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Abstract

Disasters like inland floods and landslides are caused by extreme rainfall. To increase the time to take early
measures against such disasters it is of great importance to have access to accurate predictions of the rain-
fall. For the prediction of floods, Quantitative Precipitation Forecasts (QPFs) are used as input for hydrologic
models. Numerical Weather Prediction (NWP) models are commonly used to generate QPFs, but for short
lead times (less than 6 hours) the NWP forecasts are not accurate enough. For very short-term forecasting the
nowcasting method is used. Nowcasting rainfall is a computational process of extrapolating the most recent
rainfall observations and has great potential for lead times up to 6 hours. Rainfall estimations from weather
radar are normally used for nowcasting, but these are not present in many parts of the world. A source for
opportunistic sensing to generate rainfall estimations is Commercial Microwave Links (CMLs). Signals for
telecommunication purposes will travel along a link path from one station to another. When a rainfall event
occurs, the signal attenuates. This attenuation can be used for the estimation of path-averaged rainfall inten-
sity estimations.

This thesis investigates the possibilities of using CMLs for estimating and nowcasting rainfall. The study
area is Sri Lanka, a country without access to radar-based rainfall estimation. A 3.5-month CMLs data set
with 2560 unique links from Dialog Sri Lanka is used and compared to 8 hourly and 12 daily rain gauge sta-
tions. The studied period is from September 12 to December 31 in 2019. To generate rainfall estimations
from the CMLs, the algorithm RAINLINK is used. RAINLINK includes a set of default parameters, which was
optimized for the Netherlands. For Sri Lanka, two new optimal parameters are derived. One is for the wet
antenna attenuation (Aa), which is the reduction of the signal caused by a wet antenna. The second param-
eter is the coefficient (α), which determines how much of the minimum and maximum signal power is used
to calculate the mean path-averaged rainfall intensity. For the optimal parameters daily CML estimations are
calibrated with the 12 daily rain gauges. With the new optimal parameters, the rainfall estimations are calcu-
lated and used in Pysteps, an open-source library for nowcasting, to generate nowcasts for 20 rainfall events
in the studied period. Deterministic and probabilistic nowcasts are generated. These nowcasts are compared
with a benchmark nowcast, called Eulerian Persistance (EP).

RAINLINK gives more accurate rainfall estimations in Sri Lanka with the new parameters of the wet antenna
attenuation (Aa) and the coefficient α compared to the default parameters. The daily values of the gener-
ated rainfall estimations from RAINLINK are compared with 12 rain gauges in a validation period (55 days),
where the Nash-Sutcliffe Efficiency (NSE) is calculated. The validation resulted in an NSE of 0.85 for the new
parameters and an NSE of 0.64 for the default parameters. The results show that the parameters are depen-
dent on the path length of the link. Longer path lengths tend to have lower wet antenna attenuation and
a higher value for the coefficient α. Nowcasts were made for the 20 selected rainfall events. The accuracy
was calculated with two verification methods: the Fraction Skill Score and the Critical Success Index. From
these results, the deterministic nowcasts with S-PROG and benchmark EP are accurate for lead times up to
an hour. The deterministic nowcasts give the most accurate results, compared to the EP and the probabilistic
nowcasts. The probabilistic nowcasts show the least accurate results and are with a lead time of one hour
only accurate for low rainfall intensities (1 mm/hr). Overall, the nowcasting results are showing that with
CML rainfall estimations, Pysteps can make accurate nowcasts in Sri Lanka. To improve rainfall estimations
further, RAINLINK could implement a selection of the parameters based on the link length for each CML.
Further research is necessary to include the other parameters of RAINLINK in the calibration. Finally, to im-
prove the nowcasts, even more, a combination of rainfall estimations from CMLs, rain gauges, and satellite
data could be considered.
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1
Introduction

Rainfall, and in particular extreme rainfall, is responsible for many disasters, for example, inland floods and
landslides. The consequences of this extreme rainfall can be damage to infrastructure, buildings, and some-
times even loss of life. Quantitative Precipitation Estimation (QPE) can be used as input for hydrologic mod-
els. With these models, it is possible to estimate when and where a flood or other disaster takes place. If only
QPEs are available, the lead time of a flood is equal to the basin response time. A Quantitative Precipitation
Forecasting (QPF) is needed to increase the lead time. This is necessary to take earlier measures and to pos-
sibly reduce damage further.

Numerical Weather Prediction (NWP) is one method for short to medium-term rainfall forecasting. How-
ever, for short lead times (up to 6 hours) the forecasts made with NWP are not sufficient (Pierce et al., 2012).
Nowcasting is the process of statistically extrapolating recent rainfall observations with lead times to 6 hours.
It is a possible solution for the short-term forecasting of rainfall. Pysteps is an open-source library in Python
for nowcasting (Pulkkinen et al., 2019).

Until recently, the most important instrument for forecasting rainfall in a short time frame is the weather
radar. Radar is a good instrument for monitoring rainfall patterns. It can detect extreme weather conditions
at a high spatial and temporal resolution (Fabry, 2015). A major constraint for this instrument is that in devel-
oping countries access to radar systems is not present, mostly because acquiring, maintaining, and operating
them is too expensive (Wang et al., 2017; Saltikoff et al., 2019). Therefore, other instruments have to be used
to generate high spatial and temporal resolution QPEs and QPFs.

One potential instrument that is used for rainfall estimation is satellites. The biggest advantage of satellites
is that they cover the whole earth. Developing countries can benefit from satellite rainfall estimations. Geo-
stationary products have a high temporal resolution. However, forecasting with satellites gives a low spatial
resolution and is therefore not useful for hydrologic models as mentioned above. Next to this, the rainfall es-
timates made with satellites still have large uncertainties (Kidd & Huffman, 2011). A third type of instrument
used for rainfall estimation is rain gauges on the ground. Rain gauges only sample a single point in the area.
A lot of rain gauges are needed to obtain the same spatial accuracy comparable to weather radar or satellite
images. In developing countries, the coverage is usually too low and can therefore not be used to forecast
rainfall in the short term.

The function of a Commercial Microwave Link (CML), sometimes referred to as a link, is to propagate a signal
with telecommunication purposes from one antenna to the other. To retrieve rainfall rates, the CMLs can be
used as a source for opportunistic sensing. It is called opportunistic because the infrastructure of the links
is already present for other purposes (telecommunication). During a rainfall event, in the path between two
towers (one receiving and one transmitting), the signal of the link is attenuated. This rain-induced attenu-
ation of the signal can be converted into a path-averaged rainfall intensity. An advantage of this source is
that in many parts of the world links are already in use, especially in cities. Various studies showed already
that a link network can be used for rainfall estimation (Leijnse et al., 2008; Overeem et al., 2011) and even for
short-term forecasting (Imhoff et al., 2020a).

5



1. Introduction

Through a collaboration with the GSM Association (GSMA), we have been able to gain access to data from
CML networks. One of those networks is from the Mobile Network Operator (MNOs) Dialog Sri Lanka. Dialog
Sri Lanka can provide a dataset for 4 months in 2019. Next to this, the Sri Lanka Department of Meteorology
is providing the rain gauge data. The focus of this thesis is therefore on the country Sri Lanka. Enabling the
possibilities of predicting (extreme) rainfall could be of great value to the country of Sri Lanka. Sri Lanka has a
relatively low rain gauge density and there is no weather radar available to use for any rainfall forecasting. The
biggest economic sectors of Sri Lanka are agriculture, energy, and tourism. Agriculture is highly dependent
on rainfall. Extreme rainfall has an impact on agriculture, but also on other parts of the country: floods in
urban areas (Manawadu & Wijeratne, 2021), landslides (Perera et al., 2018), and energy received from hydro-
power (World Bank Group, 2021).

Some areas in Sri Lanka have a high link density, mainly where the larger cities are located. In Overeem et
al. (2021) the application of CMLs is analyzed in Sri Lanka to retrieve rainfall. This thesis studies the pos-
sibilities of optimizing certain parameters used in calculating the QPEs for the country of Sri Lanka. The
calculations of the rain rates with CMLs are performed with RAINLINK (Overeem et al., 2016a). RAINLINK is
an open-source package that can calculate rainfall from the transmitted and received signal levels of CMLs.
The package uses default parameters based on calibration for the Netherlands (Overeem et al., 2013).

This thesis studies the possibilities of using rainfall retrievals from CMLs for rainfall nowcasting in a tropical
country. This thesis will focus on the open-source library Pysteps to generate nowcasts. From the problem
statement, the main research question follows:

How accurate is rainfall nowcasting using Pysteps and Commercial Microwave Links in Sri Lanka?

The subquestions that will lead to answering the research question are:

1. How well do the CML rainfall estimates compare with those from rain gauges in Sri Lanka using the
default parameter values from RAINLINK?

2. Will optimizing the wet antenna attenuation Aa and the coefficient α of the algorithm give more accu-
rate results for rainfall estimation in Sri Lanka?

3. What are the preparation steps to apply Pysteps to CML-derived rainfall fields in Sri Lanka?

4. How accurate are the nowcasting results compared with the CML rainfall estimation in Sri Lanka?

5. How accurate are the nowcasting results compared with the data received from the rain gauges in Sri
Lanka?

6. How do the nowcasting results in Sri Lanka compare with nowcasting with CMLs in the Netherlands?

To answer the research questions, the thesis is organized as follows. Chapter 2 provides background informa-
tion about CMLs and how to use them to estimate the rainfall. Chapter 3 gives background information about
nowcasting and Pysteps. The study area of Sri Lanka and the data used in this thesis are described in Chapter
4. Chapter 5 contains the methodology to answer the different subquestions. The results of the thesis are
given in Chapter 6. Chapter 7 provides a detailed discussion of these results and Chapter 8 gives conclusions
and recommendations for future studies.
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2
Commercial Microwave Links

2.1. Introduction
A Commercial Microwave Link (CML) is the connection between two communication stations (mostly tele-
phone towers). A link path is a path between those two stations. Signals for telecommunication purposes
will travel along a link path from one station to another. This often is present in both directions. The MNOs
collect the data of the signal to analyze the performance of the signal. This signal data can also be used in an
opportunistic way to estimate the rainfall. Provider Dialog Sri Lanka collects every 15 minutes the minimum
and maximum received signal levels (dB). Next to this, Dialog Sri Lanka provides for each link the frequency
(GHz), the coordinates of the start and end of the link path, and the link path length (km).

When a rainfall event occurs in the area of the link path (between the two stations) the signal loses some
of its strength. Raindrops have about the same size like the microwave signal (millimeters), which causes the
signal to lose strength. Attenuation of the signal increases with more raindrops and with increasing raindrop
sizes. There is a connection between the attenuation of the signal and the rainfall rate along the path between
transmitter and receiver. In Figure 2.1 the attenuation of the signal caused by rainfall is illustrated.

Figure 2.1: Illustration of two base stations and a Commercial Microwave Link (CML)

The attenuation of the microwave signal data, stored operationally in the Network Management System
(NMS), can be used for rainfall estimates. The signal level for the dry weather conditions, called the refer-
ence signal level, must be determined to know how much the signal has changed. When rainfall events occur,
the attenuation along the link path can be calculated. The rainfall intensity R (mmh−1) can be calculated by
using a power law (Atlas & Ulbrich, 1977):

R = akb (2.1)
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where k (dB km−1) is the specific attenuation of a microwave signal with coefficient a (mmh−1dB−bkmb) and
exponent b (-).

Both a and b depend on multiple factors. Those factors include the polarization, temperature, water phase,
drop size distribution, drop shape, and canting angle distribution, but mainly on the frequency (Berne &
Uijlenhoet, 2007; Leijnse et al., 2008). The specific attenuation model of International Telecommunication
Union (2005) in Figure 2.2 shows the values for coefficient a and exponent b for different frequencies. It shows
that the exponent b is close to 1 for frequencies close to 30 GHz, which is a frequency that is often used, for
example in the Netherlands.

