytic convergence confinement equilibrium based on LEBP rock mass behavior. This
because the formulation of this model can be back figured easily and the radius of the failed zone (re) as a
function of the support pressure pi is formulated as may be expected from the boundary conditions.

5.2 Variability in Obtained Depth of Failure

In Figure 2.6 the depth of failure over the excavation radius as a function of the maximum tangential stress
over the rock mass UCS is given, where a linear relationship is suggested. From extrapolation follows that
the in situ brittle strength of massive rock masses σf ≈ 0.4 UCS. However, in the graph a certain data scatter
can be seen. This section presents a short discussion on the conditions that may cause this scatter:

• Observations presented by Ortlepp and Stacey (1994) and Broch and Sørheim (1984) show that
massive rock masses are most susceptible to strain bursting. This means that when the rock mass is
modeled to be completely massive a worst case scenario with regard to the susceptibility for strain
bursts is considered. In line with this statement the rock mass is considered completely massive in
this study. The data set considers underground excavations that were made through both massive
and moderately jointed rock masses, which implies that there is a possibility that there has been a
differential susceptibility to spalling failure between the considered cases.

• The generally accepted observation that the damage initiation stress is a decent estimator for the in
situ brittle strength of rock masses contradicts with several observations. In both UCS testing in a lab
and a rock mass situ, reaching the stress state corresponding with the onset of damage initiation is
associated with acoustic emissions (Appendix A). When equating the in situ strength to the damage
initiation stress would mean that the rock mass fails as soon as the first cracking sound is heard.
However, observations by Prof. Dr. C.C. Li in the drift referred to as case Sweden in this report point
out that continuous cracking was heard over a period of time prior to failure (Li (2017b)). This is an
indication that stress larger than the damage initiation stress was building up in the rock mass prior
to failure.

This observation can possibly be explained by a hypothesis stated and researched by Cai and Kaiser
(2014a) and Guo et al. (2016). Tunnels and drifts excavated by means of drilling and blasting, as in
case Sweden, are likely to produce an irregular wall geometry as the result of over break. As a result,
the stress concentrations at the excavation boundary will be very local, rather than along a certain
stretch of a smooth excavation boundary. This discontinuous stress state causes tensile cracks under
compressive loading to be formed only locally, while a higher stress is required to cause brittle failure
on a larger scale (spalling). As a result, tunnels excavated by means of drilling and blasting can have
a higher in situ strength than would be predicted based on current practice. To date no quantitative
relation between the wall geometry and in situ strength is available. In a recent online lecture by
Kaiser (2016), The co-author of the prior paper in which the hypothesis is presented, recommends
using m = 0, s = 0.17 when applying the generalised Hoek-Brown criterion in LEBP numerical
analysis. This corresponds with an in situ unconfined strength of 41% of the UCS, in line with previous
observations (Martin et al. (1999)). The author concludes from this that the stated hypothesis is not
yet confirmed or rejected, meaning that it is still recommended to use the damage initiation stress as
an estimator of the in situ strength.

A consequence of the discussed hypothesis is that excavations with a smooth wall are supposed to be
more susceptible to the occurrence of strain bursts. This is consistent with a case study presented by
Stacey and Thompson (1991). Massive kimberlite rock was mined at a depth of 430 meters below
the surface. Some parts were excavated by means of drilling and blasting and others by means of a
road header. It was observed that the roof of all excavations made with the road header showed stress
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induced brittle failure, whereas damage to the tunnels excavated by drilling and blasting was much
less severe and occurred less frequently. The results of this thesis research show that the total energy
release (Etot) is reduced with an increasing UCS. This means that a potential underestimation of the
rock mass strength leads to conservative assessment of the total energy release.

• In most cases the UCS of the rock mass is stated as a given number, without a further explanation with
regard the applied method to derive this value (e.g. UCS testing, triaxial testing, point load testing or
a simple means methods such as response to geological hammering as suggested by Hack and Huisman
(2002)). The UCS is the only rock property included in the depth of failure analysis, whereas other
characteristics are likely to have an influence as well on the rock mass strength (e.g. tensile strength σt
and GSI). As a consequence the solution logically has a high sensitivity for the UCS. However, many
methods only produces an order of magnitude value for the UCS. Also, bad samples have to be removed
from the dataset in order to obtain realistic UCS values for intact rock. As an example, in the considered
case in Sweden the UCS of the rock mass was derived based on point load tests on drill cores from
exploration drilling. In total 211 tests were conducted in which values were obtained ranging from 5 to
379 MPa. Following from this the average of 140MPa is recommended to be representative. Especially
the low values are not in line with what may be expected from quartzite rock. The large range of
values that is found is an indication that exclusion of bad samples or failures along pre existing planes
of weakness has not been done or has not been done properly. As a consequence, the recommended
UCS value is likely to be an underestimation of the actual value for intact rock.

5.3 Energy Loss

When loading the rock mass plastic deformations occur through crack formation and energy is lost breaking
up the rock when bursting. When rock is retained by the reinforcement system it is observed that fine dust
comes from the excavation, which means that energy is dissipated by grinding of the rock fragments (Li
(2011)). In this report the energy loss is reflected in the parameter α, for which an arbitrary value of 0.9 is
adopted as an educated guess (Li (2017b)). This suggests that the rock reinforcement system is subjected to
90% of the energy that is put into the failing rock through loading.

5.4 Interaction Failed / Intact Rock

Martin (1997) states that ”the development of the notch stops when the notch geometry provides sufficient
confinement to stabilize the process zone at the notch tip.” It is believed that when failed rock has a
certain residual strength it is capable of transferring (confining) stresses and potentially contributing
to stabilisation of the notch, decreasing the size of the failed zone. The numerical method applied to
assess the depth of failure (assuming linear material behavior) does not allow for support interaction
analysis, as the data it is based on comes from unsupported excavations (see Figure 2.6). On the other
hand, the way the analytic solution is set up assumes that the failed rock supplies confining stresses to
the intact rock. As discussed in the previous section steel wire mesh supplies loose retention when the
released energy is successfully dissipated. When the rock shifts before being retained, a probability exists
that a void exists around the notch of the failed zone, meaning that no interaction exists and any effort
to model the interaction between failed rock and intact rock will overestimate the residual rock mass strength.

5.5 Influence of Support Pressure on Development of Failure

As shown in Equation 2.3 the peak strength of rock mass is a function of the confining stress it experiences.
When the rock mass is subjected to high confining stresses the in situ failure mechanism changes from spalling
to shear failure (Figure 2.5). The mobilised support pressure at the excavation boundary is a confining stress.
A rebar bolt with a representative pullout strength of 200kN installed at a 1×1m spacing supplies a support
pressure of 0.2MPa when fully mobilised (Li (2017b)). When a circular excavation subjected to a hydrostatic
stress state is considered, the tangential stress at the excavation boundary amounts two times the in situ
stress p. When an in situ hydro static stress of 40MPa is assumed, this means an tangential stress of 80MPa
at the excavation boundary (Appendix C). Because the support stress (pi) is much lower than the major
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principal stress at the excavation boundary (σtheta,max), it is assumed that the failure mechanism is not
affected here.

5.6 Applicability of Shotcrete

In literature controversy exists with regard to the applicability of (reinforced) shotcrete as a mitigation
measure in burst prone rock masses. It is suggested by McCreath and Kaiser (1992) and Langille and
Burtney (1992) that shotcrete does provide effective support in the case of mild bursting. When heavy
bursting conditions are considered the application of shotcrete is less effective. Both Kabwe et al. (2015) and
Cai (2013) write that the brittle nature of shotcrete and its low energy absorbing capacity cause the shotcrete
to become part of the fly rock when a burst occurs, which means that the failed rock is not retained. Also in
case Sweden and case Peru shotcrete was applied and completely destroyed when the burst occured (Sayah
et al. (2016), Li (2011), Li (2017b)). In order to increase the post failure deformability and strenght, steel
fibres and mesh can be added to the reinforcement system. Also this reinforced shotcrete in combination
with bolts does not always manage to retain the failing rock. A potential solution to prevent this lies in the
application of energy absorbing bolts in combination with just steel mesh. From this it can be concluded that
the shotcrete does not serve the purpose of reinforcing and retaining the failing rock but only aids to secure
the connection between the bolts and the mesh. This validates the assumption to consider reinforcement
systems that consist out of bolts and mesh in this research, even though shotcrete could be applied in practice.

In the introduction of this thesis report it is outlined that generally two modes of failure can occur in rock
masses, being stress induced failure and structural controlled failure. At high stress conditions in more
massive rock masses stress induced failure is commonly the dominant failure mechanism. This does not mean
that structurally controlled failure is not possible in these conditions (e.g. wedge failure). Therefore when
designing a rock reinforcement system in potentially burst prone conditions measures against structurally
controlled failure should not be disregarded. When discussing the performance of shotcrete in this regards,
the author does not by any means question its applicability as a measure against structurally controlled
failure mechanisms.

