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ABSTRACT
Software changes are a leading cause of operational failures in

complex production systems. Despite the increasing use of Artifi-

cial Intelligence for Development Operations and the availability

of postmortem data, research on software incidents remains frag-

mented and narrowly scoped. This study aims to provide a gener-

alizable understanding of software and change-induced incidents

through structured analysis of 348 real-world incident reports from

the Verica Open Incident Database. Using few-shot prompting with

the GPT-4.1 Mini model, we extract key incident characteristics

(root cause, triggering change, impact, severity, and remediation)

and apply clustering to identify recurring incident archetypes. Our

method achieves over 80% annotation accuracy on a manually la-

beled subset. We find that over half of incidents stem from software

changes, with deployments and configuration updates dispropor-

tionately associated with high severity and manual remediation.

Capacity issues and code defects are leading root causes. Clustering

uncovers several prominent archetypes, including capacity-driven

outages, defect-induced degradations, and hybrid failures involving

improper changes. These findings support scalable incident analysis

and can inform more context-aware operational strategies.

Keywords – AIOps; Incident Characterization; Change-Induced

Failures; Incident Archetypes; Software Reliability; Text Mining.

1 INTRODUCTION
Software systems are integral across diverse domains, which is why

efforts are continuously expanded to ensure that systems operate

normally: from the introduction of Development Operations (De-

vOps) and change management tools, to automated code review

using large language models (LLMs) [1–3]. Incidents still happen

and the need to learn from them has been highlighted [4] especially

considering the increasing popularity of Artificial Intelligence for

Development Operations (AIOps). As such information of past inci-

dents, or more precisely knowing how and why an incident came to

be and what it impacted, is important for establishing preventative

measures [5].

However, there is currently no standardized way of reporting

the incidents. Reports vary considerably across organizations in

structure and detail [6], which presents challenges for large-scale

comparative analysis. As such, current research focuses either on

small-scale, manually analyzed incident samples such as the quali-

tative study by Sillito et al. [7] or is confined to incidents within

a single organization. For example, Kapel et al. [8] and Wu et al.
[9] examine change-related failures within ING and ANT Group,

respectively. Meanwhile, work on automated diagnosis tends to

emphasize root cause analysis (RCA) over broader incident charac-

terization or pattern identification, and is typically domain-specific,

such as RCA for cloud outages [10, 11]. As Remil et al. [12] note,
incident correlation and contextual analysis remain underexplored.

As a result, while prior studies offer valuable insights into causes

and remediation of specific incident types, there is still no generaliz-

able, empirical understanding of how software changes contribute

to production failures across diverse systems. This is a significant

gap, particularly given findings such as those by Zhao et al. [13],
who report that 70% and 54% of incidents at Google and Baidu,

respectively, stem from software changes. Furthermore, AIOps sys-

tems rely on structured, high-quality incident data to function

effectively [12, 14], reinforcing the need for scalable, automated

approaches to incident analysis.

To address this gap in current understanding, we present an

exploratory study based on 348 incident reports sourced from the

VOID, a publicly accessible community contributed database of

operational failure reports. The central research question guiding

this study is: “What are the characteristics of incident reports
caused by software changes?” . To investigate this, we examine

the following research questions:

• RQ1: What general characteristics of incidents are evident

across the collected incident reports and how can they be

automatically extracted?

• RQ2: What is the relationship between an incident’s cause,

impact and remediation that follows from the established

characterization?

• RQ3: What types of software changes associated with inci-

dent occurrence are observed in the dataset?

• RQ4: What recurring patterns can be identified, and what

are the three most prominent clusters based on incident

similarity?

In answering these questions, this study makes three key con-

tributions: (1) we propose a pipeline for automated analysis of

incident reports using small-scale LLMs, demonstrating high ac-

curacy in extracting structured incident characteristics; (2) we un-

cover actionable insights into the relationships between causes,

impacts, and remediation strategies - showing, for instance, the

heightened severity and recovery complexity of change-induced

incidents; and (3) we identify a set of recurring incident archetypes

using unsupervised clustering, capturing common patterns such

as capacity-driven outages, code defect–related degradations, and

complex hybrid failures. Both the data used and the implemented

analysis pipeline have been made available in the reproducibility

package [15]. These contributions provide both methodological

and practical value by enabling large-scale incident analysis and

supporting the development of more targeted risk assessment pro-

cesses.

The remainder of the paper is organized as follows: we begin

with an overview of incident management practices and introduce

VOID as a valuable collection of incident reports (2), followed by a

review of related work within the field (3). We then describe the

dataset and introduce the analytical pipelines used to address the

research questions (4), before detailing the implementation specifics

and evaluation setup (5). The results section reports findings on

annotation performance, incident distributions, and clustering out-

comes (6). These findings are discussed in the broader spectrum

of incident management (7). We conclude by outlining limitations

and future directions (8), addressing ethical considerations (9), and

summarizing the key contributions of the study (10).

2 BACKGROUND
The study of software system incidents spans cause and response,

both immediate as well as long term. To provide necessary con-

text, we begin by outlining general incident management practices
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(2.1), including how incidents are detected, escalated, and resolved.

We then introduce the Verica Open Incident Database (VOID), a

community-curated collection of public incident reports that offers

insight into how organizations document and reflect on operational

failures (2.2).

2.1 Incident Management
Incidents typically refer to unplanned events that disrupt the normal

operation of a system. As such, to be classified as an incident, an

event has to be both unplanned as well as require a solution with a

high degree of urgency [16].

When an incident occurs, anomalies are detected by engineers

or automated monitors, prompting the creation of a ticket and

assignment to a resolution team [17]. Once the system is fully

restored, a post-incident analysis is conducted, resulting in a report

detailing the impact, root cause, resolution, and any follow-up

actions taken [18]. The degree of detail present in the report depends

on the organization’s policies and incident disclosure agreements.