(a) Coeffcient a (b) Exponent b

Figure 2.2: Coefficient a and exponent b for different frequencies (International Telecommunication Union,
2005)

2.2. RAINLINK
In Overeem et al. (2016a) the open-source package called RAINLINK is introduced in scripting language "R".
An overview of the RAINLINK functions is given in Table 2.1. Creating spatial rainfall maps from CMLs can
be done in seven steps with RAINLINK: (1) Pre-processing, (2) Wet-Dry classification, (3) Determination of
reference signal level, (4) Removal of outliers, (5) Correction signal powers, (6) Rainfall retrieval and (7) Inter-
polation. The default parameters of RAINLINK are based on a study of 12-day calibration in the Netherlands
from Overeem et al. (2013).

Table 2.1: List of RAINLINK functions (Overeem et al., 2016a)

Step Function Subfunction Description
1 PreprocessingMinMaxRSL - Preprocessing of linkdata
2 WetDryNearbyLinkApMinMaxRSL - Wet-dry classification with nearby link approach
3 RefLevelMinMaxRSL - Reference signal level determination
4 OutlierFilterMinMaxRSL - Remove outliers
5 CorrectMinMaxRSL - Correction of received signal powers

6 RainRetrievalMinMaxRSL MinMaxRSLToMeanR
Compute mean path-averaged rainfall intensities
Convert minimum and maximum to mean
rainfall intensities

7 Interpolation
IntpPathToPoint
OrdinaryKriging

Interpolate path-averaged rainfall intensities
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2.2.1. Reference signal level
The next subsections describe how to determine the path-averaged rainfall intensities. First, the reference
signal level must be determined, because the attenuation is the difference between the reference signal level
and the received signal level:

PC
min =

{
Pmin if wet AND Pmin < Pref

Pref if dry OR Pmin ≥ Pref
(2.2)

PC
max =

{
Pmax if PC

min < Pref AND Pmax < Pref

Pref if PC
min = Pref OR Pmax ≥ Pref

(2.3)

where PC
min is the corrected minimum signal power (dB), PC

max is the corrected maximum signal power (dB)
and Pref is the reference signal level (dB).

2.2.2. Correction received signal powers
With the reference signal level, the corrected minimum and maximum attenuations are calculated:

Amin = Pref −PC
max

Amax = Pref −PC
min

(2.4)

where Ami n (dB) is the minimum rain-induced attenuation, Amax (dB) is the maximum rain-induced atten-
uation. The corrected minimum and maximum attenuations are used to calculate the minimum and maxi-
mum path-averaged rainfall intensities:

〈Rmin〉 = a

(
Amin − Aa

L
H (Amin − Aa)

)b

(2.5)

〈Rmax〉 = a

(
Amax − Aa

L
H (Amax − Aa)

)b

(2.6)

where Rmax and Rmin are the maximum and minimum path-averaged rainfall intensities, Aa (dB) is the wet
antenna attenuation, L is the link path length and H is the Heaviside-function where H = 0 if the argument
of H is less than zero, else H = 1.

2.2.3. Mean path-averaged rainfall intensity
With the minimum and maximum path-averaged rainfall intensities, the 15-minute mean path-averaged
rainfall intensity is computed:

〈R〉 =α〈Rmax〉+ (1−α)〈Rmin〉 (2.7)

where R is the mean path-averaged rainfall intensity and α is the coefficient that determines the contribu-
tions of the minimum and maximum path-averaged rainfall intensities.

2.3. Errors with CML rainfall estimation
Various studies have investigated the main sources of error that can occur with estimating rainfall intensities
using CMLs (Berne & Uijlenhoet, 2007; Leijnse et al., 2008; Rios Gaona et al., 2015; van Leth et al., 2018).
Three important sources of error with CML rainfall estimates are signal fluctuations not related to rainfall,
wet antenna attenuation, and sampling strategy of the CMLs. There are other uncertainties that one can
think of with estimating rainfall with CMLs. For example, one can think of the errors and uncertainties of the
R −k power-law relation with coefficient a and exponent b. However, it has been shown that these errors are
not dominant (Leijnse et al., 2008).

2.3.1. Wet and dry classification
Signal attenuation not only happens due to raindrops but also because of other causes unrelated to rainfall.
One important cause of this type of error is dew formation on the antenna (Overeem et al., 2016b). Another
cause for attenuation that all stations experience is atmospheric absorption. This depends on the factors of
temperature, humidity, and air pressure (Upton et al., 2005). The error that follows from these causes is solved
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by using a wet and dry classification before the calculation of the rainfall estimation.

There are two main approaches to classifying wet and dry periods. The first approach is called the link ap-
proach. The link approach is based on the reasoning that rainfall is correlated in space. The basic principles
are based on the assumption that whenever it rains, all links within a certain area will experience rain-induced
signal attenuation simultaneously. In RAINLINK a radius is chosen based on the spatial correlation of rainfall
to. A link is selected and all links that are within the chosen radius with both endpoints of the selected link are
selected as well. For each link, the attenuation and the specific attenuation are calculated. The mean values
of the attenuations are calculated and with these values, each time interval is selected as either wet or dry.
This is done by giving wet and dry specific thresholds of attenuation.

The second approach is called the radar approach. Radar data is used to identify if the conditions are wet
or dry. This approach is only applicable if radar data is available in the studied area. It returns a classification
of wet and dry periods for all the links that have at least three surrounding links selected within the chosen
distance (Overeem et al., 2011).

2.3.2. Wet antenna
Wet antennas during rainfall can cause extra attenuation. During rainfall, a water film can be formed on
the material of the antennas, which causes extra attenuation (Leijnse et al., 2008). The extra attenuation
causes overestimation of the rainfall intensity and is referred to as the wet antenna attenuation (Aa). The
study of Leijnse et al. (2008) showed that there is a significant wet antenna attenuation for all frequencies and
its magnitude is dependent on the frequency. Correcting for the wet antenna attenuation is implemented in
RAINLINK with a constant value (see Equations 2.5 and 2.6) of 2.3 dB. This value was estimated in the Nether-
lands for a 12-day calibration period (Overeem et al., 2013).

Multiple other studies have calculated the wet antenna attenuation for their study area. Minda and Naka-
mura (2005) calculated the wet antenna attenuation for one link with a frequency of 50-GHz and a path length
of 0.82 km for 4 years in Japan. This resulted in a constant value for the wet antenna attenuation of 2.3 dB. In
the study of Leijnse et al. (2007), a 27-GHz CML was used in the Netherlands with a path length of 5 km. The
optimal value of Aa was 3.32 dB for a calibration period of 2 months (28 May 1999 - 23 July 1999).

In Overeem et al. (2011) the difference between radar and CML estimations is calculated for a range of values
of Aa and α. The residual standard deviation and mean bias for combinations of Aa and α are calculated for
low- and high-frequency classes (13-33 GHz and 38-39 GHz respectively). According to this study, both the
low- and high-frequency classes have an optimal value for Aa of 1.30 dB for a 17-day dataset from 2009. In
Pastorek et al. (2021) CMLs of 25-39 GHz frequencies and path lengths between 0.8 and 5.8 km were used to
determine the wet antenna attenuation. The calibrated wet antenna attenuation was 3 dB from a dataset of 2
years (July 2014 - October 2016).

2.3.3. Sampling strategy
Signal powers are for example measured once every 15 minutes. The temporal variability of rainfall in 15
minutes can be large and this can cause errors. The temporal resolution is limited to how often the signal is
measured and documented. Another cause of the error is that the MNOs record the received signal levels to
the nearest 1 dB, or at best to the nearest 0.1 dB. which is causing rounding errors. When the path-integrated
attenuation is smallest (usually with short links and with low frequencies) errors will be even larger, because
the effect of rounding is also larger (Leijnse et al., 2008).

Also, the rainfall intensities calculated are path-averaged. This means that for each link the average rain-
fall intensity over the path length is calculated. The main uncertainty here is that the rainfall intensity most
of the time is not the same over the entire path length.

Some datasets (including the dataset of Sri Lanka) contain only minimum and maximum received powers.
The functions of RAINLINK apply to CML datasets that include minimum and maximum received power
(Pmin and Pmax). The purpose of RAINLINK is to obtain in the end mean path-averaged rainfall intensities.
Equation 2.7 showed that RAINLINK assumes that the mean path-averaged rainfall intensity can be calcu-
lated from a combination of Rmin and Rmax, where α gives determines their contributions. Rmin is dominant
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if α is closer to 0 and Rmax is dominant if α is close to 1.

In two studies performed in the Netherlands an optimal value of α is chosen. In Overeem et al. (2011) the
optimal value for α is found to be 0.334 for low-frequencies and 0.244 for high-frequencies. In Overeem et
al. (2013) an optimal value for α of 0.33 is estimated, which is used by RAINLINK. In the algorithm of RAIN-
LINK a single value for both parameters is chosen, and not for a value based on the frequency (as was done
in Overeem et al. (2011)).
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3
Nowcasting

3.1. Introduction nowcasting
Figure 3.1 shows a sketch of the relation between the lead time of the forecast and the skill for multiple fore-
casting methods. The lead time of a forecast is the time between the calculation of the forecast and the occur-
rence of the forecasting event. More recent studies still show similar results, but due to improvements in the
Numerical Weather Prediction (NWP) models, the useful range of extrapolation-based forecasts is reduced to
a few hours (Pierce et al., 2012).

Figure 3.1: A sketch of the relation between the quality and the lead time of forecasts of two methods: now-
casting (extrapolation of observations) and Numerical Weather Predictions (NWP) (Browning, 1980).

For longer lead times, NWP models are used. These are physics-based models. The NWP models describe the
most essential physical processes in the atmosphere and use them to predict the weather. The performance
of NWP models with longer lead times is generally good. However, for shorter lead times, the NWP models do
not provide sufficient forecast skills. One of the causes is that the computational limitations of NWP models
only provide lead times of more than an hour. Next to this, the QPFs of NWP models exhibit relatively low
accuracy in rainfall location, which makes them less suitable for the prediction of local rainfall (Pierce et al.,
2012).

Nowcasting is the process of statistically extrapolating recent rainfall observations with lead times up to 6
hours (Pierce et al., 2012). It is shown that in particular for very short-term forecasting (0-3 hours ahead) the
extrapolation-based forecasts (nowcasts) outperform these NWP models (Berenguer et al., 2012; Simonin et
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al., 2017). Therefore, for short lead times, it is important to investigate the possibilities of nowcasting.

The first concept of rainfall forecasting with the method of extrapolating radar estimations is from the 1950s
with the first proposal by Ligda (1951) and the early 1960s with the first application by Hilst and Russo (1960).
From the first concepts of nowcasting, an important conclusion was already drawn. They found a correla-
tion between the size of the precipitation features and predictability. Larger features live longer than smaller
features (Pierce et al., 2012).

3.2. Deterministic nowcasting
Over time, several deterministic techniques and algorithms for precipitation nowcasting have been devel-
oped. The first group of techniques is called cell tracking algorithms. With an estimation of the advection
velocity, a nowcast can be made (Pierce et al., 2012). An example of a cell tracking algorithm is TITAN (Dixon
& Wiener, 1993). Cell tracking algorithms like TITAN are mainly used for thunderstorms and areas with severe
convective weather conditions.

Next to cell tracking algorithms, there is another group of nowcasting techniques, namely field tracking algo-
rithms. The difference between cell tracking and field tracking is that in cell tracking a spatially constant ve-
locity is chosen while in the field tracking spatial and temporal changes in speed and direction are also taken
into account (Pierce et al., 2012). According to a study of Germann and Zawadzki (2002), a semi-Lagrangian
advection method is optimal.