5.7 Application of Split Set bolts

As elaborated in chapter 2 Split Set bolts mobilise their resistance through skin friction between the bolt
steel and the rock mass they are installed into. When the rock mass is fractured or broken after failure this
frictional resistance is reduced, which has a negative effect on the performance of the bolt. Also, split set
bolts tend to be prone to deterioration over time as the result of erosion of the bolt steel (Li (2017b)). Such
effects are not considered in the example calculations presented in this research. However, they should be
looked at when selecting a bolt type in excavation design.

5.8 Moment of installation support and distance to the face

As shown in Figure 4.5 and Appendix E the elastic loading stiffness of the reinforcement system is much
lower than the elastic unloading stiffness of the rock mass. Also, the maximum support stress mobilised by
the reinforcement system is very low (rebar or D-bolt, 1m × 1m grid, pi = 0.2MPa) and likely to be below
the critical support stress pi,cr required to keep a burst from occurring (for case Sweden pi,cr = 12MPa
(see Figure 4.5 and Equation D.16). As a consequence a reinforcement system consisting out of bolts and
wire mesh is unlikely to be capable of preventing the occurrence of a strain burst, even when installed at
the earliest possible moment after the blast and as close as possible to the front face (then 1

3 rd or the total
deformation has already taken place, see Figure 2.16 and Figure 2.17).

5.9 Energy Release at Failure

The assumption with regard to energy release applied in this research is that all elastic strain energy
accumulated in rock is released upon failure. However, a hypothesis exists that the release of elastic strain
energy is stopped when the residual strength is reached (Li (2017b)). In that case the area designated with
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diagonal red stripes (BCD) shown in Figure 5.1 indicates E1. The plastic energy consumed per volume unit
of failing rock mass is represented by the triangle ABE.

Figure 5.1: Energy released per unit of brittle failing rock (from: Li (2017b))

A residual strength exists when the failed rock is retained and confined (see chapter 2). As discussed
earlier, steel wire mesh is believed to be the best option to serve as the retaining element of the
rock reinforcement system. However, steel wire mesh only allows for what is called loose retention as it is
not applied tight to the excavation boundary. Therefore, the failing rock mass will shift before being retained.

Strong brittle rocks generally have a high stiffness (E ≈ 300UCS, Waltham (2009)), which means that a
relatively small deformation is associated with failure. In order to keep the rock from completely unloading
at failure the residual strength has to be reached within a very small reversed strain rate. According to the
author the deformation of the rock mass before being retained is too high to keep all the energy from being
released. In line with this statement it is more likely that the failing mass completely unloads and is reloaded
to its residual strength when being retained.

5.10 Implications When Numerically Modeling LEBP Behavior

Application of LEBP rock mass behavior means is that the rock mass properties suddenly change when
failure occurs. As a consequence the model might have difficulties obtaining equilibrium or a ’messy’ stress
distribution is obtained around the excavation after running the analysis. This problem can partially be
overcome by running the analysis using low values of 0.001 − 0.01 for sr, m and mdil rather than putting
them to zero (Diederichs (2007)). It is expected that this slight change of input parameters does not influence
the quality of the outcome but helps to obtain a more smooth model output. However, this adjustment does
not completely take away the described issues. It is stated by Diederichs (2007) that every output of a model
based on LEBP material behavior should be treated with suspicion. The obtained results in trial realisations
showed irregularities the author could not explain, which has led to the search for an alternative method
to assess the size and geometry of the failed zone. From this the method by Martin et al. (1999) has been
selected as a reasonable alternative.
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5.11 Model Validation

The proposed methodology to find the energy release when a strain burst occurs should be looked at as an
initial guess based on available theory and engineering judgment of the author. The most commonly used
approach in engineering design is based on the principal that there is a driving force (in this case energy)
and a resisting force (in this case energy dissipation capacity of the rock reinforcement system). When the
energy dissipation capacity exceeds the amount of released energy the situation is considered stable. When
implementing this principal in support design it is important to comprehend that a safety factor should be
considered. The magnitude of this safety factor depends on:

• When testing the dynamic response of different types of rock bolts a certain spread is to be obtained.
Some bolt types tend to show great variations in response (e.g. split-set bolts (Tomory et al. (1998)))
posting a uncertainty with regard to the response in situ.

• The required degree of safety and purpose of the excavation. Whether it concerns for example a
highway tunnel with an expected lifespan of 100 years or a temporary underground opening such as an
exploration drift leads to different requirements.

• The design of a support system by means of the methodology proposed in this research is based on
a set of input parameters, for example the UCS of intact rock. When conducting a series of tests to
derive the UCS a certain spread in obtained values will exist, posting an uncertainty with regard to the
UCS encountered in situ. Besides uncertainties regarding the values of input parameters, the size and
shape of the excavation may differ from the designed geometry. This may be the result of over break
or rock blocks falling out after excavation during scaling. These uncertainties regarding the response
of the excavation imply a need for a conservative design, which can be done by implementing a safety
factor.

• Validating a method is done by gathering data on strain burst events (i.e. setting, applied support,
stable/not stable) and back calculating whether the proposed methodology would have been able to
predict this situation. As discussed the proposed method does not account for all the factors influencing
strain burst effects. The uncertainty with regard to the accuracy of the outcome of a calculation should
be incorporated in the safety factor. This uncertainty will decrease with an increasing amount of data
gathered.

An example on how to validate a theoretical design procedure is presented by Salamon and Munro (1967).
For pillar stability a suggested factor of safety based on statistical analysis was done in South African room
and pillar coal mines. For a large number of coal pillars it was back calculated whether they were stable or
not based on the suggested method to derive their strength, compared this with failure data and came up
with a minimum required safety factor. The author suggests that such an analysis should be conducted as
well to validate the proposed approach to design rock reinforcement systems exposed to loading from strain
bursts.

5.12 Conclusion

The research questions presented in chapter 1 are handled separately in this section.

Can input parameters for the alternative (Etot = E1V ) method be derived, and how?
Relatively low support pressures can be mobilised when applying reinforcement systems consisting out of
bolts and steel wire mesh. Also, such support systems have a relatively low loading stiffness compared to
the unloading stiffness of the massive rock mass. As a consequence the reinforcement system cannot stop
the potential occurrence of failure and only serves the purpose of retaining the ejected rock mass through
dissipation of the released energy. The support pressure is a confining stress which in theory causes the
size of the failed zone to be reduced. Also, such support systems allow for loose retention, which means
that failing rock will shift before being retained, and that every assumption that confining stresses are
transferred from the failed rock to the intact rock may lead to an overestimation of the rock mass strength
and underestimation of the failed zone. As a consequence the volume of failed rock from an unsupported
excavation is considered a good estimate for the volume of failed rock when a supported excavation is
considered.
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The size of the failed zone from localised failure in unsupported excavations can be derived in a convenient
manner based on the method proposed by Martin et al. (1999) assuming linear elastic rock mass behavior
using the HB failure criterion with s = 0.11, m = 0, a = 0.5. The energy release per unit of failing rock is a
function of the UCS and the stiffness Emod of the rock mass and the relationship between the lab strength
and in situ strength of the rock mass.

Is the derivation procedure for the input parameters convenient?
Implementation of numerical analysis to find the geometry and volume of the failed zone is straight forward
(e.g. RS2 9.0). Model outputs using the approach as proposed by Martin et al. (1999) is in decent agreement
with data from test tunnels, which makes it a convenient method to adopt. From this analysis the relation
between the UCS (σci) and the in situ strength (σf ) is also derived to be: σf ≈ 0.4σci.

Derivation of the UCS and the stiffness Emod can very well be done in a lab setting. In the absence of
certain lab equipment (e.g UCS or triaxial testing) decent approximations can be done based on simpler
testing procedures (e.g. point load tests or geological hammering Hack and Huisman (2002)). Literature
sources may be consulted as well (e.g. Waltham (2009) and Nilsen and Palmström (2000)). All together this
makes the required input parameters to set up a energy release assessment analysis very accessible.

As discussed it is suggested in recent publications that for excavations made by means of drilling and
blasting the in situ strength may be underestimated. The results from all considered cases (Sweden, China
and Peru) show that the total energy release (Etot) decreases with an increasing in situ strength σf . This
means that a potential underestimation of the in situ strength when an excavation realised by means of
drilling and blasting is considered leads to a conservative assessment of the total released energy.

