

Delft University of Technology

Reinforcement learning in continuous state and action spaces

Busoniu, IL

Publication date
2009
Document Version
Final published version
Citation (APA)
Busoniu, IL. (2009). Reinforcement learning in continuous state and action spaces. [Dissertation (TU Delft),
Delft University of Technology].

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

Reinforcement Learning in

Continuous State and Action Spaces

Lucian Buşoniu

Reinforcement Learning in

Continuous State and Action Spaces

Proefschrift

ter verkrijging van de graad van doctor

aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.dr.ir. J.T. Fokkema,

voorzitter van het College van Promoties,

in het openbaar te verdedigen op dinsdag 13 januari 2009 om 12:30 uur

door

Ion Lucian BUŞONIU

Master of Science, Technische Universiteit van Cluj-Napoca, Roemenië,

geboren te Petroşani, Roemenië.

Dit proefschrift is goedgekeurd door de promotoren:

Prof.dr. R. Babuška, M.Sc.

Prof.dr.ir. B. De Schutter

Samenstelling promotiecommissie:

Rector Magnificus voorzitter

Prof.dr. R. Babuška, M.Sc. Technische Universiteit Delft, promotor

Prof.dr.ir. B. De Schutter Technische Universiteit Delft, promotor

Prof.dr. R. Munos INRIA Futurs Lille

Dr. D. Ernst University of Liege

Prof.dr.ir. F.C.A. Groen Universiteit van Amsterdam

Prof.drs.dr. L. Rothkrantz Nederlandse Defensie Academie &

Technische Universiteit Delft

Prof.dr. C. Witteveen Technische Universiteit Delft

Prof.dr.ir. M. Verhaegen Technische Universiteit Delft (reservelid)

This thesis has been completed in partial fulfillment of the requirements of the Dutch Insti-

tute for Systems and Control (DISC) for graduate studies. The research described in this

thesis was financially supported by Senter, Ministry of Economic Affairs of the Nether-

lands within the BSIK-ICIS project “Interactive Collaborative Information Systems” (grant

no. BSIK03024) and by the NWO Van Gogh grant VGP 79-99.

Published and distributed by: Lucian Buşoniu

E-mail: i.l.busoniu@tudelft.nl

Web: http://www.dcsc.tudelft.nl/∼lbusoniu

ISBN 978-90-9023754-1

Copyright © 2008 by Lucian Buşoniu

All rights reserved. No part of the material protected by this copyright notice may be re-

produced or utilized in any form or by any means, electronic or mechanical, including pho-

tocopying, recording or by any information storage and retrieval system, without written

permission of the author.

Printed in the Netherlands

Acknowledgements

First and foremost, I thank my advisers, Professors Robert Babuška and Bart De Schutter,

who complement each other so well. With Robert’s endless enthusiasm, energy, and string

of new ideas, it is impossible to get stuck with your research. With his steadfast support and

encouragement, together with his attention to detail, Bart balances and completes the formula

for perfect supervision. This does not mean that one lacked encouragement and support, or

the other energy and new ideas — far from it! I thank them both for always taking time from

their busy schedule (often even during evenings and weekends!) to read through and criticize

my work, and to offer suggestions and ideas on how to improve it.

It has been great to work with Damien Ernst, owing to his own brand of endless enthu-

siasm, energy, and string of new ideas, together with his inspiring belief in our work. He

also made possible my stay in France, which is a great country from so many points of view,

starting with the restaurants and ending with the coastlines.

I would like to thank my former teacher and current friend, Paula, without whose support I

would not even have started my PhD in Delft. And to my friend Zsófi, for her companionship

and support. I am grateful to my friends back in Romania and elsewhere, Luminiţa, Laura,

Sorin, Aurelian, Mugur, Radu — to name but a few — who made my holidays great and

helped me regain energy for my research. My thanks also go to Professors Liviu Miclea and

Dorin Isoc of the Technical University of Cluj-Napoca, who guided my first steps into the

academia.

It has been a pleasure to work in the excellent environment of the Delft Center for Sys-

tems and Control, and this is thanks to all my colleagues, staff and students alike. I would like

to mention especially Roland Tóth, Jelmer van Ast, Rudy Negenborn, Diederick Joosten, and

(former colleague and current friend) Tudor Ionescu. My students Xu, Maarten, Sander,

Sjoerd, and Thijs helped me with my work and allowed me to contribute in more ways

than just doing research. I enjoyed collaborating with Erik Schuitema and his colleagues

at BioMechanical Engineering within TUDelft.

I am grateful also to my colleagues in the Interactive Collaborative Information Systems

project, especially to Martijn Neef for his help with administrative issues. I acknowledge the

efforts of the members of my committee, who read through my thesis and provided helpful

comments and suggestions: Professors Rémi Munos, Frans Groen, Léon Rothkrantz, Cees

Witteveen, Michel Verhaegen, and of course, again, Damien, Robert, and Bart.

I also wish to thank my family for their support. Finally, since it is not possible to mention

here each and every person who contributed to my work in one way or another, I apologize

to these persons for not including them, and thank them all together.

Lucian Buşoniu

Delft, November 2008

v

vi

Contents

1 Introduction 1

1.1 Dynamic programming and reinforcement learning 1

1.2 Focus and contributions of the thesis . 3

1.3 Thesis outline . 5

2 Dynamic programming and reinforcement learning 7

2.1 Introduction . 7

2.2 Markov decision processes . 9

2.2.1 Deterministic setting . 9

2.2.2 Stochastic setting . 12

2.3 Value iteration . 13

2.4 Policy iteration . 16

2.5 Direct policy search . 18

2.6 Conclusions and open issues . 19

3 Approximate dynamic programming and reinforcement learning 23

3.1 Introduction . 23

3.2 The need for approximation in DP and RL 25

3.3 Approximate value iteration . 26

3.3.1 Approximate model-based value iteration 27

3.3.2 Approximate model-free value iteration 27

3.3.3 Convergence and the role of non-expansive approximators 28

3.4 Approximate policy iteration . 32

3.4.1 Approximate policy evaluation . 32

3.4.2 Policy improvement . 35

3.4.3 Convergence guarantees . 36

3.4.4 Actor-critic methods . 40

3.5 Finding value function approximators automatically 42

3.5.1 Resolution refinement . 43

3.5.2 Basis function optimization . 44

3.5.3 Other methods for basis function construction 45

3.6 Approximate policy search . 45

3.7 Comparison of approximate value iteration, policy iteration, and policy search 48

3.8 Conclusions and open issues . 49

vii

4 Approximate value iteration with a fuzzy representation 51

4.1 Introduction . 51

4.2 Related work . 52

4.3 Fuzzy Q-iteration . 53

4.4 Analysis of fuzzy Q-iteration . 59

4.4.1 Convergence . 59

4.4.2 Consistency . 64

4.5 Optimizing the membership functions . 67

4.5.1 Cross-entropy optimization . 68

4.5.2 Fuzzy Q-iteration with CE optimization of the membership functions 70

4.6 Experimental studies . 71

4.6.1 Servo-system . 71

4.6.2 Two-link manipulator . 78

4.6.3 Inverted pendulum . 79

4.6.4 Optimizing membership functions for the car on the hill 82

4.7 Conclusions and open issues . 85

5 Online and continuous-action least-squares policy iteration 87

5.1 Introduction . 87

5.2 Least-squares policy iteration . 88

5.3 LSPI with polynomial action approximation 91

5.4 Online LSPI . 92

5.5 Using prior knowledge in online LSPI . 95

5.5.1 Parameterized policies . 96

5.5.2 Monotonous policies . 97

5.6 Experimental studies . 99

5.6.1 LSPI with polynomial approximation for the inverted pendulum . . . 99

5.6.2 Online LSPI for the inverted pendulum 103

5.6.3 Online LSPI for the two-link manipulator 111

5.6.4 Online LSPI with prior knowledge for the servo-system 113

5.7 Conclusions and open issues . 118

6 Cross-entropy policy search 121

6.1 Introduction . 121

6.2 Related work . 123

6.3 Cross-entropy optimization . 124

6.4 CE policy search . 126

6.4.1 Policy parameterization and CE score function 126

6.4.2 CE policy search with radial basis functions 129

6.5 Experimental studies . 132

6.5.1 Discrete-time double integrator . 132

6.5.2 Bicycle balancing . 138

6.5.3 Structured treatment interruptions for HIV infection control 145

6.6 Conclusions and open issues . 149

viii

7 Conclusions and outlook 151

7.1 Summary and conclusions . 151

7.2 Open issues and outlook . 152

7.2.1 Open issues and future research . 153

7.2.2 Outlook of DP and RL for control 155

Appendices 159

A The cross-entropy method 159

A.1 Rare-event simulation using the CE method 159

A.2 CE optimization . 162

B Least-squares policy evaluation for Q-functions 165

B.1 Least-squares policy evaluation for Q-functions 165

B.2 Online policy iteration with LSPE-Q . 167

Bibliography 169

Glossary 177

Summary 181

Samenvatting 185

Curriculum vitae 189

ix

x

Chapter 1

Introduction

This chapter introduces dynamic programming and reinforcement learning, and the main

challenge in this field: the need for approximating the solution. This challenge motivates

the research presented in this thesis. Then, the contributions of the thesis are described. The

chapter closes with an outline of the thesis.

1.1 Dynamic programming and reinforcement learning

The framework of dynamic programming (DP) and reinforcement learning (RL) can be used

to address important problems arising in a variety of fields, including e.g., automatic con-

trol, operations research, computer science, and economy. This thesis focuses on DP and

RL for automatic control (Bertsekas, 2007). From the perspective of automatic control, the

DP/RL framework comprises a general, nonlinear and stochastic optimal control problem.

Algorithms that solve such a problem in general are extremely useful for optimal control.

Moreover, RL algorithms solve the problem using only data, without requiring prior knowl-

edge about the process.

The application of DP and RL to artificial intelligence is equally important, although it

is not the focus of this thesis. From the perspective of artificial intelligence, RL promises a

methodology to build an artificial agent that learns how to survive and optimize its behavior in

an unknown environment, without requiring any prior knowledge (Sutton and Barto, 1998).

Building such an agent is an important goal of artificial intelligence.

The DP/RL field combines research from optimal control theory and from artificial in-

telligence, and this mixed origin is reflected by the use of two sets of names for identical

concepts in the field: e.g., ‘controller’ has the same meaning as ‘agent’, and ‘process’ has

the same meaning as ‘environment’. In this thesis, control-theoretical terminology will be

used. At each discrete time step, the controller measures the state of the process and applies

an action, according to a control policy. As a result of this action, the process transits into

a new state, and a scalar reward signal is sent to the controller to indicate the quality of the

transition. The controller measures the new state, and the whole cycle repeats. State tran-

sitions can in general be nonlinear and stochastic. This pattern of interaction is represented

in Figure 1.1. The goal is to maximize the cumulative reward (the return) over the course of

interaction (Bertsekas, 2007; Sutton and Barto, 1998; Bertsekas and Tsitsiklis, 1996).

1

CHAPTER 1. INTRODUCTION

Controller
(agent)

Process
(environment)

Reward function
(performance
evaluation)

state

action

reward

Figure 1.1: The basic elements of DP and RL, and their flow of interaction. The elements

related to the reward are depicted in gray.

As a conceptual example, consider a garbage-collecting robot. This robot measures its

own position, and the positions of the surrounding objects; these positions are the state vari-

ables. The software of the robot is the controller. It receives the position measurements,

and sends commands to the wheel motors; these commands are the actions. The dynamics

describe the rule according to which states (positions) change as a result of the actions. The

reward signal could, e.g., be positive at every time step in which the robot picks up trash, and

zero otherwise. Note that in DP and RL, the process (environment) also includes the physical

body of the robot.

Solving the DP/RL problem amounts to finding an optimal policy, i.e., a policy that max-

imizes the return. To conveniently compute an optimal policy, many DP/RL algorithms use

value functions, which give the returns from every state (we call this type of value function

a V-function in this thesis) or from every state-action pair (Q-function). Three categories of

algorithms can be identified by the path they take to search for an optimal policy. The first

category includes value iteration algorithms, which search for the optimal value function and

then use it to compute an optimal policy. The second category includes policy iteration algo-

rithms, which iteratively improve policies. In each iteration, the value function of the current

policy is found (instead of the optimal value function), and is then used to computed a new,

improved policy. Policy iteration converges to an optimal policy, the value function of which

is by definition optimal. The third category includes direct policy search algorithms, which

search for an optimal policy with optimization techniques, without using a value function.

DP algorithms require a model of the process dynamics and the reward function. Note

that the name ‘DP’ traditionally refers to algorithms that aim to compute the optimal value

function, either explicitly (like value iteration) or implicitly (like policy iteration) (Bertsekas

and Tsitsiklis, 1996). In this thesis, we use the name ‘DP’ to refer to the larger class of

all model-based algorithms that solve the DP/RL problem, including direct policy search.

Besides the three categories of algorithms described above, a fourth category of (model-

based) algorithms is model-predictive control (Bertsekas, 2005). Model-predictive control

works online, by computing at every time step an open-loop policy, and performing the action

indicated by this policy in the current state. The overall resulting policy is time-varying.

Because this thesis does not employ model-predictive control algorithms, this category of

techniques will not be considered in the sequel.

Unlike DP techniques, RL algorithms do not require a model. Instead, they use data

obtained from the process or from a simulation model of the process. This data can be a set

2

1.2. FOCUS AND CONTRIBUTIONS OF THE THESIS

of samples, a set of process trajectories, or a single process trajectory. So, RL can be seen

as model-free, sample-based or trajectory-based DP, and DP can be seen as model-based

RL. Some RL algorithms work offline, using data collected in advance. However, most RL

algorithms work online, i.e., they compute a solution while also controlling the process.

The main challenge in DP and RL stems from the fact that the classical algorithms for

DP/RL can only be implemented when the state space consists of a finite (and not too large)

number of elements. This is because these algorithms require to store and update exact rep-

resentations of value functions and/or policies. Exactly representing state-action value func-

tions additionally requires that the action space consists of a finite (and not too large) number

of elements. Unfortunately, very few problems satisfy these requirements. For instance, the

majority of the control problems have continuous state and action variables, which means

that the state and action spaces have infinitely many elements. For such problems, versions

of the classical algorithms that represent value functions and/or policies approximately have

to be used (Bertsekas and Tsitsiklis, 1996). Even for finite state-action spaces, the cost of

storing and computing value functions and policies grows exponentially with the number of

state variables, and approximate representations are needed when this number is large. The

field of approximate DP and RL comprises the development and study of algorithms that use

approximate representations of the value functions and/or policies. Value iteration, policy

iteration, and policy search can all be modified to use approximation.

The need for approximation is not the only challenge of DP/RL. For instance, it is cur-

rently still unclear how to represent certain important high-level control goals using the re-

ward function, and also how to guarantee a predictable performance improvement during

online learning. This thesis, however, will focus on approximate DP and RL, as detailed in

the next section.

1.2 Focus and contributions of the thesis

This thesis aims to develop effective techniques for DP and RL in control problems. Since an

overwhelming majority of the control problems have continuous state and action variables,

approximate representations of the value functions and policies are required. The goal of the

techniques developed is to find an (approximately) optimal, stationary policy, which (approx-

imately) maximizes the infinite-horizon discounted sum of rewards. All the value function

and policy representations employed in this thesis rely on basis functions (BFs) defined over

the state space or over the state-action space.

A novel technique is developed and studied for each of the three categories of approxi-

mate DP/RL: approximate value iteration, policy iteration, and policy search. The develop-

ment of each new technique is motivated by an important open issue in its category. This

section outlines these three novel techniques. First, fuzzy Q-iteration, an algorithm for ap-

proximate value iteration, is described. Fuzzy Q-iteration is model-based and represents the

Q-function using a linear combination of the BFs. Next, online least-squares, approximate

policy iteration is presented. This algorithm is model-free and, like fuzzy Q-iteration, rep-

resents Q-functions using linear combinations of BFs. Finally, we describe cross-entropy

policy search, our contribution to the field of approximate policy search. In cross-entropy

policy search, the policy is represented by associating state-dependent BFs to discrete ac-

tions. Whereas fuzzy Q-iteration and online least-squares policy iteration employ fixed BFs,

cross-entropy policy search optimizes the BFs.

3

CHAPTER 1. INTRODUCTION

Fuzzy Q-iteration

Fuzzy approximation is a promising way to represent the value function for approximate

value iteration. It has often been used for approximate RL, but only in a heuristic fashion and

without convergence guarantees. Therefore, as a first major contribution of this thesis, Chap-

ter 4 develops a provably convergent DP algorithm with fuzzy approximation. This fuzzy

Q-iteration algorithm represents state-action value functions (Q-functions) using a fuzzy par-

tition of the state space and a discretization of the action space. Each fuzzy set in the partition

is described by a membership function, which can be identified with a BF. The resulting Q-

function representation is linear in the parameters, so that existing convergence guarantees for

DP with linearly parameterized approximators can be used as a starting point. These guar-

antees are extended to account for the action discretization, and subsequently used to show

that fuzzy Q-iteration asymptotically converges to a Q-function that lies within a bounded

distance from the optimal Q-function. A version of fuzzy Q-iteration where parameters are

updated in an asynchronous fashion converges at least as fast as the synchronous variant. A

bound on the suboptimality of the solution obtained in a finite number of iterations is derived.

Under continuity assumptions on the dynamics and on the reward function, we also prove that

the algorithm is consistent, i.e., that the optimal Q-function is asymptotically obtained as the

approximation accuracy increases. As an alternative to designing the membership functions

in advance, we propose an algorithm to optimize them using the cross-entropy method. To

evaluate each configuration of membership functions, a policy is computed with fuzzy Q-

iteration using these membership functions, and the performance of this policy is evaluated

using simulation.

An extensive numerical and experimental evaluation is conducted to assess the perfor-

mance of fuzzy Q-iteration in practice. We study the influence of the number of fuzzy sets

and of discrete actions on the performance, for a continuous as well as a discontinuous reward

function. Such studies are not typically reported in the literature, where reward functions are

usually discontinuous and the action discretization is fixed.

Online least-squares policy iteration

Least-squares methods for policy evaluation are sample-efficient and have relaxed conver-

gence requirements. They are used to approximate the value functions of policies in certain

approximate policy iteration algorithms. Among these algorithms, least-squares policy itera-

tion (LSPI) is especially attractive because it relies on Q-functions, which makes policy im-

provements easier than when V-functions are used. Like in fuzzy Q-iteration, the Q-functions

are represented using a linear combination of BFs. An important limitation of LSPI is that

it only works offline: before every policy improvement, a batch of samples has to be pro-

cessed to accurately approximate the value function of the current policy. As a second major

contribution of this thesis, Chapter 5 extends LSPI to the more challenging setting of online

learning: online LSPI is obtained. The main difference from the offline algorithm is that the

performance of each intermediate policy is important, which means that policy improvements

have to be performed at short intervals. In these intervals, only a small number of samples

can be processed. Unlike offline LSPI, which can use samples drawn from an arbitrary dis-

tribution over the state-action space, the online algorithm only uses samples collected along

trajectories of the process. This also implies that online LSPI has to actively explore in order

to collect informative samples. A thorough numerical and experimental study is conducted

4

1.3. THESIS OUTLINE

to assess the performance of online LSPI.

While RL (model-free) algorithms are typically designed to work in the absence of prior

knowledge, a certain amount of prior knowledge is almost always available in practice. This

prior knowledge can be used to speed up learning. We describe a method to use prior knowl-

edge about the monotonicity of the policy in the state variables, in order to speed up online

LSPI. Monotonous policies are suitable for controlling e.g., (nearly) linear systems, or sys-

tems that are (nearly) linear and have monotonous input nonlinearities, such as saturation

or dead-zone nonlinearities. We also investigate polynomial, continuous-action approxima-

tion for LSPI. Continuous actions are useful in important classes of control problems. For

instance, when a system has to be stabilized around an unstable equilibrium, any discrete-

action policy leads to chattering of the control action and to undesirable limit cycles.

Cross-entropy policy search

In the literature on approximate policy search, typically ad-hoc policy parameterizations are

designed for specific problems, using intuition and prior knowledge. For instance, if a process

needs to be stabilized around an equilibrium, and is approximately linear in the operating

range of the controller, then a policy parameterization that is linear in the state variables

can be used. Unfortunately, such specific parameterizations cannot be used to solve general

problems. As a third major contribution of this thesis, Chapter 6 develops and applies highly

flexible policy approximators for direct policy search. These approximators can be used to

solve a large class of problems. A discretized action space is used, and the policies are

represented using state-dependent BF, where a discrete action is assigned to each BF. The

type of BFs and their number are specified in advance and determine the approximation

power of the policy representation. The locations and shapes of the BFs, together with the

action assignments, are the parameters subject to optimization — unlike in fuzzy Q-iteration

and LSPI, where the BFs are fixed. The optimization criterion is a weighted sum of the

returns from a set of representative initial states, where each return is estimated with Monte

Carlo simulations. The representative states together with the weight function can be used to

focus the algorithm on important parts of the state space. This is in contrast to other policy

search techniques, which attempt to optimize the return over the entire state space.

Because of the rich policy parameterization, the performance may be a complicated func-

tion of the parameter vector, e.g., non-convex, non-differentiable, with many local optima.

This means that a global optimization technique has to be used. We select the cross-entropy

method for optimization, and obtain cross-entropy policy search. Numerical evaluations of

cross-entropy policy search are conducted on a double-integrator example with two state vari-

ables, as well as on two more involved problems: bicycle balancing (with four state variables)

and the simulated treatment of infection with the human immunodeficiency virus (with six

state variables).

1.3 Thesis outline

Figure 1.2 presents a graphical roadmap depicting the organization of this thesis. Chapters 2

and 3 introduce the background and notation necessary to understand the remainder of the

thesis. In particular, Chapter 2 describes the DP and RL problem, presents some represen-

tative classical algorithms that solve this problem, and illustrates how these algorithms work

5

CHAPTER 1. INTRODUCTION

Chapter 1.
Introduction

Chapter 2.
DP and RL

Chapter 3.
Approximate DP and RL

Chapter 6.
Cross-entropy policy search

Chapter 4.
Fuzzy Q-iteration

Chapter 5.
Online and

continuous-action LSPI

Chapter 7.
Conclusions

Figure 1.2: A roadmap of the thesis. The source chapter of an arrow should be read before

the destination chapter. Dashed arrows indicate optional ordering.

using a simple, garbage-collecting robot example with discrete states and actions. Chapter 3

contributes a survey of approximate DP and RL. Algorithms for approximate value iteration,

policy iteration, and policy search, are reviewed in turn. An example involving servo-system

stabilization is used to illustrate the behavior of a representative algorithm from each cate-

gory. Convergence results are given for approximate value iteration and approximate policy

iteration, and techniques to automatically derive value function approximators are reviewed.

The next three chapters present in detail the contributions of this thesis. Chapter 4 intro-

duces and analyzes the fuzzy Q-iteration algorithm. Chapter 5 presents online LSPI and LSPI

with polynomial action approximation. Chapter 6 describes cross-entropy policy search.

These three chapters evaluate the respective algorithms using extensive numerical experi-

ments. Fuzzy Q-iteration and online LSPI are also applied to the real-time control of an

inverted pendulum. Chapters 4, 5, and 6 can be read in any order, although, if possible, they

should be read in sequence.

Chapter 7 closes the thesis with some concluding remarks, and identifies opportunities

for future research.

Two appendices are included in this thesis. Appendix A introduces the cross-entropy

method for rare-event simulation and optimization. It is useful (but not required) to read

this appendix before Chapters 4 and 6, which use the cross-entropy method after describing

it only briefly. Appendix B derives an algorithm for least-squares policy evaluation for Q-

functions. Least-squares policy evaluation can be used to derive an online policy iteration

algorithm similar to online LSPI.

6

Chapter 2

Dynamic programming and

reinforcement learning

This chapter introduces Markov decision processes, and the two main approaches to solve

them: dynamic programming and reinforcement learning. Both stochastic and deterministic

Markov decision processes are discussed, and their optimal solution is characterized. Three

categories of algorithms are described: value iteration, policy iteration, and direct search for

control policies. In closing, the main open issues of dynamic programming and reinforcement

learning are discussed.

2.1 Introduction

Markov decision processes (MDPs) can be used to formalize important problems arising in

a variety of fields, among which automatic control, operations research, computer science,

and economy. In an MDP, at each discrete time step, the controller (agent, decision maker)

measures the state of the process (environment), and applies an action, according to a control

policy. As a result of this action, the process transits into a new state, and a scalar reward

signal is generated that indicates the quality of the transition. The controller measures the

new state, and the whole cycle repeats (see also Figure 1.1). State transitions can in general

be nonlinear and stochastic. The goal is to find an optimal policy, which maximizes the

cumulative reward (the return) over the course of interaction. Therefore, solving an MDP

amounts to finding an optimal policy.

In control theory, the terms ‘controller’ and ‘process’ are used, instead of ‘agent’ and

‘environment’; the latter are preferred in the field of artificial intelligence. In this thesis, the

control-theoretical terminology and notation will be used. The two sets of names for identical

concepts reflect the mixed origin of the field, which represents the convergence of research in

optimal control theory (Bertsekas and Tsitsiklis, 1996; Bertsekas, 2007) and artificial intelli-

gence (Sutton and Barto, 1998). The term ‘reinforcement’ originates in psychology.

The most important criterion to classify the techniques that solve MDPs is whether they

require a model of the MDP or not. A model includes the transition dynamics and the re-

ward function. In this thesis, we use the name ‘DP’ to refer to the class of all model-based

algorithms that solve MDPs, including policy search. This class is larger than the category

7

CHAPTER 2. DYNAMIC PROGRAMMING AND REINFORCEMENT LEARNING

of algorithms traditionally called ‘dynamic programming (DP)’; the latter only includes al-

gorithms that aim to compute the optimal value function (Bertsekas, 2007; Bertsekas and

Tsitsiklis, 1996). DP algorithms typically work offline, producing a policy which is then

used to control the process. Usually, analytical expressions for the dynamics and the reward

function are not required. Instead, given a state and an action, the model is only required to

generate (deterministically or stochastically) a next state and the corresponding reward. It is

often easier to design an algorithm that generates state-reward pairs in this fashion, than to

derive analytical expressions for the transition dynamics.

Model-free algorithms that solve MDPs are collectively known as reinforcement learning

(RL) (Sutton and Barto, 1998). RL is useful when a mathematical model of the process is

difficult or costly to derive. RL algorithms use data obtained from the process. This data can

be a set of samples, a set of process trajectories, or a single process trajectory. RL algorithms

either use no explicit model at all, or build a model from the data; we call this latter type of

algorithms ‘model-learning’. So, RL can be seen as model-free, sample-based or trajectory-

based DP, and DP can be seen as model-based RL. RL algorithms have less control over the

data they use than DP algorithms (DP has full control over the data, because it can use the

model to sample the state-action space at arbitrary locations, an arbitrary number of times).

This makes RL more challenging than DP.

Some RL algorithms work offline, using data collected in advance. However, most RL

algorithms work online, i.e., they compute a solution simultaneously with controlling the

process. Online learning is useful when it is difficult or costly to obtain data in advance.

In the online case, RL algorithms must balance the need to collect informative data with

the need to control the process well. This makes online RL more challenging than offline

RL. Although online RL algorithms are theoretically sound only when the process does not

change over time, in practice they may also be able to deal with processes that are slowly

changing, by adapting the solution to take these changes into account.

Section 2.2 describes the MDP formalism and characterizes the optimal solution of an

MDP, in the deterministic as well as the stochastic setting. DP and RL techniques can be

classified further in three categories, according to the path they take to look for an optimal

policy. The first category includes value iteration algorithms, which search for the optimal

value function. The optimal value function consists of the maximum returns from every

state, or from every state-action pair. After finding the optimal value function, value iteration

algorithms use it to compute an optimal policy. Value iteration algorithms are discussed

in Section 2.3. The second category includes policy iteration algorithms, which iteratively

improve policies. In each iteration, the value function of the current policy is found (instead

of the optimal value function), and is then used to computed a new, improved policy. Policy

iteration algorithms are discussed in Section 2.4. The third category includes direct policy

search algorithms, which search for an optimal policy with optimization techniques, without

using a value function at all; they are discussed in Section 2.5. Section 2.6 concludes the

chapter and discusses the most important open issues in DP/RL.

The theoretical background presented in this chapter is loosely based on the books of

Bertsekas (2007) and Sutton and Barto (1998).

8

2.2. MARKOV DECISION PROCESSES

2.2 Markov decision processes

In this section, MDP are formally described and their optimal solution is characterized. First,

deterministic MDPs are introduced, followed by their extension to the stochastic case.

2.2.1 Deterministic setting

A deterministic MDP consists of the following elements: a state space X , an action space

U , a transition function f : X × U → X , and a reward function ρ : X × U → R.1 As

a result of the control action uk applied in the state xk at the discrete time step k, the state

changes to xk+1 = f(xk, uk). At the same time, the controller receives the scalar reward

signal rk+1 = ρ(xk, uk), which evaluates the immediate effect of action uk (the transition

from xk to xk+1), but in general does not say anything about its long-term effects.

Given f and ρ, the current state xk and action uk are sufficient to precisely determine

both the next state xk+1 and the reward rk+1. This is the Markov property, which is essential

in providing theoretical guarantees about DP/RL algorithms.

The controller chooses actions according to its policy h : X → U , using uk = h(xk).
The goal is to find an optimal policy, i.e., a policy that maximizes from any initial state x0,

the infinite-horizon discounted return:

Rh(x0) =

∞∑

k=0

γkrk+1 =

∞∑

k=0

γkρ(xk, h(xk)) (2.1)

where γ ∈ [0, 1) is the discount factor and xk+1 = f(xk, h(xk)) for k ≥ 0. The infinite-

horizon discounted return compactly represents the reward accumulated by the controller

in the long run. The task is therefore to maximize the long-term performance, while only

using feedback about the immediate, one-step performance. Discounting ensures that, given

bounded rewards, the returns will always be bounded. The discount factor can be interpreted

intuitively as a measure of how ‘far-sighted’ the controller is in considering its rewards, or

as a way to take into account an increasing uncertainty about rewards that will be received in

the future.

Instead of discounting the rewards, they can also be averaged over time, or they can

simply be added together without weighting (Kaelbling et al., 1996). Furthermore, it is also

possible to use a finite-horizon discounted return:

K∑

k=0

γkrk+1

In the finite-horizon case, optimal policies and the optimal value function depend in general

on the time step k. In contrast, in the infinite-horizon case, optimal policies and the opti-

mal value function are stationary, i.e., they do not depend on time. Only infinite-horizon

discounted returns, leading to stationary optimal policies and value functions, will be con-

sidered in this thesis.

1The standard control-theoretical notation is preferred in this thesis to the artificial intelligence notation typically

used in reinforcement learning. For instance, the state is denoted by x, the state space by X , the control action by u,

the action space by U , and the process dynamics by f . Furthermore, we denote reward functions by ρ, to distinguish

them from the instantaneous rewards r and from the returns R. Control policies are denoted by h.

9

CHAPTER 2. DYNAMIC PROGRAMMING AND REINFORCEMENT LEARNING

Example 2.1 The cleaning robot. Consider the deterministic, discrete problem depicted in

Figure 2.1: a cleaning robot has to collect a used can and also has to recharge its batteries.

x=0 1 2 3 4 5

u=1u=-1

r=1 r=5

Figure 2.1: The cleaning robot problem.

The state space is discrete and contains six distinct states, denoted by the integer numbers

0 to 5: X = {0, 1, 2, 3, 4, 5}. The robot can move to the left (u = −1) or to the right (u = 1);

the action space is therefore U = {−1, 1}. States 0 and 5 are terminal, which means that once

the robot reaches either of them it can no longer leave that state, regardless of the action. The

corresponding transition function is:

f(x, u) =

{
x+ u if 1 ≤ x ≤ 4
x if x = 0 or x = 5 (regardless of u)

In state 5, the robot finds a can and the transition into this state is rewarded with 5. In state 0,

the robot can recharge its batteries and the transition into this state is rewarded with 1. All

other rewards are 0. In particular, taking any action while in a terminal state results in a

reward of 0, which means that the robot will not accumulate (undeserved) rewards in the

terminal states. The corresponding reward function is:

ρ(x, u) =






5 if x = 4 and u = 1
1 if x = 1 and u = −1
0 otherwise

�

While the discount factor γ can be theoretically regarded as a given part of the problem,

in practice, a good value of γ has to be chosen. Typically, choosing γ involves a tradeoff

between the quality of the solution and the convergence rate of the DP/RL algorithm. Al-

gorithms tend to converge faster when γ is smaller, but if γ is too small, the solution may

be unsatisfactory because it does not sufficiently take into account rewards that are obtained

after a large number of steps. Unfortunately, there is no generally valid procedure for choos-

ing γ. Consider however, as an example, a typical stabilization control problem, where from

every initial state the process is expected to reach a steady state and remain there. In such

a problem, γ should be chosen large enough so that the rewards received upon reaching the

steady state have a measurable influence on the returns from every initial state. This means

that if the maximum number of steps taken by a reasonably good policy to reach the steady-

state from any initial state is K, then γ should be chosen so that γK is not too small. Finding

K is a difficult problem in itself. It could be determined, e.g., by using a suboptimal policy

obtained by other means.

A convenient way to characterize policies is using their value function. Two types of

value functions exist: state-action value functions (for short, Q-functions) and state value

functions (for short, V-functions). Note that usually, the name ‘value function’ is used for the

10

2.2. MARKOV DECISION PROCESSES

V-function in the literature; however, we will use the names ‘Q-function’ and ‘V-function’

to clearly differentiate between the two types of value functions. We use the name ‘value

function’ to refer to Q-functions and V-functions collectively.

First, Q-functions are defined and characterized, followed by V-functions. The Q-function

Qh : X×U → R gives the return obtained when starting from a given state, applying a given

action, and following the policy h thereafter:

Qh(x, u) = ρ(x, u) + γRh(f(x, u)) (2.2)

Here, Rh(f(x, u)) is the return from the next state f(x, u), which can be computed with

(2.1). The optimal Q-function is defined as Q∗(x, u) = maxhQ
h(x, u). Any policy that

selects for every state an action with the highest optimal Q-value:

h∗(x) = arg max
u

Q∗(x, u) (2.3)

is optimal (it maximizes the return). A policy that maximizes a Q-function in this way is said

to be greedy in that Q-function. So, finding an optimal policy can be done by first finding

Q∗, and then computing the greedy policy in Q∗ according to (2.3).

A central result in DP and RL is the Bellman optimality equation:

Q∗(x, u) = ρ(x, u) + γmax
u′

Q∗(f(x, u), u′) (2.4)

This equation states that the optimal value of action u taken in state x is the immediate reward

plus the discounted optimal value that can be obtained from the next state. The Bellman

optimality equation can be used to iteratively compute the optimal Q-function, as explained

later in Section 2.3.

The V-function V h : X → R gives the return when starting from a particular state and

following policy h. It can computed using the Q-function:

V h(x) = Qh(x, h(x)) (2.5)

The optimal V-function is the V-function of any optimal policy, and can be defined as:

V ∗(x) = max
h

V h(x) = max
u

Q∗(x, u) (2.6)

The optimal V-function satisfies the following variant of the Bellman optimality equation:

V ∗(x) = max
u

[ρ(x, u) + γV ∗(f(x, u))] (2.7)

An optimal policy can be computed from V ∗ using:

h∗(x) = arg max
u

[ρ(x, u) + γV ∗(f(x, u))] (2.8)

This formula is more complex than (2.3); in particular, a model of the MDP is required in

the form of the reward function ρ and the dynamics f . For this reason, Q-functions will be

preferred to V-functions throughout this thesis. The disadvantage of using Q-functions is that

they are more costly to represent than V-functions, because in addition to x they also depend

on u.

11

CHAPTER 2. DYNAMIC PROGRAMMING AND REINFORCEMENT LEARNING

2.2.2 Stochastic setting

In a stochastic MDP, the deterministic transition function f is replaced by a transition prob-

ability function f̃ : X × U × X → [0,∞). The probability that the next state xk+1

belongs to a region Xk+1 ⊂ X of the state space after action uk is taken in state xk is∫
Xk+1

f̃(xk, uk, x
′)dx′.2 For any x and u, f̃(x, u, ·) is assumed to define a valid probability

density function of the argument ‘·’, which stands for the random variable xk+1. Because

rewards are associated with transitions, and the transitions are no longer fully determined

by the current state and action, the reward function also has to depend on the next state,

ρ̃ : X×U ×X → R. After each transition to a state xk+1, a reward rk+1 = ρ̃(xk, uk, xk+1)
is received. In the stochastic case, the Markov property requires that xk and uk precisely

determine the probability density function (the statistics) of the next state, and thereby the

statistics of the next received reward. As in the deterministic case, the Markov property is

essential to providing theoretical guarantees about the DP/RL algorithms.

The expected infinite-horizon discounted return of an initial state x0 under a (determin-

istic) policy h is:

Rh(x0) = lim
K→∞

Exk+1∼f̃(xk,h(xk),·)

{
K∑

k=0

γkrk+1

}

= lim
K→∞

Exk+1∼f̃(xk,h(xk),·)

{
K∑

k=0

γkρ̃(xk, h(xk), xk+1)

} (2.9)

where the notation xk+1 ∼ f̃(xk, h(xk), ·) means that the random variable xk+1 is drawn

from the density f̃(xk, h(xk), ·) at each step k. The discussion of Section 2.2.1 regarding the

choice of γ also applies to the stochastic case. For any stochastic or deterministic MDP, when

using the infinite-horizon discounted return, there exists at least one deterministic optimal

policy (Bertsekas, 2007). Therefore, only deterministic policies will be considered in the

sequel.

The Q-function of a policy h is the expected return under the stochastic transitions, when

starting in a particular state, applying a particular action, and following the policy h there-

after:

Qh(x, u) = Ex′∼f̃(x,u,·)

{
ρ̃(x, u, x′) + γRh(x′)

}
(2.10)

where x′ ∼ f̃(x, u, ·) means that x′ is drawn from the density f̃(x, u, ·). The definition for

Q∗ remains unchanged. The expectation enters the Bellman optimality equation for Q∗ as

follows:

Q∗(x, u) = Ex′∼f̃(x,u,·)

{
ρ̃(x, u, x′) + γmax

u′
Q∗(x′, u′)

}
(2.11)

An optimal policy can still be computed from Q∗ as in the deterministic case, with (2.3).

Value functions can still be computed from Q-functions using (2.5) and (2.6). However, the

Bellman optimality equation for V ∗ changes to:

V ∗(x) = max
u

Ex′∼f̃(x,u,·) {ρ̃(x, u, x′) + γV ∗(x′)} (2.12)

2It is not useful to characterize the probability of ending up in a given state xk+1, because in general this

probability is 0.

12

2.3. VALUE ITERATION

and the computation of the optimal policy from V ∗ becomes even more complicated, involv-

ing an expectation that did not appear in the deterministic case:

h∗(x) = arg max
u

Ex′∼f̃(x,u,·) {ρ̃(x, u, x′) + γV ∗(x′)} (2.13)

Since computing the optimal policy from Q∗ is as simple as in the deterministic case, this is

yet another reason for using Q-functions in practice.

Clearly, all the equations for deterministic MDPs are special cases of the equations for

stochastic MDPs. The deterministic case is obtained by using a degenerate density f̃(x, u, ·)
that assigns all the probability mass to f(x, u). The deterministic reward function is ρ(x, u) =
ρ̃(x, u, f(x, u)).

2.3 Value iteration

Value iteration techniques use the Bellman optimality equation to iteratively compute an op-

timal value function, from which an optimal policy is derived. DP (model-based) algorithms

like V-iteration (Bertsekas, 2007) solve the Bellman optimality equation by using knowledge

of the transition and reward functions. RL (model-free) techniques like Q-learning (Watkins

and Dayan, 1992), SARSA (Rummery and Niranjan, 1994), and Dyna (Sutton, 1990) either

learn a model, or do not use an explicit model at all.

Next, the model-based Q-iteration algorithm is introduced. Let the set of all the Q-

functions be denoted by Q. Define the Q-iteration mapping T : Q → Q, which computes

the right-hand side of the Bellman optimality equation (2.4) for any Q-function:3

[T (Q)](x, u) = ρ(x, u) + γmax
u′

Q(f(x, u), u′) (2.14)

In the stochastic case, simply use the right-hand side of the stochastic Bellman optimality

equation (2.11), instead of (2.4):

[T (Q)](x, u) = Ex′∼f̃(x,u,·)

{
ρ̃(x, u, x′) + γmax

u′
Q(x′, u′)

}
(2.15)

The same notation is used for the Q-iteration mapping in both the deterministic and the

stochastic case, because all the statements below hold in both cases; additionally, the defi-

nition (2.14) of T is a special case of (2.15).

Using the Q-iteration mapping, the Bellman optimality equation states that Q∗ is a fixed

point of T , i.e., Q∗ = T (Q∗). It can be shown that T is a contraction with factor γ < 1 in

the infinity norm, i.e., for any pair of functionsQ andQ′, it is true that ‖T (Q)−T (Q′)‖∞ ≤
γ‖Q − Q′‖∞. This can easily be shown by extending the proof that the mapping which

computes V-functions for V-iteration (analogous to T), is a contraction (Bertsekas, 2007).

The Q-iteration algorithm starts from an arbitrary Q-function Q0 and in each iteration ℓ
updates the Q-function using:

Qℓ+1 = T (Qℓ) (2.16)

3The term ‘mapping’ is used to refer to functions that work with other functions as inputs and/or outputs; as well

as to compositions of such functions. The term is used to differentiate mappings from ordinary functions, which

only work with numerical scalars, vectors, or matrices.

13

CHAPTER 2. DYNAMIC PROGRAMMING AND REINFORCEMENT LEARNING

Because T is a contraction, it has a unique fixed point. From (2.4), this point is Q∗, so

Q-iteration asymptotically converges to Q∗ as ℓ→∞.

Next, the computational cost of Q-iteration is investigated for the case of a deterministic

MDP with a finite number of states and actions. Denote by |·| the cardinality of the argument

set ‘·’, so that |X| denotes the finite number of states and |U | denotes the finite number of

actions. In every iteration, the Q-values of a number of |X| |U | state-action pairs have to

be updated. Assume that the maximization over the action space U in (2.14) is solved by

enumeration over its |U | elements. Assume also that f(x, u) and ρ(x, u) are evaluated once

for every (x, u) pair and then cached and reused. Then, every iteration ℓ requires |X| |U | (2+
|U |) function evaluations, where the functions being evaluated are f , ρ, and the current Q-

function Qℓ. Furthermore, a finite number L of iterations can be (conservatively) chosen so

that the suboptimality of the greedy policy in QL is guaranteed to be at most εQI > 0, using:

L =

⌈
logγ

εQI(1− γ)2
2‖ρ‖∞

⌉
(2.17)

Here, ‖ρ‖∞ = maxx,u |ρ(x, u)| is assumed to be finite and ⌈·⌉ gives the smallest integer

larger than or equal to the argument (ceiling).4 Therefore, the total cost of Q-iteration for a

deterministic, finite MDP is:

L |X| |U | (2 + |U |) (2.18)

A similar, V-iteration algorithm can be given to compute the optimal V-function V ∗, using

the Bellman optimality equation (2.7), or (2.12) in the stochastic case. Note that usually, the

name ‘value iteration’ is used for the V-iteration algorithm in the literature; however, we

will use the names ‘Q-iteration’ and ‘V-iteration’ to clearly differentiate between the two

algorithms. We use the term value iteration to refer collectively to algorithms that compute

optimal value functions (model-free or model-based, offline or online).

From the class of (model-free) RL algorithms, Q-learning will be described next. Q-

learning starts from an arbitrary initial Q-function Q0 and updates it without requiring a

model, using instead observed transitions (xk, uk, xk+1, rk+1) (Watkins, 1989; Watkins and

Dayan, 1992). After each such transition, the Q-function is updated using:

Qk+1(xk, uk) = Qk(xk, uk) + αk[rk+1 + γmax
u′

Qk(xk+1, u
′)−Qk(xk, uk)] (2.19)

where αk ∈ (0, 1] is the learning rate. The term between square brackets is the temporal

difference, i.e., the difference between the current estimateQk(xk, uk) of the optimal Q-value

of (xk, uk) and the updated estimate rk+1 + γmaxu′ Qk(xk+1, u
′). This new estimate is

actually the Q-iteration operator (2.14) applied to Qk in the state-action pair (xk, uk), where

ρ(xk, uk) has been replaced by the observed reward rk+1, and f(xk, uk) by the observed

next state xk+1. In the deterministic case, these replacements provide an exact value of

the Q-iteration mapping (2.14); in the stochastic case, they provide a single sample of the

expectation in (2.15).

Q-learning asymptotically converges to Q∗ as k → ∞, under the following conditions

(Watkins and Dayan, 1992; Jaakkola et al., 1994):

4Equation (2.17) follows from the bound ‖V hL − V ∗‖∞ ≤ 2
γL‖ρ‖∞
(1−γ)2

on the suboptimality ‖V hL − V ∗‖∞
of the greedy policy hL(x) = arg maxu QL(x, u), by requiring that 2

γL‖ρ‖∞
(1−γ)2

≤ εQI (Ernst et al., 2005).

14

2.3. VALUE ITERATION

• The sum
∑∞

k=0 α
2
k is finite, whereas the sum

∑∞
k=0 αk is infinite.

• All the state-action pairs are visited infinitely often as k →∞.

The second condition can be satisfied if, among other things, the controller has a non-zero

probability of selecting any action in every encountered state; this is called exploration. Since

the Q-learning algorithm does not specify how actions are chosen, the controller is free to ex-

plore. Exploration is usually achieved by selecting actions randomly, using a distribution that

assigns a non-zero probability to each action at every time step. However, the controller can-

not always choose fully random actions, because the control performance is also important in

online learning. Sometimes greedy actions, which maximize the Q-values of the current state,

have to be selected; this is called exploitation (recall that any optimal policy is greedy in the

optimal Q-function). Usually, a diminishing exploration schedule is used, so that asymptoti-

cally, as Qk → Q∗, the policy used also converges to the (exploiting) greedy, and therefore

optimal, policy.

Example 2.2 Q-iteration for the cleaning robot. Consider again the cleaning robot prob-

lem of Example 2.1. Take a discount factor γ = 0.5. Starting from an identically zero initial

Q-function, Q0 = 0, Q-iteration produces the sequence of Q-functions given in Table 2.1,

where each cell shows the Q-values of the two actions in a particular state, separated by a

semicolon. For instance:

Q3(2, 1) = ρ(2, 1) + γmax
u

Q2(f(2, 1), u) = 0 + 0.5max
u

Q2(3, u) = 0 + 0.5 · 2.5 = 1.25

Table 2.1: Q-iteration results for the cleaning robot

x = 0 x = 1 x = 2 x = 3 x = 4 x = 5

Q0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0
Q1 0 ; 0 1 ; 0 0.5 ; 0 0.25 ; 0 0.125 ; 5 0 ; 0
Q2 0 ; 0 1 ; 0.25 0.5 ; 0.125 0.25 ; 2.5 1.25 ; 5 0 ; 0
Q3 0 ; 0 1 ; 0.25 0.5 ; 1.25 0.625 ; 2.5 1.25 ; 5 0 ; 0
Q4 0 ; 0 1 ; 0.625 0.5 ; 1.25 0.625 ; 2.5 1.25 ; 5 0 ; 0

h∗ ∗ −1 1 1 1 ∗
V ∗(x) 0 1 1.25 2.5 5 0

The algorithm converges after 4 iterations; Q4 = Q3 = Q∗. The last two rows of the

table also give the optimal policy, computed from Q∗ with (2.3), and the optimal V-function

V ∗, computed with (2.6). In the policy representation, the symbol ∗ means that any action

can be taken in that state without changing the quality of the policy.

The total number of function evaluations required by the algorithm is 4 |X| |U | (2 +
|U |) = 4 · 6 · 2 · 4 = 192. Note that the number L of iterations given by (2.17) for a

guaranteed suboptimality bound εQI = 0.01 is L = 12 (where ‖ρ‖∞ = 5 and γ = 0.5 have

been used). So, in this case, the algorithm (fully) converges to its fixed point in far fewer

iterations than the conservative number given by (2.17). �

15

CHAPTER 2. DYNAMIC PROGRAMMING AND REINFORCEMENT LEARNING

2.4 Policy iteration

Policy iteration techniques iteratively evaluate and improve policies (Bertsekas and Tsitsiklis,

1996; Bertsekas, 2007). Consider a policy iteration algorithm that uses Q-functions. In every

iteration ℓ, such an algorithm computes the Q-function Qhℓ of the current policy hℓ; this step

is called policy evaluation. When policy evaluation is complete, a new policy hℓ+1 that is

greedy inQh is computed; this step is called policy improvement. Policy iteration algorithms

can be either model-based or model-free.

To implement policy evaluation, a Bellman equation different from (2.4) is used that

characterizes the Q-function Qh of a policy h. In the deterministic case, this equation is:

Qh(x, u) = ρ(x, u) + γQh(f(x, u), h(f(x, u))) (2.20)

and in the stochastic case:

Qh(x, u) = Ex′∼f̃(x,u,·)

{
ρ̃(x, u, x′) + γQh(x′, h(x′))

}
(2.21)

Analogously to (2.14), define the policy evaluation mapping Th : Q → Q, which com-

putes the right-hand side of (2.20) (or of (2.21) in the stochastic case) for an arbitrary Q-

function:

[Th(Q)](x, u) = ρ(x, u) + γQ(f(x, u), h(f(x, u))) (2.22)

The Bellman equation for Qh can be written concisely using the policy evaluation mapping

as:

Qh = Th(Qh) (2.23)

Like the Q-iteration mapping T , Th is a contraction with a factor γ < 1 in the infinity norm,

i.e., for any pair of functions Q and Q′, it is true that ‖Th(Q)− Th(Q′)‖∞ ≤ γ‖Q−Q′‖∞.

However, unlike the Bellman optimality equation, which characterizesQ∗, equation (2.23) is

linear in the Q-values. This is obvious in the deterministic case (2.20). When X and U have

a finite cardinality, the stochastic equation (2.21) can be written in a linear form by writing

the expectation as a sum.

Policy evaluation algorithms solve (2.23) to findQh. For instance, a model-based iterative

policy evaluation algorithm can be given that works similarly to Q-iteration. This algorithm

starts from an arbitrary Q-function Qh
0 and in each iteration τ updates it using:5

Qh
τ+1 = Th(Qh

τ) (2.24)

Because Th is a contraction, this algorithm asymptotically converges to Qh. Other ways to

solve (2.23) include online, sample-based techniques similar to Q-learning, and directly solv-

ing the linear system of equations provided by (2.23), which is possible when the cardinality

of X × U is not very large (Bertsekas, 2007).

The (offline) policy iteration starts with an arbitrary policy h0. In each iteration ℓ, policy

evaluation is performed to obtain the Q-function Qhℓ of the current policy is hℓ. Then, an

improved policy is computed which is greedy in Qhℓ :

hℓ+1(x) = arg max
u

Qhℓ(x, u) (2.25)

5A different iteration index τ is used for policy evaluation, because policy evaluation runs in the inner loop of

every policy iteration ℓ.

16

2.4. POLICY ITERATION

The Q-functions computed by policy iteration asymptotically converge to Q∗ as ℓ → ∞.

Simultaneously, the policies converge to h∗.

The entire derivation can be repeated, and similar algorithms given, for V-functions V h

instead of Q-functions. For instance, the Bellman equation for V h in the deterministic case

is:

V h(x) = ρ(x, h(x)) + V h(f(x, h(x))) (2.26)

Policy improvement is more problematic for V-functions, because a model is needed to com-

pute a policy that is greedy in a V-function, see e.g., (2.8). Also, in the stochastic case

expectations need to be evaluated using a formula similar to (2.13).

The main reason for which policy iteration algorithms are attractive is that the Bellman

equation for Qh (2.23) is linear in Qh. This makes policy evaluation easier to solve than the

Bellman optimality equation, which characterizes Q∗ (2.4), and which is highly nonlinear

due to the maximization in the right-hand side. Consider e.g., the iterative policy evalua-

tion algorithm (2.24). The computational cost of every iteration of this algorithm, measured

by the number of function evaluations, is 4 |X| |U |, where the functions being evaluated

are ρ, f, h, and the current Q-function Qhℓ . In contrast, a single Q-iteration (2.16) requires

|X| |U | (2 + |U |) function evaluations, which is larger whenever |U | > 2. Another advan-

tage of policy evaluation is the following. When Q-functions need to be approximated, the

class of approximators that guarantee convergence when combined with (2.20), is larger than

the class of approximators that are provably convergent in combination with (2.4). This is

discussed in more detail in Chapter 3.

Moreover, in practice, policy iteration algorithms usually converge in fewer iterations

than value iteration algorithms (Bertsekas and Tsitsiklis, 1996; Bertsekas, 2007). However,

this does not mean that policy iteration is less computationally costly than value iteration.

For instance, even though policy evaluation using Q-functions is generally less costly than

Q-iteration, every single policy iteration requires a complete policy evaluation. Additionally,

it is unclear how the number of policy iterations can be usefully bounded. Therefore, it is an

interesting open question how value iteration compares with policy iteration from the point

of view of computational cost.

A similar comparison can be made between policy iteration and value iteration when

V-functions are used instead of Q-functions.

Online policy iteration algorithms can also be given. In the online case, when iterative

policy evaluation methods are used, policy improvements cannot wait until policy evaluation

has converged (since that is only guaranteed to happen asymptotically). Instead, policy im-

provements have to be performed after a finite number of policy evaluation updates. A widely

used type of online policy iteration consists of actor-critic algorithms, where the actor is the

policy and the critic is the value function (Sutton et al., 2000; Konda and Tsitsiklis, 2003). In

actor-critic methods, the policy is improved incrementally after every transition sample.

Example 2.3 Policy iteration for the cleaning robot. Consider again the cleaning robot

problem of Example 2.1. Starting from a policy that always moves right (h0(x) = 1 for all

x), the policy iteration algorithm produces the sequence of Q-functions and policies given in

Table 2.2 (γ = 0.5). Policy evaluation is implemented using (2.24), starting from identically

zero Q-functions.

The algorithm converges after 2 (policy improvement) iterations; h2 = h1 = h∗. In fact,

the policy is already optimal after the first policy improvement. Recall that the computational

17

CHAPTER 2. DYNAMIC PROGRAMMING AND REINFORCEMENT LEARNING

Table 2.2: Policy iteration results for the cleaning robot

x = 0 x = 1 x = 2 x = 3 x = 4 x = 5

h0 ∗ 1 1 1 1 ∗
Qh0

0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0

Qh0
1 0 ; 0 1 ; 0 0 ; 0 0 ; 0 0 ; 5 0 ; 0

Qh0
2 0 ; 0 1 ; 0 0 ; 0 0 ; 2.5 1.25 ; 5 0 ; 0

Qh0
3 0 ; 0 1 ; 0 0 ; 1.25 0.625 ; 2.5 1.25 ; 5 0 ; 0

Qh0
4 0 ; 0 1 ; 0.625 0.3125 ; 1.25 0.625 ; 2.5 1.25 ; 5 0 ; 0

Qh0
5 0 ; 0 1 ; 0.625 0.3125 ; 1.25 0.625 ; 2.5 1.25 ; 5 0 ; 0

h1 ∗ −1 1 1 1 ∗
Qh1

0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0

Qh1
1 0 ; 0 1 ; 0 0.5 ; 0 0 ; 0 0 ; 5 0 ; 0

Qh1
2 0 ; 0 1 ; 0 0.5 ; 0 0 ; 2.5 1.25 ; 5 0 ; 0

Qh1
3 0 ; 0 1 ; 0 0.5 ; 1.25 0.625 ; 2.5 1.25 ; 5 0 ; 0

Qh1
4 0 ; 0 1 ; 0.625 0.5 ; 1.25 0.625 ; 2.5 1.25 ; 5 0 ; 0

h2 ∗ −1 1 1 1 ∗

cost of every policy evaluation iteration (2.24) is 4 |X| |U |. Assuming that the maximization

over U in (2.25) is solved by enumeration, the computational cost of every policy improve-

ment is |X| |U |. Evaluating the policy takes 5 iterations for the first policy; and 4 for the

second. So, the first policy iteration requires 5 · 4 · |X| |U | + |X| |U | function evaluations,

and the second 4 · 4 · |X| |U | + |X| |U |, for a total cost of 38 |X| |U | = 38 · 6 · 2 = 456.

Compare this to the cost 192 of Q-iteration in Example 2.2; in this case, policy iteration is

more computationally expensive. �

2.5 Direct policy search

Direct policy search techniques do not use value functions at all. Instead, they represent

closed-loop policies, and search directly for an optimal policy using optimization techniques.

An optimal policy h∗ maximizes the return Rh∗

(x) for all x ∈ X (note that Rh(x) = V h(x)
by definition). The optimization criterion should therefore be a combination (e.g., weighted

average) of the returns from every initial state.

In practice, the evaluation of the returns has to be performed in a finite time. To this end,

the infinite sum in the return (2.1) (or (2.9) in the stochastic case) is approximated with a

finite sum over the first K steps. To guarantee a maximum absolute error in estimating the

returns εMC > 0, the number K can be chosen (e.g., Mannor et al., 2003):

K =

⌈
logγ

εMC(1− γ)
‖ρ‖∞

⌉
(2.27)

In the stochastic case, usually many sample trajectories need to be simulated to obtain an

accurate estimate of the expected return.

In principle, any optimization technique can be used to search for the optimal policy. For

a general MDP however, the optimization criterion may be a non-differentiable, non-convex

18

2.6. CONCLUSIONS AND OPEN ISSUES

function with many local optima. This means that in general, global optimization techniques

will obtain better policies than local, gradient-based methods. Particular examples include

multi-start local optimization, genetic algorithms, tabu search, pattern search, and the cross-

entropy method discussed in Chapter 6.

Evaluating the optimization criterion of direct policy search requires estimating returns

from all the initial states. Estimating returns can be computationally expensive, especially

in the stochastic case. Since optimization algorithms typically require many evaluations of

the criterion, it follows that direct policy search algorithms are computationally expensive,

usually more expensive than value iteration and policy iteration. If prior knowledge about

the structure of the optimal policy is available (e.g., it is known that the optimal policy is

linear in the state variables), the optimization problem can be simplified, and the computa-

tional efficiency of direct policy search improves. Direct policy search offers more flexibility

in approximate DP/RL, where it allows general policy parameterizations without endanger-

ing convergence. In contrast, convergence proofs for approximate value iteration and policy

iteration usually rely on restricted value function parameterizations (typically linear in the

parameters). Algorithms for approximate DP/RL are discussed in detail in Chapter 3.

Next, the complexity of a policy search implementation for deterministic finite MDPs is

investigated. Since the state and action spaces are finite (and therefore discrete), any combi-

natorial optimization technique could be used to look for the optimal policy. However, for

simplicity, we consider an exhaustive search of the entire policy space. Because the num-

ber of possible policies is |U ||X|
, the return has to be evaluated for |X| initial states, and

the estimation of every return requires K simulation steps, the total number of simulation

steps that have to be performed to find the optimal policy is at most K |U ||X| |X|. Since

f , ρ, and h are each evaluated once in every step, the computational cost, measured by the

number of function evaluations, is at most 3K |U ||X| |X|. Compare this with the complexity

L |X| |U | (2 + |U |) of Q-iteration (2.18). Clearly, this implementation of policy search is

much more costly than Q-iteration for most values of |X| and |U |.

Example 2.4 Direct policy search for the cleaning robot. Consider again the cleaning

robot problem of Example 2.1, and assume the exhaustive policy search described above is

applied. Take the approximation tolerance in the evaluation of the return εMC = 0.01, which

is equal to the Q-iteration threshold εQI of Example 2.2. Using ‖ρ‖∞ = 5, γ = 0.5, and

applying (2.27), a time horizon of K = 10 steps is obtained. Therefore, the computational

cost of the algorithm is bounded from above by 3K |U ||X| |X| = 3 · 26 · 6 · 10 = 11520.

By observing that it is unnecessary to look for optimal actions and to evaluate returns in the

terminal states, this number can further be reduced to 3 · 24 · 4 · 10 = 1920. The actual

number will be smaller since some trajectories will end up in the terminal states in less than

10 steps. Compare these numbers to the value 192 of the Q-iteration cost in Example 2.2, and

to the value 456 of the policy iteration cost in Example 2.3. In this example, the exhaustive

implementation of direct policy search is likely to be more expensive than both Q-iteration

and policy iteration. �

2.6 Conclusions and open issues

In this chapter, the DP/RL problem has been introduced, together with the three main cat-

egories of algorithms to solve it: value iteration, policy iteration, and direct policy search.

19

CHAPTER 2. DYNAMIC PROGRAMMING AND REINFORCEMENT LEARNING

Most of the representative algorithms selected for presentation have been chosen because

they will be extended later on in the thesis. Many other algorithms exist; the interested reader

is referred to the textbooks on DP and RL (Bertsekas, 2007; Sutton and Barto, 1998).

The most important open problem in DP/RL stems from the fact that the algorithms

described above are not implementable for general MDPs. They can only be implemented

when the state and action spaces consist of a finite number of elements. For state spaces

with an infinite number of elements (e.g., continuous), the value function and the policy are

infinite-dimensional objects that in general cannot be represented and computed exactly (in

the case of Q-functions, an infinite number of actions also prohibits an exact representation).