Spectral Prognosis (S-PROG) is an example of a deterministic nowcasting model that is based on the con-
clusion from earlier studies that large features in a rain field evolve more slowly than small features (Seed,
2003). S-PROG consists of three main components:

1. The estimation of the field advection

2. The decomposition of the field into Fourier components and

3. An auto-regressive model for the scale-dependent Lagrangian evolution of the field

3.3. Probabilistic nowcasting
With probabilistic nowcasting, the uncertainties in the rainfall nowcast can be characterized by making en-
sembles (a set of forecasts). The nowcast can be displayed as the probability the rainfall intensity will exceed
a certain threshold.

An example of a method for short-term ensemble rainfall nowcasts is Short-Term Ensemble Prediction Sys-
tem (STEPS) (Bowler et al., 2006). STEPS produces a defined number of ensemble members. The forecast
cascade with a forecast rainfall pattern is calculated with the S-PROG scheme. In STEPS, each ensemble
member has a different random cascade. The advection uncertainty is described by a field of velocities that
contains a random component. With this method, each ensemble member represents a prediction to be ob-
tained equally likely as the other ensemble members. The different ensemble members are obtained with
different noise fields. With the ensemble members, uncertainties of the forecast are taken into account by
adding spatially and temporally correlated noise (Bowler et al., 2006).

Next to STEPS, other probabilistic nowcast algorithms are the String of Beads Model for Nowcasting (SBM-
cast) (Berenguer et al., 2011) and the McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrap-
olation (MAPLE) (Turner et al., 2004). The uncertainties in rainfall nowcast obtained by these probabilistic
nowcast algorithms can also be used for the uncertainty in for example the discharge forecast (Heuvelink et
al., 2020).

3.4. Uncertainties in nowcasting
Uncertainties in nowcasting are always present and these uncertainties can be categorized into two main
sources: errors in input data of the nowcasts (i.e. the QPE) and model uncertainty. The uncertainty of quan-
titative precipitation estimations includes the spatial and temporal sampling errors of the measurements for
the QPE. Also, the algorithm that transforms the signal into rainfall estimations is the main error source. A
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more detailed explanation of errors and systematic biases in the rainfall amount related to QPE specifically
obtained by CMLs can be found in Section 2.3.

The uncertainty of the model includes an assumption that is made by using persistence with the state of
the atmosphere. But also the incorrect calculation of the field of motion, change in the motion, and change
in the evolution of the precipitation fields can be present (Pierce et al., 2012; Foresti et al., 2019). Nowcasts
are not based on physics and therefore it is expected that uncertainty increases with increasing lead times.
The lead time for which a nowcast is still skillful is different for each nowcast, depending on the different
uncertainties. It is difficult to distinguish the uncertainties between the error in the QPE and the error in the
model itself (Germann et al., 2006).

3.5. Pysteps
The focus of Pysteps is on probabilistic nowcasting, but also deterministic nowcasting is an option. Pysteps
allow for setups with different methods (the framework is modular). Pysteps is built based on the algorithms
S-PROG and STEPS. Table 3.1 lists the 11 modules present in the Pysteps library, which all have different tasks.

Some of the modules have multiple methods that the user can choose from. The motion module (Table
3.1) consists of a couple of methods: a local Lucas-Kanade method (Lucas & Kanade, 1981), Variational Echo
Tracking (VET) (Laroche & Zawadzki, 1994) and the Dynamic and Adaptive Radar Tracking of Storms (DARTS)
algorithm (Ruzanski & Chandrasekar, 2012). Pulkkinen et al. (2019) showed that the three methods have al-
most no differences in terms of accuracy if only taking the precipitation field into account. Outside the pre-
cipitation fields, DARTS performs less compared to the other two methods. Furthermore, the computational
requirements of VET are larger compared to Lucas-Kanade and DARTS.

The extrapolation module has the implementation of the semi-Lagrangian method (Germann & Zawadzki,
2002). This module also contains the Eulerian Persistence. The time-series module contains methods related
to Auto-regressive (AR) models and correlation methods. The nowcasting module consists of the following
methods: A simple advection-based extrapolation, Lagrangian INtegro-Difference equation model with Au-
toregression (LINDA), Lagrangian Probability, S-PROG, STEPS, and a localized form of STEPS called Short-
Space Ensemble Prediction System (SSEPS) (Pulkkinen et al., 2019).

Apart from making the actual nowcast ensemble, Pysteps also contains a module for making statistical verifi-
cation results. This contains forecast evaluation and skill scores for deterministic and probabilistic nowcasts.

Table 3.1: List of the Pysteps modules (Pulkkinen et al., 2019).

Module Description
io Reading radar composites and writing nowcast files
motion Optical flow methods for motion field computation
extrapolation Advection-based extrapolation
timeseries Time series methods (e.g., AR models)
noise Generation of stochastic noise to perturb precipitation and motion fields
cascade Scale-based decomposition of precipitation fields
nowcasts Implementation of nowcasting methods
postprocessing Statistical post-processing of nowcasts
verification Statistical verification of nowcasts and plotting the results
visualization Plotting of precipitation and advection fields
utils Miscellaneous utility functions
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4
Study area and data

4.1. Study area
Sri Lanka is an island located in the Indian Ocean at the southeast tip of India with a landmass of 65,610 km2.
The capital of Sri Lanka is Colombo, with a population of 2.5 million inhabitants. The total population of Sri
Lanka is 22.1 million inhabitants in 2021 (Department of Census and Statistics of Sri Lanka, 2021). Figure 4.1a
shows the elevation map of Sri Lanka (NASA, 2013). The largest part of the island consists of plains up to 200
meters above sea level. The south-central part has mountains with peaks of 2,500 meters above sea level.

The location of Sri Lanka is in the tropical zone of the world, which gives little variation in temperature. The
main variation in climate is the difference in the locations where rainfall events occur more often. Figure 4.1b
shows the main climate zones in Sri Lanka (Harischandra et al., 2016; Sri Lanka Department of Meteorology,
2021). The climate in Sri Lanka is mainly influenced by the monsoon system in the Indian Ocean (Burt &
Weerasinghe, 2014): Southwest Monsoon (SWM) from May to September and the Northeast Monsoon (NEM)
from December to February. The annual rainfall varies from less than 900 mm in the Southeastern and North-
western parts of the island to over 5,000 mm on the Western slopes of the mountains (Sri Lanka Department
of Meteorology, 2021).

(a) Elevation (NASA, 2013) (b) Climate zones (Harischandra et al., 2016)

Figure 4.1: Elevation and climate zones maps of Sri Lanka
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4.2. Rain gauge data
From the Sri Lanka Department of Meteorology data from 11 hourly and 12 daily rain gauges have been ob-
tained. Figure 4.2a shows the locations of the gauge stations from the Sri Lanka Department of Meteorology
that are used in this study. Other sections will explain why only these 8 hourly and 4 daily stations are used.
The studied period is from September 12 to December 31, 2019.

Daily rainfall estimations from the rain gauges were using 3-hour rainfall depths. These were measured man-
ually. These rainfall depths of 3 hours were accumulated to produce daily rainfall depths. The daily rainfall
depths are given from 8:30 local time to 8:30 local time the next day. The measurements are obtained by
emptying the gauge. Hourly rainfall depths were extracted from mechanical self-recording instruments (plu-
viographs). Hourly values start at the beginning of each hour (8:00, 9:00, etc).

4.2.1. Uncertainties of rain gauge measurements
Measuring the rainfall by emptying the gauge could be the cause of a measurement error. Another source of
error from both daily and hourly gauge rainfall observations could be because of malfunctioning due to dirt
(Sri Lanka Department of Meteorology, 2021).

For hourly rain gauges, the instrument needs to be manually read. Therefore, there is a chance of reading
errors. The availability of hourly gauge data is lower compared to the daily gauge data due to mechanical
problems and human errors (Overeem et al., 2021). For some days the hourly data values do not add up to
the observed daily value. This can be explained by the errors of either the daily or hourly data observations.

(a) Rain gauges (b) Commercial Microwave Links

Figure 4.2: Locations of (a) the daily and hourly rain gauges and (b) the Commercial Microwave Links used
in this study in Sri Lanka

The spatial differences between the rain gauge location and some of the CML locations could result in a
difference in the timing of the rainfall event. If hourly values of rainfall intensities would be used to compare
the rain gauges with the CML estimation, the differences could be very large due to this effect. If daily values
are used, this effect would be much smaller, because the summation of all the rainfall intensities of that day
is added. Therefore, daily rain gauge data is used to compare with the CML estimations and to calibrate the
parameters Aa and α.
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Hourly rain gauge data is used to compare the rainfall intensities of the rain gauges with the results of the
nowcasts. Table 4.1 gives the data availability of hourly values for the 11 hourly stations. Some rain gauges
have days or even weeks without hourly rainfall depths. To ensure that an hourly rain gauge can be used
for comparison with the nowcast, a benchmark of 95% is added. Therefore, only the rain gauges with more
than 95% data availability (8 of the 11 stations) for hourly rainfall depths are used: Anuradhapura, Batticaloa,
Colombo, Jaffna, Katunayake, Polonnaruwa, Puttalam, and Rathmalana.

Table 4.1: Data availability of hourly rain gauges in Sri Lanka (from highest to lowest).

Rain Gauge Longitude (◦E) Latitude (◦N) Number of hours without data Availability [%]
Colombo 79.87 6.90 14 99.7
Anuradhapura 80.38 8.35 25 99.4
Puttalam 79.83 8.03 46 98.9
Katunayake 79.88 7.17 50 98.8
Polonnaruwa 81.05 7.87 50 98.8
Jaffna 80.03 9.68 85 97.9
Batticaloa 81.7 7.72 104 97.4
Rathmalana 79.88 6.82 216 94.6
Kurunegala 80.37 7.47 840 79.1
Mahailluppalama 80.47 8.12 855 78.8
Trincomalee 81.25 8.58 2262 43.8

4.3. Commercial Microwave Link data
The CML dataset with a total of 2560 unique links is received from the provider Dialog Sri Lanka. The dataset
includes the following parameters: the frequency (GHz), minimum and maximum received signal levels (dB),
the coordinates of begin and end of the link path, the link path length (km), and a unique ID for every link.
The period of the dataset is from September 12 to December 31 in 2019 with an interval of 15 minutes.

Two days are missing in the CML dataset, October 3 and 4 in 2019. The period of the dataset must be adjusted
to make a fair comparison between the rain gauge data and the link data. For daily comparison, both results
are not taken into account from October 2 at 8:30 to October 5 at 8:15 local time in Sri Lanka (UTC+5:30). This
removes a total of three days from the period. The last time interval in the dataset is December 31 at 23:45,
2019 local time in Sri Lanka (UTC+5:30). Because December 31 can not make a full 24-hour period (which
would be until 8:15), this day is also not taken into account.

Figure 4.2b shows the locations of the link paths of the links from the dataset. Most links are located in,
or close to cities. Figure 4.3 gives the frequency (GHz) and the link path length (km) of all the links in the
dataset. Lower frequencies are less affected by attenuation. This is also why longer link paths often have
lower frequencies. Longer link paths will have more attenuation due to the length of their path. In urban
areas, more bandwidth is needed and therefore higher frequencies are required. The tropical climate in Sri
Lanka causes significant attenuation by rainfall. Therefore, lower frequencies are more often used (compared
to for example the Netherlands).

