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Abstract

Recently published health reports from governments of western countries and the World Health Organization
(WHO) provide insights on health benefits of being physically active. Performing physical activity of moder-
ate intensity is, amongst others, associated with a smaller risk on symptoms of depression, cardiovascular
disease and diabetes. Despite this information being widely available on the world wide web, one particular
form of physical inactivity is still incorporated in the lives of many people: sedentary behaviour. An environ-
ment that is especially seductive for this type of physical inactivity is the workplace. Stress, depression, anx-
iety, and heart diseases are found to be work-related diseases, possibly as a result from sedentary behaviour.
As a means of reflecting on physical activity, one could acquire an activity tracker such as FitBit or use one of
the many available health monitoring mobile applications. However, it was found that activity trackers may
not be very effective for stimulating a physically active lifestyle. In contrast, an emerging phenomenon may
be able to do so: the intelligent personal assistant (IPA).

In order to be a part of the solution for aforementioned problem, we aim to stimulate reflection on phys-
ical activity during work hours in order to incorporate physical activity into daily routines. Therefore, we
carried out a user study with 16 participants in two countries. For carrying out this user study, we introduced
Alexercise: a system consisting of multiple interacting components, used for collecting, processing and pre-
senting physical activity data. Components in Alexercise exchange data in quasi-real time to provide workers
with current representative physical activity data. As part of Alexercise, we developed a custom skill for Alexa
to access physical activity data and present these by voice. In addition, we developed a cross-platform mobile
application for tracking and reflecting on activity using the React Native framework. We investigated whether
IPAs are more effective in stimulating reflection on physical activity, compared to activity trackers. In ad-
dition, we asked participants if they felt the need to take active breaks based on the experience of the user
study. At last, we intended to compare results of participants who already incorporated physical activity in
their lifestyles with participants who have not.

In the development process, we encountered many challenges, such as the distribution of mobile appli-
cations and Echo Dots to participants in two countries, and facilitating real time tracking and reflecting on
physical activity. Collected sensor data for Android smartphones was reported with infrequent intervals, and
could therefore not be used to reliably assess physical activity. We investigated and elaborately explained how
these challenges can be overcome for future work. In contrast to the challenges, participants reported that
they perceived talking to Alexa as intuitive, and the majority of the participants reported that they feel the
need to take active breaks based on their participation in the user study.
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1
Introduction

Two thousand years ago, the Roman poet Juvenal wrote down a modern ideal: "Mens sana in corpore sano" -
a healthy mind in a healthy body. While we live in a time where knowledge about our health is accessible all
over the world wide web, statistics about our health tell us there is still a lot to gain by incorporating ancient
wisdom in our daily lives. In the Netherlands, the country where this study takes place, only 44% of all adults
perform the recommended amount of physical activity [46]. Unfortunately, physical inactivity is related to
a variety of diseases. It is estimated to be the cause of 6% of all coronary heart diseases world wide, and the
total average life expectancy is estimated to increase with more than eight months for the world population,
compared to the current situation if physical inactivity would be eliminated [36]. Besides, the Health Council
(HC) of the Netherlands categorised studies reporting the beneficial effects of physical activity and seden-
tary behaviour on health [46]. The effect of physical activity on a certain disease is considered convincing if
outcomes from multiple randomised controlled intervention studies (RCTs) and cohort studies support each
other. If an effect is only measured by cohort studies, the association is considered plausible. Convincing evi-
dence of gains from physical activity includes a reduced risk on depressive symptoms, cardiovascular disease
and diabetes, as depicted in figure 1.1. In this context, physical activity is defined as "any bodily movement
produced by skeletal muscles that results in energy expenditure" [4].

Sedentary behaviour, in particular, is a form of physical inactivity that is widely integrated in western
lifestyle [42]. While scientific evidence for detrimental effects of sedentary behaviour is not as strong as for
physical inactivity, it appears to have adverse health effects [46]. In a study with 3625 participants wearing
accelerometers it was found that replacing two minutes of sedentary time with an activity of low intensity
seemed to have no significant effect on premature mortality [2]. However, replacing two minutes of sitting per
hour with an activity of light or moderate intensity (see table 1.1) was associated with a lower hazard of death.
The Dutch HC supports this by showing that being at least 75 minutes per week moderately active results in
a decreased risk on heart attacks and heart failure, which further decreases as the amount of physical activity
goes up to 150 and 300 minutes.

In addition, regularly breaking up sedentary time increases a person’s calorie expenditure and potentially
reduces the chance on obesity [68]. To specify this further: the total time of physical activity during the day
should ideally be divided in multiple shorter activity breaks instead of a single long activity break, as more
interruptions in sedentary behaviour is positively associated with a reduction on metabolic risk [28].

The workplace is one of the places where sedentary behaviour is fully present. From a study carried out in
the U.S., it was found that participants spent 7.7 hours a day in sedentary position [42], an indication that the
office is an environment where a lot is to be gained in terms of breaking up sedentary behaviour. According to
the health and safety report of the EU, 14.5% of its workers suffering from work-related diseases reported they
suffer from stress, depression or anxiety. In addition, 3.8% of the working European citizens with work-related
health problems suffer from hearth diseases. These are diseases that are convincingly related to physical
inactivity [19]. The World Health Organization (WHO) recognises health problems in the workplace, such
as long working hours, that could result in physical inactivity [48]. Proposed solutions focus on facilitating a
more healthy lifestyle by encouraging walking and cycling and allowing flexibility for workers in taking breaks
from their work.

Health related problems in the workplace resulted in proposed solutions of the WHO and specific guide-
lines of the Dutch HC which inspired us to find a specific approach for encouraging physical activity in the

1



2 1. Introduction

Figure 1.1: Health effects of physical (in)activity for adults [46]

workplace. To prevent ourselves from reinventing the wheel, we use techniques that have proven to be effec-
tive in prior work. The scientific novelty of our study is the use of an intelligent personal assistant (IPA) as a
means of stimulation of physical activity. How we aim to stimulate workers to be physically active and what’s
the role of an IPA are respectively discussed in the sections 1.1 and 1.2.

1.1. Stimulating moderate intensity physical activity
Given the benefits of sufficient physical activity, this study aims to disrupt chronic sedentary behaviour by
both measuring and stimulating physical activity. Physical activity should be at least of moderate intensity, as
it has convincing beneficial health effects. Thus from here on, physical activity refers to moderate intensity
physical activity. Due to aforementioned disturbing statistics from Eurostat about work-related health issues
and the provided guidelines by the WHO, we decided that our target group is especially men and women
working in the office (workers) that are often performing work while being physically inactive. The effects of
physical inactivity have different outcomes for men and women. For men, there are indications that physi-
cal inactivity at work encourages a passive lifestyle for them [24]. For women, no association was observed.
However, since this is a single study indicating this difference and given the health benefits of physical activity
during working hours, we include both men and women in our study. Besides the fact that physical activity
reduces the chance on several diseases, it can also support mental well-being by increasing vigour and re-
duce emotional exhaustion [58]. Because mental well-being is often of importance in the workplace besides
being physically in shape, we dedicated a section to the assessment of well-being in the next chapter, where
decisions for using certain techniques are explained more elaborately.

In supporting workers to be physically active, the first step would be (1) measuring their physical activity
for them to get insight in their movement. As discussed in section 2.1, prior work often used a sensor-based
approach for measuring physical activity. A follow-up action is to use this physical activity data to (2) advice
and stimulate people to reflect on how much they should exercise. For that, prior work used gamification
techniques [3, 77], quantification of physical activity [77] and other, more original approaches [10]. Zucker-
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Table 1.1: Categories of physical activity intensity as defined in [2] and [46]. MET stands for metabolic equivalents,
where one MET is the energy expenditure at rest

Activity As defined in [2] As defined in [46]
Energy

expenditure

Sedentary
Sitting quietly, watching television,
lying down

Watching television, working
with a computer

1.0–1.3 METs [2]
< 1.5 METs [46]

Low
intensity

Sitting in class, studying, note taking,
standing, making bed

Light
intensity

Casual walking, light gardening, cleaning
(sink/toilet)

Playing music, washing up 1.5-3.0 METs

Moderate
intensity Brisk walking or running, lifting heavy

weights

Walking, cycling 3.0-6.0 METs

Vigorous
intensity

Running, playing football > 6.0 METs

man and Gal-Oz [77] challenge the fact that using gamification techniques to support people to be physically
active is more effective than quantification of physical activity data, and they vouch for facilitating "(...) re-
flection on meaningful aspects of physical activity by developing novel ubiquitous measures". Presenting
physical activity data in a quantified way is in line with the Quantified Self movement1 which stimulates peo-
ple to get to know themselves through numbers to spark intrinsic motivations. On the contrary, the use of
rewards as gamification technique encourages actions based on extrinsic motivations. According to Ploderer
et al. [52], intrinsic motivation is the desired form of motivation, as "ideally, reflecting about certain aspects
of one’s life provides valuable insights, which in turn lead individuals to reconsider and possibly change par-
ticular attitudes or behaviours". They distinguish two types of reflection: (1) reflection-in-action and (2)
reflection-on-action. The first type includes providing means to reflect on an action that is currently taking
place (e.g. wearing a FitBit), and the latter is the action of reflecting on an action that is already finished.

We consider physical activity during the workday an ’action’. As long as a participant is at work, he is
’in-action’. Therefore, the focus for our user study is foremost on reflection-in-action. An example of a study
applying reflection-on-action is carried out by Finkelstein et al. [22]. Eight hundred participants wore activity
trackers for the duration of one year, where half of them were stimulated by external incentives for the first
six months. In general, external cash incentives caused participants to be physically more active compared
to the group without incentives. However, when the incentives were removed, it was found that wearing
activity trackers is little effective for significantly improving physical activity levels for the long term. Section
2.2 elaborates on the details of their experiment.

1.2. Intelligent personal assistants
From Finkelstein et al. [22] we can derive that activity trackers are not yet very effective for the long-term,
certainly not without external incentives. A small qualitative study in the workplace partially supports this
statement, as it was confirmed by self-reports from participants that some found activity trackers useful, but
all of them merely used them for a short period of time [40]. A relatively novel phenomenon might be able to
support activity trackers in the presentation of physical activity data: the intelligent personal assistant.

