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Abstract. The paper deals with an implicit partitioned solution approach for the nu-
merical simulation of fluid-structure interaction problems. The method is realized on the
basis of the finite-volume flow solver FASTEST, the finite-element structural solver FEAP,
and the quasi-standard coupling interface MpCCI. Investigations concerning the influence
of physical and numerical parameters on the efficiency and accurracy of FSI simulations
inwvolving laminar flows are discussed for a representative test case.

1 INTRODUCTION

Coupled fluid-solid problems, which are characterized by the interaction of fluid forces
and structural deformations occur in many applications in industry and science. For a
realistic numerical simulation of such kind of problems one of the crucial issues is the
algorithmic realization of the coupling mechanisms.

In the present paper we consider an implicit partitioned solution approach, which tries
to combine the advantages of weakly and strongly coupled schemes in a complementary
way. For each time step the (implicit) solution procedure consists in the application of
different nested iteration processes for linearization, pressure-velocity coupling, and linear
system solving, which are linked by a special predictor-corrector iteration for the fluid-
structure coupling [5]. The method is realized on the basis of the finite-volume flow solver
FASTEST [2], the finite-element structural solver FEAP [11], and the coupling interface
MpCCI [7].

The considered approach gives a great deal of flexibility due to its modularity and
the implicit predictor-corrector scheme ensures a strong numerical coupling which can be
controlled by an underrelaxation.

The presented studies concern the influences of numerical parameters on the accuracy
and efficiency of the coupled solver. In particular, the time step size and a structural
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underrelaxation will be examined. Further, the influence of varying physical parameters
of the fluid and the structure on the sensitivity of the coupled system and the efficiency
of the coupled solver will be shown.

2 GOVERNING EQUATIONS

We consider a problem domain €2 consisting of a fluid part {2 and a solid part 2,
which regarding the shape as well as the location of fluid and solid parts can be arbitrary.

For the fluid domain part €y we assume a flow of an incompressible Newtonian fluid.
In this case the basic conservation equations governing transport of mass and momentum
for a fluid control volume V; with surface St are given by:

d
& pfd‘/f—i‘/pf(’l}j—?)?’)ndef = 07 (1)
Vi St
d
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where v; is the velocity vector with respect to Cartesian coordinates x;, t is the time,
pr is the fluid density, and f; are external body forces (e.g., buoyancy forces). v} is the
velocity with which Sy may move (grid velocity) due to displacements of solid parts. The
stress tensor T;; for incompressible Newtonian fluids is defined by

ov;  0v;
T.. = J L P
i %3 (833Z + 8:15]) pézg (3>

with the pressure p and the dynamic viscosity .
For the structure we assume a physically linear and geometrically nonlinear model.
The basic balance equation for momentum for the solid domain €2 can be written as
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0xj

= psti ) (4)
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where wu; is the displacement, o;; denotes the Cauchy stress tensor, ps is the density of the
solid, and fy; are external volume forces acting on the solid (e.g., gravitational forces). As
constitutive relation the St. Venant-Kirchhoff material law is employed (e.g., [1]):

S = MNGE) +2uE (5)

with the second Piola-Kirchhoff stress tensor S and the Green strain tensor E. A\ and
s (shear modulus) are the Lamé constants which are related to the Youngs modulus Eg
and the Poisson number vy by

L nd M\ = Vs s
20+v) T 0w 2n)

s = (6)
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The problem formulation has to be closed by prescribing suitable boundary and in-
terface conditions. On solid and fluid boundaries I'y and I'y standard conditions as for
individual solid and fluid problems can be prescribed. For the velocities and the stresses
on a fluid-solid interface I'; we have the conditions
and o;n; =1Timn;, (7)

where 4} is the velocity of the interface.

3 NUMERICAL TECHNIQUES

For the discretization of the problem domain we follow a block-structuring technique.
Domains with different fluid or solid parts are assigned to different blocks. Solid blocks are
treated by the finite-element solver FEAP [11]. For the fluid blocks the parallel multigrid
finite-volume flow solver FASTEST is employed [2, 8]. Both solvers involve second-order
spatial discretizations and fully implicit second-order temporal discretizations, i.e., the
BDF-2 method and the energy conserving Hilber-Hughes-Taylor method [4] for the fluid
and structure equations, respectively.

For the fluid-structure coupling an implicit partitioned approach is employed [9]. In
Figure 1 a schematic view of the iteration process, which is performed for each time step,
is given. After the initializations the flow field is determined in the actual flow geometry.
From this the friction and pressure forces on the interacting walls are computed, which are
passed to the structural solver as boundary conditions. The structural solver computes
the deformations, with which then the fluid mesh is modified, before the flow solver is
started again.