Even for finite MDPs, the cost of storing and computing value functions and policies grows

exponentially with the number of state variables (and action variables, for Q-functions), so

the algorithms are impractical for MDPs with many state and action variables. This latter

problem is the curse of dimensionality. To cope with these problems, versions of the classical

algorithms that represent value functions and/or policies approximately have to be used. This

thesis focuses on approximate DP/RL for MDPs with continuous state and action variables.

Other major open issues include:

• Designing the reward function. Classical texts on RL have long recommended that

the reward function should be kept as simple as possible; it should only reward the

achievement of the final goal (Sutton and Barto, 1998). There are two problems with

this approach. The first problem is that a simple reward function often makes online

learning very slow. So, more information may need to be included in the reward func-

tion. The second problem is that often additional, higher-level requirements have to be

considered in addition to the final goal. In stabilization problems from control theory,

an example of such a requirement is a limit on the overshoot of the process’s response,

which is imposed in addition to the basic requirement of reaching the desired steady-

state value. It is an open question how to translate such higher-level requirements into

the ‘language’ of rewards.

• Providing guaranteed performance during learning, which is essential for applying RL

in practice. Ideally, online RL algorithms should guarantee a monotonous increase in

their expected performance. Unfortunately, this is most likely impossible because all

the online RL algorithms need to explore, i.e., try out actions that may be suboptimal,

in order to make sure their performance does not remain stuck in a local optimum.

Therefore, weaker requirements could be used, where an overall trend of increased

performance is guaranteed, while still allowing for bounded and temporary decreases

in performance due to exploration. Most algorithms available today cannot guarantee

such a steady performance improvement.

• Addressing problems where the state is not directly measurable, which are called par-

tially observable in the DP/RL literature (Kaelbling et al., 1998; Porta et al., 2006).

Usually, computationally intensive techniques that use belief states and general Bayes-

ian inference are used to tackle these problems. However, unmeasured state variables

can often be estimated from the trajectories of measured variables, using a model of the

process dynamics. Control-theoretical analysis can determine whether such an estima-

tion is possible (Isidori, 1995). If the estimation is possible, specialized, efficient state

estimation techniques can be used to determine the values of the unmeasured state vari-

ables (Arulampalam et al., 2002). An important caveat is that, because state estimation

20

2.6. CONCLUSIONS AND OPEN ISSUES

requires a model of the process dynamics, it is only applicable to DP. Nevertheless,

even the opportunity of combining DP with state estimation is largely unexplored. It is

also an important open question whether the approach can be extended to the model-

free, RL case, and if so, in what way it could be extended.

• Using the prior knowledge about optimal or near-optimal policies, about the value

function, or in the model-free (RL) case, about the process (recall that DP algorithms

already assume a complete knowledge of the model). Prior knowledge about the value

function could help, e.g., to initialize an algorithm with an informative initial value

function, thereby decreasing the time it requires to converge. Prior knowledge about the

policy can be used in policy search and policy iteration, to make the algorithms more

efficient by restricting the class of policies they consider. In RL, prior knowledge about

the process dynamics could, e.g., be used to form a partial model and pre-compute a

(suboptimal) solution with DP. This solution could then be used to initialize the RL

algorithm.

• Decentralized and distributed DP/RL. A number of new challenges arise when multiple

controllers (agents) are involved. The curse of dimensionality is made worse by the fact

that multiple agents are present in the system. The control actions of the agents have to

be coordinated or else they could lead to unexpected and possibly severe consequences.

Furthermore, if a given agent does not explicitly take the other agents into account, the

Markov property is no longer valid: the evolution of the state depends on the (unknown)

actions of the other agents. Due mostly to the severity of the curse of dimensionality in

the multi-agent case, most of the work in multi-agent DP/RL deals with simple, often

static (stateless) tasks (Buşoniu et al., 2008a, 2006a).6 This setting is inappropriate

for most distributed control problems. In this context, it can be very useful to exploit

results in distributed and decentralized adaptive control, see e.g., (Jain and Khorrami,

1997; Jiang, 2000; Liu et al., 2007).

6Other work by the author of this thesis in the field of multi-agent DP/RL has been reported in (Buşoniu et al.,

2005, 2006b).

21

22

Chapter 3

Approximate

dynamic programming and

reinforcement learning

This chapter reviews the literature on approximate dynamic programming and reinforcement

learning. First, the need for approximation is explained. Then, approximate versions are

given for the three categories of algorithms introduced in Chapter 2: value iteration, policy

iteration, and direct policy search. The convergence properties of approximate value itera-

tion and approximate policy iteration are discussed. Methods to automatically discover basis

functions for linearly parameterized value function approximators are reviewed. The three

classes of algorithms are compared. The chapter closes with a list of open issues in approxi-

mate dynamic programming and reinforcement learning.

3.1 Introduction

All the classical dynamic programming (DP) and reinforcement learning (RL) algorithms

of Chapter 2 require the storage and updating of entire, exactly represented value functions

(V-functions or Q-functions) and/or policies. Value iteration algorithms require exact rep-

resentations of value functions. This means that distinct estimates of the return need to be

stored and updated for every state (V-functions) or for every state-action pair (Q-functions).

Algorithms for exact policy search require exact representations of policies, which means

that distinct actions need to be stored and updated for every state. Policy iteration algorithms

always require the storage of value functions. Certain policy iteration algorithms can avoid

storing policies, as will be explained in Section 3.4; in general, however, the policies have to

be stored.

When some of the state variables have a very large or infinite number of possible values

(e.g., they are continuous), exact storage is no longer possible. Instead, value functions and

(when explicitly stored) policies need to be approximated. Action variables with an infinite

number of possible values make the representation of Q-functions additionally challenging.

Since an overwhelming majority of the control problems have continuous state and action

23

CHAPTER 3. APPROXIMATE DP AND RL

variables, approximation is essential in DP and RL for control, and is required to solve all

but the simplest problems. Even if the state and action variables only take a finite number of

values, this number may still be very large, in which case approximation is also necessary.

An additional benefit of using approximation, rather than exact representations, is seen in

online RL. Consider for instance the Q-learning algorithm of Section 2.3. Without approxi-

mation, the Q-value of every state-action pair has to be estimated separately (assuming it is

possible to do so). When some of the states are visited only rarely, their Q-values are poorly

estimated, and the algorithm makes poor control decisions in those states. However, when

approximation is used, the approximator can be designed so that the Q-values of each state

influence the Q-values of nearby states. This means that when good estimates of the Q-values

of a certain state are available, the algorithm can also make reasonable control decisions in

nearby states. This is called generalization in the RL literature, and can help algorithms work

well despite using only a limited number of samples.

Two main types of approximators can be identified, namely parametric and nonparamet-

ric approximators. Parametric approximators are functions of a set of parameters. These

parameters are tuned using data about the target value function or policy. However, typically

the form of the approximator and its number of parameters do not depend on the data. A

representative example is a linear combination of a fixed set of basis functions (BFs). In con-

trast, the form and number of parameters of a nonparametric approximator are derived from

the available data. For instance, kernel-based approximators also represent the target function

as a linear combination of BFs, but, unlike parametric approximation, they define one BF for

each data point. In this chapter, the focus is placed on parametric approximation, because the

contributions of the thesis (described in Chapters 4 – 6) rely on this type of approximation.

Nevertheless, some of the approaches that will be reviewed in Section 3.5 change the form

and number of parameters of a parametric approximator in order to best fit the data.

A significant research effort has been devoted to investigate theoretical guarantees and

practical algorithms for approximate DP and RL. The theoretical properties of approximate

value iteration and approximate policy evaluation (the latter used in approximate policy itera-

tion) can be more easily analyzed when the value function is linearly parameterized. Because

of these properties, linearly parameterized value function approximators are widely used in

approximate DP and RL. Nevertheless, nonlinearly parameterized approximators such as neu-

ral networks are also popular. When combined with value iteration and policy iteration, they

are more powerful than linearly parameterized approximators, but the resulting algorithms

are more difficult to analyze. In the context of approximate policy search, there is a greater

freedom in choosing the policy approximator, which can be nonlinearly parameterized with-

out endangering convergence.

After presenting in more detail the need for approximation in DP/RL, in Section 3.2, the

chapter continues with an overview of the literature on approximate DP/RL. Approximate

value iteration is discussed first, in Section 3.3, followed by approximate policy iteration in

Section 3.4. Section 3.5 reviews techniques to automatically derive value function approx-

imators for value iteration and policy iteration. Approximate policy search is described in

Section 3.6. Finally, Section 3.7 compares the three categories of algorithms, and Section 3.8

concludes the chapter.

24

3.2. THE NEED FOR APPROXIMATION IN DP AND RL

3.2 The need for approximation in DP and RL

As explained in Section 3.1, the main reason for which approximation is required in DP and

RL is that value functions and policies cannot be represented exactly when the state-action

space contains an infinite number of elements. However, approximation in DP/RL is not

only a problem of representation. Four other types of approximation are required to solve

general DP/RL problems: sample-based updates, approximate maximization, sample-based

estimation of expected values, and finite-time termination. This section explains where and

why these approximations are necessary.

To understand why sampled updates are needed, consider e.g., the Q-iteration algorithm

of Section 2.3. This algorithm iteratively applies the Q-iteration mapping: Qℓ+1 = T (Qℓ).
The Q-iteration mapping would have to be implemented as follows:

for every (x, u): Qℓ+1(x, u) = ρ(x, u) + γmax
u′∈U

Qℓ(f(x, u), u′) (3.1)

When the state-action space contains an infinite number of elements (e.g., when some of the

variables are continuous), this implementation can no longer run in a finite time. Instead, an

approximate version of the Q-function update has to be used, which only considers a finite

number of state-action samples. Sampled updates are also necessary in approximate policy

iteration. They are needed in the policy evaluation step, and also in the policy improvement

step when the policies are explicitly stored. The following need for approximation arises in

approximate policy search, and roughly corresponds to the need for sampled updates in value

function techniques. The performance (return) cannot be optimized for every initial state;

instead, a finite set of representative states has to be selected, see Section 3.6 for details.

In continuous or large action spaces, the maximization over the action variable in value

iteration algorithms (e.g., in (3.1) for Q-iteration) is a nonlinear optimization problem that

can only be solved approximately in general. Approximate maximization is also needed in

the policy improvement step (2.25) of policy iteration, which would have to be implemented

as:

for every x: hℓ+1(x) = arg max
u

Qhℓ(x, u)

This potentially difficult maximization problem has to be solved for every sample x or (x, u).
To simplify this maximization problem, most algorithms for approximate value iteration and

policy iteration discretize the action space in a small number of values, and then solve the

maximization problem by enumeration. Approximate maximization is not necessary in direct

policy search. It is not necessary for the actor-critic subclass of policy iteration algorithms,

either, because actor-critic algorithms use gradient updates of the policy instead of explicit

policy improvements.

Next, the need for estimating expected values using samples is explained. When solving

stochastic DP/RL problems, expectations over the stochastic transitions have to be computed.

Consider the update of a single Q-value in the Q-iteration algorithm, which in the stochastic

case is:

Qℓ+1(x, u) = Ex′∼f̃(x,u,·)

{
ρ̃(x, u, x′) + γmax

u′∈U
Qℓ(x

′, u′)

}

Usually, the expectation cannot be computed exactly, but has to be evaluated approximately

with Monte Carlo methods. Note that in many model-free algorithms, like Q-learning (2.19),

25

CHAPTER 3. APPROXIMATE DP AND RL

the Monte Carlo approximation does not appear explicitly in the update rules, but is per-

formed implicitly while processing samples. In approximate policy search, the expected

returns that enter the optimization criterion also have to be estimated with Monte Carlo meth-

ods.

Finally, the finite-time termination is explained. Iterative DP/RL algorithms have to be

stopped in a finite time, although they usually only offer asymptotic convergence guarantees.

This problem is typically handled by stopping the algorithms whenever the changes in the

solution decrease below a certain threshold. The solution obtained by stopping the algorithm

in this way is in general only an approximation of the solution that would be obtained asymp-

totically. In certain cases, bounds on the suboptimality of this approximate solution can be

derived, see e.g., Section 2.3 for such a bound that applies to Q-iteration.

3.3 Approximate value iteration

Value iteration algorithms use the Bellman optimality equation to iteratively compute an op-

timal value function, from which an optimal policy is then derived (see Section 2.3). When

the state-action space is large or continuous, the value function has to be approximated. The

most widely used value function approximators are linear in the parameters. This is because

the convergence properties of the resulting DP/RL algorithms can be analyzed more easily.

Consider for instance a linearly parameterized approximator for the Q-function. Such an ap-

proximator has n BFs φ1, . . . , φn : X × U → R, and is parameterized by a vector1 of n
parameters θ ∈ R

n. Given a parameter vector θ, approximate Q-values are computed with

the formula:

Q̂(x, u) =
n∑

l=1

φl(x, u)θl (3.2)

So, the parameter θ is a finite-dimensional representation of a Q-function. Note that, by

tuning the number and form of the BFs, together with the parameters, an arbitrarily accurate

representation of a given Q-function can be obtained. However, theoretical guarantees about

approximate value iteration require that the BFs are fixed, which limits the representation

power of (3.2). See however Section 3.5 for a discussion of methods to tune the BFs.

Nonlinearly parameterized approximators like neural networks are also popular. When

combined with DP and RL, they are more powerful than linearly parameterized approxima-

tors, but the resulting algorithms are more difficult to analyze.

Algorithms for model-based (DP), approximate value iteration are presented in Sec-

tion 3.3.1, followed by model-free (RL) algorithms in Section 3.3.2. We describe approx-

imate DP in more detail, because our contribution to approximate value iteration is a model-

based, DP algorithm (Chapter 4). Consequently, a more detailed background of approximate

DP is required. Section 3.3.3 discusses the convergence properties of the algorithms for ap-

proximate value iteration, together with the important role of non-expansive approximators

in guaranteeing convergence.

1All the vectors used in this thesis are column vectors.

26

3.3. APPROXIMATE VALUE ITERATION

3.3.1 Approximate model-based value iteration

This section details Q-iteration with a parametric approximator. This algorithm is an exten-

sion of the exact Q-iteration algorithm of Section 2.3. Recall that Q-iteration starts from an

arbitrary Q-function Q0 and in each iteration ℓ updates the Q-function using Qℓ+1 = T (Qℓ),
where T is the Q-iteration mapping defined by (2.14), or (2.15) in the stochastic case. Ap-

proximate Q-iteration parameterizes the Q-function using a parameter vector θ ∈ R
n. In

addition to T , two other mappings are needed to formalize approximate Q-iteration:

1. The approximation mapping F : R
n → Q, which for a given value of the parameter

vector θ produces an approximate Q-function Q̂ = F (θ).

2. The projection mapping P : Q → R
n, which computes a parameter vector θ such that

F (θ) is as close as possible to the target Q-function Q (e.g., in a least-squares sense).

The notation [F (θ)](x, u) refers to the value of the Q-function F (θ) for the state-action

pair (x, u). For instance, an approximator that is linear in the parameters would lead to

[F (θ)](x, u) =
∑n

l=1 φl(x, u)θl, according to (3.2). The notation [P (Q)]l refers to the lth
component in the parameter vector P (Q).

Approximate Q-iteration starts with an arbitrary (e.g., identically 0) parameter vector θ0,

and updates this vector in every iteration ℓ using the composition of the mappings P , T , and

F :

θℓ+1 = P ◦ T ◦ F (θℓ) (3.3)

Of course, the results of F and T cannot be fully computed and stored. Instead, P ◦ T ◦ F
can be implemented as a single entity, or sampled versions of the full F and T mappings can

be applied. Once a satisfactory parameter vector θ∗ has been found, the following, approxi-

mately optimal policy can be used:

ĥ∗(x) = arg max
u

[F (θ∗)](x, u) (3.4)

A similar formalism can be given for approximate V-iteration, which is more popular

in the literature (Gonzalez and Rofman, 1985; Chow and Tsitsiklis, 1991; Gordon, 1995;

Tsitsiklis and Van Roy, 1996; Munos and Moore, 2002; Grüne, 2004). Many results from

the literature deal with the discretization of continuous-variable problems (Gonzalez and

Rofman, 1985; Chow and Tsitsiklis, 1991; Munos and Moore, 2002; Grüne, 2004). Such

discretizations are not necessarily crisp, but can use interpolation schemes, which lead to

linearly parameterized approximators of the form (3.2). The reader interested in a more de-

tailed account of approximate DP is referred to (Bertsekas and Tsitsiklis, 1996; Rust, 1996;

Bertsekas, 2007).

3.3.2 Approximate model-free value iteration

Approximate model-free value iteration has also been extensively studied (Singh et al., 1995;

Moore and Atkeson, 1995; Horiuchi et al., 1996; Touzet, 1997; Jouffe, 1998; Glorennec,

2000; del R. Millán et al., 2002; Ormoneit and Sen, 2002; Szepesvári and Smart, 2004; Ernst

et al., 2005). The Q-learning algorithm is the most popular, and has been combined with a

variety of approximators, among which:

27

CHAPTER 3. APPROXIMATE DP AND RL

• Linearly parameterized approximators, used under several names such as interpolative

representations (Szepesvári and Smart, 2004) and soft state aggregation (Singh et al.,

1995).

• Neural networks and self-organizing maps (Touzet, 1997).

• Fuzzy rule-bases (Glorennec, 2000; Horiuchi et al., 1996; Jouffe, 1998).

Some algorithms for approximate model-free value iteration work offline and require a

batch of samples collected in advance. A good example is the fitted Q-iteration algorithm of

Ernst et al. (2005). This algorithm is similar to approximate Q-iteration (3.3), but the exact

Q-iteration mapping T is replaced by an approximation derived from the available samples.

Ensembles of regression trees are used to approximate the Q-function. The projection map-

ping P is replaced by a process that derives a new ensemble of regression trees in every

iteration, in order to best approximate the current Q-function. Another batch algorithm is

kernel-based RL, introduced by Ormoneit and Sen (2002). Both the ensembles of regression

trees and the kernel-based representations are nonparametric.

3.3.3 Convergence and the role of non-expansive approximators

An important question in approximate DP/RL is whether the approximate solution computed

by the algorithm converges. If it does converge, another important question is how far the

convergence point is from the optimal solution. Convergence is important because a conver-

gent algorithm is more amenable to analysis and meaningful performance guarantees. For

the category of value iteration algorithms, the convergence proofs nearly always rely on con-

traction mapping arguments.

Consider for instance approximate Q-iteration, given by (3.3). The Q-iteration mapping

T is a contraction in the infinity norm with factor γ < 1, as mentioned in Section 2.3. If

the composite mapping P ◦ T ◦ F of approximate Q-iteration is also a contraction, i.e.,

‖P ◦ T ◦ F (θ) − P ◦ T ◦ F (θ′)‖∞ ≤ γ′‖θ − θ′‖∞ for all θ, θ′, and for some γ′ < 1, then

approximate Q-iteration asymptotically converges to a unique fixed point.

Denote this fixed point by θ∗, and denote byFF◦P ⊂ Q the set of fixed points of the com-

posite mapping F ◦ P (this set is assumed non-empty). Define ε′Q = minQ′∈FF◦P
‖Q∗ −

Q′‖∞, the minimum distance between Q∗ and any fixed point of F ◦ P . Then, the con-

vergence point θ∗ of approximate Q-iteration satisfies the following suboptimality bounds

(Gordon, 1995; Tsitsiklis and Van Roy, 1996):

‖Q∗ − F (θ∗)‖∞ ≤
2ε′Q
1− γ (3.5)

‖Q∗ −Qbh∗‖∞ ≤
4γε′Q

(1− γ)2 (3.6)

where Q
bh∗

is the Q-function of the greedy policy ĥ∗ in F (θ∗) (3.4). Equation (3.5) gives

the suboptimality bound of the approximately optimal Q-function, whereas (3.6) gives the

suboptimality bound of the resulting, approximately optimal policy. The latter may be more

relevant in practice. The following relationship between the policy suboptimality and the

Q-function suboptimality was used to obtain (3.6), and is also valid in general:

‖Q∗ −Qh‖∞ ≤
2γ

(1− γ)‖Q
∗ −Q‖∞ (3.7)

28

3.3. APPROXIMATE VALUE ITERATION

where the policy h is greedy in the (arbitrary) Q-function Q.

To be able to take advantage of these theoretical guarantees, it must be ensured that P ◦
T ◦F is a contraction. One way to do that is to ensure that F and P are non-expansions, i.e.,

that ‖F (θ)− F (θ′)‖∞ ≤ ‖θ− θ′‖∞ for all θ, θ′ and ‖P (Q)− P (Q′)‖∞ ≤ ‖Q−Q′‖∞ for

all Q,Q′ (Gordon, 1995). In this case, P ◦ T ◦ F is a contraction with factor γ′ = γ < 1.

When F is linearly parameterized (3.2), it is fairly easy to ensure its non-expansiveness by

normalizing the BFs φl, so that for every x and u, we have
∑n

l=1 φl(x, u) = 1.

Ensuring that P is non-expansive is more complicated. For instance, the most natural

choice for P is a least-squares projection:

P (Q) = arg min
θ

ns∑

ls=1

|Q(xls , uls)− [F (θ)](xls , uls)|2 (3.8)

for an arbitrary set of samples {(xls , uls) | ls = 1, . . . , ns }. Unfortunately, such a projection

can in general be an expansion, and examples of divergence when using this projection have

been given (Tsitsiklis and Van Roy, 1996; Wiering, 2004). One way to makeP non-expansive

is to choose exactly ns = n samples (for instance, the centers of the BFs), and require that

φls(xls , uls) = 1 and φls
′(xls , uls) = 0 for ls 6= ls

′. Then, the projection mapping (3.8) re-

duces to an assignment that associated each parameter with the Q-value of the corresponding

sample:

[P (Q)]ls = Q(xls , uls) (3.9)

and is clearly non-expansive. More general (but still restrictive) conditions under which

P ◦ T ◦ F is a contraction are given by Tsitsiklis and Van Roy (1996).

In the area of (model-free) approximate RL, many approaches are heuristic and do not

provide any convergence guarantees (del R. Millán et al., 2002; Touzet, 1997; Horiuchi et al.,

1996; Jouffe, 1998; Glorennec, 2000). Those that do guarantee convergence use linearly

parameterized approximators (Singh et al., 1995; Ormoneit and Sen, 2002; Szepesvári and

Smart, 2004; Ernst et al., 2005), and employ conditions related to the non-expansiveness

properties above, e.g., for Q-learning (Singh et al., 1995; Szepesvári and Smart, 2004), or

batch V-iteration (Ormoneit and Sen, 2002).

Another important theoretical property of algorithms for approximate DP and RL is con-

sistency. In DP, an algorithm is consistent if the approximate value function converges to the

optimal one as the approximation accuracy increases. Many consistency results for DP can

be found for discretization-based approximators (Gonzalez and Rofman, 1985; Chow and

Tsitsiklis, 1991; Santos and Vigo-Aguiar, 1998). In RL, consistency is usually understood as

the convergence to a unique solution as the number of samples increases. The stronger result

of convergence to an optimal solution as the approximation accuracy also increases is proven

in (Ormoneit and Sen, 2002; Szepesvári and Smart, 2004).

Example 3.1 Grid Q-iteration for a servo-system. Consider a second-order discrete-time

model of a servo-system:

xk+1 = f(xk, uk) = Axk +Buk

A =

[
1 0.0049
0 0.9540

]
, B =

[
0.0021
0.8505

]
(3.10)

29

CHAPTER 3. APPROXIMATE DP AND RL

This discrete-time model is obtained by discretizing a continuous-time model of the servo-

system, which was determined by first-principles modeling of the real servo-system. The

discretization is performed with the zero-order-hold method, using a sampling time of Ts =
0.005 s. The position x1,k = α is bounded to [−π, π] rad, the velocity x2,k = α̇ to [−16π, 16π]
rad/s, and the control input2 uk to [−10, 10] V.

In our example, a discounted, linear quadratic regulation problem has to be solved. This

problem is described by the following reward function:

rk+1 = ρ(xk, uk) = −xT
kQrewxk −Rrewu

2
k

Qrew =

[
5 0
0 0.01

]
, Rrew = 0.01

(3.11)

The discount factor was chosen γ = 0.95 (this value is sufficient to produce a good control

policy). A near-optimal solution to this problem is presented in Figure 3.1. This near-optimal

solution was computed with the fuzzy Q-iteration algorithm of Chapter 4, using a very accu-

rate approximator.

−3 −2 −1 0 1 2 3
−50

0

50

α [rad]

α
’
[r

a
d

/s
]

h(α,α’) [V]

−10

−5

0

5

10

(a) A near-optimal policy.

−4
−2

0
2

4

−100

0

100
−800

−600

−400

−200

0

α [rad]α’ [rad/s]

Q
(α

,α
’,
0
)

(b) Projection of a near-optimal Q-function on X , for

u = 0.

Figure 3.1: A near-optimal solution of the servo-system.

As an example of approximate value iteration, we develop a Q-iteration algorithm rely-

ing on a gridding of the state space, and on a discretization of the action space into a set

of finitely many values, Ud = {u1, . . . , uM}. For this problem, three discrete actions are

sufficient to find an acceptable stabilizing policy, Ud = {−10, 0, 10}. The state space is

gridded (partitioned) into a set of N disjoint rectangles. Let Xi be the surface of the ith
rectangle in this partition, with i = 1, . . . , N . The Q-function approximator assigns the same

Q-values for all the states in Xi. This corresponds to a linearly parameterized approximator

with binary-valued (0 or 1) BFs over the state-discrete action space X × Ud:

φ[i,j](x, u) =

{
1 if x ∈ Xi and u = uj

0 otherwise
(3.12)

where [i, j] denotes the single-dimensional index corresponding to i and j, which can be

computed with [i, j] = i + (j − 1)N . Note that because the rectangles are disjoint, exactly

one BF is active at any point of X × Ud.

2For all the examples in this thesis, the measurement units of variables are mentioned only once in the text,

when the variables are introduced, after which they are omitted. However, for clarity, time measurements are always

accompanied by units.

30

3.3. APPROXIMATE VALUE ITERATION

To derive the projection mapping P , the least-squares projection (3.8) is used, taking as

samples the cross product between the set of centers ci of all the rectangles, and Ud. These

samples satisfy the conditions to simplify P to an assignment of the type (3.9):

[P (Q)][i,j] = Q(xi, uj) (3.13)

Using the linearly parameterized approximator (3.2) with the BFs (3.12) and the projection

(3.13) yields the grid Q-iteration algorithm. Because F and P are non-expansions, the algo-

rithm is convergent.

Next, we apply grid Q-iteration to the servo-system problem. Two different grids over

the state space are used: a coarse grid, with 20 equidistant bins on each axis (leading to

202 = 400 rectangles); and a fine grid, with 100 equidistant bins on each axis (leading to

1002 = 10000 rectangles). The algorithm is considered convergent when the maximum

amount by which any parameter changes between two consecutive iterations does not exceed

εQI = 0.001. For the coarse grid, convergence occurs after 160 iterations, and for the fine

grid, after 118. This shows that the number of iterations to convergence is not monotonously

increasing in the number of parameters.

Projections of the resulting Q-functions on the state space, together with the correspond-

ing policies computed with (3.4), are given in Figure 3.2. The accuracy in representing the Q-

function is worse for the coarse grid, in Figure 3.2(b), than for the fine grid, in Figure 3.2(d).

In Figure 3.2(b), the piecewise-constant nature of the approximator is clearly visible. The

policy is not represented well in either case, although its structure is more clearly visible

−3 −2 −1 0 1 2 3
−50

0

50

α [rad]

α
’
[r

a
d

/s
]

h(α,α’) [V]

−10

−5

0

5

10

(a) Coarse-grid policy.

−4
−2

0
2

4

−100

0

100
−600

−400

−200

0

α [rad]α’ [rad/s]

Q
(α

,α
’,
0
)

(b) Projection of coarse-grid Q-function on X , for u =
0.

−3 −2 −1 0 1 2 3
−50

0

50

α [rad]

α
’
[r

a
d

/s
]

h(α,α’) [V]

−10

−5

0

5

10

(c) Fine-grid policy.

−4
−2

0
2

4

−100

0

100
−800

−600

−400

−200

0

α [rad]α’ [rad/s]

Q
(α

,α
’,
0
)

(d) Projection of fine-grid Q-function on X , for u = 0.

Figure 3.2: Grid Q-iteration solutions of the servo-system stabilization.

31

CHAPTER 3. APPROXIMATE DP AND RL

in Figure 3.2(c). Axis-oriented artifacts appear for both grid sizes. If these artifacts indeed

decrease the returns obtained by the policy, they illustrate the fact that the bound on the

suboptimality of the policy (3.6) is larger than the bound on the suboptimality of the value

function (3.5). �

3.4 Approximate policy iteration

Policy iteration techniques compute in each iteration the value function of the current policy.

Then, they compute a new, improved policy, which is greedy in the current value function,

and repeat the cycle (see Section 2.4).

In general, both the value function and the policy are approximated. Approximating the

value function is necessary, for the reasons described in Section 3.1. It is also a more dif-

ficult problem than approximating the policy. Approximating the policy can sometimes be

avoided entirely, by computing actions on demand, on the basis of the current value function

(Lagoudakis et al., 2002; Lagoudakis and Parr, 2003a). Alternatively, parametric approxi-

mators of the policy can be used. Even in that case, solving a static optimization problem is

usually sufficient to determine the policy parameters.

Like in approximate value iteration, linearly parameterized approximators of the value

function are widely used, because convergence can be guaranteed more easily with such

approximators. Nonlinear approximators, especially neural networks, are also used often in

the so-called actor-critic algorithms (Sutton et al., 2000; Konda and Tsitsiklis, 2003; Berenji

and Vengerov, 2003).

This section focuses on the class of model-free, sample-based policy iteration algorithms,

because our contribution to approximate policy iteration (Chapter 5) belongs to this class. So,

a more detailed background of these methods is necessary. Approximate policy evaluation is

discussed first in Section 3.4.1. Then, Section 3.4.2 describes exact and approximate policy

improvement. Section 3.4.3 outlines some convergence results for approximate policy iter-

ation. Finally, Section 3.4.4 presents an important subclass of approximate policy iteration,

consisting of actor-critic techniques.

3.4.1 Approximate policy evaluation

Linearly parameterized approximators of the value function, combined with least-squares

techniques to compute the parameters, offer the most powerful algorithms for approximate

policy evaluation available to date (Bertsekas, 2007). These algorithms solve a linear system

of equations to compute the value function parameters. They generally require fewer samples

than their gradient-based counterparts.

Here, we focus on a particular algorithm called least-squares temporal difference for Q-

functions (LSTD-Q) (Lagoudakis and Parr, 2003a). This algorithm is central to our approach

of Chapter 5. For simplicity, we only consider deterministic Markov decision processes

(MDPs), but the formalism can be easily extended to stochastic MDPs. LSTD-Q belongs

to a class of policy evaluation algorithms that solve a projected form of the Bellman equa-

tion (Bertsekas, 2007). To introduce the projected Bellman equation, recall first the policy

evaluation mapping (2.22):

[Th(Q)](x, u) = ρ(x, u) + γQ(f(x, u), h(f(x, u)))

32

3.4. APPROXIMATE POLICY ITERATION

and assume for now that X and U have a finite number of elements, X = {x1, . . . , xN̄},
U = {u1, . . . , uM̄}. Then, the policy evaluation mapping can be written in matrix form as:

T h(Q) = ρ + γfhQ (3.14)

where T h : R
N̄M̄ → R

N̄M̄ . Denote by [i, j] the single-dimensional index corresponding to

i and j, which can be computed with [i, j] = i + (j − 1)N̄ . Then, the vectors and matrices

in (3.14) can be defined as follows:3

• Q ∈ R
N̄M̄ is a vector representation of Q, with Q[i,j] = Q(xi, uj).

• ρ ∈ R
N̄M̄ is a vector representation of ρ, with ρ[i,j] = ρ(xi, uj).

• f ∈ R
N̄M̄×N̄ is a matrix representation of f , with f [i,j],i′ = 1 if f(xi, uj) = xi′ , and

0 otherwise.

• h ∈ R
N̄×N̄M̄ is a matrix representation of h, with hi′,[i,j] = 1 if i′ = i and h(xi) =

uj , and 0 otherwise.

Consider a linearly parameterized approximator with n state-action BFs φ1, . . . , φn :
X×U → R. Define the matrix φ ∈ R

N̄M̄×n with φ[i,j],l = φl(xi, uj). The approximate Q-

vector corresponding to a parameter θ is Q̂ = φ θ. The set of exactly representable Q-vectors

is the space spanned by the BFs, and can be written as Q̂ = {φ θ | θ ∈ R
n }, Q̂ ⊂ R

N̄M̄ .

The projected Bellman equation corresponding to φ is:

PwT h(Q̂
h
) = Q̂

h
(3.15)

where Pw is a weighted Euclidean (least-squares) projection operator, which takes any Q-

vector and projects it onto Q̂, according to:

Pw(Q) = φ θQ

where θQ = arg min
θ∈Rn

N̄∑

i=1

M̄∑

j=1

w(xi, uj)
∣∣∣φT(xi, uj) θ −Q[i,j]

∣∣∣
2 (3.16)

The weight function w : X × U → [0, 1] controls the distribution over the state-action

space of the error (difference) between a Q-vector Q and its projection PwQ. It satisfies∑
i,j w(xi, uj) = 1. The accuracy of the Q-function approximation is indirectly related to

the weight function, via the projected Bellman equation (3.15). The projection matrix can be

written in a closed form as Pw = φ(φTwφ)−1φTw, where w ∈ R
N̄M̄×N̄M̄ is a diagonal

matrix representation of w, with w[i,j],[i,j] = w(xi, uj).

By substituting T h from (3.14), the closed-form expression for Pw, and the expression

of the optimal approximate Q-vector Q̂
h

= φθ∗, the projected Bellman equation (3.15)

becomes:

φ(φTwφ)−1φTw(ρ + γfhφθ∗) = φθ∗

3Throughout this thesis, boldface notation is used for vector or matrix representations of functions and mappings.

Ordinary vectors and matrices are displayed in normal font.

33

CHAPTER 3. APPROXIMATE DP AND RL

This is an equation in θ∗, and can be transformed further into:

φTw(φ− γfhφ)θ∗ = φTwρ (3.17)

Using the notations Γ = φTw(φ − γfhφ) with Γ ∈ R
n×n and z = φTwρ with z ∈ R

n,

this equation can be written as:

Γθ∗ = z (3.18)

The matrix Γ and the vector z can both be written as sums of N̄M̄ terms, one for each

state-action pair:

Γ =

N̄∑

i=1

M̄∑

j=1

φ(xi, uj)w(xi, uj)[φ(xi, uj)− γφ(f(xi, uj), h(f(xi, uj)))]
T

z =
N̄∑

i=1

M̄∑

j=1

φ(xi, uj)w(xi, uj)ρ(xi, uj)

(3.19)

LSTD-Q uses a set of samples {(xls , uls , x
′
ls

= f(xls , uls), rls = ρ(xls , uls)) | ls =
1, . . . , ns}, with (xls , uls) drawn from a density defined by the weight function w: the prob-

ability of drawing the sample (xls , uls) is w(xls , uls). From these samples, Γ and z are

estimated using the following update rules, which are derived from (3.19):

Γ0 = 0, z0 = 0

Γls = Γls−1 + φ(xls , uls)
[
φ(xls , uls)− γφ(x′ls , h(x

′
ls
))
]T

zls = zls−1 + φ(xls , uls)rls

(3.20)

Note that the sample index is used to denote the update index, because Γ and z are updated

after every sample. An approximate solution θls to (3.18) can be obtained after a number of

ls samples have been processed, by solving:

1

ls
Γlsθls =

1

ls
zls (3.21)

Because the empirical distribution of samples converges to w as ls → ∞, and using (3.19),

we have limls→∞
1
ls

Γls = Γ and limls→∞
1
ls
zls = z. Therefore, (3.21) asymptotically be-

comes equivalent to (3.18), and θls asymptotically converges to θ∗. For any finite ls, the

normalization by the number of samples is not necessary4, and (3.21) is equivalent to:

Γlsθls = zls (3.22)

This estimation of Γ and z from samples, followed by solving (3.22) to find θls (usually

after the entire batch of samples has been processed, i.e., ls = ns), is the LSTD-Q algorithm.

LSTD-Q has two important properties that make it efficient. Firstly, (3.22) is obviously linear,

so it can be solved with an efficient procedure such as Gaussian elimination. Secondly, the

matrices Γls ∈ R
n×n and the vectors zls ∈ R

n have manageable sizes. In the LSTD-Q

algorithm, a vector or matrix having N̄M̄ elements or more never has to be stored or updated.

Furthermore, the updates (3.20) can be applied without any change to state-action spaces

4Normalization may still be useful to avoid numerical errors.

34

3.4. APPROXIMATE POLICY ITERATION

with infinitely many elements (e.g., continuous). Note also that, when the BF vector φ(x, u)
is sparse,5 the computational efficiency of the updates (3.20) can be improved further by

exploiting this sparsity.

An analogous least-squares algorithm can be given to compute linearly-parameterized,

approximate V-functions (Bertsekas, 2007). However, for such an algorithm, samples cannot

be collected arbitrarily; instead, they have to be collected from system trajectories controlled

with the policy h that is being evaluated.

An algorithm similar to LSTD-Q, called least-squares policy evaluation, aims to compute

the solution of the same projected Bellman equation (3.15), but in a different way. Least-

squares policy evaluation was originally given for V-functions (Bertsekas and Ioffe, 1996;

Bertsekas, 2007). We extend it to compute Q-functions in Appendix B. The main idea of the

extended algorithm is to iteratively apply approximations of the projected Bellman mapping

to update the parameter vector, rather than aiming directly for the optimal parameter vector,

like LSTD-Q does. The (exact) projected Bellman mapping takes the parameter θls as input,

and computes a new parameter θls+1 by solving:

φθls+1 = PwT h(φθls)

The approximations of this mapping become increasingly accurate as the number ls of sam-

ples increases. Gradient-based versions of policy evaluation with linearly parameterized ap-

proximators can also be given (Sutton, 1988), but they are less sample-efficient than these

least-squares techniques.

3.4.2 Policy improvement

Once the approximate value function of the policy hℓ in iteration ℓ is available, policy im-

provement has to be performed. When Q-functions are used, the policy can be improved

with:

hℓ+1(x) = arg max
u

Q̂hℓ(x, u) (3.23)

When V-functions are used, policy improvements are more complicated and require a model:

hℓ+1(x) = arg max
u

[ρ(x, u) + γV̂ hℓ(f(x, u))] (3.24)

Note that in the stochastic case, (3.23) remains unchanged, but (3.24) includes an additional

expectation inside the maximization criterion, like in (2.13). This makes policy improvements

based on the V-function significantly more computationally expensive.

Consider first the case where policies are approximated and parameterized by a vector

ϑ ∈ R
N . For instance, a linearly parameterized policy approximator uses a set of state-

dependent BFs ϕ1, . . . , ϕN : X → R, and computes the approximate policy with:6

ĥ(x) =

N∑

i=1

ϕi(x)ϑi = ϕT(x)ϑ (3.25)

5The BF vector is sparse, e.g., when the discrete-action approximator of the upcoming Example 3.2 is used. This

is because the BF vector contains zeros for all the discrete actions different from the current discrete action.
6Calligraphic notation is used to differentiate variables related to policy approximation, from variables related to

value function approximation. So, the policy parameter is ϑ and the policy BFs are ϕ, whereas the value function

parameter is θ and the value function BFs are φ. Furthermore, the number of policy parameters and BFs is N , and

the number of samples for policy approximation is Ns.

35

CHAPTER 3. APPROXIMATE DP AND RL

where ϕ(x) = [ϕ1(x), . . . , ϕN (x)]T. For simplicity, the parameterization (3.25) is only

given for scalar actions, but it is easy to extend it to the case of multiple action variables.

Approximate policy improvement can be performed by solving the least-squares problem:

ϑℓ+1 = arg min
ϑ∈RN

Ns∑

is=1

∥∥∥∥ϕ
T(xis)ϑ− arg max

u
φT(xis , u)θℓ

∥∥∥∥
2

2

(3.26)

to find an improved policy parameter vector ϑℓ+1, where {x1, . . . , xNs
} is a set of samples

for policy improvement. In this formula, arg maxu φ
T(xis , u)θℓ = arg maxu Q̂

bhℓ(xis , u) is

the greedy action for the sample xis ; notice that the policy ĥℓ is now also an approximation.

Alternatively, policy improvement could be performed using:

ϑℓ+1 = arg max
ϑ∈RN

Ns∑

is=1

φT(xis , ϕ
T(xis)ϑ)θℓ = arg max

ϑ∈RN

Ns∑

is=1

Q̂
bhℓ(xis , ϕ

T(xis)ϑ) (3.27)

which maximizes the approximate Q-values of the actions chosen by the policy in the state

samples. However, (3.27) can generally be a difficult nonlinear optimization problem, where-

as (3.26) is a convex optimization problem, which is easier to solve.

Some algorithms for approximate policy iteration avoid an explicit parameterization of

the policy. Instead, they compute actions on demand for every state where a control action

is required, using (3.23) or (3.24). For instance, if only a small, discrete set of actions is

considered in the policy improvement step, the maximization can be solved by enumeration.

In this case, policy improvement is exact.

The algorithm obtained by combining exact policy improvement with policy evaluation

by LSTD-Q is least-squares policy iteration (LSPI) (Lagoudakis et al., 2002; Lagoudakis and

Parr, 2003a). LSPI forms the basis of our approach of Chapter 5.

3.4.3 Convergence guarantees

Like for approximate value iteration, convergence is an important theoretical question also for

approximate policy iteration. Consider the general case where both the value functions and

the policies are approximated. Consider also the case where Q-functions are used. Assume

that the error in every policy evaluation step is bounded by εQ:

‖Q̂bhℓ −Qbhℓ‖∞ ≤ εQ, for any ℓ ≥ 0

and the error in every policy improvement step is bounded by εh, in the following sense:

‖Tbhℓ+1(Q̂
bhℓ)− T (Q̂

bhℓ)‖∞ ≤ εh, for any ℓ ≥ 0

where T
bhℓ+1 is the policy evaluation mapping for the improved (approximate) policy, and T

is the Q-iteration mapping (2.14). Then, approximate policy iteration eventually produces

policies whose performance is within a bounded distance from the optimal performance

(Lagoudakis and Parr, 2003a):

lim sup
ℓ→∞

∥∥∥Q̂bhℓ −Q∗
∥∥∥
∞
≤ εh + 2γεQ

(1− γ)2 (3.28)

36

3.4. APPROXIMATE POLICY ITERATION

For an algorithm that performs exact policy improvements, such as LSPI, εh = 0 and the

bound is strengthened to:

lim sup
ℓ→∞

‖Q̂hℓ −Q∗‖∞ ≤
2γεQ

(1− γ)2 (3.29)

where ‖Q̂hℓ−Qhℓ‖∞ ≤ εQ, for any ℓ ≥ 0. Note that computing εQ (and, when approximate

policies are used, computing εh) may be difficult in practice, and the existence of these error

bounds may require additional assumptions on the MDP, such as the Lipschitz continuity of

the dynamics and reward function.

These convergence guarantees do not imply that the policy will settle (i.e., converge to

a stationary function). For instance, both the value function and policy parameters might

converge to limit cycles, so that every point on the cycle yields a policy that satisfies the

bound. Similarly, when exact policy improvements are used, the value function parameter

may oscillate, implicitly leading to an oscillating policy.

Similar results hold when V-functions are used instead of Q-functions (Bertsekas and

Tsitsiklis, 1996).

In sample-based policy iteration, instead of waiting with policy improvement until a large

number of samples have been processed and an accurate approximation of Q-function for the

current policy has been obtained, policy improvements can also be performed after a small

number of samples. In the extreme case, a policy that is greedy in the current value func-

tion can be computed and applied at every step; then, the new sample is obtained and the

value function parameter is updated as well. Such a variant is sometimes called optimistic

policy iteration (Bertsekas and Tsitsiklis, 1996; Bertsekas, 2007). When parameter updates

are performed after each sample, the method is called fully optimistic. Otherwise, it is par-

tially optimistic. One particular instance where optimistic updates are necessary, is when

approximate policy iteration is applied online, such as in our method of Chapter 5.

The convergence behavior of optimistic policy iteration is not fully understood. It can

e.g., exhibit a phenomenon called chattering, whereby the value function converges to a sta-

tionary function, while the policy sequence oscillates, because the limit of the value function

parameter corresponds to multiple policies (Bertsekas and Tsitsiklis, 1996; Bertsekas, 2007).

Example 3.2 LSPI for the servo-system. In this example, LSPI will be applied to the servo-

system problem of Example 3.1. The action space is again discretized into the set Ud =
{−10, 0, 10}, which containsM = 3 actions. Only these discrete actions are allowed into the

set of samples. A set of N normalized Gaussian radial basis functions (RBFs) φ̄i : X → R,

i = 1, . . . , N , is used as an approximator over the state space.7 The RBFs are defined as

follows:

φ̄i(x) =
φ′i(x)∑N

i′=1 φ
′
i′(x)

, φ′i(x) = exp

[
−

2∑

d=1

(xd − ci,d)2
b2i,d

]
(3.30)

where φ′i are (non-normalized) Gaussian axis-parallel RBFs, (ci,1, ci,2) is the center of the ith
RBF, and (bi,1, bi,2) is its radius. The centers of the RBFs are arranged on an equidistant 9×9

7In the context of value function approximation, we denote BFs that only depend on the state by φ̄, to differentiate

them from the state-action BFs φ, whenever these two types of BFs appear together. When there is no possibility of

confusion, the simpler notation φ is used for both types of BFs.

37

CHAPTER 3. APPROXIMATE DP AND RL

grid in the state space. The radii of the RBFs along each dimension are taken identical to the

distance along that dimension between two adjacent RBFs; this yields a smooth interpolation

of the Q-function in the state space. The RBFs are replicated for every discrete action. To

compute the state-discrete action BFs, all RBFs that do not correspond to the current discrete

action are taken equal to 0. Approximate Q-values can then be computed with Q̂(x, uj) =
φT(x, uj) θ, for the state-action BF vector:

φ(x, uj) = [0, . . . , 0︸ ︷︷ ︸
u1

, . . . , 0, φ̄1(x), . . . , φ̄N (x)︸ ︷︷ ︸
uj

, 0, . . . , 0, . . . , 0︸ ︷︷ ︸
uM

]T ∈ R
NM

and a parameter vector θ ∈ R
n with n = NM = 3N .

First, LSPI with exact policy improvements is applied, starting from an identically zero

initial policy h0. The same set of ns = 7500 samples is used in every LSTD-Q policy

evaluation. The samples are random, uniformly distributed over the state-discrete action

space X × Ud. To illustrate the results of LSTD-Q, Figure 3.3 presents the first improved

policy computed by the algorithm, h1, and its approximate Q-function, computed with LSTD-

Q.

−3 −2 −1 0 1 2 3
−50

0

50

α [rad]

α
’
[r

a
d

/s
]

h(α,α’) [V]

−10

−5

0

5

10

(a) Policy.

−4
−2

0
2

4

−100

0

100
−1200

−1000

−800

−600

−400

α [rad]α’ [rad/s]

Q
(α

,α
’,
0
)

(b) Projection of the Q-function on X , for u = 0.

Figure 3.3: An early policy and its approximate Q-function, for LSPI with exact policy im-

provements.

−3 −2 −1 0 1 2 3
−50

0

50

α [rad]

α
’
[r

a
d

/s
]

h(α,α’) [V]

−10

−5

0

5

10

(a) Policy.

−4
−2

0
2

4

−100

0

100
−800

−600

−400

−200

0

α [rad]α’ [rad/s]

Q
(α

,α
’,
0
)

(b) Projection of the Q-function on X , for u = 0.

Figure 3.4: Results of LSPI with exact policy improvements on the servo-system.

The complete LSPI algorithm converged in 11 iterations. Figure 3.4 shows the resulting

policy and Q-function. Both the policy and the Q-function in Figure 3.4 are good approx-

38

3.4. APPROXIMATE POLICY ITERATION

imations of the near-optimal ones in Figure 3.1, even though only 9 × 9 BFs were used.

Compared with the results of grid Q-iteration in Figure 3.2, LSPI needed fewer BFs and was

able to find a much better approximation of the policy. This is mainly because the Q-function

is largely smooth (see Figure 3.1(b)), which means it can be represented well using the wide

RBFs considered. In contrast, the grid BFs give a discontinuous approximate Q-function,

which is inappropriate for this problem. Although certain types of continuous BFs can be

used with Q-iteration, using wide RBFs such as these is unfortunately not possible, because

they do not satisfy the assumptions for convergence, and indeed lead to divergence when they

are too wide.

A disadvantage of these wide RBFs is that they fail to identify the policy nonlinearities

in the top-left and bottom-right corners in Figure 3.1(a), and the corresponding non-smooth

changes in the Q-function. Another observation is that even though the number of parameters

is not much smaller than for the coarse grid in Example 3.1 (9 · 9 · 3 = 243 for LSPI,

and 20 × 20 × 3 = 1200 for the coarse grid), the algorithm converges in a significantly

fewer iterations: 11 instead of 160. This is an indication that the convergence rate of exact

policy iteration over exact value iteration (seen in Example 2.3) is maintained also in the

approximate case.

Next, LSPI with approximate policy improvements (and approximate policies) is applied.

The policy approximator is (3.25) and uses the same RBFs as the Q-function approximator

(ϕi = φ̄i). The approximate policy produces continuous actions. These have to be quantized

(into discrete actions elements of Ud) before performing policy evaluation, because the Q-

function approximator only works for discrete actions. Policy improvement is performed

with (3.26), using a set ofNs = 2500 random, uniformly distributed state samples. The same

set is used in every iteration.

In this experiment, both the Q-functions and the policies oscillate in the steady state

of the algorithm, with a period of 2 iterations. Figure 3.5 presents one of the two policies

from the limit cycle, and one of the Q-functions. The differences between the two distinct

policies and Q-functions on the limit cycle are too small to be noticed in a figure. Instead,

Figure 3.6 shows the evolution of the policy parameter that changes the most in steady state.

Its oscillation is clearly visible. The policy and Q-function have a similar accuracy to those

computed with exact policy improvements. The approximate policy has the added advantage

that it produces continuous actions.

−3 −2 −1 0 1 2 3
−50

0

50

α [rad]

α
’
[r

a
d

/s
]

h(α,α’) [V]

−10

−5

0

5

10

(a) Policy.

−4
−2

0
2

4

−100

0

100
−800

−600

−400

−200

0

α [rad]α’ [rad/s]

Q
(α

,α
’,
0
)

(b) Projection of the Q-function on X , for u = 0.

Figure 3.5: Results of LSPI with approximate policy improvement on the servo-system.

39

CHAPTER 3. APPROXIMATE DP AND RL

4 5 6 7 8 9 10
−26.6

−26.4

−26.2

−26

−25.8

−25.6

Iteration
ϑ

Figure 3.6: The variation of one of the policy parameters, starting with the 4th iteration and

until the oscillation was detected.

The appearance of oscillations when parameterized policies is related to the following

fact. The introduction of parameterized policies requires approximate policy improvements.

Therefore, instead of the bound (3.29) for exact policy improvements, which applied to the

discrete-action experiment in the first part of the example (Figures 3.3 and 3.4), the weaker

bound (3.28) now applies. �

3.4.4 Actor-critic methods

Actor-critic techniques are a special case of online approximate policy iteration. They were

introduced by Barto et al. (1983), and have been investigated often since then, e.g., (Berenji

and Khedkar, 1992; Konda and Tsitsiklis, 2003; Berenji and Vengerov, 2003; Borkar, 2005;

Nakamura et al., 2007). In actor-critic methods, both the policy and the value function are

approximated using differentiable approximators (often neural networks), and updated using

gradient rules. The ‘critic’ is the approximate value function, and the ‘actor’ is the approxi-

mate policy. The critic is typically a V-function, although using Q-functions is also possible.

The critic updates aim to estimate the value function of the current policy. Because this policy

keeps changing after every sample, the estimate will only be accurate if and when the algo-

rithm has converged. Note that, because they use gradient updates, actor-critic algorithms

can remain stuck in locally optimal solutions.

Next, a typical actor-critic algorithm is formalized. Denote by V̂ (x; θ) the approximate

V-function, parameterized by θ ∈ R
N , and by ĥ(x;ϑ) the approximate policy, parameterized

by ϑ ∈ R
N . We use the notation V̂ (x; θ) (and respectively, ĥ(x;ϑ)) to make explicit the

dependence of the parameter vector θ (and respectively, ϑ). Because the algorithm does not

distinguish between the value functions of the different policies, the value function notation

is not superscripted by the policy. After each transition from xk to xk+1, as a result of action

uk, the so-called temporal difference is computed:

δTD,k = rk+1 + γV̂ (xk+1; θk)− V̂ (xk; θk)

This is the difference between the right-hand and left-hand sides of the Bellman equation

for the policy V-function (2.26), or a sample of the difference in the stochastic case. This

temporal difference is analogous to the temporal difference for Q-functions, used e.g., in Q-

learning (2.19). Of course, the exact values of the current state, V (xk), and of the next state,

V (xk+1) are not available, so they are replaced by their approximations.

40

3.4. APPROXIMATE POLICY ITERATION

Once the temporal difference δTD,k is available, the policy and V-function parameters are

updated with:

θk+1 = θk + αC
∂V̂ (x; θ)

∂θ

∣∣∣∣∣
xk,θk

δTD,k (3.31)

ϑk+1 = ϑk + αA
∂ĥ(x;ϑ)

∂ϑ

∣∣∣∣∣
xk,ϑk

[uk − ĥ(xk;ϑk)] δTD,k (3.32)

where αC and αA are learning rates (step sizes) of the critic and the actor, respectively, and

the notation
∂ bV (x;θ)

∂θ

∣∣∣
xk,θk

means that the derivative
∂ bV (x;θ)

∂θ
is evaluated for the state xk

and the parameter θk (and analogously in (3.32)). In the critic update (3.31), the temporal

difference takes the place of the prediction error V (xk)−V̂ (xk; θk), where V (xk) is the exact

value of xk given the current policy. Since this exact value is not available, it is replaced by

the estimate rk+1 + γV̂ (xk+1; θk) offered by the Bellman equation (2.26), thus leading to

the temporal difference. In the actor update (3.32), the actual action uk applied at step k
can be different from the action ĥ(xk;ϑk) indicated by the policy. This change of the action

indicated by the policy is the form taken by exploration in the actor-critic algorithm. When the

exploratory action uk leads to a positive temporal difference, the policy is adjusted towards

this action. Conversely, when δTD,k is negative, the policy is adjusted away from uk. This

is because, like in the critic update, the temporal difference is interpreted as a correction of

the predicted performance, so that e.g., if the temporal difference is positive, the obtained

performance is considered better than the predicted one.

Note that because the exploration [uk − ĥ(xk;ϑk)] is used to compute the error signal,

without using greedy actions as targets, it is not necessary to solve a difficult optimization

problem over the action variable to perform policy improvement. This means that continu-

ous actions are easy to handle. In fact, actor-critic algorithms are specifically designed for

continuous-action MDPs.

In general, the convergence of actor-critic methods cannot be guaranteed. However, for a

particular version of the actor-critic algorithm, convergence guarantees are possible. Unlike

all the algorithms presented up to this point, this convergent actor-critic algorithm does not

aim to maximize the discounted return (2.1) (or (2.9) in the stochastic case). Instead, it tries

to maximize, by optimizing the policy, the average reward:

ρ̄h =

∫

X

∫

U

ρ(x, u)Ph(x, u)du dx

where Ph(x, u) is the steady-state probability of the state-action pair (x, u) under the policy

h.

The actor is a stochastic policy h̃(x, u;ϑ) parameterized by ϑ ∈ R
N , where h̃(x, u;ϑ)

gives the probability of selecting u in x, given the parameter ϑ. The critic approximates the

advantage Q-function Qadv : X × U → R of the current policy, which can be defined e.g.,

for deterministic MDPs by the equation:

Qadv(x, u) = ρ(x, u)− ρ̄h + Eu′∼h̃(x,·;ϑ) {Qadv(f(x, u), u′)}

This Q-function needs to be approximated using a linear parameterization with a specific set

41

CHAPTER 3. APPROXIMATE DP AND RL

of N BFs, defined by:

[φ1(x, u), . . . , φN (x, u)]T =
1

h̃(x, u;ϑ)
· ∂h̃(x, u;ϑ)

∂ϑ

The derivative on the right-hand side produces N components, which are then used as the

Q-function BFs. In fact, other BFs can be used in addition to these N , without losing the

convergence guarantees. The Q-function parameter can be obtained by solving a projected

Bellman equation analogous to (3.15), with gradient or least-squares techniques.

Explaining in detail the convergence properties of this algorithm is beyond the scope of

this chapter. In simple terms, when using a specific form of gradient update, the algorithm can

be guaranteed to converge to a policy that yields a locally optimal average reward ρ̄h. This

algorithm and its convergence proof were given independently by Konda and Tsitsiklis (2000,

2003) and Sutton et al. (2000). The convergence guarantee was used by Berenji and Vengerov

(2003) to prove the convergence of an actor-critic algorithm with a fuzzy parameterization of

the actor.

3.5 Finding value function approximators automatically

The majority of value function approximators used in the literature are parametric. Given an

approximator, the DP/RL algorithm computes its parameters. There still remains the prob-

lem of finding a good approximator. Since most approaches consider linearly parameterized

approximators, finding an approximator is in most cases equivalent to finding a set of basis

functions (BFs).

The BFs can be designed in advance, in which case two approaches are possible. The

first approach is to design the BFs so that a uniform resolution (approximation accuracy) is

obtained over the entire state space (for V-functions) or over the entire state and action spaces

(for Q-functions). Unfortunately, such an approach suffers from the curse of dimensionality:

the complexity of a uniform approximator grows exponentially with the number of state (and

possibly action) variables. The second approach is to focus the resolution in certain parts of

the state (or state-action) space, where the value function has a more complex shape, or where

it is more important to approximate it accurately. Prior knowledge about the shape of the

value function or about the importance of certain areas of the state-action space is necessary

in this case. Unfortunately, such knowledge is often non-intuitive and very difficult to obtain

without actually computing the value function.

A more general alternative is to find BFs automatically, rather than designing them. Such

an approach should provide BFs suited to each particular problem. BFs can be either con-

structed offline (e.g., Menache et al., 2005; Mahadevan and Maggioni, 2007), or adapted

while the DP/RL algorithm is running (e.g., Munos and Moore, 2002; Ratitch and Precup,

2004). Since convergence guarantees typically rely on a fixed set of BFs, adapting the BFs

while the DP/RL algorithm is running leads to a loss of these guarantees. Convergence guar-

antees can be recovered by ensuring that BF adaptation is stopped after a finite number of

updates; fixed-BF proofs can then be applied to show asymptotic convergence (e.g., Ernst

et al., 2005). Most of the approaches to the automatic discovery of BFs assume that the MDP

has a discrete action space containing a not too large number of actions. The effort is then

focused on finding good state-dependent BFs.

42

3.5. FINDING VALUE FUNCTION APPROXIMATORS AUTOMATICALLY

Using many uniformly-distributed, narrow BFs to ensure a desired resolution may be

detrimental to online RL algorithms, in addition to being computationally expensive. This

is because narrow BFs lead to a poor generalization of control decisions across neighboring

states. To have good generalization, it is preferable to use fewer, wider BFs. This tradeoff

between resolution and generalization is specific to approximate RL. Algorithms to find BFs

automatically aim, either explicitly or implicitly, for a set of BFs that ensures a good balance

between resolution and generalization.

A considerable amount of effort has been spent in this research area, and a large number

of techniques is available to derive BFs automatically (Chow and Tsitsiklis, 1991; Munos

and Moore, 2002; Ernst et al., 2005; Menache et al., 2005; Mahadevan and Maggioni, 2007).

In the remainder of this section, we give a brief overview of these techniques. Section 3.5.1

presents resolution refinement techniques, Section 3.5.2 discusses BF optimization, and Sec-

tion 3.5.3 presents some other techniques for constructing BFs.

3.5.1 Resolution refinement

Resolution refinement techniques start with a few BFs (a coarse resolution) and then refine

the BFs as the need arises. They can be further classified in two categories:

• Local refinement (splitting) techniques evaluate whether a particular area of the state

space (corresponding to one or several neighboring BFs) has a sufficient accuracy, and

add new BFs when the accuracy is deemed insufficient. Such techniques have been

proposed e.g., for V-iteration (Munos and Moore, 2002), Q-iteration (Munos, 1997), Q-

learning (Ratitch and Precup, 2004; Waldock and Carse, 2008), and policy evaluation

(Grüne, 2004).

• Global refinement techniques evaluate the global accuracy of the representation, and

refine the BFs if the accuracy is deemed insufficient. All the BFs can be refined uni-

formly (Chow and Tsitsiklis, 1991), or the algorithm may decide which areas of the

state space require more resolution (Munos and Moore, 2002). For instance, Chow

and Tsitsiklis (1991); Munos and Moore (2002) apply global refinement to V-iteration,

while Szepesvári and Smart (2004) use it for Q-learning.

A variety of criteria are used to decide when the BFs should be refined. An overview

of typical criteria, and a comparison between them in the context of V-iteration, is given by

Munos and Moore (2002). For instance, local refinement in a certain area can be performed:

• when the value function is not (approximately) constant in that area (Munos and Moore,

2002);

• when the value function is not (approximately) linear in that area (Munos and Moore,

2002; Munos, 1997);

• when the Bellman error (the error between the left-hand and right-hand sides of the

Bellman equation, see (3.33)) is large in that area (Grüne, 2004);

• or using various other heuristics (Ratitch and Precup, 2004; Waldock and Carse, 2008).