An intelligent personal assistant (IPA), also known as digital personal assistant (PDA) or virtual assistant
(VA), is "(...) a metalayer of intelligence that sits on top of other services and applications and performs ac-
tions using these services and applications to fulfil the user’s intent" [62]. The ’home’ of an IPA could be a
smartphone, tablet, laptop, Desktop or even a headless device such as the Amazon Echo Dot2. A digital per-
sonal assistant is capable of conversing via techniques such as speech recognition, language understanding
(LU), converting text-to-speech (TTS) and language generation (LG). Upon grasping the user’s intention, an
IPA should act accordingly, serving the user with the requested information via machine learning and data
mining techniques. According to Sarikaya [62], IPAs are useful because they are good at stitching together
multiple formerly separated tasks, such as accessing a user’s calendar, reading and sending their e-mail, mak-

1http://quantifiedself.com/
2https://www.amazon.com/dp/B01DFKC2SO

http://quantifiedself.com/
https://www.amazon.com/dp/B01DFKC2SO


4 1. Introduction

ing phone calls and playing music. In this sense, a virtual assistant is also referred to as ’personal’, because it
(ideally) is aware of the user’s interests, whereabouts and contacts. To expand the knowledge of an IPA, one
could use smartphone sensors such as motion, physiological and contextual sensors, as explained in section
2.1.

An IPA can either be proactive, performing an action without any preceding action from the user, or reac-
tive, responding to a preceding action of the user (e.g. a voice command). A proactive assistant that is aware
of the user’s performed physical activity could potentially advice a user on their physical activity schedule.
In our study, we will make use of this feature to support participants in breaking up their sedentary time and
reach their physical activity goals. For that, we will use a headless device from Amazon: the Echo Dot, home
of Alexa, the personification of their IPA. Alexa has the promising feature to allow custom functionality to
be added, similar to apps on a smartphone. To our knowledge, Alexa nor any IPA was ever used to provide
tailored advice on physical activity to prevent chronic sedentary behaviour, while it has the capability to ac-
cess and combine motion, physiological and contextual metrics to infer the user’s physical activity level and
possibly facilitate social support [52]. This brings us to our research statement.

1.3. Research statement
Using an Amazon Echo dot, we try to motivate people who are often in a sedentary state for subsequent
long periods of time to integrate physical exercise of moderate intensity into their daily routines in order to
improve their physical well-being. As discussed in section 1.1, prior work indicated that activity trackers do
not have the desired effect of improving health outcomes. Therefore, we want to investigate whether the
use of IPAs result in a significant increase in physical activity compared to activity trackers. Two important
building blocks greatly supported our experimental setup and applied methodologies. At first, we used the
work of Zuckerman and Gal-Oz [77] who inspired us to focus on the incorporation of physical activity in daily
routines for the long-term using techniques promoted by the quantified self movement, which indicated to
be effective stimulants. In addition, prior to our work Cambo et al. [3] carried out a study to actively stimulate
workers to take breaks via distributing tasks through a custom-made mobile application. Their experimental
setup supported us in shaping our experimental design. Taking into account that:

• Physical activity of moderate intensity reduces the chance on certain non-communicable diseases
• Activity trackers are not always effective in improving health outcomes
• Reflecting on activity may spark intrinsic motivation to be more physically active
• Intelligent personal assistants have not yet been applied for reflecting on physical activity, while are

suitable for collecting physical activity information and providing personal information

We come to the following research questions:

RQ1 To what extend is the taken No of steps of workers during a workday affected by proactive intelligent
personal assistants compared to passive activity trackers?

Section 2.1 indicates that activity trackers and especially accelerometers [13] are often used to de-
tect and stimulate activity. IPAs should be compared to this current standard method of promoting
physical activity to see whether it affects physical activity levels in a meaningful way

RQ2 To what extend do intelligent personal assistants and activity trackers stimulate participants to in-
tegrate moderate physical exercise into their daily routines?

An important aspect is to stimulate long-term integration of physical activity in daily routines at
work, such that participants will not fall back to old habits. We rely on qualitative methods for
answering this question.

RQ3 What is the difference in the amount of performed physical activity for workers who already exercise
outside working hours and those who do not?

As discussed in section 1.1, passive jobs could encourage workers (men in particular) to have a
more passive lifestyle. In contrast, participants with an active lifestyle may perform more physical
exercise during working hours compared to other participants. On the contrary, it is possible that
participants mainly perform exercise outside working hours without feeling the need for taking
breaks from work. Thus, this question addresses possible relevant differences in the results.
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And the following hypotheses:

H1 Most people choose not to use Alexa frequently

Cowan et al. [12] reported that most IPA users choose to only use it occasionally or not at all.

H2 The use of activity trackers will not lead to a significant increase in steps

As reported by Finkelstein et al. [22], discussed in section 2.2

1.4. Approach
In order to find evidence for answering our research questions, 16 workers were asked to participate in a user
study, using Alexercise for three subsequent weeks. During the user study, we first determined the physical
activity baseline of participants. Then, in the second week of the experiment half of the participants were
given a mobile application reflecting their number of steps (activity tracker) and the other half were given
an Amazon Echo Dot (personal assistant). In the third week, tasks between the two groups were exchanged.
Movement was measured by accelerometer and GPS sensors on participants’ smartphones.

In the development process of Alexercise, we stumbled on a number of challenges, especially related to
the mobile application collecting physical activity data. These challenges resulted in noisy physical activ-
ity data, from which one could not draw quantitatively significant conclusions concerning an increase in
physical activity. However, we observed interactions between participants and Alexa, and we elaborated on
self-reports of participants regarding IPAs and their experiences with Alexercise. In addition, we described
the technical limitations in details and provided recommendations for future work to overcome these limita-
tions.

1.5. Contributions
Our study adds several contributions to the fields of HCI, in particular that of the interaction between humans
and intelligent personal assistants:

• We have build a strong case for reducing physical inactivity and chronic sedentary behaviour and anal-
ysed, combined and discussed insights from prior applications with intelligent personal assistants and
activity trackers.

• We created a system consisting of a mobile application, multiple web services and an IPA using modern
technologies, of which all components are open-source. To our knowledge, this is the first application
that aims to improve physical well-being using an intelligent personal assistant.

• We reported challenges that we faced during the design process and user study, due to the fact that
we were on an exploratory mission on several areas, especially that of IPAs. These might ease software
development and creating an experimental design for future work.

• We discussed the participants’ perception of our system and especially how they perceived the intelli-
gent personal assistant in the current setting, and their attitude towards it.

1.6. Outline
In the next chapter, we discuss related literature in more detail and provide background for understanding
the material used in the user study. In chapter 3, we explain the rationale behind decisions we made, related
to the system and experimental design. Then, in chapter 4 we elaborate on each of the system’s components
in detail. Chapter 5 is about the results from the user study that we carried out. Finally, we discuss the applied
methods, system design, results from the user study and the limitations of each of these aspects, and set out
a direction for future work.





2
Related Work

This study operates in the intersection of the areas physical and mental well-being and human-computer
interaction (HCI). A number of studies that were carried out in these research areas will serve as foundation
for this study and shall be discussed in this chapter. At first, for our study it is essential to be able to apply
techniques on detection and stimulation of physical activity. Such techniques that have been investigated in
prior work will be discussed in the sections 2.1 and 2.2. Stimulating physical activity is not necessarily a goal in
itself. An underlying goal could be to improve a person their well-being, physically like reducing the chance
on heart and vascular disease, and mentally like decreasing likeliness to end up in a depression. However,
the relation between physical activity and prevention of mental illness is disputed by some, because it can
be argued that the working of physiological and neurological mechanisms are not yet clear [67]. In order to
see whether physical activity has the desired effect of improving mental well-being, a way to assess well-being
and expressing it in terms of some objective metric(s) is required. Since well-being is an abstract concept that
is hard to measure at once, it should be assessed on its more concrete aspects. Where the first two sections
especially focus on the physical side, section 2.3 elaborates on and compares studies that concentrate on
aspects of mental well-being, such as the assessment of cognitive focus, attentiveness and mental fatigue. In
the last section (2.4), a particular area of HCI is discussed: intelligent personal assistants (IPAs). Studies that
were carried out on the subject of IPAs especially focused on its user experience and comparison of different
types and brands of personal assistants, as can be observed in the last section.

2.1. Detecting physical activity
There are two ways of assessing a person their physical activity levels:

1. Subjective measurements, such as self-reports
2. Objective measurements, such as data reported by sensors

Data resulting from a study using the latter approach can differ significantly from results fetched from self-
reports [54]. In the process of detecting physical activity, one often decides to go with a sensor-based ap-
proach [3, 10, 56, 60, 70]. Sensors used for measuring physical activity can be divided into the categories
movement, physiological, and contextual sensors [7]. Examples of movement sensors are pedometers (counts
steps), gyroscopes (determines orientation) and accelerometers (measures velocity in one (1-axis) or several
(n-axis) directions). Physiological sensors measure physical characteristics of the human body, for which ex-
amples are heart rate, blood pressure and temperature sensors. Contextual sensors are especially concerned
with the environment where a physical activity takes place. An example of such is the Global Positioning
System (GPS). Movement and contextual sensors are often available in today’s smartphones [53], by Android
also referred to as motion, environment and position sensors1. According to Deloitte [14], in 2017 93% of
the Dutch people between 18-75 owns a smartphone, where the group of people in the range of 25-34 years
stands out with a smartphone coverage of 97%. More than 98% of the people in the Netherlands between
12 and 45 in 2017 have indicated that they have access to the internet at home with their smartphone and
on average (seniors included) this is 89% [5]. The fact that smartphones are highly available, are often able

1https://developer.android.com/guide/topics/sensors/sensors_overview

7
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to connect to the internet and the fact that they are equipped with movement and contextual sensors make
smartphones suitable devices for real time physical activity tracking.

In the category of movement sensors, especially accelerometers are often used for monitoring physical
activity [7], for example in Beddhu et al. [2]. An accelerometer describes the change in velocity with respect
to time. In physical notation this is either in metres per second squared (m/s2) or gravitational acceleration
units (g , where 1g = 9.8m/s2) [6]. In general, accelerometers are small, affordable and able to measure along
multiple axes [7]. In addition, they have proven to be relatively accurate: in a study carried out by Storm
et al. [66], it was found that for seven activity trackers using 3-axis accelerometers, the accuracy varied from
64.6% till 99.1% accuracy in terms of steps taken. Accelerometers are used in various ways. Activity trackers
might consist of a single accelerometer [77], multiple accelerometers [60] and one or more accelerometers
in combination with other sensors [34]. In addition, accelerometers are suitable for counting a person their
number of steps. A system that is able to count steps based on accelerometer-data is used by Khedr and
El-Sheimy [34], which is simplified as follows:

1. A person’s acceleration magnitude is computed using a 3-axis accelerometer, where the magnitude is
the square-root of the sum of the axes of the accelerometer squared: mag =

√
x2 + y2 + z2

2. As a person is walking, the magnitude peaks (when they are in the middle of a step) and falls (when the
step is completed), resulting in a sinusoidal pattern. A step is represented by a peak and a valley, as is
visualised in figure 2.1. The function fluctuates around a magnitude of ten, which means there is on
average an acceleration of approximately ten, which is close to the gravitational constant [69].