For the mesh deformation an algebraic approach is employed [10]. Within the fluid
solver a discrete form of the space conservation law

d

T dV:/ngnj ds (8)

Vi St

is taken into account in order to compute the additional convective fluxes in (1)-(2). This
is done via the swept volumes 0V, of the control volume faces for which one has the
relation (see [3]):

5‘/6n Vi — Vn—l .

At, f Atnf =D (ufn; S, (9)

C

where the summation index ¢ runs over the faces of the control volume, the index n denotes
the time level £, and At,, is the time step size. By this way interface displacements enter
the fluid problem part in a manner strictly ensuring mass conservation.

The fluid-structure interaction (FSI) iteration loop is repeated until a convergence
criterion is reached, which is defined by the change of the mean displacements:
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Figure 1: Flow chart of coupled implicit partitioned solution procedure
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where m is the FSI iteration counter and N is the number of interface nodes.

The data transfer between the flow and solid solvers within the partitioned solution
procedure is performed via an interface realized by the coupling library MpCCI [7]. In
Figure 2 the corresponding information flow is represented schematically. MpCCI is used
for controlling the data communication as well as for carrying out the interpolations of
the data from the fluid and solid grids.

After the initialization MpCCI is provided with the geometry information at the fluid-
solid interface for both grids. From the flow solver these are the coordinates of the control
volume vertices and centers at the interface. From the structural solver only the node
coordinates are required. With these geometry informations the forces at the nodes of the
structural grid are interpolated and passed to the structural solver. The displacements
from the structural solver at the nodes are transfered to MpCCI, which interpolates the
displacements to the control volume vertices of the fluid grid interface. Afterwards the

4
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Figure 2: Schematic representation of information flow between fluid and solid solvers via the MpCCI
interface

complete fluid grid is adapted and the corresponding coordinates of the control volume
centers are computed. Finally, the new geometry informations are passed to MpCCI
for the next iteration. An update of the geometry information of the solid grid is not
necessary, since the structural finite-element computations always relate to the original
solid grid. Note that there is no need for matching grids. For the necessary interpolations
the conservative linear interpolation of MpCCI is employed [7].

To control the FSI iterations an underrelaxation approach is employed. Here the ac-
tually computed displacements u2°* are (linearly) weighted with the values u$'® from the

preceding iteration to give the new displacements u

new.
3 .

u®™ = apgr v + (1 — apgr)ud™® (11)

(] 7 Y

where 0 < apgr < 1. Note that the underrelaxation does not change the final converged
solution, but is employed because of its stabilizing effect. The basic effects of the underre-
laxation has already been shown in [10]. In the present study we discuss its influence with
respect to the efficiency of the numerical solution procedure and the grade of sensitivity
of the FSI system.

In general, a sensitive system amplifies perturbations and can lead to fall-out or mal-
function of the system. In a numerical FSI system the sensitivity can be characterized
with the help of the structural displacements. A non-sensitive system does not overshoot
and hence converges directly to the equilibrium. On the other hand, the system is sen-
sitive, if the computated displacements tend to overpredict. If the overprediction is too
strong this can lead to divergence of the computation. The sensitivity of an FSI system
is directly related to the efficiency of the computation. If the structure displacements are
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overpredicted the number of CFD iterations to obtain a converged solution is high. On
the other hand if the structure does react more robust, the number of CFD iterations
for a computation is low. Thus, the less sensitive the system the more efficient is the
computation.

4 TEST CASE

As test case a three dimensional lid driven cubic cavity is considered (see Figure 3).
The side length of the cube is [l = 1 m. At the bottom a flexible membrane with thickness
tmem = 0.01m is situated. The membrane is fixed at the edges and the lid moves with a
time dependent lid velocity vyq defined by

Ulid(t) = Ui (1 — COS (27Tt/T0)) (12)

with the mean inflow velocity 7;, and the period Ty = 5 s. The inlet and outlet have 10 %
of the total height hj,=h=0.1 m and are situated in the upper part on the left and right
sides, respectively. The inflow velocity corresponds to the lid velocity.

Uin(t) E—— drivenlid
[ ] wal

VEL

outlet 0.47

0.42
0.37
0.32
0.27
0.22
0.17
0.12
0.07
0.02

z

Figure 3: Test case configuration (left) and example velocity distribution with streamlines and deflected
membrane (right).

For the investigation of the FSI system the following material parameters are varied:

Youngs modulus E; = 2500, 5000, 50000 N/m?
structure density ps = 1000, 500, 1000, 2500, 5000 kg/m?,
fluid density pr = 2, 5, 10, 100kg/m?,

e mean inflow velocity vy, = 0.1, 0.5, 1.0, 2.0 m/s.