Is the outcome of energy release assessment satisfactory when using the alternative method?
In order to verify whether the output of the alternative method is satisfactory, or in short ’makes sense’, the
output of the analysis is compared with a physical quantity that is measured: the ejection velocity ve. For
all cases, with an in situ strength ranging from 40 − 60%UCS ejection velocities were backcalculated and
values ranging from 3.3 − 7.1m/s were found, which is in very good agreement with the measured ejection
velocities of 3− 10m/s.

How can the alternative method be implemented in excavation design?
A major advantage of using the alternative method is that the geometry of the failed zone is determined as a
part of the solution. This allows for assessment of sufficient bolt length, and how many bolts are considered
responsible for stabilising the failing rock mass (nbolt). With the dynamic performance of the bolts (EDCb)
being known, deriving the dynamic performance of the system as a whole is a very straight forward exercise.
The general approach in engineering is that there is a driving force and a resisting force, and as long as the
resisting force exceeds the driving force a stable situation is obtained. According to this principal there is
a driving energy (released energy with ejected rock mass, Etot) and a resisting energy (energy dissipation
capacity of the system, EDC). When EDC exceeds Etot a stable situation is obtained.

5.13 Recommendations for Future Research

• In this study the only rock mass parameter the depth of failure depends on is the UCS of intact rock.
Qualitative relations between other rock mass properties, such as the tenstile strength σt and GSI,
and the susceptibility to strain bursting are presented by several authors (e.g. Diederichs (2007)).
As presented in the discussion section of this report recent publications introduce the hypothesis that
excavations made by means of drilling and blasting have a higher in situ strength than excavations
made by means of mechanical excavation (TBM or roadheader). Also, it is suggested by Zhiming et al.
(2015) that the mineral composition of the rock mass has an influence on its susceptibility to strain
bursting. A better understanding of how these additional parameters influence the development of a
burst and size of the failing zone will allow for more accurate determination of the released energy when
a burst occurs.

• The method to assess the energy release the rock reinforcement system is subjected to presented in
this thesis is theoretical. A preliminary verification is given by means of back calculating the ejection
velocity ve. Further verification is required, which can be done through the collection and analysis of
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data of tunnels subjected to strain bursting in which the method proposed in this thesis work is applied.
An example on how to analyse such data is given in the discussion section.

• For the depth of failure and geometry of the failed zone assessment purely linear elastic material behavior
is applied in this research, even though the rock is expected to fail in a brittle manner when the in
situ strength is reached. Efforts made by the author to implement LEBP behavior led to suspicious
results, mainly stress concentrations in unexpected places and no solution was found during the iteration
process. Successful and reliable implementation of LEBP rock mass behavior in numerical modelling
would in theory lead to more accurate determination of the size and geometry of the failed zone.

• Determination of energy release per unit of failing rock (E1) is based on the thought that the elastic
strain energy in the rock mass is released at failure. Unloading of the rock mass will take place until
the failing rock is retained by the reinforcement system. In this post failure state of equilibrium there is
a certain stress acting on the failed rock mass, which is equal to the residual strength. In this research
it is assumed that the rock mass unloads completely, which means that all the accumulated elastic
strain energy is released, because the reinforcement system only supplies what is referred to as loose
retention. However, it is argued in the discussion section of this report that if the failing rock mass
has not unloaded completely when being retained not all the accumulated strain energy is released. In
order to proceed regarding this question the interaction between reinforcement systems and failing rock
should be studied more comprehensively.

• In order to prevent the occurrence or mitigate the consequences of a strain bursts procedural measures
may be considered as well. After the occurence of the burst event described in case Peru (Sayah et al.
(2016)) de-tension blasting ahead of the face was applied as an additional measure. Other measures,
such as leaving the muck in place at the face and excavating a convex face geometry were adopted
already before. What these measures mean for the support stress (pi) derived from the presence of
the face or how they influence response of a tunnel or drift after excavation is not accounted for in
this research. Inclusion of the consequences of such measures in the model (e.g. reduced rock mass
quality after de-tension blasting) will allow for an increased understanding whether a strain burst may
be expected and at what intensity after implementation.
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Appendix A

Rock Behavior in Lab Tests

A.1 UCS Test

Martin and Chandler (1994) describe the different stages of the response of a sample of intact rock upon
loading in a UCS test setting. In this chapter the obtained generalized behavior as displayed in Figure A.1 is
discussed with the assumption that single shear is the obtained failure mechanism. Other failure mechanisms
are explained as well in the other sections of this chapter.

Figure A.1: Stress strain diagram from UCS test, showing crack initiation, crack damage and peak strength. Note:
σp = UCS (from: Martin and Chandler (1994), modified)

When a UCS test is conducted the first response of the sample is closure of already existing micro cracks (stage
I). It is believed that after the closure of the micro cracks the rock behaves as a linear elastic homogeneous
material. From the sress strain curve obtained in this stage (Figure A.1, stage II) the elastic properties of
the tested rock can be determined. The elastic stage ends when the sample starts to dilate as the result of
the initiation of cracking. The formation of a micro crask is associated with the emmision of sound, referred
to as an acoustic event (AE). This is referred to as stage III in Figure A.1 and generally starts at 30-50% of
the stress at failure. The stress associated with the initiation of crack growth is called the crack or damage
initiation stress and referred to as σdi. It has been found that the rock strength is not reduced as long as the
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stress the sample is exposed to does not exceed σdi. In stage III cracks grow in a stable manner, which means
that crack formation is stopped when the load is removed from the sample. The start of stage IV is associated
with a decrease in the total volumetric strain, which is caused by sliding along surfaces of weakness. In other
words this means the start of the formation of a shear plane along which the sample will eventually fail,
causing a very significant increase of microcracks (Hoek and Martin (2014)). This process starts at about
80% of the stress at failure and is denoted with σsd, in which the subscript stands for systematic damage. It
has been found that σsd represents the long term strength of the tested intact rock material, as the strength
that is obtained up to the stress at failure (σp) is the result of unstable crack growth and coalescence of
cracks forming a shear plane along which failure occurs eventually.

A.2 Failure Mechanisms in UCS Testing

When conducting a UCS test in a lab setting different failure mechanisms can be obtained from the tested
sample, as displayed in Figure A.2. The displayed mechanisms are explained by Szwedzicki (2007) as follows:

• Simple shear: A shear planes develops under an angle with respect to the direction of the applied
compression (σ1). Usually this shear plane intersects with the boundary of the sample in the unconfined
zone (i.e. side of the sample). When simple shear is obtained this is often due to the fact that a plane of
weakness exists in the sample and leads to the lowest UCS value compared to other failure mechanisms
that are discussed underneath. In practice single or multiple shear is the failure mechanism that is
obtained the most.

• Multiple shear: Same as explained above but multiple shear non parallel shear planes exist in the
sample upon failure.

• Multiple fracture: Failure along multiple intersecting planes that can originate from shear or axial
failure. Intersection of the shear and axial planes causes the sample to disintegrate. Characteristic for
this mode of failure is that the failed sample is often cone shaped.

• Vertical splitting: Failure planes develop parallel to the applied pressure (σ1). In practice this failure
mechanism occurs the least upon testing and points out that there have been little microscopic
discontinuities in the tested sample.

Figure A.2: Failure mechanisms obtained in UCS testing (from: Szwedzicki and Shamu (1999))

A.3 Interpreting UCS Test Results

As discussed different failure mechanisms can be obtained when conducting UCS tests on what seems to be
similar samples. It is an interesting fact that a relatively simple test commonly leads to such a large spread
in obtained results. An example is given by Hoek and Martin (2014), where a series of tests on Lac du
Bonnet granite is presented (Figure A.3).

Hoek and Martin (2014) state that the obtained spread results from poor sample preparation. Szwedzicki
(2007) does not agree with this and states that the spread is the result of the distribution of micro defects in
the samples causing different failure mechanisms. Based on the theory presented in this chapter the latter
explanation seems to be more accurate.

52



A.4. Triaxial Testing

Figure A.3: Obtained failure mechanism with respect to brittleness ratio B (from: Szwedzicki and Shamu (1999))

A.4 Triaxial Testing

When sufficient confinement applied rock samples that would behave brittle in UCS testing will start to
behave in a ductile manner after failure (Goodman (1989)). A practicle example is given by Wawersik
and Fairhurst (1970) and illustrates that intact rock, in this case Tennesse marble, shows brittle behavior
when tested in a UCS setting but behaves more and more ductile after failure as a function of the applied
confinement (Figure A.4).