43

CHAPTER 3. APPROXIMATE DP AND RL

Global refinement can be performed e.g., until a desired level of solution accuracy is

met (Chow and Tsitsiklis, 1991). Munos and Moore (2002) refine the areas where the V-

function is poorly approximated and that affect other areas where the actions dictated by the

policy change. This approach globally identifies the areas of the state space that have to be

approximated more accurately in order to find a good policy, but is limited to discrete-action

MDPs.

Resolution refinement techniques increase the memory and computational expenses of

the DP/RL algorithm whenever they increase the resolution. Care must be taken to prevent

the memory and computation expenses from becoming prohibitive, especially in the online

case. This is an important concern both in approximate DP and in approximate RL. Equally

important in approximate RL are the restrictions imposed on resolution refinement by the

limited amount of data available. Increasing the power of the approximator means that more

data will be required to compute an accurate solution, so the resolution cannot be refined to

arbitrary levels for a given amount of data.

3.5.2 Basis function optimization

Basis function optimization techniques search for the best placement and shape of a fixed

number of BFs. Consider e.g., the linear parameterization (3.2) of the Q-function. To op-

timize the n BFs, they can be parameterized by a vector of BF parameters ξ that encodes

their locations and shapes. For instance, a radial BF is characterized by its center and width.

Denote the parameterized BFs by ϕl(x; ξ) : X × U → R, l = 1, . . . , n, to highlight their

dependence on ξ. The BF optimization algorithm searches for an optimal parameter vector

ξ, which optimizes a certain criterion related to the accuracy of the value function represen-

tation. Note that unlike resolution refinement techniques, BF optimization cannot provide

arbitrary accuracies across the entire state space, because the number of BFs is limited.

Many optimization techniques can be applied to compute the BF parameters ξ. For

instance, gradient-based optimization has been used for actor-critic (Berenji and Khedkar,

1992), temporal difference (Singh et al., 1995), and least-squares temporal difference algo-

rithms (Menache et al., 2005). The cross-entropy method has been applied to least-squares

temporal difference (Menache et al., 2005) and Q-iteration algorithms (Buşoniu et al., 2008d).

Our approach from (Buşoniu et al., 2008d) will be detailed in Chapter 4.

An approximator that natively optimizes the BFs is the self-organizing map, used e.g., in

combination with Q-learning by Touzet (1997).

The most widely used optimization criterion is the Bellman error, also called Bellman

residual (Singh et al., 1995; Menache et al., 2005). This is a measure on how much the

estimated value function violates the Bellman equation, which would be precisely satisfied

by the exact value function. For instance, the Bellman error for an estimate Q̂ of the optimal

Q-function Q∗, in a deterministic MDP, is derived from the Bellman optimality equation

(2.4), and is given by:

∫

X

∫

U

∣∣∣Q̂(x, u)− ρ(x, u)− γmax
u′

Q̂(f(x, u), u′)
∣∣∣
2

dudx (3.33)

In practice, an approximation of the Bellman error is computed using a finite set of samples.

The suboptimality ‖Q̂−Q∗‖∞ of the resulting Q-function is bounded by a constant multiple

of the infinity norm of the Bellman error ‖Q̂− TQ̂‖∞ (Williams and Baird, 1994; Bertsekas

44

3.6. APPROXIMATE POLICY SEARCH

and Tsitsiklis, 1996). Furthermore, the suboptimality of the Q-function is related to the sub-

optimality of the resulting policy by (3.7), which means that, in principle, minimizing the

Bellman error is useful. Unfortunately, minimizing the quadratic Bellman error (3.33) may

lead to a large infinity norm of the Bellman error, so it is unclear whether minimizing (3.33)

leads to a near-optimal approximate Q-function and policy.

Another possible criterion for optimizing the BFs is the performance of the (suboptimal)

policy obtained by the DP/RL algorithm, as in our approach from (Buşoniu et al., 2008d).

3.5.3 Other methods for basis function construction

It is also possible to construct BFs using various specialized techniques that are different from

resolution refinement and optimization. For instance, Ernst et al. (2005) use regression trees

to represent the Q-function in every iteration of an algorithm for approximate Q-iteration.

The method to build the regression trees implicitly determines a set of BFs that represent

well the Q-function of the current iteration.

Mahadevan (2005) and Mahadevan and Maggioni (2007) perform a spectral analysis of

the MDP transition dynamics to find BFs, which are then used in LSPI. Because the BFs

represent the underlying topology of the state transitions, they provide a good accuracy in

representing the value function.

Xu et al. (2007) use a kernel-based approximator for LSPI. Originally, kernel-based ap-

proximation uses a BF for each sample, but Xu et al. (2007) employ a kernel sparsification

procedure that automatically determines a reduced number of BFs.

These three techniques are model-free.

Example 3.3 Finding RBFs for LSPI in the servo-system problem. Consider again the

servo-system problem of Example 3.1, and its solution using LSPI described in Example 3.2.

As already noted in Example 3.2, the LSPI solution of Figure 3.4(a) does not take into ac-

count the nonlinearities of the policy seen in the top-left and bottom-right corners of Fig-

ure 3.1(a). This is because the corresponding non-smooth variations in the Q-function, seen

in Figure 3.1(b), are not represented in the approximate solutions. This is an example of

the generalization-resolution tradeoff: the wide RBFs used offer good generalization, at the

cost of poor resolution. To improve the resolution in the corners where the Q-function is not

smooth, a resolution refinement technique could be applied.

An alternative is to parameterize the RBFs (3.30), and optimize their locations and shapes.

In this case, the RBF parameter vector, denoted by ξ, contains the two-dimensional centers

and radii of all the RBFs: ξ = [c1,1, c1,2, b1,1, b1,2, . . . , cN,1, cN,2, bN,1, bN,2]
T. Such an ap-

proach is proposed by Menache et al. (2005), who minimize the Bellman error using gradient

descent and cross-entropy optimization. �

3.6 Approximate policy search

Algorithms for approximate policy search parameterize the policy directly, and use optimiza-

tion techniques to search for an optimal parameter vector. When the state space is finite and

not too large, the parameterization might exactly represent the optimal policy. This special

case was discussed already in Section 2.5. However, in general, optimal policies can only be

represented approximately.

45

CHAPTER 3. APPROXIMATE DP AND RL

Denote by ĥ(x;ϑ) the approximate policy, parameterized by ϑ ∈ R
N . Policy search algo-

rithms search for an optimal ϑ∗ that maximizes the return R
bh(x;ϑ) for all x ∈ X . As already

outlined in Section 3.2, three further types of approximation are necessary to implement a

general policy search algorithm:

1. When X is large or continuous, computing the return for every state is not possible.

A practical procedure to circumvent this difficulty requires choosing a finite set X0

of representative initial states. Returns are estimated only for states in X0, and the

optimization criterion (score) is the weighted average return over X0 (Marbach and

Tsitsiklis, 2003; Munos, 2006):

s(ϑ) =
∑

x0∈X0

w(x0)R
bh(x;ϑ)(x0) (3.34)

The representative states are weighted by w : X0 → (0, 1]. The set X0, together with

the weight function w, will determine the performance of the resulting policy. For

instance, if the process only has to be controlled starting from a known set of initial

states, thenX0 should be equal to this set, or included it when the set is too large. Also,

initial states that are deemed more important can be assigned larger weights. When all

initial states are equally important, the elements ofX0 should be uniformly spread over

the state space, randomly or equidistantly, and identical weights equal to 1
|X0|

should

be assigned to every element of X0 (|·| denotes set cardinality). Maximizing only the

returns from states in X0 only results in an approximately optimal policy, because it

cannot guarantee that returns from other states in X are maximal.

2. In the computation of the returns, the infinite sum in (2.1) has to be replaced by a finite

sum over K steps. For discounted returns, it is easy to determine a value of K that

guarantees a required estimation accuracy, using (2.27).

3. Finally, in stochastic MDPs, Monte Carlo simulations are required to estimate the ex-

pected returns. This procedure is consistent, i.e., as the number of simulations ap-

proaches infinity, the estimate converges to the correct expectation. Results from Monte

Carlo simulation can be applied to bound the approximation error for a finite number

of simulations.

In the literature, ad-hoc policy parameterizations are typically designed using intuition

and prior knowledge about an optimal (or near-optimal) policy. For instance, parameteriza-

tions that are linear in the state variables can be used, if it is known that a (near-)optimal

policy has the form of a linear state feedback. Ad-hoc parameterizations are typically com-

bined with gradient-based optimization (Baird and Moore, 1999; Sutton et al., 2000; Marbach

and Tsitsiklis, 2003; Konda and Tsitsiklis, 2003; Munos, 2006; Riedmiller et al., 2007). The-

oretical results have been developed for this class of techniques, with recent work focusing on

variance reduction for the gradient estimates (Marbach and Tsitsiklis, 2003; Munos, 2006).

When prior knowledge about the policy is not available, a richer policy parameterization

has to be used. In this case, the optimization criterion is likely to have many local optima.

Since gradient-based algorithms can only find locally optimal solutions, they will typically

perform poorly for general policy parameterizations. Global optimization techniques are

more suitable in this case. One example of global optimization technique which has been

46

3.6. APPROXIMATE POLICY SEARCH

applied to approximate policy search is the cross-entropy (CE) method. CE policy search

was introduced by Mannor et al. (2003). Chang et al. (2007, Chapter 4) recently proposed

finding a policy with the model-reference adaptive search, which is closely related to the CE

method. Both works focus on solving finite, small MDPs, although they also propose solving

large or continuous-variable MDPs with policy parameterizations based on prior knowledge.

Our approach from Chapter 6 also uses the CE method with flexible policy parameterizations,

in order to solve continuous-state MDPs. Evolutionary computation is another optimization

technique that has been applied to policy search, both when a model is available (Barash,

1999; Chin and Jafari, 1998; Chang et al., 2007, Chapter 3) and when it is not (Gomez et al.,

2006).

Example 3.4 Approximate policy search for the servo-system. Consider again the servo-

system problem of Example 3.1. Because the system is linear and the reward function is

quadratic, the optimal policy would be a linear state feedback if the constraints on the state

and action variables were disregarded. Taking now into account the constraints on the control

action, we assume that a good approximation of the optimal policy will be linear in the state

variables, up to the constraints on the control action:

ĥ(x) = sat {ϑ1x1 + ϑ2x2,−10, 10} (3.35)

where ‘sat’ denotes saturation. In fact, an examination of the near-optimal policy of Fig-

ure 3.1(a) reveals that this assumption is largely correct; the only nonlinearities appear in the

top-left and bottom-right corners of the figure, and they are probably due to the constraints

on the state variables. A policy search algorithm could use the parameterization (3.35) for

the policy, and search for an optimal parameter vector ϑ∗ = [ϑ∗1, ϑ
∗
2]

T. Many optimization

algorithms could be used to achieve this. Because the gradients of the score function (3.34)

are difficult to compute, a gradient-free method is recommended.

As explained above, further approximations are necessary to evaluate the score function:

• A setX0 of representative states has to be selected. To make the policy perform equally

well across the state space, the states in X0 can be distributed on a regular grid, e.g.,

X0 = {−16π,−15π, . . . , 16π} × {−π,−5π/6, ..., . . . , π}, and uniformly weighted

by w(x0) = 1
|X0|

.

• The infinite-horizon returns need to be estimated in a finite number of steps K. We

impose a maximum error εMC = 0.01 in the estimation of the return. A bound on the

reward function (3.11) can be computed with:

‖ρ‖∞ = [16π π]

[
5 0
0 0.01

] [
16π
π

]
≈ 75.6142

Substituting εMC, ‖ρ‖∞, and γ = 0.95 in (2.27) leads to K = 233 time samples.

Because the problem is deterministic, simulating multiple trajectories from every initial state

is not necessary; instead, a single trajectory will suffice. Since the number of states in X0 is

33 · 13 = 429, a total number of 429 · 233 = 99957 simulation steps have to be performed

to evaluate each policy parameter. Because the optimization procedure is likely to evaluate

many different parameter vectors, and samples cannot be reused to evaluate different policy

47

CHAPTER 3. APPROXIMATE DP AND RL

parameters, the resulting algorithm is computationally very expensive. The complexity can

be decreased by taking a smaller X0 or a larger εMC, at the expense of a possible decrease in

the performance of the obtained policy.

By comparison, the grid Q-iteration with the fine grid of Example 3.1 required 30000
samples (10000 rectangle centers times 3 discrete actions). The algorithm reused these sam-

ples in each of the 118 iterations necessary for convergence. The LSPI algorithm with exact

policy improvements, applied to the servo-system problem in Example 3.2, used even fewer

transition samples, 7500. The algorithm required 11 iterations for convergence, so it reused

the samples 11 times.

Consider now the case in which no prior knowledge about the optimal policy is available.

In this case, a general policy parameterization has to be used, e.g., the linear policy parame-

terization (3.25) with the state-dependent RBFs (3.30). In contrast to Example 3.2, where the

policy parameter vector ϑ has been optimized by computing approximate Q-functions and

then improving ϑ on the basis of these Q-functions, here ϑ is optimized directly to maximize

(3.34). The score of every policy parameter (optimization criterion) is computed in the same

way as for the simpler parameterization derived from prior knowledge. However, because

there is a significantly larger number of parameters to find than for simple parameterization

(81 parameters for 9× 9 RBFs, in contrast to 2 parameters for the simple parameterization),

the optimization algorithm will probably require more score evaluations, and therefore more

computations. �

3.7 Comparison of approximate value iteration, policy iter-

ation, and policy search

Currently, an extensive theoretical or empirical comparison between the three categories of

algorithms (approximate value iteration, policy iteration, and policy search) is missing from

the literature. However, a few general remarks can be made.

As already discussed in Section 2.4, policy iteration algorithms typically converge in

fewer iterations than value iteration algorithms. However, because the cost of an individual

policy iteration may be greater than the cost of an individual value iteration, it is unclear

how value iteration compares with policy iteration from the point of view of computational

cost. In the approximate case, convergence guarantees for policy evaluation are less restric-

tive than value iteration guarantees, which is an advantage for approximate policy iteration.

Namely, for policy evaluation it suffices that the BFs are linear in the parameters, as discussed

in Section 3.4.3. For value iteration, additional properties are required to ensure that the ap-

proximate value iteration mapping is a contraction, as discussed in Section 3.3.3. Moreover,

efficient least-squares algorithms such as LSTD-Q can be used to compute a ‘one-shot’ so-

lution to the policy evaluation problem. Both these advantages stem from the linearity of

the Bellman equation for the value function of a given policy, e.g., (2.20); whereas the Bell-

man optimality equation, which characterizes the optimal value function, e.g., (2.4), is highly

nonlinear due to the maximization in the right-hand side. Note however that for value iter-

ation, monotonous convergence to a unique solution is usually guaranteed, whereas policy

iteration is generally only guaranteed to converge to a sequence of policies that all provide a

guaranteed level of performance (see Section 3.4.3).

Approximate policy search is potentially very useful in two situations. The first situation

48

3.8 CONCLUSIONS AND OPEN ISSUES

is when the form of the optimal policy (or a near-optimal policy) is known, and only the pa-

rameters need to be determined. In this case, a parametric approximator easily follows, and

an optimization technique can be used to find an optimal parameter vector (locally optimal,

in the case of local optimization techniques such as gradient-based optimization). The sec-

ond situation is when a DP/RL problem has to be solved, but it is undesirable to compute

value functions, e.g., because approximate value iteration and policy iteration fail to obtain

a good solution, or because their assumptions are too restrictive. In such cases, one may

use a general policy parameterization and a global optimization technique to search for the

parameters. An assumption of value function techniques that may be too restrictive in certain

problems is e.g., the linearity of the value function parameterization, which is typically re-

quired for convergence. Approximate policy search allows general policy parameterizations

without endangering convergence. Note that, because of its generality, this approach incurs

a high computational cost. Although it does not apply directly to the approximate case, the

comparison of Section 2.5 between the computational costs of policy search and value itera-

tion can offer a rough idea about how the two classes of algorithms compare when they use

approximation.

3.8 Conclusions and open issues

In this chapter, the need for approximation in DP and RL has been explained, and approximate

versions for the three main categories of DP/RL algorithms have been discussed: approxi-

mate value iteration, policy iteration, and policy search. Additionally, the three categories of

approximate techniques have been compared, and techniques to automatically determine BFs

for value function approximators have been reviewed. By necessity, we have only selected

for presentation a few representative algorithms and central theoretical results; the breadth of

the field prohibits an exhaustive discussion of all the available approaches and results. For

the reader interested in a more extensive discussion, the textbooks of Bertsekas and Tsitsiklis

(1996), and of Bertsekas (2007, Chapter 6) provide more detailed introductions to approxi-

mate DP and RL.

The following list describes some of the main open issues in approximate DP and RL:

• Owing to their sample efficiency and relaxed convergence guarantees, least-squares

techniques may be the most promising approach for solving DP/RL problems. How-

ever, these techniques are usually given in an offline setting. From an RL perspective,

it would be interesting to study least-squares techniques in the online case. While it

is not difficult to derive online variants of the least-squares algorithms, these versions

are typically not studied in the literature, and their behavior in practice is unknown. In

Chapter 5, we extend the LSPI algorithm to the online case and empirically study the

resulting algorithm.

• Continuous-action MDPs are not studied often in the literature. This is mainly because

of the difficulties with continuous actions discussed in Section 3.1. However, for some

problems continuous actions are important. For instance, stabilizing a system around

an unstable equilibrium requires chattering of the control action when only discrete ac-

tions are available. In practice, chattering increases wear and may damage the system.

In Chapter 4, we study the performance effect of the accuracy in discretizing actions,

49

CHAPTER 3. APPROXIMATE DP AND RL

for a model-based algorithm. In Chapter 5, we study LSPI with continuous-action

parameterizations.

• Algorithms for approximate policy search typically require that the form of an optimal

(or near-optimal) policy is known, and they optimize the parameters. Such an approach

cannot be applied when prior knowledge about the form of the policy is not available.

In that case, more general parameterizations have to be used. We propose such a gen-

eral parameterization in Chapter 6, and we use cross-entropy (CE) optimization to

search for the policy parameters.

• While adaptive approximators for value functions have been extensively studied (they

were reviewed in Section 3.5), a comparative survey of the various methods is missing,

so it is not clear which method is best for a given problem. Also, for techniques that

adapt the basis functions while estimating the value function, no convergence proof is

available. In Chapter 4, we give an algorithm to optimize BFs that evaluates each BF

parameter by running the value function estimation to convergence. Thus, convergence

problems are avoided, at the expense of more computations.

• It is unclear how more general types of prior knowledge than the form of the policy

can be used in approximate DP/RL. Since prior knowledge about the value function is

typically difficult to obtain, it is more interesting to investigate prior knowledge about

the policy. For instance, the form (parameterization) of the policy may be unknown,

but more general constraints may be available. It may be known, e.g., that the policy

is monotonous in the state variables, or linear constraints on the state and action vari-

ables may be available. Policy iteration and policy search algorithms are most suited to

incorporate policy constraints, because they can represent policies explicitly. In Chap-

ter 5, we investigate the effect of incorporating monotonicity constraints on the policy

in an online variant of the LSPI algorithm.

Some open questions from the field of exact DP/RL remain valid also in approximate DP/

RL. Examples include defining the reward function, guaranteeing performance during learn-

ing, dealing with non-measurable state variables (partially observable MDPs), and decentral-

ized (multi-agent) approximate DP/RL. Some of these questions gain additional importance

when approximate solutions are considered. For instance, one may ask what properties the

reward function should have in order to improve the convergence rate of a given algorithm for

approximate DP, or the learning rate of a given algorithm for approximate RL. In Chapter 4,

we show that in an example with continuous state and action variables, continuous reward

functions are important for a predictable improvement in the performance of the approximate

solution, as the approximation accuracy increases.

50

Chapter 4

Approximate value iteration with

a fuzzy representation

In this chapter, we propose an algorithm for approximate dynamic programming that relies

on a fuzzy partition of the state space, and on a discretization of the action space. We show

that the algorithm converges to a solution that lies within a bound of the optimal solution.

Under continuity assumptions on the dynamics and on the reward function, we also show

that the algorithm is consistent, i.e., that the optimal solution is asymptotically obtained as

the approximation accuracy increases. As an alternative to designing membership functions

in advance, we propose a technique to optimize triangular membership functions using the

cross-entropy method. An extensive numerical and experimental evaluation indicates that the

algorithm has a good performance in practice, among others producing better policies than

Q-iteration with a radial basis function approximator. The experiments also indicate that a

continuous reward function is important for a predictable improvement of the performance as

the approximation accuracy increases.

4.1 Introduction

Classical value iteration algorithms require an exact representation of the value function.

When some of the state or action variables have a very large or infinite number of possible

values (e.g., they are continuous), the value function can no longer be represented exactly, but

has to be approximated. Fuzzy approximators are one of the possible representations of the

value function. They have been applied mostly to model-free, reinforcement learning (RL)

techniques such as Q-learning (Glorennec, 2000; Horiuchi et al., 1996; Jouffe, 1998) and

actor-critic algorithms (Berenji and Khedkar, 1992; Berenji and Vengerov, 2003; Vengerov

et al., 2005; Lin, 2003). Two desirable properties of the algorithms for approximate value it-

eration are the convergence to a near-optimal solution and consistency, which means asymp-

totical convergence to the optimal solution as the approximation accuracy increases. Unfor-

tunately, most of the algorithms exploiting fuzzy representations are heuristic in nature, and

their theoretical properties have not been investigated yet.

This chapter proposes a model-based, dynamic programming (DP) algorithm that repre-

sents Q-functions using a Takagi-Sugeno fuzzy rule base (Takagi and Sugeno, 1985). The rule

51

CHAPTER 4. FUZZY Q-ITERATION

base receives the state as input, and produces the Q-values of the discrete actions as outputs.

The discrete actions are selected beforehand from the (possibly continuous) original action

space. The proposed algorithm is called fuzzy Q-iteration, because it combines the classical

Q-iteration algorithm with a fuzzy approximator. The fuzzy sets in the rule base are described

by membership functions (MFs), which can be identified with state-dependent basis functions

(BFs). So, the fuzzy approximator belongs to the class of BF-dependent representations used

throughout this thesis. We show that fuzzy Q-iteration asymptotically converges to an ap-

proximate Q-function that lies within a bounded distance from the optimal Q-function. A

bound on the suboptimality of the solution obtained in a finite number of iterations is also de-

rived. We show that fuzzy Q-iteration is consistent: under appropriate continuity assumptions

on the process dynamics and on the reward function, the approximate Q-function converges

to the optimal one as the approximation accuracy increases. These properties hold both when

the parameters of the approximator are updated in a synchronous fashion, and when they are

updated asynchronously. Additionally, we show that the asynchronous algorithm converges

at least as fast as the synchronous one.

Fuzzy Q-iteration requires the MFs to be designed beforehand. Either prior knowledge

about the optimal Q-function is required to design good MFs, or many MFs have to be defined

to provide a good resolution over the entire state space. As an alternative, we propose to

optimize the parameters of a constant number of MFs. This is useful when prior knowledge

is not available and the number of MFs is limited. The proposed approach belongs to the class

of approximator optimization techniques discussed in Section 3.5.2. To evaluate each set of

MFs, a policy is computed with fuzzy Q-iteration using these MFs, and then the performance

of this policy is estimated by simulation. Using the cross-entropy method for optimization,

we design an algorithm to optimize the locations of triangular MFs.

We perform a thorough numerical and experimental evaluation of fuzzy Q-iteration. First,

the convergence rates of synchronous and asynchronous fuzzy Q-iteration are compared for

the optimal control of a (simulated) servo-system. Using the same system, we investigate the

practical impact of reward function discontinuities on the consistency of the algorithm, and

compare fuzzy Q-iteration to Q-iteration with radial basis function approximation (Tsitsiklis

and Van Roy, 1996). Then, fuzzy Q-iteration is applied to stabilize a (simulated) two-link

manipulator, and to swing up and stabilize a real-life inverted pendulum. For these three

examples, the MFs are designed in advance. Finally, the performance of fuzzy Q-iteration

with optimized MFs is evaluated on the classical car-on-the-hill DP/RL benchmark (Moore

and Atkeson, 1995; Munos and Moore, 2002; Ernst et al., 2005).

The remainder of this chapter is organized as follows. Section 4.2 gives a brief overview

of the literature related to our results. Section 4.3 describes fuzzy Q-iteration, and Section 4.4

analyzes its convergence and consistency. Section 4.5 describes our approach to optimize the

MFs using the cross-entropy method. Section 4.6 gives an extensive numerical and experi-

mental evaluation of the algorithm, and compares it to Q-iteration with radial basis function

approximation. Finally, Section 4.7 concludes the chapter.

Parts of this chapter have been published in (Buşoniu et al., 2007b,a, 2008c,b,d).

4.2 Related work

This section gives a brief overview of the literature related to fuzzy Q-iteration and MF opti-

mization. Fuzzy approximators have typically been used in model-free (RL) techniques such

52

4.3. FUZZY Q-ITERATION

as Q-learning (Glorennec, 2000; Horiuchi et al., 1996; Jouffe, 1998) and actor-critic algo-

rithms (Berenji and Khedkar, 1992; Berenji and Vengerov, 2003; Vengerov et al., 2005; Lin,

2003). Most of these approaches are heuristic in nature, and their theoretical properties have

not been investigated. Notable exceptions are the provably convergent actor-critic algorithms

of Berenji and Vengerov (2003); Vengerov et al. (2005), which use the actor-critic conver-

gence result reviewed in Section 3.4.4. In this chapter, we use fuzzy approximation with a

model-based (DP) algorithm, and provide a detailed theoretical and empirical analysis of its

convergence and consistency properties.

A rich body of literature concerns the theoretical analysis of approximate value iteration,

both in the DP (model-based) setting (Chow and Tsitsiklis, 1991; Gordon, 1995; Tsitsiklis

and Van Roy, 1996; Santos and Vigo-Aguiar, 1998; Munos and Szepesvári, 2008; Wiering,

2004) and in the RL (model-free) setting (Szepesvári and Smart, 2004; Singh et al., 1995;

Ernst, 2003). In most cases, convergence is ensured by using approximators that are lin-

ear in the parameters (Gordon, 1995; Tsitsiklis and Van Roy, 1996; Szepesvári and Smart,

2004). The fuzzy approximator considered in this chapter is also linear in the parameters.

Our convergence analysis for synchronous fuzzy Q-iteration is related to the convergence

analysis of approximate V-iteration for discrete state-action spaces in (Gordon, 1995; Tsit-

siklis and Van Roy, 1996). We additionally consider continuous state-action spaces, and

introduce an explicit discretization procedure of the continuous action space. We also con-

sider asynchronous fuzzy Q-iteration. While (exact) asynchronous value iteration is widely

used (Bertsekas, 2007), asynchronous algorithms for approximate DP are not often studied.

Many consistency results for model-based (DP) algorithms are found for discretization-based

approximators (Gonzalez and Rofman, 1985; Chow and Tsitsiklis, 1991; Santos and Vigo-

Aguiar, 1998). Such discretizations sometimes use interpolation schemes similar to those

employed by fuzzy Q-iteration.

Techniques that change the number, position, and shape of the BFs have also been in-

vestigated (Munos and Moore, 2002; Ratitch and Precup, 2004; Menache et al., 2005; Ernst

et al., 2005; Mahadevan, 2005; Keller et al., 2006). In some approaches, the BFs are adapted

simultaneously with estimating a DP/RL solution, which leads to a loss of the convergence

guarantees. In our approach, because each policy is computed by running fuzzy Q-iteration

to convergence with fixed MF parameters, these convergence problems do not appear. The

work that is most closely related to ours is that of Menache et al. (2005), who optimized the

location and shape of a constant number of BFs for policy evaluation. The optimization cri-

terion used by Menache et al. (2005) was the quadratic Bellman error of the value function.

In principle, minimizing the Bellman error is useful, because a small infinity norm of the

Bellman error leads to a good approximation of the Q-function (Williams and Baird, 1994).

However, minimizing the quadratic Bellman error, as done by Menache et al. (2005), may

lead to a large infinity norm of the Bellman error, and therefore does not necessarily lead

to a good approximate Q-function. Our optimization approach does not suffer from such

problems, because we maximize the empirical return of the computed policy, which directly

expresses the control performance.

4.3 Fuzzy Q-iteration

In this section, the fuzzy Q-iteration algorithm is introduced. The state space X and the

action space U of the problem may be either continuous or discrete, but they are assumed to

53

CHAPTER 4. FUZZY Q-ITERATION

be subsets of Euclidean spaces, such that the 2-norm of the states and actions is well-defined.

For the simplicity of notation, X and U are also assumed to be closed sets.

The proposed approximation scheme relies on a fuzzy partition of the state space, and

on a discretization of the action space. The fuzzy partition contains N fuzzy sets χi, each

described by a membership function (MF) µi : X → [0, 1], i = 1, . . . , N . A state x belongs

to each set i with a degree of membership µi(x). The following requirement is imposed.

Requirement 4.1 Each MF has its unique maximum in a single point, i.e., for every i there

exists a unique xi for which µi(xi) > µi(x) ∀x 6= xi. Additionally, µi′(xi) = 0 for all i′ 6= i.

This requirement is imposed here for brevity in the description and analysis of the algo-

rithms; it can be relaxed using results of (Tsitsiklis and Van Roy, 1996). Because all the other

MFs take zero values in xi, it can be assumed without loss of generality that µi(xi) = 1. The

state xi is then called the core of the ith set.

Example 4.1 Triangular fuzzy partitions. A simple type of fuzzy partition that satisfies Re-

quirement 4.1 can be obtained as follows. For each state variable xd with d = 1, . . . ,D, a

number Nd of triangular MFs are defined as follows:

φd,1(xd) = max

(
0,

cd,2 − xd

cd,2 − cd,1

)

φd,i(xd) = max

[
0,min

(
xd − cd,i−1

cd,i − cd,i−1
,
cd,i+1 − xd

cd,i+1 − cd,i

)]
for i = 2, . . . , Nd − 1

φd,Nd
(xd) = max

(
0,

xd − cd,Nd−1

cd,Nd
− cd,Nd−1

)

where cd,1 < · · · < cd,Nd
is the array of cores along dimension d, which completely de-

termines the shape of the MFs, and xd ∈ [cd,1, cd,Nd
]. Adjacent functions always inter-

sect at a 0.5 level. Then, the product of each combination of (single-dimensional) MFs

gives a pyramid-shaped D-dimensional MF in the fuzzy partition of X . Examples of one-

dimensional and two-dimensional triangular partitions are given in Figure 4.1.

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

x

µ
(x

1
)

(a) A set of one-dimensional triangular

MFs, each plotted in a different line style.

−2

0

2

−2

0

2
0

0.5

1

x
1

x
2

µ
(x

)

(b) Two-dimensional MFs, obtained by combining two

sets of single-dimensional MFs, each identical to the set

in Figure 4.1(a).

Figure 4.1: Examples of triangular MFs.

54

4.3. FUZZY Q-ITERATION

Note that beyond five or six dimensions, this type of product-space triangular MFs cannot

be used effectively in fuzzy Q-iteration due to the curse of dimensionality, i.e., the exponential

increase in memory and computation with the number of dimensions incurred by this type of

MFs. �

A discrete set of actions Ud is chosen from the possibly larger (continuous or discrete)

action space U :

Ud = {uj |uj ∈ U, j = 1, . . . ,M} (4.1)

The fuzzy approximator stores a parameter vector θ with n = NM elements. Each pair

(µi, uj) of a MF and a discrete action is associated to one parameter θ[i,j]. The notation [i, j]
represents the single-dimensional index corresponding to i and j, which can be computed

with [i, j] = i+ (j − 1)N .

The Q-function is approximated using a multiple-input, multiple-output Takagi-Sugeno

rule base with singleton consequents. The rule base takes the (D-dimensional) state x as

input, and produces M outputs q1, . . . , qM , which are the Q-values corresponding to each of

the discrete actions u1, . . . , uM . The ith rule has the form:

Ri : if x is χi then q1 = θ[i,1]; q2 = θ[i,2]; . . . ; qM = θ[i,M]

To compute the Q-value of the pair (x, u), the output qj corresponding to the discrete ac-

tion uj that is closest to the value u is selected. The entire procedure can be written concisely

as the following approximation mapping:

Q̂(x, u) = [F (θ)](x, u) =
N∑

i=1

φi(x)θ[i,j] with j = arg min
j′

‖u− uj′‖2 (4.2)

where ‖ · ‖2, here as well as in the sequel, is the Euclidean norm of the argument, and φi are

the normalized MFs (degrees of fulfillment):1

φi(x) =
µi(x)∑N

i′=1 µi′(x)

Equation (4.2) describes a linearly parameterized approximator, a special case of (3.2). To

ensure that F (θ) is a well-defined function for any θ, the ties in the minimization in (4.2)

have to be broken consistently (e.g., always in favor of the smallest index that satisfies

the condition). For a fixed x, the approximator is constant over the sets of actions Uj =
{u ∈ U | ‖u− uj‖2 < ‖u− uj′‖2 ∀j′ 6= j }, for every j. The set Uj is the interior of the

Voronoi cell for uj (a convex polytope).

In fuzzy Q-iteration, the Takagi-Sugeno fuzzy rule base is used to approximate the Q-

function, and the MFs do not necessarily have to be associated with meaningful linguistic

labels. Nevertheless, if expert knowledge is available on the shape of the optimal Q-function,

then MFs with meaningful linguistic labels can be defined by the expert. However, such

knowledge is typically very difficult to obtain without actually computing the optimal Q-

function.

1The MFs are already assumed normal, which means that each MF takes the value 1 for at least one point.

However, they may not yet be normalized ; the sum of normalized MFs is 1 for any value of x.

55

CHAPTER 4. FUZZY Q-ITERATION

The projection mapping of fuzzy Q-iteration infers from a Q-function the values of the

approximator parameters according to the relation:

θ[i,j] = [P (Q)][i,j] = Q(xi, uj) (4.3)

This is the solution θ to the problem:

N∑

i=1

M∑

j=1

(
[F (θ)](xi, uj)−Q(xi, uj)

)2
= 0

because φi(xi) = 1 and φi′(xi) = 0 for i 6= i′. The projection mapping (4.3) is a special

case of the projection (3.9) introduced in Chapter 3.

The (synchronous) fuzzy Q-iteration is obtained by using the approximation mapping

(4.2) and the projection mapping (4.3) in the approximate Q-iteration (3.3), repeated here for

easy reference:

θℓ+1 = P ◦ T ◦ F (θℓ) (4.4)

The algorithms starts with an arbitrary θ0 ∈ R
n and stops when ‖θℓ+1 − θℓ‖∞ ≤ εQI. Then,

an approximately optimal parameter vector is θ̂∗ = θℓ+1, and an approximately optimal

policy can be computed with:

̂̂
h
∗

(x) = uj∗ , j∗ = arg max
j

[F (θ̂∗)](x, uj) (4.5)

This policy is greedy in F (θ̂∗). Equation (4.5) is a special case of the approximately optimal

policy given by (3.4). Of course, because the approximate Q-function is constant inside

every Voronoi cell, any action in the j∗th cell could be used and the resulting policy would

still satisfy (3.4). The notation
̂̂
h
∗

is used to differentiate from the policy ĥ∗ that is greedy in

F (θ∗), where θ∗ is the parameter vector obtained asymptotically, as ℓ→∞ (see Section 4.4).

The policy ĥ∗ can be computed by substituting θ̂∗ by θ∗ and
̂̂
h
∗

by ĥ∗ in (4.5).

The policy (4.5) produces discrete actions. It is also possible to obtain a continuous-action

policy using the following heuristic. For any state, an action is computed by interpolating

between the best local actions for every MF core, using the MFs as weights:

h(x) =

N∑

i=1

φi(x)uj∗
i
, j∗i = arg max

j

[F (θ̂∗)](xi, uj) = arg max
j

θ̂∗[i,j] (4.6)

The index j∗i corresponds to the best local action for the core xi. For instance, when used

with triangular MFs (Example 4.1), the interpolation procedure (4.6) is well suited to prob-

lems where (near-)optimal policies are affine or piecewise affine. Interpolated policies may,

however, be a poor choice for other problems,2 as illustrated in the next example.

Example 4.2 Interpolated policies may perform poorly. Consider the problem schematically

represented in Figure 4.2. In this problem, a robot has to avoid an obstacle. The action of

steering left is locally optimal for the MF core to the left of the robot’s position. Similarly,

2Note that the approximation power of the fuzzy approximator is limited, because the number of MFs is fixed.

56

4.3. FUZZY Q-ITERATION

m2

robot
position

m1

locally
optimal
action

locally
optimal
action

interpolated
action

x
1

(a) MFs and actions.

obstacle

robot

interpolated
action

(b) Robot and obstacle, with MFs and locally

optimal actions repeated in gray color.

Figure 4.2: An obstacle avoidance problem, where interpolation between two locally optimal

actions leads to incorrect behavior.

the action of steering right is locally optimal for the MF core to the right. These actions

are locally optimal because they would take the robot around the obstacle, if the robot were

located in the respective cores of the MFs. However, interpolating between these two actions

at the robot’s current position makes the robot (incorrectly) move forward and collide with

the obstacle. In this case, rather than interpolating, a good policy would apply either of the

two locally optimal actions, e.g., by randomly picking one of them. �

Note that our theoretical analysis of Section 4.4 only considers discrete-action policies of

the form (4.5). Meaningful theoretical guarantees about policies of the form (4.6) are more

difficult to provide.

Because all the approximate Q-functions considered by fuzzy Q-iteration are constant

inside every Voronoi cell, it suffices to consider only the discrete actions when computing the

maximal Q-values in the Q-iteration mapping. This discrete-action version of the Q-iteration

mapping is defined as follows:

[Td(Q)](x, u) = ρ(x, u) + γmax
j
Q(f(x, u), uj) (4.7)

This property is very useful in the practical implementation of fuzzy Q-iteration. Namely,

by using the fact that T ◦F (θ) = Td ◦F (θ) for any θ, we get P ◦ T ◦F (θ) = P ◦ Td ◦F (θ)
for any θ, and each approximate Q-iteration (3.3) can be implemented as:

θℓ+1 = P ◦ Td ◦ F (θℓ) (4.8)

The maximization over U in the original T mapping can be replaced with a maximization

over the discrete set Ud of (4.1), which can be solved using enumeration for moderate M .

Furthermore, the norms in (4.2) do not need to be computed to implement (4.8).

The Q-iteration algorithm using (4.8) can be written as Algorithm 4.1. To establish the

equivalence between Algorithm 4.1 and fuzzy Q-iteration in the form (4.8), observe that the

right-hand side in line 4 of Algorithm 4.1 corresponds to [Td(Q̂ℓ)](xi, uj), where Q̂ℓ =
F (θℓ). Hence, line 4 can be written θℓ+1,[i,j] ← [P ◦ Td ◦ F (θℓ)][i,j] and the entire for loop

described by lines 3–5 is equivalent to (4.8).

Algorithm 4.2 is a different version of fuzzy Q-iteration that makes more efficient use

of the parameter updates, by using the latest updated values of the parameters at each step

57

CHAPTER 4. FUZZY Q-ITERATION

Algorithm 4.1 Synchronous fuzzy Q-iteration

Input:

dynamics f , reward function ρ, discount factor γ, threshold εQI

MFs φi, i = 1, . . . , N ; action discretization Ud

1: θ0 ← 0NM

2: repeat in every iteration ℓ = 0, 1, 2, . . .
3: for i = 1, . . . , N, j = 1, . . . ,M do

4: θℓ+1,[i,j] ← ρ(xi, uj) + γmaxj′

∑N
i′=1 φi′(f(xi, uj))θℓ,[i′,j′]

5: end for

6: until ‖θℓ+1 − θℓ‖∞ ≤ εQI

Output: θ̂∗ = θℓ+1

Algorithm 4.2 Asynchronous fuzzy Q-iteration

Input:

dynamics f , reward function ρ, discount factor γ, threshold εQI

MFs φi, i = 1, . . . , N ; action discretization Ud

1: θ0 ← 0NM

2: repeat in every iteration ℓ = 0, 1, 2, . . .
3: θ ← θℓ

4: for i = 1, . . . , N, j = 1, . . . ,M do

5: θ[i,j] ← ρ(xi, uj) + γmaxj′

∑N
i′=1 φi′(f(xi, uj))θ[i′,j′]

6: end for

7: θℓ+1 ← θ
8: until ‖θℓ+1 − θℓ‖∞ ≤ εQI

Output: θ̂∗ = θℓ+1

of the computation. Since the parameters are updated in an asynchronous fashion, this ver-

sion is called asynchronous fuzzy Q-iteration. To differentiate between the two versions,

Algorithm 4.1 is hereafter called synchronous fuzzy Q-iteration. Although the exact version

of asynchronous Q-iteration is widely used (Bertsekas, 2007; Sutton and Barto, 1998), the

approximate variant has received little attention in the context of approximate DP/RL. In

Algorithm 4.2 parameters are updated in sequence, but they can actually be updated in any

order and our analysis still holds.

In this chapter, fuzzy Q-iteration is described and analyzed for deterministic problems

only. Nevertheless, it can be extended to stochastic problems. For instance, the asynchronous

update in line 5 of Algorithm 4.2 becomes in the stochastic case:

θ[i,j] ← Ex′∼f̃(xi,uj ,·)

{
ρ̃(xi, uj , x

′) + γmax
j′

∑N

i′=1
φi′(x

′)θ[i′,j′]

}

where x′ is sampled from the density function f̃(xi, uj , ·) of the next state given xi and uj ,

and the dot stands for the random variable x′. If this expectation can be computed exactly,

e.g., if there is a finite number of possible successor states, our results of Section 4.4 apply. In

general, Monte Carlo estimation can be used to compute the expectation. Asymptotically, as

the number of samples goes to infinity, the estimate converges to the true expectation and our

58

4.4. ANALYSIS OF FUZZY Q-ITERATION

results can again be applied. When the number of samples is finite, Munos and Szepesvári

(2008) provide error bounds for the related algorithm for approximate V-iteration. These

bounds could be extended to approximate Q-iteration. Such bounds are important in practice,

where the number of samples used is always finite.

4.4 Analysis of fuzzy Q-iteration

In Section 4.4.1, we show that synchronous and asynchronous fuzzy Q-iteration are con-

vergent, and we characterize the suboptimality of their solution. In Section 4.4.2, fuzzy

Q-iteration is shown to be consistent, which means that its solution asymptotically converges

to Q∗ as the approximation accuracy increases. These results show that fuzzy Q-iteration is

a theoretically sound algorithm.

4.4.1 Convergence

First, it is shown that there exists a parameter vector θ∗ such that for both synchronous and

asynchronous fuzzy Q-iteration, θℓ → θ∗ as ℓ → ∞. To prove convergence, we use the

framework of non-expansive approximators described in Section 3.3.3. The parameter vec-

tor θ∗ yields an approximate Q-function that is within a bound of the optimal Q-function,

and a policy with a bounded suboptimality. Similar bounds are derived for the solution θ̂∗

obtained in a finite number of iterations, by using a convergence threshold εQI > 0. Addition-

ally, asynchronous fuzzy Q-iteration is shown to converge at least as fast as the synchronous

version.

Theorem 4.2 (Convergence of synchronous fuzzy Q-iteration) Synchronous fuzzy Q-iter-

ation (Algorithm 4.1) converges.

Proof: We show that P ◦ T ◦ F is a contraction in the infinity norm with factor γ < 1,

i.e., ‖P ◦ T ◦ F (θ)− P ◦ T ◦ F (θ′)‖∞ ≤ γ‖θ− θ′‖∞, for any θ, θ′. It is well-known that T
is a contraction with factor γ < 1 (Bertsekas, 2007), and it is obvious from (4.3) that P is a

non-expansion. Also, F is a non-expansion:

|[F (θ)](x, u)− [F (θ′)](x, u)|

=

∣∣∣∣∣

N∑

i=1

φi(x)θ[i,j] −
N∑

i=1

φi(x)θ
′
[i,j]

∣∣∣∣∣ (where j = arg minj′ ‖u− uj′‖2)

≤
N∑

i=1

φi(x)
∣∣∣θ[i,j] − θ′[i,j]

∣∣∣

≤
N∑

i=1

φi(x)‖θ − θ′‖∞ = ‖θ − θ′‖∞

Therefore, P ◦T ◦F is a contraction with factor γ < 1. It follows that P ◦T ◦F has a unique

fixed point θ∗, and so synchronous fuzzy Q-iteration converges to θ∗ as ℓ→∞. �

This proof is similar to the proof of convergence for (synchronous) value iteration with av-

eragers (Gordon, 1995), or with interpolative representations (Tsitsiklis and Van Roy, 1996),

59

CHAPTER 4. FUZZY Q-ITERATION

where the approximation and projection mappings were also non-expansions. The fuzzy ap-

proximator can be seen as an extension of an averager (Gordon, 1995) or of an interpolative

representation (Tsitsiklis and Van Roy, 1996) for approximating Q-value functions, addition-

ally using discretization to deal with large or continuous action spaces.

In the sequel, a synthetic notation of asynchronous fuzzy Q-iteration is needed. To de-

velop this notation, recall first that n = NM , and that [i, j] = i + (j − 1)N . Define for all

l = 0, . . . , n recursively the mappings Sl : R
n → R

n as:

S0(θ) = θ

[Sl(θ)]l′ =

{
[P ◦ T ◦ F (Sl−1(θ))]l′ if l′ = l

[Sl−1(θ)]l′ if l′ ∈ {1, . . . , n} \ {l}

So, Sl for l > 0 corresponds to updating the first l parameters using approximate asyn-

chronous Q-iteration, and Sn is a complete iteration of the asynchronous algorithm.

Theorem 4.3 (Convergence of asynchronous fuzzy Q-iteration) Asynchronous fuzzy Q-it-

eration (Algorithm 4.2) converges.

Proof: We show that Sn is a contraction, i.e., ‖Sn(θ) − Sn(θ′)‖∞ ≤ γ‖θ − θ′‖∞, for any

θ, θ′. This can be done element by element. By the definition of Sl, the first element is only

updated by S1:

|[Sn(θ)]1 − [Sn(θ′)]1| = |[S1(θ)]1 − [S1(θ
′)]1|

= |[P ◦ T ◦ F (θ)]1 − [P ◦ T ◦ F (θ′)]1|
≤ γ‖θ − θ′‖∞

The last step follows from the contraction mapping property of P ◦ T ◦ F . Similarly, the

second element is only updated by S2:

|[Sn(θ)]2 − [Sn(θ′)]2| = |[S2(θ)]2 − [S2(θ
′)]2|

= |[P ◦ T ◦ F (S1(θ))]2 − [P ◦ T ◦ F (S1(θ
′))]2|

≤ γ‖S1(θ)− S1(θ
′)‖∞

= γmax{|[P ◦ T ◦ F (θ)]1 − [P ◦ T ◦ F (θ′)]1| , |θ2 − θ′2| , . . . , |θn − θ′n|}
≤ γ‖θ − θ′‖∞

where the contraction mapping property of P ◦ T ◦ F is used twice. Continuing in this

fashion, we obtain |[Sn(θ)]l − [Sn(θ′)]l| ≤ γ‖θ−θ′‖∞ for all l, and thus Sn is a contraction.

Therefore, asynchronous fuzzy Q-iteration converges. This convergence proof is similar to

that for exact asynchronous V-iteration (Bertsekas, 2007). �

This proof is actually more general, showing that approximate asynchronous Q-iteration

converges for any approximation mapping F and projection mapping P for which P ◦ T ◦
F is a contraction. It can also be easily shown that synchronous and asynchronous fuzzy

Q-iteration converge to the same parameter vector; indeed, the repeated application of any

contraction mapping will converge to its unique fixed point regardless of whether it is applied

in a synchronous or asynchronous (element-by-element) fashion.

We now show that asynchronous fuzzy Q-iteration converges at least as fast as the syn-

chronous version. For that, we first need the following monotonicity lemma. In this lemma,

60

4.4. ANALYSIS OF FUZZY Q-ITERATION

as well as in the sequel, vector and vector function inequalities are understood to be satisfied

element-wise.

Lemma 4.4 (Monotonicity) If θ ≤ θ′, then P ◦ T ◦ F (θ) ≤ P ◦ T ◦ F (θ′).

Proof: It is well-known that T is monotonous, i.e., T (Q) ≤ T (Q′) if Q ≤ Q′ (Bertsekas,

2007). It will be shown that F and P are monotonous.

To show that F is monotonous we show that, given θ ≤ θ′, it follows that for all x, u:

[F (θ)](x, u) ≤ [F (θ′)](x, u)

This inequality is true because it is equivalent to:

N∑

i=1

φi(x)θ[i,j] ≤
N∑

i=1

φi(x)θ
′
[i,j]

where j = arg minj′ ‖u− uj′‖2. The last inequality is true by the assumption θ ≤ θ′.
To show that P is monotonous we show that, given Q ≤ Q′, it follows that for all i, j:

[P (Q)][i,j] ≤ [P (Q′)][i,j]

This inequality is true because it is equivalent to Q(xi, uj) ≤ Q′(xi, uj), which is true by

the assumption Q ≤ Q′. Therefore, the composite mapping P ◦ T ◦ F is monotonous. �

Asynchronous fuzzy Q-iteration converges at least as fast as the synchronous algorithm,

in the sense that ℓ iterations of the asynchronous algorithm move the parameter vector at least

as close to the convergence point as ℓ iterations of the synchronous algorithm. This is stated

formally as follows.

Proposition 4.5 (Convergence rate) If a parameter vector θ satisfies θ ≤ P ◦T ◦F (θ) ≤ θ∗,

then:

(P ◦ T ◦ F)ℓ(θ) ≤ Sℓ
n(θ) ≤ θ∗ ∀ℓ ≥ 1

where by Sℓ
n(θ) we denote the composition of Sn(θ) ℓ-times with itself, i.e., Sℓ

n(θ) = Sn ◦
Sn ◦ · · · ◦ Sn(θ), and similarly for (P ◦ T ◦ F)ℓ(θ).

Proof: This follows from the monotonicity of P ◦ T ◦ F , and can be shown element-

wise, in a similar fashion to the proof of Theorem 4.3. Note that this result is an extension of

Bertsekas’ result on exact V-iteration (Bertsekas, 2007). �

In the remainder of this section, in addition to examining the asymptotical properties of

fuzzy Q-iteration, we also consider an implementation that stops when ‖θℓ+1 − θℓ‖∞ ≤ εQI,

with a convergence threshold εQI > 0. This implementation returns the solution θ̂∗ = θℓ+1.

Such an implementation was given in Algorithm 4.1 for synchronous fuzzy Q-iteration, and

in Algorithm 4.2 for asynchronous fuzzy Q-iteration.

Proposition 4.6 (Finite-time termination) For any choice of the threshold εQI > 0 and any

initial parameter vector θ0 ∈ R
n, synchronous and asynchronous fuzzy Q-iteration stop in a

finite time.

61

CHAPTER 4. FUZZY Q-ITERATION

Proof: Consider synchronous fuzzy Q-iteration. Because the mapping P ◦ T ◦ F is a

contraction with factor γ < 1 and with the fixed point θ∗, we have:

‖θℓ+1 − θ∗‖∞ = ‖P ◦ T ◦ F (θℓ)− P ◦ T ◦ F (θ∗)‖∞ ≤ γ‖θℓ − θ∗‖∞

By induction, ‖θℓ − θ∗‖∞ ≤ γℓ‖θ0 − θ∗‖∞ for any ℓ > 0. By the Banach fixed point

theorem (see e.g., Kirk and Khamsi, 2001), the optimal parameter vector θ∗ is bounded.

Because the initial parameter vector θ0 is bounded, ‖θ0 − θ∗‖∞ is bounded. Using the

notation B0 = ‖θ0 − θ∗‖∞, we have that B0 is bounded and that ‖θℓ − θ∗‖∞ ≤ γℓB0

for any ℓ > 0. Using this property, we have:

‖θℓ+1 − θℓ‖∞ ≤ ‖θℓ+1 − θ∗‖∞ + ‖θℓ − θ∗‖∞
≤ γℓ(γ + 1)B0

Using this inequality, it is possible to choose for any εQI > 0 a number of iterations L =⌈
logγ

εQI

(γ+1)B0

⌉
that guarantees that ‖θL+1 − θL‖∞ ≤ εQI, and therefore that the algorithm

stops in at most L iterations. Here, ⌈·⌉ gives the smallest integer larger than or equal to the

argument (ceiling). BecauseB0 is bounded, L is finite. Since the computational cost of every

iteration is finite for finite N and M , synchronous fuzzy Q-iteration stops in a finite time.

The proof for asynchronous fuzzy Q-iteration proceeds in exactly the same way, because

the asynchronous Q-iteration mapping Sn is also a contraction with factor γ < 1 and with

the fixed point θ∗. �

The following bounds on the suboptimality of the resulting approximate Q-function and

policy hold.

Theorem 4.7 (Near-optimality) Denote byFF◦P ⊂ Q the set of fixed points of the mapping

F ◦ P , and define ε′Q = minQ′∈FF◦P
‖Q∗ −Q′‖∞, the minimum distance between Q∗ and

any fixed point of F ◦ P . The convergence point θ∗ of asynchronous and synchronous fuzzy

Q-iteration satisfies:

‖Q∗ − F (θ∗)‖∞ ≤
2ε′Q
1− γ (4.9)

Additionally, the parameter vector θ̂∗ obtained by asynchronous or synchronous fuzzy Q-

iteration using a threshold εQI satisfies:

‖Q∗ − F (θ̂∗)‖∞ ≤
2ε′Q + γεQI

1− γ (4.10)

Furthermore, if Ud = U in (4.1), which means that the original action space is discrete and

that all the discrete values are used in the fuzzy Q-iteration algorithm, then:

‖Q∗ −Qbh∗‖∞ ≤
4γε′Q

(1− γ)2 (4.11)

‖Q∗ −Q
bbh
∗

‖∞ ≤
2γ(2ε′Q + γεQI)

(1− γ)2 (4.12)

where Q
bh∗

is the Q-function of the policy ĥ∗ that is greedy in F (θ∗), and Q
bbh
∗

is the Q-

function of the policy
̂̂
h
∗

that is greedy in F (θ̂∗) (4.5).

62

4.4. ANALYSIS OF FUZZY Q-ITERATION

Proof: The proof proceeds in exactly the same way for synchronous and asynchronous

fuzzy Q-iteration, because it only relies on the contracting nature of their updates.

The bound (4.9) can be proven in a similar way to the bound shown in (Gordon, 1995;

Tsitsiklis and Van Roy, 1996) for V-iteration. It is an application of the result (3.5) of Sec-

tion 3.3.

In order to obtain (4.10), a bound on ‖θ̂∗ − θ∗‖∞ is computed first. Let L be the number

of iterations after which the algorithm stops, which is finite by Proposition 4.6. Therefore,

θ̂∗ = θL+1. We have:

‖θL − θ∗‖∞ ≤ ‖θL+1 − θL‖∞ + ‖θL+1 − θ∗‖∞
≤ εQI + γ‖θL − θ∗‖∞

where the last step follows from the convergence condition ‖θL+1 − θL‖∞ ≤ εQI and from

the contracting nature of the updates (see also the proof of Proposition 4.6). From the last

inequality, it follows that ‖θL − θ∗‖∞ ≤ εQI

1−γ
and therefore:

‖θL+1 − θ∗‖∞ ≤ γ‖θL − θ∗‖∞ ≤
γεQI

1− γ

which is equivalent to:

‖θ̂∗ − θ∗‖∞ ≤
γεQI

1− γ (4.13)

Using this inequality, the suboptimality of the Q-function F (θ̂∗) can be bounded using:

‖Q∗ − F (θ̂∗)‖∞ ≤ ‖Q∗ − F (θ∗)‖∞ + ‖F (θ∗)− F (θ̂∗)‖∞
≤ ‖Q∗ − F (θ∗)‖∞ + ‖θ̂∗ − θ∗‖∞

≤
2ε′Q
1− γ +

γεQI

1− γ =
2ε′Q + γεQI

1− γ

where the second step is true because F is a non-expansion (which was shown in the proof of

Theorem 4.2), and the third step follows from (4.9) and (4.13). So, (4.10) has been obtained.

The bounds (4.11) and (4.12), which characterize the suboptimality of the policies re-

sulting from θ∗ and θ̂∗, follow from (3.7). Recall that (3.7) relates the suboptimality of an

arbitrary Q-functionQwith the suboptimality of the policy h that is greedy in this Q-function:

‖Q∗ −Qh‖∞ ≤
2γ

(1− γ)‖Q
∗ −Q‖∞

To obtain (4.11) and (4.12), this inequality is applied to the Q-functions F (θ∗) and F (θ̂∗),
using their suboptimality bounds (4.9) and (4.10). �

Examining (4.10) and (4.12), it can be seen that the suboptimality of the solution com-

puted in finite time is given by a sum of two terms. The second term depends linearly on

the precision εQI with which the solution is computed, and is easy to control by setting εQI as

close to 0 as needed. The first term in the sum depends linearly on ε′Q, which is in turn related

to the accuracy of the fuzzy approximator. This term also contributes to the suboptimality of

the asymptotic solutions, see (4.9) and (4.11). The distance ε′Q is more difficult to control. An

ideal situation is when the optimal Q-function is a fixed point of F ◦ P , because in this case

63

CHAPTER 4. FUZZY Q-ITERATION

ε′Q = 0. For instance, any Q-function that satisfies Q(x, u) =
∑N

i=1 φi(x)Q(xi, uj) for all

x, u, where j = arg minj′ ‖u−uj′‖2, is a fixed point of F ◦P . If the optimal Q-function has

this form, i.e., is exactly representable by the chosen fuzzy approximator, the algorithm will

asymptotically converge to it, and (when U = Ud) the corresponding policy will be optimal.

Section 4.4.2 provides additional insight into the relationship between the suboptimality of

the solution and the accuracy of the fuzzy approximator.

4.4.2 Consistency

Next, we analyze the consistency of synchronous and asynchronous fuzzy Q-iteration. It

is shown that the approximate solution F (θ∗) asymptotically converges to the optimal Q-

function Q∗, as the maximum distance between the cores of adjacent fuzzy sets and the

maximum distance between adjacent discrete actions decrease to 0. An explicit relationship

between the suboptimality of F (θ∗) and the accuracy of the approximator is also derived.

The state resolution step δx is defined as the largest distance between any point in the state

space and the MF core that is closest to it. The action resolution step δu is defined similarly

for the discrete actions. Formally:

δx = max
x∈X

min
i=1,...,N

‖x− xi‖2 (4.14)

δu = max
u∈U

min
j=1,...,M

‖u− uj‖2 (4.15)

where xi is the core of the ith MF, and uj is the jth discrete action. Smaller values of δx and

δu indicate a higher resolution. The goal is to show that limδx→0, δu→0 F (θ∗) = Q∗.

We assume that f and ρ are Lipschitz continuous.

Assumption 4.8 (Lipschitz continuity) The dynamics f and the reward function ρ are Lip-

schitz continuous, i.e., there exist finite constants Lf ≥ 0 and Lρ ≥ 0 such that:

‖f(x, u)− f(x̄, ū)‖2 ≤ Lf (‖x− x̄‖2 + ‖u− ū‖2)
|ρ(x, u)− ρ(x̄, ū)| ≤ Lρ(‖x− x̄‖2 + ‖u− ū‖2)

∀x, x̄ ∈ X,u, ū ∈ U
We also require that the MFs are Lipschitz continuous.

Requirement 4.9 Every MF φi is Lipschitz continuous, i.e., for every i there exists a finite

constant Lφi
≥ 0 such that:

‖φi(x)− φi(x̄)‖2 ≤ Lφi
‖x− x̄‖2, ∀x, x̄ ∈ X

Finally, the MFs should be local and evenly distributed, in the following sense.

Requirement 4.10 Every MF φi has a bounded support, which is contained in a ball with a

radius proportional to δx. Formally, there exists a finite ν > 0 such that:

{x |φi(x) > 0} ⊂ {x | ‖x− xi‖2 ≤ νδx } , ∀i
Furthermore, for every x, only a finite number of MFs are non-zero. Formally, there exists a

finite κ > 0 such that:

|{i |φi(x) > 0}| ≤ κ, ∀x
where |·| denotes set cardinality.

64

4.4. ANALYSIS OF FUZZY Q-ITERATION

Lipschitz continuity conditions such as those of Assumption 4.8 are typically needed to

prove the consistency of algorithms for approximate DP. Requirement 4.9 is not restrictive.

Requirement 4.10 is satisfied in many cases of interest. For instance, it is satisfied by convex

fuzzy sets with their cores distributed on an (equidistant or irregular) rectangular grid in the

state space, such as the triangular partitions of Example 4.1. In such cases, every point x
falls inside a hyperbox defined by the two adjacent cores that are closest to xd on each axis

d. Some points will fall on the boundary of several hyperboxes, in which case we can just

pick any of these hyperboxes. Given Requirement 4.1 and because the fuzzy sets are convex,

only the MFs with the cores in the corners of the hyperbox can take non-zero values in the

chosen point. The number of corners is 2D where D is the dimension of X . Therefore,

|{i |φi(x) > 0}| ≤ 2D, and a choice κ = 2D satisfies the second part of Requirement 4.10.