3. Various filters are applied to peak/valley pairs to improve accuracy, such as comparing accelerometer-
data with magnetometer and gyroscope data, filtering noise from the signal by applying adaptive filters
and setting thresholds for peaks and valleys.

Figure 2.1: 40 subsequent recordings of magnitude show a sinusoidal pattern in the first half, which indicates the person
is walking. From recording 25 and on, the person does not move, because the line is flattened and approaches the
gravitational constant. Chart is based on figure 2 & 3 in Khedr and El-Sheimy [34], reproduced by DeskstApp, the

application that monitors physical activity of participants as discussed in chapter 4
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Counting steps is an approach for simplifying the more complex concept ’physical activity’, by quantifying
a person their physical activity and reducing it a single number. This quantification leads to the possibility to
make a person reflect on their activity, which will be discussed in the next section. A sensor - or composition
of sensors - that is determined to count steps, is also referred to as a pedometer. An (electronic) type of
pedometer that is often used consists of a "horizontal, spring-suspended lever arm that deflects with vertical
acceleration" [70]. Richardson et al. [59] collected data from several studies where pedometers were used
as motivational tool during walking programs, which were found to result in a modest amount of weight
loss. However, the downsides of accumulated step pedometers are that they are generally unable to assess
intensity, frequency and duration of activities [11]. However, this can partially be overcome by providing time
stamps for each counted step, such that steps can be placed on a time line to determine in which time frame
a person took most steps. This concept is for example applied by Google Fit 2.

In addition to aforementioned movement, physiological and location sensors, one could decide to make
use of Bluetooth Low Energy (BLE) beacons, a small battery-powered device [72], to detect a person’s move-
ment. BLE beacons are especially suitable for indoor localisation, which supplements GPS in that sense,
because GPS technology is not always able to provide qualitatively good results in indoor environments [29].
BLE beacons consume, as is claimed3 and proven [64], very little energy. There are several localisation tech-
niques, such as spatial partitioning, where the room is divided into a number of hexagonal unit spaces and
a beacon is placed at each corner and one in the centre. The hexagonal shape results in the largest possible
space with the least materials required [29]. A disadvantage of this approach is that all coordinates within
the hexagonal are relative coordinates. Another technique to determine a persons position is using Received
Signal Strength Indication (RSSI), for which the wireless receiver determines the signal strength measured in
decibel-milliwatt (dBm). Both RSSI and spatial positioning make use of unidirectional messaging, where the
beacons are broadcasting to a wireless receiver. But what if the wireless receiver wants to send a message to
the BLE system? This can be done by sending a message from the application on the wireless receiver (e.g.
Launch Here for iPhone4) to the back-end via the Wi-Fi network. Lin and Lin [37] bypassed the need for a Wi-
Fi network for communication from wireless receivers (e.g. smartphones) to Bluetooth beacons by setting up
bidirectional communication via the advertising channels.

In the next section an application is discussed for which Bluetooth beacons are used to determine the
indoor position of workers to calculate their movement during a day in the office. In addition, various ways
of stimulating people to perform sufficient physical activity will be discussed.

2.2. Stimulating physical activity
A number of studies attempted to stimulate people to be more physically active. In a study carried out by
Finkelstein et al. [22], the effectiveness of existing activity trackers was measured. In a randomised control
trial, 800 participants were well-nigh equally divided over four groups as depicted in table 2.1. The ran-

Table 2.1: Four groups of participants as in [22]

Group Participants were ...

1. Activity tracker Wearing activity trackers without any extra incentives

2. Activity tracker + cash incentive Wearing activity trackers and stimulating people with cash incentives
of S$ 15 (Singapore Dollar) for 50000-70000 steps, or S$ 30 for > 70000
steps per week

3. Activity tracker + charity incentive Wearing activity trackers and stimulating people with donations to
charity for the same amounts as for the cash incentive group

4. Control Not wearing any activity trackers nor stimulated in any way

domised control trial took six months and then for another six months, the incentives were removed from
group two and three and the long-term effects of each group were measured. During the first six months,
group two clearly showed an increase in physical activity compared to other groups. However, at the end of
the follow-up period without cash incentives, the significant increase compared to other groups disappeared.

2https://www.google.com/fit/
3https://www.bluetooth.com/bluetooth-technology/radio-versions
4http://launchhere.awwapps.com/

https://www.google.com/fit/
https://www.bluetooth.com/bluetooth-technology/radio-versions
http://launchhere.awwapps.com/
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In addition, the FitBit wear dropped quite drastically for group one, two and three after the sixth month.
Concluding, there is some evidence that wearing activity trackers improves step activity, however group one
did not show an increase in steps and no improvement in health outcomes were detected for neither of the
groups. The latter, however, could be explained by the definition of improvement in health outcomes. Finkel-
stein et al. [22] used ActiGraph5 accelerometers to measure the intensity of the activity, which can be classi-
fied as light, moderate or vigorous6. They focused on bouts of ten minutes with at least moderate-to-vigorous
activity (MVPA), because a bout less than ten minutes was not considered sufficient for improving health out-
comes, according to the United States Centers for Disease and Control Prevention (2008)7. However, in their
new edition (2018) of physical activity guidelines, the ten minute condition is eliminated, as any length of
bouts was found to contribute to health benefits [45].

In Cambo et al. [3], a study was carried out in order to measure the effects of promoting mobility in the
workplace. The workplace was equipped with a Bluetooth beacon infrastructure. Workers (N=6) received
a smartphone and smart watch, which, together with the Bluetooth beacons, captured physiological and
location data. In addition, BreakSense, a mobile application, was installed on the phones that were handed
out to the participants. The worker was then given a short challenge through notifications on their phone, as
soon as they would leave their work spot. The challenge included collecting stars somewhere in the building,
in order to achieve the necessary physical mobility.

Another application that aimed to improve people’s physical activity levels is UbiFit Garden: a fitness
device, interactive application and glance-able display [10]. For three weeks, it tracked the movement of par-
ticipants (N=12) by means of a 3-axis accelerometer and barometer. A list of daily activities and progress
towards the daily goal is displayed to the user by the interactive application. The display visualises a garden
that blooms as the user performs more activity. This glance-able display was well-perceived by the partici-
pants.

In both of these studies, gamification elements were used to stimulate the user to be more physically
active. The underlying assumption could be that gamification is believed to be effective. However, a question
that needs to be answered beforehand is: does gamification lead to more (active) breaks? Zuckerman and
Gal-Oz [77] investigated the effect of virtual rewards and social comparison on break-taking and daily activity.
They built an accelerometer-based mobile application that was used for promoting physical activity, called
StepByStep. The authors intended to integrate moderate physical activity into participants’ daily routine in a
two week period, using two different versions of the app:

v1. A quantified version, reflecting the user’s activity trough numbers
v2. A quantified, virtual reward and social comparison version, where virtual rewards consisted of virtual

points and social comparison consisted of a leader board, visualising the points of each of the partici-
pants.

In v1, StepByStep monitored the physical activity of participants (N=30) for three days to set a baseline for
each participant. After three days, a goal was set for each participant, reflecting a 10% increase of the base-
line. Participants were presented with their own physical activity statistics, such that they were aware of their
progress. In v2, gamification techniques were used to stimulate participants (N=59), such as giving points as
reward, or showing a leader board reflecting a comparison of physical activity metrics of participants. Results
for v1 indicated that a quantified version of the application increases activity levels compared to the baseline
levels. In the second study it was found that gamification and social comparison are as effective as a system
that quantifies a person’s daily activity.

2.3. Well-being assessment
Systems that promote physical activity may rely on the idea that a persons well-being is improved if they per-
form sufficient exercise. In order to see whether physical activity has this desired effect, well-being has to be
assessed. Well-being tells us something about the ’state’ of a particular person, expressed in a gradation of
’goodness’. As this is an abstract concept, Veenhoven [71] distinguished two types of well-being: (1) chances
on a good life and (2) the actual outcomes (or results) of life. Both chances and outcomes can tell us some-
thing about (3) external and (4) internal states of being, which corresponds respectively to well-being in an
environment and well-being as an individual. These distinctions are visualised in table 2.2.

5https://www.actigraphcorp.com/
6https://actigraph.desk.com/customer/portal/articles/2515802
7https://actigraph.desk.com/customer/portal/articles/2515834

https://www.actigraphcorp.com/
https://actigraph.desk.com/customer/portal/articles/2515802
https://actigraph.desk.com/customer/portal/articles/2515834


2.3. Well-being assessment 11

Table 2.2: Varieties of well-being [71]

(3) Outer qualities (4) Inner qualities

(1) Life-chances Living in a good environment Being able to cope with life

(2) Life-results Being of worth for the world Enjoying life

Variant (1,3) is about good living conditions in an environment, which can also be referred to as ’welfare’,
typically a type of well-being a politician is concerned with. (1,4) is about the ability of a person to deal with
problems and difficulties in life, something that concerns a psychologist. Other names for this variant are
’health’ or ’fitness’. Aspect (2,3) is about doing good for your environment, which could typically be advocated
by (religious) moral advisers. Enjoying life (2,4) is the user-perception side of well-being, or in other words:
whether they are happy. Studies presented in this section will especially focus on (1,4): the assessment of a
person’s health or fitness.

Rabbi et al. [56] attempted to measure mental and cognitive well-being by capturing audio and motion
data of elderly. They hypothesised that "Continuous recording of daily audio patterns, specifically relating to
the amount of human speech, would be linked to social and mental well-being". Participants (N = 8) wore
a mobile sensing device which contained several sensors, such as a 3-axis accelerometer and a microphone.
They found a strong negative correlation (R = -0.73) between the amount of sensed speech and depression
using the Center for Epidemiologic Studies Depression (CES-D) scale, and a strong correlation (R = 0.82)
between the amount of sensed speech and mental health based on the mental health score resulting from
the Short Form 36 (SF-36).

Norris and Ph [44] focused on another mental health aspect: attentiveness. Participants (N = 37) were
given either a meditative audio tape or an audio control tape. After listening to the 10-minute tape, they
had to complete the Flanker task. They found that the meditation group had increased attention levels for
incongruent trials compared to the control group, except for individuals higher in neuroticism.

In Zeidan et al. [74] it was found that a short meditation training would improve people’s performance on
cognitive tasks. Half of the 63 participants were given four meditative sessions in four days, whereas the con-
trol group were to listen to an audio book ("the Hobbit" by Tolkien). The group who attended the meditative
sessions had increased cognitive functions compared to the Hobbit-group.