19



4.4. Satellite data 4. Study area and data

Figure 4.3: Frequencies and path lengths of all the available links received from Dialog Sri Lanka

4.4. Satellite data
Satellite data is used to be able to compare rainfall estimations of the satellite with the nowcasting results. For
the satellite product, the Global Precipitation Measurement (GPM) combined precipitation product (GPM
Combined Radar-Radiometer Precipitation Algorithm, version V06A) is used (Olson & Masunaga, 2018). A
wide range of types of variables is included. In this study, the ‘surfPrecipTotRate’ is used. This rainfall inten-
sity is provided in mm/hr.

The product contains two large datasets: Normal Swath (NS) and Matched Swath (MS). NS only used the Ku-
band in comparison with MS which used a combination of Ku- and Ka-band. Ku-band is the lower frequency
band (13.6 GHz), but this gives a wider swath. Ka-band is a higher frequency band (35.5 GHz) but results in
a less wide swath. This study includes the NS because the swath is higher and therefore more events can be
used for spatial comparison (Olson & Masunaga, 2018). Table 4.2 gives the date and time of these events. The
scan time included is the local time in Sri Lanka (UTC+5:30). A total of 10 events from the period are included
in this study.

Table 4.2: Rainfall events captured by satellite (GPM) data in the period from September 12 to December 31,
2019.

Event Date (DD-MM-YYYY) Local time (UTC+5:30)
1 28-09-2019 21:36
2 6-10-2019 19:20
3 9-10-2019 18:17
4 17-10-2019 16:05
5 28-10-2019 12:51
6 16-11-2019 18:51
7 24-11-2019 05:05
8 27-11-2019 15:32
9 5-12-2019 13:16
10 20-12-2019 21:22
11 31-12-2019 18:09
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5
Methods

This chapter provides an overview of all the methods used in this study. First, the calibration of parameters
in RAINLINK is explained in section 5.1. Next, the method for building a nowcast with Pysteps is described in
Section 5.2. In Section 5.3 the verification methods used for the nowcasts are explained. Lastly, the method
of the comparison with the rain gauges is given in Section 5.4.

5.1. Calibration of the parameters Aa and α
The default parameters in RAINLINK are optimized based on a study performed in the Netherlands (Overeem
et al., 2013). Table 5.1 lists all the default parameters. Optimizing the parameters for the links in Sri Lanka
could improve the rainfall estimation. This section describes how the parameters Aa and α of RAINLINK are
calibrated, based on the CML and daily rain gauge datasets of Sri Lanka. In RAINLINK both parameters have
a fixed value: 2.3 dB for Aa and 0.33 for coefficientα. This thesis also uses a fixed value for both parameters to
compare the results with the default parameters. Section 2.2.1 showed that rainfall intensity can be calculated
with Equations 2.5, 2.6 and 2.7. In the rainfall retrieval step of RAINLINK 4 parameters are needed for input:
a, b, Aa and α. Parameters a and b are dependent on the frequency (Figure 2.2). The other two important
parameters, the wet antenna attenuation Aa and coefficient α, are fixed parameters in RAINLINK.

The wet antenna attenuation Aa (dB) from Equations 2.5 and 2.6 is a correction for the bias resulting from
a wet antenna. Coefficient α is used in Equation 2.7. This parameter is a fraction that is used to calculate
the mean path-averaged rainfall intensity. The fraction is how much of the minimum and maximum path-
averaged rainfall (Rmin and Rmax) are used. Both parameters influence the size of the rainfall intensity sig-
nificantly. However, these two parameters are dependent on rainfall intensity, time variability, wet antennas,
and other factors. It is hypothesized that the rainfall estimations in Sri Lanka could significantly improve if
the parameters Aa and α are calibrated for an area with different climate and conditions.

5.1.1. Selection of rain gauges and CMLs
The calibration of the parameters is the comparison between the daily values of the rain gauges and the sum
of all the 15-minute rainfall estimations of the CMLs of the day. For the calibration of the parameters, rain
gauges have to be selected. Not all of the available rain gauges are used for the calibration because not all
rain gauges have enough links near the location of the rain gauge. This is relevant because a large distance
between the rain gauge location and the link will result in a difference in the timing and intensity of the rain-
fall event.

Only links within a 10 km radius are selected. Outside the 10 km, larger uncertainties are present when the
rainfall estimations of the links are compared with the rain gauge data. If for calibration less than 15 links
would be used, there is a larger possibility of having a biased outcome of parameters. Intermediate results
showed that for some estimations a minimum of 15 links was needed (for some less). Other values could be
chosen for the 10 km radius and the minimum of 15 links. However, for simplification and to have an as equal
comparison as possible, the decision is made that for every rain gauge at least 15 links are selected.
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Table 5.1: Variables in RAINLINK (Overeem et al., 2016a)

Variable description: Symbol and unit Value Dependent on:
Wet-dry classification
Radius r (km) 15 Spatial correlation of rainfall
Minimum number of available
(surrounding) links

3

Number of previous hours over which
max(Pmi n) is to be computed

24

Minimum number of hours
needed to compute max(Pmi n)

6

Threshold median(∆PL) (dB km−1) -0.7 Spatial correlation of rainfall
Threshold median(∆P ) (dB) -1.4 Spatial correlation of rainfall
Threshold (step 8 in Appendix C in AMT paper) - (dB) 2
Reference signal level
Period over which reference level is
to be determined

- (h) 24

Minimum number of hours that should
be dry in preceding period

- (h) 2.5

Outlier filter
Outlier filter threshold Ft (dB km−1 h) -32.5 Malfunctioning of links
Rainfall retrieval

Wet antenna attenuation Aa (dB) 2.3
Rainfall intensity, number of wet
antennas, antenna cover

Coefficient α 0.33 Time variability of rainfall
Coefficient of R-k power law a (mm h−1dB−bkmb) 3.4-25.0 Drop size distribution, frequency
Exponent of R-k power law b (-) 0.81-1.06 Drop size distribution, frequency

The rain gauges that are selected are those gauge stations that could meet the condition that a minimum
of 15 Commercial Microwave Links must be located within a radius of 10 km around the location of the rain
gauge. A CML is in this radius if the middle of the link path is within this 10 km. The radius that is selected is
the smallest radius that contains at least 15 unique links in the area. Table 5.2 shows the rain gauges that have
at least 15 links in their area within a 10 km radius. It also shows the number of unique links for every radius
between 1 and 10 km that is available for each rain gauge. The chosen number of links for each rain gauge is
highlighted.

The names of the selected rain gauges are Anuradhapura, Batticaloa, Colombo, Jaffna, Katunayake, Kurune-
gala, Mahailluppalama, Mannar, Polonnaruwa, Puttalam, Rathmalana, and Trincomalee. For example, Colombo
has 23 links available within a 1 km radius of the rain gauge location. These 23 links are selected in the sub-
set of the links and used for local calibration in Colombo (Figure 5.1a) Also, the location of the rain gauge
Colombo in Sri Lanka is given in Figure 5.1b.

Table 5.2: Selected rain gauges for calibration in Sri Lanka. It shows the number of unique links for every
radius at the location of each rain gauge. In yellow, the selected number of links is highlighted.

Radius (km) Anur Batt Colo Jaff Katu Kuru Maha Mann Polo Putt Rath Trin
1 0 6 23 6 2 4 0 0 0 0 4 0
2 1 8 68 12 6 6 0 2 0 1 13 3
3 1 18 128 24 12 10 2 9 0 3 31 10
4 5 20 183 34 19 14 2 9 4 5 42 10
5 16 22 241 34 36 22 6 9 8 7 74 24
6 21 25 330 38 48 30 8 9 10 7 78 30
7 26 29 365 45 64 30 10 15 10 15 107 30
8 28 29 403 47 79 42 10 15 14 17 128 30
9 29 32 430 53 93 47 14 21 14 17 170 32
10 29 33 464 61 105 57 16 23 22 19 200 34
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(a) Links Colombo (Radius = 1km) (b) Links Sri Lanka

Figure 5.1: Links of Colombo (Radius = 1km) and location of rain gauge Colombo.

5.1.2. Calibration and validation period
For calibration of the parameters Aa and α, 50% of the 3.5 months of the dataset is used. The other 50% is
used for validation. The calibration period is 55 days long and runs from September 12 2019 at 8:30 am until
November 6 2019 at 8:30 am. There are three missing days for which the rainfall estimation is excluded from
the period: October 2, 3, and 4 of 2019. The validation period is also 55 days and this period is from November
6, 2019, at 8:30 am to December 31, 2019, at 8:30 am. Figure 5.2 illustrates the daily rainfall intensities of both
periods for all selected rain gauges. The total rainfall for each rain gauge of the calibration and validation
period is given in Table 5.3. The table also contains the number of days without rainfall for both periods for
every rain gauge. Days without rain are included in the calibration and validation. It shows that more days
without rain are included in the validation period compared to the calibration period. Also, for most rain
gauges the total rainfall of the validation period is less compared to the calibration period.

Figure 5.2: Daily rainfall values for calibration and validation period. Red line indicates the average rainfall
intensity from the 12 rain gauges and the blue dots give the rainfall intensities for every selected rain gauge.
Zero rainfall values have been included.
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Table 5.3: Total rainfall and number of days without rain for the calibration (12 September - 6 November
2019) and validation period (7 November - 31 December 2019). Zero values are included in the calibration.

Rain Gauges Calibration Validation Calibration Validation
Total rainfall [mm] Number of days without rain [-]

Anuradhapura 338 641 20 17
Batticaloa 619 1030 24 17
Colombo 925 611 8 23
Jaffna 676 459 18 18
Katunayake 959 395 7 28
Kurunegala 590 477 8 31
Mahailluppalama 710 593 17 21
Mannar 622 329 21 27
Polonnaruwa 442 905 24 15
Puttalam 895 442 14 27
Ratmalana 1083 580 9 18
Trincomalee 348 862 25 18

5.1.3. Calibration with statistical values
For every rain gauge, the first five steps from RAINLINK are followed once (these steps are discussed in Chap-
ter 2) with the calibration subset. From these steps, the corrected received signal powers are calculated. These
values are the same for every value of parameters Aa and α.

The calibration of parameters Aa and α use a range of values for both parameters. The wet antenna attenu-
ation Aa is taken to range between 0 and 5.0 dB with steps of 0.5 dB. Coefficient α is taken to range between
0 and 1 with steps of 0.05. With step 6 of RAINLINK, the rainfall intensities are calculated. This step uses
the wet antenna attenuation Aa and coefficient α. For every combination of the two parameters, the rainfall
estimations are calculated every 15 minutes of the calibration period. These rainfall estimations for every 15
minutes are transformed into daily rainfall estimations from the links. These daily rainfall estimations are
compared with the daily rainfall intensities from the rain gauges.

To assess which combination of parameter values is optimal two statistical values are calculated. The rain-
fall estimations are compared with the observations of the selected rain gauge. The Nash-Sutcliffe efficiency
(NSE) is computed:

NSE = 1−
∑N

i=1

(
Qm,i −Qo,i

)2

∑N
i=1

(
Qo,i −Qo,i

)2 (5.1)

where are Qm (mmh−1) the rainfall estimations from RAINLINK and Qo (mmh−1) the rainfall observations of
the selected rain gauge.

When NSE = 1, it is a perfect fit between the rainfall estimations and the rain gauge. With NSE = 0 the rainfall
estimations will give an equally good fit as the mean of the rain gauge observations.

For each combination of the two parameters the NSE value is calculated from the calibration period. The
optimal combinations of the two parameters are the parameters that give the highest NSE value. For each
rain gauge, one combination of parameters gives the highest NSE value and is chosen for the links close to
that rain gauge. The optimal value of parameter Aa will have an accuracy of 0.5 dB and an accuracy of 0.05
for parameter α.