Furthermore, a MF will always extend at most two hyperboxes along each axis of the state

space. By the definition of δx, the largest diagonal of any hyperbox is 2δx. Therefore,

{x |φi(x) > 0} ⊂ {x | ‖x− xi‖2 ≤ 4δx }, and a choice ν = 4 satisfies the first part of

Requirement 4.10.

The next lemma bounds the approximation error introduced by every iteration of the

synchronous fuzzy Q-iteration algorithm. Since we are ultimately interested in characterizing

the convergence point θ∗, which is the same for both algorithms, the final consistency result

(Theorem 4.12) applies to the asynchronous algorithm as well.

Lemma 4.11 (Bounded error) There exists a finite εδ ≥ 0 such that any approximate Q-

function Q̂ considered by the synchronous fuzzy Q-iteration algorithm satisfies:

‖F ◦ P ◦ T (Q̂)− T (Q̂)‖∞ ≤ εδ

Furthermore, εδ = O(δx) + O(δu).

Proof: For any pair (x, u):

∣∣∣[F ◦ P ◦ T (Q̂)](x, u)− [T (Q̂)](x, u)
∣∣∣

=

∣∣∣∣∣

(
N∑

i=1

φi(x)[T (Q̂)](xi, uj)

)
− [T (Q̂)](x, u)

∣∣∣∣∣ (where j = arg minj′ ‖u− uj′‖2)

=
∣∣∣

(
N∑

i=1

φi(x)
[
ρ(xi, uj) + γmax

u′
Q̂(f(xi, uj), u

′)
])

−
[
ρ(x, u) + γmax

u′
Q̂(f(x, u), u′)

] ∣∣∣

≤
∣∣∣∣∣

(
N∑

i=1

φi(x)ρ(xi, uj)

)
− ρ(x, u)

∣∣∣∣∣

+ γ

∣∣∣∣∣

(
N∑

i=1

φi(x)max
u′

Q̂(f(xi, uj), u
′)

)
−max

u′
Q̂(f(x, u), u′)

∣∣∣∣∣ (4.16)

65

CHAPTER 4. FUZZY Q-ITERATION

The first term on the right-hand side of (4.16) is equal to:

∣∣∣∣∣

N∑

i=1

φi(x) [ρ(xi, uj)− ρ(x, u)]
∣∣∣∣∣ ≤

N∑

i=1

φi(x)Lρ(‖xi − x‖2 + ‖uj − u‖2)

= Lρ

[
‖uj − u‖2 +

N∑

i=1

φi(x)‖xi − x‖2
]

≤ Lρ(δu + κνδx) (4.17)

where the Lipschitz continuity of ρ was used, and the last step follows from the definition of

δu and Requirement 4.10.

The second term in the right-hand side of (4.16) is equal to:

γ

∣∣∣∣∣

N∑

i=1

φi(x)
[
max

u′
Q̂(f(xi, uj), u

′)−max
u′

Q̂(f(x, u), u′)
]∣∣∣∣∣

≤ γ
N∑

i=1

φi(x)

∣∣∣∣max
j′

Q̂(f(xi, uj), uj′)−max
j′

Q̂(f(x, u), uj′)

∣∣∣∣

≤ γ
N∑

i=1

φi(x)max
j′

∣∣∣Q̂(f(xi, uj), uj′)− Q̂(f(x, u), uj′)
∣∣∣ (4.18)

The first step is true because Q̂ is of the form F (θ) given in (4.2) for some θ, and is therefore

constant in the Voronoi cell of each discrete action. The second step is true because the dif-

ference between the maxima of two functions (of the same variable) is at most the maximum

of the difference of the functions. Writing Q̂ explicitly as F (θ) in (4.2), we have:

∣∣∣Q̂(f(xi, uj), uj′)− Q̂(f(x, u), uj′)
∣∣∣

=

∣∣∣∣∣

N∑

i′=1

[
φi′(f(xi, uj))θ[i′,j′] − φi′(f(x, u))θ[i′,j′]

]
∣∣∣∣∣

≤
N∑

i′=1

|φi′(f(xi, uj))− φi′(f(x, u))| |θ[i′,j′]| (4.19)

Define I ′ = {i′ |φi′(f(xi, uj)) 6= 0 or φi′(f(x, u)) 6= 0}. Using Requirement 4.10, |I ′| ≤
2κ. Denote Lφ = maxi Lφi

. Then, the right-hand side of (4.19) is equal to:

∑

i′∈I′

|φi′(f(xi, uj))− φi′(f(x, u))| |θ[i′,j′]|

≤
∑

i′∈I′

LφLf (‖xi − x‖2 + ‖uj − u‖2)‖θ‖∞

≤ 2κLφLf (‖xi − x‖2 + ‖uj − u‖2)‖θ‖∞ (4.20)

66

4.5. OPTIMIZING THE MEMBERSHIP FUNCTIONS

Using (4.19) and (4.20) into (4.18) yields:

γ

N∑

i=1

φi(x)max
j′

∣∣∣Q̂(f(xi, uj), uj′)− Q̂(f(x, u), uj′)
∣∣∣

≤ γ
N∑

i=1

φi(x)max
j′

2κLφLf (‖xi − x‖2 + ‖uj − u‖2)‖θ‖∞

≤ 2γκLφLf‖θ‖∞
[
‖uj − u‖2 +

N∑

i=1

φi(x)‖xi − x‖2
]

≤ 2γκLφLf‖θ‖∞(δu + κνδx) (4.21)

where the last step follows from the definition of δu and Requirement 4.10. Finally, substi-

tuting (4.17) and (4.21) into (4.16) yields:

∣∣∣[F ◦ P ◦ T (Q̂)](x, u)− [T (Q̂)](x, u)
∣∣∣ ≤ (Lρ + 2γκLφLf‖θ‖∞)(δu + κνδx) (4.22)

Given a bounded initial parameter vector θ0, all the parameter vectors considered by the

algorithm are bounded. This can be shown as follows. By the Banach fixed point theorem

(see e.g., Kirk and Khamsi, 2001), the optimal parameter vector θ∗ (the unique fixed point

of P ◦ T ◦ F) is finite. Also, since P ◦ T ◦ F is a contraction with factor γ < 1, we have

‖θℓ − θ∗‖∞ ≤ γℓ‖θ0 − θ∗‖∞ (see also the proof of Proposition 4.6). Since ‖θ0 − θ∗‖∞ is

bounded, all the other distances are bounded, and all the parameter vectors θℓ are bounded.

Let Bθ = maxℓ≥0 ‖θℓ‖∞, which is finite.

Therefore, ‖θ‖∞ ≤ Bθ in (4.22), and the proof is complete with εδ = (Lρ+2γκLφLfBθ)
(δu + κνδx) = O(δx) + O(δu). �

Theorem 4.12 (Consistency) Under Assumption 4.8 and if Requirements 4.9 and 4.10 are

satisfied, synchronous and asynchronous fuzzy Q-iteration are consistent, i.e., limδx→0,δu→0

F (θ∗) = Q∗. Furthermore, under the same conditions and for any resolution steps δx and δu,

the suboptimality of the approximate Q-function satisfies ‖F (θ∗)−Q∗‖∞ = O(δx)+O(δu).

Proof: It is easy to show by induction that ‖F (θ∗) −Q∗‖∞ ≤ εδ/(1 − γ), see, e.g., (Bert-

sekas and Tsitsiklis, 1996). From Lemma 4.11, limδx→0,δu→0 εδ = limδx→0,δu→0(Lρ +
2γκLφLfBθ)(δu + κνδx) = 0, and the first part of the theorem is proven. Furthermore,

using the same lemma, εδ = O(δx) + O(δu), which completes the proof. �

In addition to guaranteeing consistency, Theorem 4.12 also relates the suboptimality of

the Q-function F (θ∗) with the accuracy of the fuzzy approximator. Furthermore, using The-

orem 4.7, the accuracy can also be related with the suboptimality of the policy ĥ∗ greedy in

F (θ∗), and with the suboptimality of the solution obtained after a finite number of iterations

(the Q-function F (θ̂∗) and the corresponding greedy policy
̂̂
h
∗

).

4.5 Optimizing the membership functions

Fuzzy Q-iteration requires the MFs to be designed beforehand. In general, prior knowledge

about the shape of the optimal Q-function is needed in this design process. When prior

67

CHAPTER 4. FUZZY Q-ITERATION

knowledge is not available, a large number of MFs have to be defined to provide a good

coverage and resolution over the entire state space, even in areas that will eventually be

irrelevant to the policy. In this section, we propose to optimize the shape of the MFs, while

keeping their number constant. The proposed approach is useful when prior knowledge about

the shape of the optimal Q-function is not available and the number of MFs is limited.

Let the MFs be parameterized by a vector ξ ∈ Ξ. Usually, ξ includes information about

the location and shape of the MFs. Denote the MFs by φi(x; ξ) : X → R, i = 1, . . . , N , to

highlight their dependence on ξ. The goal is to find a parameter vector ξ∗ that maximizes the

return from every initial state. Since generally it is not possible to compute returns from every

initial state, a finite setX0 of representative initial states has to be chosen, like in approximate

policy search, see Section 3.6. The score function to maximize is:

s(ξ) =
∑

x0∈X0

w(x0)R
h(x0) (4.23)

where the policy h is computed by running fuzzy Q-iteration to convergence with the MFs

specified by the parameters ξ. The return from each initial state x0 is approximated in a finite

time, with a precision εMC, using (2.27). The set X0 of representative states is weighted

by w : X0 → (0, 1]. The set X0, together with the weight function w, will determine the

performance of the resulting policy. For instance, if the process only has to be controlled

starting from a known set of initial states, then X0 should be equal to this set, or included in

it when the set is too large. Also, initial states that are deemed more important can be assigned

larger weights. When all initial states are equally important, the elements of X0 should be

uniformly spread over the state space, randomly or equidistantly, and identical weights equal

to 1
|X0|

should be assigned to every element of X0 (|·| denotes set cardinality).

Because each policy is computed by running fuzzy Q-iteration to convergence with fixed

MF parameters, this technique does not suffer from the convergence problems associated

with altering the approximator simultaneously with estimating a DP/RL solution. Also note

that the score function (4.23) is directly related to the performance of the computed policy in

the task.

This technique is not restricted to a particular optimization algorithm to search for ξ∗.

However, the score function (4.23) is a complicated function of ξ, and is in general likely

to have many local optima. This means a global optimization technique is preferable. In

Section 4.5.2, a complete algorithm is given to optimize the locations of triangular MFs for

fuzzy Q-iteration, using the cross-entropy (CE) method for optimization. Triangular MFs are

chosen because they are the simplest MFs that ensure the convergence of fuzzy Q-iteration.

Many other optimization algorithms could be applied to optimize the MFs, e.g., genetic al-

gorithms, tabu search, pattern search, etc. CE is chosen here as an illustrative example of a

global optimization technique that can be used for this problem.

4.5.1 Cross-entropy optimization

This section provides a brief introduction to the CE method for optimization (Rubinstein and

Kroese, 2004). For a full description, see Appendix A.3 Consider the following optimization

3The CE notation used in this section is specialized to the MF optimization problem, by replacing the generic

optimization variable a from Appendix A by the MF parameters ξ.

68

4.5. OPTIMIZING THE MEMBERSHIP FUNCTIONS

problem:

max
ξ∈Ξ

s(ξ) (4.24)

where s : Ξ → R is the score function to maximize, and the parameters ξ take values in

the domain Ξ. Denote the maximum by s∗. The CE method for optimization maintains a

probability density with support Ξ. In each iteration, a number of samples are drawn from

this density and the score values for these samples are computed. A (smaller) number of

samples that have the highest scores are kept, and the remaining samples are discarded. The

probability density is then updated using the selected samples, such that at the next iteration

the probability of drawing better samples is increased. The algorithm stops when the score

of the worst selected sample no longer improves significantly.

Formally, a family of probability densities {p(·; v)} has to be chosen, where the dot stands

for the random variable. This family has support Ξ and is parameterized by v. In each itera-

tion τ of the CE algorithm, a number NCE of samples is drawn from the density p(·; vτ−1),
their scores are computed, and the (1−̺CE) quantile4 λτ of the sample scores is determined,

with ̺CE ∈ (0, 1). Then, a so-called associated stochastic problem is defined, which involves

estimating the probability that the score of a sample drawn from p(·; vτ−1) is at least λτ :

Pξ∼p(·;vτ−1)(s(ξ) ≥ λτ) = Eξ∼p(·;vτ−1) {I(s(ξ) ≥ λτ)} (4.25)

where I is the indicator function, equal to 1 whenever its argument is true, and 0 otherwise.

The probability (4.25) can be estimated by importance sampling. For this problem, an

importance sampling density is one that increases the probability of the interesting event

s(ξ) ≥ λτ . The best importance sampling density in the family {p(·; v)}, in the smallest

cross-entropy sense, is given by the solution of:

arg max
v

Eξ∼p(·;vτ−1) {I(s(ξ) ≥ λτ) ln p(ξ; v)} (4.26)

An approximate solution of (4.26) is computed by:

vτ = arg max
v

1

NCE

NCE∑

is=1

I(s(ξis) ≥ λτ) ln p(ξis ; v) (4.27)

CE optimization then proceeds with the next iteration using the new density parameter vτ

(the probability (4.25) is never actually computed). The updated density aims at generating

good samples with higher probability, thus bringing λτ+1 closer to the optimum s∗. The goal

is to eventually converge to a density which generates samples close to optimal value(s) of ξ
with very high probability. The highest score among the samples generated in all the iterations

is taken as the approximate solution of the optimization problem, and the corresponding

sample as an approximate location of the optimum. The algorithm can be stopped when the

(1 − ̺CE)-quantile of the sample performance improves for dCE consecutive iterations, and

these improvements do not exceed εCE; alternatively, the algorithm stops when a maximum

number of iterations τmax is reached.

4If the score values of the samples are ordered increasingly and indexed such that s1 ≤ · · · ≤ sNCE
, then the

(1 − ̺CE) quantile is: λτ = s⌈(1−̺CE)NCE⌉ where ⌈·⌉ rounds the argument to the next greater or equal integer

number (ceiling).

69

CHAPTER 4. FUZZY Q-ITERATION

4.5.2 Fuzzy Q-iteration with CE optimization of the

membership functions

In this section, a complete algorithm is given to optimize the MFs for fuzzy Q-iteration. Using

the cross-entropy method, we optimize the locations of triangular MFs. Let the state space

dimension be D. In the sequel, it is assumed that the state space is a hyperbox centered on

the origin, i.e., X = [−xmax,1, xmax,1]× · · · × [−xmax,D, xmax,D] where xmax,d ∈ (0,∞),
d = 1, . . . ,D. This assumption can be relaxed and is only made here for simplicity.

Separately for each state variable xd, a triangular fuzzy partition is defined with core

values cd,1 < · · · < cd,Nd
, which give Nd triangular MFs. The first and last core values are

always equal to the limits of the domain: cd,1 = −xmax,d and cd,Nd
= xmax,d. The product

of each combination of (single-dimensional) MFs gives a pyramid-shapedD-dimensional MF

in the fuzzy partition of X , like in Example 4.1. The parameters to optimize are the (scalar)

free cores on all the axes; the first and last core values on each axis are not free. The number

of free cores is therefore Nξ =
∑D

d=1(Nd − 2). The parameter vector ξ can be obtained

by concatenating the free cores, ξ = [c1,2, . . . , c1,N1−1, , cD,2, . . . , cD,ND−1]
T. The

domain of ξ is Ξ = (−xmax,1, xmax,1)
N1−2 × · · · × (−xmax,D, xmax,D)ND−2.

The goal is to find a parameter vector ξ∗ that maximizes the score function (4.23), using

CE optimization. To this end, a family of densities has to be chosen. We choose a family

with independent Gaussian components for each of the Nξ parameters.5 Gaussian densities

are parameterized by their mean η and standard deviation σ. Using Gaussian densities has

two advantages. The first advantage is that (4.27) has a closed-form solution (Rubinstein and

Kroese, 2004). This solution is the mean and standard deviation of the best samples, and

yields explicit update rules for the density parameters:

ητ =

∑NCE

is=1 I(s(ξis) ≥ λτ)ξis∑NCE

is=1 I(s(ξis) ≥ λτ)
(4.28)

στ =

√√√√
∑NCE

is=1 I(s(ξis) ≥ λτ) |ξis − ητ |2
∑NCE

is=1 I(s(ξis) ≥ λτ)
(4.29)

The second advantage is that with a Gaussian family the CE method can find a precise opti-

mum location ξ∗. This is because the Gaussian density can converge, for σ → 0 and η = ξ∗,

to a degenerate (Dirac) distribution that assigns all the probability mass to the value ξ∗.

Because the support of the chosen density is R
Nξ , which is larger than Ξ, samples that do

not belong to Ξ are rejected and generated again. The density parameter vector v consists of

the mean η and standard deviation σ, each of them a vector withNξ elements. The parameters

η and σ are initialized using:

η0 = 0Nξ
, σ0 = [xmax,1, . . . , xmax,1, , xmax,D, . . . , xmax,D]T

where each bound xmax,d is replicated Nd − 2 times, for d = 1, . . . ,D. These values ensure

a good coverage of the state space with samples in the first iteration of the CE method.

5If for a sample of the CE algorithm two or more core values on a certain axis are identical, a single triangular

MF with that core value is used in the fuzzy Q-iteration algorithm.

70

4.6. EXPERIMENTAL STUDIES

4.6 Experimental studies

In this section, the performance of fuzzy Q-iteration is studied experimentally. In Sec-

tion 4.6.1, an application to a simulated servo-system is used to illustrate the theoretical

convergence and consistency results about fuzzy Q-iteration. The same example is used to

compare fuzzy Q-iteration with a Q-iteration algorithm that approximates the Q-function

using radial basis functions (RBFs). Then, fuzzy Q-iteration is used to stabilize a (simu-

lated) two-link manipulator in Section 4.6.2, and to swing-up and stabilize a real-life inverted

pendulum in Section 4.6.3. For these three examples (Sections 4.6.1–4.6.3), the MFs are de-

signed in advance. In Section 4.6.4, the CE optimization algorithm is applied to optimize the

MFs for the classical car on the hill DP/RL benchmark.

4.6.1 Servo-system

This section illustrates the theoretical convergence and consistency results about fuzzy Q-

iteration in an application to a (simulated) servo-system. This linear system (up to the sat-

uration limits) was chosen because it allows for a good control policy to be computed ana-

lytically, and for extensive simulations to be performed with reasonable computational costs.

First, the convergence rates of the synchronous and asynchronous fuzzy Q-iteration are com-

pared. Then, the consistency of the algorithm is investigated, for continuous, as well as

discontinuous reward functions. Additionally, fuzzy Q-iteration is compared to Q-iteration

with RBF approximation.

Model and a near-optimal solution

Consider again the second-order discrete-time model of a servo-system, introduced in Exam-

ple 3.1:

xk+1 = f(xk, uk) = Axk +Buk

A =

[
1 0.0049
0 0.9540

]
, B =

[
0.0021
0.8505

]
(4.30)

This discrete-time model is obtained by discretizing a continuous-time model of the servo-

system, which was determined by first-principles modeling of the real servo-system. The

discretization is performed with the zero-order-hold method, using a sampling time of Ts =
0.005 s. The position x1,k = α is bounded to [−π, π] rad, the velocity x2,k = α̇ to [−16π, 16π]
rad/s, and the control input uk ∈ [−10, 10] V.

In our experiments, fuzzy Q-iteration was used to solve a discounted, quadratic regulation

problem, described by the reward function:

rk+1 = ρ(xk, uk) = −xT
kQrewxk −Rrewu

2
k

Qrew =

[
5 0
0 0.01

]
, Rrew = 0.01

(4.31)

This reward function is shown in Figure 4.3(a). The discount factor was chosen γ = 0.95
(this value is sufficient to produce a good control policy). This reward function is smooth

and has bounded support; therefore, it is Lipschitz. The transition function is Lipschitz with

the constant Lf ≤ max {‖A‖2, ‖B‖2} (this expression for Lf will hold for any system with

linear dynamics). Therefore, the problem satisfies Assumption 4.8.

71

CHAPTER 4. FUZZY Q-ITERATION

−2
0

2

−50

0

50
−80

−60

−40

−20

0

20

α [rad]α’ [rad/s]

ρ
(α

,α
’,
0

)

(a) A projection of the reward function (4.31) on the

state space, for u = 0.

−3 −2 −1 0 1 2 3
−50

0

50

α [rad]

α
’
[r

a
d

/s
]

h(α,α’) [V]

−10

−5

0

5

10

(b) A near-optimal policy obtained as the analytical

solution of the linear quadratic regulation problem.

Figure 4.3: The reward function and a near-optimal policy for the servo-system.

Because the dynamics are linear and the reward function is quadratic, a solution (policy)

for this problem can be computed analytically if the constraints on the states and actions are

disregarded. This policy is a linear state feedback, and can be obtained by solving the Riccati

equation (Bertsekas, 2007):

Y = AT[γY − γ2Y B(γBTY B +Rrew)−1BT]A+Qrew

and substituting the solution Y in:

ĥ∗(x) = −γ(γBTY B +Rrew)−1BTY Ax (4.32)

The policy ĥ∗ is presented in Figure 4.3(b), where additionally the control input has been

restricted to the admissible range [−10, 10], using saturation. This policy is suboptimal,

because the constraints were not taken into account when computing it. Because this policy

is piecewise affine, the interpolation procedure (4.6) is likely to work well for computing a

fuzzy Q-iteration policy. However, because the main goal of this example is to illustrate the

theoretical guarantees about fuzzy Q-iteration, and the interpolated policy (4.6) would lead

to a loss of these guarantees, the discrete-action policy (4.5) will be used instead.

Synchronous and asynchronous convergence

In order to study the convergence of fuzzy Q-iteration, a triangular fuzzy partition withN ′ =
41 equidistant cores for each state variable was defined, leading toN = 412 fuzzy sets in the

two-dimensional partition of X . The action space was discretized into 15 equidistant values.

First, (synchronous) fuzzy Q-iteration was run with a very small threshold εQI = 10−8 to

obtain an accurate approximation θ̂∗ of the optimal parameter vector. Then, synchronous and

asynchronous fuzzy Q-iteration were run with a larger threshold εQI = 10−5, to examine how

their parameter vectors approach the near-optimal θ̂∗.

Figure 4.4 presents the evolution of the infinity-norm distance between the parameter

vectors θℓ and θ̂∗ with the number of iterations ℓ, for both variants of the algorithm. The

asynchronous algorithm approaches θ̂∗ faster than the synchronous one, and terminates 20

iterations earlier (in 112 iterations, whereas the synchronous algorithm requires 132). Be-

cause the complexity of an iteration is nearly the same for the two algorithms, this translates

directly into computational savings for the asynchronous version.

72

4.6. EXPERIMENTAL STUDIES

0 20 40 60 80 100 120 140
10

−5

10
−3

10
−1

10
1

10
3

Iteration number
D

is
ta

n
c
e
 t
o
 n

e
a
r−

o
p
ti
m

a
l
p
a
ra

m
e
te

r

Synchronous

Asynchronous

Figure 4.4: Convergence of synchronous and asynchronous fuzzy Q-iteration. The distance

to the near-optimal parameter is computed as ‖θℓ − θ̂∗‖∞.

Consistency and the effect of discontinuous rewards

In order to study the consistency of fuzzy Q-iteration, a triangular fuzzy partition with N ′

equidistant cores for each state variable was defined, leading to a total number of N = N ′2

fuzzy sets in the two-dimensional partition of X . The value of N ′ was gradually increased

from 3 to 41. Similarly, the action was discretized into M equidistant values, with M rang-

ing in {3, 5, . . . , 15} (only odd values were used because the 0 action is necessary for a good

policy). The convergence threshold was set to εQI = 10−5 to ensure that the obtained pa-

rameter vector is close to θ∗. In a first set of experiments, fuzzy Q-iteration was run for each

combination ofN andM , and with the reward function (4.31). This reward function satisfies

the theoretical conditions for the consistency of fuzzy Q-iteration, so it is expected that the

solution improves as N and M increase.

The aim of a second set of experiments was to study the practical effect of violating

the consistency conditions, by adding discontinuities to the reward function. Discontinuous

rewards are common practice due to the origins of DP and RL in artificial intelligence, where

discrete-valued tasks are often considered. In our experiment, the choice of the discontinuous

reward function cannot be arbitrary. Instead, to ensure a meaningful comparison between the

solutions obtained with the original reward function (4.31) and those obtained with the new

reward function, the quality of the policies must be preserved. One way to preserve it is to

add a term of the form γς(f(xk, uk))− ς(xk) to each reward ρ(xk, uk), where ς : X → R is

an arbitrary bounded function (Ng et al., 1999). A discontinuous function ς is chosen:

ς(x) =

{
10 if |x1| ≤ π/4 and |x2| ≤ 4π

0 otherwise

ρ′(xk, uk) = ρ(xk, uk) + γς(f(xk, uk))− ς(xk)

(4.33)

The quality of the policies is preserved by this modification, in the sense that for any policy

h, Qh
ρ′ − Q∗

ρ′ = Qh
ρ − Q∗

ρ, where Qρ is a Q-function under the reward ρ. Indeed, it is

easy to show by replacing ρ′ in the expression (2.2) for the Q-function, that for any policy

h, including any optimal policy, Qh
ρ′(x, u) = Qh

ρ(x, u) − ς(x) ∀x, u (Ng et al., 1999). In

particular, a policy is optimal for ρ′ if and only if it is optimal for ρ.

The function ς is chosen positive in a rectangular region around the origin. Therefore, the

newly added term rewards transitions that take the state inside this rectangular region, and

73

CHAPTER 4. FUZZY Q-ITERATION

penalizes transitions that take it outside. A projection of ρ′ on X , for u = 0, is presented in

Figure 4.5. The additional positive rewards are visible as crests above the quadratic surface.

The penalties are not visible in the figure, because their corresponding, downward-oriented

crests are situated under the surface.

−2
0

2

−50

0

50
−80

−60

−40

−20

0

20

α [rad]α’ [rad/s]

ρ
’(

α
,α

’,
0

)

Figure 4.5: A projection of the modified reward function (4.33) on the state space, for u = 0.

The performance of the policies obtained with fuzzy Q-iteration is given in Figure 4.6.

Each point in these graphs corresponds to the return of the policy, averaged over the grid of

initial states:

X0 = {−π,−5π/6,−4π/6, . . . , π} × {−16π,−14π, . . . , 16π} (4.34)

The returns are evaluated using simulation, with a precision of εMC = 0.1. The infinite-

horizon return is approximated in a finite time by simulating only the first K steps of the

trajectory, with K given by (2.27).

While the reward functions used for Q-iteration are different, the performance evaluation

is always done with the reward (4.31). As explained, the change in the reward function

preserves the quality of the policies, so comparing policies in this way is meaningful. The

qualitative evolution of the performance is similar when evaluated with (4.33).

When the continuous reward is used, the performance of fuzzy Q-iteration is already

close to the near-optimal value of −203.2 (computed with the policy (4.32)) for N ′ = 20
and is relatively smooth for N ′ ≥ 20 – see Figures 4.6(a) and 4.6(c). The performance

for N ′ = 41 and M = 15 is −203.3, very close to that of the policy (4.32). Also, the

influence of the number of discrete actions is small for N ′ ≥ 4. However, when the reward

is changed to the discontinuous function (4.33), the performance varies significantly as N ′

increases – see Figure 4.6(b). For many values of N ′, the influence of M also becomes

significant. Additionally, for many values of N ′ the performance is worse than with the

continuous reward function – see Figure 4.6(d).

An interesting and somewhat counterintuitive fact is that the performance is not monoto-

nous in N ′ and M . For a given value of N ′, the performance sometimes decreases as M in-

creases. Similar situations occur as M is kept fixed and N ′ varies. This effect is present with

both reward functions, but is much more pronounced in Figure 4.6(b) than in Figure 4.6(a)

(see also Figure 4.6(c)). The magnitude of the changes decreases significantly as N ′ and M
become large in Figures 4.6(a) and 4.6(c); this is not the case in Figure 4.6(b).

The negative effect of reward discontinuities on the consistency of the algorithm can

be explained as follows. The discontinuous reward function (4.33) produces discontinuities

in the optimal Q-function. As the placement of the MFs changes with increasing N ′, the

74

4.6. EXPERIMENTAL STUDIES

3 8 13 18 23 28 33 38 41

3
5

7
9

11
13

15
−400

−350

−300

−250

−200

N’
M

S
c
o
re

(a) Quadratic reward (4.31).

3 8 13 18 23 28 33 38 41

3
5

7
9

11
13

15
−400

−350

−300

−250

−200

N’
M

S
c
o
re

(b) Discontinuous reward (4.33); evaluation with

quadratic reward.

10 14 18 22 26 30 34 38 41

3
5

7
9

11
13

15
−207

−206

−205

−204

−203

N’
M

S
c
o
re

(c) Quadratic reward, detail.

3 8 13 18 23 28 33 38 41
−400

−350

−300

−250

−200

N’

S
c
o
re

quadratic reward

discontinuous reward

(d) Average performance over M , for varying N ′.

Figure 4.6: The performance of fuzzy Q-iteration as a function of N and M , for quadratic

and discontinuous reward.

accuracy with which the fuzzy representation captures these discontinuities changes as well.

This accuracy depends less on the number of MFs, than on their positions (MFs should

be ideally concentrated around the discontinuities). So, it may happen that for a certain,

smaller value of N ′ the performance is better than for another, larger value. In contrast, the

smoother optimal Q-function resulting from the continuous reward function (4.31) is easier to

approximate using triangular MFs. Using discontinuous MFs instead (or nonlinear MFs with

steeper slopes) is possible, but will probably not improve performance significantly in the

absence of prior knowledge about the location of the discontinuities. Such prior knowledge

is difficult to derive without knowing the optimal Q-function. Additionally, discontinuous

MFs violate Requirement 4.9.

Remark: Similar behaviors were observed with different discontinuous reward functions

(those experiments are not reported here). In particular, adding more discontinuities similar to

those in (4.33) does not significantly influence the performance of Figure 4.6(b). Decreasing

the magnitude of the discontinuities (e.g., replacing the value 10 by 1 in (4.33)) decreases the

magnitude of the performance variations, but they are still present and they do not decrease

as N and M increase. Note also that a consistency study for the inverted pendulum problem

of Section 4.6.3 produces very similar results.

Comparison with RBF Q-iteration

There exist other approximators than fuzzy partitions that could be combined with Q-iteration

to derive convergent algorithms. These approximators are usually linear in the parameters,

75

CHAPTER 4. FUZZY Q-ITERATION

and use BFs that satisfy conditions related to (but different from) Requirement 4.1 of Sec-

tion 4.3. This section compares fuzzy Q-iteration with one of these convergent algorithms,

namely Q-iteration with normalized RBF approximation. RBFs are a common choice of BFs

for approximate DP/RL (Tsitsiklis and Van Roy, 1996; Ormoneit and Sen, 2002).

Define a set of N normalized RBFs φi : X → R, i = 1, . . . , N , as follows:

φi(x) =
φ′i(x)∑N

i′=1 φ
′
i′(x)

, φ′i(x) = exp

[
−

D∑

d=1

(xd − ci,d)2
b2i,d

]

where φ′i are (non-normalized) Gaussian axis-parallel RBFs, ci = [ci,1, . . . , ci,D]T is the D-

dimensional center of the ith RBF, and bi = [bi,1, . . . , bi,D]T is its D-dimensional radius.

Axis-parallel RBFs were selected for a fair comparison, because the triangular fuzzy parti-

tions are also defined separately for each variable and then combined. The action space is

discretized as for fuzzy Q-iteration (4.1).

Denote φ(x) = [φ1(x), . . . , φN (x)]T. Assume that c1, . . . , cN are all distinct from each

other. Form the matrix φ = [φ(c1), . . . , φ(cN)] ∈ R
N×N , which is invertible by construc-

tion. Define a matrix Q ∈ R
N×M that collects the Q-values of the RBF centers-discrete

action pairs: Qi,j = Q(xi, uj). RBF Q-iteration uses the following approximation and pro-

jection mappings:

[F (θ)](x, uj) =

N∑

i=1

φi(x)θ[i,j], j = arg min
j′

‖u− uj′‖2

[P (Q)][i,j] = [(φ−1)TQ]i,j

The convergence of RBF Q-iteration to a fixed point θ∗ can be guaranteed if:

N∑

i′=1,i′ 6=i

φi′(ci) <
1− γ/γ′

2
(4.35)

for all i and some γ′ ∈ (γ, 1). Equation (4.35) restricts the sum of the values that the other

RBFs take at the center of the ith RBF. This is an extension of the result in (Tsitsiklis and

Van Roy, 1996) for normalized RBFs (the original result is given for non-normalized RBFs).

For a fair comparison, a number of MFs equal to the number of RBFs was used, and the

cores (centers) of the MFs were chosen identical to the centers of the RBFs. A number of

41 equidistant cores were defined for each state variable, and an action discretization with 15
equidistant values was used for both algorithms. To ensure convergence, a set of radii that

satisfies the inequalities (4.35) is required. Sufficient conditions to satisfy (4.35) can be given

that are linear in the radii of the RBFs. Using these conditions, the radii are found by solving

a problem involving linear constraints.

The approximate Q-functions and policies computed by the two algorithms, together with

controlled trajectories from the initial state x0 = [−π, 0]T, are presented in Figure 4.7. The

top-left and bottom-right corner differences between the policies in Figures 4.7(c) and 4.7(d)

and the policy in Figure 4.3(b) can be explained by observing that Q-iteration takes into

account the constraints on the state and action variables, whereas the policy (4.32) does not.

Comparing the fuzzy Q-iteration policy with the RBF Q-iteration policy, it appears that

RBF Q-iteration introduces nonlinear artifacts in regions where the policy should actually be

76

4.6. EXPERIMENTAL STUDIES

−2
0

2

−50

0

50
−800

−600

−400

−200

0

α [rad]α’ [rad/s]

Q
(α

,α
’,
0

)

(a) A projection of the fuzzy approximate Q-function

on the state space, for u = 0.

−2
0

2

−50

0

50
−800

−600

−400

−200

0

α [rad]α’ [rad/s]

Q
(α

,α
’,
0

)

(b) A projection of the RBF approximate Q-function

on the state space, for u = 0.

−3 −2 −1 0 1 2 3
−50

0

50

α [rad]

α
’
[r

a
d
/s

]

h(α,α’) [V]

−10

−5

0

5

10

(c) Fuzzy Q-iteration policy.

−3 −2 −1 0 1 2 3
−50

0

50

α [rad]

α
’
[r

a
d
/s

]

h(α,α’) [V]

−10

−5

0

5

10

(d) RBF Q-iteration policy.

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

α
 [
ra

d
]

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

α
’
[r

a
d
/s

]

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

u
 [
V

]

0 0.2 0.4 0.6 0.8 1
−100

−50

0

r
[−

]

t [s]

(e) A trajectory controlled with the fuzzy Q-

iteration policy, starting from x0 = [−π, 0]T.

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

α
 [
ra

d
]

0 0.2 0.4 0.6 0.8 1
0

10

20

30

α
’
[r

a
d
/s

]

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

u
 [
V

]

0 0.2 0.4 0.6 0.8 1
−100

−50

0

r
[−

]

t [s]

(f) A trajectory controlled with the RBF Q-iteration

policy, starting from x0 = [−π, 0]T.

Figure 4.7: Comparison between fuzzy Q-iteration and RBF Q-iteration.

77

CHAPTER 4. FUZZY Q-ITERATION

linear. This has a negative effect on the control performance, as illustrated in Figure 4.7(f);

compare with Figure 4.7(e). RBF Q-iteration obtains an average return of −210.7 for the

grid X0 defined by (4.34), whereas fuzzy Q-iteration obtains −203.3. The worse results of

RBF approximation can be (informally) explained as follows. The optimal Q-function is

largely smooth, because the transition and reward functions are largely smooth. However,

the convergence constraints (4.35) impose restrictive limits on the RBF radii, which lead to

narrow RBFs and therefore to a less smooth approximate Q-function. This Q-function poorly

approximates the optimal Q-function. On the other hand, triangular MFs lead essentially to

multi-linear interpolation, and therefore produce a more accurate approximation of the opti-

mal Q-function. The variation introduced by the RBF approximator in the approximate Q-

function can be seen upon a close examination of Figure 4.7(b); compare with Figure 4.7(a).

4.6.2 Two-link manipulator

In this section, fuzzy Q-iteration is used to stabilize a two-link manipulator, which is a more

complex system than the servo-system of Section 4.6.1. This illustrates that fuzzy Q-iteration

is able to control systems with more state and action variables than the servo-system, which

had two state variables and a scalar control action.

The two-link manipulator, depicted in Figure 4.8, is described by the fourth-order nonlin-

ear model:

M(α)α̈+ C(α, α̇)α̇+G(α) = τ (4.36)

where α = [α1, α2]
T, τ = [τ1, τ2]

T. The state signal contains the angles and angular ve-

locities of the two links: x = [α1, α̇1, α2, α̇2]
T, and the control signal is u = τ . The angles

wrap around in the interval [−π, π] rad, and the velocities (measured in rad/s) and torques

(measured in Nm) are bounded as in Table 4.1. The discrete time step is set to Ts = 0.05 s,

and the discrete-time dynamics f are obtained by numerical integration of (4.36) between the

consecutive time steps.

m
1

m
2 l

2

l
1

motor
1

motor
2

α
1

α
2

Figure 4.8: Schematic drawing of the two-link manipulator.

In the sequel, it is assumed that the manipulator operates in a horizontal plane, leading to

G(α) = 0. The mass matrix M(α) and the Coriolis and centrifugal forces matrix C(α, α̇)

78

4.6. EXPERIMENTAL STUDIES

Table 4.1: Physical variables of the manipulator

Symbol Domain or value Units Meaning

α1; α2 [−π, π]; [−π, π] rad link angles

α̇1; α̇2 [−2π, 2π]; [−2π, 2π] rad/s link angular velocities

τ1; τ2 [−1.5, 1.5]; [−1, 1] Nm motor torques

l1; l2 0.4; 0.4 m link lengths

m1; m2 1.25; 0.8 kg link masses

I1; I2 0.066; 0.043 kg m2 link inertias

c1; c2 0.2; 0.2 m center of mass coordinates

b1; b2 0.08; 0.02 kg/s dampings in the joints

have the following form:

M(α) =

[
P1 + P2 + 2P3 cosα2 P2 + P3 cosα2

P2 + P3 cosα2 P2

]
(4.37)

C(α, α̇) =

[
b1 − P3α̇2 sinα2 −P3(α̇1 + α̇2) sinα2

P3α̇1 sinα2 b2

]
(4.38)

The meaning and values (or domains) of the physical variables in the system are given

in Table 4.1. Using these, the rest of the parameters in (4.36) can be computed as follows:

P1 = m1c
2
1 +m2l

2
1 + I1, P2 = m2c

2
2 + I2, and P3 = m2l1c2.

The control goal is the stabilization of the system around α = α̇ = 0, and is expressed by

the following quadratic reward function:

ρ(x, u) = −xTQrewx, with Qrew = diag[1, 0.1, 1, 0.1] (4.39)

The discount factor is set to γ = 0.98. To apply fuzzy Q-iteration, triangular fuzzy partitions

were defined for every state variable and then combined as in Example 4.1. For the angles,

a core was placed at the origin, and 6 logarithmically-spaced cores were placed on each side

of the origin. For the velocities, a core was placed in the origin, and 3 logarithmically-spaced

cores were used on each side of the origin. This leads to a total number of (2 ·6+1)2 · (2 ·3+
1)2 = 8281 MFs. The cores were spaced logarithmically to ensure a higher accuracy of the

solution around the origin, while using only a limited number of MFs. This represents a mild

form of prior knowledge about the importance of the region of the state space close to the

origin. Each torque variable was discretized using 5 values: τ1 ∈ {−1.5,−0.36, 0, 0.36, 1.5}
and τ2 ∈ {−1,−0.24, 0, 0.24, 1}. These values are logarithmically spaced along the two

axes of the action space. The convergence threshold was set to εQI = 10−5.

Figure 4.9(a) presents a slice through the policy computed with fuzzy Q-iteration, for zero

angular velocities. This policy outputs continuous actions, and was computed with (4.6). Fig-

ure 4.9(b) presents a controlled trajectory starting from the initial state x0 = [π, 0,−π, 0]T,

together with the corresponding command and reward signals. The controller successfully

stabilizes the system in about 2.5 s.

4.6.3 Inverted pendulum

Next, fuzzy Q-iteration is used to swing up and to stabilize a (real-life) under-actuated in-

verted pendulum. The inverted pendulum is obtained by placing an off-center weight on a

79

CHAPTER 4. FUZZY Q-ITERATION

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

α
1
 [rad]

α
2
 [
ra

d
]

τ
1
(α

1
,0,α

2
,0) [Nm]

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

α
1
 [rad]

α
2
 [
ra

d
]

τ
2
(α

1
,0,α

2
,0) [Nm]

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1.5

−1

−0.5

0

0.5

1

1.5

(a) A projection of the policy obtained with

fuzzy Q-iteration on the plane (α1, α2), for

α̇1 = α̇2 = 0. Darker colors correspond to

negative actions, lighter colors to positive ac-

tions. The fuzzy cores for the angle variables

are represented as small white disks with dark

edges.

0 0.5 1 1.5 2 2.5 3 3.5 4

−2

0

2

α
1
,

α
2
 [
ra

d
]

0 0.5 1 1.5 2 2.5 3 3.5 4

−2

0

2

4

6

α
’ 1

,
α

’ 2
 [
ra

d
/s

]

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

τ 1
,

τ 2
 [
N

m
]

0 0.5 1 1.5 2 2.5 3 3.5 4

−15
−10
−5

0

r
[−

]

t [s]

(b) A controlled trajectory of the two-link manipulator

(thin black line – link 1, thick gray line – link 2). The

initial state is x0 = [π, 0,−π, 0]T.

Figure 4.9: Fuzzy Q-iteration results for the two-link manipulator.

disk driven by a DC motor (Figure 4.10). The disk rotates in a vertical plane. This is different

from the classical cart-pendulum problem, where the pendulum is attached to a cart and is in-

directly actuated via the acceleration of the cart. Here, the pendulum is actuated directly, and

the system only has two state variables. However, the control signal does not provide enough

power to push the pendulum up in a single rotation. Instead, the pendulum needs to be swung

back and forth (destabilized) to gather energy, prior to being pushed up and stabilized. This

creates a difficult, highly nonlinear control problem.

The dynamics of the inverted pendulum are:

α̈ =
1

J

(
mgl sin(α)− bα̇− K2

R
α̇+

K

R
u

)
(4.40)

The parameters values are: J = 1.91 · 10−4 kgm2, m = 0.055 kg, g = 9.81 m/s2, l =
0.042 m, b = 3 · 10−6 kg/s, K = 0.0536 Nm/A, R = 9.5 Ω. Note some of these param-

eters (e.g., J , m, l) are rough estimates, and the real system exhibits unmodeled dynam-

80

4.6. EXPERIMENTAL STUDIES

m

l

motor

α

(a) A schematic representation. (b) The real system.

Figure 4.10: The inverted pendulum.

ics, e.g., static friction. The sample time Ts is chosen equal to 0.005 s. The state signal is

x = [α, α̇]T = [x1, x2]
T. The angle α varies in the interval [−π, π) rad, with α = 0 pointing

up, and ‘rolls over’ so that e.g., a rotation of 3π/2 corresponds to α = −π/2. The velocity

α̇ is restricted to the interval [−15π, 15π] rad/s, and the control action uk is constrained to

[−3, 3] V. The goal is to stabilize the pendulum in the unstable equilibrium x = 0 (pointing

up). The following reward function expresses this goal:

rk+1 = ρ(xk, uk) = −xT
kQrewxk −Rrewu

2
k

Qrew =

[
5 0
0 0.1

]
, Rrew = 1

(4.41)

The discount factor is γ = 0.98. This discount factor is large so that rewards around the goal

state (unstable equilibrium) influence the values of states early in the trajectories. This leads

to an optimal policy that swings up the pendulum successfully.

Triangular fuzzy partitions with 19 equidistant cores were defined for both state variables,

and then combined as in Example 4.1. This relatively large number of MFs was chosen to en-

sure a good accuracy of the solution. The control action was discretized using 5 equidistant

values. A number of 3 values (maximum actuation in both directions, and zero actuation)

would have sufficed to solve the problem. However, because the desired equilibrium is unsta-

ble, any discrete-action policy leads to chattering. To limit the effect of chattering, two more

actions, smaller in magnitude, were added to the discretized set. The convergence threshold

was εQI = 10−5.

Figure 4.11 presents the policy computed with fuzzy Q-iteration. Figure 4.12 presents

swing-up trajectories starting from the stable equilibrium x0 = [−π, 0]T (pointing down),

together with the corresponding command and reward signals. Figure 4.12(a) is a simulation

result with the model (4.40), and Figure 4.12(b) is the result with the real system. For the real

system, only the position is measured, and the angular velocity is estimated using a discrete

difference, which results in a noisy signal. Although the model is simplified and does not

include stochastic effects such as measurement noise, the policy resulting from fuzzy Q-

iteration performs well: it stabilizes the real system in about 1.5 s, around 0.25 s longer than

in simulation. This discrepancy is due to the differences between the model and the real

system. Note that the control action chatters, because only discrete actions are available.

81

CHAPTER 4. FUZZY Q-ITERATION

−3 −2 −1 0 1 2 3

−40

−30

−20

−10

0

10

20

30

40

α [rad]
α

’
[r

a
d
/s

]

h(α,α’) [V]

−3

−2

−1

0

1

2

3

Figure 4.11: Fuzzy Q-iteration policy for the inverted pendulum. The cores are represented

as small white disks with dark edges.

0 0.5 1 1.5 2
−4

−2

0

2

4

α
 [
ra

d
]

0 0.5 1 1.5 2
−10

−5

0

5

10

15

α
’
[r

a
d
/s

]

0 0.5 1 1.5 2
−4

−2

0

2

4

u
 [
V

]

0 0.5 1 1.5 2
−100

−50

0

r
[−

]

t [s]

(a) In simulation.

0 0.5 1 1.5 2
−4

−2

0

2

4

α
 [
ra

d
]

0 0.5 1 1.5 2
−10

−5

0

5

10

15

α
’
[r

a
d
/s

]

0 0.5 1 1.5 2
−4

−2

0

2

4

u
 [
V

]

0 0.5 1 1.5 2
−100

−50

0

r
[−

]

t [s]

(b) The real inverted pendulum.

Figure 4.12: Swing-up trajectories of the inverted pendulum.

4.6.4 Optimizing membership functions for the car on the hill

In this section, we apply fuzzy Q-iteration with MF optimization to the car-on-the-hill prob-

lem. This is a classical benchmark for approximate DP/RL, first described by Moore and

Atkeson (1995). For instance, Munos and Moore (2002) used this problem as a primary

benchmark for their variable-resolution V-iteration technique. Ernst et al. (2005) used the car

on the hill, among other examples, to validate an RL algorithm that approximates Q-functions

with ensembles of regression trees.

In this problem, a point mass (the ‘car’) has to be driven past the top of a frictionless hill

by applying a horizontal force. The problem is schematically represented in Figure 4.13. For

some initial states, the maximum available force is not sufficient to drive the car straight up

the hill. Instead, it has to be driven up the opposite slope (left) and gather momentum prior

82

4.6. EXPERIMENTAL STUDIES

to accelerating towards the goal (right). This problem is similar to the inverted pendulum

of Section 4.6.3; there, the pendulum had to be swung back and forth to gather momentum,

which corresponds to driving the car left and then right. The position and velocity of the

car are bounded. Whenever these bounds are exceeded, the car reaches a terminal state from

which it can no longer escape, and the task terminates.

−1 −0.5 0 0.5 1
−0.4

−0.2

0

0.2

0.4

0.6

p

H
(p

) u

mg

Figure 4.13: The car on the hill. The ‘car’ is represented as a black bullet, and its goal is to

drive out of the figure to the right.

The horizontal position of the car (in meters) is denoted by p, and the shape of the hill is:

H(p) =





p2 + p if p < 0

p√
1+5p2

if p ≥ 0

The dynamics of this problem are (Ernst et al., 2005):

p̈ =
1

1 +
(

dH(p)
dp

)2

(
u− g dH(p)

dp
− ṗ2 dH(p)

dp

d2H(p)

d2p

)
(4.42)

where a unity mass was assumed and g = 9.81 is the gravitational acceleration. The notations

ṗ and p̈ indicate the first and second time derivatives of p. The discrete time step is set to

Ts = 0.1 s, and the discrete-time dynamics f are obtained by numerical integration of (4.42)

between consecutive time steps.

The state signal consists of the horizontal position and speed of the car, x = [p, ṗ]T, and

the control signal u is the horizontal force applied to the car. The state space isX = [−1, 1]×
[−3, 3] plus a terminal state (see below), and the discrete action space is U = {−4, 4}.
Whenever xk+1 is not in X (i.e., the position or speed exceed the bounds), a terminal state is

reached. The goal is drive past the top of the hill to the right with a speed within the allowed

limits. Reaching a terminal state in any other way is considered a failure. The reward function

chosen to express this goal is:

ρ(xk, uk) =






−1 if x1,k+1 < −1 or |x2,k+1| > 3

1 if x1,k+1 > 1 and |x2,k+1| ≤ 3

0 otherwise

(4.43)

The discount factor is γ = 0.95. This discount factor is sufficiently large to obtain a good

control policy. The reward function is chosen discontinuous for two reasons. The first reason

83

CHAPTER 4. FUZZY Q-ITERATION

is that such discontinuous rewards are typically used with the car on the hill (Ernst et al.,

2005). The second reason is to provide a challenging problem to the MF optimization al-

gorithm. According to the results of the consistency study of Section 4.6.1, a discontinuous

reward function such as (4.43) is likely to give an unpredictable performance when used with

equidistant MFs. The MF optimization algorithm will have to place the limited number of

MFs in a way that captures well the discontinuities of the Q-function. In this way, a more

predictable performance should be recovered.

To compute the optimization criterion (4.23), the following grid of representative initial

states is used:

X0 = {−1,−0.75,−0.5, . . . , 1} × {−3,−2,−1, . . . , 3}

where each point is weighted by 1
|X0|

. The parameters of the algorithm are set as follows:

NCE = 5 · 2 · Nξ (5 times the number of parameters needed to describe the probability

density used in the CE optimization algorithm), ̺CE = 0.05, dCE = 5. These are typical

default values for CE optimization (Rubinstein and Kroese, 2004). The maximum number

of CE iterations is τmax = 50. The same value 10−3 is used as admissible error εMC in the

return estimation (2.27), as the fuzzy Q-iteration convergence threshold εQI, and as the CE

convergence threshold εCE.

The algorithm is run with the same number of MFs for both state variables,N1 = N2, and

this number is gradually increased from 3 to 20.6 Each such experiment is run 10 times with

independent sets of samples, and the average score, together with the maximum and the mini-

mum score in any run, are reported for every value ofN1 = N2. Figure 4.14(a) compares the

score obtained by fuzzy Q-iteration with optimized MFs, with the score obtained using the

same number of equidistant MFs. The graph also shows the optimal score, computed by an

exhaustive search for optimal open-loop control sequences. Fuzzy Q-iteration with optimized

MFs consistently and reliably provides a better performance than with the same number of

equidistant MFs. As expected, the discontinuous reward function gives unpredictable varia-

tions in the performance as the number of equidistant MFs is increased. Optimizing the MFs

recovers a more predictable performance increase, probably because the MFs are adjusted to

2 4 6 8 10 12 14 16 18 20
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of fuzzy sets on each axis

S
c
o

re

fuzzy Q−iteration score

optimal score

CE mean score

CE max score

CE min score

(a) Performance.

2 4 6 8 10 12 14 16 18 20
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Number of fuzzy sets on each axis

E
x
e

c
u

ti
o

n
 t

im
e

 [
s
]

fuzzy Q−iteration execution time

CE mean execution time

CE max execution time

CE min execution time

(b) Execution time.

Figure 4.14: Comparison between fuzzy Q-iteration with optimized and equidistant MFs for

the car on the hill.

6The experiments stop at 20 MFs to limit computation times per experiment in the order of hours on our 3 GHz

Pentium IV machine, using MATLAB 7.1.

84

4.7. CONCLUSIONS AND OPEN ISSUES

better represent the discontinuities of the Q-function. For N1 = N2 ≥ 12, the performance

of CE fuzzy Q-iteration is close to the optimal performance.

Figure 4.14(b) compares the computational cost of optimizing the MFs with the cost of

using equidistant MFs. The performance increase obtained by optimizing the MFs comes at a

large computational cost, several orders of magnitude higher than the cost incurred by fuzzy

Q-iteration with equidistant MFs.

Figure 4.15(a) presents a representative set of MFs optimized using the CE method. The

number of MFs on each axis is N ′ = 10. Figure 4.15(b) shows a projection of an approx-

imately optimal Q-function on the state space, for u = −4 (the projection for u = 4 has a

similar shape).7 This Q-function has a large number of discontinuities. It is impossible to

capture all these discontinuities with only 10 MFs on each axis. Instead, the MF optimization

algorithm concentrates most of the MFs in the region of the state space where p ≈ −0.8.

In this region the car, having accumulated sufficient momentum, has to stop from moving

left and accelerate toward the right; this is a critical control decision. Therefore, this place-

ment of MFs illustrates that, when the number of MFs is insufficient to accurately represent

Q-function over the entire state space, the optimization algorithm focuses the approximator

on the regions that matter the most for the performance. The MFs on the velocity axis ṗ are

concentrated towards large values, possibly in order to represent more accurately the top-left

region of the Q-function, which is the most irregular in the neighborhood of p = −0.8.

−1

−0.5

0

0.5

1

−3

−2

−1

0

1

2

3
0

0.5

1

pp’

µ
(p

,
p
’)

(a) Optimized MFs.

−1
−0.5

0
0.5

1

−2

0

2

0

5

10

15

20

pp’

Q
(p

,p
’,
 −

4
)

(b) A projection of the Q-function on X , for u = −4.

Figure 4.15: A representative set of optimized MFs, together with an approximately optimal

Q-function.

4.7 Conclusions and open issues

In this chapter, we have considered an algorithm for approximate value iteration that repre-

sents Q-functions using a fuzzy partition of the state space, and a discretization of the action

space. The algorithm has been shown to be convergent to a near-optimal solution, and con-

sistent under continuity assumptions on the dynamics and on the reward function. A version

of the algorithm where parameters are updated in an asynchronous fashion has been shown to

converge at least as fast as the synchronous variant, and has converged faster in an example.

7This Q-function was computed with fuzzy Q-iteration using a very fine fuzzy partition. Note that, because of

the discontinuous nature of the reward function, the consistency of the algorithm is not guaranteed. Nevertheless,

Figure 4.15(b) should provide at least a rough approximation of the optimal Q-function.

85

CHAPTER 4. FUZZY Q-ITERATION

As an alternative to designing MFs in advance, we have proposed to optimize the parameters

of a constant number of MFs. To evaluate each set of MFs, a policy is computed with fuzzy

Q-iteration and its performance is computed by simulation. Using the cross-entropy method

for optimization, we have designed an algorithm to optimize the locations of triangular MFs.

A thorough experimental evaluation of fuzzy Q-iteration has been carried out. The al-

gorithm has shown a good performance in simulation and in practice. Fuzzy Q-iteration has

worked better in an example than Q-iteration with RBF approximation. In the same exam-

ple, increasing the approximation accuracy has resulted in a more predictable performance

improvement when a continuous reward function was used, than with a discontinuous reward

function. This indicates that discontinuous rewards can harm the performance in continuous-

variable control tasks. Discontinuous rewards are common practice due to the origins of

DP/RL in artificial intelligence, where discrete-valued tasks are often considered. For the

car-on-the-hill benchmark, fuzzy Q-iteration has provided a better performance when using

MFs that were optimized with the cross-entropy method, than when using equidistant MFs.

Optimizing the MFs also recovered a predictable performance increase with an increasing

number of MFs, despite the fact that the reward function was discontinuous. However, these

performance improvements come at a large computational cost, several orders of magnitude

higher than the cost incurred by fuzzy Q-iteration with equidistant MFs.

The triangular MFs used in this chapter make fuzzy Q-iteration exponentially complex

in the number of state dimensions. This means that beyond five or six dimensions, triangu-

lar MFs cannot be used effectively. Other types of MFs could be used instead, to obtain a

fuzzy partition with less than exponential complexity. Furthermore, action-space approxima-

tors more powerful than discretization could be studied, e.g., approximators based on fuzzy

partitions of the action space.

It is important to analyze fuzzy Q-iteration for stochastic problems, when the expected

values have to be approximated (since the analysis of Section 4.4 holds when the expected

values can be evaluated exactly). It is also interesting to investigate the effects of using

discontinuous rewards in the stochastic case, and to verify whether these effects are differ-

ent from those observed in the deterministic case. Another research direction is developing

model-free (RL) algorithms with fuzzy approximation that can guarantee convergence and

consistency. Results from kernel-based or interpolation-based RL may be used in the theo-

retical study of such algorithms (Ormoneit and Sen, 2002; Szepesvári and Smart, 2004).

An extensive comparison of the performance (convergence, suboptimality, consistency)

of the various types of linearly parameterized approximators that can be combined with the

Q-iteration algorithm (e.g., radial basis functions, Kuhn triangulations, etc.) would be very

useful. Such a comparison is currently missing from the literature.

While the CE method for optimization has been employed in this chapter to optimize the

MFs, in principle there is no obstacle to applying any optimization technique to determine

a good set of MFs. In particular, other meta-heuristic optimization techniques like genetic

algorithms, tabu search, pattern search, etc., could be used. Moreover, instead of using opti-

mization to find the MFs, resolution refinement techniques (Section 3.5.1) could be explored.

Such techniques can help reduce the computational complexity of finding the MFs.

86

Chapter 5

Online and continuous-action

least-squares policy iteration

This chapter introduces an extension of the least-squares policy iteration (LSPI) algorithm to

online learning. In the online case, the performance of every intermediate policy is impor-

tant, so policy improvements have to be performed often, at intervals during which only a few

samples can be processed. This is in contrast to offline LSPI, which requires to process large

batches of samples between consecutive policy improvements. In addition, an approach is

introduced to use prior knowledge about the policy with online LSPI. A thorough numerical

and experimental study is conducted to assess the performance of online LSPI, compare on-

line LSPI with offline LSPI, and evaluate the effects of using prior knowledge in online LSPI.

A continuous-action, polynomial Q-function approximator for LSPI is also investigated.

5.1 Introduction

The previous chapter has considered fuzzy Q-iteration, an approximate value iteration tech-

nique which iteratively computes an approximately optimal value function. The present chap-

ter concerns approximate policy iteration, which computes in every iteration an approximate

value function of the current policy, and then determines a new, improved policy which is

greedy in this value function (see also Section 2.4). Least-squares policy iteration (LSPI) is

a model-free algorithm for approximate policy iteration that uses a least-squares method to

evaluate each policy (i.e., to compute its approximate value function). Least-squares tech-

niques are among the most efficient methods for policy evaluation available to date (Konda,

2002; Bertsekas, 2007). Like fuzzy Q-iteration, LSPI approximates Q-functions with a linear

combination of basis functions (BFs). Using Q-functions, rather than V-functions, simplifies

the policy improvement step.

The original LSPI algorithm is offline (Lagoudakis et al., 2002; Lagoudakis and Parr,

2003a). It improves the policy only after a large batch of samples has been processed, and

only the performance of the final policy is important. However, one of the main goals of

reinforcement learning (RL) is to develop algorithms that learn online, by interacting with

the controlled process. Therefore, this chapter extends LSPI to online learning. The main

difference from the offline case is that the performance of every intermediate policy is impor-

87

CHAPTER 5. ONLINE AND CONTINUOUS-ACTION LSPI

tant, so the policy must be improved once every few transitions (sometimes, even after every

transition). This means that only a small number of samples can be processed between con-

secutive policy improvements, and the algorithm cannot wait until every intermediate value

function is accurately approximated. Unlike offline LSPI, which can use samples drawn from

an arbitrary distribution over the state-action space, the online algorithm only has access to

samples collected along trajectories of the process. This also implies that online LSPI has to

actively explore in order to collect informative samples. Using an inverted pendulum swingup

problem, we investigate the performance of online LSPI and the effects of varying its tuning

parameters. The performance of online LSPI is compared to that of offline LSPI, using the

same example. Online LSPI is also applied to stabilize a two-link manipulator with four state

variables and two action variables.

To improve the learning rate of online LSPI, we propose to use prior knowledge about

the policy. This is in contrast to most model-free RL algorithms, which typically work under

the assumption that no prior knowledge is available. However, in practice, a certain amount

of prior knowledge is almost always available. We develop a variant of online LSPI that uses

knowledge about the monotonicity of the policy in the state variables. Monotonous policies

are suitable for controlling e.g., (nearly) linear systems, or systems that are (nearly) linear

and have monotonous input nonlinearities, such as saturation or dead-zone nonlinearities. In

our approach, the policy is linearly parameterized using equidistant and identically shaped

radial basis functions (RBFs). For such a parameterization, the monotonicity requirements

can be expressed in terms of linear constraints on the policy parameters. These constraints

are enforced in every policy improvement step. We investigate the effects of using prior

knowledge in an example involving the control of a servo-system.

Additionally, we investigate a continuous-action Q-function approximator that uses or-

thogonal polynomial approximation in the action space. LSPI implementations from the

literature use discrete actions (Lagoudakis et al., 2002; Lagoudakis and Parr, 2003a; Ma-

hadevan and Maggioni, 2007). However, there exist important classes of control problems

where continuous actions are important, and therefore where continuous-action Q-function

approximation can help. For instance, when a system has to be stabilized around an unsta-

ble equilibrium, any discrete-action policy will lead to chattering of the control action and

to limit cycles. We investigate the effects of using polynomial approximation in the inverted

pendulum swingup problem.