2.2 The VOID Incident Report Collection
The VOID is an open-source, community-contributed collection

that aggregates publicly available software incident reports from

various organizations. Each entry in the database typically includes

the incident narrative (written, depending on the organization, in

the format of blog posts, or media articles) along with structured

metadata such as incident date, duration, severity (if available), and

affected services.

VOID was developed to facilitate cross-organizational learning

and to support research into incident patterns, failure modes, and

post-incident practices in modern software systems. Its relevance

to site reliability engineering (SRE) practices has been highlighted

in the annual VOID reports, which summarize high-level trends

across collected incidents [19].

3 RELATEDWORK
To contextualize our contributions, we first examine how variations

in incident documentation affect the comparability of incident data

across organizations (3.1). We then survey existing taxonomies

that define how incidents and their characteristics are classified

(3.2). Finally, we review empirical studies that investigate correla-

tions between incident characteristics such as cause, duration, and

mitigation strategy (3.3).

3.1 Incident Reporting
The analysis of incident characteristics is strongly influenced by

the way incidents are reported. Several studies have highlighted

that incident documentation practices vary considerably between

organizations, resulting in inconsistent terminology, report struc-

ture, and depth of detail. Menges et al. [6] conducted a comparative

study of postmortems from large technology companies and con-

cluded that the absence of standardized reporting formats hinders

the transfer of knowledge and limits the generalizability of findings.

Further, organizational reporting cultures have been shown to

affect what is recorded in incident reports. Wu et al. [9] observed
that incident documentation practices at Ant Groupwere influenced

by internal policies and domain-specific expectations. Kapel et al.

[8] reported challenges in tracing incidents back to their triggering

software changes, often due to vague narrative descriptions and

lack of formal traceability.

3.2 Incident Taxonomies
To support structured reasoning about incidents, various taxonomies

have been developed to categorize causes and contributing factors.

Li et al. [20] proposed a taxonomy of software failure modes that

distinguishes between product faults (e.g. logic errors, interface

mismatches) and process faults (e.g. design oversights, miscommu-

nication). This classification aims to support risk assessment and

fault isolation during incident analysis.

Agrawal et al. [21] conducted a systematic literature review of

software design errors and proposed a taxonomy based on recur-

ring patterns found across empirical studies. Their taxonomy in-

cludes categories such as violation of design principles, incomplete

requirements, incorrect data handling, and flawed control struc-

tures. The study emphasizes that design-level faults often propagate

downstream and may not be immediately detectable, making their

classification essential for preventative mitigation strategies.

In addition to academic proposals, industry-driven taxonomies

have emerged. The Azure Reliability Tagging System (ARTS) [22]

is an internal classification framework used by Microsoft to tag

incident records with standardized attributes such as impact scope,

triggering conditions, and detection mechanism. ARTS exempli-

fies how taxonomy-based structuring can enable large-scale trend

analysis within a single organization.

3.3 Incident Characteristic Correlation
A number of studies have examined how incident characteristics

relate to one another, particularly with respect to cause, duration,

mitigation strategies, and severity. Both Davidovic [23] and the

VOID report [19] found that incident duration does not reliably cor-

relate with the severity of an incident. They conclude that duration

itself does not convey anything meaningful about the impact and

resolution of an incident.

Research into RCA has explored both manual and automated

approaches to identifying causal factors. Saha et al. [5] proposed a

method combining time-series anomaly detection with causal in-

ference to attribute failures more accurately. Roy et al. [10] demon-

strated that the integration of alert metadata with system telemetry

improves diagnostic precision. However, several studies have noted

that most incidents involve multiple contributing factors rather

than a single root cause [19], suggesting that mitigation planning

should consider the effects of fault interaction rather than relying

on the singular main fault assumption of RCA.

Efforts to link incident causes with remediation strategies have

also been explored. Sillito et al. [7] analyzed postmortems from

large-scale systems and categorized responses into direct fixes, pre-

ventative improvements, and organizational changes. While direct

mitigations were commonly reported, they find that broader struc-

tural or preventative responses were less frequently documented.

Incident impact and severity have been assessed using both qual-

itative and quantitative frameworks. Cichonski et al. [18] provides
a structured model incorporating service degradation, data loss,

and reputational damage. While widely used, such frameworks are
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typically applied manually and are not integrated into automated

incident management systems.

4 METHODOLOGY
This study adopts a repository mining to quantitatively analyze

incident reports. In this section outlining the employed framework,

we begin by describing the publicly documented incidents collected

(4.1). Following this, we detail the investigation pipelines designed

to address each research question (4.2).

4.1 Data Familiarization
Incident reports were sourced from the VOID. To ensure the rele-

vance of our findings as well as reproducibility, we include in our

analysis only incident reports that:

• are dated between 2022 and 2024, and

• describe the incident in detail

This time frame restricts the dataset to incidents occurring in a

post-pandemic operational context, reducing variability introduced

by large-scale organizational shifts (e.g. remote work) [24].

Collecting all incidents within this time frame amounts to a

total of 1301 reported incidents out of which only 1268 reports

had a textual description available. A distribution of the reports

considered for analysis over the years can be seen in Table 1.

However, during this time period, the mean length of an inci-

dent report was 1094 characters, and generally had the following

structure: "Service X is experiencing issues when performing action

Y. Incident has been resolved. The service is being monitored for

further issues." While this structure encapsulates all information

of interest for the user of the service, it contains little information

of use to an engineer working on solving the problem. Only the

severity of the incident can potentially be inferred from the impact

it has on the customer; however, due to missing information, there

is little possibility to argue about the correctness of the assigned

severity level. As such, we exclude reports under 750 characters.

This amounts to a total of 348 included incidents as shown in Ta-

ble 1. Following this exclusion, the mean length of a report increases

to 3117 characters.