Next to the NSE, also the relative bias is computed:

Relative Bias = (Qm −Q0)

Q0

×100% (5.2)
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The relative bias is chosen to give insight into systematic errors that could be shown in the results. The rela-
tive bias will not be the decisive factor in determining the optimal parameters. It will help gain more insight
into the performance of the rainfall estimations of all the different parameter combinations in comparison
with the rain gauge data.

5.1.4. Rainfall mapping
After the calibration of the two parameters Aa and α for the links surrounding each rain gauge, the rainfall
intensities can be calculated for all links. The two parameters Aa and α are used in step 6 of the RAINLINK
algorithm as mentioned before. For each link, a fixed set from one of the 12 rain gauges needs to be selected.
Thiessen polygons, polygons that represent the area of a point (rain gauge) where any location within that
zone is closest to that point (rain gauge), are constructed around the 12 rain gauge locations. If the location
of the middle of a link is within the polygon, those fixed values of Aa and α are assigned to that link. Once
this is done for all the links, the rainfall intensity R (mm/hr) for all links at all time steps is calculated.

Using the calculated rainfall intensity for all links interpolated rainfall maps are constructed. RAINLINK uses
the rainfall intensities from step 6 and interpolates with Ordinary Kriging in step 7. The result is interpolated
rainfall estimations on the grid of Sri Lanka for every 15 minutes of the data period.

5.2. Build a nowcast with Pysteps
5.2.1. Selection of rainfall events
A total of 20 rainfall events are selected to assess the accuracy of the nowcasts. At least 4 hours are necessary
for comparison with nowcasts of rainfall events of 3 hours with Pysteps. For the algorithm, three time steps
with observations before the first time step of the rainfall event are used to nowcast. Next to this, the selected
rainfall events have a wide spread of rainfall and/or high-intensity rainfall during the rainfall event. To check
if the nowcasts have accurate results with higher intensity thresholds, the rainfall events that are analyzed
should contain at least some high-intensity rainfall. To calculate the accuracy of the nowcast in different
spatial scales, it is important to have multiple events with large spatial scales.

Table 5.4: The 20 selected rainfall events to nowcast, with the start and end of each event and the maximum
rainfall intensity from the CML rainfall estimations in mm/hr.

Rainfall event Date event Start event End event Max. rainfall intensity [mm/hr]
1 23-9-2019 14:00 17:00 102
2 29-9-2019 20:00 23:00 74
3 30-9-2019 18:00 21:00 87
4 01-10-2019 17:00 20:00 131
5 06-10-2019 15:00 18:00 123
6 12-10-2019 17:00 20:00 138
7 13-10-2019 17:00 20:00 157
8 15-10-2019 15:00 18:00 162
9 16-10-2019 15:00 18:00 130
10 17-10-2019 17:00 20:00 141
11 27-10-2019 21:00 00:00 85
12 16-11-2019 17:00 20:00 123
13 28-11-2019 15:00 18:00 102
14 29-11-2019 21:00 00:00 92
15 30-11-2019 17:00 20:00 104
16 01-12-2019 18:00 21:00 100
17 03-12-2019 16:00 19:00 137
18 04-12-2019 14:00 17:00 141
19 05-12-2019 01:00 04:00 132
20 10-12-2019 11:00 14:00 59
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The period of the data available for this study is between September 13 and December 31, 2019. One of the
rainfall events in this period is from November 30 to December 11 in 2019. Due to this rainfall event, over
150,000 people were affected (Disaster Management Centre Sri Lanka, 2019). The start of this rainfall event,
on November 30, will be used as an example for the nowcasting of the rainfall. Table 5.4 shows the 20 selected
rainfall events that are used for the calculations of the nowcasts.

5.2.2. Setup of nowcasts
To build a nowcast in Python with Pysteps some essential settings need to be determined. These settings can
be categorized into verification settings, forecast settings, the experiment set-up, and conditional parame-
ters. The last step is the set-up of the nowcast and the output. A workflow scheme of a nowcast using Pysteps
is illustrated in Figure 5.3 (Pulkkinen et al., 2019).

To nowcast the rainfall in Sri Lanka the open-source library Pysteps (version 1.5.1) is used in the program-
ming language Python. The first step for nowcasting with QPEs received from Commercial Microwave Links
and RAINLINK is to pre-process the data into the correct format. The io module from Pysteps (Table 3.1) has
methods for reading radar-based composites only, so not for CMLs-based composites. Imhoff et al. (2020a)
used CMLs from the Netherlands and calculated with RAINLINK rainfall to implement in Pysteps. They added
an extra importer that allowed (adjusted) CML composites to import into Python to be used for Pysteps. The
same importer is added to the io module in this study. After this, the pre-processed QPEs can be used for
deterministic and probabilistic nowcasting.

The Eulerian Persistance (EP), also called the ‘poor man’ approach to nowcasting, is a method that returns
the same sequence as the observation of the same initial field, and no extrapolation is applied to this method.
In other words, QPF is equal to QPEt−1. This is used as a benchmark to access if Pysteps-D and Pysteps-P are
more skilled compared to EP.

Table 5.5 shows the setup for the deterministic nowcasts, Pysteps-D, made with the S-PROG algorithm. Fur-
thermore, the Lucas-Kanade optical flow method is chosen because the combination of performance and
computational requirements is the best for this method (see also Section 3.5). The semi-Lagrangian advec-
tion method is used in Pysteps as an extrapolation method. S-PROG is also used as a masking method and an
AR model of order 2 is used.

Table 5.5 also gives the setup for the probabilistic nowcast, Pysteps-P. In this nowcast, the STEPS nowcasting
algorithm is used (Bowler et al., 2006). For the masking method in Pysteps-P, a size of 20 ensemble members is
chosen. The recommended ensemble size from Pulkkinen et al. (2019) was more than 24 members. Imhoff et
al. (2020b) suggested that there are only marginal improvements between 24 and 48 members for low rainfall
intensities, and thus 20 ensemble members are sufficient for low rainfall intensities. For high rainfall intensi-
ties improvements in the nowcasts could become visible. But the computational time becomes too long with
50 or 100 ensemble members. Therefore 20 ensemble members are still chosen for this study.

Table 5.5: Setup for deterministic (Pysteps-D) and probabilistic (Pysteps-P) nowcasts made with Pysteps.

Pysteps-D Pysteps-P
Nowcast S-PROG STEPS
Optical flow Lucas-Kanade Lucas-Kanade
Extrapolation semi-Lagrangian semi-Lagrangian
Cascade levels 6 8
Order of the AR(p) model 2 2
Precipitation threshold (mm/hr) 0.1 0.1
Mask method S-PROG incremental
Ensemble size 1 20
Seed number 24 24
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Figure 5.3: Workflow of making precipitation nowcasts with Python (Pulkkinen et al., 2019)

5.3. Verification of the nowcasts
For the assessment of the nowcasting skills, two verification methods are used in this study to assess the
accuracy and skill of the nowcasts: The Fraction Skill Score (FSS) and the Crtical Success Index (CSI). These
verification scores are calculated for EP, Pysteps-D, and Pysteps-P.

5.3.1. Fraction Skill Score
The Fraction Skill Score answers the question from which spatial scale the nowcast is skillful (Roberts & Lean,
2008). The range of FSS is from 0 to 1. A nowcast with an FSS score of zero has no skill and with a score of 1
has a perfect skill. The FSS is given by:

FSS(n) = MSE(n)−MSE(n)ref

MSE(n)perfect−MSE(n)ref
= 1− MSE(n)

MSE(n)ref
(5.3)

where n is the neighborhood length, MSE(n)perfect is equal to zero, because it is for a perfect forecast and
the MSEn is the mean squared error of the fractions. The reference MSE represents the largest mean squared
error possible and is given by:

MSE(n)ref =
1

Nx Ny

[
Nx∑
i=1

Ny∑
j=1

O2
(n)i , j +

Nx∑
i=1

Ny∑
j=1

M 2
(n)i , j

]
(5.4)

where O2
i , j is the observed fraction and M 2

i , j is the forecast fraction for every grid cell that exceeds a given
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threshold of rainfall intensity, and where Nx and Ny are the number of pixels in x and y direction of the field.
A nowcast is skillful if FSS is larger than FSSuniform:

FSSuniform = 0.5+ f0

2
(5.5)

where f0 is the fraction of observed points exceeding the threshold over the domain.

With increasing scale, the skill of the forecast will increase. With FSS the smallest scale of a forecast can
be calculated for which the forecast is still skillful. Or, from a different perspective, the longest lead time for
every nowcast for a certain threshold can be calculated. Whether or not the nowcast is skillful and also useful
depends on the requirements of the scale of the nowcast the model needs to use. The FSS is calculated for
five different thresholds (1,2, 5, 10, 20 mmh−1), for spatial scales from 2 to 100 km, and for three different lead
times (15, 30, 45, and 1 hour).

5.3.2. Critical Success Index
The Critical Success Index (Schaefer, 1990) is another way to get insight into the accuracy of the nowcast.
This value is used often for nowcast research and can therefore be compared to other literature. The CSI gives
insight into how well a nowcast corresponds with the observations. The CSI is the number of pixels in the
nowcast that correctly corresponds with the observations above a certain threshold divided by the number of
hits, misses, and false alarms linked to the observation:

C SI = Nhi t s

Nhi t s +Nmi sses +N f al se
(5.6)

The CSI is calculated for three separate intensity thresholds (1, 5, and 10 mm/hr) and averaged over four
lead times (15, 30, 45, and 1 hour) and all 20 rain events. For Pysteps-P the mean of the CSI of the 20 ensem-
ble members is calculated. The CSI is calculated as a single number as well as a number for each of the four
lead times. It is also displayed on the map of Sri Lanka to illustrate any spatial differences in accuracy.

5.4. Comparison with rain gauges
For the comparison of the nowcasts with rain gauges hourly rain gauge data is used. Hourly rain gauges are
selected based on data availability (Table 4.1). For example, suppose a rainfall event is analyzed from 14:00 to
17:00. For every hour the rain gauges have rainfall depths available. For this event a nowcast is made at 13:45
for (14:00-15:00), at 14:45 for (15:00-16:00) and at 15:45 for (16:00-17:00). Each nowcast consists of nowcasts
with 4 different lead times (15, 30, 45, and 1 hour), and these rainfall depths are combined to calculate the
overall prediction of that hour. This rainfall depth is then compared at the location of the rain gauges with
the hourly data of the selected rain gauges. For the 20 rainfall events, the rain gauges are compared with the
nowcasts. All values are combined. The NSE and relative bias are calculated and these values are compared
with the NSE and relative bias of the QPE for the same events.
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6
Results

This chapter presents the results of this thesis. The chapter starts with the calibration of the parameters Aa

and α in Section 6.1. With the calibrated parameters nowcasts are made for 20 rainfall events in Section 6.2.
In Section 6.3 the results of the verification of the nowcasts are presented. A comparison of the nowcasts with
hourly values of the rain gauges is presented in Section 6.4 and with the GPM data in Section 6.5. In Section
6.6 the nowcast performance of Sri Lanka is compared with the Netherlands.

6.1. Calibration parameters Aa and α
This section gives the results of the calibration of the parameters Aa and α. It also provides a comparison
between the results of the default parameters and the optimal parameters. As an example, the result of one
of the rain gauges, Colombo, is given. The results of the calibration of the parameters for all rain gauges are
summarized in Table 6.1.

6.1.1. Optimized parameters for daily values
This section shows the results from optimizing the parameters of the 12 selected daily rain gauges. The pa-
rameters are calibrated by comparing daily rainfall accumulations of the rain gauges with accumulated daily
rainfall totals of the links. The results from the links nearby the rain gauge Colombo are given as an example
of the results of all the rain gauges.