The remainder of this chapter is organized as follows. Section 5.2 briefly describes the

offline LSPI algorithm. Section 5.3 introduces the polynomial, continuous-action Q-function

approximator. Section 5.4 describes online LSPI, and Section 5.5 presents our approach to

using prior knowledge about the monotonicity of the policy. Section 5.6 gives a numerical

evaluation of the proposed techniques. First, we evaluate offline LSPI with continuous-action

Q-function approximation. Then, an extensive numerical and experimental evaluation of

online LSPI is provided, and the effects of using prior knowledge in online LSPI are in-

vestigated. Section 5.7 concludes the chapter and outlines some open issues, together with

promising approaches to address these issues.

5.2 Least-squares policy iteration

LSPI is an efficient algorithm for approximate policy iteration (Lagoudakis and Parr, 2003a).

In each iteration ℓ of LSPI, the least-squares temporal difference for Q-functions (LSTD-Q) is

88

5.2. LEAST-SQUARES POLICY ITERATION

used to compute an approximate Q-function of the current policy hℓ. LSTD-Q was described

in Section 3.4.1, and will be presented again here only briefly. It represents Q-functions using

a linearly parameterized approximator with n BFs φl : X × U → R, l = 1, . . . , n. To find

the parameters θ of the approximator, LSTD-Q solves a projected Bellman equation of the

form:

Γθ∗ = z (5.1)

where Γ ∈ R
n×n and z ∈ R

n. An approximate solution to this equation can be computed us-

ing state-action samples, together with the corresponding next states and rewards. These sam-

ples are collected in a set
{
(xls , uls , x

′
ls

= f(xls , uls), rls = ρ(xls , uls)) | ls = 1, . . . , ns

}
,

where ns is the number of samples. In the stochastic case, the next state samples are drawn

from the transition probability function: x′ls ∼ f̃(xls , uls , ·), and the rewards are computed

accordingly: rls = ρ̃(xls , uls , x
′
ls
). The procedure described below can be applied both in the

deterministic and in the stochastic case.

Using the ns samples, a matrix Γns
and a vector zns

are computed as follows:

Γ0 = 0, z0 = 0

Γls = Γls−1 + φ(xls , uls)
[
φ(xls , uls)− γφ(x′ls , hℓ(x

′
ls
))
]T

zls = zls−1 + φ(xls , uls)rls

(5.2)

where γ ∈ [0, 1) is the discount factor. An approximately optimal parameter vector θ̂∗ can

be obtained by solving an approximate version of (5.1), obtained by replacing Γ and z with

Γns
and zns

:

Γns
θ̂∗ = zns

(5.3)

The approximate Q-function of hℓ is then Q̂hℓ(x, u) = φT(x, u)θ̂∗. Using this Q-function,

an improved policy is then computed with:

hℓ+1(x) = arg max
u

Q̂hℓ(x, u) (5.4)

The accuracy of policy evaluation is indirectly influenced by the sampling distribution via

the projected Bellman equation, as explained in Section 3.4.1. When some areas of the

state-action space are insufficiently sampled, the resulting approximate Q-function may be

inaccurate. In the regions of the state space where the Q-function is inaccurate, the improved

policy will also be inaccurate.

Algorithm 5.1 summarizes LSPI. Note that, in practice, the policy hℓ+1 is not explicitly

stored. Instead, it is computed on demand for any given state x, using (5.4). This requires

that the maximization (5.4) is solved exactly and efficiently for any x. Because (5.4) is solved

exactly, LSPI performs exact policy improvements. Efficiency is important because the max-

imization has to be performed ns times in every iteration of the LSPI algorithm, to evaluate

in (5.2) the improved policy for each of the ns samples. Solving (5.4) exactly and efficiently

is possible when a suitable Q-function parameterization is chosen. For instance, when a

discrete-action parameterization is used, (5.4) can be solved by enumeration over the set of

discrete actions. This is the case for the parameterization described next, in Example 5.1.

Example 5.1 Approximation with Gaussian RBFs and discrete actions. Consider the fol-

lowing type of Q-function approximator, already introduced in Example 3.2 for the restricted

89

CHAPTER 5. ONLINE AND CONTINUOUS-ACTION LSPI

Algorithm 5.1 Least-squares policy iteration

Input:

BFs φl : X × U → R, l = 1, . . . , n; samples
{
(xls , uls , x

′
ls
, rls) | ls = 1, . . . , ns

}

discount factor γ; convergence threshold εLSPI

1: initialize policy h0

2: repeat in every iteration ℓ = 0, 1, 2, . . .
3: Γ0 ← 0n×n, z0 ← 0n

4: for ls = 1, . . . , ns do

5: Γls ← Γls−1 + φ(xls , uls)
[
φ(xls , uls) − γφ(x′ls , hℓ(x

′
ls
))
]T

6: zls ← zls−1 + φ(xls , uls) rls
7: end for

8: compute θℓ by solving Γns
θℓ = zns

9: hℓ+1(x)← arg maxu Q̂
hℓ(x, u) = arg maxu φ(x, u)θℓ

10: until ℓ ≥ 1 and ‖θℓ − θℓ−1‖ ≤ εLSPI

Output: hℓ+1

case of a two-dimensional state space. The action space is discretized into a small number

M of discrete values Ud = {u1, . . . , uM}. Only these actions are allowed to appear in the

set of samples. A number N of state-dependent, normalized Gaussian RBFs φ̄i : X → R,

i = 1, . . . , N , are used to approximate the Q-function over the D-dimensional state space:

φ̄i(x) =
φ′i(x)∑N

i′=1 φ
′
i′(x)

, φ′i(x) = exp

[
−

D∑

d=1

(xd − ci,d)2
b2i,d

]
(5.5)

Here, φ′i are the non-normalized RBFs, ci = [ci,1, . . . , ci,D]T is the D-dimensional center of

the ith RBF, and bi = [bi,1, . . . , bi,D]T is its D-dimensional radius. A number n = NM of

state-discrete action BFs, φl : X ×Ud → R, l = 1, . . . , n, are obtained in the following way.

The RBFs are replicated for every discrete action, and all the RBFs that do not correspond

to the current discrete action are taken equal to 0. Therefore, approximate Q-values can be

computed with Q̂(x, uj) = φT(x, uj) θ, for the state-action BF vector:

φ(x, uj) = [0, . . . , 0︸ ︷︷ ︸
u1

, . . . , 0, φ̄1(x), . . . , φ̄N (x)︸ ︷︷ ︸
uj

, 0, . . . , 0, . . . , 0︸ ︷︷ ︸
uM

]T ∈ R
NM

Because only a few discrete actions are considered for this approximator, the maximization

in (5.4) can be solved by enumeration:

hℓ+1(x) = uj∗ , j∗ = arg max
j

Q̂hℓ(x, uj)

This type of approximator will be used often in the sequel.

Note that a similar approximator (based on state-dependent RBFs and discrete actions)

has been used with approximate Q-iteration in Section 4.6.1, where it has led to poor results.

Those poor results have been caused by the severe restrictions placed on the radii of the RBFs

by the convergence conditions for approximate Q-iteration. Because the Q-function was

largely smooth, the narrow RBFs have led to a poor approximation of the optimal Q-function.

90

5.3. LSPI WITH POLYNOMIAL ACTION APPROXIMATION

In contrast, the convergence of approximate policy evaluation requires no restrictions on the

shape of the RBFs. This implies that the discrete-action RBF approximator works well for

approximating (relatively) smooth Q-functions. �

5.3 LSPI with polynomial action approximation

Most implementations of LSPI from the literature use discrete actions (Lagoudakis et al.,

2002; Lagoudakis and Parr, 2003a; Mahadevan and Maggioni, 2007). Usually, like in Ex-

ample 5.1, a set of N BFs are defined over the state space only, and are replicated for each

of the M discrete actions. However, there exist important classes of control problems where

continuous actions are required. For instance, when a system has to be stabilized around

an unstable equilibrium, any discrete-action policy will lead to undesirable chattering of the

control action and to limit cycles. Therefore, this section proposes a continuous-action Q-

function approximator for LSPI, which works for problems with scalar control actions. This

approximator uses state-dependent BFs and orthogonal polynomials of the action variable,

thus separating approximation over the state space from approximation over the action space.

Orthogonal polynomials are preferred to plain polynomials in regression because they lead to

numerically better conditioned problems. Because the action that maximizes the Q-function

for a given state is not restricted to discrete values in (5.4) (as it was the case, e.g., in Exam-

ple 5.1), this approximator produces continuous-action policies.

Like for the discrete-action approximator, a set of N state-dependent BFs is defined:

φ̄i : X → R, i = 1, . . . , N . Only scalar control actions u are considered, bounded to an

interval U = [uL, uH]. Requiring this type of actions is restrictive in general, but the example

used in Section 5.6.1 to evaluate polynomial action approximation satisfies these conditions.

To approximate over the action dimension of the state-action space, Chebyshev polynomials

of the first kind are chosen as an illustrative example of orthogonal polynomials; many other

types of orthogonal polynomials can be used. The Chebyshev polynomials of the first kind

are defined by the recurrence relation:

ψ0(ū) = 1

ψ1(ū) = ū

ψj+1(ū) = 2ūψj(ū)− ψj−1(ū)

They are orthogonal to each other on the interval [−1, 1] relative to the weight function

1/
√

1− ū2, which means that they satisfy:

∫ 1

−1

1√
1− ū2

ψj(ū)ψj′(ū)dū = 0, ∀j ≥ 0, j′ ≥ 0, j 6= j′

In order to take advantage of the orthogonality property, the action space U has to be scaled

and translated into the interval [−1, 1]. This is easily accomplished using the affine transfor-

mation:

ū = −1 + 2
u− uL

uH − uL
(5.6)

The approximate Q-values for an orthogonal polynomial approximator of degree Mp are

91

CHAPTER 5. ONLINE AND CONTINUOUS-ACTION LSPI

computed as follows:

Q̂(x, u) =

Mp∑

j=0

ψj(ū)
N∑

i=1

φ̄i(x)θ[i,j+1] (5.7)

This can be written concisely as Q̂(x, u) = φT(x, ū)θ for the state-action BF vector:

φ(x, ū) = [φ̄1(x)ψ0(ū), . . . , φ̄N (x)ψ0(ū),

φ̄1(x)ψ1(ū), . . . , φ̄N (x)ψ1(ū),

. . . ,

φ̄1(x)ψMp
(ū), . . . , φ̄N (x)ψMp

(ū)]T

(5.8)

The total number of state-action BFs (and therefore the total number of parameters) is n =
N(Mp + 1). Therefore, given the same number N of state BFs, a polynomial approximator

of degree Mp has the same number of parameters as a discrete-action approximator with

M = Mp + 1 discrete actions.

To find the greedy action (5.4) for a given state x, the approximate Q-function (5.7) for

that value of x is first computed, which yields a polynomial in ū. Then, the roots of the

derivative of this polynomial that lie in the interval (−1, 1) are found, the approximate Q-

values are computed for each root and also for −1 and 1, and the action that corresponds to

the largest Q-value is chosen. This action is then translated back into U = [uL, uH]:

h(x) = uL + (uH − uL)
arg maxū∈Ū(x)

[
φT(x, ū)θ

]
+ 1

2

Ū(x) = {−1, 1} ∪
{
ū′ ∈ (−1, 1)

∣∣∣∣
dψ(ū)

dū

∣∣∣∣
ū′

= 0,where ψ(ū) = φT(x, ū)θ

} (5.9)

In some cases, the polynomial will attain its maximum inside the interval (−1, 1). How-

ever, in other cases, it may not, so the boundaries {−1, 1} also have to be tested. Efficient

algorithms can be used to compute the polynomial roots with high accuracy.1 Therefore,

the proposed parameterization allows the maximization problems in the policy improvement

(5.4) to be solved efficiently and with high accuracy, and is well-suited for the use with LSPI.

In Section 5.6.2, we will investigate the effects of using continuous-action, polynomial

Q-function approximation with offline LSPI, for the problem of swinging up an inverted pen-

dulum. In this problem, polynomial Q-function approximation will not give a better perfor-

mance than discrete actions. So, discrete-action approximation will be used when applying

online LSPI to the inverted pendulum. The other problems to which online LSPI is applied

(the servo-system of Section 5.6.4 and the robot arm of Section 5.6.3) involve stable sys-

tems, which can be satisfactorily stabilized with a discrete-action policy. Therefore, we will

not consider polynomial approximation in the online context. Instead, only discrete-action

Q-function approximators will be used for online LSPI.

5.4 Online LSPI

One of the main goals of RL is to develop algorithms that learn online, by interacting with the

controlled process. In the online case, the performance is important not only at the end of the

1In our implementation, the roots are computed as the eigenvalues of the companion matrix of the polynomial
dψ(ū)

dū
, using the roots function of MATLAB; see e.g., (Edelman and Murakami, 1995).

92

5.4. ONLINE LSPI

learning process, as is the case with offline algorithms, but also during learning. Ideally, the

performance should improve after each observed state transition and corresponding reward.

However, the original LSPI algorithm works offline (Lagoudakis et al., 2002; Lagoudakis and

Parr, 2003a). It improves the policy only after a batch of samples is processed with LSTD-Q,

and only the performance of the final policy is important.

This section extends the (offline) LSPI algorithm to online learning. Because the perfor-

mance of each intermediate policy is important, policy improvements have to be performed

at short intervals. In the extreme case, online LSPI improves the policy after every transition

sample. This improved policy is applied to obtain a new transition sample. Next, another pol-

icy improvement takes place, and the cycle repeats. Such a variant is sometimes called fully

optimistic LSPI. In general, policy improvements are performed once every several transi-

tions. Such a method is partially optimistic. Even in partially optimistic variants, the number

of transitions between consecutive policy improvements should not be very large. Optimistic

policy iteration was proposed by Sutton (1988), and was also studied by Bertsekas and Tsit-

siklis (1996) and Bertsekas (2007). Another important difference between online and offline

LSPI is the following. While offline LSPI can use samples drawn from any distribution over

the state-action space, online LSPI algorithm only has access to samples collected along tra-

jectories of the process.

Online LSPI can store old samples and reuse them to update the matrix Γ and the vector z.
However, its computational cost and memory requirements grow with the number of samples

reused. In general, a growing computational cost makes it impractical to reuse many samples

for online real-time learning. This is because the sampling time may be small, in which

case Γ and z have to be updated fast. Instead of reusing all the samples, a limited window

preserving only the latest samples can be kept, or a small subset containing only the most

relevant samples can be selected. In the latter case, a well-defined measure of relevance is

required. For simplicity, in the sequel we only consider algorithms that process each sample

only once. For such algorithms, the computational cost incurred at every time step and the

memory requirements are independent of the number of samples already observed.

Offline LSPI discards Γ and z after every policy improvement. In contrast, online LSPI

processes only a few samples between consecutive policy improvements, and cannot afford

to discard Γ and z. This is because the few samples that arrive before the next policy im-

provement are not sufficient to construct informative new values of Γ and z. To circumvent

this problem, we never reset Γ and z, but keep updating them. The assumption underlying

this heuristic is that the Q-functions of subsequent policies are similar, which means that the

previous values of Γ and z are also representative for the improved policy.

A central concern with online LSPI is exploration: trying other actions than those given

by the current policy. Without exploration, only the actions dictated by the current policy

would be performed in every state, and samples of the other actions in that state would not be

available. This would lead to a poor estimation of the Q-values of these other actions, and the

resulting Q-function would not be reliable for policy improvement. Furthermore, exploration

helps obtaining data from regions of the state space that would not be reached using only

the greedy policy. Nevertheless, in addition to exploring, it is also important to exploit the

current policy in order to control the process well. Exploitation becomes especially important

if the current policy approaches the optimal one. This tradeoff between exploration and

exploitation is typical for RL algorithms. In this chapter, ε-greedy exploration is used (see

e.g., Sutton and Barto, 1998). This is a simple and classical way to solve the exploration

93

CHAPTER 5. ONLINE AND CONTINUOUS-ACTION LSPI

problem: at every step k, an exploratory action is applied with probability εk ∈ [0, 1], and

the greedy action with probability (1 − εk). Exploratory actions are chosen randomly, from

a uniform distribution over the action space. Additionally, εk typically decreases over time

(as k increases), so that the algorithm increasingly exploits the current policy. Throughout

this chapter, the exploration probability is initially set to a value ε0, and decays exponentially

once every second with a decay rate of εd ∈ (0, 1). This leads to the exploration schedule:

εk = ε0 ε
⌊kTs⌋
d (5.10)

where Ts is the sampling time, and ⌊·⌋ denotes the largest integer smaller than or equal to the

argument (floor). Many other exploration schedules are possible.

It is an open theoretical issue under what conditions the parameter vector of online LSPI

converges, or indeed even if it converges at all. In fact, optimistic policy iteration is known

to exhibit oscillations of the policy and other complex behaviors (Bertsekas and Tsitsiklis,

1996; Bertsekas, 2007). Note also that, in practice, online LSPI may be able to deal with

processes that are slowly changing over time, by adapting the policy to take these changes

into account. This is possible because the algorithm processes only new samples, which are

representative for the current dynamics of the process.

Algorithm 5.2 presents online LSPI with ε-greedy exploration. Because only a few sam-

ples are processed before the first updates of θ, Γ will probably not be invertible for these

first updates. This problem is solved here by initializing Γ to a small multiple βΓ > 0 of the

identity matrix, as suggested e.g., by Lagoudakis and Parr (2003a). Any small positive value

will work for βΓ. In this chapter, βΓ is always 0.001.

Algorithm 5.2 Online LSPI with ε-greedy exploration

Input:

BFs φl : X × U → R, l = 1, . . . , n
discount factor γ; policy improvement interval Kθ; exploration schedule εk, k ≥ 0
a small constant βΓ > 0

1: ℓ← 0; initialize policy h0; Γ0 ← βΓ · In×n; z0 ← 0n

2: measure initial state x0

3: for each time step k ≥ 0 do

4: uk ←
{
hℓ(xk) with probability (1− εk) (exploit)

a uniform random action in U with probability εk (explore)

5: apply uk, measure next state xk+1 and reward rk+1

6: Γk+1 ← Γk + φ(xk, uk) [φ(xk, uk) − γφ(xk+1, hℓ(xk+1))]
T

7: zk+1 ← zk + φ(xk, uk) rk+1

8: if k = (ℓ+ 1)Kθ then ⊲ k is the next positive multiple of Kθ

9: compute θℓ by solving Γk+1θℓ = zk+1

10: hℓ+1(x)← arg maxu φ(x, u)θℓ ⊲ policy improvement

11: ℓ← ℓ+ 1
12: end if

13: end for

Besides βΓ, online LSPI uses two other parameters that were not present in offline LSPI:

the number Kθ ∈ N
∗ of samples (transitions) between consecutive policy improvements,

94

5.5. USING PRIOR KNOWLEDGE IN ONLINE LSPI

and the exploration schedule εk, k ≥ 0. The number Kθ is the most important parameter of

online LSPI. WhenKθ = 1, the policy is updated after every sample and online LSPI is fully

optimistic. When Kθ > 1, the algorithm is partially optimistic. The exploration schedule

εk is also important for the performance of the algorithm. The number Kθ should not be

chosen too large, and a significant amount of exploration is recommended, i.e., εk should not

approach 0 too fast. The effects of Kθ and of the exploration schedule on the performance

will be studied experimentally in Section 5.6.2.

Some Markov decision processes (MDPs) have terminal states. For instance, many robot

manipulators have safeguards that stop the robot’s motion if its pose gets outside the oper-

ating range, after which human intervention is required. In an MDP framework, that would

correspond to the robot entering a terminal state. The process cannot leave a terminal state,

so once such a state is reached, the learning trial is terminated as well. At the beginning of

each new trial, the process has to be reset in some fashion to an initial state. The same state

can be used for every trial, or the process can be reset to different states in different trials. If

the process does not have terminal states, there is the possibility of learning from a single,

infinitely-long trial. However, even if the process does not have terminal states, or does not

enter them, it may still be beneficial for learning to terminate trials artificially. For instance,

when learning a stabilizing control law, if the process has been successfully stabilized and

the exploration is insufficient to drive the state away from the equilibrium, there is little more

to be learned from that trial, and a new trial starting from a new state will be more useful.

The effects of the trial length on the learning performance will be studied experimentally in

Section 5.6.2.

5.5 Using prior knowledge in online LSPI

Typically, model-free RL algorithms work under the assumption that no prior knowledge is

available about the process and about the optimal solution. However, in practice, a certain

amount of prior knowledge is almost always available. Prior knowledge can refer to, e.g., the

process dynamics, the optimal policy, or the optimal value function. In this chapter, we focus

on using prior knowledge about the optimal policy, or more generally about good control

policies that are not necessarily optimal. This focus is motivated by the fact that it is often

easier to obtain knowledge about the policy than about the value function.

A general way of specifying knowledge about the policy is to use constraints. For in-

stance, one might know, and therefore require, that the policy is (globally or piecewise) mo-

notonous in the state variables. Or, inequality constraints might be available on the state and

action variables. The possibility of constraining policies is to our knowledge unexplored in

the field of approximate RL. The main benefit of constraining policies is an expected speedup

of the learning process. A speedup is expected because the algorithm no longer invests valu-

able learning time in trying unsuitable policies that do not satisfy the constraints. This is

especially relevant in online learning, although it may help reduce the computational load for

offline learning as well. Another benefit is the guaranteed constraint satisfaction.

The original LSPI algorithm does not explicitly represent policies, but computes them

on demand by using (5.4). Therefore, the policy is implicitly defined by the Q-function. In

principle, it is possible to use the constraints on the policy in order to derive corresponding

constraints on the Q-function. However, this derivation is very hard to perform in general, be-

cause of the complex relationship between a policy and its Q-function. A simpler solution is

95

CHAPTER 5. ONLINE AND CONTINUOUS-ACTION LSPI

to explicitly parameterize the policy, and to enforce the constraints in the policy improvement

step. This is the solution adopted in the sequel.

In this section, we develop an online LSPI algorithm that uses explicitly parameterized

policies that are globally monotonous in the state variables. This means the policies are mo-

notonous with respect to any state variable, if the other state variables are held constant (see

Section 5.5.2 for a formal definition). Such monotonous policies are suitable for controlling

important classes of systems. For instance, they are suitable for controlling (nearly) linear

systems, or a nonlinear system in a neighborhood of an equilibrium where the system is

nearly linear. This is because linear policies, which work well for controlling linear systems,

are monotonous. Monotonous policies also work well for linear systems with monotonous

input nonlinearities (such as saturation or dead-zone nonlinearities). In such cases, the policy

may be strongly nonlinear, but still monotonous. Of course, in general, the global monotonic-

ity requirement is restrictive. It can be made more general e.g., by requiring that the policy is

monotonous only over a restricted region of the state space, such as in a neighborhood of an

equilibrium. Multiple monotonicity regions can also be considered. However, as a first step,

in this chapter we only consider globally monotonous policies.

In our approach, the policy is parameterized using equidistant and identically shaped

RBFs. For this choice of RBFs, the monotonicity requirements can be expressed in terms

of linear inequality constraints on the policy parameters. These constraints are enforced in

every policy improvement step.

5.5.1 Parameterized policies

As in Section 3.4.2, we consider a policy parameterization that is linear in the parameters

ϑ ∈ R
N and uses a set of state-dependent BFs ϕ1, . . . , ϕN : X → R. The approximate

policy is:2

ĥ(x) =

N∑

i=1

ϕi(x)ϑi = ϕT(x)ϑ (5.11)

with ϕ(x) = [ϕ1(x), . . . , ϕN (x)]T. In the sequel, Gaussian RBFs of the type introduced

in Example 5.1 are used to parameterize the policy. When no prior knowledge about the

policy is available, the policy improvement step can be performed by solving a least-squares

problem to find an improved policy parameter vector:

ϑℓ+1 = arg min
ϑ∈RN

Ns∑

is=1

∣∣∣∣ϕ
T(xis)ϑ− arg max

u
φT(xis , u)θℓ

∣∣∣∣
2

(5.12)

where {x1, . . . , xNs
} is a set of samples for policy improvement. In this formula, the term:

arg max
u

φT(xis , u)θℓ = arg max
u

Q̂
bhℓ(xis , u)

is the greedy action for the isth sample.3 To obtain online LSPI with parameterized policies,

the exact policy improvement in line 10 of Algorithm 5.2 is replaced by (5.12), and the

parameterized policy (5.11) is used instead of exact, greedy actions.

2Recall that calligraphic notation is used to emphasize quantities related to policy approximation.
3Alternatively, policy improvement could be performed using (3.27) (Section 3.4.2), which maximizes the ap-

proximate Q-values of the actions chosen by the policy in the state samples. However, (3.27) can generally be a

difficult nonlinear optimization problem, whereas (5.12) is a convex optimization problem, which is easier to solve.

96

5.5. USING PRIOR KNOWLEDGE IN ONLINE LSPI

Note that, for simplicity, only scalar control actions are considered in this derivation.

However, it is easy to extend the policy parameterization, together with the monotonicity

constraints that will be introduced in Section 5.5.2, to the case of multiple action variables.

The approximate policy (5.11) produces continuous actions. This policy approximator

could be combined with a continuous-action Q-function approximator, such as the polyno-

mial approximator introduced in Section 5.3. However, as already noted in Section 5.3, in this

chapter we do not use continuous-action Q-function approximation for online LSPI.4 Instead,

the continuous-action policy approximator will be used in combination with a discrete-action

Q-function approximator, such as that of Example 5.1. Two implications of this choice have

to be considered. Firstly, the greedy action samples in (5.12) are always discrete actions. Sec-

ondly, during learning, the continuous actions given by the policy have to be quantized into

actions belonging to the discrete set Ud. If the actions were not quantized, for any continuous

action different from all the discrete actions, the Q-function BFs would all be zero, and the

update of Γ in (5.2) would be meaningless. Using the quantization procedure implies that the

policy evaluation step actually estimates the Q-function of a quantized version of the policy.

Throughout this chapter, the following quantization function is used:

qd : U → Ud, qd(u) = arg min
uj∈Ud

|u− uj | (5.13)

5.5.2 Monotonous policies

A policy is monotonous in the state variables if and only if it satisfies the following conditions

for every state space axis d = 1, . . . ,D, where D is the dimension of the state space:

δmon,dh(x) ≤ δmon,dh(x̄) for all x, x̄ that satisfy xd ≤ x̄d and xd′ = x̄d′ ,∀d′ 6= d (5.14)

where δmon ∈ {−1, 1}D specifies the monotonicity directions along each axis: if δmon,d is

−1 then h is decreasing along the dth axis of the state space, and if it is 1 then h is increasing.

In this chapter, policies are approximated using normalized RBFs that are distributed on

an equidistant grid and have identical radii. The centers ci of such RBFs are of the form

[c1,i1 , . . . , cD,iD
]T where id = 1, . . . ,Nd. Without loss of generality, let the centers be

ordered along each axis:

cd,1 < · · · < cd,Nd
, d = 1, . . . ,D

When using these BFs, in order to satisfy (5.14) it is sufficient that the parameters corre-

sponding to each sequence of RBFs along all the grid lines in every dimension of X , are

ordered. An example of this ordering relationship, for a 3× 3 grid of RBFs, is:

ϑ[1,1] ≤ ϑ[1,2] ≤ ϑ[1,3]≥ ≥ ≥

ϑ[2,1] ≤ ϑ[2,2] ≤ ϑ[2,3]≥ ≥ ≥

ϑ[3,1] ≤ ϑ[3,2] ≤ ϑ[3,3]

(5.15)

4In fact, we have also studied experimentally the performance of online LSPI with polynomial Q-function ap-

proximation and parameterized, continuous-action policies. The results were unsatisfactory, and worse than those

obtained using discrete-action Q-function approximation with parameterized policies. These results are not reported

here.

97

CHAPTER 5. ONLINE AND CONTINUOUS-ACTION LSPI

where the second and fourth line express inequalities along the vertical axis. In this case, the

policy is decreasing along the first axis ofX (vertically in the equation), and increasing along

the second axis (horizontally in the equation).

The monotonicity conditions on the parameters can be written in a matrix form as:

∆monϑ ≤ 0Nmon
(5.16)

where the number of constraints Nmon is:

Nmon =

D∑

d=1

(Nd − 1)

D∏

d′=1, d′ 6=d

Nd′

and the matrix ∆mon ∈ R
Nmon×N contains one row ī for every combination of RBF indices

i = [i1, . . . , iD] and i′ = [i′1, . . . , i
′
D] such that i′d = id + 1, i′d′ = id′ ∀d′ 6= d. This row is

formed as follows:

∆mon,̄i,i = δmon,d, ∆mon,̄i,i′ = −δmon,d, ∆mon,̄i,j = 0 for j 6= i and j 6= i′

The notation [i1, . . . , iD] is used to map a D-dimensional index (i1, . . . , iD) into the corre-

sponding single-dimensional index i. The RBF located at indices id along every axis d is

multiplied by the policy parameter ϑ[i1,...,iD] when the approximate policy is computed. In

two dimensions, [i1, i2] = i1 + (i2 − 1)N1. Generalizing to D dimensions, we have:

[i1, . . . , iD] = i1 + (i2 − 1)N1 + (i3 − 1)N1N2 + · · · · · ·+ (iD − 1)N1N2 · · · ND−1

To clarify the notation, the following equation shows how the matrix ∆mon is constructed

for the constraints (5.15):

∆mon [1, 1] [2, 1] [3, 1] [1, 2] [2, 2] [3, 2] [1, 3] [2, 3] [3, 3]

ϑ[1,1] ≤ ϑ[1,2] 1 0 0 −1 0 0 0 0 0
ϑ[1,2] ≤ ϑ[1,3] 0 0 0 1 0 0 −1 0 0
ϑ[2,1] ≤ ϑ[2,2] 0 1 0 0 −1 0 0 0 0
ϑ[2,2] ≤ ϑ[2,3] 0 0 0 0 1 0 0 −1 0
ϑ[3,1] ≤ ϑ[3,2] 0 0 1 0 0 −1 0 0 0
ϑ[3,2] ≤ ϑ[3,3] 0 0 0 0 0 1 0 0 −1
ϑ[1,1] ≥ ϑ[2,1] −1 1 0 0 0 0 0 0 0
ϑ[2,1] ≥ ϑ[3,1] 0 −1 1 0 0 0 0 0 0
ϑ[1,2] ≥ ϑ[2,2] 0 0 0 −1 1 0 0 0 0
ϑ[2,2] ≥ ϑ[3,2] 0 0 0 0 −1 1 0 0 0
ϑ[1,3] ≥ ϑ[2,3] 0 0 0 0 0 0 −1 1 0
ϑ[2,3] ≥ ϑ[3,3] 0 0 0 0 0 0 0 −1 1

The constraints along the horizontal axis of (5.15) are added to ∆mon first, followed by the

constraints along the vertical axis. To help with reading the matrix, the inequality constraints

expressed by the matrix rows are shown to the left of the matrix, and the parameter indices

corresponding to the matrix columns are shown along the top of the matrix.

The monotonicity condition (5.16) is enforced in Algorithm 5.2 (online LSPI) by replac-

ing the unconstrained policy improvement problem in line 10 by the constrained least-squares

98

5.6. EXPERIMENTAL STUDIES

problem:

ϑℓ+1 = arg min
ϑ∈RN , ∆monϑ≤0Nmon

Ns∑

is=1

∣∣∣∣ϕ
T(xis)ϑ− arg max

u
φT(xis , u)θℓ

∣∣∣∣
2

(5.17)

and by using the approximate, monotonous policy ĥℓ(x) = ϕT(x)ϑℓ at every iteration ℓ > 0.

The problem (5.17) is solved using quadratic programming (see e.g., Nocedal and Wright,

2006).

5.6 Experimental studies

In this section, the performance of LSPI with orthogonal polynomial approximation is in-

vestigated, as well as the performance of online LSPI. In Section 5.6.1, the effects of using

orthogonal polynomial approximation with LSPI are studied, for the inverted pendulum prob-

lem introduced in Section 4.6.3. In Section 5.6.2, the same problem is used to carry out an

extensive experimental study of online LSPI. The effects of varying the tuning parameters

of online LSPI are studied, and online LSPI is compared with offline LSPI. Then, online

LSPI is used to learn how to control the real-life inverted pendulum. In Section 5.6.3, online

LSPI is used to stabilize the two-link manipulator introduced in Section 4.6.2. Section 5.6.4

illustrates the effects of using prior knowledge about the monotonicity of the policy in online

LSPI, for the servo-system problem introduced in Example 3.1.

5.6.1 LSPI with polynomial approximation for the inverted pendulum

In this section, the inverted pendulum problem introduced in Section 4.6.3 is used to study the

performance of polynomial action approximation for offline LSPI. The inverted pendulum

is obtained by placing an off-center weight on a disk driven by a DC motor, as shown in

Figure 5.1. The disk rotates in a vertical plane. The control input is insufficient to push the

pendulum up in a single rotation from every initial state. Instead, from certain states, the

pendulum needs to be swung back and forth (destabilized) to gather energy, prior to being

pushed up and stabilized.

m

l

motor

α

(a) A schematic representation. (b) The real system.

Figure 5.1: The inverted pendulum.

99

CHAPTER 5. ONLINE AND CONTINUOUS-ACTION LSPI

A model of the system dynamics is:

α̈ =
1

J

(
mgl sin(α)− bα̇− K2

R
α̇+

K

R
u

)
(5.18)

where J = 1.91 · 10−4 kgm2, m = 0.055 kg, g = 9.81 m/s2, l = 0.042 m, b = 3 · 10−6 kg/s,

K = 0.0536 Nm/A, R = 9.5 Ω. The process is controlled using a sampling time Ts =
0.005 s. The state is x = [α, α̇]T. The angle α varies in the interval [−π, π) rad, with α = 0
pointing up, and ‘rolls over’ so that e.g., a rotation of 3π/2 corresponds to α = −π/2.

The velocity α̇ is restricted to the interval [−15π, 15π] rad/s, and the control action u is

constrained to [−3, 3] V. The goal is to stabilize the pendulum in the unstable equilibrium

x = 0 (pointing up), and is expressed by the reward function:

rk+1 = ρ(xk, uk) = −xT
kQrewxk −Rrewu

2
k

Qrew =

[
5 0
0 0.1

]
, Rrew = 1

(5.19)

The discount factor is γ = 0.98. This discount factor is sufficiently large to obtain a good

control policy. A near-optimal solution (policy and Q-function) of this problem is given in

Figure 5.2. This solution was computed with fuzzy Q-iteration with a fine grid of membership

functions in the state space, and a fine discretization of the action space.

−3 −2 −1 0 1 2 3

−40

−30

−20

−10

0

10

20

30

40

α [rad]

α
’
[r

a
d

/s
]

h(α,α’) [V]

−3

−2

−1

0

1

2

3

(a) A near-optimal policy.

−4

−2

0

2

4

−50

0

50
−6000

−5000

−4000

−3000

−2000

−1000

0

α [rad]α’ [rad/s]

Q
(α

,α
’,
0
)

(b) Projection of a near-optimal Q-function on X , for

u = 0.

Figure 5.2: A near-optimal solution of the inverted pendulum swing-up problem.

Identically shaped RBFs are used to approximate the Q-function over the state space.

The RBFs are distributed on an equidistant 11 × 11 grid in the state space, and their radii

along each dimension are identical to the distance between two adjacent RBFs along that

dimension. This yields a smooth interpolation of the Q-function over the state space. Two sets

of experiments are performed: one using discrete-action approximators of the type described

in Example 5.1, and another using orthogonal polynomial approximation in the action space,

as described in Section 5.3. For the discrete-action approximators, the number of discrete

actions M takes two values: 3 and 5. The first set of actions is {−3, 0, 3}, and the second

{−3,−0.7208, 0, 0.7208, 3} (these five values are logarithmically spaced around the origin).

The degree Mp of the polynomial approximators varies in {2, 3, 4, 5}.

100

5.6. EXPERIMENTAL STUDIES

The samples used for policy evaluation are random, uniformly distributed over the state-

discrete action space X × Ud for the discrete-action approximators, and over the state-

continuous action space X ×U for the polynomial approximators. A number ns = 10000 of

samples is used for the approximators with M = Mp + 1 = 3, and for the other experiments

the number of samples is changed proportionally to the number n of parameters. Because N
is constant, this means that ns is proportional to M or respectively Mp + 1. For instance,

when Mp = 3, ns = 13334 samples are used, and when M = Mp + 1 = 5, ns = 16667.

A number of 20 runs are performed for each experiment, with independent sets of samples.

An experiment is considered convergent when the 2-norm of the difference between con-

secutive parameter vectors does not exceed εLSPI = 0.01 (see Algorithm 5.2). The policy

resulting from every convergent experiment are evaluated in simulation, by using it to control

the system from every initial state on the grid:

X0 = {−π,−5π/6,−4π/6 . . . , 0, π} × {−10π,−9π,−8π, . . . , 10π} (5.20)

The return obtained from each state on this grid is estimated with a precision of εMC =
0.1, and then an average return over these states is computed. This average is the score

(performance index) of the policy. The infinite-horizon return is estimated in a finite time by

simulating only the first K steps of the trajectory, with K given by (2.27). Due to the form

of the reward function, the score will always be negative; the performance is better when the

absolute value of the score is smaller.

Figure 5.3(a) reports the mean performance across the 20 experiments, together with 95%
confidence intervals for the mean performance. Figure 5.3(b) shows the number of iterations

to convergence. The polynomial approximators share the same graphs with the discrete-

action approximators, arranged so that the polynomial approximator of degree Mp has the

same horizontal coordinate as the discrete-action approximator with M = Mp + 1 discrete

actions. This is done so that experiments sharing the same horizontal coordinate use the same

number of parameters and state-action BFs.

(a) Performance. (b) Convergence.

Figure 5.3: Comparison between discrete-action and orthogonal polynomial approximation.

Non-convergent runs are excluded from the computation of the mean and of the confidence

intervals.

The differences between the performance of discrete-action approximation and the per-

formance of polynomial approximation are inconclusive when the polynomial approximator

101

CHAPTER 5. ONLINE AND CONTINUOUS-ACTION LSPI

has a low degree. When the degree increases, the performance of the polynomial approxi-

mator becomes worse, and LSPI with polynomial approximation requires more iterations to

converge than with discrete actions. The decrease in performance with the polynomial degree

may be due to overfitting. Moreover, for some runs with polynomial approximation, LSPI

does not converge to a fixed parameter vector. Each of these runs is marked along the top

of Figure 5.3(b) with a symbol ‘×’, placed at the horizontal coordinate corresponding to the

non-converging run.

Figures 5.4(a) and 5.4(b) show representative policies computed with discrete and poly-

nomial Q-function approximation, respectively. The discrete-action policy is computed using

M = 5 discrete actions in the Q-function approximator, and the continuous-action policy is

computed with a 2nd degree polynomial Q-function approximator. Figures 5.4(c) and 5.4(d)

present real-time swingup trajectories of the inverted pendulum, controlled with the policies

of Figures 5.4(a) and 5.4(b), and starting from the initial state x0 = [−π, 0]T. These figures

illustrate that continuous actions are useful to reduce chattering, even though Figure 5.3(a)

−3 −2 −1 0 1 2 3

−40

−30

−20

−10

0

10

20

30

40

α [rad]

α
’
[r

a
d

/s
]

h(α,α’) [V]

−3

−2

−1

0

1

2

3

(a) Discrete-action policy, M = 5 actions.

−3 −2 −1 0 1 2 3

−40

−30

−20

−10

0

10

20

30

40

α [rad]

α
’
[r

a
d

/s
]

h(α,α’) [V]

−3

−2

−1

0

1

2

3

(b) Continuous-action policy, Mp = 2.

0 0.5 1 1.5 2 2.5 3
−4

−2

0

2

4

α
 [

ra
d

]

0 0.5 1 1.5 2 2.5 3
−20

−10

0

10

α
’
[r

a
d

/s
]

0 0.5 1 1.5 2 2.5 3
−4

−2

0

2

4

u
 [

V
]

0 0.5 1 1.5 2 2.5 3
−100

−50

0

r
[−

]

t [s]

(c) Swingup of the real system using the discrete-

action policy.

0 0.5 1 1.5 2 2.5 3
−4

−2

0

2

4

α
 [

ra
d

]

0 0.5 1 1.5 2 2.5 3
−10

0

10

20

α
’
[r

a
d

/s
]

0 0.5 1 1.5 2 2.5 3
−4

−2

0

2

4

u
 [

V
]

0 0.5 1 1.5 2 2.5 3
−100

−50

0

r
[−

]

t [s]

(d) Swingup of the real system using the continuous-

action policy.

Figure 5.4: Representative policies and real-time swingup trajectories with discrete-action

and polynomial approximation.

102

5.6. EXPERIMENTAL STUDIES

showed that the return obtained using continuous actions is not better than the return ob-

tained with discrete actions. Because the real system has static friction, which is not modeled

in (5.18), the equilibrium x = [0, 0]T (pointing up) is stable in reality, and the discrete-action

policy is also able to stabilize while applying zero action in steady state.

The worse results obtained by the polynomial approximator appear surprising at a first

examination, because stabilizing the inverted pendulum around its unstable equilibrium leads

to suboptimal chattering when continuous actions are not available. However, in this problem,

the performance of discrete actions is difficult to improve upon. To understand why this is so,

examine the initial part of the trajectories in Figures 5.4(c) and 5.4(d); this part can be closely

approximated by a bang-bang control law, which can be realized using only three discrete

actions: applying maximum voltages in either direction, or zero voltage. In the final part

of the trajectory undesirable chattering occurs; however, due to the exponential discounting

of the rewards, the negative rewards received due to the chattering have a small influence

on the total return. Such a control sequence (which applies the action(s) with the maximum

magnitude initially, followed by chattering) may be near-optimal from many initial states.

The fact that a few discrete actions perform reasonably well can be seen in Figure 5.3(a),

where increasing the number of discrete actions from 3 to 5 does not lead to a significant

increase of the performance.

To better assess the potential of polynomial Q-function approximation, it should be eval-

uated also using other problems. For instance, when it is crucial to avoid chattering, a reward

function that strongly penalizes chattering has to be designed. Furthermore, in problems with

many action variables, independent discretization of the action variables may be unfeasible

due to the exponential growth of the discrete action space with the number of action variables.

In this case, it may be necessary to use a continuous-action approximator. Nevertheless, in the

sequel, only discrete-action Q-function approximators will be used, for the reasons explained

in Section 5.3.

5.6.2 Online LSPI for the inverted pendulum

In this section, we study experimentally the online LSPI algorithm, using the inverted pen-

dulum problem of Section 5.6.1. First, extensive simulation experiments are performed to

study the effects of the tuning parameters of online LSPI, and to compare online LSPI with

the offline algorithm. Then, online LSPI is used in real time, to learn how to control the real

inverted pendulum.

The RBF approximator with discrete actions introduced in Example 5.1 is used to ap-

proximate the Q-function. The 11× 11 grid of RBFs described in Section 5.6.1 is employed.

The discretized action space containsM = 3 actions: Ud = {−3, 0, 3}. After each simulated

online LSPI experiment is completed, snapshots of the current policy at increasing moments

of time are evaluated. This produces a curve recording the performance of the policy as it

evolves over time. During performance evaluation, exploration is turned off. When com-

paring online LSPI with offline LSPI, only the final policy in the experiment is evaluated.

Policies are evaluated by estimating with a precision εMC = 0.1 their average return over the

grid5 of initial states X0 = {−π,−π/2, 0, π/2} × {−10π,−3π,−π, 0, π, 3π, 10π}.
5To ensure that evaluating multiple policies for every run of online LSPI does not lead to excessive computational

costs, this grid of initial states contains fewer elements than the grid (5.20), which was used to evaluate the final

policies of offline LSPI.

103

CHAPTER 5. ONLINE AND CONTINUOUS-ACTION LSPI

Effects of the policy improvement interval

In this section, we study the effects of varying the number of transitions (samples) between

consecutive policy improvements. This is a central parameter of the online LSPI algorithm.

The following values will be used: Kθ ∈ {1, 10, 100, 1000, 5000}, which given Ts = 0.005 s

correspond to improving the policy once every 0.005, 0.05, 0.5, 5, and 25 s, respectively. This

time interval between two consecutive improvements is denoted by Tθ. The first experiment,

for Kθ = 1 (Tθ = Ts), corresponds to fully optimistic LSPI, where the policy is improved

after every sample. Each experiment is run for 600 s of simulated time, and the trial length is

set to Ttrial = 1.5 s. This trial length is sufficient for a good control policy to swing up and

stabilize the inverted pendulum. In the beginning of each trial, the state is reset to uniform

random values. The decaying exploration schedule (5.10) is used, with the initial exploration

probability ε0 = 1, chosen so that a fully random policy is used at first, and the decay rate

εd = 0.9962, chosen so that the exploration probability becomes 0.1 when t = 600 s. No

experimental tuning was performed to choose these values.

A number of 20 independent runs are performed for each value of Kθ. Figure 5.5(a)

shows how the performance of the policies learned by online LSPI evolves. Each curve rep-

resents the mean performance across the 20 runs. Figure 5.5(b) shows the mean performance

with 95% confidence intervals, for the extreme values of Kθ, 1 and 5000.

0 100 200 300 400 500 600

−2600

−2400

−2200

−2000

−1800

−1600

−1400

s
c
o
re

t [s]

 T
θ
=0.005s (K

θ
=1)

 T
θ
=0.050s (K

θ
=10)

 T
θ
=0.500s (K

θ
=100)

 T
θ
=5.000s (K

θ
=1000)

 T
θ
=25.000s (K

θ
=5000)

(a) Mean performance for all the experiments. (b) Mean performance with 95% confidence inter-

vals, for the extreme values of Kθ .

Figure 5.5: The effects of the interval between policy improvements. The marker locations

indicate the moments in time when the policies were evaluated.

The performance of the policies computed with online LSPI converges quickly, in roughly

120 s. The algorithm is robust to changes in theKθ parameter, with all the values resulting in

a similar performance except when the policy is updated very rarely (once every 5000 sam-

ples). In this latter case, the performance is worse, and the difference from the performance

obtained with small values of Kθ is statistically significant, as illustrated in Figure 5.5(b).

This difference shows that policy improvements in online LSPI should not be performed too

rarely.

Figure 5.6 shows the evolution of the difference between consecutive parameter vectors

of online LSPI, for a few values of Kθ. The curves represent averages of the 20 independent

runs. The parameter vector does not converge, even though the performance of the policy

104

5.6. EXPERIMENTAL STUDIES

does converge in Figure 5.5. The differences between parameters are smaller for smaller Kθ;

this is probably because processing a smaller number of samples between updates adds less

information to Γ and z, which means that subsequent solutions (parameter vectors) to Γθ = z
will be closer together.

0 100 200 300 400 500 600
10

−4

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

P
a
ra

m
e
te

r
d
if
fe

re
n
c
e

t [s]

 T
θ
=0.005s (K

θ
=1)

 T
θ
=0.500s (K

θ
=100)

 T
θ
=25.000s (K

θ
=5000)

Figure 5.6: The evolution of parameter differences over time. Note that the parameter update

frequencies are different between the three experiments. Parameter differences are computed

with ‖θℓ − θℓ−1‖2.

Comparison of online LSPI and offline LSPI

In this section, the solutions obtained by online LSPI in the experiments of the previous

section are compared with solutions obtained by offline LSPI. Offline LSPI employs the same

approximator as online LSPI. A number of ns = 20000 random samples are used for offline

LSPI, uniformly distributed throughout the state-discrete action space. Each experiment is

run 20 times with independent sets of samples, and the policy computed in each of the runs

is evaluated. Figure 5.7 compares the performance of the policies computed offline, with the

performance of the policies at the end of each online experiment (at t = 600 s).

10
−2

10
−1

10
0

10
1

−1640

−1620

−1600

−1580

−1560

−1540

−1520

−1500

−1480

−1460

−1440

T
θ
 [s]

s
c
o
re

Online, mean score

95% confidence bounds

Offline, mean score

95% confidence bounds

Figure 5.7: Comparison between the performance of offline and online LSPI. The horizontal

lines for offline LSPI correspond to a single set of 20 experiments (offline LSPI does not use

the parameter Tθ).

105

CHAPTER 5. ONLINE AND CONTINUOUS-ACTION LSPI

−3 −2 −1 0 1 2 3

−40

−30

−20

−10

0

10

20

30

40

α [rad]

α
’
[r

a
d

/s
]

h(α,α’) [V]

−3

−2

−1

0

1

2

3

(a) Offline, policy.

−3 −2 −1 0 1 2 3

−40

−30

−20

−10

0

10

20

30

40

α [rad]

α
’
[r

a
d

/s
]

h(α,α’) [V]

−3

−2

−1

0

1

2

3

(b) Online, policy.

−4

−2

0

2

4

−50

0

50
−6000

−4000

−2000

0

2000

α [rad]α’ [rad/s]

Q
(α

,α
’,
0
)

(c) Projection on X of the Q-function computed offline,

for u = 0.

−4

−2

0

2

4

−50

0

50
−8000

−6000

−4000

−2000

0

α [rad]α’ [rad/s]

Q
(α

,α
’,
0
)

(d) Projection on X of the Q-function computed online,

for u = 0.

0 0.5 1 1.5
−4

−2

0

2

4

α
 [

ra
d

]

0 0.5 1 1.5
−30

−20

−10

0

10

α
’
[r

a
d

/s
]

0 0.5 1 1.5
−4

−2

0

2

4

u
 [

V
]

0 0.5 1 1.5
−100

−50

0

r
[−

]

t [s]

(e) Offline, simulated trajectory from x0 =
[−π

2
, 0]T.

0 0.5 1 1.5
−4

−2

0

2

4

α
 [

ra
d

]

0 0.5 1 1.5
−20

−10

0

10

α
’
[r

a
d

/s
]

0 0.5 1 1.5
−4

−2

0

2

4

u
 [

V
]

0 0.5 1 1.5
−100

−50

0

r
[−

]

t [s]

(f) Online, simulated trajectory from x0 =
[−π

2
, 0]T.

Figure 5.8: Representative solutions with offline and online LSPI.

106

5.6. EXPERIMENTAL STUDIES

The performance obtained by online LSPI is comparable with the performance of of-

fline LSPI. For Kθ ∈ {1, 10} (corresponding to Tθ ∈ {0.005, 0.05} s), the online algorithm

obtains better performance than the offline one. The only value of Kθ for which the perfor-

mance is worse than in the offline case is Kθ = 5000 (Tθ = 25 s), which illustrates again

that policy improvements should not be performed too rarely in online LSPI. Offline LSPI

employs 20000 samples; the online algorithm processes the same number of samples in 120 s

of simulated time, and 120000 samples during the entire learning process. Nevertheless, Fig-

ure 5.5 showed that the online performance is already good after 120 s, i.e., 20000 samples.

Moreover, the offline algorithm loops through the samples once at every iteration, whereas

the online algorithm processes samples only once. Therefore, the online algorithm compares

favorably with the offline one, both in final performance and number of samples required to

reach a good performance.

Figure 5.8 presents some representative solutions of offline and online LSPI. For online

LSPI, a solution computed with Kθ = 10 is selected. The online algorithm produces a

smoother approximation of the Q-function (Figure 5.8(d)), which more closely resembles the

near-optimal Q-function of Figure 5.2(b). The most important differences between the poli-

cies of Figures 5.8(a) and 5.8(b) occur in the regions with destabilizing actions. For instance,

the offline policy indicates a zero action should be taken in the equilibrium x = [−π, 0]T.

This is incorrect, because it means that the pendulum is kept immobile when x = [−π, 0]T. It

also means that a controlled trajectory starting from x0 = [−π, 0]T would be uninformative;

therefore, the initial state x0 = [−π
2 , 0]T is selected to produce the (informative) trajectories

of Figures 5.8(e) and 5.8(f). Note that this problem is not due to a limitation of the offline

algorithm, but of the chosen approximator; sometimes, online LSPI also produces solutions

with the same property.

Effects of the exploration schedule

In this section, we study the effects of the exploration schedule on the performance of online

LSPI. Like in the earlier experiments, the decaying schedule (5.10) is used, with the initial

exploration probability ε0 = 1, so that a fully random policy is used at first. The follow-

ing values of the decay rate εd are used: {0.8913, 0.9550, 0.9772, 0.9924, 0.9962, 0.9996}.
They are chosen as follows. The first 5 values are chosen so that the exploration probabil-

ity becomes 0.1 after, respectively: 20, 50, 100, 300, and 600 s. The last value leads to an

exploration probability of 0.8 at t = 600 s, i.e., nearly all the actions taken during learning

are exploratory. Larger values of εd correspond to more exploration. As for the study of the

influence of Kθ, each experiment runs for 600 s of simulated time, the trial length is 1.5 s,

and the state is reset to uniform random values in the beginning of each trial. For all the

experiments, the policy is improved once every Kθ = 10 samples. This value of Kθ gave a

good performance in the earlier experiments.

A number of 20 independent runs are performed for each value of εd. Figure 5.9(a)

presents the performance of the policies learned with online LSPI, averaged over the 20 runs.

There is no discernible effect on the learning rate. However, when the exploration probability

is too small (it decays to ε = 0.1 in 100 s or less), the final performance is worse. Given

sufficient exploration, (i.e., when it decays to ε = 0.1 in 300 s or more), the final performance

is good, and is robust to variations in the exploration decay rate. The difference between the

performance of large and small exploration schedules is statistically significant, as illustrated

in Figure 5.9(b). These results are expected, because the considerations in Section 5.4 already

107

CHAPTER 5. ONLINE AND CONTINUOUS-ACTION LSPI

indicated that a significant amount of exploration is essential for online LSPI. Note however

that too much exploration will decrease the control performance obtained during learning;

this effect is not visible in Figure 5.9, because exploration is turned off when the policies are

evaluated.

0 100 200 300 400 500 600
−2400

−2300

−2200

−2100

−2000

−1900

−1800

−1700

−1600

−1500

−1400

s
c
o
re

t [s]

 ε
d
=0.8913

 ε
d
=0.9550

 ε
d
=0.9772

 ε
d
=0.9924

 ε
d
=0.9962

 ε
d
=0.9996

(a) Mean performance for all the experiments. (b) Mean performance with 95% confidence inter-

vals, for the extreme values of εd.

Figure 5.9: The effects of the exploration schedule.

Effects of the trial length

In this section, we study the effects of the trial length on the learning performance. The

following values of the trial length will be used: Ttrial ∈ {0.75, 1.5, 3, 6, 12} s. This corre-

sponds to, respectively, 800, 400, 200, 100, and 50 learning trials in the 600 s of learning.

The state is reset to uniform random values in the beginning of each trial. The policy is im-

proved once every Kθ = 10 samples. The initial exploration probability is ε0 = 1, and the

exploration decay rate is εd = 0.9962, chosen so that the exploration probability decays to

0.1 in t = 600 s. These settings gave a good performance in our earlier experiments.

0 100 200 300 400 500 600
−2400

−2300

−2200

−2100

−2000

−1900

−1800

−1700

−1600

−1500

−1400

s
c
o
re

t [s]

 T
trial

=0.75s

 T
trial

=1.50s

 T
trial

=3.00s

 T
trial

=6.00s

 T
trial

=12.00s

(a) Mean performance for all the experiments. (b) Mean performance with 95% confidence inter-

vals, for the extreme values of Ttrial.

Figure 5.10: The effects of the trial length.

108

5.6. EXPERIMENTAL STUDIES

A number of 20 independent runs are performed for each value of Ttrial. Figure 5.10(a)

reports the performance of the policies learned by online LSPI, averaged over the 20 runs.

Long trials (6 and 12 s) are detrimental to the learning rate, as well as to the final perfor-

mance. Short trials do better because the more frequent resets to random states provide more

information to the LSPI algorithm. This difference between the performance with short and

long trials is statistically significant, as illustrated in Figure 5.10(b).

Online LSPI for the real inverted pendulum

In this section, the online LSPI algorithm is used to learn how to control the inverted pen-

dulum system in real time, rather than in simulation as in the earlier sections. The same

approximator is used as in the simulation experiments, and a single experiment is run for

600 s. The trials are 2 s long, the initial exploration probability is ε0 = 1 and decays ex-

ponentially with εd = 0.9924, which leads to a final value of ε = 0.01 at t = 600 s. The

exploration schedule was chosen smaller than in the simulation case, so that the real system

is controlled better during learning.

Some practical differences from the simulation experiments arise. Firstly, the state cannot

be reset to arbitrary random values in the beginning of each trial, because a controller that

is able to perform these resets is not available. Instead, a sequence of random actions is

applied for 1 s in-between trials, to obtain a random initial state for the next trial. During

these random sequences, no learning is performed, and the time required to apply them is

not included in the learning time. In order to provide a more efficient exploration of the state

space, the random actions are allowed to be more powerful, u ∈ [−5, 5], than during learning,

when they are limited to [−3, 3]. Secondly, policy improvements are performed only after the

end of each trial, because solving the linear system in line 9 of Algorithm 5.2 at arbitrary

discrete time steps may take longer than the (short) sampling time Ts = 0.005 s.

Figure 5.11(a) presents snapshots of the trajectories followed by the system during learn-

ing. These snapshots are taken once every 40 s, and include the effects of exploration. Fig-

ure 5.11(b) presents a swingup of the pendulum from the stable equilibrium (pointing down),

with the final policy and without exploration. The controller learns how to swing up and

stabilize the system, giving a good performance as early as 120 s into learning. This learning

rate is similar to that observed in the simulation experiments. The final policy is able to swing

the pendulum up effectively, although suboptimally.

Figure 5.12 examines the final policy obtained; compare it with the near-optimal policy of

Figure 5.12(b) (repeated from Figure 5.2(a) for easy reference). For small velocities (around

the zero coordinate on the vertical axis), the policy computed online roughly resembles the

near-optimal policy, although its shape is different and suboptimal. The policy is not correct

for large velocities. The reason for this becomes apparent in Figure 5.12(c), which also shows

all the state samples collected during learning: with the procedure described above to reset

the state in the beginning of each trial, the samples are concentrated in particular areas of the

state space. The high-velocity regions are especially poorly represented in the set of samples.

The performance would improve significantly if a (suboptimal) controller were available to

reset the state to arbitrary locations. However, such a controller may be difficult to obtain in

the model-free context of online LSPI.

109

CHAPTER 5. ONLINE AND CONTINUOUS-ACTION LSPI

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
−4

−2

0

2

4
α

 [
ra

d
]

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
−40

−20

0

20

40

α
’
[r

a
d
/s

]

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
−4

−2

0

2

4

u
 [
V

]

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
−150

−100

−50

0

r
[−

]

t [s]

(a) During learning. Each trajectory is 2 s long. Only some of the

trajectories are shown, separated by vertical lines. The starting

time of each trajectory is given on the horizontal axis.

0 0.5 1 1.5 2 2.5 3
−4

−2

0

2

4

α
 [
ra

d
]

0 0.5 1 1.5 2 2.5 3
−40

−20

0

20

40

α
’
[r

a
d
/s

]

0 0.5 1 1.5 2 2.5 3
−4

−2

0

2

4

u
 [
V

]

0 0.5 1 1.5 2 2.5 3
−150

−100

−50

0

r
[−

]

t [s]

(b) A swingup with the final policy.

Figure 5.11: Trajectories of the real inverted pendulum.

−3 −2 −1 0 1 2 3

−40

−30

−20

−10

0

10

20

30

40

α [rad]

α
’
[r

a
d

/s
]

h(α,α’) [V]

−3

−2

−1

0

1

2

3

(a) Online LSPI policy.

−3 −2 −1 0 1 2 3

−40

−30

−20

−10

0

10

20

30

40

α [rad]

α
’
[r

a
d

/s
]

h(α,α’) [V]

−3

−2

−1

0

1

2

3

(b) Near-optimal policy, repeated from Figure 5.2(a).

−3 −2 −1 0 1 2 3

−40

−30

−20

−10

0

10

20

30

40

α [rad]

α
’
[r

a
d

/s
]

h(α,α’) [V]

−3

−2

−1

0

1

2

3

(c) Policy with state samples added on top.

Figure 5.12: The policy learned by online LSPI on the real inverted pendulum, compared

with a near-optimal policy.

110

5.6. EXPERIMENTAL STUDIES

5.6.3 Online LSPI for the two-link manipulator

In this section, online LSPI is applied to the stabilization of the two-link manipulator in-

troduced in Section 4.6.2. This example illustrates that online LSPI is able to learn how to

control systems with more state and action variables than those considered until this point,

which only had two state variables and scalar actions.

The two-link manipulator, depicted in Figure 5.13, is described by the fourth-order non-

linear model:

M(α)α̈+ C(α, α̇)α̇+G(α) = τ (5.21)

where α = [α1, α2]
T, τ = [τ1, τ2]

T. The state signal contains the angles and angular ve-

locities of the two links: x = [α1, α̇1, α2, α̇2]
T, and the control signal is u = τ . The angles

wrap around in the interval [−π, π] rad, so that e.g., a rotation of 3π/2 corresponds to an

angle of −π/2. The velocities are restricted to the interval [−2π, 2π] rad/s, using saturation.

The torques are limited so that τ1 ∈ [−1.5, 1.5] Nm and τ2 ∈ [−1, 1] Nm. In the sequel, the

manipulator operates in a horizontal plane, leading to G(α) = 0. For the values of the mass

matrix M(α) and of the Coriolis and centrifugal forces matrix C(α, α̇), see Section 4.6.2.