Figure A.4: Stress strain curves from tests on Tennesse marble at different degrees of confinement (1psi ≈ 6.89kPa),
(Wawersik and Fairhurst (1970))

The crack initiation stress has a low susceptibility to confinement. Though, the propogation of cracks is
susceptible to confinement (Diederichs (2003)). Axial splitting of a sample can only be obtained when
individual cracks can propagate along the entire sample. This mechanism is suppressed when a specimen
is tested in a confined setting (i.e. triaxial test). Therefore more but shorter cracks are formed in triaxial
testing, leading to the development of one or multiple shear planes along which the sample fails. It is for
this reason that axial splitting may be the obtained in UCS testing on a brittle rock sample but damage
accumulation leading to shear failure is obtained in triaxial testing.
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Appendix B

MC and HB Failure Criterion

In practise mostly the MC and HB failure criterion are applied to assess the LEBP behavior of rock masses.
In this appendix both criterion will be discussed.

B.1 Mohr-Coulomb

In this section the Mohr-Coulomb failure criterion is discussed as explained by Hoek et al. (2000). According
to Mohr-Coulomb the strength of a rock mass can be expressed in terms of the two strength parameters φ
and c, denoting the friction angel and cohesion respectively. The Mohr-Coulomb failure criterion is stated
in Equation B.1, in combination with Equation B.2 and Equation B.3. In this expression the parameter
σcm represents the theoretical UCS of the rock mass, which is considered equal to σci in this research as an
intact rock mass is considered.

σ1 = σcm + bσ3 (B.1)

σcm =
2c cosφ

(1− sinφ)
(B.2)

b =
(1 + sinφ)

(1− sinφ)
(B.3)

A visual representation of the failure criterion as presented in Equation B.1 in combination with Equation B.2
and Equation B.3 is shown in Figure B.1. Note that only the part which represents failure in compression
is displayed. Extrapolation of the line for negative values of σ3 in combination of a so called tension cut off
can be applied to account for the tensile strength of the rock mass.

After brittle failure the residual strength can be desribed by the same criterion by using residual strength
parameters cr and φr. The residual strength is then described by Equation B.4 in combination with
Equation B.5 and Equation B.6.

σ1 = σcm + bσ3 (B.4)

σcm =
2cr cosφr

(1− sinφr)
(B.5)

b =
(1 + sinφr)

(1− sinφr)
(B.6)
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Figure B.1: Mohr-Coulomb failure criterion (from: Hoek et al. (2000))

B.2 Hoek-Brown

The Hoek-Brown failure criterion has been subjected to several adjustments sinds its introduction in 1980,
as summerised by Hoek and Marinos (2007). In this section the most recent version of the failure criterion,
named the generalised HB criterion, as proposed by Hoek et al. (2002) will be described. This criterion, for
both intact and jointed rock masses, is displayed in Equation B.7.

σ1 = σ3 + σci

(
m
σ3
σci

+ s

)a
(B.7)

After brittle failure the residual strength can be described by the same criterion by using residual strength
parameters sr and mr. The residual strength is then described by Equation B.8.

σ1 = σ3 + σci

(
mr

σ3
σci

+ sr

)ar
(B.8)

Existing equations to assess appropriate values for m, s and a based on the disturbance parameter D and GSI
are only applicable when the rock is failing in a confined state (i.e. right side of the spalling limit, Figure 2.5,
Hoek and Brown (1997), Kaiser (2016)). This behavior is not considered in this research and therefore these
equations are not elaborated.

B.3 Relation Hoek-Brown and Mohr-Coulomb

Even though the Hoek-Brown failure criterion is widely accepted, there are cases where it is considered
beneficial if the strength of a rock mass is expressed in terms of the Mohr-Coulomb strength parameters φ and
c. Hoek et al. (2002) proposes a translation from Hoek-Brown to Mohr-Coulomb strength parameter, based on
the idea that the closest fit between the two criterion is found if the area on both sides of the Mohr-Coulomb
criterion is balanced out (Figure B.2). The proposed expressions to derive the Mohr-Coulomb strength
parameters as explained are displayed in Equation B.9, Equation B.10, Equation B.11 and Equation B.12.

φ = sin−1

[
6amb(s+mbσ

′

3n)a−1

2(1 + a)(2 + a) + 6amb(s+mbσ
′
3n)a−1

]
(B.9)

c =
σci
[
(1 + 2a)s+ (1− a)mbσ

′

3n

]
(s+mbσ

′

3n)a−1

(1 + a)(2 + a)
√

1 + (6amb(s+mbσ
′
3m)a−1)/((1 + a)(1− a))

(B.10)

with:
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Figure B.2: Failure criterion according to Hoek-Brown and Mohr-Coulomb plotted in same stress space

σ3n = σ3max/σci (B.11)

and:

σ3max
σcm

= 0.47

(
σcm
γH

)−0.94
(B.12)

When values of the Hoek Brown paramters m, mr, s, sr, a and ar from case Sweden are converted into
equivalent Mohr Coulomb parameters c, cr, φ and φr using the method stated above, values as displayed in
Table B.1 are found:

c [MPa] φ [◦]
peak 30.8 0
residual 2.1 30.8

Table B.1: Equivalent MC parameters base case

As discussed in chapter 2 the Hoek Brown parameters are chosen such that all cohesion is lost after failure.
However, as shown in Table B.1 a certain residual cohesion is available. This is due to the fact that the Hoek
Brown resedual strength envalope has a curvature in the low confinement area which causes the closest linear
Mohr Coulomb criterion fit to be associated with a non zero resedual cohesion.
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B.4 Hoek-Brown Schemes

Figure B.3: Geological Strength index GSI (Marinos et al. (2000))
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B.4. Hoek-Brown Schemes

Figure B.4: Representative values of mi for different rock types (Marinos et al. (2000))
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Appendix C

Stress Concentration Around
Underground Excavations

The stresses in the roof and walls of an excavation change when the horizontal and vertical principal stress
are not the same (i.e. K0 or k 6= 1). Also the geometry of the underground excavation has an influence on the
maximum obtained stresses in the tunnel wall and roof. This is summarised and schematised by Hoek and
Brown (1980b) based on derivations presented by Greenspan (1944) and estimates the expected maximum
vertical and horizontal stress in the tunnel roof and walls if the rock material behaves elastically (Figure C.1).

Figure C.1: Maximum roof and wall stresses based on excavation shape (Hoek and Brown (1980b)), purely elastic
rock mass behavior around excavation

C.1 Equivalent In Situ Stress Analytic Solution

Case Sweden presents a situation in which a strain burst occurred in a non circular excavation subjected
to a non-hydrostatic stress state. This situation is approximated using an analytic analysis in which a
circular excavation subjected to a hydrostatic stress state. After excavation in either case the rock at the
excavation boundary is subjected to a stress state of uniaxial compression (σθ 6= 0 and σr = 0, as explained
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in Appendix D). Figure C.1 is used to find the p at which σθ is equal in both cases. The calculation based
on which this value for p is found is presented underneath.

In the described case the strain burst event occurred in the roof of a horse shoe shaped excavation. In Table 4.1
it is stated that the horizontal to vertical in situ stress ratio k = σh/σv = 38/27 ≈ 1.4. In Figure C.1 pz = σv,
which leads to a maximum roof stress σθ,max ≈ 3 ≈ 80MPa. Around a circular excavation subjected to a
hydro static stress state the maximum stress σθ,max = 2p. From this it follows that σθ,max is equal in both
cases when p = 40MPa is applied.
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Derivation Analytic Solution
Convergence Confinement
Equilibrium

By creating an underground opening in the form of a drift or tunnel the original in situ stress state is
disturbed and stresses are redistributed around the excavation. The stress state after excavation depends on
the in situ stress in combination with the geometry of the excavation and the behavior of the rock material
(i.e. elastic, LEPP, LEBP).

Figure D.1: Pressures that influence the radial displacement of a tunnel wall (from: Hoek et al. (2000), modified)

In step I of this research available analytic solutions are used to study the stress distribution around a
circular excavation through a massive rock mass subjected to hydro static stresses. In the past derivations
have been made for different types off rock mass behavior. In this chapter the solution with elastic behavior
and linear elastic brittle plastic behavior are considered. The latter rock mass behavior is addressed based
on the both the HB and MC failure criterion. When the model allows for plasticity a circular plastic zone
is formed around the excavation with a radius re. The adressed situation is displayed in Figure D.1. The
considered stress strain behavior of brittle rock masses is presented in Figure D.2. This chapter presents
a comprehensive derivation of the stress distribution around the excavation based on the principal of the
convergence confinement method as presented by Brown et al. (1983) and Brady and Brown (2007).