Table 1: Summary of reported incidents and included reports
per year (2022–2024)

Year Reported Unavailable Included
Incidents Description Reports

2022 1232 32 313

2023 23 0 22

2024 13 1 13

Total 1268 33 348

4.2 Investigation Pipeline
Each research question is addressed through a dedicated pipeline.

As such, in this section we reason about text-mining as a character-

istics extraction method (4.2.1), then we introduce the Chi-Square

independence test, as a method of investigating statistically predic-

tive relationships within the data (4.2.2). Following this, we argue

about the use of frequency and correlation analysis methods when

determining types of software changes (4.2.3). Lastly, we introduce

embedding models and clustering as a means of pattern identifica-

tion (4.2.4).

4.2.1 RQ1: General Characteristics of Incidents. To identify general
characteristics present within our data, we first establish a struc-

tured taxonomy of incident attributes. This taxonomy is developed

through an iterative process combining insights from prior aca-

demic taxonomies on software failures [7, 9, 21] with exploratory

analysis of our dataset. Specifically, we review established classifi-

cations of faults, errors, and recovery strategies, and adapt these to

the specific vocabulary and structure encountered in public inci-

dent reports. Our goal is to define a set of attributes that are both

expressive and consistently extractable from the available incident

reports.

Using this taxonomy, we perform text mining on the entire

dataset to extract incident attributes. Given the lack of strict univer-

sal reporting guidelines, rule-based and classical information extrac-

tion approaches (e.g. Named Entity Recognition, pattern matching)

are insufficiently expressive or robust [25]. Instead, we adopt a

Question Answering (QA) approach using LLMs.

To balance performance and scalability, we rely on the GPT-4

series of Mini models. These models are significantly more cost-

effective than their full-scale counterparts and demonstrate com-

petitive performance across a wide range of Natural Language

Processing (NLP) tasks. On the Massive Multitask Language Un-

derstanding benchmark, designed to test general knowledge and

reasoning, for instance GPT-4.1 Mini achieves a score of 80.5%,

outperforming earlier models such as GPT-3.5 Turbo [26]. This

highlights its ability to generalize across domains while maintain-

ing efficiency, making it well-suited for the structured extraction

of information from unstructured incident reports at scale.

4.2.2 RQ2: Cause-Impact-Remediation Relationship. To examine

how incident causes relate to impact and remediation, we perform

conditional analysis across structured labels obtained in RQ1. We

make use of contingency tables and perform Chi-Square tests of

independence to identify statistically significant associations be-

tween categorical variables such as root cause category, impact,

and mitigation strategy. These tests assess whether, for example,

incidents attributed to code regressions are more likely to trigger

process-level changes than configuration-induced failures.

This approach allows us to test hypotheses about dependencies

between incident properties without assuming linear or contin-

uous relationships. We explode arrays of categorical values into

independent binary outcomes, running multiple Chi-Square tests

to reason about significance. All significance testing is performed

using scipy.stats and statsmodels, with Bonferroni correction

applied to adjust for multiple comparisons.

4.2.3 RQ3: Types of Software Changes. With software changes be-

ing one of the most prevalent incident causes [13], we focus on the

subset of incidents labeled as change-induced and not explicitly

categorized as maintenance events. We analyze this subset of inci-

dents by estimating the frequency of recurring change categories

and identifying statistically meaningful differences between their

characteristics and those of non-change-induced incidents.

3
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Text classification is again performed using few-shot prompting

with GPT-4.1 Mini to extract the specific change-type, supported

by manual validation to ensure consistency. Once labeled, we apply

univariate frequency analysis and compute pairwise correlations

between change type, severity, and remediation action taken. Chi-

Square tests are used to assess whether incidents induced by change

differ significantly in their characteristics from those that are not.

4.2.4 RQ4: Pattern Discovery. To uncover recurring archetypes in

incident characterization, we apply unsupervised clustering to the

incident descriptions. First, we generate dense vector embeddings

for each report using the all-MiniLM-L6-v2 variant of Sentence-

BERT [27], which provides a compact and efficient representation

of sentence-level semantics. This model was chosen for its balance

between computational efficiency and clustering performance, as

demonstrated in the Massive Text Embedding Benchmark [28].

Using the resulting embeddings, we apply KMeans and HDB-

SCAN to cluster incident reports based on semantic similarity. Clus-

ters are then manually interpreted by examining the top-ranked

incidents and common tokens per cluster. This approach reveals

latent structure in the dataset and helps identify common failure

patterns, especially those not explicitly labeled in prior steps. Vi-

sualizations are produced using PCA for dimensionality reduction,

enabling inspection of cluster cohesion and separation.

5 STUDY DESIGN
In this section we detail how we instantiated and evaluated the

characterization agent (5.1), how Chi-square tests were applied to

explore statistically significant relationships (5.2). Lastly we de-

scribe the use of unsupervised clustering to group semantically

similar incidents (5.3).

5.1 Characterization Agent
To extract structured insights from free-text incident reports, we

implemented a QA-style extraction agent using the GPT-4o Mini

and GPT-4.1 Mini models. These models were selected for their

strong performance on complex NLP tasks, offering a balance be-

tween inference quality and scalability [26]. The agent converts

narrative descriptions into structured representations aligned with

our characterization schema.

Each model was evaluated on a set of 34 manually annotated

incidents. The outputs of each model were compared against the

established ground truth and selected the model with superior

overall performance was selected for all subsequent experiments.

Tomitigate hallucination risks, we introduced an "Other" fallback

category for each attribute, allowing the model to opt out when the

evidence was ambiguous or missing. All used prompts are available

in the agent module of the replication package [15].