The discrete time step is set to Ts = 0.05 s, and the discrete-time dynamics f are obtained by

numerical integration of (5.21) between the consecutive time steps.

m
1

m
2 l

2

l
1

motor
1

motor
2

α
1

α
2

Figure 5.13: Schematic drawing of the two-link manipulator.

The control goal is the stabilization of the system around x = 0, and is expressed by the

following quadratic reward function:

ρ(x, u) = −xTQrewx, with Qrew = diag[1, 0.1, 1, 0.1] (5.22)

The discount factor is set to γ = 0.98. This value is sufficiently large to obtain a good control

policy.

To apply online LSPI, the discrete-action RBF approximator of Example 5.1 is used, like

for the inverted pendulum example. The centers of the RBFs are arranged on an equidistant

grid with 5 RBFs on each axis of the state space; this leads to a total number of N = 54 =
625 RBFs. The radii of the RBFs along each dimension are taken identical to the distance

along that dimension between adjacent RBFs. The discretized action space contains M = 9
actions, obtained by discretizing each torque variable using 3 values: Ud = {−1.5, 0, 1.5} ×
{−1, 0, 1}. Therefore, the total number of state-action BFs is NM = 5625 (N = 625 RBFs

replicated M = 9 times, once for each discrete action). Online LSPI learns in simulation

for 3600 s (one hour), and its parameters are set as follows: the policy is improved once

111

CHAPTER 5. ONLINE AND CONTINUOUS-ACTION LSPI

every Kθ = 50 samples; the length of each trial is 10 s, which is sufficient for a good policy

to stabilize the system; and the exploration probability decays from ε0 = 1 with the decay

factor εd = 0.9981, which leads to ε = 0.001 at t = 3600 s. No experimental tuning

was performed to choose these values. The performance of the policies computed online is

evaluated using the average return over the set of initial states:

X0 = {−π,−2π/3,−π/3, ..., π} × {0} × {−π,−2π/3,−π/3, ..., π} × {0} (5.23)

This set contains a regular grid of initial angles. The initial angular velocities are always zero,

to ensure that the set X0 does not become too large and hence, does not lead to an excessive

computational cost of evaluating the performance. The returns are estimated with a precision

of εMC = 0.1.

Figure 5.14(a) reports the mean, minimum, and maximum performance across five inde-

pendent runs of the experiment. Fewer runs were performed than for the inverted pendulum

example, to keep the computational cost of the experiments reasonable (because the number

of BFs is very large, online LSPI is very computationally intensive). Figure 5.14(b) presents

a trajectory controlled with the final policy obtained in one of the runs. The algorithm learns

how to stabilize the system, but the control performance in Figure 5.14(b) is worse than the

performance of fuzzy Q-iteration in Figure 4.9(b) of Section 4.6.2. Despite the worse perfor-

mance from this particular initial state, the LSPI policy actually performs better on average,

for the states in X0, than the fuzzy Q-iteration policy of Section 4.6.2. While the perfor-

mance of the final policies of online LSPI, averaged over the five experiments is −136.9,

fuzzy Q-iteration has only obtained a performance of −217.2.

0 500 1000 1500 2000 2500 3000 3500
−450

−400

−350

−300

−250

−200

−150

−100

s
c
o
re

t [s]

mean

min

max

(a) Performance.

0 2 4 6 8 10

−2

0

2

α
1
,

α
2
 [

ra
d

]

0 2 4 6 8 10

−4

−2

0

2

α
’ 1

,
α

’ 2
 [

ra
d

/s
]

0 2 4 6 8 10
−2

−1

0

1

2

τ 1
,

τ 2
 [

N
m

]

0 2 4 6 8 10

−15
−10
−5

0

r
[−

]

t [s]

(b) Controlled trajectory from x0 = [π, 0,−π, 0]T

(thin black line – link 1, thick gray line – link 2).

Figure 5.14: Results of online LSPI for the two-link manipulator.

112

5.6. EXPERIMENTAL STUDIES

The performance of online LSPI could probably be improved by increasing the number

of equidistant RBFs and/or the action discretization. However, because of the very large

number of BFs, the current approximator is already very complex. Although the simulated

time is only one hour, an experiment takes more than 20 hours of CPU time to execute,

which means that this approximator cannot be used in real time. Additionally, increasing the

number of approximator parameters may require more samples, which increases the learning

time. Therefore, making the approximator even more complex is not realistic. This difficulty

shows that to apply online LSPI to complex systems with fast dynamics, it is essential to

obtain a small number of BFs well suited to the problem at hand, rather than using a generic

approximator with many equidistant BFs. Techniques to find good BFs automatically have

been proposed for offline LSPI (Mahadevan and Maggioni, 2007; Xu et al., 2007). However,

these techniques are geared towards the offline computation of BFs, and need to be modified

to work in the online case. Developing new techniques that construct the BFs online is a

promising alternative. One such technique has been proposed by Jung and Polani (2007)

for online policy iteration with least-squares policy evaluation. This technique can easily be

extended to online LSPI (which uses LSTD-Q instead of least-squares policy evaluation).

5.6.4 Online LSPI with prior knowledge for the servo-system

In this section, we investigate the effects of using prior knowledge about the monotonicity of

the policy in online LSPI. The example used is the servo-system control task, introduced in

Example 3.1 and used again in Section 4.6.1. A model of the servo-system is:

xk+1 = f(xk, uk) = Axk +Buk

A =

[
1 0.0049
0 0.9540

]
, B =

[
0.0021
0.8505

]
(5.24)

This discrete-time model is obtained by discretizing a continuous-time model of the servo-

system, which was determined by first-principles modeling of the real servo-system. The

discretization is performed with the zero-order-hold method, using a sampling time of Ts =
0.005 s. The position x1,k = α is bounded to [−π, π] rad, the velocity x2,k = α̇ to [−16π, 16π]
rad/s, and the control input uk to [−10, 10] V. A discounted, quadratic regulation problem is

considered, described by the reward function:

rk+1 = ρ(xk, uk) = −xT
kQrewxk −Rrewu

2
k

Qrew =

[
5 0
0 0.02

]
, Rrew = 0.05

(5.25)

The discount factor is chosen γ = 0.97, which is sufficiently large to produce a good policy.6

Because the dynamics are linear (up to the saturation limits), and the reward function is

quadratic, a linear state feedback policy for this problem can be computed using an extension

of linear-quadratic regulation theory to the discounted case (Bertsekas, 2007), if the con-

straints on the states and actions are disregarded. A policy computed by applying this method

to the servo-system problem is presented in Figure 5.15, where additionally the control in-

put has been restricted to the admissible range [−10, 10], using saturation. See Section 4.6.1

6Note that the weights Qrew and Rrew , and the discount factor γ have different values than in the experiments

of Section 4.6.1.

113

CHAPTER 5. ONLINE AND CONTINUOUS-ACTION LSPI

for details on the procedure to compute this policy. This policy is monotonously decreasing

along both axes of the state space. This monotonicity property will be used in the sequel with

online LSPI. Note that the actual values of the linear state feedback gains are not required to

derive this prior knowledge. Instead, only the sign of these gains has to be known.

−3 −2 −1 0 1 2 3
−50

−40

−30

−20

−10

0

10

20

30

40

50

α [rad]

α
’
[r

a
d
/s

]

h(α,α’) [V]

−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 5.15: A near-optimal policy for the servo-system.

To assess the effects of using prior knowledge and parameterized policies, three experi-

ments are performed. For these experiments, the Q-function is represented using the discrete-

action RBF approximator introduced in Example 5.1.

1. In the first experiment, the original online LSPI algorithm is used, without prior knowl-

edge. This algorithm improves the policy using (5.4), repeated here for easy reference:

hℓ+1(x) = arg max
u

Q̂hℓ(x, u) (5.26)

Such a policy is implicitly defined by the Q-function, and always produces discrete

actions with the discrete-action Q-function approximator employed.

2. In the second experiment, an approximate policy that is linear in the parameters ϑ
(5.11) is used. Policy improvements are constrained using the prior knowledge about

the monotonicity of the policy. The improved policy parameter is therefore computed

with (5.17), repeated here for easy reference:

ϑℓ+1 = arg min
ϑ∈RN , ∆monϑ≤0Nmon

Ns∑

is=1

∣∣∣∣ϕ
T(xis)ϑ− arg max

u
φT(xis , u)θℓ

∣∣∣∣
2

(5.27)

where ∆monϑ ≤ 0Nmon
are the monotonicity constraints. The resulting approximate

policies produce continuous actions, but these actions have to be discretized during

learning, for the reasons explained in Section 5.5.1. Comparing the results of this

experiment with the results of Experiment 1 allows us to assess the effects of using

prior knowledge in online LSPI.

3. In the third experiment, a linearly parameterized, approximate policy (5.11) is used, but

this policy is improved without using prior knowledge. The improved policy parameter

is therefore computed with (5.12), repeated here for easy reference:

ϑℓ+1 = arg min
ϑ∈RN

Ns∑

is=1

∣∣∣∣ϕ
T(xis)ϑ− arg max

u
φT(xis , u)θℓ

∣∣∣∣
2

(5.28)

114

5.6. EXPERIMENTAL STUDIES

As for Experiment 2 above, the resulting policies produce continuous actions which

have to be discretized during learning. Comparing the results of this experiment with

the results of Experiment 1 allows us to isolate the effects of using parameterized poli-

cies, in the absence of prior knowledge.

The centers of the RBFs are arranged on an equidistant 9 × 9 grid in the state space,

and the radii of the RBFs along each dimension are taken identical to the distance along that

dimension between two adjacent RBFs. The discretized action space containsM = 3 actions:

Ud = {−10, 0, 10}. When approximate policies are used, the policy improvements (5.27)

and (5.28) use 1000 pre-generated, random and uniformly distributed state samples. These

samples do not include information about transitions, so the algorithm can still be applied

online and without requiring a model. The algorithm learns for 600 s, and this interval is

divided in trials having a length of Ttrial = 1.5 s. The initial states at the beginning of

each trial are random and uniformly distributed. The following learning parameters are used:

Kθ = 100, ε0 = 1, εd = 0.9962 (leading to an exploration probability of 0.1 at t = 600 s).

Policies are evaluated by estimating with a precision εMC = 0.1 their average return over the

grid of initial states:

X0 = {−π,−π/2, 0, π/2, π} × {−10π,−5π,−2π,−π, 0, π, 2π, 5π, 10π}

A number of 20 independent runs are performed for each of the three experiments. Fig-

ure 5.16 compares online LSPI with prior knowledge and parameterized policies (Exper-

iment 2), with online LSPI without prior knowledge and policies implicitly derived from

Q-functions (Experiment 1). The performance of parameterized policies is evaluated by us-

ing continuous-action control (5.11). Using prior knowledge leads to much faster learning,

when compared to online LSPI without prior knowledge. With prior knowledge, the algo-

rithm converges in under 40 s, whereas without prior knowledge it requires more than 100 s.

The monotonous, parameterized policies also perform better than the discrete-action policies

implicitly derived from the Q-functions.

(a) Performance. (b) Magnification of (a).

Figure 5.16: Comparison between online LSPI with prior knowledge (Experiment 2) and the

original online LSPI algorithm (Experiment 1).

Figure 5.17 compares online LSPI without prior knowledge but with parameterized poli-

cies (Experiment 3), with online LSPI without prior knowledge and policies implicitly de-

115

CHAPTER 5. ONLINE AND CONTINUOUS-ACTION LSPI

rived from Q-functions (Experiment 1). Parameterizing policies without using prior knowl-

edge does not change the learning rate, but, like in Experiment 2, the parameterized policies

perform better than the policies implicitly defined by the Q-function. This is because the pa-

rameterized policies produce continuous actions, whereas policies implicitly defined by the

Q-function can only produce discrete actions.

(a) Performance. (b) Magnification of (a).

Figure 5.17: Comparison between parameterized policies computed without prior knowledge

(Experiment 3) and policies computed with the original algorithm (Experiment 1).

Figure 5.18 compares a representative solution obtained using prior knowledge and pa-

rameterized policies, with a representative solution obtained with implicit policies. The

controlled trajectories are obtained in simulation. The policy obtained without using prior

knowledge violates monotonicity in several areas. Because it can apply continuous actions,

the control performance of the monotonous policy is better.

In Figures 5.16 and 5.17, the performance of the parameterized policies was evaluated

using continuous-action control (5.11). However, the actions taken during learning have to be

quantized with (5.13), for the reasons explained in Section 5.5.1. To offer a clearer image of

the performance that can be achieved during learning, the performance of the parameterized

policies is evaluated again, but this time the continuous actions produced by the policies are

quantized into the set Ud = {−10, 0, 10}. Recall that the policies computed with the original

online LSPI algorithm (5.26) already produce discrete actions in this set, so their performance

does not have to be reevaluated.

Figure 5.19 compares Experiment 2, which uses prior knowledge, with Experiment 1, for

the case of quantized policies (compare with Figure 5.16). Figure 5.20 compares Experiment

3, which uses parameterized policies, but no prior knowledge, with Experiment 1, for the

case of quantized policies (compare with Figure 5.17). The differences in the performance

between the parameterized policies, and the policies implicitly defined by the Q-function,

diminishes when the parameterized policies are quantized. However, the learning rate advan-

tage of online LSPI with prior knowledge is still apparent.

116

5.6. EXPERIMENTAL STUDIES

−3 −2 −1 0 1 2 3
−50

−40

−30

−20

−10

0

10

20

30

40

50

α [rad]

α
’
[r

a
d

/s
]

h(α,α’) [V]

−10

−8

−6

−4

−2

0

2

4

6

8

10

(a) Policy computed with the original online LSPI al-

gorithm, without prior knowledge.

−3 −2 −1 0 1 2 3
−50

−40

−30

−20

−10

0

10

20

30

40

50

α [rad]

α
’
[r

a
d

/s
]

h(α,α’) [V]

−10

−8

−6

−4

−2

0

2

4

6

8

10

(b) Monotonous policy computed using prior knowl-

edge.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−2

0

2

α
 [

ra
d

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

0

20

40

α
’
[r

a
d

/s
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

u
 [

V
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−100

−50

0

r
[−

]

t [s]

(c) Trajectory controlled with the policy of (a).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−2

0

2

α
 [

ra
d

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

α
’
[r

a
d

/s
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

0

5

10

u
 [

V
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−100

−50

0

r
[−

]

t [s]

(d) Trajectory controlled with the policy of (b).

Figure 5.18: Representative solutions without prior knowledge (Experiment 1) and with prior

knowledge (Experiment 2).

117

CHAPTER 5. ONLINE AND CONTINUOUS-ACTION LSPI

(a) Performance. (b) Magnification of (a).

Figure 5.19: Comparison between the quantized, parameterized policies computed using

prior knowledge (Experiment 2) and the already discrete-action policies computed with the

original algorithm (Experiment 1).

(a) Performance. (b) Magnification of (a).

Figure 5.20: Comparison between quantized, parameterized policies computed without using

prior knowledge (Experiment 3) and the already discrete-action policies computed with the

original algorithm (Experiment 1).

5.7 Conclusions and open issues

This chapter has extended least-squares policy iteration (LSPI) to online learning. In experi-

ments with an inverted pendulum swingup problem, online LSPI has converged to a perfor-

mance similar to that obtained by offline LSPI, without requiring more samples to reach this

performance. Online LSPI has also exhibited a good robustness to variations in its tuning

parameters, and has been able to learn in real time how to control the (real) inverted pendu-

lum. We have also described a variant of online LSPI that uses prior knowledge about the

monotonicity of the policy in the state variables. In an example involving the control of a

servo-system, using this type of prior knowledge has sped up online LSPI by at least a factor

of two. Overall, online LSPI is a promising algorithm for online RL.

We have also investigated a continuous-action, polynomial Q-function approximator for

118

5.7. CONCLUSIONS AND OPEN ISSUES

offline LSPI. In the inverted pendulum problem, this approximator has reduced chattering,

although it has not improved upon the performance (measured using the discounted return)

obtained with discrete actions. To better assess the potential of polynomial Q-function ap-

proximation, it is important to also evaluate it in other problems.

The experiments in Section 5.6 have shown that the parameter vector of online LSPI

does not converge in general. Moreover, the asymptotical performance guarantees of offline

policy iteration rely on bounded errors in the policy evaluation and policy improvement steps.

Because online LSPI improves the policy before an accurate estimation of the value function

is available, the policy evaluation error can be very large, and the performance guarantees for

offline policy iteration are not useful in the online case. Analyzing whether the asymptotical

performance of online LSPI can be guaranteed is an important research topic.

In problems with a large number of state and action variables, the use of generic, equidis-

tant BFs leads to excessive computational costs. This has already been apparent for the

two-link manipulator, which has four state variables and two action variables. To reduce the

computational cost, the Sherman-Morrison formula (Sherman and Morrison, 1950) can be

used to incrementally compute the inverse of the matrix Γ in the linear system (5.3), thus

eliminating the need to solve the linear system explicitly during policy improvement. An-

other possibility is to use gradient updates of the Q-function parameters, instead of solving a

linear system of equations. Such an incremental least-squares temporal difference algorithm

was proposed by Geramifard et al. (2006, 2007). While these solutions may significantly

speed up the computations, they do not address the core issue: the exponential growth of

the computational complexity with the size of the problem. It may be possible to limit this

growth by automatically discovering a small number of good BFs. Methods to do this have

been developed for offline LSPI (Mahadevan and Maggioni, 2007; Xu et al., 2007), but they

are geared towards the offline construction of BFs, and would need to be modified to work

in the online case. Techniques that construct the BFs online, such as the growing kernel

approach of Jung and Polani (2007), are a promising alternative.

Online LSPI uses the least-squares temporal difference algorithm for policy evaluation.

Other policy evaluation techniques can be used for online learning, as well. One alternative

is the least-squares policy evaluation algorithm. It was originally developed for V-functions

(Bertsekas and Ioffe, 1996; Bertsekas, 2007), but we extend it to Q-functions in Appendix B.

Least-squares temporal difference and least-squares policy evaluation can behave quite differ-

ently when they compute Q-functions online, just like when they compute V-functions online

(Bertsekas, 2007). Therefore, it is important to determine which of these two algorithms

performs better in online learning.

Although in this chapter online LSPI has only been applied to time-invariant processes, it

may also be able to deal with processes that are slowly changing over time, by adapting the

policy to take these changes into account.

119

120

Chapter 6

Cross-entropy policy search

This chapter introduces an approximate policy search algorithm that works for continuous

states and discrete actions. We use a highly flexible policy parameterization able to solve

general problems, unlike previous approaches from the literature, which typically use ad-hoc

parameterizations developed for specific problems. The algorithm looks for the best closed-

loop policy that can be represented using a set of basis functions, where a discrete action is

assigned to each basis function. The type and number of basis functions are specified in ad-

vance. The locations and shapes of the basis functions are optimized, together with the action

assignments. The optimization is carried out with the cross-entropy method and evaluates

the policies by their empirical return from a representative set of initial states. Simulation

experiments are carried out on problems involving two to six state variables. In these exper-

iments, the algorithm reliably obtains good policies, requiring only a small number of basis

functions.

6.1 Introduction

The previous two chapters have considered techniques that compute value functions and use

these value functions to find policies. The present chapter concerns direct policy search

techniques, which aim to compute a policy directly, without using value functions. The main

motivation for direct policy search is that techniques that rely on value functions do not scale

well to high-dimensional problems. Although a general statement cannot be made about

this limitation of value function techniques, most state of the art algorithms relying on value

functions have been applied to problems with up to six continuous state variables (Munos

and Moore, 2002; Lagoudakis and Parr, 2003a; Ernst et al., 2005; Mahadevan and Maggioni,

2007). Moreover, approximating value functions is often a difficult, counterintuitive task.

For instance, it might be necessary that the value function is represented accurately in some

regions of the state space, to have a good accuracy of the policy in another region (Munos

and Moore, 2002).

In policy search, a class of parameterized policies is chosen, and an optimal parameter

vector is sought that maximizes the performance of the policy. In the literature, typically

ad-hoc policy parameterizations with a few parameters are designed for specific problems,

using intuition and prior knowledge about the optimal policy (Marbach and Tsitsiklis, 2003;

121

CHAPTER 6. CROSS-ENTROPY POLICY SEARCH

Munos, 2006; Riedmiller et al., 2007). On the other hand, in the area of value function ap-

proximation, significant efforts have been invested to develop techniques that automatically

find good approximators, without relying on prior knowledge (Munos and Moore, 2002; Ma-

hadevan, 2005; Keller et al., 2006; Ernst et al., 2005; Mahadevan and Maggioni, 2007). These

techniques have been reviewed in Section 3.5. A majority of these techniques represent value

functions using a linear combination of basis functions (BFs), and automatically find both the

BFs and the linear weights.

The aim of this chapter is to develop and evaluate highly flexible policy approximators

for direct policy search. These approximators can be used to solve a large class of Markov

decision processes (MDPs), unlike previous approaches from the literature, which typically

use ad-hoc parameterizations developed for specific problems. The action space of the MDP

is assumed discrete (or discretized). Inspired by the work on the optimization of BFs for

value function approximation, we propose to represent policies usingN state-dependent BFs,

where the BFs are associated to discrete actions by a many-to-one mapping. The type of BFs

and their number N are specified in advance and determine the approximation power of the

representation. The locations and shapes of the BFs, together with the action assignments,

are the parameters subject to optimization. The optimization criterion is a weighted sum of

the returns from a set of representative initial states, where each return is computed with

Monte Carlo simulations (3.34). The representative states can be uniformly distributed and

equally weighted. Alternatively, the representative states together with the weight function

can be used to focus the algorithm on important parts of the state space. This is in contrast to

other policy search techniques, which optimize the average reward over the entire state space

(Marbach and Tsitsiklis, 2003; Konda and Tsitsiklis, 2003), or the returns from every point in

the discrete state space (Mannor et al., 2003). In general, it is impossible to take into account

the return from every state, because the state space is continuous.

It is important to note that because of the rich policy parameterization, the performance

may be a complicated function of the parameter vector, e.g., non-differentiable, non-convex,

with many local optima. One way to address this problem is to rely on global optimization

techniques. Here, the cross-entropy (CE) method for optimization (Rubinstein and Kroese,

2004) is selected as an illustrative example from the wide range of techniques that could be

applied to this problem. Other options include e.g., genetic algorithms, tabu search, pattern

search, etc. Although our approach can be easily extended to hybrid state spaces, where some

variables are continuous and others discrete, for simplicity we only consider continuous state

spaces. Extensive numerical evaluations of the proposed technique are conducted on a simple

example with linear dynamics, as well as on two nonlinear control problems with four and

six state variables, respectively.

Like CE policy search, fuzzy Q-iteration (Chapter 4) and online least-squares policy iter-

ation (Chapter 5) have used BFs to construct their approximators. However, fuzzy Q-iteration

and online least-squares policy iteration have employed fixed BFs, whereas CE policy search

optimizes the BFs. Moreover, because the BFs themselves are parameterized, and also due

to the discrete nature of the BF-action mapping, the policy approximator is highly nonlinear,

while the approximators of Chapters 4 and 5 are linearly parameterized. The flexibility of CE

policy search lies in this nonlinear parameterization, which can be used to represent a large

class of policies.

CE policy search is a model-based, dynamic programming (DP) approach. However, it is

less restrictive than typical DP techniques, in the sense that it only requires trajectories to be

122

6.2. RELATED WORK

generated from every representative state, whereas typical DP techniques require samples to

be generated from arbitrary states. CE policy search is nevertheless more restrictive than typ-

ical reinforcement learning (RL) techniques, which can work with a single trajectory without

requiring any resets of the state.

The remainder of this chapter is structured as follows. Section 6.2 gives a brief overview

of the literature related to our approach. Section 6.3 describes the CE method for rare-event

simulation and optimization. In Section 6.4, the CE algorithm for policy search is introduced

and instantiated for a policy representation using radial basis functions (RBFs). Section 6.5

reports the results of extensive numerical experiments, in which CE policy search is used

to control a double integrator, to balance a bicycle riding at constant speed, and to control

the treatment of infection with the human immunodefficiency virus (HIV). Using the dou-

ble integrator problem, CE policy search is compared to the fuzzy Q-iteration algorithm of

Chapter 4. Section 6.6 summarizes the results of the numerical experiments and concludes

the chapter.

6.2 Related work

Gradient-based optimization has been the focus of much theoretical and empirical work in

policy search (Baird and Moore, 1999; Sutton et al., 2000; Marbach and Tsitsiklis, 2003;

Konda and Tsitsiklis, 2003; Munos, 2006; Riedmiller et al., 2007). Such work is based on the

assumption that the locally optimal solution found by the gradient method is good enough,

which may be true when the policy parameterization is simple and well suited for the partic-

ular problem. Because our policy parameterization is very rich, the optimization criterion is

likely to have many local optima and may also be non-differentiable. Gradient techniques are

therefore unsuitable in our case. We select the (global) CE method for optimization from the

plethora of available global, gradient-free optimization techniques. Another global optimiza-

tion method that has been applied to policy search is evolutionary computation, both when a

model is available (Barash, 1999; Chin and Jafari, 1998; Chang et al., 2007, Chapter 3) and

when it is not (Gomez et al., 2006).

The use of the CE method for policy optimization was introduced by Mannor et al. (2003).

Chang et al. (2007, Chapter 4) recently proposed finding a policy with the model-reference

adaptive search, which is closely related to the CE method. Both works focus on solving

finite, small MDPs, although they also propose solving large MDPs with parameterized poli-

cies. In contrast, we focus on highly flexible policy parameterizations to solve continuous-

state MDPs. Additionally, we consider representative states associated with weights as a tool

to focus the optimization on important initial states, and as a way to circumvent the need to

estimate returns for every value of the state, which is impossible when the states are continu-

ous. Chang et al. (2007, Chapter 4) only optimized the return starting from one initial state,

whereas Mannor et al. (2003) optimize the returns from every (discrete) initial state.

Our policy parameterization is inspired by the techniques to automatically find BFs for

value function approximation. These BF construction techniques were reviewed in Sec-

tion 3.5. They include among others local and global refinement (Munos and Moore, 2002;

Ratitch and Precup, 2004), optimization (Menache et al., 2005; Whiteson and Stone, 2006),

regression techniques (Ernst et al., 2005), and spectral analysis of the transition function

(Mahadevan, 2005; Mahadevan and Maggioni, 2007). Out of these options, we choose opti-

mization, but we search for a policy approximator, rather than a value function approximator.

123

CHAPTER 6. CROSS-ENTROPY POLICY SEARCH

Instead of minimizing the Bellman residual (3.33), as is typically done to find value func-

tion BFs (Menache et al., 2005), we maximize the empirical return from the representative

states. In value function approximation, changing the parameters of the BFs while running

the DP/RL algorithm can lead to a loss of convergence. In our policy search approach, the

BF parameters can be optimized without causing convergence problems.

Although most of the proposed approaches to find value function BFs cannot be used

to find policy BFs, one possible exception is the spectral analysis technique of Mahadevan

(2005); Mahadevan and Maggioni (2007). This technique constructs global BFs that obey

the topology of the MDP state transitions, and uses these BFs to estimate approximate value

functions. Such BFs could also be used to parameterize the policy. This possibility has not

been explored yet.

Note that the concept of representative states used in this chapter is different from the one

used in approximate value iteration with representative states (Bertsekas and Tsitsiklis, 1996,

Chapter 6). There, an auxiliary MDP with the state space consisting of the representative

states is solved. Then, the solution is extended to the original MDP. In this chapter, the return

from the representative states is optimized, but the policies considered are defined over the

entire state space.

Our method uses Monte Carlo simulations to estimate the performance of policies, and

in this sense it is related to rollout policy iteration (Lagoudakis and Parr, 2003b; Bertsekas,

2005). A rollout is the computation of a Monte Carlo estimate of the V-value of a state,

or of the Q-value of a state-action pair. Performing rollouts for many states or state-action

pairs, and using the resulting value function estimate to perform policy improvement, leads

to rollout policy iteration. Rollouts are a way to find value functions without solving the

Bellman equation; in our approach, we do not use value functions at all.

6.3 Cross-entropy optimization

This section provides a brief introduction to the CE method for optimization (Rubinstein and

Kroese, 2004). For a full description, see Appendix A. This introduction is similar to that

given in Section 4.5.1. Consider the following optimization problem:

max
a∈A

s(a) (6.1)

where s : A → R is the score function to maximize, and the variable a takes values in

the domain A. Denote the maximum by s∗. The CE method for optimization maintains a

probability density with support A. In each iteration, a number of samples are drawn from

this density and the score values for these samples are computed. A (smaller) number of

samples that have the highest scores are kept, and the remaining samples are discarded. The

probability density is then updated using the selected samples, such that at the next iteration

the probability of drawing better samples is increased. The algorithm stops when the score

of the worst selected sample no longer improves significantly.

Formally, a family of probability densities1 {p(·; v)} has to be chosen, where the dot

stands for the random variable. This family has supportA and is parameterized by v. In each

1For simplicity, we will abuse the terminology by using the term ‘density’ to refer to probability density functions

(which describe probabilities of continuous random variables), as well as to probability mass functions (which

describe probabilities of discrete random variables).

124

6.3. CROSS-ENTROPY OPTIMIZATION

iteration τ ≥ 1 of the CE algorithm, a number NCE of samples is drawn from the density

p(·; vτ−1), their scores are computed, and the (1 − ̺CE) quantile2 λτ of the sample scores

is determined, with ̺CE ∈ (0, 1). Then, a so-called associated stochastic problem is defined,

which involves estimating the probability that the score of a sample drawn from p(·; vτ−1) is

at least λτ :

Pa∼p(·;vτ−1)(s(a) ≥ λτ) = Ea∼p(·;vτ−1) {I(s(a) ≥ λτ)} (6.2)

where I is the indicator function, equal to 1 whenever its argument is true, and 0 otherwise.

The probability (6.2) can be estimated by importance sampling. For this problem, an

importance sampling density is one that increases the probability of the interesting event

s(a) ≥ λτ . The best importance sampling density in the family {p(·; v)}, in the smallest

cross-entropy sense, is given by the solution of:

arg max
v

Ea∼p(·;vτ−1) {I(s(a) ≥ λτ) ln p(a; v)} (6.3)

An approximate solution of (6.3) is computed with the so-called stochastic counterpart:

vτ = arg max
v

1

NCE

NCE∑

is=1

I(s(ais) ≥ λτ) ln p(ais ; v) (6.4)

CE optimization then proceeds with the next iteration using the new density parameter

vτ (the probability (6.2) is never actually computed). The updated density aims at generating

good samples with higher probability, thus bringing λτ+1 closer to the optimum s∗. The

goal is to eventually converge to a density which generates samples close to optimal value(s)

of a with very high probability. The highest score among the samples generated in all the

iterations is taken as the approximate solution of the optimization problem, and the corre-

sponding sample as an approximate location of the optimum. The algorithm is stopped when

the improvement in the (1− ̺CE)-quantile does not exceed εCE for dCE successive iterations,

or when a maximum number of iterations τmax is reached.

Under certain assumptions onA and p(·; v), the stochastic counterpart (6.4) can be solved

analytically. One particularly important case when this happens is when p(·; v) belongs to the

natural exponential family. For instance, when {p(·; v)} is the family of Gaussians param-

eterized by the mean η and the standard deviation σ (so, v = [η, σ]T), the solution of the

stochastic counterpart is the mean and the standard deviation of the best samples:

ητ =

∑NCE

is=1 I(s(ais) ≥ λτ)ais∑NCE

is=1 I(s(ais) ≥ λτ)
(6.5)

στ =

√√√√
∑NCE

is=1 I(s(ais) ≥ λτ)(ais − ητ)2
∑NCE

is=1 I(s(ais) ≥ λτ)
(6.6)

The most important parameters in the CE method for optimization are the number of

samplesNCE and the quantile of best samples used to update the density, ̺CE. The number of

samples should be at least a multiple of the number of parametersNv , soNCE = cCENv with

2If the score values of the samples are ordered increasingly and indexed such that s1 ≤ · · · ≤ sNCE
, then the

(1 − ̺CE) quantile is: λτ = s⌈(1−̺CE)NCE⌉ where ⌈·⌉ rounds the argument to the next greater or equal integer

number (ceiling).

125

CHAPTER 6. CROSS-ENTROPY POLICY SEARCH

cCE ∈ N, cCE ≥ 2. The parameter ̺CE can be taken around 0.01 when many samples are used,

or larger, around ln(NCE)/NCE, if there are only a few samples (NCE < 100) (Rubinstein and

Kroese, 2004).

CE optimization has found many applications in recent years, e.g., in biomedicine (Ma-

thenya et al., 2007), vector quantization (Boubezoul et al., 2008), vehicle routing (Chepuri

and de Mello, 2005), and clustering (Rubinstein and Kroese, 2004). While its convergence

is not guaranteed in general, and the theoretical understanding of the CE method is currently

limited, the algorithm is usually convergent in practice (Rubinstein and Kroese, 2004). Con-

vergence proofs are available only for combinatorial optimization (Rubinstein and Kroese,

2004; Margolin, 2005; Costa et al., 2007). The most general proof available to date shows

that the CE method for combinatorial optimization asymptotically converges, with probabil-

ity 1, to a unit mass density, i.e., a density that always generates samples equal to a single

point. Furthermore, this convergence point can be made equal to the optimal solution by

using an adaptive smoothing technique (Costa et al., 2007).

6.4 CE policy search

In this section, the proposed algorithm for policy optimization using the cross-entropy method

is described. The algorithm works for discrete-action, stochastic or deterministic MDPs.

First, the general parameterization of the policy is given and the CE score function is de-

fined. Then, an instantiation of the general algorithm is given that uses RBFs to parameterize

policies.

6.4.1 Policy parameterization and CE score function

Consider a stochastic MDP with the state space X , the action space Ud, the transition proba-

bility function f̃ : X × Ud ×X → [0,∞), and the reward function ρ̃ : X × Ud ×X → R.

Denote by D the number of state variables (the dimension of X). In the sequel, it is assumed

that the action space is discrete and contains M distinct actions, Ud = {u1, . . . , uM}. The

discrete set Ud can result from the discretization of an originally continuous action space.

The policy parameterization is defined in the following way. A set of N BFs over the

state space is defined. The BFs are parameterized by a vector ξ ∈ Ξ that typically gives their

locations and shapes. Denote these BFs by ϕi(x; ξ) : X → R, i = 1, . . . ,N , to highlight

their dependence on ξ. The BFs are associated to the discrete actions by a many-to-one

mapping. This mapping can be represented as a vector ϑ ∈ {1, . . . ,M}N that associates

each BF ϕi to a discrete action index ϑ(i), or equivalently to a discrete action uϑ(i). The

expression ϑ(i) is used to denote the i-th element of ϑ. A schematic representation of this

parameterization is given in Figure 6.1.3

Once ξ and ϑ are known, there are still several ways in which they can be used to form

the policy. Two different policy parameterizations are considered in the sequel, which will

be called the nearest-BF and the sum-of-BFs policies, respectively. The first type of policy

chooses for any point x the action associated to the BF that takes the largest value at x:

h(x) = uϑ(i∗), i∗ = arg max
i

ϕi(x; ξ) (6.7)

3Recall that calligraphic symbols are used to denote quantities related to policy approximation.

126

6.4. CE POLICY SEARCH

U

u
1

u
2

u
Mc

1
b

1
ϑ

X

j
1

j2

j
N

Figure 6.1: A schematic representation of the policy parameterization. The vector ϑ asso-

ciates the BFs to the discrete actions. In this example, the BFs are parameterized by their

centers ci and widths bi, so that ξ = [cT1 , b
T
1 , . . . , c

T
N , b

T
N]T.

Because many types of BFs used in practice take their maximum value at a center point

and decrease with the distance from this point, the policy (6.7) is called in the sequel a nearest-

BF policy. For the second type of policy, the values of the BFs associated to each discrete

action are summed up, and the action with the largest sum is chosen:

h(x) = uj∗ , j∗ = arg max
j

∑

i∈{i′ | 1≤i′≤N , ϑ(i′)=j }

ϕi(x; ξ) (6.8)

This is called a sum-of-BFs policy in the sequel. The performance of these two parameteri-

zations is compared in Section 6.5.1.

Any of these two policies is uniquely determined by the value of the parameter vector

a = [ξT, ϑT]T, ranging in the set A = Ξ × {1, . . . ,M}N . CE optimization will be used to

search for an optimal parameter vector a∗ = [ξ∗T, ϑ∗T]T that maximizes the following score

function:

s(ξ, ϑ) =
∑

x0∈X0

w(x0)R̂
h(x0) (6.9)

where R̂h is the estimated return of the policy h determined by ξ and ϑ, and X0 is a given

finite set of representative states, weighted by w : X0 → (0, 1].4 The set X0, together with

the weight functionw, will determine the performance of the resulting policy. Some problems

only require to optimally control the system from a restricted set of initial states; X0 should

then be equal to this set, or included in it when the set is too large. Also, initial states that are

deemed more important can be assigned larger weights. When all initial states are equally

important, the elements of X0 should be uniformly spread over the state space, randomly or

equidistantly, and identical weights equal to 1
|X0|

should be assigned to every element of X0

(|·| denotes set cardinality).

The return for each state in X0 is estimated by Monte Carlo simulations:

R̂h(x0) =
1

NMC

NMC∑

i0=1

K∑

k=0

γkρ̃(xi0,k, h(xi0,k), xi0,k+1) (6.10)

4More generally, a density w over the initial states can be considered, and the score function is then

Ex0∼w(·)

˘

Rh(x0)
¯

, i.e., the expected return when x0 ∼ w(·). Such a score function can be evaluated by

Monte Carlo methods. In this chapter, we only use finite sets X0 associated with weighting functions w as in (6.9).

127

CHAPTER 6. CROSS-ENTROPY POLICY SEARCH

where xi0,0 = x0, xi0,k+1 ∼ f̃(xi0,k, h(xi0,k), ·), and NMC is the number of Monte Carlo

simulations to carry out. So, each Monte Carlo simulation i0 makes use of a system trajectory

that is K steps long and generated using the policy h. The system trajectories are generated

independently, so the score computation is unbiased. To guarantee that an error of at most

εMC is introduced by truncating the discounted sum of rewards after K steps, the value of K
can be computed with Equation (2.27), copied here for easy reference:

K =
⌈
logγ εMC(1− γ)/ ‖ρ̃‖∞

⌉
(6.11)

where ‖ρ̃‖∞ = maxx,u,x′ |ρ̃(x, u, x′)| is assumed bounded (see e.g., Mannor et al., 2003).

In order to define the associated stochastic problem (6.2) for the optimization prob-

lem of maximizing (6.9), it is necessary to choose a family of densities with support Ξ ×
{1, . . . ,M}N . In general, Ξ may not be discrete set, so it is convenient to use separate den-

sities for the two parts ξ and ϑ of the parameter vector. Denote the density for ξ by pξ(·; vξ),
parameterized by vξ and with support Ξ, and the density for ϑ by pϑ(·; vϑ), parameterized by

vϑ and with support {1, . . . ,M}N . Let Nvξ
be the number of elements in the vector vξ, and

Nvϑ
the number of elements in vϑ.

The CE algorithm for direct policy search is given as Algorithm 6.1. For easy reference,

Table 6.1 collects the meaning of the parameters and variables of CE policy search. The

stochastic counterparts in lines 8 and 9 of Algorithm 6.1 have been simplified, using the fact

that the samples are already sorted in the ascending order of their scores. When εCE = 0,

the algorithm terminates when λ remains constant for dCE consecutive iterations. When

εCE > 0, the algorithm terminates when λ improves for dCE consecutive iterations, and these

improvements do not exceed εCE. The integer dCE > 1 accounts for the random nature of the

algorithm, by ensuring that the latest performance improvements did not decrease below εCE

accidentally, but the decrease remains steady for dCE iterations. Because the algorithm is not

guaranteed to converge in general, a maximum number of iterations τmax has to be chosen to

ensure the algorithm terminates in a finite time.

Algorithm 6.1 Cross-entropy policy search

Input:

dynamics f̃ , reward function ρ̃, discount factor γ, representative states X0, weights w
density families {pξ(·; vξ)} , {pϑ(·; vϑ)}, initial density parameters vξ,0, vϑ,0

parameters N , ̺CE, cCE, dCE, εCE, εMC, NMC, τmax

1: set number of samples NCE ← cCE(Nvξ
+Nvϑ

)
2: τ ← 1
3: repeat

4: generate samples ξ1, . . . , ξNCE
from pξ(·; vξ,τ−1); ϑ1, . . . , ϑNCE

from pϑ(·; vϑ,τ−1)
5: compute s(ξis , ϑis) by (6.9), is = 1, . . . , NCE

6: reorder and reindex s.t. s1 ≤ · · · ≤ sNCE

7: λτ ← s⌈(1−̺CE)NCE⌉

8: vξ,τ ← arg maxvξ

∑NCE

is=⌈(1−̺CE)NCE⌉ ln pξ(ξis ; vξ)

9: vϑ,τ ← arg maxvϑ

∑NCE

is=⌈(1−̺CE)NCE⌉ ln pϑ(ϑis ; vϑ)
10: τ ← τ + 1
11: until (τ > dCE and 0 ≤ λτ−τ ′ − λτ−τ ′−1 ≤ εCE, for τ ′ = 1, . . . , dCE − 1) or τ > τmax

Output: ξ̂∗, ϑ̂∗, the best sample; and ŝ∗ = s(ξ̂∗, ϑ̂∗)

128

6.4. CE POLICY SEARCH

Table 6.1: Parameters and variables for CE policy search.

Symbol Meaning

N ; M number of BFs; number of discrete actions

ξ; ϑ BF parameters; assignment of discrete actions to BFs

vξ; vϑ parameters of the probability density for ξ; and for ϑ
NCE number of samples used at every CE iteration

̺CE proportion of samples used in the CE updates

λ (1− ̺CE) quantile of the sample performance

cCE how many times more samples to use than the number of density parameters

dCE number of iterations for which λ should stay roughly constant

εCE; εMC convergence threshold; admissible error in computing returns

NMC number of Monte Carlo simulations for each representative state

τ ; τmax iteration index; maximum number of iterations

Many times it is convenient to use distributions with unbounded support (e.g., Gaussians)

when the BF parameters are continuous. However, the set Ξ must typically be bounded,

e.g., when ξ contains centers of radial BFs, which must remain inside a bounded state space.

Whenever this situation arises, samples can be generated from the density with larger support,

and those samples that do not belong to Ξ can be rejected. The procedure continues untilNCE

valid samples are generated, and the rest of the algorithm remains unchanged. The situation

is entirely similar for the discrete action assignments ϑ, when it is convenient to use a family

of densities pϑ(·; vϑ) with a support larger than {1, . . . ,M}N . An equivalent algorithm that

uses all the samples can always be given by extending the score function to give samples

falling outside the domain very large negative scores (larger in magnitude than for any valid

sample). Additionally, for this equivalent algorithm, NCE and ̺CE have to be adapted at

each iteration such that a constant number of valid samples is generated, and that a constant

number of best samples is used for the parameter updates. The theoretical basis of the CE

optimization procedure is therefore not affected by sample rejection.

Section 6.3 has already discussed typical settings for the parameters cCE (yielding NCE)

and ̺CE. Here, other parameters specific to policy search in MDPs are discussed. The pa-

rameter εMC > 0 can be chosen a few orders of magnitude smaller than the typical return

obtained by a policy from the states in X0. Since it does not make sense to impose a conver-

gence threshold smaller than the precision of the score function, εCE should be chosen larger

than or equal to εMC. A good value is εCE = εMC. The number N of BFs determines the

accuracy of the policy approximator, and a good value for N will depend on the problem.

In Sections 6.5.1 and 6.5.2, we study the effect of varying N in two example problems. For

deterministic MDPs, a single trajectory is simulated for every initial state inX0, soNMC = 1.

For stochastic MDPs, several trajectories should be simulated, NMC > 1, with a good value

of NMC depending on the MDP considered.

6.4.2 CE policy search with radial basis functions

In this section, Markov decision processes with bounded, Euclidean state spaces are consid-

ered. Furthermore, it is assumed that the state space is a hyperbox centered in the origin, such

that |x| ≤ xmax ∀x ∈ X where xmax ∈ (0,∞)D, and where the absolute value and relational

129

CHAPTER 6. CROSS-ENTROPY POLICY SEARCH

operators are applied element-wise. These assumption can easily be relaxed, but are made

here for simplicity of the exposition.5 Throughout the remainder of this chapter, Gaussian

RBF are used to represent the policy:

ϕi(x; ξ) = exp

[
−

D∑

d=1

(xd − ci,d)2
b2i,d

]
(6.12)

where D is the number of state variables, ci = [ci,1, . . . , ci,D]T is the D-dimensional center,

and bi = [bi,1, . . . , bi,D]T theD-dimensional radius of the i-th RBF. Many other types of BFs

could be used instead, including e.g., splines and polynomials. However, because Gaussian

RBFs are a common choice for approximate DP/RL (see e.g., Tsitsiklis and Van Roy, 1996;

Ormoneit and Sen, 2002), we choose to focus on RBFs for this study.

Denote the vector of centers by c = [cT1 , . . . , c
T
N]T and the vector of radii by b =

[bT1 , . . . , b
T
N]T. So, ci,d and bi,d are scalars, ci and bi are D-dimensional vectors that collect

the scalars for all D dimensions, and c and b are DN -dimensional vectors that collect theD-

dimensional vectors for allN RBFs. The centers of the RBFs have to lie within the bounded

state space X , and the radii have to be strictly positive, i.e., c ∈ XN and b ∈ (0,∞)DN . The

BFs parameter vector is therefore ξ = [cT, bT]T and takes values in Ξ = XN × (0,∞)DN .

To define the associate stochastic problem for CE optimization, Gaussian densities are

selected for the parameter vector ξ. The density for each center ci,d is parameterized by the

mean ηc
i,d and standard deviation σc

i,d; and the density for each radius bi,d is parameterized by

the mean ηb
i,d and the standard deviation σb

i,d. Similarly to the centers and radii themselves,

denote the DN -dimensional vectors of means and standard deviations as follows:

ηc = [ηc
1,1, . . . , η

c
1,D, , η

c
N ,1, . . . , η

c
N ,D]T

σc = [σc
1,1, . . . , σ

c
1,D, , σ

c
N ,1, . . . , σ

c
N ,D]T

ηb = [ηb
1,1, . . . , η

b
1,D, , η

b
N ,1, . . . , η

b
N ,D]T

σb = [σb
1,1, . . . , σ

b
1,D, , σ

b
N ,1, . . . , σ

b
N ,D]T

The parameter for the density pξ(·; vξ) is then vξ = [(ηc)T, (σc)T, (ηb)T, (σb)T]T ∈ R
4DN .

Since the support of this density is R
2DN instead of the required Ξ = XN × (0,∞)DN ,

samples that do not belong to Ξ are rejected.

The mean and standard deviation for the RBF centers and radii are initialized for all i as

follows:
ηc

i = 0D σc
i = xmax

ηb
i =

xmax

2(D
√
N − 1)

σb
i =

xmax

4(D
√
N − 1)

where 0D is a vector of D zeros. The initial means and standard deviations for the RBF cen-

ters are chosen to ensure a good coverage of the state space. The initial means and standard

deviations for the RBF radii are initialized heuristically to have a similar amount of overlap

between RBFs as N and D vary.6 The standard deviations also ensure that most of the radii

5They will be relaxed e.g., when CE policy search is applied to the HIV infection control problem of Sec-

tion 6.5.3.
6If N were a power of D, and the RBF centers were distributed on a grid with

D
√
N equidistant points on each

axis, then along each axis the expected radii ηbi would be a quarter of the distance between neighboring RBFs.

130

6.4. CE POLICY SEARCH

samples drawn at the first iteration are positive and therefore do not have to be rejected. At

the end of each iteration τ of Algorithm 6.1, the means and standard deviations are updated

element-wise according to (6.5) and (6.6).

For the assignment ϑ of discrete actions to BFs, the Bernoulli distribution is chosen. This

distribution has a discrete binary support, {0, 1}, and a single parameter ηbin ∈ [0, 1]. It

produces the value 1 with probability ηbin and the value 0 with probability (1−ηbin). To use

the Bernoulli distribution, each element in the indices vector ϑ is represented in binary code,

using N bin = ⌈log2M⌉ bits. When sampling, the bits are drawn independently. Whenever

M is not a power of 2, bit combinations corresponding to invalid indices are rejected while

drawing samples. For instance, if M = 3, N bin = 2, the binary value 00 points to the

first discrete action u1 (since the binary representation is zero-based), 01 points to u2, 10 to

u3, and 11 is invalid and will be rejected. Such a concatenation of Bernoulli distributions

can converge to any binary value (i.e., to a degenerate distribution that associates all the

probability mass with that binary value), which means it can find a precise optimum location.

Other distributions with discrete support that have this property typically require more than

⌈log2M⌉ parameters.

Denote by ϑbin the binary representation of the action assignments ϑ. This representa-

tion has N bin bits for each individual action assignment ϑ(i). Therefore, the entire binary

representation ϑbin hasNN bin bits. Because each bit is drawn from its own Bernoulli distri-

bution, the density parameter vector vϑ for the action assignments also hasNN bin elements:

vϑ ∈ [0, 1]NNbin

. The initial value for all the parameters is 0.5, which means that the bits 0
and 1 are initially equiprobable for every position of ϑbin. Because the Bernoulli distribution

belongs to the natural exponential family, the stochastic counterpart in line 9 of Algorithm 6.1

can be solved analytically:

vϑ,τ =

∑NCE

is=1 I(s(ξis , ϑis) ≥ λτ)ϑbin
is∑NCE

is=1 I(s(ξis , ϑis) ≥ λτ)

where ϑis is the integer value corresponding to the binary sample ϑbin
is

.

Because the form of the BFs, the densities for the BF parameters and action assignments,

and the initial density parameters in Algorithm 6.1 have all been fixed, the parameters left to

be chosen are N , ̺CE, cCE, dCE, εCE, εMC, NMC, and τmax (see Table 6.1). The number of

density parameters is Nvξ
= 4DN (mean and variance for each individual center coordinate

and radius value) and Nvϑ
= NN bin. Therefore, NCE = cCEN (4D +N bin).

Next, the complexity of this instantiation of CE policy search is briefly investigated. The

largest amount of computation is spent by the algorithm in the Monte Carlo simulations

required to estimate the score. Neglecting therefore the other computations, the complexity

of one iteration of the algorithm is at most:

tstep[cCEN (4D +N bin) |X0|NMCK] (6.13)

where NCE = cCEN (4D +N bin) is the number of samples evaluated at each iteration, K is

the maximum length (6.11) of each trajectory, and tstep is the time needed to compute h(x)
for a fixed x and to simulate the controlled system for one time step.

131

CHAPTER 6. CROSS-ENTROPY POLICY SEARCH

6.5 Experimental studies

In this section, extensive numerical experiments are carried out to assess the performance of

CE policy search. CE policy search is used to control a double integrator in Section 6.5.1,

to balance a bicycle riding at constant speed in Section 6.5.2, and to control the treatment of

infection with the HIV in Section 6.5.3.

6.5.1 Discrete-time double integrator

In this section, a simple control problem is used to evaluate the proposed CE policy search

algorithm, and to compare it with the fuzzy Q-iteration algorithm of Chapter 4. The example

involves the optimal control of a double integrator, and is chosen so that optimal and near-

optimal trajectories from any initial state terminate in a small number of steps. This property

allows for extensive simulation experiments to be run and for the direct computation of an

optimal solution, without excessive computational costs.

Model and an optimal solution

The optimal control of a discrete-time, double integrator is considered. This problem is

deterministic with a two-dimensional continuous state space X = [−1, 1] × [−0.5, 0.5], a

binary action space Ud = {−0.1, 0.1}, and the following dynamics:

xk+1 = f(xk, uk) = sat
{
[x1,k + x2,k, x2,k + uk]T,−xmax, xmax

}
(6.14)

where xmax = [1, 0.5]T and ‘sat’ denotes saturation, which is used to restrict the evolution of

the state to X . The states for which |x1| = 1 are terminal. Applying any action in a terminal

state brings the process back to the same state, with a zero reward. The goal is to drive

the position x1 to either boundary of the interval [−1, 1] (i.e., to a terminal state), in such a

way that at the moment when x1 reaches the boundary, the speed x2 as small as possible in

magnitude. This goal is expressed by the reward function:

rk+1 = ρ(xk, uk) = −(1− |x1,k+1|)2 − x2
2,k+1x

2
1,k+1 (6.15)

This reward function is depicted in Figure 6.2. The discount factor γ is set to 0.95.

−1
−0.5

0
0.5

1 −0.5

0

0.5

−1

−0.8

−0.6

−0.4

−0.2

0

x
2

x
1

ρ
(x

1
,
x

2
)

Figure 6.2: The reward function for the double-integrator example.

132

6.5. EXPERIMENTAL STUDIES

Figure 6.3(a) presents the optimal actions for a regular grid of 101× 101 points covering

the state space. This figure gives an accurate representation of the optimal policy. The optimal

actions are obtained using the following brute-force procedure. All the possible sequences

of actions of a sufficient length are generated, and the system is controlled with all these

sequences starting from every state on the grid. For every state, the sequence that produces

the best discounted return is the optimal sequence; the first action in this sequence is the

optimal action; and the return accumulated by this sequence is the optimal value for that

state. This procedure required 12841 s to run.7 Figure 6.3(b) presents the optimal values for

the states on the grid. Note that this brute-force procedure can only be applied because the

considered MDP has terminal states, and all the optimal trajectories reach a terminal state

after a relatively small number of steps. The procedure cannot be applied for tasks without

terminal states, and quickly becomes impractical as the possible length of optimal trajectories

increases.

−1 −0.5 0 0.5 1
−0.5

0

0.5

x
1

x
2

h
*
(x

1
,x

2
)

(a) An optimal policy. The black color corre-

sponds to the action −0.1, and white to +0.1.

−1

−0.5

0

0.5

1 −0.5

0

0.5

−3

−2

−1

0

x
2x

1

V
*(

x
1
,x

2
)

(b) The optimal returns (optimal value function).

Figure 6.3: An optimal solution for the double-integrator example.

Results of CE policy search

To apply CE policy search, the following set of representative initial states was used to com-

pute the score (6.9):

X0 = {−1,−0.9, . . . , 1} × {−0.5,−0.3,−0.1, 0, 0.1, 0.3, 0.5}

The states were equally weighted using w(x0) = 1/ |X0| for any x0. The parameter settings

for the algorithm were cCE = 5, ̺CE = 0.05, εCE = εMC = 0.005, dCE = 5, τmax = 50.

Little or no tuning was necessary to choose these values. Because the system is deterministic,

NMC = 1. For all the experiments presented below, the maximum number of iterations τmax

was never reached before convergence.

With these parameter settings, CE policy search was run while gradually increasing the

number N of BFs from 4 to 18. Separate experiments were run for the nearest-RBF and the

7All the computation times reported in this chapter were recorded while running the algorithms in MATLAB 7.1

on a PC with an Intel Pentium IV 3 GHz CPU, 512 MiB RAM, and using Windows XP.

133

CHAPTER 6. CROSS-ENTROPY POLICY SEARCH

sum-of-RBFs policies. Ten experiments were run for every combination of N and type of

policy. A synthesis of the obtained performance is given in Figures 6.4(a) and 6.4(b). For

comparison, the exact optimal score for X0 was computed using a brute-force search for

optimal open-loop action sequences, as explained in Section 6.5.1.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

−0.9

−0.85

−0.8

−0.75

−0.7

Number of RBFs N

S
c
o

re

mean score

max score

min score

optimal score

(a) Nearest-RBF policy.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

−0.9

−0.85

−0.8

−0.75

−0.7

Number of RBFs N

S
c
o

re

mean score

max score

min score

optimal score

(b) Sum-of-RBFs policy.

−0.9

−0.85

−0.8

−0.75

−0.7

Number of fuzzy sets N

S
c
o
re

4
2

6
2

8
2

10
2

12
2

14
2

16
2

18
2

fuzzy Q−iteration score

optimal score

(c) Fuzzy Q-iteration.

Figure 6.4: Performance of CE policy search and fuzzy Q-iteration on the double-integrator

example. For CE policy search, the average performance is shown as a function of N ,

together with the maximum and minimum performance achieved in any of the 10 experi-

ments. Note the difference in the scale of the horizontal axes between (a)–(b) (linear), and

(c) (quadratic).

CE policy search is compared with a representative technique relying on value functions,

namely the fuzzy Q-iteration algorithm of Chapter 4. To apply fuzzy Q-iteration to the double

integrator problem, equidistant triangular membership functions (MFs) were defined for both

state variables, and the two-dimensional MFs were computed as the products of each com-

bination of one-dimensional MFs, as in Example 4.1. The evolution of the fuzzy Q-iteration

performance with the number of MFs is shown in Figure 6.4(c). The number of MFs for

each state variable was gradually increased from 4 to 18. The total number of pyramidal,

two-dimensional MFs is the square of this number. The convergence threshold for fuzzy

Q-iteration was chosen equal to 10−7, to ensure that the parameter vector θ converges to a

near-optimal value. Note that for this example, fuzzy Q-iteration is not guaranteed to be con-

sistent, i.e., to converge to the optimal Q-function as the approximation accuracy increases.

134

6.5. EXPERIMENTAL STUDIES

This is because the reward function (6.15) is discontinuous at the transitions into the terminal

states. Recall that a terminal state is entered whenever the position x1 reaches a boundary of

the interval [−1, 1]. To see that the reward function is discontinuous, it is sufficient to note

that all rewards obtained in the terminal state are 0 (by definition), but rewards obtained for

states x1 close to −1 or 1 are strictly negative when x2 is non-zero.

For both the nearest-RBF and the sum-of-RBFs policies, CE policy search gives a large

variance in the performance when N = 4, . . . , 10, although the average performance is

increasing and a near-optimal performance is reached in some experiments starting from

N = 7. Starting fromN = 10, the algorithm consistently and reliably obtains a near-optimal

performance. In contrast, fuzzy Q-iteration obtains a near-optimal performance starting from

9 MFs on each axis, which corresponds to a (much larger) number of 81 MFs. Overall, to

obtain a similar performance to CE policy search with N BFs, fuzzy Q-iteration requires a

number of MFs roughly equal to the square of this number. This difference is mainly due

to the fact that the MFs used by fuzzy Q-iteration are equidistant and identically shaped,

whereas the CE algorithm optimizes the shapes and locations of the BFs. There are no major

differences between the performance of nearest-RBF and sum-of-RBFs policies.

Figure 6.5(a) presents an example of a nearest-RBF policy and Figure 6.5(b) of a sum-

of-RBFs policy, both computed by CE policy search. Both policies resemble only roughly

the optimal policy in the left part of Figure 6.3. Due to the RBF shapes, the edges where

the actions change are more curved than in the optimal policy. Figures 6.6(a) and 6.6(b)

show the convergence of the runs that produced the policies in Figures 6.5(a) and 6.5(b).

The convergence is not monotonous; this is because the algorithm uses random samples in

every iteration. Note that the variation of the (1 − ̺CE) quantile of the sample performance

is significant, although it appears to be small at the scale of the figure. As seen in Figure 6.4,

differences in the performance as small as 0.1 are significant.

−1 −0.5 0 0.5 1
−0.5

0

0.5

x
1

x
2

h(x
1
,x

2
)

(a) A nearest-RBF policy, N = 15.

−1 −0.5 0 0.5 1
−0.5

0

0.5

x
1

x
2

h(x
1
,x

2
)

(b) A sum-of-RBFs policy, N = 15.

Figure 6.5: Some representative policies computed with CE policy search.

We have also evaluated the usefulness for our algorithm of smooth updates of the Ber-

noulli density parameters vϑ. With smoothing, the new density parameter vϑ,τ is computed

as a convex combination between the solution of the stochastic counterpart in line 9 of Algo-

rithm 6.1, and the old parameter vϑ,τ−1. The convex update is parameterized by the smooth-

ing parameter αCE ∈ (0, 1]:

vϑ,τ = (1− αCE)vϑ,τ−1 + αCE arg max
vϑ

∑NCE

is=⌈(1−̺CE)NCE⌉
ln pϑ(ϑis ; vϑ)

135

CHAPTER 6. CROSS-ENTROPY POLICY SEARCH

0 5 10 15 20 25 30
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Iteration τ

S
c
o

re

Mean score

Max score

Min score

(1−ρ
CE

) quantile, λ
τ

(a) Convergence for a nearest-RBF policy, N = 15.

0 5 10 15 20 25 30
−12

−10

−8

−6

−4

−2

0

Iteration τ

S
c
o

re

Mean score

Max score

Min score

(1−ρ
CE

) quantile, λ
τ

(b) Convergence for a sum-of-RBFs policy, N =
15.

Figure 6.6: Convergence of some representative runs of CE policy search.

The motivation for smoothed updates is that they prevent the problem described next. Without

smoothing (i.e., αCE = 1), the update might fix some parameters of the Bernoulli densities

to the values 0 or 1. The components that have reached these values will remain constant

in subsequent iterations, which may cause the algorithm to remain stuck in local optima.

With smoothing, the parameters can converge to 0 or 1 only asymptotically (Rubinstein and

Kroese, 2004).