A visual representation of the required support pressure as a function of the tunnel wall displacement is
referred to as the convergence curve. In theory the support stress will become zero if no rock support
is applied. When the convergence curve is presented by a straight line the unloading behavior is linear.
When the support pressure is reduced after the critical support pressure is reached plasticity occurs forming
a plastic zone around the excavation. Deformation of the tunnel mobilises the support pressure of the
reinforcement system. When equilibrium is reached tunnel wall deformation does not proceed. An example
of such a convergence curve and convergence confinement equilibrium are shown in Figure D.3.
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Figure D.2: Brittle rock mass behavior (from: Brown et al. (1983))

Figure D.3: Convergence of tunnel (L) Convergence-Confinement equilibrium (R) (from: Hoek et al. (2000))

When plasticity occurs the curves representing the stress state around the excavation are shaped as displayed
in Figure D.4. A sudden increase in tangential stress represents the boundary between the plastic and the
elastic zone.

Figure D.4: Stress distribution around circular opening according to elastic brittle plastic material behavior (from:
Brady and Brown (2007))

D.1 Elastic behavior

When elastic rock material behavior is assumed the stress-strain behavior is linear regardless whether the in
situ strength σf of the rock mass is exceeded (Figure D.5).
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Figure D.5: Purely elastic stres strain behavior (from: Sharan (2003), adjusted)

A method to quantify the stresses around a two dimensional circular excavation in an elastic medium was
described by Kirsch (1898), known as the Kirsch equations. The derivation of these equations will not
be looked at into detail. When considering a hydrostatic stress state (i.e. k = 1, σ1 = σ3 = p) the
Kirsch equations are reduced to relatively simple expressions. The tangential or circumferential stress is
Equation D.2, radial or normal stress is Equation D.1 and in this simplified case the shear stresses are 0
(Equation D.3).

σr = p
(

1− r2i
r2

)
(D.1)

σθ = p
(

1 +
r2i
r2

)
(D.2)

σrθ = 0 (D.3)

A visual representation of the tangential and normal stresses are shown in Figure D.6. From the Kirsch
equations it follows that the tangential stress right at the excavation boundary amounts σθ = 3(σ1−σ3) = 2p,
when the principal stresses are equal. From this it follows that the tangential stress the rock is subjected
to is twice as high as the principal stress, in combination with the absence of confinement as σr = 0 at the
excavation boundary. The deviatoric stress is equal to the stress a rock sample experiences in a UCS test.

Figure D.6: Stress distribution elastic material behavior, note: a = ri, (from: Brady and Brown (2007), adjusted)

D.2 Elastic Brittle Plastic Behavior - Hoek Brown

In this section a derivation for the convergence curve is explained using the Hoek Brown LEBP failure
criterion as explained by Brown et al. (1983). The principal stresses are σ1 = σθ and σ3 = σr in this axis
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symmetric problem. Substitution of these principal stresses leads to the HB failure criterion being expressed
as follows (Equation D.4):

σθ = σr + σci

(
m
σr
σci

+ s

)0.5

(D.4)

The empirical Hoek Brown parameters m and s reduce to residual values mr and sr after the rock mass
has failed. The residual strength of the rock mass is described by Equation D.5. In the failed rock zone the
residual strength represents the tangential stress in the rock mass.

σθ = σr + σci

(
mr

σr
σci

+ sr

)0.5

(D.5)

Because an axis symmetric problem is assessed the Kirsch equations can be re written such that the following
condition has to be met in order to obtain a stress equilibrium in the rock mass around the excavation
(Equation D.6).

dσr
dr

=
σθ − σr

r
(D.6)

Integration of the latter equation using the conditions at the excavation boundary σr = pi and r = ri allows
for the derivation of the radial stress distribution in the failed zone, as displayed in Equation D.7:

σr =
mrσci

4

[
ln

(
r

ri

)]2
+

[
ln

(
r

ri

)]
(mrσcipi + srσ

2
ci)

0.5 + pi (D.7)

The radius of the plastic zone around the excavation, re, can be derived using the assumption that the stress
state at the boundary between the plastic and elastic zone is satisfied by the Hoek-Brown failure criterion as
expressed in Equation D.4. At this boundary, the principal stress difference between σθ and σr = p1 is:

σθ − σr = 2(p− p1) (D.8)

Based on the failure criterion as displayed in Equation D.4, the principal stress difference can also be expressed
as follows Equation D.10:

σθ − σr = σci

(
m
σr
σci

+ s

)0.5

(D.9)

Substitution of Equation D.8 into Equation D.9 leads to the expression displayed in Equation D.10:

2(p− p1) = σci

(
m
σr
σci

+ s

)0.5

(D.10)

Which can be rewritten as (Equation D.11):

p1 = p−Mσci (D.11)

with (Equation D.12):

M =
1

2

[
m

4
+m

p

σci
+ s

]0.5
− m

8
(D.12)

The condition σr = p1 has to be satisfied at r = re. Equating Equation D.7 to Equation D.11 while
substituting r = re leads to the following expression (Equation D.13):

p−Mσci =
mrσci

4

[
ln

(
re
ri

)]2
+

[
ln

(
re
ri

)]
(mrσcipi + srσ

2
ci)

0.5 + pi (D.13)

The latter equation is solved to find an expression for re, which is presented in Equation D.14 and :

re = ri exp

[
N − 2

mrσci
(mrσcip+ srσ

2
ci)

0.5

]
(D.14)

with (Equation D.15):
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N =
2

mrσci
(mrσcip+ srσ

2
ci −mrσ

2
ciM)0.5 (D.15)

When the support pressure pi is lower than the critical support pressure pi,cr an plastic zone is formed around
the excavation. From Equation D.11 it follows that pi,cr equals (Equation D.16):

pi,cr = p−Mσci (D.16)

After excavation the support pressure is reduced from p to pi, leading to radial inward displacement of the
rock mass. In the following derivation inwards movement of the tunnel perimeter is a negative displacement.
The displacement of the elastic zone equals (Equation D.17, Equation D.18):

ur = − (p− p1)r2e
2Gr

(D.17)

In which:

G =
E

2(1 + ν)
(D.18)

If a plastic zone exists, the displacement at the boundary between the elastic and the plastic zone can be
found by substituting r = re into Equation D.17, as shown underneath (Equation D.19):

ur = − (p− p1)re
2G

(D.19)

When only elastic unloading takes place no plastic zone is formed (i.e. re = r), leading to Equation D.20.

ui = − (p− pi)r
2G

(D.20)

As displayed in Equation D.21, Equation D.22 and Equation D.23, the strains in the plastic zone amount:

εθ = ε1 = −u
r

(D.21)

εr = ε3 = −du
dr

(D.22)

ε3 = ε3e − f(ε1 − ε1e) (D.23)

In the latter formula ’e’ is added to the subscript to denote the strains at the boundary between the plastic
and the elastic zone. The parameter f is a constant that represents the gradient between the plastic strains,
as shown in Equation D.24 and Figure D.2.

f =
εp3
εp1

(D.24)

The strains at the boundary between the plastic and elastic zone are (Equation D.25):

ε1e = −ε3e =
p− p1

2G
(D.25)

Substitution of Equation D.25 into Equation D.24 gives Equation D.26:

ε3 = −fε1 − (1− f)
p− p1

2G
(D.26)

Combining Equation D.21, Equation D.22 and Equation D.26 leads to the differential equation displayed in
Equation D.27:

du

dr
= −f u

r
+ (1− f)

p− p1
2G

(D.27)

Solving the differential equation using r = re leads to the final expression giving the inwards movement of
the tunnel perimeter (Equation D.28):

u

r
= − (p− p1)

G(1 + f)

[
f − 1

2
+

(
re
ri

)1+f]
(D.28)
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D.3 Elastic Brittle Plastic Behavior - Mohr Coulomb

As discussed in Appendix B the Mohr-Coulomb failure criterion defines the strength of a rock mass is
described by Equation D.29, Equation D.30 and Equation D.31.

σ1 = σcm + bσ3 (D.29)

σcm =
2c cosφ

(1− sinφ)
(D.30)

b =
(1 + sinφ)

(1− sinφ)
(D.31)

When considering failure a loss of cohesion the residual stenght is derived from confinement due to the
presence of a rock reinforcement system. In other words the term Equation B.2 is removed from the resedual
strength criterion, as c = 0. In that case the broken rock is expected to behave as a rock fill with a certain
friction angle but no cohesion (Hoek and Brown (1997)). Therefore the strength of the failed rock is described
as displayed in Figure D.2. Note that the ’cohesion term’ σcm is taken out of the equation compared to the
failure criterion of intact rock (Equation D.32). In the latter equation φr represents the friction angle of the
broken rock material.