A study that is more focused on the long-term effects of meditation was carried out by Fabio and Towey
[20]. Thirty-six participants were divided over two groups: one half consisted of long-term meditation practi-
tioners performing meditation for over six years, and the other half consisted of people who never practised
meditation. Results indicate that there is a relation between long-term meditation and some high-order cog-
nitive processes. Hao and Chan [27] also focused on long-term effective meditation. They captured & anal-
ysed breath cycles and estimated real-time how breathing progressed using MindfulWatch, a smart watch
based system. MindfulWatch can be used to improve the effectiveness of breathing exercises, and potentially
support in reducing stress levels.

Besides meditation, there are other ways to improve and assess attentiveness. Participants in this area
are often (high school) students [16, 17, 76]. Relying on a teacher their experience for determining students’
attentiveness might not suffice or not be reliable in some cases. Therefore, one could make use of sensors,
such as accelerometers and gyroscopes to assess attentiveness. An application of sensors for measuring at-
tentiveness is found in handwriting detection and comparison [76]. A system that captures the student their
attention is an instance of an Ambient Intelligent (AmI) system [17]. Such a system should be context-aware,
adaptive and hidden in the background. A component of an AmI system that is regularly used for data col-
lection is a monitor for mouse clicks and keyboard strokes [16, 17, 33, 49]. An advantage of this component
is the invisibility and flexibility of data collection, and the fact that results can be monitored in real time. For
example, in Durães et al. [16] attentiveness was measured using and AmI system. High schools students (N =
13) were given two kinds of lessons in which they had to perform tasks: a ’normal’ lesson and an ’assessment’
lesson. Mouse activity was monitored during these sessions. Applying the Kruskall-Wallis test, a weak correla-
tion between attentiveness and task scores was found (R = 0.41), which could be explained by the difficulty of
the tasks and the intelligence of the students. Closely related is a study by Pimenta et al. [49] who monitored
mouse and keyboard activity to detect mental fatigue. Detecting mental fatigue is complex, as it is subjective
and depends on many factors such as age, gender, work and food consumption. Since self-reported results
(e.g. by means of a survey) might be inaccurate, behavioural results were collected. In particular, 15 mouse
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and keyboard features were monitored for 20 participants. These data were then transformed such that it
could be used for classification. The classification results were then visualised on a time line. Six of the afore-
mentioned metrics showed significant differences for people who were energetic compared to people who
were fatigued. In a follow-up study, the system architecture is described in more detail, and a neural net-
work was used to classify fatigue in real-time [51]. Additionally, another study of Pimenta et al. [50] focused
on the mental workload in relation to fatigue by classifying mouse & keyboard interactions combined with
questionnaire data, which shows that in general the mouse & keyboard fatigue indicators aligned with how
people experienced their fatigue. Besides using mouse & keyboard metrics to detect mental fatigue, results
from Khan et al. [33] indicate that even a person’s personality can be measured by monitoring their mouse
and keyboard use.

Other sensors than mouse and keyboard have been used. An example of such is a system designed by
Hall et al. [26] to monitor vital signs. They developed a system to measure a person their heart rate wireless
with an accuracy of 90% in an office cubicle environment. In addition to this versatile system, a more specific
approach was chosen by Wijsman et al. [73], as their focus was especially on detecting mental stress in envi-
ronments similar to the office. They systematically measured physiological properties such as heart activity
using an electrocardiogram (ECG), respiration and skin conductance. People their conditions were classified
as ’stress’ or ’rest’ with an accuracy of 74.5%.

For most of the aforementioned field studies in the areas of detecting and stimulating physical and mental
well-being, we can observe that the number of participants is relatively small compared to survey-based
studies. For our user (field) study, we experienced difficulties regarding three aspects:

1. A limited amount of resources was available for distribution to participants
2. Participants that meet the conditions of the user study are scarce
3. A user study requires intensive guidance

Survey-based studies are to a lesser extend limited by these aspects, for (1) as their resources are inexhaustible
and for (2) as surveys can often be distributed to a relatively large group of people, seizing a relatively small
amount of their time. Aspect (3) concerns answering questions participants have about the user study, solving
technical, logistic and planning problems ad hoc, and observing whether both participants and supervisors
do not influence the outcome of the user study in an artificial way. Increasing the number of participants for
a field study requires sufficient resources, or monetary means as in Finkelstein et al. [22] to obtain sufficient
resources and reward participants for their participation.

2.4. Comparison & user experience of IPAs
Intelligent personal assistants could potentially be used to strengthen the social bonds of elderly. Reis et al.
[57] compared Microsoft Cortana, Amazon Alexa, Google Assistant and Apple Siri on five features:

1. Basic greeting
2. Email management
3. Social network management
4. Social and family events management
5. Social games

These features should lead to user identification, state of mind assessment, obtaining information on the
current context, personal information acquisition and providing a set of activity proposals. Amazon Alexa
contains most of aforementioned features.

In Purington et al. [55] it was observed how people perceive Amazon Alexa, how it can be predicted
whether people are likely to personify Alexa and how this can be influenced by factors such as integration
with other services. This was done by collecting reviews of the Echo device from www.amazon.com. The con-
tent of these reviews was analysed and factors such as degree of personification (e.g. people referring to the
device as a person), degree of sociability (perceived by the user), integration (with other services), technical
qualities and household characteristics (who is/are using Alexa) were measured by means of this content.
From the results, it follows that technical qualities and degree of personification are most correlated with the
overall user satisfaction. Households with children who use the Amazon Echo are more likely to personify the
device than single users.

www.amazon.com
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The degree of sociability consists of five categories, of which users could select more than one:

1. Information source (news / weather)
2. Provider of entertainment (music / jokes)
3. Assistant (schedules / timers)
4. Companion (conversation partner)
5. Friend

79% of the users described Alexa as a provider of entertainment. One third of the users think of Alexa as an
assistant, 5.5% of the users see Alexa as a companion, and 7.2% as a friend.

Personification of personal assistants also play a role in Cowan et al. [12] who examined the experience
of infrequent IPA users by means of a survey. They found that infrequent users were frustrated when the IPA
asked them to interact with a (smartphone) screen rather than interacting with an IPA through speech. In
addition, the lack of integration with third party services was experienced as frustrating. The use of IPAs also
depended on the context of a user: people who did not make use of it frequently were uncomfortable talking
with Siri in public spaces, an effect that is indicated in previous literature [18]. Also, trust in privacy, the IPAs
accent, and the lack of conversation functionality were perceived as weaknesses for infrequent users.

In addition to aforementioned survey-based approach, the user experience of IPAs was extracted in a
series of interviews with 14 different users by Luger and Sellen [39]. A convenience experienced by users was
that voice commands allowed multitasking, because it can be done hands-free. In addition, it was observed
that users conversed differently with IPAs compared to people, for example by talking slow and clear and by
leaving out unnecessary words. One of the users tends to talk more informally in private than in public. It was
also found that satisfaction of IPAs was strongly correlated to the willingness of investigating the possibilities
of an IPA. Also, people who used it more frequently were more successful in using it. First engagements with
an IPA started with playful interactions for almost every user. In general, it can be concluded that there is a
gap between user expectation and system operation that could be bridged by providing ways to reveal the
system their intelligence and skills to the user.

Saad et al. [61] hypothesised that adding a visual component to a virtual personal assistant (VPA) would
improve the quality of (user) experience (QoE). QoE is measured on eight aspects, amongst others user sat-
isfaction and user expectations. They developed four systems: a VPA (s1), a VPA + an avatar on a 2D display
(s2), a VPA + an avatar on a 3D display (s3) and and a VPA + an avatar living in a virtual reality, visualised with
an Oculus Rift (s4). Participants had to perform simple tasks such as sending an e-mail and adding events to a
calendar. s2 had the least variance in QoE, whereas s4 was perceived as having the most potential to increase
QoE when communicating with a VPA.

Studies discussed in this section especially examined user experiences regarding IPAs. The majority of
the people describe Alexa as a tool for providing entertainment such as music, and as an assistant e.g. for
scheduling their calendar. It was also found that people who infrequently interact with IPAs rather converse
by voice than via their smartphone, and that talking in public spaces is perceived as uncomfortable. In ad-
dition, people conversing with an IPA behave in a different way than people conversing with other people,
indicating an IPA may be personal but is not yet ’a person’. Combining virtual reality and IPAs is promising
for enhancing the user experience.

2.5. Enhancing the experience of reflecting on physical activity
Prior work investigated how to detect physical activity using mostly objective metrics from sensors, such as
movement, physiological and contextual sensors. Many of these sensors are embedded in modern smart-
phones, and since nowadays most people possess a smartphone with internet access, transmission of sen-
sor data to other devices and services is possible. Studies carried out by Cambo et al. [3] and Zuckerman
and Gal-Oz [77] used smartphones for detecting and stimulating physical activity, where the latter presented
quantified physical activity data to participants in order to reflect on it. However, results from Finkelstein
et al. [22] indicate that activity trackers are ineffective for stimulating a physically active lifestyle. Section 2.4
elaborates on the perception of IPAs, mostly obtained through interviews and surveys. Nonetheless, there is
a limited number of studies actually using the IPA for a field study. There are good reasons to believe that IPAs
are able to enhance a person their experience on physical activity reflection, as they promise to be aware of a
person their whereabouts and because they can be proactive [62]. Taking these considerations into account,
we designed Alexercise, a system for our user study on which chapter (4) will elaborate. The next chapter will
will elaborate on how Alexercise is established, and how the user study was designed.





3
Methodology

As mentioned in the introduction, the intention of this user study is to track and stimulate physical activity of
participants during office hours, and to verify whether an intelligent personal assistant (IPA) has a more pos-
itive effect on the amount of exercise compared to activity trackers (e.g. smart watches or smartphone fitness
apps). In section 3.1 it is explained why Alexa is the IPA of choice. A participant their insight in physical activ-
ity levels is necessary for them to be able to reflect on their amount of exercise. Methods for perceiving and
collecting these insights are described in section 3.2. With the ingredients ’personal assistant’ and ’activity
tracker’, a user study was tailored. Information about the group of participants that participates in this user
study and the exact experimental setup are described in detail in section 3.3. The last section (3.4) especially
focuses on how results from the field study are being evaluated.

3.1. Choice of IPA
Nowadays, one is able to choose from a variety of IPAs. Companies such as Amazon (Alexa), Google (Assistant)
Apple (Siri), Microsoft (Cortana) and Baidu (DuerOS) respectively configured their assistants on headless
devices such as Amazon’s Echo1, Google’s Google Home2, Apple’s homepod3, Microsoft’s Harman Kardon
speaker4 and Baidu’s DOSS Smart Speaker5. Besides these companies, smaller organisations also enter the
market of IPAs with their product. An example of such an intelligent personal assistant is Mycroft: an open
source voice assistant running on the headless device Mark II6. In addition to headless devices coming with a
personal assistant, Mycroft released Picroft, a software package containing the implementation of the Mycroft
personal assistant, which can be installed on a Raspberry PI7.