We use smoothed updates with αCE = 0.7 (a typical value) for the Bernoulli density

parameter vϑ and run another series of experiment for the nearest-RBF policy, for the same

values of N = 3, . . . , 18. Figure 6.7 compares the performance of the resulting policies

with those computed without smoothing. It appears that smoothing does not provide any

significant benefit for CE policy search, at least not in this example.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

−0.9

−0.85

−0.8

−0.75

−0.7

Number of RBFs N

S
c
o

re

mean score

max score

min score

optimal score

(a) Performance without smoothing.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

−0.9

−0.85

−0.8

−0.75

−0.7

Number of RBFs N

S
c
o

re

mean score

max score

min score

optimal score

(b) Performance with the smoothing parameter

αCE = 0.7 for the Bernoulli densities.

Figure 6.7: CE policy search with nearest-RBF policies: performance with and without

smoothing.

Until now, the performance of CE policy search was studied and compared with the

performance of fuzzy Q-iteration. Next, we investigate the execution time required by CE

policy search to solve the double-integrator problem, and compare it with the execution time

136

6.5. EXPERIMENTAL STUDIES

of fuzzy Q-iteration. Figure 6.8 presents the execution time of CE policy search and fuzzy

Q-iteration, as a function of N , and Figure 6.9 presents the number of iterations required

for convergence by the two algorithms. The number of CE iterations until convergence in-

creases roughly linearly with N , which combined with (6.13) means that the total execution

time of the algorithm increases roughly quadratically with N . There is no significant differ-

ence between the complexity with the nearest-RBF and sum-of-RBFs policies. Also, there

is no significant difference between the complexity with and without smoothing. Although

the number of fuzzy Q-iterations required for convergence is one order of magnitude larger

than the number of CE iterations, the execution time of fuzzy Q-iteration is comparatively

very small.8 This is because an iteration of CE policy search is much more computationally

expensive than a fuzzy Q-iteration. So, optimizing the parameters of the BFs leads to a better

performance than using equidistant MFs, but at significantly higher computational costs.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

Number of RBFs N

E
x
e

c
u

ti
o

n
 t

im
e

 [
s
]

mean execution time

max execution time

min execution time

(a) Nearest-RBF policy without smoothing.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

Number of RBFs N

E
x
e

c
u

ti
o

n
 t

im
e

 [
s
]

mean execution time

max execution time

min execution time

(b) Sum-of-RBFs policy without smoothing.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

Number of RBFs N

E
x
e

c
u

ti
o

n
 t

im
e

 [
s
]

mean execution time

max execution time

min execution time

(c) Nearest-RBF policy with αCE = 0.7.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Number of fuzzy sets N

E
x
e

c
u

ti
o

n
 t

im
e

 [
s
]

4
2

6
2

8
2

10
2

12
2

14
2

16
2

18
2

fuzzy Q−iteration execution time

(d) Fuzzy Q-iteration.

Figure 6.8: Execution time of CE policy search and fuzzy Q-iteration. Note the difference in

the scale of the horizontal axes between (a)–(c) (linear) and (d) (quadratic).

8Also note that the number of fuzzy Q-iterations to convergence often decreases as the number of MFs increases.

This is probably because the better approximation accuracy provided by a larger number of MFs makes convergence

easier.

137

CHAPTER 6. CROSS-ENTROPY POLICY SEARCH

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

50

100

150

200

250

300

Number of RBFs N

It
e

ra
ti
o

n
s

mean # iterations

max # iterations

min # iterations

(a) Nearest-RBF policy without smoothing.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

50

100

150

200

250

300

Number of RBFs N

It
e

ra
ti
o

n
s

mean # iterations

max # iterations

min # iterations

(b) Sum-of-RBFs policy without smoothing.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

50

100

150

200

250

300

Number of RBFs N

It
e

ra
ti
o

n
s

mean # iterations

max # iterations

min # iterations

(c) Nearest-RBF policy with αCE = 0.7.

50

100

150

200

250

300

Number of fuzzy sets N

It
e

ra
ti
o

n
s

4
2

6
2

8
2

10
2

12
2

14
2

16
2

18
2

of fuzzy Q−iterations

(d) Fuzzy Q-iteration.

Figure 6.9: Number of iterations required for convergence of the CE policy search and fuzzy

Q-iteration. Note the difference in the scale of the horizontal axes between (a)–(c) (linear)

and (d) (quadratic).

6.5.2 Bicycle balancing

In this section, the CE policy search algorithm is applied to a more involved problem, namely

the bicycle balancing problem (Randløv and Alstrøm, 1998; Lagoudakis and Parr, 2003a;

Ernst et al., 2005). The task is to prevent from falling a bicycle that rides at constant speed

on a horizontal surface. The steering column of the bicycle is vertical. Because of this, the

bicycle is not self-stabilizing and has to be actively stabilized to prevent it from falling.

Bicycle model and reward function

A schematic representation of the bicycle, showing the state and control variables, is given in

Figure 6.10. The state variables are the roll angle of the bicycle measured from the vertical

axis, ω [rad], the roll rate ω̇ [rad/s], the angle of the handlebar α [rad], taken equal to 0 when

the handlebar is in its neutral position, and the angular velocity α̇ [rad/s]. The control vari-

ables are the displacement δ [m] of the bicycle-rider common center of mass perpendicular to

the plane of the bicycle, and the torque τ [Nm] applied to the handlebar. Two sets of experi-

ments are considered. In the first set of experiments, the system is deterministic, while in the

second set of experiments δ is affected by additive noise, denoted by w [m]. The noise enters

138

6.5. EXPERIMENTAL STUDIES

the model in (6.16), via the term βk, and is drawn according to a uniform distribution in the

interval [−0.02, 0.02]. The state vector is x = [ω, ω̇, α, α̇]T, and the control action vector is

u = [δ, τ]T.

ω

CM

ω

δ+w

α

α

τ

Figure 6.10: A schematic representation of the bicycle seen from behind (left) and from the

top (right).

The dynamic model of the bicycle is (Ernst et al., 2005):9

ω̇k+1 = ω̇k + Ts
1

Ibc

[
sin(βk)(Mc +Mr)gh

− cos(βk)
[Idcv

r
α̇k + sign(αk)v2

(Mdr

l
(|sin(αk)|+ |tan(αk)|) +

(Mc +Mr)h

rCMk

)]]

(6.16)

ωk+1 = ωk + Tsω̇k (6.17)

α̇k+1 =

{
α̇k + Ts

1
Idl

(
τ − Idvv

r
ω̇k

)
if |αk + Tsα̇k| > 80π

180

0 otherwise
(6.18)

αk+1 = sat

{
αk + Tsα̇k,

−80π

180
,
80π

180

}
(6.19)

with

βk = ωk + arctan
δk + wk

h
,

1

rCMk

=






1r
(l−c)2+ l2

sin2(αk)

if αk 6= 0

0 otherwise

In (6.19), the steering angle α is restricted to the interval [−80π
180 ,

80π
180] due to physical con-

straints, and whenever this bound is reached the angular velocity α̇ is set to 0 by (6.18). The

meaning and values of the physical parameters in the bicycle model are given in Table 6.2.

The moments of inertia in the model can be computed as:

Ibc =
13

3
Mch

2 +Mr(h+ dCM)2 Idc = Mdr
2

Idv =
3

2
Mdr

2 Idl =
1

2
Mdr

2

Equations (6.16) – (6.19) are a discrete-time representation of the continuous-time bicycle

dynamics, using Euler integration with a time step of Ts. The time step Ts is taken equal to

0.01 s in the sequel.

9In these equations, ω̇k+1 is used to denote the value of the continuous-time state variable ω̇ at the sampling

instant k + 1, i.e., ω̇((k + 1)Ts). A similar notation is used for the other state variables.

139

CHAPTER 6. CROSS-ENTROPY POLICY SEARCH

Table 6.2: List of parameters in the bicycle model and their values.

Symbol Value Units Meaning

g 9.81 m/s2 gravitational acceleration

v 10/3.6 m/s speed of the bicycle

h 0.94 m height from the ground of the common center of mass (i.e., the

center of mass of the bicycle and rider as a total)

l 1.11 m distance between the front tire and the back tire at the point

where they touch the ground

r 0.34 m wheel radius

dCM 0.3 m vertical distance between the bicycle and rider centers of mass

c 0.66 m horizontal distance between the point where the front wheel

touches the ground and the common center of mass

Mc 15 kg mass of the bicycle

Md 1.7 kg mass of a tire

Mr 60 kg mass of the rider

When the roll angle is larger than 12π
180 in either direction, the bicycle is supposed to have

fallen, and a failure state is reached. This state is terminal and transitions into it are penalized

with negative rewards. Therefore, ω is bounded to [−12π
180 ,

12π
180]. Additionally, the roll rate and

the steering angular velocity are restricted to the interval [−2π, 2π], using saturation. The

balancing task requires that the bicycle be prevented from falling, i.e., that the roll angle is

kept within the allowed interval [−12π
180 ,

12π
180]. For this task, it is not necessary to model the

motion of the bicycle on the horizontal surface. The following reward function is chosen to

express the balancing goal:

rk+1 =

{
0 if ωk+1 ∈ [−12π

180 ,
12π
180]

−1 otherwise
(6.20)

The discount factor is γ = 0.98. To apply CE policy search, the rider displacement is dis-

cretized into three levels {−0.02, 0, 0.02}, and the torque on the handlebar into {−2, 0, 2}.
This gives the discrete action space Ud = {−0.02, 0, 0.02} × {−2, 0, 2}, which is sufficient

to balance the bicycle.

The model, the values of the parameters, the action discretization, and the reward function

are all identical to those used by Ernst et al. (2005).

Balancing a deterministic bicycle

For the first set of experiments with the bicycle, the noise is eliminated from the model, so

wk = 0 for all k. The parameter settings for the CE algorithm are the same as for the double-

integrator example of Section 6.5.1, i.e., cCE = 5, ̺CE = 0.05, εCE = εMC = 0.005, dCE = 5,

τmax = 50. Because the system is deterministic, a single trajectory needs to be simulated from

every state in X0, i.e., NMC = 1. The maximum number of 50 iterations was never reached

before convergence. The sum-of-RBFs policy was used for all the bicycle experiments. This

choice between the sum-of-RBFs and nearest-RBF policies was arbitrary, because both types

of policy performed equally well in Section 6.5.1.

140

6.5. EXPERIMENTAL STUDIES

In order to study the influence of the representative set of states X0 on the performance

of the resulting policies, experiments were run for two different sets of representative states.

In both cases, the initial states were uniformly weighted (i.e., w(x0) = 1/ |X0| for any x0).

Because we are mainly interested in the behavior of the bicycle starting from different initial

rolls and roll velocities, the initial steering angle α and velocity α̇ are always taken equal to

zero; considering also many values of α and α̇ would lead to excessive computational costs

for the CE algorithm.

The first set of representative states contains a few evenly-spaced values for the initial roll

of the bicycle, and the rest of the state variables are initially zero:

X0,1 =

{
[ω, 0, 0, 0]T

∣∣∣∣ω =
−10π

180
,
−5π

180
, . . . ,

10π

180

}
(6.21)

The second set is the cross-product of a finer roll grid and a few values of the roll velocity:

X0,2 =

{
[ω, ω̇, 0, 0]T

∣∣∣∣ω =
−10π

180
,
−8π

180
, . . . ,

10π

180
, ω̇ =

−30π

180
,
−15π

180
, . . . ,

30π

180

}

(6.22)

This set allows to study the effect of considering non-zero roll velocities in the representative

states. The initial roll velocities are not taken large in magnitude to prevent including inX0,2

too many states from which falling is unavoidable.

CE policy search was run forN ranging between 3 and 10. Ten independent experiments

were run for each value of N . The resulting performance is shown in Figure 6.11. For X0,1,

the optimal score is 0, because a good policy can always prevent the bicycle from falling

for any initial roll value in X0,1. This is no longer true for X0,2: when ω and ω̇ are large

in magnitude and have the same sign the bicycle cannot be prevented from falling by any

control policy. For X0,1 and N ≥ 7, all the runs reached precisely the optimal score of 0.

For X0,2, the optimal score is unknown. Nevertheless, for N ≥ 4 the algorithm obtains

maximum scores around −0.21, without significant improvements as N continues to grow.

This suggests the optimal score cannot be much higher than this value. Also for N ≥ 4, CE

policy search reliably provides policies with scores that are close to this value.

3 4 5 6 7 8 9 10
−0.25

−0.2

−0.15

−0.1

−0.05

0

Number of RBFs N

S
c
o
re

mean score

max score

min score

(a) Performance for X0,1.

3 4 5 6 7 8 9 10
−0.4

−0.35

−0.3

−0.25

−0.2

Number of RBFs N

S
c
o
re

mean score

max score

min score

(b) Performance for X0,2.

Figure 6.11: Performance of CE policy search for deterministic bicycle balancing. Note the

difference in the scale of the vertical axes between (a) and (b).

141

CHAPTER 6. CROSS-ENTROPY POLICY SEARCH

Figure 6.12 illustrates the typical quality of the policies computed by the CE algorithm,

by verifying how they perform when applied from initial states that do not belong toX0 (i.e.,

how they generalize). For both policies, the number of RBFs is N = 8. The initial steering

angle and velocity are always 0. The figures contain binary markers that indicate whether

the bicycle has been balanced successfully for 50 s (the horizon resulting from εMC = 0.005
is K = 456 steps, corresponding to 4.56 s or roughly 10 times smaller). The benefit of the

larger set X0,2 of initial states is obvious, as the bicycle is balanced for a much larger portion

of the (ω, ω̇) plane. It also appears that some states in X0,2 are failure states, from where the

bicycle cannot be balanced. The failure states are characterized by values of ω and ω̇ that are

large in magnitude and have the same sign. This explains the fact that all the score values

obtained for X0,2 are negative in Figure 6.11(b).

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−1.5

−1

−0.5

0

0.5

1

1.5

ω
0
 [rad]

ω
’ 0

 [
ra

d
/s

]

(a) Generalization for X0,1.

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−1.5

−1

−0.5

0

0.5

1

1.5

ω
0
 [rad]

ω
’ 0

 [
ra

d
/s

]

(b) Generalization for X0,2.

Figure 6.12: Generalization of two typical policies over initial states not in X0, for the deter-

ministic bicycle andN = 8. White markers mean the bicycle was not balanced starting from

that initial state; gray markers mean the bicycle was properly balanced. Black crosses mark

the initial states in X0.

Figure 6.13 shows the execution time of CE policy search for the deterministic bicycle.

The execution times are comparable with those for the double integrator, seen in Figure 6.8,

3 4 5 6 7 8 9 10
10

2

10
3

10
4

10
5

Number of RBFs N

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

mean execution time

max execution time

min execution time

(a) Execution time for X0,1.

3 4 5 6 7 8 9 10
10

2

10
3

10
4

10
5

Number of RBFs N

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

mean execution time

max execution time

min execution time

(b) Execution time for X0,2.

Figure 6.13: Execution time of CE policy search for deterministic bicycle balancing.

142

6.5. EXPERIMENTAL STUDIES

even though the number of representative states is smaller for the bicycle. This is because

simulating transitions for the bicycle requires the numerical integration of the nonlinear dy-

namics (6.16) – (6.19), which much is more costly than computing the linear transitions of the

double integrator. Figure 6.14 illustrates the convergence of a typical run of CE policy search.

The number of iterations necessary for convergence is similar to the double-integrator exam-

ple (see Figure 6.6). Although the mean performance does not reach a near-optimal value in

this number of iterations, the maximum performance and (1 − ̺CE) quantile of the sample

performance do converge to near-optimal values.

0 5 10 15 20 25

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Iteration τ

S
c
o
re

Mean score

Max score

Min score

(1−ρ
CE

) quantile, λ
τ

Figure 6.14: Typical convergence of CE policy search for deterministic bicycle balancing, for

X0,1 and N = 8.

Balancing a stochastic bicycle

For the second set of experiments with the bicycle, the noise samples wk were drawn inde-

pendently according to a uniform distribution over the interval [−0.02, 0.02], like in (Ernst

et al., 2005). A number of NMC = 10 trajectories were simulated from every initial state

to compute the Monte Carlo score (this number was not selected too large to keep the com-

putational requirements of the algorithm manageable). The rest of the parameters were not

changed, i.e., cCE = 5, ̺CE = 0.05, εCE = εMC = 0.005, dCE = 5, τmax = 50. Like for

the deterministic bicycle experiments, the sum-of-RBFs policy was used, and the maximum

number of 50 iterations was never reached before convergence.

Assuming that an optimal policy for the stochastic case is not significantly more complex

than for the deterministic case, a number of N = 8 RBFs was selected (the policies with

N = 8 gave reliable performance for the deterministic bicycle). A number of 10 independent

experiments were run for each of the two sets of representative states X0,1 and X0,2 defined

in (6.21) and (6.22). The results are reported in Table 6.3. It can be seen that all the scores

for X0,1 are optimal, and that the scores for X0,2 are very close to the best scores obtained in

the deterministic case. This shows that the policies computed have a good quality.

Figure 6.15 illustrates the typical quality of the computed policies, by verifying how they

generalize to initial states that do not belong to X0. The initial steering angle and velocity

are always 0. A number of 10 controlled trajectories are simulated for every initial state.

As before, the length of each trajectory is 50 s. Gray markers indicate that the bicycle has

been balanced successfully for at least one of these trajectories, and the size of the markers is

proportional to the number of times it was balanced successfully. White markers indicate the

143

CHAPTER 6. CROSS-ENTROPY POLICY SEARCH

Table 6.3: Performance of CE policy search for the stochastic bicycle, compared with the

performance for the deterministic bicycle (N = 8).

Score
Stochastic Deterministic

X0,1 X0,2 X0,1 X0,2

maximum 0 −0.2096 0 −0.2075
mean 0 −0.2108 0 −0.2122
minimum 0 −0.2123 0 −0.2195

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−1.5

−1

−0.5

0

0.5

1

1.5

ω
0
 [rad]

ω
’ 0

 [
ra

d
/s

]

(a) Generalization for X0,1.

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−1.5

−1

−0.5

0

0.5

1

1.5

ω
0
 [rad]

ω
’ 0

 [
ra

d
/s

]

(b) Generalization for X0,2.

Figure 6.15: Generalization of two typical policies over initial states not in X0, for the

stochastic bicycle and N = 8. White markers mean the bicycle was not balanced start-

ing from that initial state; gray markers are proportional in size with the number of times the

bicycle was properly balanced out of 10 experiments. Black crosses mark the initial states in

X0.

bicycle always fell when started from that initial state. The generalization is worse than in the

deterministic case of Figure 6.12 for X0,1, and better than in the deterministic case for X0,2.

It appears that noise can actually benefit the performance when a richer set of initial states is

used. This may happen because the noise is driving the system over a larger area of the state

space, and the CE algorithm is offered the opportunity to train the policy over this larger area.

This phenomenon can be regarded as ‘inherent exploration’ caused by the stochastic nature

of the system.

Table 6.4 presents the execution times of CE policy search for the stochastic bicycle.

They are one order of magnitude larger than for the deterministic bicycle, which is expected

because NMC = 10, rather than 1 as in the deterministic case.

Table 6.4: Execution time of CE policy search for the stochastic bicycle, compared with the

execution time for the deterministic bicycle (N = 8).

Execution time [s]
Stochastic Deterministic

X0,1 X0,2 X0,1 X0,2

maximum 27519 218589 2597 21912

mean 22697 180856 2422 19625

minimum 16063 153201 2110 17255

144

6.5. EXPERIMENTAL STUDIES

Figure 6.16 shows a trajectory of the bicycle controlled with a policy resulting from CE

policy search. The bicycle is successfully kept from falling, but is not stabilized to the vertical

position (ω = 0). This is because the reward function makes no difference between zero and

non-zero values of the roll. The control actions chatter, which is necessary because only

discrete actions are available to stabilize the unstable bicycle.

0 2 4 6 8 10
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

t [s]

ω
 [

ra
d

],
 ω

’
[r

a
d

/s
]

ω

ω’

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

t [s]

α
 [

ra
d

],
 α

’
[r

a
d

/s
]

α

α’

0 0.2 0.4 0.6 0.8 1
−0.02

−0.01

0

0.01

0.02

t [s]

δ
 [

m
]

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

t [s]

τ
[N

m
]

Figure 6.16: A controlled trajectory of the bicycle, starting from ω0 = −7π
180 , ω̇0 = −5π

180 ,

α0 = α̇0 = 0. The time axis of the controls is truncated at 1 s to maintain readability.

Other approaches to control the bicycle found in the literature use a more involved version

of the problem, where the bicycle also has to ride to a target position in addition to being kept

upright (Lagoudakis and Parr, 2003a; Ng and Jordan, 2000; Ernst et al., 2005). Therefore,

our results cannot be directly compared with the results of those approaches. Nevertheless,

Lagoudakis and Parr (2003a) use e.g., a total number of 100 BFs to compute Q-functions in

the context of policy iteration, whereas in our experiments as few as 8 automatically opti-

mized BFs suffice to obtain a reliable performance.10 In the approach of Ernst et al. (2005),

an ensemble of decision trees is automatically constructed to approximate the Q-function in

the context of value iteration. The derivation automatically produces a large number of BFs,

in the order of tens of thousands or more.

6.5.3 Structured treatment interruptions for HIV infection control

In this section, CE policy search is used to find a control law for the simulated treatment

of infection with HIV. The prevalent HIV treatment strategy involves two types of drugs,

called reverse transcriptase inhibitors (RTI) and protease inhibitors (PI). The negative side

10We also applied the algorithm of Lagoudakis and Parr (2003a) to bicycle balancing using equidistant BFs, and

failed to obtain good results with much larger numbers of BFs (more than 5000). These results are not reported here.

145

CHAPTER 6. CROSS-ENTROPY POLICY SEARCH

effects of these drugs in the long term motivate the investigation of optimal strategies for

their use. Such treatment strategies might also boost adaptive cellular immune response,

which leads to better immune control of the disease (Wodarz and Nowak, 1999). One such

strategy involves structured treatment interruptions (STI), where the patient is cycled on and

off RTI and PI therapy (e.g., Adams et al., 2004). In some remarkable cases, STI strategies

eventually allowed the patients to control the infection in the absence of treatment (Lisziewicz

et al., 1999).

HIV infection dynamics and the STI problem

The following model of the HIV infection dynamics will be used (Adams et al., 2004):

Ṫ1 = λ1 − d1T1 − (1− ǫ1)k1V T1

Ṫ2 = λ2 − d2T2 − (1− fǫ1)k2V T2

Ṫ t
1 = (1− ǫ1)k1V T1 − δT t

1 −m1ET
t
1

Ṫ t
2 = (1− fǫ1)k2V T2 − δT t

2 −m2ET
t
2

V̇ = (1− ǫ2)NT δ(T
t
1 + T t

2)− cV − [(1− ǫ1)ρ1k1T1 + (1− fǫ1)ρ2k2T2]V

Ė = λE +
bE(T t

1 + T t
2)

(T t
1 + T t

2) +Kb
E +

dE(T t
1 + T t

2)

(T t
1 + T t

2) +Kd
E − δEE

The model describes two co-circulating populations of target cells (called type 1 and type 2

in the sequel). The values and meaning of the model parameters are given in Table 6.5. For

a description of the model and the rationale behind the parameter values, we refer the reader

to (Adams et al., 2004). The six-dimensional state vector is x = [T1, T2, T
t
1 , T

t
2 , V, E]T, and

the state variables are:

• T1 ≥ 0 and T2 ≥ 0 — counts of healthy type 1 and type 2 target cells
[

cells
ml

]
,

• T t
1 ≥ 0 and T t

2 ≥ 0 — counts of infected type 1 and type 2 target cells
[

cells
ml

]
,

• V ≥ 0 — number of free virus copies
[

copies

ml

]
,

• E ≥ 0 — number of immune response cells
[

cells
ml

]
.

The positivity of the state variables is ensured during simulations by using saturation. The

variable ǫ1 ∈ [0, 0.7] is the effectiveness of the RTI drug, and ǫ2 ∈ [0, 0.3] is the effectiveness

of the PI drug. Like Adams et al. (2004), we do not model the relationship between the

quantity of administered drugs and their effectiveness. We assume instead that ǫ1 and ǫ2 can

be directly controlled, which leads to the two-dimensional control vector u = [ǫ1, ǫ2]
T.

The system has three uncontrolled equilibria:

xn = [1000000, 3198, 0, 0, 0, 10]T

xu = [163573, 5, 11945, 46, 63919, 24]T

xh = [967839, 621, 76, 6, 415, 353108]T

(6.23)

The xn equilibrium is unstable and represents an uninfected patient (as soon as V becomes

nonzero due to the introduction of virus copies, the patient becomes infected and the state

146

6.5. EXPERIMENTAL STUDIES

Table 6.5: List of parameters in the HIV model and their values.

Symbol Value Units Meaning

λ1; λ2 10, 000; 31.98 cells
ml·day

production rates of target cell types 1 and 2

d1; d2 0.01; 0.01 1
day

death rates of target cell types 1 and 2

k1; k2 8 · 10−7; 10−4 ml
copies·day

infection rates of population 1 and 2

δ 0.7 1
day

infected cell death date

f 0.34 — treatment effectiveness reduction in population 2

m1, m2 10−5; 10−5 ml
cells·day

immune-induced clearance rates of populations 1 and 2

NT 100 virions
cell

virions produced per infected cell

c 13 1
day

virus natural death rate

ρ1; ρ2 1; 1 virions
cell

mean number of virions infecting a type 1 (type 2) cell

λE 1 cells
ml·day

immune effector production rate

bE 0.3 1
day

maximum birth rate for immune effectors

Kb 100 cells
ml

saturation constant for immune effector birth

dE 0.25 1
day

maximum death rate for immune effectors

Kd 500 cells
ml

saturation constant for immune effector death

δE 0.1 1
day

natural death rate for immune effectors

drifts away from this equilibrium). The unhealthy equilibrium xu is stable and represents

a patient where the infection has reached dangerous levels, and there is a very low immune

response. The healthy equilibrium xh is stable and represents a patient whose immune system

controls the infection without the need of drugs.

In STI, drugs are either fully administered (they are ‘on’), or not at all (they are ‘off’).

As explained before, the relationship between drug quantity and drug effectiveness is not

modeled, so that the drugs have either full or 0 effectiveness. A fully effective RTI drug

corresponds to ǫ1 = 0.7, while a fully effective PI drug corresponds to ǫ2 = 0.3. This leads

to the discrete action space Ud = {0, 0.7} × {0, 0.3}. It is not clinically feasible to allow

changing the drug strategy with a daily frequency. It is therefore assumed that the state is

measured and the drugs are switched on or off once every 5 days (like in Adams et al., 2004).

This means the system can be controlled in discrete time with a sample time of 5 days. The

dynamics are numerically integrated between the consecutive samples.

The control goal that we consider is to use STI from the initial state xu such that the

immune response of the patient is maximized, while also taking into account the count of

virus copies, and the control effort. The reward function is (as in Adams et al., 2004):

ρ(x, u) = −QV −R1ǫ
2
1 −R2ǫ

2
2 + SE (6.24)

where Q = 0.1, R1 = R2 = 20000, S = 1000. The term −QV penalizes the amount of

virus copies, while the terms−R1ǫ
2
1 and−R2ǫ

2
2 penalize drug use. The term SE rewards the

amount of immune response.

Results of CE policy search

In order to apply CE policy search, a discount factor of γ = 0.99 is used. To compute the

Monte Carlo return, the number of simulation steps is set to K = Tf/Ts where Tf = 800

147

CHAPTER 6. CROSS-ENTROPY POLICY SEARCH

0 10 20 30 40 50
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

9

Iteration τ

S
c
o
re

Mean score

Max score

Min score

(1−ρ
CE

) quantile, λ
τ

(a) Convergence.

0 100 200 300 400 500 600 700 800
10

5.1

10
5.5

10
5.9

t [days]

T
1
 [

c
e

lls
/m

l]

0 100 200 300 400 500 600 700 800
10

−2

10
0

10
2

10
4

t [days]

T
2
 [

c
e

lls
/m

l]

0 100 200 300 400 500 600 700 800
10

−5

10
0

10
5

t [days]

T
1t
 [

c
e

lls
/m

l]

0 100 200 300 400 500 600 700 800
10

−2

10
0

10
2

10
4

t [days]

T
2t
 [

c
e

lls
/m

l]

0 100 200 300 400 500 600 700 800
10

−5

10
0

10
5

10
10

t [days]

V
 [

c
o

p
ie

s
/m

l]

0 100 200 300 400 500 600 700 800
10

0

10
5

t [days]

E
 [

c
e

lls
/m

l]

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

t [days]

ε 1
 [

−
]

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

t [days]

ε 2
 [

−
]

(b) System trajectories from x0 = xu. Black, continuous: policy computed with CE policy search. Gray:

no treatment. Black, dashed: fully effective treatment.

Figure 6.17: Results of CE policy search for the HIV problem.

148

6.6. CONCLUSIONS AND OPEN ISSUES

days is a sufficiently long time horizon for a good policy to control the infection (Adams

et al., 2004; Ernst et al., 2006). This leads to K = 160. The state variables vary in a domain

spanning several orders of magnitude; to limit the effects of this large variation, a transformed

state vector is used. This transformed vector is computed as the base 10 logarithm of the orig-

inal state vector. A nearest-RBF policy with N = 8 RBFs is used, and only the unhealthy

initial state is used to compute the score, X0 = {xu}. Two bits (N bin = 2) are sufficient to

index the 4 elements of the discrete action space. The parameters of the algorithm are set as

follows: cCE = 10, ̺CE = 0.02, εCE = 0, dCE = 5, τmax = 50. A larger number of sam-

ples than for the examples in Sections 6.5.1 and 6.5.2 is necessary for reliable convergence

(NCE = 2080, corresponding to cCE = 10). This large number of samples also allows the

value of ̺CE to be smaller.

Figure 6.17(a) shows how the algorithm converges. The execution time was approxi-

mately 404200 s.11 The trajectory of the controlled system when started from xu is given in

Figure 6.17(b), and compared with the evolution with no treatment, and with fully effective

treatment. The computed solution switches the PI drug off after approximately 300 days,

but the RTI drug is left on in steady state, which means that the healthy equilibrium xh is

not reached. This solution is worse than the best solutions available in the literature, which

do reach the healthy equilibrium. Nevertheless, the immune response in steady state is very

strong (E ≈ 105), and the infection is handled much better than without STI. In fact, the

steady-state value of x for this controlled trajectory, xf ≈ [989730, 744.8, 66.3, 15.8, 432.1,
84955]T, is close to the healthy equilibrium xh in (6.23).

In the literature, the healthy equilibrium is reached by driving the state into the basin of

attraction of this equilibrium using STI, and then switching off the RTI and PI drugs. Adams

et al. (2004) computed such a solution iteratively for 30-day subintervals of a 900-day time

horizon. The sampling time had the same value of 5 days that was used in our experiment, so

that the sequence of controls to optimize had 6 elements for each subinterval. Each optimal

sequence was found using an exhaustive search of all the possible sequences. Ernst et al.

(2006) computed an infinite-horizon solution with fitted Q-iteration, which also controlled

the system to the healthy equilibrium. Our solution does not reach the healthy equilibrium,

but still performs remarkably well given that the policy is parameterized using only N = 8
BFs.

6.6 Conclusions and open issues

In this chapter, we have introduced and evaluated a policy search technique that can be applied

to a large class of continuous-state, discrete-action MDPs. To this end, a highly flexible

policy parameterization has been proposed, inspired by the work on the optimization of basis

functions (BFs) for value function approximation. This parameterization represents policies

usingN state-dependent BFs, where a discrete action is assigned to each BF. The type of BFs

and their number N are specified in advance and determine the approximation power of the

representation. The locations and shapes of the BFs, together with the action assignments,

are optimized using the cross-entropy (CE) method. The optimization criterion is a weighted

sum of the returns from a set of representative initial states, where each return is computed

with Monte Carlo simulations. The representative states and the weight function can be used

11This is the most computationally expensive simulation experiment reported in this thesis.

149

CHAPTER 6. CROSS-ENTROPY POLICY SEARCH

to focus the algorithm on important parts of the state space.

CE policy search has performed well both in a two-dimensional example with linear dy-

namics and in two more difficult, nonlinear control problems: bicycle balancing (with four

state variables) and structured treatment interruptions for HIV infection control (with six state

variables). The algorithm has reliably offered a good performance, using only a small number

of BFs to represent the policy. For the two-dimensional example, the algorithm has required

much fewer BFs than fuzzy Q-iteration to deliver the same performance. However, this per-

formance has come at a large computational cost, several orders of magnitude higher than

fuzzy Q-iteration. Solving the bicycle balancing and HIV infection control problems has also

required a large amount of computations.

The theoretical study of CE policy search is a first opportunity for further research. Con-

vergence results for the CE method are only available for combinatorial optimization (Ru-

binstein and Kroese, 2004; Margolin, 2005; Costa et al., 2007). The convergence results for

the related model-reference adaptive search algorithm (Chang et al., 2007, Chapter 4) could

be extended. These results apply to more general cases, including stochastic score functions

evaluated by Monte Carlo integration (as is the case for CE policy search), but they unfortu-

nately require the restrictive assumption that the optimal policy parameter is unique.

While in this chapter the CE method for optimization has been employed, there is in prin-

ciple no obstacle to applying any optimization technique to determine a good policy parame-

ter vector. In particular, other meta-heuristic optimization techniques like genetic algorithms,

tabu search, pattern search, etc., could be used. Another interesting direction is extending CE

policy search to work for continuous-action policy parameterizations. A natural extension

of the current policy parameterization can be developed to handle continuous actions. This

extension computes the policy by interpolating the actions assigned to the BFs, using the BF

values as weights (3.25). CE policy search can also be extended to problems having hybrid

state spaces and/or hybrid action spaces, where some of the variables are continuous and

some are discrete.

150

Chapter 7

Conclusions and outlook

This thesis has proposed and studied techniques for dynamic programming (DP) and rein-

forcement learning (RL) in problems with continuous variables. This chapter summarizes the

findings of our studies and some important open issues regarding the proposed techniques.

The chapter closes with a discussion on more fundamental open issues in the field of DP and

RL for control.

7.1 Summary and conclusions

This section summarizes our findings about the novel techniques for approximate DP/RL

described in Chapters 4, 5, and 6.

Chapter 4 has introduced fuzzy Q-iteration, a model-based algorithm for approximate

value iteration that represents Q-functions using a fuzzy partition of the state space and a

discretization of the action space. The algorithm is theoretically sound: it asymptotically

converges to a near-optimal solution, and it is consistent under continuity assumptions on the

dynamics and on the reward function. A bound on the suboptimality of the solution obtained

in a finite number of iterations is also derived. A version of the algorithm where parameters

are updated in an asynchronous fashion converges at least as fast as the synchronous variant.

As an alternative to designing in advance the membership functions (MFs) for the fuzzy

sets in the partition, we have proposed to optimize the parameters of a constant number of

MFs. To evaluate each configuration of MFs, a policy is computed with fuzzy Q-iteration

and its performance is evaluated in simulation. Using the cross-entropy (CE) method for

optimization, we have designed an algorithm to optimize the locations of triangular MFs.

An extensive numerical and experimental evaluation has indicated that fuzzy Q-iteration

has a good performance in practice, among others producing better policies than Q-iteration

with radial basis function approximation, and successfully swinging up and stabilizing a real-

life inverted pendulum. In a simulation example involving servo-system stabilization, we

have studied the influence of the number of fuzzy sets and of discrete actions on the per-

formance. Increasing the number of fuzzy sets and discrete actions has resulted in a more

predictable performance improvement with a continuous reward function, than with a dis-

continuous reward function. This indicates that discontinuous reward functions, although

commonly used in RL, can harm the performance in continuous-variable control tasks.

151

CHAPTER 7. CONCLUSIONS AND OUTLOOK

For the car-on-the-hill problem, fuzzy Q-iteration has provided a better performance when

using MFs that were optimized with the CE method, than when using equidistant MFs. How-

ever, this performance increase comes at a large computational cost, several orders of magni-

tude higher than the cost incurred by fuzzy Q-iteration with equidistant MFs.

Chapter 5 has introduced online least-squares policy iteration, an extension of the least-

squares policy iteration (LSPI) algorithm to online learning. In the online case, the perfor-

mance of every policy is important, so policy improvements have to be performed at short

intervals. This means that only a small number of samples can be processed between con-

secutive policy improvements, and the algorithm cannot wait until every value function is

accurately approximated. A variant of online LSPI has been described that uses prior knowl-

edge about the monotonicity of the policy in the state variables.

Extensive numerical experiments have indicated that online LSPI is a promising algo-

rithm for online RL. In these experiments, online LSPI has converged to a performance sim-

ilar to that obtained by offline LSPI. Online LSPI has also exhibited a good robustness to

variations in its tuning parameters, and has been able to learn in real time how to swing up

and stabilize an inverted pendulum. In an example involving servo-system stabilization, for

which there exist monotonous near-optimal policies, using prior knowledge about this mono-

tonicity property has sped up online LSPI by a factor of two.

Additionally, a continuous-action, polynomial Q-function approximator for offline LSPI

has been investigated. In the inverted pendulum problem, polynomial Q-function approxima-

tion has reduced chattering, even though it has not given a better performance (discounted

returns) than discrete actions.

Chapter 6 has introduced CE policy search, a direct policy search technique that can be

applied to a large class of problems. CE policy search employs a flexible policy parameteri-

zation, inspired by the work on the optimization of basis functions (BFs) for value function

approximation. Policies are represented using state-dependent BFs and discretized actions,

where a discrete action is assigned to each BF. The type of BFs and their number are specified

in advance and determine the approximation power of the representation. The locations and

shapes of the BFs, together with the action assignments, are optimized using the CE method.

The optimization criterion is a weighted sum of the returns from a set of finitely many rep-

resentative initial states, where each return is computed with Monte Carlo simulations. The

representative states and the weight function can be used to focus the algorithm on important

parts of the state space.

Numerical evaluations of cross-entropy policy search have been conducted on a double-

integrator example with two state variables, as well as on two more involved problems: bi-

cycle balancing (with four state variables) and the simulated treatment of infection with the

human immunodeficiency virus (with six state variables). In these experiments, the algo-

rithm has reliably obtained good policies, requiring only a small number of BFs. In the

double-integrator example, the algorithm has required fewer BFs than fuzzy Q-iteration to

deliver the same performance. However, this performance has incurred a large computational

cost, e.g., several orders of magnitude higher than the cost of fuzzy Q-iteration.

7.2 Open issues and outlook

This section presents some important open issues regarding the techniques proposed in this

thesis, together with more fundamental open issues in the field of DP and RL for control.

152

7.2. OPEN ISSUES AND OUTLOOK

7.2.1 Open issues and future research

A number of open issues regarding the approaches proposed in this thesis are given below,

together with some research directions that could be taken to address these issues.

Fuzzy Q-iteration has used triangular MFs in all the examples of Chapter 4. This type of

MFs leads to a computational complexity that grows exponentially with the number of state

variables. Beyond five or six variables, triangular MFs cannot be used effectively, and other

types of MFs should be used to obtain a fuzzy partition with less than exponential complexity.

It is important to analyze fuzzy Q-iteration for stochastic problems, when the expected

values have to be approximated (since the analysis presented in Chapter 4 holds when the

expected values can be evaluated exactly). It is also interesting to investigate the effects of

using discontinuous rewards in the stochastic case, and to verify whether these effects are

different from those observed in the deterministic case. Another important step is develop-

ing model-free (RL) algorithms with fuzzy approximation that can guarantee convergence

and consistency. Results from kernel-based or interpolation-based RL may be used in the

theoretical study of such algorithms (Ormoneit and Sen, 2002; Szepesvári and Smart, 2004).

An extensive comparison of the performance (convergence, suboptimality, consistency)

of the various types of linearly parameterized approximators that can be combined with Q-

iteration (e.g., radial basis functions, Kuhn triangulations, etc.) would be very useful. Such a

comparison is currently missing from the literature.

Instead of using optimization to find the MFs, resolution refinement techniques could be

explored Section 3.5.1. Such techniques can help reduce the computational complexity of

finding the MFs.

Online LSPI has used identically shaped, equidistant BFs (Chapter 5). Unfortunately,

using such BFs in problems with a large number of state and action variables leads to an

excessive computational cost. One possibility to address this problem is to simplify the

computations required by the algorithm, e.g., by using gradient updates of the Q-function

parameters instead of solving a linear system of equations (Geramifard et al., 2006, 2007).

Another approach to reduce the computational cost is to automatically discover a small num-

ber of good BFs. Methods to do this have been developed for offline LSPI (Mahadevan and

Maggioni, 2007; Xu et al., 2007), but they are geared towards the offline construction of BFs,

and would need to be modified to work in the online case. Techniques that construct the BFs

online, such as the non-parametric growing kernel approach of Jung and Polani (2007), are a

promising alternative.

Because online LSPI only processes a few samples between consecutive policy improve-

ments, the policy evaluation error can be very large. Since the asymptotic performance bound

of offline, approximate policy iteration is affine in the policy evaluation error, this bound is

not useful in the online case. Analyzing whether the asymptotic performance of online LSPI

can be guaranteed is an important research topic.

Online LSPI uses the least-squares temporal difference algorithm for policy evaluation.

Other policy evaluation techniques can be used for online learning, as well. One alternative

is the least-squares policy evaluation algorithm. It was originally developed for V-functions

(Bertsekas and Ioffe, 1996; Bertsekas, 2007), but we extend it to Q-functions in Appendix B.

Least-squares temporal difference and least-squares policy evaluation algorithms can behave

quite differently when they compute Q-functions online, just like when they compute V-

functions online (Bertsekas, 2007). Therefore, it is important to determine which of these

two algorithms performs better in online learning.

153

CHAPTER 7. CONCLUSIONS AND OUTLOOK

In Chapter 5, LSPI with polynomial Q-function approximation has been applied to the

inverted pendulum problem. To better assess the potential of polynomial Q-function approx-

imation, it is important to also evaluate it in other problems. Although in our experiments

online LSPI has only been applied to time-invariant processes, it may also be able to deal with

processes that are slowly changing over time, by adapting the policy to take these changes

into account.

A first research opportunity for CE policy search (Chapter 6) is to study its convergence

properties. Convergence results for the CE method are only available for combinatorial op-

timization (Rubinstein and Kroese, 2004; Margolin, 2005; Costa et al., 2007). The conver-

gence results for the related model-reference adaptive search (Chang et al., 2007, Chapter 4)

could be extended to CE policy search. These results apply to more general cases, including

stochastic score functions evaluated by Monte Carlo integration (as is the case for CE pol-

icy search), but they unfortunately require the restrictive assumption that the optimal policy

parameter is unique.

Another interesting direction is extending CE policy search to work for continuous-action

policy parameterizations. A natural parameterization can be developed to handle continuous

actions, which represents the policy using a linear combination of the BFs.

The CE method has been used to optimize the policy parameters for policy search in

Chapter 6, and to optimize the MFs for fuzzy Q-iteration in Chapter 4. There is in principle

no obstacle to applying any optimization technique to solve these two problems. However, in

both cases, the optimization criterion may be a complicated function of the parameter vector,

e.g., non-differentiable, non-convex, with many local optima. Therefore, global, gradient-

free optimization techniques should be used, such as genetic algorithms, tabu search, pattern

search, simulated annealing, etc. It is an interesting question how these optimization tech-

niques compare with each other when used to optimize policies or MFs.

This thesis has focused on RL and DP for control, and the algorithms developed have

been applied only to control problems (e.g., the inverted pendulum, the robotic manipulator,

bicycle balancing). These problems have continuous state variables, and most often also

continuous action variables. However, as mentioned in Chapter 1, DP and RL can also be

applied to problems in other fields, including, e.g., artificial intelligence, operations research,

and economics. All our results and algorithms can be directly applied to problems from

these fields when the state variables are continuous and, in the case of fuzzy Q-iteration and

continuous-action LSPI, also when the action variables are continuous. However, in certain

problems some or all of the state and action variables are discrete. This is the case, e.g., in

many problems from artificial intelligence. Some care is required to apply our algorithms

and results to the discrete or hybrid1 setting. For fuzzy Q-iteration, the state-action space can

be discrete, but has to be a subset of a Euclidean space. This assumption can be eliminated,

but eliminating it requires revising the consistency results of Section 4.4.2. For online LSPI,

discrete or hybrid state-action spaces are not problematic. However, LSPI with polynomial

action approximation (Section 5.3) naturally makes sense only for continuous action spaces;

and the way in which the monotonicity requirements are enforced in Section 5.5 requires a

continuous state-action space. In the form given in Chapter 6, CE policy search works for

continuous states and discrete actions. It can, however, easily be extended to problems having

discrete or hybrid state spaces, by using appropriately defined BFs and probability densities.

1A hybrid state-action space is defined by a mixture of continuous and discrete variables.

154

7.2. OPEN ISSUES AND OUTLOOK

7.2.2 Outlook of DP and RL for control

Section 7.2.1 has outlined a number of open issues regarding the approaches presented in this

thesis, together with some promising directions to address these issues. This section discusses

a number of more fundamental open issues in the field of DP and RL for control.

• The most important open issue is the scalability of the algorithms to a large number of

state and action variables. Most state of the art algorithms relying on value functions

have been applied to problems with up to six continuous state variables (Lagoudakis

and Parr, 2003a; Ernst et al., 2005; Mahadevan and Maggioni, 2007). Policy search

algorithms scale up better when the policy parameterization is well suited to the prob-

lem at hand. However, such policy parameterizations cannot be used to solve general

problems. The most promising approach to scalable DP and RL is the efficient, au-

tomatic discovery of a good approximator with low complexity. For value function

approximation, linearly parameterized approximators are typically used. Discovering

such an approximator boils down to discovering a good set of BFs. One challenge of

automatic BF discovery is that, when the approximator is changed while estimating

the value function, the convergence results for linear value function approximation no

longer hold. Another important challenge, which affects both value function and pol-

icy approximation, is that finding an approximator is a difficult task which can incur a

large computational cost (as seen e.g., in Section 4.6.4). It is crucial that the computa-

tional cost of the approximator discovery technique does not nullify the computational

advantage of using the lower complexity approximator found.

• A major open issue in online RL is providing guaranteed performance during learning.

This is essential for applying RL in practice. Ideally, online RL algorithms should

guarantee a monotonous increase in their expected performance. Unfortunately, this

is most likely impossible because all the online RL algorithms need to explore, i.e.,

try out actions that may be suboptimal, in order to make sure their performance does

not remain stuck in a local optimum. Therefore, weaker requirements could be used,

where an overall trend of increased performance is guaranteed, while still allowing for

bounded and temporary decreases in performance due to exploration. From a control

theoretical perspective, it is also very important that the DP/RL policy ensures the

stability of the control loop. This is true for the current policy of online algorithms, as

well as for the final policy resulting from offline algorithms. Most algorithms available

today can guarantee neither a steady performance improvement nor stability.

• Classical texts on RL have long recommended that the reward function should be kept

as simple as possible; it should only reward the achievement of the final goal (Sutton

and Barto, 1998). There are several problems with this approach. The first problem is

that a simple reward function often makes online learning very slow, and may lead to a

large number of samples being required for offline learning. So, more information may

need to be included in the reward function. The second problem is that often additional,

higher-level requirements have to be considered in addition to the final goal. In the sta-

bilization problem of control theory, an example of such a requirement is a limit on the

overshoot of the process’s response, which is imposed in addition to the basic require-

ment of reaching the desired steady-state value. It is an open question how to translate

such higher-level requirements into the ‘language’ of rewards. To do this, it may be

155

CHAPTER 7. CONCLUSIONS AND OUTLOOK

necessary to augment the state signal, because requirements such as the overshoot are

dynamical characteristics of the controlled trajectory, while the reward function only

evaluates one-step transitions. Another problem is that the discontinuous reward func-

tions typically used in RL may harm the performance in continuous-variable control

tasks, as illustrated in Chapter 4.

• Solving DP/RL problems where the state is not directly measurable is an open, active

field of research. Such problems are usually called partially observable in the DP/RL

literature (Kaelbling et al., 1998; Porta et al., 2006), although from a control theoreti-

cal perspective this term is incorrect.2 An important opportunity for DP/RL in partially

measurable problems is to use control theoretical insights. For instance, observability

theory clearly identifies which unmeasured state variables are observable from the mea-

sured system outputs (Isidori, 1995). If a state variable is necessary for control (e.g.,

if state feedback control is used, such as in DP/RL), but that state variable is not ob-

servable in the control-theoretical sense, then the problem cannot be solved. In such

a case, more measurement variables are necessary, which means more sensors need to

be installed on the real system. Moreover, there exist efficient, specialized Bayesian

techniques to infer the values of unmeasured observable states, e.g., particle filtering

(Arulampalam et al., 2002). These estimates could be used in the DP algorithm, in-

stead of relying on techniques that use general Bayesian inference. Such techniques

are typically computationally expensive, which means they can only be applied to sim-

ple problems. An important caveat is that state estimation, as well as observability

analysis, require a model of the system, so they are only applicable to DP. It is an im-

portant open question whether they can be extended to the model-free, RL case, and if

so, in what way they could be extended.

• Model-based, DP algorithms could be compared analytically and experimentally with

other techniques for nonlinear optimal control. These comparisons may lead to useful

insights about the strengths and weaknesses of DP and RL. One such optimal control

technique is (nonlinear) model-predictive control, which works by computing at every

time step an open-loop policy, and performing the action indicated by this policy in

the current state (Bertsekas, 2005). This leads to a time-varying policy, whereas in this

thesis we have focused on algorithms that aim for an optimal stationary policy.

• It is important to identify a set of suitable benchmark problems for DP/RL for con-

trol. Some problems commonly used to benchmark RL algorithms can be solved using

classical control design techniques. Two examples are cart-inverted pendulum stabi-

lization (Lagoudakis and Parr, 2003a) and bicycle balancing (Randløv and Alstrøm,

1998; Ernst et al., 2005). RL techniques do have the added advantage that they learn a

solution without a model, whereas classical control design requires a model. However,

it is still important to find motivating practical problems where DP/RL algorithms work

well, and that are very difficult or impossible to solve using other techniques. These

2Informally, in the control theoretical context, a state variable is observable if its trajectory can be determined

from the trajectories of the actions and of the measurable system outputs. System outputs can include states and/

or quantities computed algebraically from the state variables and the actions. A system is observable if all its

state variables are observable, and is partially observable if there exist unobservable state variables. So, a partially

measurable system (which in DP/RL terminology is called ‘partially observable’) can actually be fully observable

in the control theoretical sense, in which case its state variables can be estimated.

156

7.2. OPEN ISSUES AND OUTLOOK

problems should have highly nonlinear, possibly stochastic dynamics around the op-

erating points of interest. For instance, while the bicycle has nonlinear dynamics in

general, the dynamics are approximately linear in the restricted state domain for which

the problem is typically used (a few degrees of roll angle to either side) (Randløv and

Alstrøm, 1998; Ernst et al., 2005), which means that the problem can be solved with

linear control design.

• In practice, it is also important to take advantage of any prior knowledge available

about the system or the solution. Prior knowledge about the value function could help

e.g., to initialize an algorithm that finds BFs automatically, or perhaps to avoid using

such an algorithm altogether and to design the BFs directly. Prior knowledge about the

policy can be used in policy search algorithms, to find a suitable, simple policy param-

eterization and therefore to improve the computational efficiency of the optimization

algorithm. Policy knowledge can also be used in policy iteration algorithms, as ex-

emplified in Chapter 5. Knowledge about the system dynamics could, e.g., be used to

form a partial model and pre-compute an approximate solution with DP. This solution

can then be used to initialize a model-free, RL algorithm.

• The application of DP/RL to decentralized and distributed control is an important re-

search direction. Significant research efforts have been made in the related field of

multi-agent DP/RL. However, most approaches to multi-agent DP/RL deal with sim-

ple, often static (stateless), tasks (Buşoniu et al., 2008a). This is because of the severity

of the curse of dimensionality in the multi-agent case, where the size of the joint state-

action space grows exponentially with the number of agents. Unfortunately, the static

setting is inappropriate for most distributed control problems. Therefore, it is impor-

tant to also address dynamic problems in multi-agent DP/RL. In this context, it can be

very useful to exploit results in distributed and decentralized adaptive control, see e.g.,

(Jain and Khorrami, 1997; Jiang, 2000; Liu et al., 2007).

157

158

Appendix A

The cross-entropy method

This appendix provides an introduction to the cross-entropy (CE) method. First, the CE

algorithm for rare-event simulation is given, followed by the CE algorithm for optimization.

The presentation is based on Sections 2.3, 2.4, and 4.2 of (Rubinstein and Kroese, 2004).

A.1 Rare-event simulation using the CE method

We consider the problem of estimating the probability of a rare event using sampling. Be-

cause the event is rare, its probability is small, and straightforward Monte Carlo sampling is

impractical because it would require too many samples. Instead, an importance sampling den-

sity1 has to be chosen that increases the probability of the interesting event. The CE method

for rare-event simulation looks for the best importance sampling density from a given, pa-

rameterized class of densities, using an iterative approach. At the first iteration, the algorithm

draws a set of samples from an initial density. Using these samples, an easier problem than

the original one is defined, in which the probability of the rare event is artificially increased

so that a good importance sampling density is easier to find. This density is then used to ob-

tain better samples in the next iteration, which allow to define a more difficult problem, and

therefore give a sampling density closer to the optimal one, and so on. When the problems

considered in every iteration become at least as difficult as the original problem, the current

density can be used for importance sampling in the original problem.

Next, the CE method for rare-event simulation is formally described. Let a be a random

vector taking values in the space A. Let {p(·; v)} be a family of probability densities on A,

parameterized by the vector v ∈ R
Nv . Let the nominal parameter v̄ ∈ R

Nv be given. Let

s : A → R be a score function. The goal is to estimate the probability that s(a) ≥ λ where

the level λ ∈ R is given, and a is drawn from the density p(·; v̄) with the nominal parameter

v̄. This probability can be written as:

ν = Pa∼p(·;v̄)(s(a) ≥ λ) = Ea∼p(·;v̄) {I(s(a) ≥ λ)} (A.1)

1For simplicity, we will abuse the terminology by using the term ‘density’ to refer to probability density functions

(which describe probabilities of continuous random variables), as well as to probability mass functions (which

describe probabilities of discrete random variables).

159

APPENDIX A. THE CROSS-ENTROPY METHOD

where I(s(a) ≥ λ) is the indicator function, equal to 1 whenever s(a) ≥ λ and 0 otherwise.

When this probability is very small (10−6 or less), the event {s(a) ≥ λ} is called a rare event.

A straightforward way to estimate ν is to use Monte Carlo simulation. A random sample

a1, . . . , aNCE
is drawn from p(·; v̄), and the estimated value of ν is computed as:

ν̂ =
1

NCE

NCE∑

is=1

I(s(ais) ≥ λ) (A.2)

However, this procedure is computationally inefficient when {s(a) ≥ λ} is a rare event,

since a very large number of samples NCE must be used for an accurate estimation of ν. A

better way to estimate ν is to draw the samples from an importance sampling density q(·) on

A, instead of p(·; v̄). The density q(·) is chosen to increase the probability of the interesting

event {s(a) ≥ λ}, therefore requiring fewer samples for an accurate estimation of ν. Then,

ν can be estimated with the importance sampling estimator:

ν̂ =
1

NCE

NCE∑

is=1

I(s(ais) ≥ λ)
p(ais ; v̄)

q(ais)
(A.3)

From (A.3) it follows that the importance sampling density:

q∗(a) =
I(s(a) ≥ λ)p(a; v̄)

ν
(A.4)

makes the argument of the summation equal to ν, when substituted in (A.3). Therefore, a

single sample a for which I(s(a) ≥ λ) is nonzero suffices to find ν, and the density q∗(·) is

optimal in this sense. It is important to note that the entire procedure is driven by the value

of the nominal parameter v̄. Therefore, among others, q, q∗, and ν all depend on v̄.

The obvious difficulty is that ν is unknown. Moreover, q∗ can in general have a com-

plicated shape, which makes it difficult to find. It is often more convenient to choose an

importance sampling density from the family of densities {p(·; v)}. The best importance

sampling density in this family can be found by minimizing over the parameter v a measure

of the distance between p(·; v) and q∗(·). In the CE method, this measure is the cross-entropy,

also known as Kullback-Leibler divergence, and defined as follows:

D(q∗(·), p(·; v)) = Ea∼q∗(·)

{
ln

q(a)

p(a; v)

}

=

∫
q∗(a) ln q∗(a)da−

∫
q∗(a) ln p(a; v)da

(A.5)

Noticing that the first term in this distance does not depend on v and using (A.4) in the

second term, the parameter that minimizes the cross-entropy is:

v∗ = arg max
v

∫
I(s(a) ≥ λ)p(a; v̄)

ν
ln p(a; v)da

= arg max
v

Ea∼p(·;v̄) {I(s(a) ≥ λ) ln p(a; v)}
(A.6)

Unfortunately, the expectation Ea∼p(·;v̄) {I(s(a) ≥ λ) ln p(a; v)} is difficult to compute

by direct Monte Carlo sampling, because the indicators I(s(a) ≥ λ) will still be 0 for a

160

A.1. RARE-EVENT SIMULATION USING THE CE METHOD

most of the samples. Therefore, this expectation also has to be computed with importance

sampling. Let the importance sampling density be given by the parameter z. Then, the

maximization problem (A.6) is rewritten as:

v∗ = arg max
v

Ea∼p(·;z) {I(s(a) ≥ λ)W (a; v̄, z) ln p(a; v)} (A.7)

where W (a; v̄, z) = p(a; v̄)/p(a; z). An approximate solution v̂∗ is computed by drawing a

random sample a1, . . . , aNCE
from the importance density p(·; z) and solving:

v̂∗ = arg max
v

1

NCE

NCE∑

is=1

I(s(ais) ≥ λ)W (a; v̄, z) ln p(ais ; v) (A.8)

The problem (A.8) is called the stochastic counterpart of (A.7).

Under certain assumptions on A and p(·; v), the stochastic counterpart can be solved an-

alytically. One particularly important case when this happens is when p(·; v) belongs to the

natural exponential family. For instance, when {p(·; v)} is the family of Gaussians param-

eterized by the mean η and the standard deviation σ (so, v = [η, σ]T), the solution of the

stochastic counterpart is the mean and the standard deviation of the best samples:

η̂ =

∑NCE

is=1 I(s(ais) ≥ λ)ais∑NCE

is=1 I(s(ais) ≥ λ)
(A.9)

σ̂ =

√√√√
∑NCE

is=1 I(s(ais) ≥ λ)(ais − η̂)2∑NCE

is=1 I(s(ais) ≥ λ)
(A.10)

Choosing directly a good importance sampling parameter z is difficult. If z is poorly

chosen, most of the indicators I(s(ais) ≥ λ) in (A.8) will be 0, and the estimated parameter

v̂∗ will be a poor approximation of the optimal parameter v∗. To alleviate this difficulty, the

CE algorithm uses an iterative approach. Each iteration τ can be viewed as the application of

the above methodology with a modified level λτ and using the importance density parameter

z = vτ−1, where:

• The level λτ is chosen at each iteration such that the probability of the event {s(a) ≥
λτ} under the density p(·; vτ−1) is approximately ̺CE ∈ (0, 1), with ̺CE chosen not

too small (e.g., ̺CE = 0.05).

• The parameter vτ−1, τ ≥ 2, is the solution of the stochastic counterpart at the previous

iteration; v0 is initialized at v̄.

The value λτ is computed as the (1 − ̺CE) quantile of the score values of the random

sample a1, . . . , aNCE
drawn from p(·; vτ−1). If these score values are ordered increasingly

and indexed such that s1 ≤ · · · ≤ sNCE
, then the (1− ̺CE) quantile is:

λτ = s⌈(1−̺CE)NCE⌉ (A.11)

where ⌈·⌉ rounds the argument to the next greater or equal integer number (ceiling).

When the inequality λτ∗ ≥ λ is satisfied for some τ∗ ≥ 1, the rare-event probability is

estimated using the density p(·; vτ∗) for importance sampling (N1 ∈ N
∗):

ν̂ =
1

N1

N1∑

is=1

I(s(ais) ≥ λ)W (ais ; v̄, vτ∗) (A.12)

161

APPENDIX A. THE CROSS-ENTROPY METHOD

A.2 CE optimization

Consider the following optimization problem:

max
a∈A

s(a) (A.13)

where s : A → R is the score function to maximize, and the variable a takes values in the

domainA. Denote the maximum by s∗. The CE method for optimization maintains a density

with support A. In each iteration, a number of samples are drawn from this density and the

score values for these samples are computed. A (smaller) number of samples that have the

highest scores are kept, and the remaining samples are discarded. The density is then updated

using the selected samples, such that at the next iteration the probability of drawing better

samples is increased. The algorithm stops when the score of the worst selected sample no

longer improves.

Formally, a family of densities {p(·; v)} has to be chosen. This family has supportA and

is parameterized by v. An associated stochastic problem to (A.13) is the problem of finding

the probability:

ν(λ) = Pa∼p(·;v′)(s(a) ≥ λ) = Ea∼p(·;v′) {I(s(a) ≥ λ)} (A.14)

where the random vector a has the density p(·; v′) for some parameter vector v′. Consider

now the problem of estimating ν(λ) for a λ that is close to s∗. Typically, {s(a) ≥ λ} is a rare

event. The CE procedure can therefore be used to solve (A.14).

Contrary to the CE method for rare-event simulation, in optimization there is no known

nominal λ; its place is taken by s∗, which is unknown. The CE method for optimization

circumvents this difficulty by redefining the associated stochastic problem at every iteration

τ , using the density with parameter vτ−1, so that λτ is likely to converge to s∗ as τ increases.