σ1 = dσ3 (D.32)

with:

d =
(1 + sinφr)

(1− sinφr)
(D.33)

In the considered case the principal stresses are σθ, (σ1) and σr(σ3) equation Equation D.32 can be expressed
as (Equation D.34):

σθ = dσr (D.34)

Like stated earlier, a circular opening is considered in this analysis. This causes the situation to be axis
symmetric, which means that only one condition has to be satisfied in order to obtain an equilibrium situation
(Equation D.35).

dσr
dr

=
σθ − σr

r
(D.35)

When substituting Equation D.34 into Equation D.35, the latter equation can be written as (Equation D.36):

dσr
dr

= (d− 1)
σr
r

(D.36)

Rewriting Equation D.36 in the following form allows for integration (Equation D.37):

(d− 1)
1

r
dr =

1

σr
dσr (D.37)

Integration of Equation D.37 by following the derivation steps displayed in Equation D.38 to Equation D.43
with the boundary conditions that apply to the fractured zone is shown underneath.∫ r

ri

(d− 1)
1

r
dr =

∫ σr

pi

1

σr
dσr (D.38)

[
ln(rd−1)

]r
ri

=
[
ln(σr)

]σr

pi
(D.39)

ln(rd−1)− ln(rd−1i ) = ln(σr)− ln(pi) (D.40)

ln

(
rd−1

rd−1i

)
= ln

(
σr
pi

)
(D.41)
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(
r

ri

)d−1
=
σr
pi

(D.42)

σr = pi

(
r

ri

)d−1
(D.43)

Substitution of Equation D.34 in Equation D.43 leads to the tangential stress distribution in the broken zone
(Equation D.44):

σθ = dpi

(
r

ri

)d−1
(D.44)

At the intersection between the fractured zone and the intact rock the radial stress is equal in both masses.
Defining p1 as the radial stress at this boundary, situated at r = re, Equation D.43 equals:

p1 = pi

(
re
ri

)d−1
(D.45)

Which can be re-written as Equation D.46:

re = ri

(
p1
pi

)1/(d−1)

(D.46)

The principal stresses in the elastic zone are (Equation D.47, Equation D.48):

σθ = p
(

1 +
r2e
r2

)
− p1

r2e
r2

(D.47)

σr = p
(

1− r2e
r2

)
+ p1

r2e
r2

(D.48)

At the boundary of the broken and the intact rock the conditions are (Equation D.49):

σθ = 2p− p1, σr = p1 (D.49)

Knowing that the condition at the intersection between the broken and the intact rock equals the stress state
at failure of the rock mass, the expressions from Equation D.49 can be substituted into Equation B.1. This
leads to the following expression of the failure criterion:

2p− p1 = kp1 + σci (D.50)

By rearranging the latter equation the support stress at which plasticity occurs (i.e the rock mass breaks)
can be derived:

p1 =
2p− σci

1 + k
(D.51)

The radius of the fractured zone is obtained when Equation D.51 is substituted into Equation D.46, as shown
underneath (Equation D.52).

re = ri

[
2p− σci
(1 + b)pi

]1/(d−1)
(D.52)

The displacements after excavation are the same as explained in the previous derivation using the Hoek
Brown failure criterion.
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D.4 Confinement Due to Rock Reinforcement

As described in the previous section the perimeter of the tunnel will start to move in the direction of the
tunnel after excavation. This causes the support stress of the applied reinforcement system to be mobilised.
The stress strain curve for passive rock bolts can differ based on the kind of rock bolt that is considered,
which is elaborated in Appendix E.

The response of the rock support system is a function of the moment of installation, the stiffness and peak
strength. Because tunnel deformation starts ahead of the face a certain deformation has already taken place
when the rock reinforcement system is installed at the earliest practicable moment. In Figure D.7 this
deformation is stated as ui0.

Figure D.7: Stress-Strain curve rock reinforcement system (from: Hoek and Brown (1980b))

Convergence of the tunnel after installing the rock reinforcement system will stabilise the support pressure
as displayed in Equation D.53 and Equation D.54 (Hoek and Brown (1980b)).

pi = kb
uie
ri

(D.53)

uie = ui0 +
piri
kb

(D.54)

For rock bolts the values for the stiffness kb and strength psmax based on dynamic tests, where an individual
rock bolt is loaded axially up till failure, in combination with the in situ bolt spacing (see Appendix E). The
stress at which a bolt fails in such a test amounts Tbf . Besides the strength of an individual bolt the density
of the bolting pattern plays a role in the support stress that can be established by the rock reinforcement
system, as displayed in Equation D.55.

psmax =
Tbf
scsl

(D.55)

In this thesis report rock reinforcement systems in which mesh is applied are considered. In such cases it is
assumed that the mesh only serves the purpose of transferring stresses from the rock mass to the rock bolts,
but does not add to the strength capacity or stiffness of the rock reinforcement system.
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D.5 Python Code Analytic Convergence Confinement Equilibrium

1 # El as t i c b r i t t l e b ehav i or
2
3 impo r t ma th
4 impo r t numpy a s np
5 impo r t py l ab
6 impo r t ma tp l o t l i b . pyp l o t a s p l t
7
8 ### Tunne l Conve r gence ###
9

10 #Hoek−Brown i npu t parame t e r s
11 s i gma c = 140 . # UCS rock mas s [MPa]
12 m = 0.0 # Hoek−Brown parame t e r m [−]
13 s = 0.16 # Hoek−Brown parame t e r s [−]
14 E = 46000 . # Young s modu l us [MPa]
15 v = 0 .2 # Po i s sons ra t i o [−]
16 m r = 1 . # Re s edua l Hoek−Brown parame t e r m [−]
17 s r = 0 . # Re s edua l Hoek−Brown parame t e r s [−]
18 a = 0 .5 # Hoek−Brown parame t e r a [−]
19 a r = 0 .5 # Re s edua l Hoek−Brown parame t e r a [−]
20
21 #Excava t i on s e t t i ng
22 p = 40 . # Hydros t a t i c i n s i t u s t r e s s [MPa]
23 r i = 3 .5 # Tunne l rad i us [m]
24
25 i = np. l i n spac e (0 , p , 10000) # Va l ue s o f p i
26
27 u = [ ] #va l ue s conve r gence (de f orma t i on)
28 r = [ ] #va l ue s rad i us
29
30 G = E / (2 ∗ (1 + v) ) # Shear modu l us
31
32 ### Equ i v i l en t M−C parame t e r s ###
33
34 s i gma 3n = 0.47 ∗ ( s i gma c / p) ∗∗−0.94 # For be s t f i t MC−HB
35
36 ph i = ma t h . a s i n((6∗ a∗m∗(s+m∗s i gma 3 n) ∗∗( a−1) ) /(2∗(1+ a) ∗(2+a)+(6∗a∗m∗(s+m∗s i gma 3 n) ∗∗( a−1) ) ) )
37 ph i deg = ph i ∗ 180 / ma t h . p i
38 c = ( s i gma c∗(((1+2∗ a) ∗s+(1−a) ∗m∗s i gma 3 n) ∗(s+m∗s i gma 3 n) ∗∗( a−1) ) ) /((1+ a) ∗(2+a)
39 ∗mat h. sq r t(1+(6∗ a∗m∗(s+m∗s i gma 3 n) ∗∗( a−1) ) /((1+ a)∗(1−a) ) ) )
40
41 ph i f = ma t h . a s i n((6∗ a r∗m r∗ ( s r+m r∗ s i gma 3 n) ∗∗( a r−1) ) /(2∗(1+a r ) ∗(2+a r ) +(6∗a r∗m r∗
42 ( s r+m r∗ s i gma 3 n) ∗∗( a r−1) ) ) )
43 ph i f deg = ph i f ∗ 180 / ma t h . p i
44 c r = ( s i gma c∗(((1+2∗ a r ) ∗ s r+(1−a r ) ∗m r∗ s i gma 3 n) ∗( s r+m r∗ s i gma 3 n) ∗∗( a r−1) ) ) /((1+a r ) ∗
45 (2+a r ) ∗mat h. sq r t(1+(6∗a r∗m r∗ ( s +m r∗ s i gma 3 n) ∗∗( a r−1) ) /((1+a r ) ∗(1−a r ) ) ) )
46
47 # Pr i n t ca s e prope r t i e s #
48
49 pr i nt ”Ca s e : Qua r t z i t e dr i f t Sweden”
50 pr i nt ” s i gma c =” , s i gma c , ”p =” , p , ” s =” , s , ” r i =” , r i
51
52 # Pl o t peak and r e s i dua l s t r engh t enva l ope #
53
54 s i gma 3 = np. l i n spac e (0 ,30 ,1000)
55 s i gma 1 peak = s i gma 3 + s i gma c∗(m∗( s i gma 3/ s i gma c)+s ) ∗∗0 .5
56 s i gma f = ( s∗∗0 . 5 ) ∗ s i gma c + (0∗ s i gma 3)
57 s i gma 1 r e s i d = s i gma 3 + s i gma c∗(m r∗ ( s i gma 3/ s i gma c)+s r ) ∗∗0 .5
58
59 # compos e p l o t
60 py l a b . p l o t ( s i gma 3 , s i gma 1 peak , ’ r ’ , l abe l=” s i gma 1 peak” )
61 py l a b . p l o t ( s i gma 3 , s i gma 1 r e s i d , ’b ’ , l abe l=” s i gma 1 r e s i d . ” )
62 py l a b . p l o t ( s i gma 3 , s i gma f , ’ g ’ , l abe l=” s i gma f ” )
63 p l t . x l abe l ( ’ s i gma 3 [MPa ] ’ )
64 p l t . y l abe l ( ’ s i gma 1 [MPa ] ’ )
65 p l t . t i t l e ( ’Peak and r e s i dua l s t r eng th enva l ope ’ )
66 p l t . l egend(bbox t o ancho r=(1 .05 , 1) , l oc=2 , bo rde r axe spad=0.)
67 py l a b . show() # show t he p l o t
68
69 # Parame t e r s M & N f or t he e l a s t i c r eg i on
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70 M = 0.5 ∗ ( (m / 4) ∗∗2 + (m ∗ p / s i gma c) + s ) ∗∗0 .5 − (m / 8)
71 N = ((2 / (m r ∗ s i gma c) ) ∗ (ma t h . sq r t ( (m r ∗ s i gma c ∗ p) + ( s r ∗ s i gma c∗∗2)
72 − (m r∗ ( s i gma c∗∗2) ∗M)) ) )
73
74 # Pos t peak d i l a t i on parame t e r f
75 f = 1 . #ze ro vo l ume i nc r ea s e a f t e r f a i l ur e
76
77 f o r p i i n i :
78 i f p i >= p − M ∗ s i gma c :
79 u . append( r i ∗ ( ( p − p i ) / (2 ∗ G)) )
80 e l s e :
81 r = r i ∗ mat h. exp(N − (2 / (m r ∗ s i gma c) ) ∗ ( ( ( p i ∗ m r ∗ s i gma c) +
82 ( s r ∗ s i gma c∗∗2) ) ∗∗0 .5 ) )
83 u . append( r i ∗ ( ( (M ∗ s i gma c) / (G ∗( f + 1) ) ) ∗ ( ( ( f − 1) / 2) + ( ( r/ r i ) ∗∗( f + 1) ) ) ) )
84
85 u1 = [ j ∗ 1000 f o r j i n u ] # u = de f orma t i on t unne l wa l l [mm]
86
87 ### Suppor t s y s t em ###
88 u f = u1 [ 0 ] # de f orma t i on when p i = 0 MPa
89 de l t a 0 = u f / 3 # Tunne l de f orma t i on be f or e i ns t a lmen t suppor t [m]
90
91 # Rock bo l t s :
92 Bo l t t ype = ’Reba r ’
93 T b f = 0 .2 # St r eng t h bo l t f rom pu l l ou t t e s t [MN]
94 s c = 1 . # Ci r cumf e r en t i a l spac i ng bo l t [m]
95 s l = 1 . # l ong i t ud i na l spac i ng bo l t [m]
96 E b = 205000. # St i f f ne s s bo l t ma t e r i a l [MPa]
97 EDC bo l t = 5 . # Ene r gy d i s s i pa t i on capac i t y bo l t [KJ]
98
99 A 1 = r i∗2∗mat h. p i # Per ime t e r c ro s s s ec t i on