We quantitatively assess model performance by employing stan-

dard metrics that compare the predicted characteristics against

the manually established ground truth. For evaluating the overlap

between model outputs and ground truth in a multi-label, multi-

output characterization task, we use the Jaccard Similarity [29],

defined as: 𝐽 (𝐴, 𝐵) =
|𝐴∩𝐵 |
|𝐴∪𝐵 | where 𝐴 and 𝐵 represent the sets of

predicted and true labels, respectively. This metric captures the

ratio of correctly predicted labels to the total number of unique

labels in either set.

To account for both observed agreement and agreement occur-

ring by chance in categorical prediction tasks, especially important

in the presence of imbalanced and sparse label distributions, we

use Cohen’s Kappa [30], defined as: 𝜅 =
𝑝𝑜−𝑝𝑒
1−𝑝𝑒 where 𝑝𝑜 is the

observed agreement between model predictions and ground truth,

and 𝑝𝑒 is the expected agreement by chance. A value of 𝜅 = 1 indi-

cates perfect agreement, while 𝜅 = 0 corresponds to chance-level

agreement.

Additionally, to assess the representativeness and completeness

of our randomly sampled test set, we apply the Chao1 species

richness estimator, adapted from ecological studies to measure

category diversity in labeled data [31, 32]. While the full taxonomy

of labels is known, Chao1 provides a statistical perspective on

whether the observed sample likely captures the true diversity,

particularly under limited sample conditions: 𝑆
Chao1

= 𝑆
obs

+ 𝑓 2
1

2𝑓2

where 𝑆
obs

is the number of observed categories, 𝑓1 is the number of

singletons (categories observed exactly once), and 𝑓2 is the number

of doubletons (categories observed exactly twice).

5.2 Incident Characteristics Correlations
Understanding how different incident characteristics relate to one

another is crucial for uncovering underlying patterns in the incident

data.

For each pair of categorical fields, we create a contingency table

of label co-occurrences in the test set and apply the Chi-Square test

of independence to assess statistical association. This test suits our

categorical data and sample size, comparing observed (𝑂𝑖 𝑗 ) and ex-

pected (𝐸𝑖 𝑗 ) frequencies under the null hypothesis of independence:

𝜒2 =
∑𝑟
𝑖=1

∑𝑐
𝑗=1

(𝑂𝑖 𝑗−𝐸𝑖 𝑗 )2
𝐸𝑖 𝑗

Because multiple field-pair comparisons are conducted in par-

allel, we apply the Bonferroni correction to adjust p-values and

control the family-wise error rate. This conservative correction re-

duces the likelihood of false positives that can arise from conducting

multiple hypothesis tests.

In cases where fields are multi-labeled, we binarize the label

assignments into a one-hot encoded matrix and compute the con-

tingency tables accordingly. This allows us to evaluate associations

between fields even when multiple labels are present per instance.

5.3 Clustering Model
To discover latent patterns in the dataset beyond predefined cate-

gories, we performed clustering on vector embeddings of the ex-

tracted characterizations.

Each report’s characterization, formulated as a short description

outlining the characteristics of the incident was encoded using the

all-MiniLM-L6-v2 SBERT model [27], chosen for its efficiency

and robustness on clustering benchmarks [28]. We tested multiple

clustering algorithms, focusing on HDBSCAN for its ability to

identify clusters of arbitrary shape and density. To identify the

optimal clustering configuration, we conducted a grid search over

key parameters (e.g. distance metric, min cluster size, min samples)

as outlined in the models module in the replication package [15].

4
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To validate clustering quality, we manually assigned validation

incidents to clusters and compared these against model outputs,

guiding selection of the optimal configuration. Due to the unsuper-

vised nature of clustering, we have also employed three widely used

internal validation metrics: the Silhouette Score (S), the Calinski-

Harabasz Index (CH), and the Davies-Bouldin Index (DB) [33–35].

We report on the ratio of noise points (NR) as well. These metrics

assess clustering quality without reference to ground truth labels,

offering complementary perspectives on intra-cluster cohesion and

inter-cluster separation. These metrics provide a quantitative basis

for selecting clustering configurations that yield well-separated and

coherent groups in the embedded space.

Cluster characteristics were subsequently analyzed to identify

prevalent incident patterns within each group. Clustering results

were then visualized in two and three dimensions using PCA. These

visualizations helped validate cluster cohesion and separability.

6 RESULTS
This section presents the main empirical findings of our study.

We begin by introducing the taxonomy of incident characteris-

tics derived from manual annotation (6.1). We then evaluate the

performance of our LLM-based characterization agent (6.2) before

using it to explore the distribution (6.3) and relationships of key

incident attributes (6.4). Finally, we examine the types of software

changes associated with incidents (6.5), and identify recurring pat-

terns through clustering analysis (6.6).

6.1 Incident Characteristics Taxonomy
Based on the analysis of incident reports related literature on inci-

dent management, we developed a classification system that reflects

the most consistently identifiable characteristics across the dataset.

This classification system (Table 2) reflects both the descriptive and

prioritization-relevant aspects of incidents.

Table 2: Incident Characteristics Taxonomy

Category Values

Severity Levels Critical, Major, Minor, Trivial, Maintenance

Impact Tags Full Outage, Partial Outage, Non-Production Out-

age, Degraded Performance, Connection Issues,

Increased Latency, Data Leakage, Data Corrup-

tion, Data Loss, Incomplete Recovery, Manual

Recovery Required

Triggering Events
(Causes)

Code Defect, Configuration Error, Improper

Change, Change Constraint Violation, Capacity

Issue

Software Change
Type

Dependency Update, Code Deployment, Infras-

tructure Change, Configuration Change, Security

Update, Database Change

Mitigation Strat-
egy

Transference, Avoidance, Reduction, Acceptance

Remediation
Actions

Rollback, Hot Fix, Infrastructure Change, Traffic

Switch, Fallback, No Operation

We distinguish between two high-level categories: characteris-

tics used for prioritization and general descriptors that describe the

nature and resolution of the incident.