The bold values indicate the default values if the corresponding parameter is not varied.



M. Heck, D. C. Sternel, M. Schéfer, S. Yigit

The number of iterations (which are directly proportional to the CPU time) are taken
as measure for the efficiency of the FSI computation. In each case a simulation time of
0.5s from a predefined flow field is computed.

5 NUMERICAL RESULTS

First the temporal discretization error is studied with help of the displacement vector
in the middle of the membrane. Assuming that the finest time step provides the most
accurate results this solution is taken as reference solution and the error is calculated
relative to this. The mean error € finally represents the mean value of the error over the
considered time interval and is defined as:

e =

M with ei:‘l_m 7 (13)

n

Urefi ‘ MP

where n is the number of time steps and MP denotes the center point of the membrane
with the coordinates x = 0.5, y = 0.005, and z = 0.5.

In Table 1 the errors resulting from computations with different time step sizes are
indicated. As reference computation the time step size of At = 0.001s is taken. One can
observe that the temporal error reacts less sensitive for small values of F, ps, vi, and large
values of p;. For all cases the error is within acceptable limits with respect to practical
engineering applications.

In order to study the interaction of the time step size and the underrelaxation one
fixed parameter set is computed with different time steps and different underrelaxation
factors. In Figure 4 the number of required CFD iterations is plotted as against the
underrelaxation factor apg; for the default test case. One can see that for every At an
optimal apgr exists. The smaller At the smaller the optimal value of apg;. For small At
the computation behaves more sensitive on changes of the underrelaxation factor than
for large At. It appears that a large At makes a computation less sensitive. Small time
steps even can lead to divergence of the computation as is the case for apgy > 0.7 and
At =0.001s.

Next the influence of different physical parameters on the interaction of time step
size and the underrelaxation is discussed. The results for an increased Youngs modulus
Es are shown in Figure 5. Again, the smaller At the more sensitive reacts the coupled
system on changes in the underrelaxation. Decreasing the time step size one observes,
that the optimal apg; for larger Fg tends to higher values. The computation also gets
more sensitive, but at least it does not diverge. The number of required iterations at the
optimal apgy for the default test case always is larger than for the more rigid structure
with larger Fg. It also can be seen, that with the larger Youngs modulus the system
behaves less sensitive with respect to changes in the underrelaxation.

Results for a lower fluid density p; = 5kg/m? are shown in Figure 4. Comparing with
the default case (see Figure 6) generally the same behavior can be seen. The large time
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physical parameter ‘ Error [%)]

E 2500 | 0.98 | 1.18 -

IN/m?] 5000 | 0.79 | 1.15 | 1.67
50000 | 0.72 1.75 -

Ps 500 | 0.79 1.15 | 1.67

lkg/m?] 1000 | 0.44 | 0.64 | -

2500 | 0.85 | 1.98 | -
5000 | 1.21 | 2.85 | -
Dt 2 1.34 | 2.86 | 3.9

[kg/m?] 5074 | 182 | -
10| 079 | 1.15 | 1.67
100 | - | 207 | 224
Tin 0.1] 0.80 | 2.16 | 4.62
[m/s] 05| - | 226 | 5.09
1.0 079 | 1.15 | 1.67
20| - | 23249

0.002 | 0.005 | 0.01
time step size At [s]

Table 1: Temporal discretization error for different material parameters depending on the time step size.

step again represents the most efficient computation. Further decreasing the fluid density
leads to a similar behavior of the coupled system as when increasing the Youngs modulus.

In the following examinations the underrelaxation factor is varied for different material
parameters while keeping the time step size fixed.

In Figure 7 the number of CFD iterations is plotted as against the underrelaxation
factor apgy for varying material parameters E;. Looking for the optimal aps; one can
see, that the bigger the Youngs modulus the more efficient is the computation. Also, the
stiffer the structure the less sensitive is the coupled system on changes of apg;. Another
observation is that the optimal apgr increases by increasing the Youngs modulus. For
higher values of apgr than the optimal one the sensitivity increases and, therefore, the
efficiency decreases. This even can lead to divergence of the coupled system, like with
Es = 2500kg/m? for apsy > 0.6, or E; = 5000kg/m? for apg; > 0.7. Computations with
values lower than the optimal aprg; behave robust, but more iterations are required, i.e.
again the efficiency decreases.

The results for varying fluid density pf are shown in Figure 8. Here, the behavior is
opposite. The larger the density the more sensitive is the behavior of the coupled system
and the more one has to underrelax the computation. The optimal apg; decreases with
increasing fluid density.