Consequently, the stochastic counterpart at iteration τ of CE optimization:

vτ = arg max
v

1

NCE

NCE∑

is=1

I(s(ais) ≥ λτ) ln p(ais ; v) (A.15)

is different from the one used in rare-event simulation (A.8), and corresponds to maximizing

over v the expectation Ea∼p(·;vτ−1) {I(s(ais) ≥ λτ) ln p(ais ; v)}. This determines the opti-

mal parameter associated with Pa∼p(·;vτ−1)(s(a) ≥ λτ), rather than with Pa∼p(·;v̄)(s(a) ≥
λτ) as in rare-event simulation. So, the term W from (A.7) and (A.8) does not play a role

here. The parameter v̄, which in rare-event simulation was the unique nominal parameter un-

der which the rare-event probability has to be estimated, no longer plays a role either. Instead,

in CE optimization an initial value v0 of the density parameter is required, which only serves

to define the associated stochastic problem at the first iteration, and which can be chosen in a

fairly arbitrary way.

The most important parameters in the CE method for optimization are the number of

samples NCE and the quantile of best samples used to update the density, ̺CE. The number

of samples should be at least a multiple of the number of parameters Nv , so NCE = cCENv

with cCE ∈ N, cCE ≥ 2. The parameter ̺CE can be taken around 0.01 for large numbers

of samples, or larger, around ln(NCE)/NCE, if there are only a few samples (NCE < 100)

(Rubinstein and Kroese, 2004).

162

A.2. CE OPTIMIZATION

The CE method for optimization is summarized in Algorithm A.1. Note that in line 7,

the stochastic counterpart (A.15) was simplified by using the fact that the samples are already

sorted in the ascending order of their scores. When εCE = 0, the algorithm terminates when

λ remains constant for dCE consecutive iterations. When εCE > 0, the algorithm terminates

when λ improves for dCE consecutive iterations, and these improvements do not exceed εCE.

The integer dCE > 1 accounts for the random nature of the algorithm, by ensuring that the

latest performance improvements did not decrease below εCE accidentally, but that instead

the decrease remains steady for dCE iterations. Because the algorithm is not guaranteed to

converge in general, a maximum number of iterations τmax has to be chosen to ensure the

algorithm terminates in a finite time.

Algorithm A.1 The cross-entropy method for optimization

Input:

family {p(·; v)}, score function s, initial density parameter v0
parameters ̺CE, NCE, dCE, εCE, maximum number of iterations τmax

1: τ ← 1
2: repeat

3: generate sample a1, . . . , aNCE
from p(·; vτ−1)

4: compute scores s(ais), is = 1, . . . , NCE

5: reorder and reindex s.t. s1 ≤ · · · ≤ sNCE

6: λτ ← s⌈(1−̺CE)NCE⌉

7: vτ ← arg maxv

∑NCE

is=⌈(1−̺CE)NCE⌉ ln p(ais ; v)
8: τ ← τ + 1
9: until (τ > dCE and 0 ≤ λτ−τ ′ − λτ−τ ′−1 ≤ εCE, for τ ′ = 1, . . . , dCE − 1) or τ > τmax

Output: â∗, the best sample encountered at any iteration τ ; and ŝ∗ = s(â∗)

CE optimization has found many applications in recent years, e.g., in biomedicine (Ma-

thenya et al., 2007), vector quantization (Boubezoul et al., 2008), vehicle routing (Chepuri

and de Mello, 2005), and clustering (Rubinstein and Kroese, 2004). While its convergence

is not guaranteed in general, and the theoretical understanding of the CE method is currently

limited, the algorithm is usually convergent in practice (Rubinstein and Kroese, 2004). Con-

vergence proofs are available only for combinatorial optimization (Rubinstein and Kroese,

2004; Margolin, 2005; Costa et al., 2007). The most general proof available to date shows

that the CE method for combinatorial optimization asymptotically converges, with probabil-

ity, to a unit mass density, i.e., a density that always generates samples equal to a single point.

Furthermore, this convergence point can be made equal to the optimal solution by using an

adaptive smoothing technique (Costa et al., 2007). With smoothing, the new parameter vτ

is computed as a convex combination of the solution of (A.15) and the old value vτ−1. The

convex update is parameterized by the smoothing parameter αCE ∈ (0, 1]:

vτ = (1− αCE)vτ−1 + αCE arg max
v

NCE∑

is=⌈(1−̺CE)NCE⌉

ln p(ais ; v) (A.16)

163

164

Appendix B

Least-squares policy evaluation

for Q-functions

The online least-squares policy iteration algorithm introduced in Chapter 5 uses least-squares

temporal difference to evaluate policies. Other policy evaluation algorithms can be used in-

stead. One such algorithm is least-squares policy evaluation, which was originally developed

for V-functions (Bertsekas and Ioffe, 1996; Bertsekas, 2007). In this appendix, we extend

it to compute Q-functions instead of V-functions. Section B.1 presents this new algorithm,

called least-squares policy evaluation for Q-functions. Section B.2 shows how this algorithm

can be used in online policy iteration.

B.1 Least-squares policy evaluation for Q-functions

The derivation of least-squares policy evaluation for Q-functions (LSPE-Q) is similar to the

derivation of least-squares temporal difference for Q-functions (LSTD-Q), which was pre-

sented in Section 3.4.1. Note that, for simplicity, we use a deterministic formalism to intro-

duce LSPE-Q. Nevertheless, the final algorithm can be applied directly to the stochastic case,

as well.

Assume, like in Section 3.4.1, that the state space X and the action space U have a

finite number of elements, X = {x1, . . . , xN̄}, U = {u1, . . . , uM̄}. Consider a linearly

parameterized approximator with n state-action basis functions (BFs) φ1, . . . , φn : X ×
U → R. We will use a matrix representation of the BFs and a vector representation of the

Q-function. The matrix representation of the BFs, φ ∈ R
N̄M̄×n, is defined by φ[i,j],l =

φl(xi, uj). Here, [i, j] is used to denote the single-dimensional index corresponding to i
and j, which can be computed with [i, j] = i + (j − 1)N̄ . The vector representation of

a Q-function Q is Q ∈ R
N̄M̄ with Q[i,j] = Q(xi, uj). The Q-vector corresponding to a

parameter θ is Q̂ = φ θ. The set of exactly representable Q-vectors is the space spanned by

the BFs, and can be written as Q̂ = {φ θ | θ ∈ R
n }, Q̂ ⊂ R

N̄M̄ .

The projected Bellman equation corresponding to the BFs φ is:

φθ∗ = PwT hφθ∗ (B.1)

165

APPENDIX B. LSPE-Q

where T h is the matrix form (3.14) of the policy evaluation mapping Th (2.22), and Pw

is a weighted Euclidean (least-squares) projection operator, which takes any Q-vector and

projects it onto Q̂. The weight function w : X×U → [0, 1] controls the distribution over the

state-action space of the error (difference) between a Q-vector Q and its projection PwQ.

It satisfies
∑

x,u w(x, u) = 1. The projection matrix can be written in a closed form as

Pw = φ(φTwφ)−1φTw, where w ∈ R
N̄M̄×N̄M̄ is a diagonal matrix representation of w,

with w[i,j],[i,j] = w(xi, uj).

Instead of aiming directly at a solution θ∗ of (B.1), like LSTD-Q does, the (idealized)

LSPE-Q algorithm applies (B.1) as an iterative update:

φθls = PwT hφθls−1, ls ≥ 1 (B.2)

starting from an arbitrary parameter vector θ0 ∈ R
n. The iterative update (B.2) converges

with probability 1 to θ∗, under conditions similar to those required for the convergence of

least-squares policy evaluation for V-functions (Bertsekas, 2007). Because θls asymptotically

converges to θ∗ as ls →∞, the update (B.2) becomes asymptotically equivalent to (B.1).

By substituting T h from (3.14) and the closed-form expression for Pw, the update (B.2)

becomes:

φθls = φ(φTwφ)−1φTw(ρ + γfhφθls−1)

and further, by left-multiplication with φTw:

φTwφθls = φTwρ + γφTwfhφθls−1

where f is a matrix representation of the dynamics f , h a matrix representation of the policy

h, and ρ a vector representation of the reward function ρ (for the definitions of f , h, and ρ,

see Section 3.4.1). Denote Γ̄ = φTwφ, z = φTwρ, and Λ = γφTwfhφ. Then, the update

equation becomes:

Γ̄θls = z + Λθls−1 (B.3)

The matrices Γ̄ and Λ, and the vector z, can be written as sums of N̄M̄ terms, one for

each state-action pair:

Γ̄ =
N̄∑

i=1

M̄∑

j=1

φ(xi, uj)w(xi, uj)φ
T(xi, uj)

z =

N̄∑

i=1

M̄∑

j=1

φ(xi, uj)w(xi, uj)ρ(xi, uj)

Λ = γ

N̄∑

i=1

M̄∑

j=1

φ(xi, uj)w(xi, uj)φ
T(f(xi, uj), h(f(xi, uj)))

(B.4)

A practical implementation of LSPE-Q uses a set of samples {(xls , uls , x
′
ls

= f(xls , uls),
rls = ρ(xls , uls)) | ls = 1, . . . , ns} with (xls , uls) drawn from a density defined by the weight

function w: the probability of drawing the sample (xls , uls) is w(xls , uls). From these sam-

ples, Γ̄, z, and Λ are incrementally approximated using the following update rules, derived

166

B.2. ONLINE POLICY ITERATION WITH LSPE-Q

from (B.4):

Γ̄0 = 0, z0 = 0, Λ0 = 0

Γ̄ls = Γ̄ls−1 + φ(xls , uls)φ
T(xls , uls)

zls = zls−1 + φ(xls , uls)rls

Λls = Λls−1 + γφ(xls , uls)φ
T(x′ls , h(x

′
ls
))

(B.5)

After each sample has been processed, LSPE-Q updates the parameter vector using:

1

ls
Γ̄lsθls =

1

ls
zls +

1

ls
Λlsθls−1 (B.6)

It is true that limls→∞
1
ls

Γ̄ls = Γ̄, limls→∞
1
ls
zls = z, and limls→∞

1
ls

Λls = Λ. Therefore,

(B.6) asymptotically becomes equivalent to (B.3), as ls → ∞. Since (B.3) is in turn asymp-

totically equivalent to (B.1), LSPE-Q and LSTD-Q are asymptotically equivalent. Note that

the parameter vector can be updated after an arbitrary number of samples has been processed

(instead of after every sample) and the two algorithms are still asymptotically equivalent.

In practice, the number of samples is always finite, so the normalization by the number

of samples is not necessary1, and (B.6) is equivalent to:

Γ̄lsθls = zls + Λlsθls−1 (B.7)

Note that the matrices Γ̄ and Λ, as well as the vector z, have manageable sizes which only

depend on the number of BFs n, and not on the number of states N̄ or actions M̄ . Also,

the updates (B.5) and (B.7) can be applied without any change to state-action spaces with

infinitely many elements (e.g., continuous).

B.2 Online policy iteration with LSPE-Q

Because LSTD-Q and LSPE-Q become equivalent as the number of samples increases, there

is little reason to prefer one over the other for offline algorithms that use large batches of sam-

ples, such as least-squares policy iteration (LSPI). However, like their V-function counterparts

(Bertsekas, 2007), LSTD-Q and LSPE-Q can produce quite different parameters when only

a few samples are available for the evaluation of every policy. This means that their behavior

can be very different when they are used in online (optimistic) policy iteration. Recall that in

online policy iteration, policy improvements are performed at short intervals, during which

only a small number of samples can be processed. An analytical or experimental compari-

son between LSTD-Q and LSPE-Q in the context of online policy iteration is an important

research direction.

As an illustrative example, Algorithm B.1 outlines online (optimistic) policy iteration

with LSPE-Q policy evaluation and ε-greedy exploration. This algorithm is similar to online

LSPI (Algorithm 5.2), which was studied in Chapter 5. The algorithm has similar parameters

to online LSPI: the interval between policy improvements Kθ, the exploration schedule εk,

and the constant βΓ̄, used to ensure that Γ̄ is not singular for the first parameter updates.

Note that Γ̄, z, and Λ are never reset after the policy is improved. The algorithm could

reset them and reuse old samples to compute new Γ̄, z, and Λ for each policy.2 However,

1Normalization may still be useful to avoid numerical errors.
2In fact, only Λ depends on the policy and has to be recomputed. However, if different sets of samples were

reused for every policy, then Γ̄ and z would need to be recomputed as well.

167

APPENDIX B. LSPE-Q

Algorithm B.1 Online policy iteration with LSPE-Q and ε-greedy exploration

Input:

BFs φl : X × U → R, l = 1, . . . , n
discount factor γ; policy improvement interval Kθ; exploration schedule εk, k ≥ 0
a small constant βΓ̄ > 0

1: ℓ← 0; initialize policy h0; initialize parameters θ0
2: Γ̄0 ← βΓ̄ · In×n; z0 ← 0n; Λ0 ← 0n×n

3: measure initial state x0

4: for each time step k ≥ 0 do

5: uk ←
{
hℓ(xk) with probability (1− εk) (exploit)

a uniform random action in U with probability εk (explore)

6: apply uk, measure next state xk+1 and reward rk+1

7: Γ̄k+1 ← Γ̄k + φ(xk, uk)φT(xk, uk)
8: zk+1 ← zk + φ(xk, uk)rk+1

9: Λk+1 ← Λk + γφ(xk, uk)φT(xk+1, hℓ(xk+1))
10: compute θk+1 by solving Γ̄k+1θk+1 = zk+1 + Λk+1θk

11: if k = (ℓ+ 1)Kθ then ⊲ k is the next positive multiple of Kθ

12: hℓ+1(x)← arg maxu φ(x, u)θk+1 ⊲ policy improvement

13: ℓ← ℓ+ 1
14: end if

15: end for

due to computational cost considerations, reusing samples is not always practical when the

algorithm has to be run online. Therefore, the algorithm cannot afford to discard the values

of Γ̄, z, and Λ, because the few samples that arrive before the next policy improvement are

not sufficient to construct informative new estimates. Instead, the values of Γ̄, z, and Λ are

preserved when the policy is improved. The assumption underlying this heuristic is that the

Q-functions of subsequent policies are similar, which means that the previous values of Γ̄, z,
and Λ are representative also for the new policy.

168

Bibliography

Adams, B., Banks, H., Kwon, H.-D., and Tran, H. (2004). Dynamic multidrug therapies for

HIV: Optimal and STI control approaches. Mathematical Biosciences and Engineering,

1(2):223–241.

Arulampalam, S., Maskell, S., Gordon, N. J., and Clapp, T. (2002). A tutorial on particle

filters for on-line nonlinear / non-Gaussian Bayesian tracking. IEEE Transactions on Signal

Processing, 50:174–188.

Baird, L. and Moore, A. (1999). Gradient descent for general reinforcement learning. In

Kearns, M. S., Solla, S. A., and Cohn, D. A., editors, Advances in Neural Information

Processing Systems 11, pages 968–974. MIT Press.

Barash, D. (1999). A genetic search in policy space for solving Markov decision processes.

In AAAI Spring Symposium on Search Techniques for Problem Solving under Uncertainty

and Incomplete Information, Palo Alto, US.

Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983). Neuronlike adaptive elements than

can solve difficult learning control problems. IEEE Transactions on Systems, Man, and

Cybernetics, 13(5):833–846.

Berenji, H. R. and Khedkar, P. (1992). Learning and tuning fuzzy logic controllers through

reinforcements. IEEE Transactions on Neural Networks, 3(5):724–740.

Berenji, H. R. and Vengerov, D. (2003). A convergent actor-critic-based FRL algorithm with

application to power management of wireless transmitters. IEEE Transactions on Fuzzy

Systems, 11(4):478–485.

Bertsekas, D. P. (2005). Dynamic programming and suboptimal control: A survey from ADP

to MPC. European Journal of Control, 11(4–5). Special issue for the CDC-ECC-05 in

Seville, Spain.

Bertsekas, D. P. (2007). Dynamic Programming and Optimal Control, volume 2. Athena

Scientific, 3nd edition.

Bertsekas, D. P. and Ioffe, S. (1996). Temporal differences-based policy iteration and ap-

plications in neuro-dynamic programming. Technical Report LIDS-P-2349, Massachusets

Institute of Technology.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Athena Scien-

tific.

169

BIBLIOGRAPHY

Borkar, V. (2005). An actor-critic algorithm for constrained Markov decision processes.

Systems & Control Letters, 54:207–213.

Boubezoul, A., Paris, S., and Ouladsine, M. (2008). Application of the cross entropy method

to the GLVQ algorithm. Pattern Recognition, 41(10):3173–3178.

Buşoniu, L., Babuška, R., and De Schutter, B. (2006a). Multi-agent reinforcement learning:

A survey. In Proceedings 9th International Conference of Control, Automation, Robotics,

and Vision (ICARCV-06), pages 527–532, Singapore.

Buşoniu, L., Babuška, R., and De Schutter, B. (2008a). A comprehensive survey of multi-

agent reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics. Part

C: Applications and Reviews, 38(2):156–172.

Buşoniu, L., De Schutter, B., and Babuška, R. (2005). Multiagent reinforcement learning

with adaptive state focus. In Proceedings 17th Belgian-Dutch Conference on Artificial

Intelligence (BNAIC-05), pages 35–42, Brussels, Belgium.

Buşoniu, L., De Schutter, B., and Babuška, R. (2006b). Decentralized reinforcement learning

control of a robotic manipulator. In Proceedings 9th International Conference of Control,

Automation, Robotics, and Vision (ICARCV-06), pages 1347–1352, Singapore.

Buşoniu, L., Ernst, D., De Schutter, B., and Babuška, R. (2007a). Continuous-state reinforce-

ment learning with fuzzy approximation. In Adaptive Learning Agents and Multi-Agent

Systems (ALAMAS-07) Symposium, pages 21–35, Maastricht, The Netherlands.

Buşoniu, L., Ernst, D., De Schutter, B., and Babuška, R. (2007b). Fuzzy approximation for

convergent model-based reinforcement learning. In Proceedings 2007 IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE-07), pages 968–973, London, UK.

Buşoniu, L., Ernst, D., De Schutter, B., and Babuška, R. (2008b). Consistency of fuzzy

model-based reinforcement learning. In Proceedings 2008 IEEE International Conference

on Fuzzy Systems (FUZZ-IEEE-08), pages 518–524, Hong Kong.

Buşoniu, L., Ernst, D., De Schutter, B., and Babuška, R. (2008c). Continuous-state rein-

forcement learning with fuzzy approximation. In Tuyls, K., Nowé, A., Guessoum, Z.,

and Kudenko, D., editors, Adaptive Agents and Multi-Agent Systems III, volume 4865 of

Lecture Notes in Computer Science, pages 27–43. Springer.

Buşoniu, L., Ernst, D., De Schutter, B., and Babuška, R. (2008d). Fuzzy partition opti-

mization for approximate fuzzy Q-iteration. In Proceedings 17th IFAC World Congress

(IFAC-08), pages 5629–5634, Seoul, Korea.

Chang, H. S., Fu, M. C., Hu, J., and Marcus, S. I. (2007). Simulation-Based Algorithms for

Markov Decision Processes. Springer.

Chepuri, K. and de Mello, T. H. (2005). Solving the vehicle routing problem with stochastic

demands using the cross-entropy method. Annals of Operations Research, 134(1):153–

181.

170

BIBLIOGRAPHY

Chin, H. H. and Jafari, A. A. (1998). Genetic algorithm methods for solving the best station-

ary policy of finite Markov decision processes. In Proceedings 30th Southeastern Sympo-

sium on System Theory, pages 538–543, Morgantown, US.

Chow, C.-S. and Tsitsiklis, J. (1991). An optimal one-way multigrid algorithm for discrete-

time stochastic control. IEEE Transactions on Automatic Control, 36(8):898–914.

Costa, A., Jones, O. D., and Kroese, D. (2007). Convergence properties of the cross-entropy

method for discrete optimization. Operations Research Letters, 35:573–580.

del R. Millán, J., Posenato, D., and Dedieu, E. (2002). Continuous-action Q-learning. Ma-

chine Learning, 49(2-3):247–265.

Edelman, A. and Murakami, H. (1995). Polynomial roots from companion matrix eigenval-

ues. Mathematics of Computation, 64:763–776.

Ernst, D. (2003). Near Optimal Closed-loop Control. Application to Electric Power Systems.

PhD thesis, University of Liège, Belgium.

Ernst, D., Geurts, P., and Wehenkel, L. (2005). Tree-based batch mode reinforcement learn-

ing. Journal of Machine Learning Research, 6:503–556.

Ernst, D., Stan, G.-B., Gonçalves, J., and Wehenkel, L. (2006). Clinical data based optimal

STI strategies for HIV: a reinforcement learning approach. In Proceedings 45th IEEE

Conference on Decision & Control, pages 667–672, San Diego, US.

Geramifard, A., Bowling, M., Zinkevich, M., and Sutton, R. S. (2007). iLSTD: Eligibil-

ity traces & convergence analysis. In Schölkopf, B., Platt, J., and Hofmann, T., editors,

Advances in Neural Information Processing Systems 19, pages 440–448. MIT Press.

Geramifard, A., Bowling, M. H., and Sutton, R. S. (2006). Incremental least-squares temporal

difference learning. In Proceedings 21st National Conference on Artificial Intelligence and

18th Innovative Applications of Artificial Intelligence Conference (AAAI-06), pages 356–

361, Boston, US.

Glorennec, P. Y. (2000). Reinforcement learning: An overview. In Proceedings European

Symposium on Intelligent Techniques (ESIT-00), pages 17–35, Aachen, Germany.

Gomez, F. J., Schmidhuber, J., and Miikkulainen, R. (2006). Efficient non-linear control

through neuroevolution. In Proceedings 17th European Conference on Machine Learning

(ECML-06), volume 4212 of Lecture Notes in Computer Science, pages 654–662, Berlin,

Germany.

Gonzalez, R. and Rofman, E. (1985). On deterministic control problems: An approximation

procedure for the optimal cost I. The stationary problem. SIAM Journal on Control and

Optimization, 23(2):242–266.

Gordon, G. (1995). Stable function approximation in dynamic programming. In Proceedings

12th International Conference on Machine Learning (ICML-95), pages 261–268, Tahoe

City, US.

171

BIBLIOGRAPHY

Grüne, L. (2004). Error estimation and adaptive discretization for the discrete stochastic

Hamilton-Jacobi-Bellman equation. Numerical Mathematics, 99:85–112.

Horiuchi, T., Fujino, A., Katai, O., and Sawaragi, T. (1996). Fuzzy interpolation-based Q-

learning with continuous states and actions. In Proceedings 5th IEEE International Con-

ference on Fuzzy Systems (FUZZ-IEEE-96), pages 594–600, New Orleans, US.

Isidori, A. (1995). Nonlinear Control Systems. Springer Verlag, 3rd edition.

Jaakkola, T., Jordan, M. I., and Singh, S. P. (1994). On the convergence of stochastic iterative

dynamic programming algorithms. Neural Computation, 6(6):1185–1201.

Jain, S. and Khorrami, F. (1997). Decentralized adaptive control of a class of large-scale

interconnected nonlinear systems. IEEE Transactions on Automatic Control, 42(2):136–

154.

Jiang, Z.-P. (2000). Decentralized and adaptive nonlinear tracking of large-scale systems via

output feedback. IEEE Transactions on Automatic Control, 45(11):2122–2128.

Jouffe, L. (1998). Fuzzy inference system learning by reinforcement methods. IEEE Transac-

tions on Systems, Man, and Cybernetics—Part C: Applications and Reviews, 28(3):338–

355.

Jung, T. and Polani, D. (2007). Kernelizing LSPE(λ). In Proceedings 2007 IEEE Sympo-

sium on Approximate Dynamic Programming and Reinforcement Learning, pages 338–

345, Honolulu, Hawaii, US.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning and acting in partially

observable stochastic domains. Artificial Intelligence, 101:99–134.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement learning: A

survey. Journal of Artificial Intelligence Research, 4:237–285.

Keller, P. W., Mannor, S., and Precup, D. (2006). Automatic basis function construction

for approximate dynamic programming and reinforcement learning. In Proceedings 23rd

International Conference on Machine Learning (ICML-06), pages 449–456, Pittsburgh,

US.

Kirk, W. A. and Khamsi, M. A. (2001). An Introduction to Metric Spaces and Fixed Point

Theory. John Wiley.

Konda, V. (2002). Actor-Critic Algorithms. PhD thesis, Massachusets Institute of Technol-

ogy, Cambridge, US.

Konda, V. R. and Tsitsiklis, J. N. (2000). Actor-critic algorithms. In Solla, S. A., Leen, T. K.,

and Müller, K.-R., editors, Advances in Neural Information Processing Systems 12, pages

1008–1014. MIT Press.

Konda, V. R. and Tsitsiklis, J. N. (2003). On actor-critic algorithms. SIAM Journal on

Control and Optimization, 42(4):1143–1166.

172

BIBLIOGRAPHY

Lagoudakis, M., Parr, R., and Littman, M. (2002). Least-squares methods in reinforcement

learning for control. In Methods and Applications of Artificial Intelligence, volume 2308

of Lecture Notes in Artificial Intelligence, pages 249–260. Springer.

Lagoudakis, M. G. and Parr, R. (2003a). Least-squares policy iteration. Journal of Machine

Learning Research, 4:1107–1149.

Lagoudakis, M. G. and Parr, R. (2003b). Reinforcement learning as classification: Leveraging

modern classifiers. In Proceedings 20th International Conference on Machine Learning

(ICML-03), pages 424–431. Washington, US.

Lin, C.-K. (2003). A reinforcement learning adaptive fuzzy controller for robots. Fuzzy Sets

and Systems, 137(3):339–352.

Lisziewicz, J., Rosenberg, E., and Liebermann, J. (1999). Control of HIV despite the discon-

tinuation of antiretroviral therapy. New England Journal of Medicine, 340:1683–1684.

Liu, S.-J., Zhang, J.-F., and Jiang, Z.-P. (2007). Decentralized adaptive output-feedback

stabilization for large-scale stochastic nonlinear systems. Automatica, 43(2):238–251.

Mahadevan, S. (2005). Samuel meets Amarel: Automating value function approximation

using global state space analysis. In Proceedings 20th National Conference on Artifi-

cial Intelligence and the 17th Innovative Applications of Artificial Intelligence Conference

(AAAI-05), pages 1000–1005, Pittsburgh, US.

Mahadevan, S. and Maggioni, M. (2007). Proto-value functions: A Laplacian framework

for learning representation and control in Markov decision processes. Journal of Machine

Learning Research, 8:2169–2231.

Mannor, S., Rubinstein, R. Y., and Gat, Y. (2003). The cross-entropy method for fast policy

search. In Proceedings 20th International Conference on Machine Learning (ICML-03),

pages 512–519, Washington, US.

Marbach, P. and Tsitsiklis, J. N. (2003). Approximate gradient methods in policy-space

optimization of Markov reward processes. Discrete Event Dynamic Systems: Theory and

Applications, 13:111–148.

Margolin, L. (2005). On the convergence of the cross-entropy method. Annals of Operations

Research, 134(1):201–214.

Mathenya, M. E., Resnic, F. S., Arora, N., and Ohno-Machado, L. (2007). Effects of SVM pa-

rameter optimization on discrimination and calibration for post-procedural PCI mortality.

Journal of Biomedical Informatics, 40(6):688–697.

Menache, I., Mannor, S., and Shimkin, N. (2005). Basis function adaptation in temporal

difference reinforcement learning. Annals of Operations Research, 134:215–238.

Moore, A. W. and Atkeson, C. R. (1995). The parti-game algorithm for variable resolution

reinforcement learning in multidimensional state-spaces. Machine Learning, 21:199–233.

173

BIBLIOGRAPHY

Munos, R. (1997). Finite-element methods with local triangulation refinement for continuous

reinforcement learning problems. In Proceedings 9th European Conference on Machine

Learning (ECML-97), pages 170–182, Prague, Czech Republic.

Munos, R. (2006). Policy gradient in continuous time. Journal of Machine Learning Re-

search, 7:771–791.

Munos, R. and Moore, A. (2002). Variable-resolution discretization in optimal control. Ma-

chine Learning, 49(2-3):291–323.

Munos, R. and Szepesvári, C. (2008). Finite time bounds for fitted value iteration. Journal of

Machine Learning Research, 9:815–857.

Nakamura, Y., Moria, T., Satoc, M., and Ishiia, S. (2007). Reinforcement learning for a biped

robot based on a CPG-actor-critic method. Neural Networks, 20:723–735.

Ng, A. Y., Harada, D., and Russell, S. (1999). Policy invariance under reward transfor-

mations: Theory and application to reward shaping. In Proceedings 16th International

Conference on Machine Learning (ICML-99), pages 278–287, Bled, Slovenia.

Ng, A. Y. and Jordan, M. I. (2000). PEGASUS: A policy search method for large MDPs

and POMDPs. In Proceedings 16th Conference in Uncertainty in Artificial Intelligence

(UAI-00), pages 406–415, Palo Alto, US.

Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. Springer-Verlag, 2nd edition.

Ormoneit, D. and Sen, S. (2002). Kernel-based reinforcement learning. Machine Learning,

49(2–3):161–178.

Porta, J. M., Vlassis, N., Spaan, M. T., and Poupart, P. (2006). Point-based value iteration for

continuous POMDPs. Journal of Machine Learning Research, 7:2329–2367.

Randløv, J. and Alstrøm, P. (1998). Learning to drive a bicycle using reinforcement learning

and shaping. In Proceedings 15th International Conference on Machine Learning (ICML-

98), pages 463–471, Madison, US.

Ratitch, B. and Precup, D. (2004). Sparse distributed memories for on-line value-based re-

inforcement learning. In Proceedings 15th European Conference on Machine Learning

(ECML-04), volume 3201 of Lecture Notes in Computer Science, pages 347–358, Pisa,

Italy.

Riedmiller, M., Peters, J., and Schaal, S. (2007). Evaluation of policy gradient methods and

variants on the cart-pole benchmark. In Proceedings 2007 IEEE Symposium on Approx-

imate Dynamic Programming and Reinforcement Learning (ADPRL-07), pages 254–261,

Honolulu, Hawaii.

Rubinstein, R. Y. and Kroese, D. P. (2004). The Cross Entropy Method. A Unified Approach

to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning. Infor-

mation Science and Statistics. Springer.

Rummery, G. A. and Niranjan, M. (1994). On-line Q-learning using connectionist systems.

Technical Report 166, Engineering Department, Cambridge University, Cambridge, UK.

174

BIBLIOGRAPHY

Rust, J. (1996). Numerical dynamic programming in economics. In Amman, H. M.,

Kendrick, D. A., and Rust, J., editors, Handbook of Computational Economics, volume 1,

chapter 14, pages 619–729. Elsevier.

Santos, M. S. and Vigo-Aguiar, J. (1998). Analysis of a numerical dynamic programming

algorithm applied to economic models. Econometrica, 66(2):409–426.

Sherman, J. and Morrison, W. J. (1950). Adjustment of an inverse matrix corresponding to

a change in one element of a given matrix. Annals of Mathematical Statistics, 21(1):124–

127.

Singh, S. P., Jaakkola, T., and Jordan, M. I. (1995). Reinforcement learning with soft state

aggregation. In Tesauro, G., Touretzky, D. S., and Leen, T. K., editors, Advances in Neural

Information Processing Systems 7, pages 361–368.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine

Learning, 3:9–44.

Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting based on

approximating dynamic programming. In Proceedings 7th International Conference on

Machine Learning (ICML-90), pages 216–224, Austin, US.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT Press.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y. (2000). Policy gradient

methods for reinforcement learning with function approximation. In Solla, S. A., Leen,

T. K., and Müller, K.-R., editors, Advances in Neural Information Processing Systems 12,

pages 1057–1063. MIT Press.

Szepesvári, C. and Smart, W. D. (2004). Interpolation-based Q-learning. In Proceedings

21st International Conference on Machine Learning (ICML-04), pages 791–798, Bannf,

Canada.

Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems and its applications to

modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 15:116–

132.

Touzet, C. F. (1997). Neural reinforcement learning for behaviour synthesis. Robotics and

Autonomous Systems, 22(3–4):251–81.

Tsitsiklis, J. N. and Van Roy, B. (1996). Feature-based methods for large scale dynamic

programming. Machine Learning, 22(1–3):59–94.

Vengerov, D., Bambos, N., and Berenji, H. R. (2005). A fuzzy reinforcement learning ap-

proach to power control in wireless transmitters. IEEE Transactions on Systems, Man, and

Cybernetics—Part B: Cybernetics, 35(4):768–778.

Waldock, A. and Carse, B. (2008). Fuzzy Q-learning with an adaptive representation. In

Proceedings 2008 IEEE World Congress on Computational Intelligence (WCCI-08), pages

720–725, Hong Kong.

175

BIBLIOGRAPHY

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD thesis, King’s College,

Oxford.

Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning. Machine Learning, 8:279–292.

Whiteson, S. and Stone, P. (2006). Evolutionary function approximation for reinforcement

learning. Journal of Machine Learning Research, 7:877–917.

Wiering, M. (2004). Convergence and divergence in standard and averaging reinforcement

learning. In Proceedings 15th European Conference on Machine Learning (ECML’04),

pages 477–488, Pisa, Italy.

Williams, R. J. and Baird, L. C. (1994). Tight performance bounds on greedy policies based

on imperfect value functions. In Proceedings 8th Yale Workshop on Adaptive and Learning

Systems, pages 108–113, New Haven, US.

Wodarz, D. and Nowak, M. A. (1999). Specific therapy regimes could lead to long-term

immunological control of HIV. Proceedings of the National Academy of Sciences of the

United States of America, 96(25):14464–14469.

Xu, X., Hu, D., and Lu, X. (2007). Kernel-based least-squares policy iteration for reinforce-

ment learning. IEEE Transactions on Neural Networks, 18(4):973–992.

176

Glossary

Conventions

The following terminology conventions are used in this thesis:

• The term ‘mapping’ is used to refer to functions that work with other functions as

inputs and/or outputs; as well as to compositions of such functions. The term is used

to differentiate mappings from ordinary functions, which only work with numerical

scalars, vectors, or matrices.

• We refer to state value functions as ‘V-functions’, and to state-action value functions as

‘Q-functions’, to clearly differentiate between the two types of value functions. We use

the name ‘value function’ to refer to Q-functions and V-functions collectively. Simi-

larly, ‘V-iteration’ and ‘Q-iteration’ are used to refer to value iteration algorithms that

work with V-functions and Q-functions, respectively.

The following conventions are used for symbols and notations:

• The standard control-theoretical notation is preferred to the artificial intelligence nota-

tion typically used in reinforcement learning. For instance, the state is denoted by x,

the state space by X , the control action by u, the action space by U , and the process

dynamics by f . Furthermore, we denote reward functions by ρ, to distinguish them

from the instantaneous rewards r and from the returns R. Control policies are denoted

by h.

• All the vectors used in this thesis are column vectors. The transpose of a vector is

denoted by the superscript T. For instance, the transpose of θ is θT.

• Boldface notation is used for vector or matrix representations of functions and map-

pings, e.g., f is a matrix representation of the dynamics f . However, ordinary vectors

and matrices are displayed in a normal font, e.g., θ, Γ.

• Calligraphic notation is used to differentiate variables related to policy approximation,

from variables related to value function approximation. So, the policy parameter is ϑ
and the policy basis functions (BFs) are ϕ, whereas the value function parameter is θ
and the value function BFs are φ. Furthermore, the number of policy BFs is N , and

the number of samples for policy approximation isNs.

177

GLOSSARY

• In the context of value function approximation, we denote BFs that only depend on the

state by φ̄, to differentiate them from the state-action BFs φ, whenever these two types

of BFs appear together. When there is no possibility of confusion, the simpler notation

φ is used for both types of BFs.

• For all the examples in this thesis, the measurement units of variables are mentioned

only once in the text, when the variables are introduced, after which they are omitted.

Time measurements are always accompanied by units, however.

List of symbols and notations

Below, a list is given containing the mathematical symbols and notations that are used most

frequently in this thesis.

General notations

|·| absolute value (for numeric arguments); cardinality (for arguments that are sets)

‖·‖p p-norm of the argument

⌊·⌋ the largest integer smaller than or equal to the argument (floor)

⌈·⌉ the smallest integer larger than or equal to the argument (ceiling)

F set of fixed points of a mapping

Probability theory

a; A generic random variable; domain of generic random variable

p, q probability densities

a ∼ p(·) random sample a is drawn from the density p
P (·) probability of the random variable given as argument

E {·} expectation of the random variable given as argument

η; σ mean of a Gaussian density; standard deviation of a Gaussian density

ηbin parameter (success probability) of a Bernoulli density

Markov decision processes. Exact dynamic programming and reinforcement learning

x; X state; state space

u; U control action; action space

f ; f̃ deterministic transition function; stochastic transition function

ρ; ρ̃ deterministic reward function; stochastic reward function

h; h̃ deterministic control policy; stochastic control policy

r; R reward; return

γ discount factor

k discrete time index

Ts sampling time

Q; V Q-function (state-action value function); V-function (state value function)

Q∗; V ∗ optimal Q-function; optimal V-function

Qh; V h Q-function of policy h; V-function of policy h
Q set of all Q-functions

178

GLOSSARY

T Q-iteration mapping

Th policy evaluation mapping

ℓ, τ iteration indices

X0 representative set of initial states

εMC admissible error in the estimation of the return

K discrete time horizon for estimating the return

Approximate dynamic programming and reinforcement learning

Q̂; V̂ approximate Q-function; approximate V-function

Q̂ set of all Q-functions that can be represented by the considered approximator

ĥ approximate policy

D; d number of dimensions of the state space; dimension index

F ; P approximation mapping; projection mapping

Ud set of discrete actions

θ; φ value function parameter vector; basis functions for value function approximation

ϑ; ϕ policy parameter vector; basis functions for policy approximation

φ̄ state-dependent basis functions for Q-function approximation

n number of: Q-function parameters, state-action basis functions

N number of state-dependent basis functions for value function approximation

M number of discrete actions

N number of: policy parameters, state-dependent policy basis functions

l index of: Q-function parameter, state-action basis function

i index of: policy parameter, state-dependent basis function, discrete state

j index of discrete action

[i, j] state-action index corresponding to i and j, usually [i, j] = i+ (j − 1)N
ns number of state-action samples for Q-function approximation

Ns number of state samples for policy approximation

ls index of state-action sample

is index of state sample, as well as generic sample index

ξ; Ξ basis functions parameter vector; set of basis function parameters

c; b center of basis function; width of basis function

N̄ ; M̄ number of states; and number of actions in a finite Markov decision process

Γ matrix on the left-hand side of the projected Bellman equation

z vector on the right-hand side of the projected Bellman equation

w weight function of the approximation errors, or of the representative states X0

Pw weighted Euclidean projection matrix, for the error weight function w
εQ Q-function approximation error

εh policy approximation error

εQI convergence threshold of Q-iteration

εLSPI convergence threshold of least-squares policy iteration

Fuzzy Q-iteration

χ; µ fuzzy set; membership function

xi core of the ith fuzzy set

Td discrete-action Q-iteration mapping

179

GLOSSARY

S serial fuzzy Q-iteration mapping

δx; δu state resolution step; action resolution step

L Lipschitz constant of a function

B upper bound

Online and continuous-action least-squares policy iteration

Kθ number of samples between two consecutive policy improvements

Tθ time interval between two consecutive policy improvements

ε; εd exploration probability; decay rate of exploration probability

Ttrial trial length

δmon monotonicity direction (increasing or decreasing)

∆mon matrix expressing the monotonicity constraints

Nmon number of monotonicity constraints

qd action quantization function

ψ; Mp polynomial; degree of polynomial approximator

The cross-entropy method. Cross-entropy policy search

s score function

v, z parameter vectors of a parameterized probability density

p(·; v) parameterized density with parameter v
I{·} indicator function, equal to 1 when the argument is true, and 0 otherwise

D cross-entropy, also known as Kullback-Leibler divergence

NCE number of samples used at every iteration

̺CE proportion of samples used in the cross-entropy updates

λ probability level or (1− ̺CE) quantile of the sample performance

cCE how many times more samples to use than the number of density parameters

εCE convergence threshold

dCE number of iterations for which λ should stay roughly constant

αCE smoothing parameter

ϑ in this context, assignment of discrete actions to basis functions

NMC number of Monte Carlo simulations for each representative state

List of abbreviations

This list below collects the abbreviations used most frequently in this thesis.

MDP Markov decision process

DP dynamic programming

RL reinforcement learning

BF basis function

RBF radial basis function

MF membership function

CE cross-entropy

LSPI least-squares policy iteration

LSTD-Q least-squares temporal difference for Q-functions

LSPE-Q least-squares policy evaluation for Q-functions

180

Summary

The framework of dynamic programming (DP) and reinforcement learning (RL) can be used

to express important problems arising in a variety of fields, including e.g., automatic control,

operations research, economy, and computer science. From the perspective of automatic

control, DP/RL expresses an optimal control problem for general, nonlinear, and stochastic

systems. Moreover, RL algorithms solve the problem without requiring prior knowledge

about the process, and online RL algorithms do not even require data in advance; they start

learning a solution to the problem at the moment when they are placed in the control loop.

In the DP/RL framework, a controller measures at each discrete time step the state of a

process, and applies an action according to a control policy. As a result of this action, the

process transits into a new state, and a scalar reward signal is sent to the controller to indicate

the quality of this transition. The controller measures the new state, and the whole cycle

repeats. The goal is to find an optimal policy, i.e., a policy that maximizes the cumulative

reward over the course of interaction (the return). DP algorithms search for an optimal policy

using a model of the process dynamics and the reward function. RL algorithms do not require

a model, but use data obtained from the process. Many DP and RL algorithms use value

functions, which give the returns from every state (V-functions) or from every state-action

pair (Q-functions).

This thesis develops effective DP and RL techniques for control. Classical DP/RL algo-

rithms represent value functions and policies exactly. However, the majority of the control

problems have continuous state and action variables, in which case value functions and poli-

cies cannot be represented exactly, but have to be approximated. Three categories of algo-

rithms for approximate DP/RL can be identified, according to the path they take to search

for an (approximately) optimal policy: approximate value iteration, approximate policy iter-

ation, and approximate policy search. Algorithms for approximate value iteration search for

an approximation of the optimal value function, and use it to compute an approximately opti-

mal policy. Algorithms for approximate policy iteration iteratively improve policies. In each

iteration, an approximate value function of the current policy is found, which is then used to

computed a new, improved policy. Algorithms for approximate policy search parameterize

the policy and optimize its parameters directly, without using a value function.

The main contribution of this thesis is the development and study of algorithms for each

of the three categories of approximate DP/RL described above. The development of each

algorithm is motivated by an important open issue in its category. The goal of the algorithms

developed is to find an (approximately) optimal, stationary policy that (approximately) max-

imizes the infinite-horizon discounted sum of rewards. All the value function and policy

representations employed in this thesis rely on basis functions defined over the state space or

over the state-action space. Below, the proposed algorithms are described in more detail.

181

SUMMARY

Fuzzy Q-iteration

Fuzzy approximation is a promising way to represent the value function for approximate

value iteration. It has been used often for approximate RL, but only in a heuristic fashion

and without convergence guarantees. Therefore, this thesis develops fuzzy Q-iteration, a

theoretically sound DP algorithm that represents Q-functions using a fuzzy partition of the

state space, and a discretization of the action space. Each fuzzy set in the partition is described

by a membership function, which can be identified with a basis function. The resulting Q-

function representation is linear in the parameters, so that existing convergence guarantees for

DP with linearly parameterized approximators can be used as a starting point. These results

are extended to account for the action discretization, and subsequently used to show that fuzzy

Q-iteration converges to a Q-function that lies within a bounded distance from the optimal Q-

function. Under continuity assumptions on the dynamics and on the reward function, fuzzy

Q-iteration is also consistent, i.e., it asymptotically obtains the optimal Q-function as the

approximation accuracy increases. As an alternative to designing membership functions in

advance, we propose a technique to optimize the membership functions using cross-entropy

optimization.

An extensive numerical and experimental evaluation indicates that fuzzy Q-iteration has

a good performance in practice, among others producing better policies than Q-iteration with

radial basis function approximation. In a servo-system control example, increasing the num-

ber of fuzzy sets and discrete actions results in a more predictable performance improvement

when a continuous reward function is used, than with a discontinuous reward function. This

indicates that discontinuous reward functions, although commonly used in RL, can harm the

performance in continuous-variable control tasks. For the car-on-the-hill problem, fuzzy Q-

iteration gives a better performance with optimized membership functions than with equidis-

tant membership functions.

Online and continuous-action least-squares policy iteration

Least-squares methods for policy evaluation are sample-efficient and have relaxed conver-

gence requirements. They are used to evaluate policies in certain approximate policy iteration

algorithms. Among these algorithms, least-squares policy iteration (LSPI) is especially at-

tractive because it relies on Q-functions, which makes policy improvements easier than when

V-functions are used. Like in fuzzy Q-iteration, the Q-functions are represented using a linear

combination of basis functions. An important limitation of LSPI is that it only works offline:

before every policy improvement, a batch of samples has to be processed to accurately ap-

proximate the value function of the current policy. Therefore, this thesis extends LSPI to the

more challenging setting of online learning: online LSPI is obtained. The main difference

from the offline algorithm is that the performance of each intermediate policy is important,

which means that policy improvements have to be performed at short intervals. In these in-

tervals, only a small number of samples can be processed. Unlike offline LSPI, the online

algorithm has to actively explore in order to collect informative samples.

Extensive numerical experiments indicate that online LSPI is an effective algorithm for

online RL. In these experiments, the algorithm converges to a performance similar to that ob-

tained by offline LSPI. Online LSPI also exhibits a good robustness to variations in its tuning

parameters. In an example involving servo-system control, for which the optimal policy is

monotonous, using prior knowledge about this monotonicity property speeds up online LSPI

182

SUMMARY

by a factor of two. Online LSPI is also used to learn in real time how to swing up and stabilize

an inverted pendulum. Additionally, a continuous-action Q-function approximator for offline

LSPI is investigated. In the inverted pendulum problem, continuous-action approximation

reduces chattering, although it does not give better returns than using discrete actions.

Cross-entropy policy search

In the literature on approximate policy search, typically ad-hoc policy parameterizations are

designed for specific problems, using intuition and prior knowledge. For instance, if a pro-

cess needs to be stabilized around an equilibrium, and if the process is approximately linear

in the operating range of the controller, then a policy parameterization that is linear in the

state variables can be used. Unfortunately, such specific parameterizations cannot be used

to solve general problems. Therefore, this thesis develops and applies highly flexible policy

approximators for direct policy search, which can be used to solve a large class of problems.

A discretized action space is used. The policies are represented using state-dependent ba-

sis function, where a discrete action is assigned to each basis function. The type of basis

functions and their number are specified in advance, and these choices determine the approx-

imation power of the policy representation. The locations and shapes of the basis functions,

together with the action assignments, are the parameters subject to optimization — unlike

in fuzzy Q-iteration and LSPI, where the basis functions are fixed. The optimization crite-

rion is a weighted sum of the returns from a set of representative initial states, where each

return is estimated with Monte Carlo simulations. The representative states together with the

weight function can be used to focus the algorithm on important parts of the state space. The

cross-entropy method is selected to optimize the policy parameters, leading to a cross-entropy

policy search algorithm.

Numerical evaluations of cross-entropy policy search are conducted on a two-dimensional

double integrator example, as well as on two more involved problems: bicycle balancing

(with four state variables) and the simulated treatment of infection with the human immun-

odeficiency virus (with six state variables). Cross-entropy policy search reliably obtains good

policies for every problem, requiring only a small number of basis functions. However, this

performance comes at a large computational cost, e.g., several orders of magnitude higher

than the cost of fuzzy Q-iteration.

The thesis closes with some concluding remarks and a discussion of important open issues

regarding the three proposed approaches. Additionally, some more fundamental unsolved

issues in the field of DP and RL for control are discussed, and promising research directions

to address these issues are suggested.

183

184

Samenvatting

Dynamisch programmeren (DP) en reinforcement learning (RL) kunnen gebruikt worden

om belangrijke problemen te beschrijven die in tal van gebieden voorkomen waaronder b.v.

automatische regeling, operationeel onderzoek, economie en informatica. Vanuit het oog-

punt van automatische regeling drukken DP en RL een optimale-regelingsprobleem uit voor

algemene, niet-lineaire en stochastische systemen. Algoritmen voor het oplossen van derge-

lijke problemen bieden zeer beloftevolle vooruitzichten voor optimale regeling. Daarenboven

lossen RL-algoritmen het probleem op zonder voorafgaande kennis over het proces te verei-

sen. Online RL-algoritmen hebben zelfs op voorhand geen data nodig: ze starten met het

leren van een oplossing van zodra ze in de regellus geplaatst worden.

In het DP/RL-kader meet een regelaar op discrete tijdstippen de toestand van een pro-

ces en voert hij een actie uit overeenkomstig de regelstrategie. Ten gevolge van deze actie

komt het proces in een nieuwe toestand terecht en wordt er een scalair beloningssignaal naar

de regelaar gestuurd dat de kwaliteit van de overgang aangeeft. Vervolgens meet de rege-

laar de nieuwe toestand en wordt de hele cyclus herhaald. Het doel is om een optimale

strategie te vinden, d.w.z. een strategie die de cumulatieve beloning (de opbrengst) over de

ganse looptijd van de interactie maximaliseert. DP-algoritmen maken bij het zoeken naar

een optimale strategie gebruik van een model van het proces en de beloningsfunctie. RL-

algoritmen hebben geen model nodig, maar gebruiken data verkregen uit het proces. Vele

DP- en RL-algoritmen werken met waardefuncties, die de opbrengst aangeven vanuit elke

toestand (V-functies) of vanuit elk toestands-actiepaar (Q-functies).

In dit proefschrift worden doeltreffende DP- en RL-methoden voor regeling ontwikkeld.

Klassieke DP- en RL-algoritmen werken met een exacte representatie van de waardefuncties

en van de strategieën. Het grootste deel van de regelproblemen wordt echter gekenmerkt door

continue toestands- en actievariabelen. In dat geval kunnen waardefuncties en strategieën

niet meer exact voorgesteld worden, maar moeten ze benaderd worden. Er kunnen drie cat-

egorieën van algoritmen voor benaderend DP/RL onderscheiden worden, al naar gelang het

pad dat ze nemen om een (bij benadering) optimale strategie te zoeken: benaderende waarde-

iteratie, benaderende strategie-iteratie en benaderende strategie-optimalisatie. Algoritmen

voor benaderende waarde-iteratie zoeken een benadering van de optimale waardefunctie en

gebruiken deze dan om een bij benadering optimale strategie te berekenen. Algoritmen voor

benaderende strategie-iteratie verbeteren de strategieën iteratief: in elke iteratie wordt een

benaderende waardefunctie van de huidige strategie bepaald, die vervolgens gebruikt wordt

om een nieuwe, verbeterde strategie te berekenen. Algoritmen voor benaderende strategie-

optimalisatie parametriseren de strategie en optimaliseren de parameters van de strategie di-

rect, zonder gebruik te maken van de waardefunctie.

185

SAMENVATTING

De belangrijkste bijdrage van dit proefschrift is de ontwikkeling en de studie van baan-

brekende algoritmen voor elk van de drie hogervermelde categorieën van benaderend DP/

RL. De ontwikkeling van elk algoritme is gedreven door een belangrijk open probleem in

de desbetreffende categorie. Het doel van de ontwikkelde algoritmen is om een (bij be-

nadering) optimale stationaire strategie te bepalen die (bij benadering) de oneindige-horizon

verdisconteerde som van beloningen maximaliseert. Alle representaties van waardefuncties

en strategieën die in dit proefschrift gebruikt worden, zijn gebaseerd op basisfuncties die

over de toestandsruimte of over de toestands-actieruimte gedefinieerd zijn. De voorgestelde

algoritmen worden nu in meer detail beschreven.

Fuzzy Q-iteratie

Fuzzy benadering is een beloftevolle manier om de waardefunctie voor benaderende waarde-

iteratie te representeren. Deze techniek is al vaak gebruikt voor benaderend RL, maar dan

enkel op een heuristische manier en zonder convergentie-garantie. Daarom ontwikkelen wij

in dit proefschrift fuzzy Q-iteratie, een theoretisch goed onderbouwd DP-algoritme dat de

Q-functies representeert met behulp van een fuzzy partitie van de toestandsruimte en een dis-

cretisatie van de actieruimte. Elke fuzzy verzameling in partitie wordt beschreven door een

lidmaatschapsfunctie, die kan geı̈dentificeerd worden met een basisfunctie. De resulterende

Q-functie-representatie is lineair in de parameters zodat de bestaande convergentie-garanties

voor DP met lineair geparametriseerde benaderingen als vertrekpunt gebruikt kunnen worden.

Deze resultaten worden uitgebreid om de discretisatie van de acties in rekening te brengen

en om vervolgens aan te tonen dat fuzzy Q-iteratie naar een Q-functie convergeert die binnen

een begrensde afstand ligt van de optimale Q-functie. Onder continuı̈teitsveronderstellingen

over de dynamica en de beloningsfunctie is fuzzy Q-iteratie ook consistent, d.w.z., naarmate

de benaderingsnauwkeurigheid verhoogt, wordt asymptotisch de optimale Q-functie verkre-

gen. Als een alternatief voor het op voorhand bepalen van de lidmaatschapsfuncties stellen

wij ook een techniek voor om de lidmaatschapsfuncties te optimaliseren via cross-entropy

optimalisatie.

Een uitgebreide numerieke en experimentele evaluatie geeft aan dat fuzzy Q-iteratie in

de praktijk goed presteert, waarbij het onder andere betere strategieën oplevert dan Q-iteratie

met een benadering gebaseerd op radiale basisfuncties. Voor een voorbeeld met een servo-

systeemregeling resulteert een groter aantal fuzzy verzamelingen en discrete acties in een

meer voorspelbare verbetering van de prestatie wanneer een continue beloningsfunctie ge-

bruikt wordt dan in het geval van een discontinue beloningsfunctie. Dit duidt erop dat hoewel

discontinue beloningsfuncties vaak gebruikt worden in RL, ze een negatieve impact kunnen

hebben voor regelproblemen met continue variabelen. Voor het probleem met het wagentje

op de heuvel geeft fuzzy Q-iteratie een betere prestatie met geoptimaliseerde lidmaatschaps-

functies dan met equidistante lidmaatschapsfuncties.

Online en continue-actie kleinste-kwadraten strategie-iteratie

Kleinste-kwadratenmethoden voor strategie-evaluatie zijn efficiënt voor wat het aantal sam-

ples betreft en hebben minder strenge convergentievereisten. Ze worden gebruikt om strate-

gieën te evalueren in bepaalde benaderende strategie-iteratie-algoritmen. Binnen de klasse

van dergelijke algoritmen is kleinste-kwadraten strategie-iteratie (LSPI – least-squares pol-

icy iteration) bijzonder aantrekkelijk omdat het gebruik maakt van Q-functies. Dit maakt het

186

SAMENVATTING

verbeteren van de strategie gemakkelijker dan wanneer V-functies gebruikt worden. Net zoals

in fuzzy Q-iteratie worden Q-functies bij LSPI gerepresenteerd met behulp van een lineaire

combinatie van basisfuncties. Een belangrijke beperking van LSPI is dat het enkel offline kan

gebruikt worden: voor elke strategieverbetering moet een reeks samples verwerkt worden om

de waardefunctie van de huidige strategie nauwkeurig te benaderen. Daarom wordt LSPI in

dit proefschrift uitgebreid naar het meer uitdagende kader van online leren en op deze manier

wordt online LSPI ontwikkeld. Het belangrijkste verschil met het offline algoritme is dat

de prestatie van elke tussentijdse strategie belangrijk is, wat inhoudt dat de strategieverbe-

teringen met korte tussenpozen moeten uitgevoerd worden. In die tussenpozen kan slechts

een klein aantal samples verwerkt worden. In tegenstelling tot offline LSPI moet het online

algoritme actief exploreren om samples te verzamelen die voldoende informatie bevatten.

Uitvoerige numerieke experimenten geven aan dat online LSPI een effectief algoritme

is voor online RL. In deze experimenten convergeert het algoritme naar een prestatie die

vergelijkbaar is met die van offline LSPI. Online LSPI is ook erg robuust tegenover variaties

in de instelwaarden van het algoritme. Voor een voorbeeld met een servo-systeemregeling

waarvoor de optimale strategie monotoon is, leidt het gebruik van a priori kennis over de

monotoniciteitseigenschap tot een versnelling van online LSPI met een factor twee. Online

LSPI is ook gebruikt om in reële tijd te leren hoe een omgekeerde slinger kan opgeslingerd en

gestabiliseerd worden. Daarenboven is een continue-actie Q-functie benadering voor offline

LSPI onderzocht. Voor de omgekeerde slinger leidt een continue-actie-benadering tot minder

chattering, maar levert ze geen betere opbrengst (cumulatieve beloning) op dan het gebruik

van discrete acties.

Cross-entropy strategie-optimalisatie

In de literatuur over benaderende strategie-optimalisatie worden bijna altijd ad-hoc strate-

gieparametrisaties ontworpen voor specifieke problemen op basis van intuı̈tie en voorkennis.

Als bijvoorbeeld een proces moet gestabiliseerd worden rond een evenwichtspunt en als het

proces zich min of meer lineair gedraagt in het werkingsgebied van de regelaar, dan kan

een parametrisatie gebruikt worden die lineair is in de toestandvariabelen. Dergelijke spe-

cifieke parametrisaties kunnen echter niet gebruikt worden om meer algemene problemen

op te lossen. Daarom worden in dit proefschrift zeer flexibele stategiebenaderingsmethoden

ontwikkeld en toegepast voor directe strategie-optimalisatie, waarmee een grote klasse van

problemen kan opgelost worden. Bij deze methode wordt een gediscretiseerde actieruimte

gebruikt en worden de strategieën gerepresenteerd met behulp van toestandsafhankelijke ba-

sisfuncties, waarbij een discrete actie toegekend wordt aan elke basisfunctie. Het type ba-

sisfunctie en het aantal basisfuncties worden op voorhand vastgelegd. Deze keuzes bepalen

de benaderingskracht van de strategierepresentatie. In tegenstelling tot fuzzy Q-iteratie en

LSPI, waar de basisfuncties volledig vastgelegd worden en blijven, zijn de optimalisatievari-

abelen nu de posities en de vorm van de basisfuncties, alsmede de actietoekenningen. Het

optimalisatiecriterium is een gewogen som van de opbrengsten voor een verzameling repre-

sentatieve begintoestanden, waarbij de opbrengsten geschat worden met behulp van Monte-

Carlo-simulaties. De representatieve begintoestanden en de gewichtsfunctie kunnen gebruikt

worden om het algoritme te laten focussen op belangrijke gebieden in de toestandsruimte.

De cross-entropy methode wordt gekozen om de strategieparameters te optimaliseren, wat

resulteert in een cross-entropy strategie-optimalisatie-algoritme.

Numerieke evaluaties van de cross-entropy strategie-optimalisatie worden uitgevoerd op

187

SAMENVATTING

een voorbeeld met een 2-dimensionele dubbele integrator en op twee meer complexe proble-

men: het balanceren van een fiets (4 toestandsvariabelen) en de gesimuleerde behandeling van

een infectie met het HIV-virus (6 toestandsvariabelen). Cross-entropy strategie-optimalisatie

geeft op een betrouwbare wijze goede resultaten voor elk van deze problemen en dit ge-

bruik makend van een beperkt aantal basisfuncties. Deze prestatie is echter verbonden met

een zware rekenkost die b.v. enkele ordes van grootte hoger is dan de rekenkost van fuzzy

Q-iteratie.

Het proefschrift eindigt met een aantal afsluitende opmerkingen en een discussie van be-

langrijke open problemen in verband met de drie voorgestelde methoden. Daarnaast worden

ook een aantal meer fundamentele onopgeloste problemen op het gebied van DP en RL be-

discussieerd en worden een aantal veelbelovende richtingen besproken om deze problemen

aan te pakken.

188

Curriculum vitae

Lucian Buşoniu was born in 1979 in Petroşani, Romania. In 1998, he graduated from the

Computer Science High School of the same city. He then studied Control Engineering at

the Technical University of Cluj-Napoca, Romania, where he obtained his Master of Science

(in its equivalent form of a 5-year Engineer’s Diploma) in 2003, with the best grades of his

year. His thesis was entitled “Multi-Agent Systems in Distributed Built-In Self-Testing and

Distributed Testing”. He then enrolled in a postgraduate program on Automatic Control at

the same University, from which he graduated in 2004. During his MSc and postgraduate

research work, he was advised by Prof.dr. Liviu Miclea.

Since 2005, Lucian Buşoniu has been working on his PhD project at the Center for

Systems and Control of the Delft University of Technology, the Netherlands. His PhD re-

search has dealt mainly with approximate reinforcement learning and dynamic programming

for continuous-variable problems, and has been performed under the supervision of Prof.dr.

Robert Babuška, M.Sc. and Prof.dr.ir. Bart De Schutter. He collaborated in his work with

dr. Damien Ernst, whom he visited in 2007 at Supélec in Rennes, France. During his PhD

project, Lucian Buşoniu obtained the DISC certificate for fulfilling the course program re-

quirements of the Dutch Institute for Systems and Control, and advised a number of MSc and

BSc students.

Lucian Buşoniu’s research interests include learning techniques for control problems,

with a focus on reinforcement learning and its model-based counterpart, dynamic program-

ming; and multi-agent and distributed learning.

189

190