At the moment of writing, there is little scientific research available that compares different IPAs on func-
tionality. One of the few examples of a study that aims to do this is Reis et al. [57], as discussed in section 2.4.
They concluded that Amazon Alexa is a device with a broad set of features compared to other IPAs, such as
sending an e-mail, checking the weather and online shopping. However, this result could be very different
when IPAs are assessed on different properties. Before this study was initiated we already possessed an Echo
Dot device. Since scientific literature does not point out significant differences between IPAs, we decided to
first discover options with devices that were already in our possession. Thus, for this study, we explored the
possibilities of Alexa and Mycroft in practice. Mycroft is the most flexible option in the sense that it is open
source and could therefore be configured to our needs. In addition, it could be implemented on different
types of hardware, such as smart speakers, personal computers, smartphones and even on Raspberry Pi’s. We
carried out an exploratory experiment with Picroft using the Raspberry Pi 3 model B8 with an external micro-
phone, power supply cable, a micro SD containing the Picroft OS and external speakers as in figure 3.1b. For

1https://www.amazon.com/dp/B06XCM9LJ4
2https://store.google.com/product/google_home
3https://www.apple.com/homepod/
4https://www.microsoft.com/en-us/p/harman-kardon-invoke-with-cortana-by-microsoft/8rl7xlnwn95v
5https://dueros.baidu.com/en/
6https://mycroft.ai/product/introducing-the-mycroft-mark-ii-pre-order/
7https://mycroft.ai/documentation/picroft/
8https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
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comparison, we also evaluated the response time of an Echo Dot, see figure 3.1a. We asked questions of a dif-
ferent nature, such as factual and mathematical questions, a question where external services were involved,
and a question that requires the capability of combining facts into new insights. In addition, we verified
whether questions with the same intent but a different syntax resulted in identical answers. Overall, we ob-
served that the response time of Mycroft was relatively slow compared to Alexa, as shown in table 3.1. The
voice could be customised, however most of the available voices sounded relatively unnatural. Also, Mycroft
seemed to not always understand the question if asked in a different way, for example it understood "What’s
tomorrow’s weather in Delft", but Mycroft didn’t know how to answer the question "What’s the weather in
Delft tomorrow?". In contrast, Alexa was able to understand both sentences and interpret them in the same
way. Considering the downsides of Mycroft at the moment of writing, we decided to explore the possibilities
of the Amazon Echo Dot. The Echo Dot is fairly adaptable: using the Alexa Skills Kit9 one could add custom
(programmable) functionality to the already wide range of features of Alexa. In addition, we could observe
that it is relatively fast (see 3.1). Furthermore, the Echo Dot has several built-in attractive features such as
"Alexa, tell me a joke", which possibly enhances the user experience. To ease development of a custom skill,
a number of sample projects are available to quickly understand the practice of creating a custom skill10. We
installed several third-party skills to explore the possibilities and limitations of custom skills. Examples of
such are "Question of the day"11 and "BBC News"12. Besides installing third-party skills of both informative
and attractive nature, we created an Amazon Developer account and built our custom skill "GreetingFactory"
using the Command-line interface of the Alexa skills kit (ASK-CLI)13 to test basic reactive functionality (e.g.
"Alexa, ask GreetingFactory to say hi"). The design and implementation of the custom skill for the Echo Dot
will be discussed in more detail in chapter 4. We found that Alexa understood us well, responded relatively
quick to our questions and for custom skills it is relatively easy to connect to third party services and APIs.
Concluding, based on the good impressions from this exploratory experiment we decided to use the Echo
Dot as intelligent personal assistant device for the current study.

Table 3.1: Benchmark tests of Mycroft & Alexa, using a Wi-Fi network of 52.0 Mbps down and 27.3 Mbps up, posing each
question 5 times per device taking turns. Numbers in the first columns are approximations of average response times

(RT), and the values in the second column indicate whether the IPAs provided a correct answer (CA).

Mycroft Alexa

Question RT CA RT CA

Tell me a joke 4.5s Yes 1.5s Yes

What is an elephant 10.0s Yes 1.5s Yes

What is 154*72 4.5s Yes 1.5s Yes

What’s tomorrow’s weather in Delft? 4.5s Yes 1.5s Yes

What’s the weather in Delft tomorrow? 4.5s No 1.5s Yes

Who’s the current prime minister of Tuvalu? 6.3s Yes 1.8s Yes

What would happen if there were no moon? 7.5s No 2.0s No

3.2. Tracking activity
Collecting data about physical activity is required for Alexa to provide user-tailored advises. Measuring a per-
son their physical activity can be done in several ways: (1) by means of activity trackers such as sport watches,
e.g. Garmin14 watches and (2) smartphones, using motion and contextual sensors such as the accelerome-
ter and GPS sensor. For Alexa, it is important that physical activity data is regularly updated, such that the
participant has access to their most recent statistics when informing Alexa about their physical activity. All
communication with a custom skill happens trough the internet, i.e. Alexa sends requests over Wi-Fi to the

9https://developer.amazon.com/alexa-skills-kit
10https://github.com/alexa/
11https://www.amazon.com/gp/product/B01N6QUAXX
12https://www.amazon.com/TuneIn-BBC/dp/B01JHLI06S/
13https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html
14https://www.garmin.com

https://developer.amazon.com/alexa-skills-kit
https://github.com/alexa/
https://www.amazon.com/gp/product/B01N6QUAXX
https://www.amazon.com/TuneIn-BBC/dp/B01JHLI06S/
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html
https://www.garmin.com
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(a) Benchmark setup of the Echo Dot (b) Benchmark setup of Mycroft running on a raspberry pi
(Picroft), external microphone, and speakers

custom skill and the custom skill is able to make requests to external back-end services, like a service built
on AWS Lambda15. Therefore, in terms of compatibility, it would be best if an activity tracker transmits (real-
time) information via the internet, for example to a service that stores the information such that the Echo Dot
could fetch that information whenever they require it. Such an activity tracker would best be wireless, as it
prevents physical movement restrictions on the user. For that, a device using a network connection or Wi-Fi
is required to provide regular updates. A smart watch that transmits data over Wi-Fi or to a smartphone via
Bluetooth such as the TicWatch Pro16 (or another watch using Google’s WearOS17) meets these requirements.
However, a limitation of smart watches is that either Wi-Fi should be available, or a smartphone should be
nearby to keep up a connection to the internet via Bluetooth. For this study, it is likely people will go outside
the office building where there is no Wi-Fi, meaning people have to take their smartphone with them at all
times and keep Bluetooth enabled in addition to wearing a smart watch at all times. A simplification of such
a system is a smartphone-only solution, where it is used as tracking device using the available movement and
contextual sensors. A smartphone meets aforementioned requirements, as they could connect to the internet
in indoor (Wi-Fi) and outdoor (mobile network) environments, have a number of movement and contextual
sensors, and many people possess one as mentioned in section 2.1. For Android and Apple, there are around
13 common sensors included in smartphones [53]. In addition, there are many apps available that are able to
convert sensor data into activity metrics such as number of steps. Sense-it is a mobile application that is able
to detect all motion, position, environmental and body sensors on a smartphone [63]. Data can be viewed
as a graph (Explore), downloaded as CSV file (Record) and send to a platform called nQuire-it (Share), used
for obtaining scientific insights from the acquired data for a specific mission. An example of such a mission
is the recording of sunlight via the ambient light sensor, for which people all over the world can join such
that levels of sunlight can be compared over time for different locations. However, for the current study we
need access to recent physical activity data and neither of the aforementioned options provided that option.
An alternative to Sense-it is Google Fit18, a mobile application for Android and web page to keep track of ac-
tivities. Google Fit allows developers to access physical activity data via their API19. For access to the API, a
Google account is required. Data such as number of steps, calories burned and location are request-able20.
However, a downside of both Google Fit and Sense-it is that they are Android-based. At the time of writing,
many potential participants were in the possession of an iPhone. Therefore, we had the following options:

1. Make use of an existing cross-platform smartphone application such as FitBit21

2. Build a cross-platform app for Android and iPhone smartphones

15https://aws.amazon.com/lambda/
16https://www.mobvoi.com/benelux/pages/ticwatchpro
17https://wearos.google.com/
18https://www.google.com/fit/
19https://developers.google.com/fit/
20https://developers.google.com/fit/rest/v1/data-types
21https://www.fitbit.com/app

https://aws.amazon.com/lambda/
https://www.mobvoi.com/benelux/pages/ticwatchpro
https://wearos.google.com/
https://www.google.com/fit/
https://developers.google.com/fit/
https://developers.google.com/fit/rest/v1/data-types
https://www.fitbit.com/app
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The second option was preferable to the first one for several reasons. At first, available cross-platform solu-
tions are not always clear about the interval of physical activity updates to the server. Second, the physical
activity properties are already determined in case of existing applications. Building an application ourselves
would give the opportunity to tailor the system to meet exactly our requirements without unnecessary func-
tionality. However, a downside is that all sensor data processing mechanics should be configured manually.
Considering pros and cons, we decided to go with a tailor-made cross-platform mobile application. This
mobile application detects movement by means of exploiting the accelerometer and provides context and
location data via GPS. As pointed out in section 2.1, describing physical activity in terms of number of steps is
a method that is often used and easy to reflect on, because it is a quantification that is easy to grasp. Further
design details and the design process of this mobile application are discussed in section 4.2. The next section
elaborates on the user study for which this application will be used.

3.3. User study
The experiment was carried out in four stages over a period of two and a half months, for which 16 people
participated in total. Rounds one and two took place in Delft, The Netherlands and the latter rounds in
Tallinn, Estonia. For the first and second round, entrance requirements for participants were (1) they should
work in the office and (2) either possess an iPhone or Android phone. Because remote distribution of iPhone
apps is hard to establish, the constraints became stricter for the last two shifts, i.e. the participant required
an Android phone to participate. Further details of the experimental setup can be observed in table 3.2.

Table 3.2: Details about experimental setup per round

Start End No of participants No of iPhones No of Android
phones

Locations

1st round 16/07/18 03/08/18 5 (♀= 1, ♂= 4) 4 1 Delft

2nd round 06/08/18 24/08/18 1 (♂= 1) 0 1 Delft

3rd round 03/09/18 21/09/18 4 (♀= 1, ♂= 3) 4 Tallinn

4th round 17/09/18 05/10/18 6 (♀= 1, ♂= 5) 6 Tallinn (4), Delft (2)

Participants received the following tools for either tracking of and reflection on physical activity:

1. DeskstApp, an application for Android phones and iPhones to record and visualise the participant their
number of steps, depicted in figure 4.4a. Further details of this application are discussed in section 4.2.