Incident Prioritization Characteristics. These attributes influence
how incidents are triaged and addressed by engineering teams.

Severity levels indicate the urgency of response, while impact tags

offer a nuanced description of the incident’s operational and user-

facing effects. Impact tags are not mutually exclusive and may

co-occur in a single incident.

General Incident Descriptors. This set includes characteristics
that describe the incident’s origin and resolution. The triggering
event identifies the underlying cause, classified into categories such
as configuration errors or code defects. Looking further into the

cause, allows us to establish whether an incident was caused by a

software change. If this is the case, the incident is flagged and an-

notated with a software change type such as configuration changes,

code deployments, or third-party updates. The mitigation strat-
egy reflects risk management intent, structured around the TARA

framework (Transference, Avoidance, Reduction, Acceptance) [36].

The remediation action specifies concrete recovery steps, such as

applying a hot fix or executing a rollback.

Although duration is commonly reported, we excluded it from

this taxonomy. Prior research [19, 23] indicates that duration has

limited explanatory value for engineering teams and shows little

correlation with severity.

While the definition of incident does not included maintenance

events (due to their nature as planned disruptions to regular ser-

vice), such events are present within our dataset. To limit model

hallucination and mislabeling, we include maintenance as both a

cause and a severity tag. Incidents classified as such will be analyzed

separately.

6.2 Performance of the Incident
Characterization Agent

We have investigated the performance of the chosen models (GPT

4oMini, GPT 4.1 Mini) by comparing their output to manually estab-

lished ground truth for 34 randomly sampled reports. The testing

set, though small and with some missing known labels, shows no

statistically significant evidence of many unseen categories based

on Chao1 index. This indicates the sample is reasonably represen-

tative for model comparison, more specifically to determine the

feasibility of individual model use for characteristic extraction. Fig-

ure 1 presents Jaccard similarity metrics across remediation and

impact categories, evaluated using micro, macro, and sample-based

averaging. Across both categories, the GPT-4.1 Mini few-shot model

consistently achieved the highest scores, while the GPT-4o Mini

zero-shot and few-shot models demonstrated comparatively lower

performance.

The Cohen’s Kappa metric for categorical characteristics (Fig-

ure 2) shows an increased performance of the GPT 4.1 Mini Model

(average 𝜅 = 0.82) under few-shot prompting, outscoring the 4o

Mini variant and zero-shot configurations.

Observation 1. GPT-4.1 Mini model under few-shot prompting reaches an
overall accuracy of above 80% when predicting incident characteristics in
accordance to the defined taxonomy.

5
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Figure 1: Jaccard Similarity Comparison between Models

Figure 2: Cohen’s Kappa for Cause, Severity, Mitigation

6.3 Characteristics Exploration
We analyzed the distribution of extracted incident characteristics

across the dataset, focusing on five key dimensions: cause, impact,

mitigation, remediation, and severity. Table 3 presents the frequency

distributions for each category based on the agent’s responses.

From the analysis, we exclude maintenance events (incidents

being attributed the tag "maintenance" for either their cause or

severity), amounting to a total of 301 reports considered for fre-

quency analysis. Table 3 presents the frequency distributions for

each category based on the agent-generated responses.

Table 3: Top 3 Values per Category (Count and Percentage)

Category Value Count Percent

Cause

Code Defect 85 28.24%

Capacity Issue 79 26.25%

Other 78 25.91%

Severity

Major 233 77.41%

Minor 35 11.63%

Critical 33 10.96%

Mitigation

Reduction 274 91.03%

Acceptance 26 8.64%

Transference 1 0.33%

Impact

Partial Production Outage 228 75.75%

Degraded Service/Performance 225 74.75%

Connection Issues 151 50.17%

Remediation

Hot Fix 118 39.20%

Infrastructure Change 75 24.92%

No Operation 66 21.93%

We find that Code Defects and Capacity Issues are the most fre-

quently appearing causes, cumulatively accounting for more than

half of the incidents. 77% of incidents are attributed the severity

level "major" and lead to Partial Production Outages and/orDegraded

Service/Performance. Further, almost all incidents (91%) apply Re-
duction as a mitigation tactic, typical remediation actions including

Hotfixes and Infrastructure Changes.

Observation 2. Code Defects and Capacity Issues account for approxi-
mately 50% of all reported incidents. Notably, 75% of incidents result in
Partial Production Outages and/or Degraded Service.

6.4 Predictive Relationships
The Chi-squared analysis demonstrated significant (corrected 𝑝 <

0.05) associations between incident causes and several impact types

and remediation strategies. Notably, Capacity Issues were dispropor-
tionately associated with Connection Issues (𝜒2 = 30.74), Increased

Latency (𝜒2 = 49.36), and incidents requiring Manual Recovery
(𝜒2 = 23.47), with standardized residuals of 2.61, 5.01, and 2.27

respectively. Improper Change Operations were significantly linked

to Full Production Outages (𝜒2 = 22.86) and Rollback remediation

(𝜒2 = 98.29), with residuals of 4.23 and 7.34, highlighting change

management as a pivotal area for risk mitigation. Additionally, Code
Defects were positively associated with Hot Fix remediation actions

(𝜒2 = 90.78, residual=6.37).

Observation 3. Capacity Issues and Improper Change Operations are
the most critical contributors to high-impact incidents, particularly those
involving Latency, Connection Failures, and Full Production Outages.

6.5 Types of Software Changes
Based on the established taxonomy, we report on the frequency of

change-induced incidents. We find that a total of 162 (53.82%) inci-

dents are caused by change operations, the most common incident

inducing-change operation being Code Deployments (50.00%). Other
notable incident-inducing changes include Configuration Changes
(19.75%) and 3rd Party Updates (11.72%).