Figure 6.1a shows for every combination of parameters Aa and α the calculated NSE (-) in Colombo. The
red dot indicates the location of the maximum NSE score, which is in this case 0.89 at Aa = 2 and α = 0.25.
The blue dot indicates the NSE value of the default parameters (Aa = 2.3 and α= 0.33) with a score of NSE =
0.86. The black dots indicate the optimal parameters from the calibration of other rain gauges. Results of the
NSE values for all participating rain gauges are illustrated in Appendix A (Figure A.3).

Figure 6.1b shows for every combination of Aa and α the calculated Relative Bias (%) in Colombo. The red
dot indicates the location of the maximum NSE and this combination gives a relative bias of 0.9%. The blue
dot indicates the relative bias of the default parameters (Aa = 2.3 and α= 0.33) with a relative bias of 12.6%.
The relative bias shows the impact of the combination of the two parameters on the over-or underestimation
of the rainfall depths in comparison to the rain gauges.
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(a) NSE (b) Relative Bias

Figure 6.1: Calculated NSE and relative bias for every combination of Aa and α for rain gauge Colombo.
Red dots indicate the value with the maximum NSE and the blue dot indicates the location of the default
parameters.

Parameters Aa and α are chosen at the location of NSE = NSEmax. Table 6.1 lists the optimal parameters for
all the rain gauges. It also gives the radius and number of the selected links and the NSEmax. It shows that
Mahailluppalama and Mannar have much lower maximum NSE values compared to other rain gauges. It
also shows that there is a large variation of the two parameters between the different locations of the selected
links.

Table 6.1: Rain gauges with selected radius (km) and local optimal parameters Aa (dB) (values between 0 and
4.0 dB) and α (-) (values between 0 and 1.0).

Rain Gauge Anur Batt Colo Jaff Katu Kuru Maha Mann Polo Putt Rath Trin
Radius (km) 5 3 1 3 4 5 10 7 10 7 3 5
Number of links 16 18 23 24 19 22 16 15 22 15 31 24
Aa (dB) 1.5 1 2 3 4 4 0 0 0 0 2.5 2.5
α (-) 0.45 0.8 0.25 0.4 0.95 0.7 0.95 0.95 0.45 0.55 0.45 0.65
NSEmax (-) 0.89 0.94 0.89 0.88 0.9 0.84 0.32 0.16 0.78 0.71 0.93 0.67

The selection of the links is different for each rain gauge for a couple of reasons. First, the number of links
was different for each rain gauge. The condition was to have at least 15 links in the radius. For example, in
rain gauge Mannar this resulted in a radius of 7 km with 15 links. For rain gauge Rathmalana, this resulted
in a radius of 3 km with 31 links. The second difference between the rain gauges is that some rain gauges
have links closer to the rain gauge than other rain gauges. The closer the links are to the radius, the more the
certainty is that the rain gauge represents neighboring links well. For rain gauges with links further away, the
uncertainty is higher. A third difference is that the patterns of the link networks are different for every rain
gauge. Figure 6.2 shows the locations of the selected links for the rain gauges Colombo and Mannar. Colombo
has links that have multiple different receiver/transmitter combinations. Mannar, on the other hand, has one
tower where all the signals are transmitted to, or coming from. This makes Mannar very dependent on this
one station for the calibration. If this station has any kind of error, all these links have this error as well and
this will influence the calibration more.

Mannar is the most extreme case where all the links are connected to this one station. However, most of
the rain gauges have similar patterns where part of the links all have the same station. This applies to all rain
gauges except Colombo, Katunayake, Kurunegala, and Rathmalana.
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(a) Colombo (b) Mannar

Figure 6.2: Selected links around the rain gauges Colombo and Mannar

Rain gauges with longer path lengths had lower NSE values compared to the rain gauges with shorter path
lengths. For example, Mannar has an NSE of 0.16. This maximum NSE score was obtained with Aa = 0 dB.
A zero value means that no correction for wet antenna attenuation is added. With an α close to 1 (α = 0.95)
the maximum path averaged rainfall intensities is mostly used to calculate the mean path-averaged rainfall
intensity. Next to this, for rain gauges with large path lengths, all the combinations of the two parameters still
give an underestimation of the rainfall estimation compared to the rain gauges according to the relative bias.

One explanation for the underestimation of the rainfall from RAINLINK could be an error in the calculation
of the wet-dry classification. Wet-dry classification is done with the link approach, where based on a radius
of 15 km the links are selected. This radius of 15 km is chosen because it was assumed that all the links within
this area will experience rain-induced signal attenuation in the same period. It could be that this assumption
is incorrect. A smaller radius might improve the wet-dry classification. Another cause could be the a- and b-
parameters that are only based on the frequency, but as mentioned before have other factors where the val-
ues could defer from those used in this study. A third cause that could be a factor in the difference in rainfall
estimation could be the distance between the rain gauge and (most of) the links.

6.1.2. Comparison default and optimized parameters
The default parameters from RAINLINK are used as a benchmark for calibration. For the hourly values, 8
rain gauges are selected and for the daily values, 12 rain gauges are selected. Figure 6.3 shows the compari-
son of the CML daily rainfall sum with the gauge daily rainfall sum for the default parameters as well as with
the local optimal parameters. The NSE increased from 0.64 to 0.85 and the relative bias was −39.53% for the
default parameters and is 1.63% after optimization. The figure of the default parameters illustrates that the
CML rainfall retrievals often underestimate the rainfall compared to the rainfall depth of the rain gauges. This
is confirmed by the large negative relative bias. In Appendix A a comparison with the results from Overeem
et al. (2021) is made where the default parameters are used for the hourly and daily values for the period of
September 12 to December 31, 2019.

For most of the rain gauges the optimization of the parameters improved the rainfall estimation according
to the rain gauge data. However, for Katunayake the validation with default parameters scored somewhat
better compared to the optimized parameters. However, the differences are quite small (NSE = 0.62 and NSE
= 0.67, respectively). The same applies for Jaffna: NSE = 0.81 (optimal parameters) and NSE = 0.83 (default
parameters). Figure 6.4 shows the verification of hourly CML rainfall estimations for both the default and the
optimized parameters in the full period. The hourly values for the default parameters have an NSE of −0.28
and a relative bias of 22.65%. The figure illustrates that for hourly values there is much more overestimation
of the CMLs in comparison to the rain gauge depth. Also, at some hours, the RAINLINK estimates rainfall
while no rain has fallen according to the rain gauges.
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(a) Default parameters (b) Optimized parameters

Figure 6.3: Daily rainfall depths of rain gauges compared to the CML rainfall estimations at the locations
of the gauges after interpolation of (a) default and (b) optimized parameters in only the validation period
(November 6 to December 31, 2019).

(a) Default parameters (b) Optimized parameters

Figure 6.4: Hourly rainfall depths of rain gauges compared to the CML rainfall estimations at the locations of
the gauges of (a) default and (b) optimized parameters in the calibration and validation period (September
12 to December 31, 2019).

6.1.3. Relation between path length and the parameters Aa and α
Table 6.1 showed from the calibration the different rain gauges have different optimal values. This section
analyses the potential causes for these differences. The selected links include a range of path lengths. As
mentioned in Chapter 2, longer path lengths generally have lower frequencies and lower frequencies gener-
ally are less affected by attenuation. Figure 6.5a shows for each rain gauge the spread of the path length of the
selected neighboring links. Figure 6.5b shows the average link path lengths of neighboring links at the gauge
locations, located at the calibrated two parameters Aa and α.
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It shows that for longer path lengths the wet antenna attenuation Aa is equal to zero and the coefficient α is
close to 1. The NSE values of the optimization of the rain gauges with longer path lengths (Mahailluppalama
and Mannar) are lower compared to the other NSE values. Also, these two rain gauges still have a large relative
bias at the maximum NSE, while the relative bias of the other rain gauges is close to zero. Thus, for the rain
gauges with longer path lengths, the optimization is not as optimal and remains with underestimation of the
rainfall. In Appendix B two other possible dependencies are analyzed: the frequency and the locations of the
rain gauges in the climate zones.

(a) Path length spread (b) Relation path length, Aa and α

Figure 6.5: Information of all the rain gauges of (a) the path length spread and (b) the path length correspond-
ing to the two optimized parameters (Aa and α).

6.1.4. Impact of selected links and radius size on calibration
The impact of the rain gauge on the calibration is investigated. Two rain gauges that are located relatively
close to each other are Colombo and Rathmalana. The difference in results from the calibration of the pa-
rameters Aa and α between Colombo and Rathmalana are investigated, as they are very close to each other
(9 km in a straight line). They are both in the same range for frequency and path lengths but still have differ-
ent optimal values. This difference could be explained by a combination of factors. The radius of Colombo is
smaller compared to the radius of Rathmalana. The selected links of Colombo are closer to the rain gauge and
potentially have therefore more accurate estimations for the exact location of the rain gauge. Finally, the av-
erage of the frequency and path lengths of both rain gauges may be approximately the same, but Rathmalana
does have links with longer path lengths in the selected data set (see the frequency ranges in Figure 6.5a).

The impact of choosing the radius with selected links is analyzed in Colombo. The number of selected links
increases with increasing radius. The two parameters for the selected neighboring links for Colombo are cali-
brated with radius sizes of 1, 2, and 3 km. The number of links used for the calculation is 23, 68, and 128 links
for the 1, 2, and 3 radius sizes respectively. All three calibrations showed that the optimal parameters of Aa

are 2 dB and α is 0.25. For this particular case, changing the radius size did not influence the calibration of
the parameters. This could be different for regions where fewer links are available and with longer distances
of the links in connection to the rain gauges.

6.1.5. Pre-processing QPE for nowcasting
The links are assigned a certain parameter set based on their location. The parameters Aa and α of the rain
gauge closest to the middle of the link path are selected for each link. Figure 6.6 shows the links in the color
of the rain gauge the link is closest to. In this study, the selection of the parameters of the links is based on
the geographical location of each link. This is not the only way to determine the parameters for each link.
It could also be based on other factors, such as the link length. This distribution is used to determine the
rainfall intensities with the locally optimized parameters. With the calculated rainfall intensities, RAINLINK
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is also used to make QPE maps.

Figure 6.6: Selected rain gauge for each link in Sri Lanka based on the location of the link.

6.2. Nowcasting rainfall events
6.2.1. Selection of 20 rainfall events
The event of November 30 from 5:00 pm - 8:00 pm is used as an example throughout the next parts of the
results. The rainfall event has a maximum rainfall intensity of 104 mm/hr. This is the average of the selected
pixels. The rainfall event shows rainfall throughout the entire event and in a large area of Sri Lanka. Figure
6.7a shows the QPE of the rainfall event of November 30 at 6:00 pm. Figure 6.7b shows the Pysteps-D nowcast
made for 6:00 pm with a lead time of 15 minutes. Figures 6.7c and 6.7d show Pysteps-D nowcasts made for
6:00 pm with lead times of 30 and 1 hour, respectively.

The figure shows that the locations and intensities of the rainfall event are well forecasted. The nowcasts
made with lead times of 15 and 30 minutes have very similar results. The nowcast with a lead time of 1 hour
does not capture the full rainfall event as well as the nowcasts with shorter lead times shown.
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(a) QPE at 6:00 pm (b) Pysteps-D: 15 min lead time

(c) Pysteps-D: 30 min lead time (d) Pysteps-D: 60 min lead time

Figure 6.7: Rainfall event of November 30, 2019 at 6:00 pm with (a) the QPE (b) Pysteps-D nowcast with a lead
time of 15 minutes, (c) QPF with a lead time of 30 minutes, and (d) QPF with a lead time of 1 hour.