100 sp = ( s c + s l ) /2 # bo l t spac i ng [m]
101 n = A 1/ sp # numbe r o f bo l t s [−]
102 EDC to t = EDC bo l t∗n # t o t a l ene r gy d i s s i pa t i on capac i t y [MJ]
103
104 pr i nt ”bo l t t ype =” , Bo l t t ype , ” ,EDC =” , EDC bo l t , ” ,Amount =” , r ound( n ,1)
105 pr i nt ’Ene r gy Di s s i pa t i on Capac i t y : ’ , r ound(EDC to t , 1 ) , ’ [ k J ] ’
106
107 # St i f f ne s s s y s t em rock bo l t s :
108 k b = 150 . #s t i f f ne s s rock bo l t [MN/m]
109 k s = k b / ( s c ∗ s l )
110
111 # Max imum suppor t pr e s sur e bo l t s :
112 p smax = T b f / ( s c∗ s l ) #[MPa]
113
114 ### suppor t pr e s sur e ###
115
116 u2 = [ ] # de f orma t i on suppor t [mm]
117
118 i 2 = np. l i n spac e (0 , p smax , 500)
119 i 3 = np. l i n spac e(p smax , p smax , 500)
120
121 i 4 = [ ]
122 i 4 . ex t end( i 2 )
123 i 4 . ex t end( i 3 )
124
125 f o r p i i n i :
126 i f p i < p smax :
127 de l t a = (de l t a 0 + ( ( ( p i ∗ r i ) / k s ) ∗ 1000) )
128 u2. append(de l t a)
129 e l s e :
130 u2. append(np . nan)
131
132 u1 = np. a s a r r ay( u1) #turn i ng l i s t i n t o ar ray
133 u2 = np. a s a r r ay( u2) #turn i ng l i s t i n t o ar ray
134
135 ### Equ i l i b r i um suppor t s t r e s s ###
136 X = [ ]
137
138 d i f f = u1 − u2
139 mi n imum = mi n(ab s ( d i f f ) )
140
141 # Find wh i ch pos i t i on i n ar ray p i r epr e s en t s equ i l i b r i um
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142 f o r X1, Y i n enume r a t e(d i f f ) :
143 i f Y == mi n imum o r Y == mi n imum ∗−1 :
144 X = X1
145
146 p i = i 4 [ X] #suppor t pr e s sur e a t equ i l i b r i um
147 pr i nt ’The suppo r t pr e s sur e a t equ i l i b r i um i s : ’ , r ound( i [ X] ,1) , ’MPa ’
148
149 p i = 0 .2 #Us e r de f i ned p i [MPa] i f wan t e d .
150
151 ### Pl o t t i ng ###
152
153 p l t . p l o t ( u1 , i , ’ r ’ , l abe l=”GRC” ) # p l o t t i ng
154 p l t . p l o t ( u2 , i , ’ b ’ , l abe l=”SRC” ) # p l o t t i ng
155 p l t . x l abe l ( ’u [mm] ’ )
156 p l t . y l abe l ( ’p i [MPa ] ’ )
157 p l t . t i t l e ( ’Conve r genc e / con f i nement equ i l i b r i um’ )
158 p l t . l egend(bbox t o ancho r=(1 .05 , 1) , l oc=2 , bo rde r axe spad=0.)
159 p l t . show()
160
161 ### St r e s s d i s t r i bu t i on b roken zone ###
162 r e = r i∗mat h. exp(N−((2/(m r∗ s i gma c) ) ∗ ( (m r∗ s i gma c∗p i ) +(s r∗ s i gma c∗∗2) ) ∗∗0 .5 ) )
163 # r e = rad i us b roken zone
164
165 s i gma thth = [ ] # Emp t y l i s t s t ha t wi l l ho l d va l ue s
166 s i gma r r = [ ]
167
168 r1 = np. l i n spac e( r i , r e , 10) # inpu t va l ue s rad i us b roken zone
169
170 f o r r i n r1 :
171 s i gma r r . appen d ( ( ( ( (m r∗ s i gma c) /4) ∗ ( (ma t h . l o g( r/ r i ) ) ∗∗2) ) + ( ( (ma t h . l o g( r/ r i ) ) ∗
172 ( ( (m r ∗ s i gma c ∗ p i ) ) + ( s r ∗ s i gma c∗∗2) ) ∗∗0 .5 ) + p i ) ) )
173 s i gma r = ( ( ( (m r∗ s i gma c) /4) ∗ ( (ma t h . l o g( r/ r i ) ) ∗∗2) ) + ( ( (ma t h . l o g( r/ r i ) ) ∗
174 ( ( (m r ∗ s i gma c ∗ p i ) ) + ( s r ∗ s i gma c∗∗2) ) ∗∗0 .5 ) + p i ) )
175 s i gma tht h . append( s i gma r + ( ( (m r∗ s i gma c∗ s i gma r ) + ( s r∗ ( s i gma c∗∗2) ) ) ∗∗0 .5 ) )
176
177 #########################
178 # s t r e s s d i s t rubu t i on i n t ac t zone
179
180 r2 = np. l i n spac e( r e , 10 , 10) # inpu t va l ue s rad i us i n t ac t zone
181 p 1 = p − (M ∗ s i gma c) # rad i a l s t r e s s a t boundary b roken / i n t ac t rock
182
183 f o r r i n r2 :
184 s i gma r r . append(p − ( ( p − p 1) ∗ ( ( r e/ r ) ∗∗2) ) )
185 s i gma tht h . append(p + ( ( p − p 1) ∗ ( ( r e/ r ) ∗∗2) ) )
186
187 #########################
188 r = [ ] # a l i s t wi t h a l l r i npu t va l ue s
189 r . ex t end( r1 )
190 r . ex t end( r2 )
191
192 r ove r r i = [ i / r i f o r i i n r ]
193 s i gma thth ove r p = [ i / p f o r i i n s i gma tht h ]
194 s i gma r r ove r p = [ i / p f o r i i n s i gma r r ]
195
196 p l t . p l o t ( r ove r r i , s i gma thth ove r p , ’ r ’ , l abe l=” s i gma the t a/p” ) # p l o t t i ng
197 p l t . p l o t ( r ove r r i , s i gma r r ove r p , ’b ’ , l abe l=” s i gma r/p” ) # p l o t t i ng
198 p l t . x l abe l ( ’ r / r i [− ] ’ )
199 p l t . y l abe l ( ’ s i gma / p [− ] ’ )
200 p l t . t i t l e ( ’S t r e s s d i s t r i but i on a r ound excava t i on ’ )
201 p l t . l egend(bbox t o ancho r=(1 .05 , 1) , l oc=2 , bo rde r axe spad=0.)
202 p l t . show()
203
204 #########################
205 a l pha = 0 .9 #shar e o f accumu l a t ed ene r gy t ha t i s r e l ea s ed a t f a i l ur e
206
207 A = ( r e∗∗2∗mat h. p i ) − ( r i∗∗2∗mat h. p i ) # Vo l ume f a i l ed zone [ mˆ3]
208 E 1 = 1000∗a l ph a∗ ( ( ( s i gma c∗mat h. sq r t ( s ) ) ∗∗2) /(2∗E) ) # Ene r gy r e l ea s e [ kJ/mˆ3]
209 E t o t = A∗E 1 # To t a l Ene r gy r e l ea s ed a t f a i l ur e [ k J ]
210
211 #########################
212 FOS = EDC to t/E t o t #FOS
213
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214 pr i nt ’Rad i us f a i l ed zone : ’ , r ound( r e , 1 ) , ’m’
215 pr i nt ’Vo l ume f a i l ed zone : ’ , r ound(A ,1) , ’mˆ3 ’
216 pr i nt ’Re l ea s ed ene r gy/mˆ3 f a i l i ng r ock : ’ , r ound(E 1 , 1 ) , ’ kJ ’
217 pr i nt ’Re l ea s ed ene r gy f r om f a i l ed zone : ’ , r ound(E t o t , 1 ) , ’ kJ ’
218 pr i nt ’Fac t o r o f s a f e t y : ’ , r ound(FOS ,2) , ’− ’
219
220 i f EDC t o t > E t o t :
221 pr i nt ’ (S t ab l e/Fa i l u r e) : S t ab l e ’
222 e l s e :
223 pr i nt ’ (S t ab l e/Fa i l u r e) : Fa i l u r e ’
224
225 ##### Va l i da t i on ou t come
226 s i gma f1 = ( s∗∗0 . 5 ) ∗ s i gma c
227 s i gma 1 p = p 1 + s i gma c∗(m∗(p 1/ s i gma c)+s ) ∗∗0 .5
228 s i gma 1 r e s = p 1 + s i gma c∗ (m r∗ ( p 1/ s i gma c)+s r ) ∗∗0 .5
229
230 pr i nt ’Out come va l i da t i on : ’
231
232 che ck1 = [ ]
233 che ck3 = [ ]
234
235 i f p 1 < ( s i gma c/10) :
236 che ck1 = ’va l i d ’
237 e l s e :
238 che ck1 = ’ i nva l i d ’
239
240 i f 1 < ( s i gma 1 p/ s i gma 1 r e s ) :
241 che ck2 = ’va l i d ’
242 e l s e :
243 che ck2 = ’ i nva l i d ’
244
245 pr i nt ’ (1 ) UCS / S i gma r
246 (bouna ry i nt ac t/br oke n) : ’ , r ound( s i gma c/p 1 , 1 ) , ’ [− ] ’ , che ck1
247 pr i nt ’ (2 ) s i gma 1 p/ s i gma 1 r e s
248 (bounda ry i nt ac t/br oke n) : ’ , r ound( s i gma 1 p/ s i gma 1 r e s , 1 ) , ’ [− ] ’ , che ck2
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Appendix E