In addition to their frequency, change-induced incidents showed

a notable severity distribution. Among these incidents, critical sever-
ity was assigned in 13.58% of cases, compared to only 7.91% for

non-change-induced incidents. In terms of impact, change-induced

incidents exhibited higher proportions ofManual Recovery Required
(25.93% vs. 10.79%). Conducted Chi-square tests confirm the statis-

tical relevance of these differences (𝑝 < 0.05).

Observation 4. Over half (53.82%) of incidents are caused by software
changes, predominantly Code Deployments. Change-induced incidents ex-
hibit a higher proportion of critical severity and are more likely to require
manual recovery.

6.6 Pattern Identification
To assess clustering quality across methods, we compared selected

configurations of DBSCAN, Gaussian Mixture Models (GMM), and

HDBSCAN using standard evaluation metrics (S, CH, DB, NR).

Table 4 summarizes the results.

While DBSCAN with 𝜀 = 0.2 achieves the best numerical perfor-

mance, its utility is limited due to an extremely high noise ratio,

leaving fewer than 3% of incidents assigned to clusters. Gaussian

Mixture Models (GMM), particularly with eight components, pro-

vide a more interpretable clustering with full assignment and clean

visual separation, despite lower quantitative scores.
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Table 4: Clustering performance metrics for selected models.

Model S CH DB NR

DBSCAN (𝜀 = 0.2) 0.86 134.46 0.16 0.97

GMM (8 components) 0.06 10.73 2.89 0.00

HDBSCAN (min size =

4, dim = 2)

0.02 10.84 2.32 0.08

HDBSCAN (min size =

9, dim = 2)

0.03 12.02 2.22 0.10

The HDBSCAN model with min_cluster_size=4 and two di-

mensional input (via PCA dimensionality reduction) demonstrates

strong visual coherence and effective noise handling, though quanti-

tative metrics were not computable due to the high-dimensionality

and nature of soft cluster boundaries.

(a) HDBSCAN (minsize=4, PCA) (b) GMM (8 components, PCA)

Figure 3: Clustering visualization.

Based on both quantitative evaluation and qualitative visual

inspection via PCA projection 3, we selected the HDBSCAN (min-

size=4, dim=2) and GMM (8 components) configurations as the

most appropriate clustering solutions for downstream analysis.

Following the distribution of characteristics within individual

GMM clusters, we formulate archetypes, as can be seen in Table 5.

To do this, we rely on the co-occurrence of individual characteristics.

We find that the top three most prevalent clusters are: Cluster 1,

with 55 capacity-related incidents characterized by major outages

and performance degradation, Cluster 2, dominated by 39 code

defect–related incidents causing major partial outages, and Cluster

5, comprising 14 improper change operation incidents and 13 code

defects linked to critical outages requiring hot fixes and rollbacks.

Observation 5. Clustering identified seven distinct incident archetypes.
The top three most common involve capacity-driven major outages, code
defect–relatedmajor partial outages, and critical outages driven by improper
change operations and code defects.

7 DISCUSSION
In software incident characteristic extraction, LLMs show reliable

performance demonstrating their applicability for incident inves-

tigation. This contributes to the efforts in understanding failure

mechanisms, essential for the improvement of operational reliance.

In this section, we synthesize our key findings to provide actionable

insights grounded in incident characteristics (7.1), the significant

role of change-induced failures (7.2), and the identification of re-

curring incident archetypes through clustering analysis (7.3).

Table 5: Cluster Archetype Identification

Id Representative Archetype Description

0 Small-scale, varied issues (improper change, config error, code

defect), minor-to-major severity, each with distinct impacts and

one-off remediations.

1 Capacity-driven major incidents characterized by degraded per-

formance, increased latency, and partial or full outages. These are

primarily resolved through infrastructure changes, traffic rerouting,

or hotfixes, with a clear focus on scaling and system limits.

2 Code defects dominate, causing major partial outages and degraded

performance; hotfix is the primary remediation.

4 Scheduled maintenance and capacity operations cause minor con-

nection issues, addressed by infrastructure change; low-severity

archetype.

5 Critical outages driven by improper change operations and code

defects; hotfix and rollback are frequent remediations.

6 Major issues of unknown or other causes result in connection and

service degradation, often left unresolved or handled with minimal

action.

7 Code/configuration issues cause major partial outages and de-

graded services, commonly mitigated by rollback or hotfix.

7.1 General Incident Characteristics
The results from our characteristic frequency analysis yield several

actionable insights for incident management and align with broader

industry findings on incident patterns and resolution strategies.

First, the predominance of code defects (28%) and capacity issues

(26%) as root causes highlights the importance of robust testing and

scalable infrastructure planning in production environments. This

supports earlier findings byWu et al. [9], who identify configuration
and code changes as prevalent causes of incidents. Importantly, our

predictive analysis reveals that these causes are not only common

but also statistically associated with specific high-impact conse-

quences and remediation paths. Capacity issues were significantly

associated with connection failures, increased latency, and manual

recovery interventions. These relationships suggest that invest-

ments in load testing and proactive scaling are not just preventive

but potentially high-leverage in reducing downstream impact.

Similarly, improper change operations, though less frequent,

were linked to full production outages and rollback remediation.

This further underlines the importance of controlled deployment

practices and automated rollback mechanisms, to mitigate the func-

tional impact of such system malfunctions.

In terms of impact, Partial Production Outages (76%) and De-

graded Performance (75%) dominate, revealing that most incidents

do not result in full system failure but still degrade customer experi-

ence and reliability. This observation aligns with the notion of gray

failures noted in recent site reliability literature [37], showing that

recognizing and responding to such incidents quickly is important,

especially as they are often precursors to more severe disruptions.