6.3. Verification nowcasts for the 20 events
The 20 selected rainfall events are used to make nowcasts. The three methods (EP, Pysteps-D, and Pysteps-
P) are tested. For Pysteps-P, the mean rainfall intensity of the 20 ensemble members is taken. For all of the
nowcasts, the Fraction Skill Score and the Critical Success Index are calculated.

6.3.1. Fraction Skill Score
Figure 6.8 shows the FSS values for (a) Pysteps-D (b) Pysteps-P and (c) EP. For Pysteps-P the ensemble mean
is taken for the calculation. FSS values are given for spatial scales from 2 to 100 km, intensity thresholds from
1 to 20 mm/hr, and lead times from 15 minutes (left), 30 minutes (middle), and 1 hour (right). The values in-
dicated in red are the FSS values that score below FSSuniform (Equation 5.5). The red values indicate for which
combination of intensity threshold and spatial skill the nowcast is not skillful anymore for that particular lead
time.

The Pysteps-D nowcasts with 15 and 30 minutes lead times are skillful for all intensity thresholds and all
spatial scales. Even for lead times up to an hour, the Pysteps-D nowcasts are still skillful. Only for intensities
higher than 10 mm/hr, the nowcast is not skillful anymore for small spatial scales (< 10 km). For lead times of
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15 and 30 minutes, EP shows similar results. The FSS values for EP are lower compared to Pysteps-D, but still
skillful for all intensity thresholds and spatial scales. However, for lead times of 1 hour, a clear difference is
visible between the Pysteps-D nowcast and the EP. For EP, the nowcast is not skillful anymore for intensities
above 5 mm/hr for spatial scales smaller than 20 km.

Overall, Pysteps-D scores especially better compared to the benchmark EP for longer lead times. A reason
for this is that for longer lead times the advection and movement of the rainfall events are more important.
The deterministic nowcast takes these processes into account and therefore has an advantage. With EP no ex-
trapolation method is used, only the previous time step is taken, which loses its strength once lead times get
longer. Still, the benchmark performed exceptionally well. One of the reasons for this is because the rainfall
events are very steady and not much movement occurred, which made using the QPE maps of the previous
time steps still effective.

The ensemble mean of Pysteps-P shows worse results in comparison to the Pysteps-D and EP. The Pysteps-P
nowcast is not skillful for high intensities (> 5 mm/hr). For low intensities, the nowcast of Pysteps-P remains
skillful even for an hour. The reason for the poor result from the Pysteps-P nowcast is very likely since the
mean of the nowcasts of the 20 ensemble members is taken. Therefore, especially for high intensities, the
rainfall intensities are underestimated. In the next section with the CSI calculations, the ensemble members
are also considered separately to show the spread in the accuracy of the ensemble.

(a) EP

(b) Pysteps-D

(c) Pysteps-P

Figure 6.8: FSS averaged values from all rainfall events of (a) EP, (b) Pysteps-D, and (c) the ensemble mean of
Pysteps-P.
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6.3.2. Critical Success Index
Table 6.2 shows the averaged CSI over the four lead times (15, 30, 45, and 1 hour) and the 20 rainfall events
for thresholds of 1, 2, 5, 10, and 20 mm/hr. Figure 6.9 shows the average CSI of all the events for a threshold
of 1 mm/hr for (a) Pysteps-D, (b) Pysteps-P, and (c) EP. The area used to calculate CSI is indicated by a red
outline. The figures of Pysteps-P and EP illustrate that the CSI scores are not equal in the contributing area of
Sri Lanka. The north and south and the area close to the sea have lower CSI values compared to the middle
of the country.

Table 6.2: CSI values for different thresholds for Pysteps-D, Pysteps-P, and EP for the average of nowcasts over
lead times of 15, 30, 45, and 1 hour and 20 rainfall events.

Threshold (mm/hr)
Algorithm 1 2 5 10 20
Pysteps-D 0.65 0.60 0.49 0.38 0.25
Pysteps-P 0.35 0.32 0.21 0.15 0.08
EP 0.45 0.40 0.30 0.19 0.12

Pysteps-D scores higher CSI values compared to the benchmark EP for all intensity thresholds. Thus, the
nowcast of Pysteps-D is more accurate. The ensemble mean of Pysteps-P does not score better and this is
likely for the same reasons as described in the FSS results.

The link density, especially in the south, is very low, and therefore the QPE maps might not be as accurate
as in other places. There are only rainfall estimations available for the areas on the island, and not in the sea.
This could be an explanation for lower CSI values in the areas close to the sea compared to the inland area. If
a rainfall event starts near the sea and propagates towards the land this is not noted by the QPE. This could
be part of the reason why for the Pysteps-P and the EP the values of CSI are lower in those areas.

(a) Pysteps-D (b) Pysteps-P (c) EP

Figure 6.9: CSI values with threshold of 1 mm/hr from (a) Pysteps-D, (b) Pysteps-P and (c) EP averaged over
the 20 rainfall events. The red outline indicates the calculated area.

From the 20 rainfall events, the performance of the nowcasts for those different events also give variations in
CSI values for all three nowcasts. Figure 6.10 illustrates the distributions of the CSI value from the 20 rainfall
events for a threshold of 1 mm/hr for Pysteps-D, Pysteps-P, and EP from averaged lead times of 15, 30, 45, and
1 hour. The spread of CSI values of Pysteps-P is much higher compared to EP and Pysteps-D.

Appendix C (Figure C.1) shows the CSI values of the event of (a) November 30 17:00-20:00 and (b) December
3 16:00-19:00. Event (a) has a CSI score of 0.85 and event (b) a CSI score of 0.55 for Pysteps-D for a threshold
of 1 mm/hr and an averaged nowcast of lead times of 15, 30, 45, and 1 hour.
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To investigate the different ensemble members separately, the CSI value is computed for each ensemble
member. Figure 6.10 shows the distribution of the CSI values for all the ensemble members, calculated for
a threshold of 1 mm/hr and the average of the four lead times used also from previous calculations (15, 30,
45, and 1 hour). The red dot is the EP value per event. It shows that some of the ensemble members scored
higher CSI values compared to the EP, and most of them had lower CSI values.

Figure 6.10: CSI value distribution from the 20 rainfall events for a threshold of 1 mm/hr for Pysteps-D,
Pysteps-P and EP from averaged lead times (15, 30, 45, and 1 hour), where the values of the Pysteps-P en-
semble members are shown separately.

6.4. Comparison rain gauges vs. QPF
The 20 rainfall events are also used for the comparison of the Pysteps-D nowcast with the rain gauges. In
this comparison, the hourly rain gauge dataset is used (see Table 4.1 for the selected hourly rain gauges). For
every hour the QPFs are calculated 15 minutes before that hour. For example, on September 23 from 14:00 to
15:00, a nowcast is made at 13:45 and the nowcast is made with lead times of 15, 30, 45, and 1 hour. Figure
6.11a shows the result of the accumulated QPF rainfall depths at the locations of the rain gauges compared to
the hourly rainfall intensities.

Figure 6.11b shows for the same rainfall events the comparison of the CML-based rainfall depths compared
with the rainfall depths of the rain gauges. The Pysteps-D nowcasts scored an NSE of 0.15 and the QPE scored
an NSE of 0.44. The figure shows that sometimes rainfall is observed at the rain gauge location, but not by the
links, and sometimes the other way around. As seen in the figure, the QPE shows similar behavior. Uncer-
tainties that are caused by differences between the QPE and the rain gauges have been discussed in Section
6.1.

Appendix C (Figure C.2) shows the comparison between the rain gauge data and the QPF and QPE for one
single event, the event of November 30. For each hour the rainfall depths of QPE, QPF, and the rain gauges for
the hourly rain gauges are presented.
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(a) Rain gauges vs. QPF (b) Rain gauges vs. QPE

Figure 6.11: Comparison from 20 rainfall events of (a) Pysteps-D nowcast and (b) QPE with the hourly rain
gauge intensities on the same pixel, where the QPF is the accumulated rainfall intensity of four nowcasts
made with lead times of 15, 30, 45, and 1 hour for each hour.

6.5. Comparison GPM vs. QPF
The GPM satellite product is compared for 11 events (Table 4.2) to the QPF from Pysteps-D. This comparison
is done for lead times of 15, 30, 45 minutes, and 1 hour. Figure 6.12 shows the event of October 17, 2019 at
16:05 and the nowcast of 1 hour ahead. Appendix D shows the results of the other 10 events. The times shown
in the results are the local time in Sri Lanka (UTC+5:30).

The events show that the intensity of the rainfall events of Pysteps-D QPF and the QPE is most of the time
higher in comparison to the GPM satellite product. Figure 6.12 shows that the spatial distributions of the
rainfall event correspond well to each other. The pattern of the QPF is coarser compared to the satellite pre-
cipitation estimation.

Figure 6.12: A rainfall event on October 17, 2019 at 16:05 with (left) Pysteps-D nowcast at 16:00 (lead time of
1 hour), (middle) QPE at 16:00 and (right) GPM satellite rainfall estimation at 16:05.
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6.6. Comparison performance nowcasts Sri Lanka vs. the Netherlands
A study of Imhoff et al. (2020a) investigates the use of CMLs for nowcasting rainfall in the Netherlands. The
study calculated the FSS for two thresholds: 1 and 5 mm/hr. Table 6.3 gives the comparison between the FSS
scores of the Netherlands (NL) and Sri Lanka (SL) for the different thresholds and lead times for a spatial scale
of 2 km (the smallest spatial scale obtained with CMLs in Sri Lanka). For Sri Lanka, the Pysteps-D nowcast is
used. Again, red values indicate for which combination of intensity threshold and spatial skill the nowcast is
not skillful anymore for that particular lead time.

Table 6.3: FSS scores (-) for CML nowcasts from the Netherlands (values from (Imhoff et al., 2020a)) and Sri
Lanka (Pysteps-D and EP) for thresholds of 1 and 5 mm/hr and for lead times of 15, 30, and 1 hour.

Threshold 1 mm/hr 5 mm/hr
lead time (min) NL SL-EP SL-D SL-P NL SL-EP SL-D SL-P
15 0.55 0.85 0.98 0.87 0.30 0.87 0.97 0.79
30 0.5 0.87 0.96 0.81 0.28 0.75 0.94 0.56
60 0.42 0.77 0.89 0.64 0.20 0.70 0.85 0.33

In the FSS calculation of Imhoff et al. (2020a) in the Netherlands a radar-based observation was used as the
reference. The FSS calculation of this thesis in Sri Lanka used a CML-based observation as the reference be-
cause radar observations are not available in Sri Lanka. The FSS scores are therefore not calculated in the
same way. Making a comparison in absolute numbers would not be fair.

However, the difference in skill between the two thresholds is visible in the scores for both the Netherlands
and Sri Lanka. Even though the scores in the Netherlands show a larger drop in skill from intensities of 1
mm/hr to 5 mm/hr, it is also present for nowcasts in Sri Lanka. Furthermore, with increasing the lead times
of the nowcasts the two studies show a similar reduction in FSS scores, both from 15 minutes to 30 minutes
and from 30 minutes to 1 hour.
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Discussion

7.1. Commercial Microwave Links
This thesis studied the calibration of two parameters Aa and α from the RAINLINK algorithm. However,
there are other parameters used in RAINLINK that are also important for making path-averaged rainfall es-
timations. An example where all the parameters are taken into account is in the study of Wolff et al. (2022).
That study used a 12-day calibration period for the Netherlands to improve the default parameter set from
RAINLINK.

In this study, calibration is done by calculating the NSE for every combination of the parameters and choosing
the parameter set with a maximal NSE value. A downside of using NSE as the measure of performance is that
using the squared errors in NSE inflates the importance of high rainfall intensities. Maximizing the NSE forces
the model to get the high rainfall intensities correct. For this study, the relative bias was also calculated. For
future studies another statistical value (e.g. NSElog ) could be added to represent low rainfall intensities better.