As a further aspect we study the influence of the physical parameters on the sensitivity.
In Figures 9-12 the number of iterations is plotted as against the physical parameters F,
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Figure 4: Influence of time step size and underrelaxation on the number of CFD iterations for default
test case with ps = 500kg/m?, Ey = 5000 N/m?, pf = 10kg/m?, vy, = 1m/s.
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Figure 5: Influence of At and apsr on the number of CFD iterations with E5 = 50000 N /m?.

Ps, Pt, and Uy, respectively. In all cases results with aps; = 0.7 are shown.

Increasing the structural parameter F (see Figure 9) the computation gets more robust
and, therefore, more efficient. This effect is the stronger the smaller the chosen At. For
example with At = 0.001s increasing the Youngs modulus from F; = 5000kg/m? to
E, = 50000 kg/m? one needs less than the half of the number of iterations.
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Figure 6: Influence of At and apg; on the number of CFD iterations with pf = 5kg/m?3.

700000 ‘ — |
E.= 2500 Eg;mz A
N\ E.=5000 kg/m5 —*—
600000 I\ E 250000 kg/m? */‘
= 500000 g
= 400000 ot
= 300000
S
= 200000
100000
0

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
oFg) [-]

Figure 7: Influence of apg; on the number of CFD iterations with At = 0.001 s for different Ej.

For increasing structural density (see Figure 10), like for the Youngs modulus, the
computation needs less iterations, i.e. is less sensitive. This effect is most pronounced
for the smallest At = 0.001s and seems to go to a limit, e.g. for At = 0.001s at about
200000 iterations.

For the fluid density the effect is opposite (see Figure 11). Increasing p¢, the compu-
tation gets more sensitive. This best can be seen for the smallest time step At = 0.001s.

10
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Figure 8: Influence of apgy on the number of CFD iterations with At = 0.001 s for different ps.
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Figure 9: Effect on sensitivity of the FSI system for varying Youngs modulus Fy with different At and
QARSI — 0.7.

The inflow velocity (see Figure 12) does not have big effect on the sensitivity of the
FSI system. For all values the computation is most efficient with bigger time steps.

In the partitioned fluid-structure solver employed the efficiency not only depends on the
CFD iterations, because it also involves the structural solver and the coupling library. The

11
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Figure 10: Effect on sensitivity of the FSI system for varying structure density ps with different At and
QRS — 0.7.
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Figure 11: Effect on sensitivity of the FSI system for varying fluid density ps with different At and
QRS — 0.7.

time spent for the computations of the interpolations and the data transfer is negligible. In
Figure 13 and 14 the mean number of coupling steps depending on the underrelaxation for
the whole computation is plotted. One can see, that for a fixed structural underrelaxation
the mean number of coupling iterations per time step does not depend much on the time

12
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Figure 12: Effect on sensitivity of the FSI system varying inflow velocity v, with different At and
QRS — 0.7.
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Figure 13: Comparison of required coupling steps for different apg; for varying structure density ps with
At =0.005s.

All previous investigations concerned a computation of ¢ = 5s simulation time. Finally,
the behavior during one time step is examined. Only one representative time step is
considered. In Figure 15 the computation time for the structural and fluid solvers for the

13
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Figure 14: Comparison of required coupling steps for different apgr for varying inflow velocity v;, with
At = 0.005s.

coupling steps are plotted. It can be seen, that the computational time required by the
flow solvers decreases from FSI iteration to FSI iteration. The computational time for the
flow problem decreases faster than the one for the structural problem, which only slightly
speed up during the time step.

18 ‘
16 CSM —x—

14 T
12 \
10 \

computation time [s]

0 2 4 6 8 10 12
coupling steps during one time step [-]

Figure 15: Computation time for consecutive coupling steps for fluid (CFD) and structure (CSM) sub-
problem for one representative time step.
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6 CONCLUSIONS

An implicit partitioned approach for the numerical simulation of fluid-structure inter-
action has been studied with respect to its behavior when varying numerical and physical
parameters. It has been shown, that large time steps have a stabilizing effect on the
FSI system and make the computation less sensitive with respect to underrelaxation. It
turned out that the number of coupling steps only weakly depends on the time step size.
Of course, a larger time step size increases the temporal discretization error, but it was
within acceptable limits for all considered cases.

Further it could be shown that increasing the Youngs modulus Ej or the structure
density ps or decreasing the fluid density p¢ lowers the sensitivity of the FSI system. The
less sensitive the system the faster it can be solved by the coupled implicit partitioned
solver.
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