2. An Amazon Echo Dot (Alexa) to voice-support the participant in being physically active.

DeskstApp both records and visualises of the participant their number of steps. Alexa converses with a par-
ticipant in a reactive manner, supporting them to increase their physical activity levels. To make connecting
with the Echo Dot more appealing, some attractive features were be implemented. Surprising functions are
found to be one of the first encounters with an IPA for people who are not yet familiar with IPAs [39], with
the underlying assumption that most of the participants did not use an IPA before as it is a relatively novel
phenomenon. This assumption is later confirmed by the participants through a survey, discussed in section
3.4.3.

Every round in the experiment consists of three phases, where each phase has the duration of one week:

1. Passive tracking phase: there is no reflection on the performed physical activity
2. App reflection phase: physical activity is visualised in DeskstApp
3. Alexa reflection phase: physical activity can be requested from Alexa

In the passive reflection phase, we determined the physical activity baseline of participants. In the subse-
quent phases, the performed activity for each current day was revealed to them, and they were able to reflect
on their number of steps. In addition, we added an extra level of motivation to DeskstApp. According to the
goal setting theory described by Locke and Latham [38], a specific goal of above average difficulty is more ef-
fective than merely urging people ’to do their best’. Also, self-efficacy commits a participant to his goal. Addi-
tionally, prior work indicated that participants wanted to dynamically update their daily goal [77]. Therefore,
we allowed participants to set a step goal to their liking, starting at a presumably above-average difficulty of
8000 steps. They were urged to set a realistic goal on a daily basis and they were allowed to change their goal
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at any time. Each experimental round was carried out in a time frame of three successive weeks. Participants
were divided into two groups, performing the same tasks in the first week. In the second week, the first group
reflected on their physical activity using DeskstApp and the second group using the Echo Dot. The week af-
ter, the groups switched roles. Initially, the group sizes of both groups should have been identical. However,
in practice this was not the case. In round four, the division of participants should have been 2:4 instead of
4:2. However, in order for the Echo Dot to work a stable Wi-Fi network is required. In the second week of the
4th phase there was a maintenance in the office building of two of the participants, which caused the Wi-Fi
network to be down, meaning they had to be shifted from the Alexa reflection phase to the app reflection
phase.

For the passive tracking phase, the detected taken number of steps was hidden for the user until the
beginning of the next phase. This was done by toggling the ’passive mode’ switch in the app, which would
disable any means of reflection on physical activity for the participant. Implementation of this switch ensures
a smooth transition between the phases, with little interference from our side. For three subsequent weeks,
every day the user had to ’start’ his workday manually, meaning that they should toggle a switch in the app.
When the day was over, they should again toggle the switch to stop the workday. An example of such can be
seen in figure 3.2a and 3.2b. This way, there is a clear time frame for which physical activity was measured. For
participants in the app reflection phase, an instruction sheet was handed out, informing them of DeskstApp
their features. They had to disable the passive mode, such that a visualisation for the number of steps became
visible on another screen, like the left hand side of figure 4.4a in section 4.2. In the Alexa reflection phase,
participants would receive an Echo Dot device and instructions on how to use it, such as example phrases
for the custom skill. participants should enable the ’enable Alexa’ switch in the app. This would disable
physical activity visualisation in the app and enable a message that informed users that Alexa would provide
information about their physical activity. This message is visualised on the right hand side of figure 4.4a. As
the user would be in the Alexa phase, they could receive notifications about their activity. Notifications could
in some cases be timed at an awkward moment, e.g. in a meeting. Therefore, participants had the option to
enable the do-not-disturb switch, in order to disable notifications. They would still be able to communicate
with Alexa while do-not-disturb was enabled.

Figure 3.2: Different states of the app

Passive
tracking
phase

(a) Passive tracking - workday off (b) Passive tracking - workday on

App
reflection
phase

(c) App - workday off (d) App - workday on

Alexa
reflection
phase

(e) Alexa - workday off (f) Alexa - workday on (g) Alexa - workday on with DND
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3.4. Evaluation process
Metrics for the evaluation of physical activity consisted of the number of steps taken by participants, GPS
data and interactions with Alexa, which are analysed on both individual and aggregated level. Results from
the pedometer are leading for determining physical activity, and GPS data is especially used to verify the
correctness of pedometer data. Interactions with the Echo Dot should verify whether a possible increase
in physical activity levels would indeed be caused by Alexa. Mainly, results should point out to what extend
participants increased or decreased their physical activity levels when using Alexa compared to using the app,
as follows from the first research question discussed in section 1.3. Before such conclusions could be drawn,
as a first step in the process of evaluating the results, data should be verified on its correctness. How this
was done will be explained in section 3.4.1. In section 3.4.2, we discuss how physical activity was determined
based on results from the pedometer. The last section focuses on how GPS data was used to verify physical
activity and what role interactions with Alexa and self-reports of participants play in the process of evaluation.

3.4.1. Quality inspection of the data
Quality and reliability of the data could be skewed by a number of factors. Collected data should be assessed
on the following criteria:

Sensor equality - for this study, different types of phones are used. Sensors from each phone might
behave different, possibly producing deviant results. It should be verified whether the step count de-
tection algorithm works identical for every participant in the study. In addition, it should be confirmed
that the phone of each participant does not only sends the right data, but also sends the same amount
of data. As described in section 4.2, approximately every ten seconds a batch of magnitude-data is sent
to the server, based on values produced by the accelerometer. The interval for which the accelerometer
collects data might be different for each type of phone.

Disciplinary behaviour - we kindly request participants to perform certain tasks, such as starting and
stopping the workday in the app and taking their phone with them at all times. However, it might occur
that participants forget to do either of these tasks, thus we need to take these limitations into account
when determining whether there is an overall increase in physical activity levels.

If these criteria are met, it ensures data uniformity amongst participants. Further details on how data are
collected are specified in section 4.2.

3.4.2. Assessment of physical activity
The leading metric for assessing physical activity is the number of steps. This number is calculated by using
data collected by DeskstApp for the step detection algorithm. How this number is determined exactly is
reported in section 4.1.2. We investigated in a post-experimental analysis whether the level of physical activity
expressed in number of steps increased for individual users. For each individual participant we looked at the
average daily number of steps per week. The daily average is chosen over the weekly total number of steps,
because participants were not necessarily asked to work five days a week, as we wanted to approach a real-
life situation as much as possible. We compared the passive tracking phase, app reflection phase and Alexa
reflection phase using the average daily physical activity per week to research whether there is an increase in
physical activity levels. Besides observing a change on individual physical activity levels, it can be determined
whether there is a collective increase or decrease in physical activity per phase.

3.4.3. Correctness verification of measured physical activity
In addition to the number of steps, several other aspects are measured, such as a participant their location,
their interaction with the buttons in DeskstApp, interactions with Alexa and notifications sent from Alexa to
the participant. GPS data is used to verify movement detected by the step detection algorithm and whether
the amount of detected physical activity seems correct. In addition, it is used to calculate the walked distance
on a single day, by adding up the distance between each of the measured points. It should be taken into
account that GPS data were often collected when the participant was located indoors, possibly resulting in
a lower accuracy. However, the plugin that was used for monitoring the user’s location is able to provide
an accuracy estimate in meters22. In addition to physical activity verification by location, we could justify
physical activity by means of observing interactions between the participant and Alexa. If, for example, a

22https://github.com/mauron85/react-native-background-geolocation

https://github.com/mauron85/react-native-background-geolocation
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participant shows an increase in physical activity during the Alexa reflection phase while he did not receive
a notification and does not converse with Alexa, it is likely that there is a different motivation for performing
physical activity. On the opposite, if there is a lot of interaction with Alexa for a specific participant, and at the
same time they perform little or zero movement, it is likely that Alexa does not stimulate them to undertake
action to reach their daily step goal.

In section 2.4, we discussed several studies who investigated user experience of IPAs. Assessing the ’per-
sonal’ aspect of intelligent personal assistants provides context to our results, and especially to the ’why’
questions such as ’why did physical activity levels (not) increase for a particular participant?’. Such quali-
tative results were collected via three surveys. Prior to the study, we distributed a survey requesting basic
contact information from each of the participants, such as name, age and gender. After the passive tracking
phase, a second survey was distributed, requesting participants to elaborate on personal aspects such as the
duration of their workday, use of activity trackers, sports in their spare time and knowledge on the subject
of physical activity & health. As post-experiment survey, we asked participants to share their experiences
with Alexa and DeskstApp and to reflect on their own behaviour, for example whether they were interested in
performing more physical activity and whether they were carrying their phone with them all day.

Taking considerations concerning IPAs, activity trackers and the user study into account, we built a system
able to track and stimulate physical activity for office workers. In the next chapter, we discuss how Alexercise
works, which components are involved and the challenges we faced during the development process.





4
Alexercise

Reflecting on physical activity and being stimulated to perform exercise is facilitated by a variety of interact-
ing components, referred to as Alexercise. It should fulfil several tasks in order to achieve its goal of making
the participants reflect on their physical activity. From the perspective of data flow, the tasks of the system
are as follows:

T1 Collect raw activity data & interactions between participants and their IPA

Before any physical activity reflection or stimulation technique could be applied, the system should
be aware of the participant’s activity. Thus, their motion and location data should be acquired. In
addition, interactions with the IPA could give an indication of how one perceives physical activity
information from an IPA and whether it results in more exercise.

T2 Process primary data and store ’clean’ data

Collected data such as a series of GPS coordinates and an array of raw sensor data is not yet useful
for getting insight into performed physical activity. For participants, physical activity information is
more glance-able when it is quantified and visualised in some way. To achieve that, primary data
should be processed and shaped such that it can be used for presenting it to them. An example of
such is converting the accelerometer data collected from a participant’s phone into the number of
steps that they have taken on that day.

T3 Present activity data

As a third step, clean data should be expressed to the participant, either through Alexa or through the
app. This way, the system allows participants to get insight in their daily activity. Participants should
then be able to decide whether they should perform more physical activity.

Three components together form the system: (1) Alexa, (2) DeskstApp and (3) the Back-end. Each of afore-
mentioned tasks are assigned to one or more components of Alexercise. T1 is fulfilled by DeskstApp and Alexa,
which respectively collect accelerometer data and voice interactions. The second task is solely executed by
the back-end, which calculates the number of steps by means of an algorithm that takes accelerometer data
as input. This ’clean’ data is then requested by the participant via either the app or Alexa, as described in T3.
An overview of all components and their interactions is visualised in Figure 4.1. The following sections will
elaborate on Alexercise their components in more detail.