The calibration period of this study was a period of 55 days from September 12 to November 6, 2019. Sri
Lanka has strong seasonal differences due to the monsoons and also large differences in rainfall intensities
between the monsoon and inter-monsoon seasons. Therefore, a recommendation would be to extend the
calibration period to at least a year to include all the seasons of Sri Lanka.

This study used the calibrated parameters of selected links surrounding 12 rain gauges. With the calibrated
parameters, each link was paired with one of the parameter sets from those 12 rain gauges. This was based
on the shortest distance between the middle of each link and the location of the rain gauge. However, as also
shown in Figure 6.6, some links have a large distance to their selected rain gauge. The uncertainty for those
links is quite large because the correlation of the rainfall in space is less with larger distances.

This study already showed that the parameters are dependent on the link length. To improve the calcula-
tion of the rainfall estimations with RAINLINK, a possible solution could be to select the optimal values of
parameters Aa and α for each link based on the path length of the links. Before this could be implemented,
it is first recommended to perform a similar calibration for links grouped by path length. After this, for each
link, a parameter set can be chosen based on the path length. This can be implemented in RAINLINK in a
similar way as the values a and b are chosen for each link dependent on their used frequency.

For the interpolation of rainfall maps, default parameters from the Netherlands are used for the sill, range,
and nugget of the variogram. Sri Lanka has a different climate compared to the Netherlands. Therefore, the
parameters for the variogram are also expected to be different. This study used the default parameters for the
variogram and did not improve these parameters. Optimizing these parameters for Sri Lanka could improve
the interpolation and thus improve the rainfall maps even further.

Some locations in Sri Lanka do not have any available links. In addition to the areas inland that do not include
any links, there are also no CMLs on the sea. For these areas, no QPE or QPF can be calculated with CMLs. It
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is therefore important to investigate other sources of rainfall estimations (e.g. satellite data) to fill those gaps.
Another advantage of this could be that the performance of the nowcasts could improve by adding informa-
tion from the sea. Some rainfall events have their origin at sea and in this way, the rainfall events could be
detected earlier.

This study only used the algorithm RAINLINK for the retrieval of rainfall maps from CML data. It would
be interesting to compare the RAINLINK algorithm to other algorithms that also give rainfall maps from CML
data. An algorithm that has recently been published is Pycomlink (Chwala, 2021). In Graf et al. (2021) a study
in Germany has been performed with Pycomlink that showed promising results.

7.2. Nowcasting
There is an important limitation in the calculation of the verification values (FSS and CSI). The reference rain-
fall observations are the QPEs made with RAINLINK from the CML data. These QPEs are also used as input
for the making of the nowcasts in Pysteps. The QPF and QPE are compared with each other because next to
the satellite product, there are no spatial maps of rainfall intensities present in Sri Lanka. This thesis used a
qualitative verification of the accuracy of the rain gauges and a spatial verification with the satellite data.

This study used 20 rainfall events for the calculation of the FSS and CSI scores. If one of the rainfall events is
performing particularly well or poorly, the average of the scores will be affected. To perform a better verifi-
cation, it is recommended to include more rainfall events with the calculations. For example, in the study of
Imhoff et al. (2020b), a total of 1,533 events were selected and analyzed.

Next to analyzing more rainfall events, it would also be beneficial to analyze a longer period of rainfall events.
This thesis showed results for nowcasts with lead times up to 60 minutes. Longer lead times could still be
skillful. Although the results from this thesis show promising results for the deterministic nowcasts up to an
hour, it is still uncertain how nowcasts with lead times beyond one hour will perform could be for the now-
casts.

This study used the algorithm Pysteps to make nowcasts, where both deterministic and probabilistic now-
casts are generated. The nowcasts were compared to the benchmark Eulerian Persistence. The algorithm
Pysteps was the only library used in this thesis. However, there are numerous other libraries available that
also can be used to make nowcasts. One example is Rainymotion (Ayzel et al., 2019), an open-source bench-
marking algorithm.
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8
Conclusion

This thesis investigates the possibility of using Commercial Microwave Links (CMLs) for nowcasting rainfall
in Sri Lanka. The algorithm RAINLINK is used to generate QPEs from the CMLs. The QPEs are a vital part
of the nowcast input. The default parameters of RAINLINK are calibrated for the Netherlands. This the-
sis investigated and calibrated two parameters for Sri Lanka. The calibration to the nowcasting of rainfall is
made with the library Pysteps. The accuracy of the nowcasts produced with Pysteps is evaluated in this thesis.

First, this thesis focused on generating CMLs QPEs with the RAINLINK algorithm by using calibrated pa-
rameters. The results showed that by calibrating the parameters of the wet antenna attenuation (Aa) and
the coefficient (α), RAINLINK gives more accurate QPEs in Sri Lanka. In a validation period of 55 days, the
daily values of the generated QPEs from RAINLINK are compared with 12 rain gauges. This resulted in an
NSE of 0.85. For comparison, the NSE of the generated QPEs from RAINLINK where default parameters are
used resulted in an NSE of 0.64. Comparing the different parameter sets from the rain gauges, results showed
that the parameters are dependent on, among other things, the path length of the link. Longer path lengths
are more likely to have lower wet antenna attenuation and a higher value for the coefficient α compared to
shorter path lengths. The thesis showed results of nowcasts made in a deterministic sense with S-PROG and
a probabilistic sense with STEPS. The deterministic nowcasts are accurate and skillful for lead times up to an
hour, even for high thresholds of 20 mm/hr and the smallest spatial scale (2 km). The probabilistic nowcasts
are less accurate and skillful, although they are still skillful for the smallest spatial scale for the lowest inten-
sity calculated (1 mm/hr) for lead times up to an hour. The nowcasting results showed that it is possible to
generate accurate nowcasts from CML rainfall estimations.

To conclude, this thesis showed that by using calibrated parameters in RAINLINK the overall accuracy of
the QPEs generated with RAINLINK is improved. Furthermore, the thesis showed that nowcasting rainfall in
Sri Lanka with CML QPEs is accurate for lead times of at least an hour. Overall, this thesis showed promising
results for the future of nowcasting with CMLs. Further research is needed to include more parameters in
the calibration and to investigate other algorithms to generate CML QPEs. Based on the conclusions of the
nowcasting, future studies could study the probabilistic nowcasts in more depth and compare the nowcasts
generated with Pysteps with other nowcasting libraries available. The possibilities of combining CML rain-
fall estimations, satellite data, and rain gauges into one QPE and using this to nowcast the rainfall also are
recommended.
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A
Verification CML rainfall estimations

Figure A.1 shows the verification of the CMLs for the full period (calibration and validation) with default
parameters based on interpolated rainfall depths at the locations of the rain gauges with (a) hourly and (b)
daily rainfall depths. The figure of the hourly values is the same figure as Figure 6.4a, because for the hourly
values the full period was already used. Zero values have been included. The coefficient of variation (CV)
and the relative bias are calculated. The CV is defined as the standard deviation of the residuals divided by
the mean of the reference. The results are compared with the results obtained from the paper of Overeem et
al. (2021). The compared results of the CV value and relative bias are lister in Table A.1. The differences in
verification values between the two studies can be explained by the different number of rain gauges that were
taken into account. In this study, 8 hourly and 12 daily stations are used. In the study of Overeem et al. (2021),
11 hourly and 16 daily rain gauges were used.

Table A.1: Comparison of verification values CV and relative bias between study of Overeem et al. (2021) of
this thesis both with default parameters (September 12 and December 31, 2019).

Hourly values Daily values
Study Overeem et al. (2021) Current study Overeem et al. (2021) Current study
CV [-] 4.33 6.77 0.87 1.12
Rel. bias [%] 2.1 22.65 -17.6 -35.6

(a) Hourly (b) Daily

Figure A.1: Verification of CML based interpolation rainfall depths at the locations of the (a) 8 hourly stations
and (b) 12 daily stations in the period between September 12 and December 31, 2019. Zero values are also
included.
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A. Verification CML rainfall estimations

Figure A.2 gives the validation for all rain gauges and the rainfall estimation made with the selected neigh-
bouring links. Figure A.3 gives for every rain gauge for every combination of parameters Aa and α the calcu-
lated NSE (-) with the selected neighbouring links.

(a) Anuradhapura (b) Batticaloa

(c) Colombo (d) Jaffna

(e) Katunayake (f ) Kurunegala

(g) Mahailluppalama (h) Mannar

(i) Polonnaruwa (j) Puttalam

(k) Ratmalana (l) Trincomalee

Figure A.2: Validation period of cumulative rainfall depths of the CML estimations with default and optimized
parameters and the rain gauge data of every rain gauge separate.
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A. Verification CML rainfall estimations

(a) Anuradhapura (b) Batticaloa

(c) Colombo (d) Jaffna

(e) Katunayake (f ) Kurunegala
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A. Verification CML rainfall estimations

(g) Mahailluppalama (h) Mannar

(i) Polonnaruwa (j) Puttalam

(k) Ratmalana (l) Trincomalee

Figure A.3: NSE values of all gauges for all combinations of Aa and α.
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B
Relation parameters with other factors

B.1. Dependency on link frequency
Figure B.1a illustrates the spread of the frequencies (GHz) of the selected neighbouring links for all the se-
lected rain gauges. In Figure B.1b the average frequency of neighbouring links for each rain gauge location is
shown including the values of the optimized two parameters Aa andα. It shows similar results to Figure 6.5b,
where the path length of the selections of the links are given in relation to the two parameters.

(a) Frequency spread (b) Relation frequency, Aa and α

Figure B.1: Information of all the rain gauges of (a) the frequency spread and (b) the frequency corresponding
to the two optimized parameters (Aa and α).
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B.2. Dependency on climatic zones B. Relation parameters with other factors

B.2. Dependency on climatic zones
Figure B.2 illustrates the climate zones of the rain gauges and the location of the combination of the two
calibrated parameters Aa and α.

Figure B.2: Relation of the two calibrated parameters Aa and α with three different climate zones: dry, wet
and arid.
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C
Verification nowcasting

Figure C.1 gives the comparison of two events (November 30 17:00-20:00 and October 12 17:00-20:00) with
the difference in CSI values. The average CSI value for the event on November 30 equals 0.78 and for October
12 this equals 0.27. Figure C.2 shows the event of November 30 and shows for each hour the QPE, QPF and
rain gauge estimation for every hourly rain gauge.

(a) November 30 (17:00-20:00) (b) December 3 (16:00-19:00)

Figure C.1: Comparison of two events with different CSI scores: (a) November 30 17:00-20:00 and (b) Decem-
ber 3 16:00-19:00 in 2019.
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C. Verification nowcasting

(a) 17:00-18:00 (b) 18:00-19:00

(c) 19:00-20:00

Figure C.2: Comparison QPE and QPF (Pysteps-D) rainfall intensities with the rain gauges for the event of
November 30 17:00-20:00.
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D
Comparison with GPM (Satellite data)

In Figure D.1 all the selected quantitative precipitation estimations from the satellite data are compared with
the Pysteps-D nowcast of a lead time of 1 hour.

(a) 13-09-2019 (b) 6-10-2019

(c) 9-10-2019 (d) 17-10-2019

Figure D.1: Comparison QPF with GPM satellite product for 10 rainfall events with a lead time of 1 hour.

59



D. Comparison with GPM (Satellite data)

(e) 28-10-2019 (f ) 16-11-2019

(g) 24-11-2019 (h) 27-11-2019

(i) 5-12-2019 (j) 20-12-2019

Figure D.1: Comparison of a Pysteps-D nowcasts with a lead time of 1 hour with GPM satellite product for 10
rainfall events.
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