From a mitigation and remediation perspective, the overwhelm-

ing preference for reduction strategies (91%) reflects an operational

model oriented toward damage containment. This is further sup-

ported by hot fixes (39%) and infrastructure changes (25%) as the

most common remediation tactics. However, our findings suggest

these strategies are tightly coupled to the nature of the incident:

capacity issues tend to prompt infrastructure modifications, while

7
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code defects are more often patched reactively. These patterns

highlight the potential of cause-aware response playbooks, where

detection of a specific root cause could automatically prioritize a

remediation action.

7.2 Change-Induced Incidents
Our findings reinforce the central role of software changes as a

leading cause of production incidents. More than half (56.48%) of all

incidents in our dataset were triggered by change operations, with

Code Deployments alone accounting for nearly half of these. This is

consistent with the observations of Wu et al. [9] and Kapel et al. [8],
both of whom identify code and configuration changes as dominant

vectors for operational failure in modern software systems.

The overrepresentation of change-induced incidents in the criti-
cal severity tier (13.58% vs. 7.91% for other causes) further suggests

that changes are not only frequent sources of failure but also dispro-

portionately associated with high-stakes outages. The statistically

significant link between change-induced incidents and the need

for manual recovery aligns with prior evidence from Kapel et al.
[8], who emphasize that changes often introduce failure modes

that automation cannot anticipate or resolve. This finding implies

that environments with continuous or high-frequency deployment

models may face higher risks unless rapid rollback and recovery

strategies are in-place.

Similarly, the non-trivial proportion of incidents caused by Con-
figuration Changes and 3rd Party Updates suggests that managing

operational state and external dependencies remains a weak point,

suggesting that testing pipelines focused primarily on code correct-

ness are not enough to reliably decrease the risk of incidents.

7.3 Incident Archetypes
Our clustering analysis surfaced seven distinct incident archetypes,

offering a compact representation of recurring failure patterns in

production systems. The derived archetypes agree with incident

taxonomies described by Kapel et al. [8] and Wu et al. [9], who both
emphasize the importance of latent structure to inform prevention

and mitigation strategies. For example, our identification of a large,

cohesive cluster of capacity-driven outages (Cluster 1), as well as

defect-induced service degradations (Cluster 2), reinforces the idea

that a relatively small number of root-cause constellations that

underlie the majority of high-severity incidents.

Importantly, our method also revealed hybrid failure types, such

as Cluster 5, where both Improper Change Operations and Code

Defects, resulting in critical outages requiring hotfixes and rollbacks

were represented. Such clusters highlight the fact that incident

data is not clearly linearly separable and demonstrate the value of

unsupervised approaches in detecting complex failures patterns.

8 THREATS TO VALIDITY
Despite the promising findings, several limitations should be ac-

knowledged. In this section, we discuss potential threats to the

internal, construct, external, and conclusion validity of our study.

Internal Validity. The manual labeling process used to generate

ground truth data was carried out by a single student annotator.

This introduces the possibility of subjective interpretation and in-

consistency in category assignment. Although a two-step validation

process was implemented to improve consistency, the absence of

multiple expert annotators and inter-annotator agreement metrics

may affect the reliability of the labels.

Construct Validity. The study focuses solely on textual incident

reports, omitting multimodal sources such as logs or metrics, which

could limit the scope of incident characterization and reduce con-

struct coverage.

External Validity. The dataset used in this study was sourced

from the VOID, which is inherently subject to reporting bias due to

varying organizational practices, and cultural factors influencing

whether incidents are documented and shared. Consequently, the

findings may not fully reflect the broader landscape of operational

incidents. Furthermore, the comparative evaluation was restricted

to a single model family. A broader benchmarking effort involving

a wider range of models would provide a more comprehensive and

reproducible understanding of model performance in this domain.

Conclusion Validity. The relatively small number of manually

annotated incidents limits the robustness of performance compar-

isons. A larger annotated corpus of incident data would support

stronger empirical claims regarding model effectiveness.

9 RESPONSIBLE RESEARCH
This study adheres to the core principles of transparency, repro-

ducibility, and ethical research practices as outlined in the TU

Delft Integrity Code
1
and the Netherlands Code of Conduct for

Research Integrity
2
. In this section, we outline how we complied

with the principles of FAIR (Findable, Accessible, Interoperable, and

Reusable) Data (9.1) and acknowledge possible biases present in the

data (9.2). Following this, we introduce the broader implications of

our work in terms of environmental impact (9.3) and explain how

we ensured the replicability and reproducibility of the research

(9.4). Finally, we acknowledge the use of AI during the duration of

the project and explain how we complied with ethical AI usage in

research guidelines (9.5).

9.1 FAIR Data
All incident reports analyzed in this work were sourced from the

VOID database, a publicly accessible repository containing post-

mortem analyses that have been shared openly. No proprietary or

sensitive information is made available through VOID, and no such

information was collected and/or utilized in this study.

In order to collect the plain-text representations of the analyses,

we employed (and implemented) a website crawler. To ensure com-

pliance with ethical web-scraping practices and to avoid placing

undue strain on the websites hosting the reports, we followed the

following guidelines:

• Wait five seconds between requests to minimize server load.

• Avoid making requests for files already available locally.

• Limit the number of retries in case of failed requests.

It is important to note that before initiating any scraping activi-

ties, we consulted the website’s robots.txt file [38] to verify that

such actions were permitted. During the course of our investigation,

no restrictions were imposed on our access.

1
https://www.tudelft.nl/en/about-tu-delft/strategy/integrity-policy/tu-delft-vision-

on-integrity-2018-2024

2
https://www.nwo.nl/en/netherlands-code-conduct-research-integrity
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In our reproducibility package [15], we publish both the collected

data and data pre-processing steps taken in order to ensure that

the data can be easily integrated in our analysis workflow.

9.2 Bias in the Data
As outlined in Section 8, our dataset contains inherent biases. It

represents only the subset of incidents that have been voluntarily

and publicly reported, which does not encompass the full landscape

of operational failures in the industry. Therefore, conclusions drawn

from our analysis pertain only to publicly reported incidents and

may not generalize to unreported or proprietary events.