4.1. Back-end
This component is a part of the system that is not directly used by the participants. particularly for our system,
this is hardware and corresponding software that transforms raw data and stores transformed data, such that
it is fit for presentation to the participants. More specifically, this resulted in the setup of a Model-View-
Controller (MVC) project and a Web API, both in ASP.NET Core1, using Microsoft SQL server2 as relational
database. The Web API was used to serve requests from Alexa and DeskstApp. We used the View component of

1https://github.com/dotnet/core
2https://www.microsoft.com/nl-nl/sql-server/default.aspx
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Figure 4.1: System components & interaction

this project to visualise the collected data. Code management was done via GitLab3 using a private repository.
In addition we subscribed to the text-to-speech service, part of Microsoft Cognitive Speech Services4, further
explained in section 4.3.6.

As discussed in section 3.3, multiple participants will use the system simultaneously, thus the system
must be able to distinguish different participants. In other words: if there is an incoming request for any
kind of data, the system should know which participant is asking and whether they are allowed to receive that
specific data. To achieve this distinction, participants should be authorised in such a way that they only have
access to their data. In section 4.1.1 this is explained in more detail. In section 4.1.2 it is explained how data
from DeskstApp and Alexa is ’cleaned’ and how the number of steps for a single user is calculated. Section
4.1.3 elaborates on how the system is being monitored via the back-end.

4.1.1. Authorisation
For authorisation, OAuth 2.0’s JSON web tokens (JWT) were used, or more specific the JWT bearer token
authorisation grant type [32]. A client provides his credentials to the identity provider, in our case a username
and password. As a result, he will obtain an access token for authorisation, a refresh token for obtaining a new
set of tokens and an expiration date of the obtained token. The resource provider is the party that provides
the client the requested data (in our case the back-end). By means of an access token, the resource provider is
able to distinguish which user requests the data and whether that user has access to the requested data. When
a token is expired, the refresh token can be used to obtain a new set of tokens from the identity provider. Other
system components which will be discussed later in more detail will also conform to the OAuth 2.0 standard.

4.1.2. Data processing
Using OAuth authentication, the back-end is able to make a distinction between users, and ensures data pro-
vision for the authorised user only, providing a safe environment to process incoming data. Such data will
consist of accelerometer magnitude values, GPS coordinates, several app settings and spoken sentences by
Alexa to the participants, used as follows:

Accelerometer - participants were able to reflect on their physical activity, based on the number of steps
they have taken during their workday. For that, DeskstApp collected accelerometer values, computed the
magnitude of each of the accelerometer vectors and sent a series of these to the back-end. This is explained

3https://about.gitlab.com/
4https://azure.microsoft.com/nl-nl/services/cognitive-services/speech-services/
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in more detail in the sections 4.2 and 4.3. From plain accelerometer magnitude values it can not immediately
be determined how and if a person is moving. A certain data transformation was required to be able to con-
vert it to a single number. For that, we built an algorithm that takes the values representing the magnitudes
of the accelerometer vectors as input and outputs a single integer [41]. A simplification of the implemented
version of the algorithm is described in algorithm 1.

Location - DeskstApp kept track of the participant their location, discussed in detail in section 4.2. The back-
end received a coordinate, a time stamp on which this coordinate is generated, the provider of this coordinate
and the perceived accuracy in meters, as of table 4.1. A record containing these properties is stored directly
in the database, and is used for post-experiment analysis of the results.

Interactions with Alexa - as we will see in section 4.3, the custom skill for Alexa requires prepared string
sentences as a response. These sentences are made in advance and stored at the back-end, because by do-
ing so, all data is stored in the same place which provides a clear overview for result analysis. However, this
means that the Echo Dot required access to the back-end in order to facilitate a conversation with the user.
Establishing an authorised connection does not require any additional effort, because access to the back-end
is already required to obtain physical activity information. Section 4.3.5 explains how an Echo Dot is able to
access user-specific information. The prepared sentences were stored in a static JSON file, consisting of mul-
tiple string arrays, one for each type of custom skill function (or ’intent’, see section 4.3.1). Strings contained
in these arrays represent the sentences that were spoken out loud by the Echo Dot, sometimes containing
variables. An example of a sentence with a variable is "You have taken {1} steps today", where {1} should
be replaced with the current number of steps during run time. If the back-end receives an authorised re-
quest from Alexa, it will randomly take one of the sentences made in advance from the corresponding array,
exchange the variable placeholders (if any) with the proper values, store the final sentence in the database
together with the participant their ID, and send back the response to Alexa.

4.1.3. System Monitoring

Alexercise has its vulnerabilities, as it consists of multiple components that should constantly be intercon-
nected, simultaneously processing data produced by multiple participants. In addition, many different types
of phones were used, which could not be tested beforehand, possibly resulting in non-uniform data. Addi-
tionally, we asked much of our participants in terms of discipline as mentioned before in section 3.4.1. In
advance of the user study, we thought participants could possibly forget to execute their daily tasks. To mit-
igate potential problems, we ensured that there are several types of feedback. At first, we implemented the
back-end in such a way that any irregularity in the data would be mentioned in log files. In addition, if there
was a critical error, an e-mail would immediately notify us, containing a description of the error to focus
the view for a possible solution. We also regularly checked if the system was still up and running, especially
looking for recently added records to the database and whether a participant started his workday. At last,
participants were urged to immediately notify us of any irregularity in any way.

4.2. DeskstApp
A key component of the system is the mobile application that was handed out to participants to monitor
their movement. In section 3.2 it was determined that DeskstApp should work both for iPhone and Android
phones. To achieve this, we built our application in React Native5, which is a platform that allows app devel-
opment for both Android and iOS in JavaScript and React6. The latter is a JavaScript library that is especially
useful for building interfaces. An advantage of this approach is the large number of plugins available for
tapping into smartphone sensors, which we needed for our data collection process. Before any data could
be shared with the back-end, the app should provide user identification. Section 4.2.1 will explain how this
is achieved. Section 4.2.2 describes how data was collected over a secure connection. To accomplish any
form of reflection on physical exercise, the raw collected data required quantification and visualisation in an
appealing way. On that, section 4.2.3 will elaborate.

5https://facebook.github.io/react-native/
6https://reactjs.org/
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4.2.1. User identification
Earlier in section 4.1.1 we introduced the OAuth 2.0 protocol for authentication via JWT, including the promise
that other system components would conform to this standard. The first step in the authorisation process
is to provide credentials as a client (the app) for the identity provider (back-end). Therefore, we build two
screens for registration and authentication, as depicted in figure 4.2. Upon logging in, credentials are sent to
the identity provider over a secure (HTTPS) connection. If the credentials are incorrect, the app will display a
detailed error message. Otherwise, the app will be given an access token. This token is included in the header
of a resource request, as a means of authorisation. The next section will elaborate what data is collected by
which part of the system.

Figure 4.2: Visualisation of the register and login screens for Android, including the login screen displaying an error
message

4.2.2. Data collection
In section 3.4.1 of the methodology chapter, we decided to emphasise the number of steps as single metric
to present to the participants. To obtain this number, we tapped into the phone’s accelerometer sensor. Ac-
celerometer data went to a process of transformation until it resulted in the number of steps. The weight of
this transformation process could be divided in two ways:

1. The smartphone transforms sensor data immediately, applying the step-detection algorithm

2. The back-end receives raw sensor data from the server and processes these data by means of the step-
detection algorithm

Processing most of the data at the back-end side has several advantages. At first, it reduces battery depletion
of the smartphone, because most of the processing happens on the server-side. Secondly, it allows storing
not only the number of steps on the server side, but also (parts of) the raw data that is sent to the server,
which might give an indication of the quality of the sensors. Therefore, we decided to host the step-count
detection algorithm on the server-side. In section 4.1.2 we described the algorithm that takes acceleration
magnitude values as input and outputs the number of steps. As discussed before in section 2.1, magnitude
of the acceleration vector is calculated via the formula mag =

√
x2 + y2 + z2. The variables x, y and z express

the acceleration in three directions, like depicted in figure 4.3. Thus, the ’magnitude’ of the vector consisting
of [x, y, z]T describes the net acceleration of the phone. Both iPhone and Android phones have a built-in
3-axis accelerometer. iPhone claims that "All iOS devices have a three-axis accelerometer"7. For Android,
accelerometers are available since API level three8 - which means participants require a phone running an

7https://developer.apple.com/documentation/coremotion/getting_raw_accelerometer_events
8https://developer.android.com/reference/android/hardware/Sensor#TYPE_ACCELEROMETER
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Android version newer than Cupcake (1.5)9 released more than nine years ago10. Google keeps track of the
percentage of Android versions that are active on the Play Store. The earliest version mentioned on their
dashboard11 is Android Gingerbread (2.3.x), used by 0.2% of all Android users. From this we concluded that
almost every iPhone and Android phone currently used contains a built-in 3-axis accelerometer.

However, the accelerometers are not necessarily uniform across iPhone and Android phones. An impor-
tant difference is the unit for expression of acceleration. For that, Android uses the SI units for acceleration12

(m/s2) and iPhone uses g-force13 (g ). The default gravitational acceleration equals to 9.80665 m/s2 [69]. To
achieve uniformity across the system’s components, iPhone accelerometer axes were multiplied with 9.80665
individually. The rate for which accelerometer values were tapped from the sensor was once every 150ms.
These values were then immediately converted to magnitudes of the acceleration vector. To reduce band-
width, magnitude of the acceleration vector is already calculated in the app before it is sent to the server. To
ensure the right order for which these values are received, a time stamp is appended to each value represent-
ing the magnitude of the accelerometer vector. If we would sent each of this values to the server individually,
the number of requests would be equal to 1000

150 ·60 = 400 per minute. Therefore, magnitude values were stored
in the phone’s local storage for ten seconds and bundled in a single request to the server.

Figure 4.3: 3-axis accelerometer

In addition to aforementioned accelerometer values, as a means of verifying the validity of accelerometer
values, the participant their location is frequently determined. For this, we used a background geolocation
service14. Various properties of location are obtained as explained in table 4.1. Each location record is directly
sent to the back-end, at which it is stored for evaluation in a later stage as discussed in chapter 5.