Rock Reinforcement System

In this chapter the method applied to derive the static and dynamic performance of rock bolts is elaborated.

E.1 Static and Dynamic Bolt Response

In the static pull test a fracture opening up is simulated. The tested bolt is installed through two concrete
blocks that are being moved apart at a low displacement rate, causing the static force-displacement behavior
of the tested bolt to be obtained. An image of the set up present at the rock mechanics lab at Norwegian
University of Science and Technology alongside with a schematic representation of the test is presented in
Figure E.1.

Figure E.1: Static pull test on D-bolt simulating opening up of a crack (from: Li (2012))

Dynamic tests are conducted by means of the set up presented in Figure E.2. In such tests the bolt is axially
loaded by means of a block with a certain mass that is dropped from a certain height. This corresponds with a
certain velocity and energy when the impact hits the bolt, according to Equation E.1 (Li and Doucet (2012)).

E =
1

2
mdropv

2
drop (E.1)

E.2 Stiffness of the Reinforcement System

When considering the in situ stiffness of the reinforcement system in the analytic analysis the approach
presented by Brady and Brown (2007) based on Hoek and Brown (1980b) is applied (Appendix D). The
latter formula is presented without a derivation in literature as:

ks =
Esπd

2
b

4lslsc
(E.2)
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Figure E.2: Schematic dynamic test rock bolt (from: Li et al. (2014))

Simple evaluation of this formula shows that bolt is modeled as a rod with a cross section A = 1
4πd

2
b , in

which db represents the diameter of the cross section of the bolt steel. The formulation for the stiffness of
the system (ks) then becomes (Equation E.3):

ks =
1

scsl

EsA

l
(E.3)

In other words, the stiffness of an individual bolt is represented by the general expression for the axial stiffness
of a rod subjected to an uniform axial stress (Equation E.4):

kb =
EsA

l
(E.4)

Based on the latter formula the stiffness of the reinforcement system kb equals the stiffness of the bolt per
unit of surface it supports (Equation E.5):

ks =
1

scsl
kb (E.5)

kb can be derived from the force-displacement or F − ub curves that are obtained in pull out tests. The
stiffness of the bolt in the elastic region (i.e. prior to yielding) equals (Equation E.6):

kb =
F

ub
(E.6)

As shown in the introduction of this chapter the elastic response of the split set and the grouted rebar bolt is
simular and the deformable section of the D-bolt is less stiff under static loading. However, Figure 2.14 shows
that the D-bolt react stiffer when loaded dynamically. From visual assesment of observations presented by
Player et al. (2009) it can be concluded that split set bolts are equally stiff when loaded either statically
or dynamically. As far as the author is concerned no stress strain curves on the dynamic performance of
grouted rebar bolts are presented in literature. Based on the aforementioned it is assumed that all three
considered bolt types react equally stiff when loaded dynamically. A read off from Figure 2.11 leads to
kb ≈ 150kN/mm = 150MN/m. Using a single value for the stiffness off all bolt types strictly spoken
introduces an error into the model, because the assumption is based on the read off from a small section
of the graph. However, the stiffness of the reinforcement system is a couple orders of magnitude smaller
than the elastic unloading stiffness of the rock mass. For illustration, Equation D.20 representing the elastic
unloading of the rock mass at the excavation boundary (r = ri) is repeated underneath:

uie = − (p− pi)r
2G

(E.7)

In this formula it shows that the linear unloading stiffness of the rock mass at the excavation boundary (kr)
equals (Equation E.8):
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kr =
2G

ri
(E.8)

and:

G =
E

2(1 + ν)
(E.9)

Based on the input parameters from case Sweden Emod = 46000 MPa, ν = 0.2 G = 19200MPa and ri = 3.5m,
which leads to kr = 11000 MN/m after rounding. This means that the theoretical linear elastic unloading
stiffness of the rock mass is over 70 times larger than the stiffness of the reinforcement system. Based on this
observation it may be assumed that the difference in stiffness between the reinforcement system and the rock
mass is conserved in the model regardless of slight variations in stiffness that may exist between different
bolt types.
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