Furthermore, the level of detail and quality of these incident

reports is influenced by each organization’s internal reporting prac-

tices. Some companies provide comprehensive postmortem ana-

lyzes, while others offer minimal descriptions, leading to variability

in data richness and consistency.

Only incident reports published between 2022 and 2024 were

considered, and within this range, several entries were excluded due

to insufficient detail or lack of actionable content. This exclusion

was performed to reduce the likelihood of LLM hallucinations and,

more critically, to prevent the inadvertent amplification of biases

introduced by prompt engineering. Although we utilized a neutral

prompting strategy and included fallback options for ambiguous

cases, the LLMwas primarily used to simulate the reasoning process

of a site reliability engineer, not as an oracle of truth.

9.3 Models and Energy Consumption
The potential environmental impact of this work warrants some

consideration. Although our analysis pipeline is computationally

efficient, it relies on the use of LLMs for textual classification, which

introduces non-negligible inference costs in terms of both energy

consumption and financial resources.

To balance performance and sustainability, we opted for LLMs

from the GPT-Mini family, which offer a favorable trade-off between

inference speed, accuracy, and resource use. These models were

used through the OpenAI API and were used in their current form,

incurring no additional training costs.

9.4 Reproducible Research
To ensure reproducibility, the complete dataset used in this study -

along with any filtering criteria and pre-processing steps - has been

made available in the project’s public repository and reproducibility

package [15]. The repository also includes the source code for all

tools developed and utilized throughout the study, including web

scraping utilities, characteristics extraction modules, classification

scripts, and clustering pipelines.

Additionally, to further promote replicability and reduce variabil-

ity in experimental outcomes, we explicitly set random seeds for

all processes involving stochastic elements, such as data splitting,

and clustering initialization.

By making both the data and code publicly available under open

licenses, this study promotes open science practices and encourages

further research in the areas of operational incident analysis and

AIOps systems.

Two reproducibility packages are provided on Zenodo as well:

• the web crawling tool package

• the analysis tool package

9.5 The use of AI
AI tools (ChatGPT

3
, Claude

4
) were used throughout this project

to support various research and presentation tasks, in accordance

with responsible use guidelines. We distinguish between the use of

AI for coding (9.5.1) and for paper writing (9.5.2).

9.5.1 AI Assisted Coding. All code used to support this paper is

written by a human. However, AI has been used in the process of:

• establishing which Python packages to use for a task

• generating examples for simplified tasks

• understanding error messages

The following prompts were used:

• "What Python packages are best suited to perform task X?
¨
,

where X ranges from performing statistical analysis tests,

to web crawling activities.

• "How can package X be used to perform Y? Please provide a
Python script as an example."

• "I get this error: X.Why?"

The model was treated strictly as a potential knowledge resource,

with output in need of manual validation and intervention. Output

was not used verbatim.

9.5.2 AI Assisted Paper Writing. During the process of writing the

paper, we used AI to:

• Format and refactor LATEXdocuments, particularly for align-

ing tables and inserting complex figures

• Generate tabular representations of data provided in its

textual format in LATEX

• Propose alternative data visualizations when plots and/or

tables exceeded standard page dimensions

• Refine the writing by suggesting synonymous phrasing or

by acting as a critical reviewer

The following prompts were used:

• What is the Latex code for inserting a figure with 2 sub-
figures?

• Could you provide the Latex code for a table containing data
X?

• My table does not fit in one column in my two-column paper
layout. Could you please suggest how to make it fit? Would
another method work better?

• What are synonymous phrases for X?
• You are a critical reviewer of an academic paper. You need to

ensure that section X follows the following rules: Ys. What
are the strengths and weaknesses of this section?

All AI-generated outputs were carefully reviewed and edited. At

no point were generative models allowed to produce final results or

analyses without human validation. When assisting in refining of

the writing, model generated sentences were not inserted verbatim.

Additionally, when alternative data visualizations were proposed,

model output was a script to generate the visualization and not the

visualization itself. Even in this case, the script was not considered

3
https://chatgpt.com/

4
https://claude.ai/
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correct by default, but modified and adjusted to fit our analysis

pipeline.

We explicitly disclose the use of AI to maintain transparency

and to align with emerging norms in the responsible integration of

AI in scientific workflows.

10 CONCLUSION
This study advances the understanding of software incidents in

production environments by systematically characterizing incident

attributes, exploring cause-impact-remediation relationships, and

uncovering recurring failure patterns through clustering analysis.

We characterize incidents by their cause, impact, severity, mitiga-

tion strategy employed and remediation actions taken. The defined

taxonomy also distinguishes between change-induced and other

incidents, further characterizing those incidents by the type of soft-

ware change that triggered them. Our findings confirm that code

defects and capacity issues are the most frequent root causes, usu-

ally leading to partial outages or degraded performance rather than

complete failures. Remediation efforts tend to focus on damage

containment, with fixes tailored to specific causes, highlighting the

importance of targeted playbooks to improve operational resilience.

We also found clear links between causes, impacts, and responses:

capacity problems often result in connection failures and require

manual recovery, while improper change operations are more likely

to cause full outages that demand rollbacks. Change-related inci-

dents, particularly code deployments, make up over half of all cases

and tend to be more severe and challenging to recover from. Config-

uration changes and third-party updates also contribute, revealing

gaps in testing beyond code correctness.

Clustering analysis identified seven distinct incident archetypes,

with key groups centered on capacity-driven outages, code defects,

and failures tied to improper changes. The presence of mixed clus-

ters underscores the complexity of incident causality and supports

the value of unsupervised methods for capturing failure modes.

Overall, these insights offer practical guidance for improving

incident prevention, detection, and response to build more resilient

software systems. Future work should address current data limita-

tions and explore richer sources to understand incidents better and

more reliably.
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