4.2.3. Presentation of physical activity
Visualising physical activity in an attractive and informative way is a crucial aspect in the design of DeskstApp.
Participants should be able to get insight in their daily physical activity levels. In section 2.2 it was questioned
whether gamification elements in promoting physical activity resulted in a significant improvement in move-
ment. As it turned out, gamification elements are not necessarily more effective than quantification. In ad-

9https://source.android.com/setup/start/build-numbers
10https://android-developers.googleblog.com/2009/04/android-15-is-here.html
11https://developer.android.com/about/dashboards/
12https://developer.android.com/reference/android/hardware/SensorEvent#values
13https://developer.apple.com/documentation/uikit/uiacceleration
14https://github.com/mauron85/react-native-background-geolocation
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Table 4.1: Specification of the location record

Geolocation Coordinates expressed in latitude and longitude

Time stamp Time at which a coordinate is recorded

Provider Value representing how the coordinate is determined. The provider can take the values GPS,
network, fused15 and passive16. Fused is a combination of location technologies and for ex-
ample calculates location via combining GPS and Wi-Fi. Passive is a provider that does not
actually request the location, but will return the values generated by other providers

Accuracy Presumed accuracy of the coordinate in meters

dition, it was described that a glance-able display is well-perceived by participants. This inspired us to keep
our application interface simple and to highlight the participant’s physical activity in a quantified way, but
on a glance-able display. In addition, it was discussed in section 3.3 that participants should determine their
own step goal. Having access to both the participant’s goal and his number of steps creates the possibility
to compare them in a meaningful way. Therefore, to visualise the physical activity of the participant for the
participant, we used a circular progress widget plugin for React Native17 that provides an indication of step
progress of the current day compared to the daily goal. Because the user study will consist of two groups (see
section 3.3), DeskstApp requires two versions of this screen: one for participants in the app reflection phase,
and another for participants in the Alexa reflection phase. Participants in the app reflection phase require
visualisation through the app, thus the widget is shown to them. Participant reflecting with Alexa are given a
message that Alexa is able to provide feedback on their physical activity. Screen shots of both versions of the
app are depicted in 4.4a. Participants could adjust their goal in the screen containing the app settings shown
in figure 4.4b. In addition, they could tweak settings to configure the right experimental phase, as explained
in section 3.3.

(a) Visualisation of the app for Android (b) Settings screen for Android

17https://github.com/bartgryszko/react-native-circular-progress
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4.3. Alexa
Transmission of physical activity information from the back-end via Alexa to the participant is needed func-
tionality that meets the requirements of the Alexa reflection phase. Conversing with Alexa requires the use
of sentences with a fixed syntax. This fixed syntax is not necessarily unnatural to human beings, as can be
observed in the first section. The custom-made Alexa application used for our system is explained in section
4.3.2. Alexa itself consists of different parts that transfer prepared sentences from the back-end to the Echo
Dot device, where they are spoken out loud. How these internal parts interconnect will be explained in the
architecture section, with an example use case in section 4.3.4. Similar to the other components, Alexa should
be able to connect to the back-end and fetch the necessary information. Section 4.3.5 elaborates on how the
user is identified by Alexercise and how data between Alexa and the back-end is transferred in a safe way. At
last, the notification feature of our system is explained in section 4.3.6.

4.3.1. Syntax
An important feature of Alexa is the Custom Skill18. Through the developer portal of Amazon one can add
custom functionality - a skill - to the existing set of applications available for Alexa. The concept is similar to
apps on a smartphone: one is able to install existing skills (apps in the analogy) via the Alexa App. Such a skill
consists of several components defined by Amazon (table 4.2).

Table 4.2: Explanation of custom skill components

Custom skill component Explanation

Intents Actions that are requested by the users (e.g. ’order a pizza’)

Sample utterances A specific set of words the users may use to invoke an intent. For example, if
the user would like to order a pizza (intent) he might say ’get me a pizza’, ’i want
pizza’, ’order a pizza now’. These utterances all map to the same intent.

Invocation name Name that is unique to the custom skill and that should distinct it from other
skills.

Cloud-based service Handles the intents. In the pizza analogy, a cloud-based service should make
sure that the pizza company receives an order and deal with the payment.

Every request for or conversation with Alexa starts with the wake-word ’Alexa’. This will make sure that any
Alexa-enabled device such as the Echo Dot is listening to the words that follow after the wake-word. Alexa
could have more than a single skill installed, thus the user should make sure they direct their request to the
right skill by mentioning the skill invocation word. At last, the sample utterances follow to further specify the
user’s request. A spoken request to Alexa typically has a structure as defined in table 4.3. More structures are
defined on the website of Amazon for developers19. Words such as ’ask’ and ’tell’ and connecting words (by,
from, in, using, etc.) are automatically recognised by Alexa as such.

Table 4.3: Syntax of Alexa requests

Example Structure

Alexa, ask My Coach for my steps Alexa, ask [invocation name] [sample utterance]

Alexa, get my steps using My Coach Alexa, [sample utterance] [connecting word] [invocation name]

Alexa, tell My Coach to get my steps Alexa, tell [invocation name] [connecting word] [sample utterance]

18https://developer.amazon.com/docs/custom-skills/understanding-custom-skills.html
19https://developer.amazon.com/docs/custom-skills/understanding-how-users-invoke-custom-skills.html

https://developer.amazon.com/docs/custom-skills/understanding-custom-skills.html
https://developer.amazon.com/docs/custom-skills/understanding-how-users-invoke-custom-skills.html


30 4. Alexercise

4.3.2. My Coach
Physical activity statistics are retrievable via My Coach, the self-made custom skill that is part of our system.
We defined five intents for participants to use:

1. Retrieve No of steps
2. Fetch remaining No of steps intent
3. Ask for a motivational quote
4. Sing a stimulative song
5. Start the current workday

Intent (1) and (2) are merely informative and could respectively be invoked with sample utterances such as
’ask for my progress’ and ’get my remaining steps’. Intent (3) and (4) are implemented as slightly mocking
attractive features and can be triggered with phrases such as ’ask for a motivational quote’ and ’sing a stim-
ulative song’. The last intent is a functional one. Every workday, participants were asked to trigger the start
workday intent, which started a small conversation between Alexa and the user. The participant would ask
Alexa to start the workday, on which she would reply with ’What time do you expect to go home today?’. They
would then reply with an expected end time, and if this was a valid end time, Alexa would thank the partici-
pant. Alexercise would then be aware of the expected end time of the participant and whether they were on
schedule in terms of physical activity. This functionality is useful for sending notifications as discussed in
section 4.3.6. In the next part, we will elaborate on how My Coach works behind the scenes.

4.3.3. Architecture
Alexa and the Echo Dot sometimes seem interchangeable expressions of the same concept. However, when
talking about the architecture of the system it is important to emphasise the difference. When talking ex-
plicitly about the Echo Dot, the device itself is the subject. Alexa is the personification of the whole set of
components that together are the system, thus including the Echo Dot. That being said, we can identify the
software components involved in creating a custom skill for Alexa, not to be confused with the internal com-
ponents of a custom skill as discussed in the previous section. Up until this point, we have an Echo Dot that
has access to the custom skill ’My Coach’ that is able to receive commands from a participant, triggering an
intent if done correctly. However, without any external information supply, My Coach is not able to provide
any useful physical activity information. Therefore, we require a Cloud-based service. According to Amazon’s
documentation there are two options for such a service: a custom web service20 or an AWS Lambda func-
tion21. The latter is, as they call it, a serverless solution, meaning that a developer is able to directly create
a service without the need of a self-owned server. Because AWS Lambda is well-documented, cost-free for
the first one million requests and because there are many Node.js samples available (one of the languages of
choice on AWS Lambda) we decided to build the web service in Node.js on AWS Lambda. While faster de-
veloping of the web service is an advantage, a disadvantage of this approach is that an additional connection
is required with the web server containing the physical activity data. In this case, the advantages outweigh
the disadvantages because of the Alexa Skills Kit (ASK) SDK for Node.js22 which greatly simplifies the way
requests are handled.

Initiative for interactions with Alexa is always with the user. Once a participant speaks the wake-word out
loud, following with a command for Alexa matching an existing intent, a request is composed for the AWS
Lambda function. Alexa handles the speech-to-text processing and is able to recognise special types such as
numbers and dates in a sentence via slots23, embedded in the the sample utterances as in figure 4.5. Words
recognised as slots can be retrieved from the Alexa request by the Lambda function in the correct data type.
In turn, the Lambda function requests physical activity information of the participant from the back-end and
injects the obtained information in the response to Alexa. Embedded in this response is an object written in
the Speech Synthesis Markup Language24 (SSML). SSML can for example be used to define how fast text is
read out loud and to embed audio files in the response. Alexa then converts this response to speech, which
is in turn read out loud by the Echo Dot. A use case of information exchange is explained in the next section
and visualised in figure 4.6.

20https://developer.amazon.com/docs/custom-skills/host-a-custom-skill-as-a-web-service.html
21https://developer.amazon.com/docs/custom-skills/host-a-custom-skill-as-an-aws-lambda-function.html
22https://github.com/alexa/alexa-skills-kit-sdk-for-nodejs
23https://developer.amazon.com/docs/custom-skills/slot-type-reference.html
24https://www.w3.org/TR/speech-synthesis11/
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Figure 4.5: Example of slot types embedded in sample utterances, used when participant tell Alexa when they expect to
go home

4.3.4. Use case: request remaining steps
Bob, one of the participants, is curious how much physical activity is still required to reach today’s goal.
Bob decides to ask Alexa how many steps remain for the current workday. With the sample utterance ’how
many steps remain for today’ Bob triggers the intent ’get remaining steps’. A request is composed and sent
to the AWS Lambda function. The Lambda function receives the incoming request and determines which
intent is triggered using the ASK SDK. It recognises the ’get remaining steps’ intent, and therefore requests
the remaining number of steps from the web server containing Bob’s physical activity information collected
by DeskstApp. This specific request is saved in the database for later analysis. A phrase containing the number
of remaining steps for today is sent back to the Lambda function as a string and, if done correctly, forwarded
to the custom skill captured in an SSML request, which processes the request and converts it to a speech
result. The Echo Dot speaks the response out loud, informing Bob about his remaining steps for today.

4.3.5. User identification
Before the Echo Dot is able to provide physical activity information, they should be granted access to the
back-end. For that, Amazon introduced ’account linking’25. This allows accessing content from an external
resource provider via an external identity provider. In our case, the external providers are combined in the
back-end, as discussed in section 4.1.1. Account linking can be performed in both the Alexa app or the Alexa
website26. For an Alexa account to be linked, a public web page is required to which the participant can
be redirected to provide his credentials. Therefore, we created a custom login page in the back-end. Upon
submitting the login form, a code is generated by our back-end and both stored in the database and sent back
to Alexa - also know as authorisation code grant27. Using this code, Alexa performs a request to the identity
provider which exchanges the code for an access token and refresh token. Resources of the authorised user
can now be accessed using the access token. This procedure conforms to the OAuth 2.0 standard, discussed
in section 4.1.1.

4.3.6. Notifications
Participants may not have the incentive to converse with Alexa. On the contrary: prior work indicates that
people choose not to use them regularly [12]. Initially, we intended to send motivational push notifications
through the Echo Dot device. However, at the moment out user study was carried out, this feature was
not available. There are ongoing discussions on whether to implement this feature28 and discussions for

25https://developer.amazon.com/docs/account-linking/understand-account-linking.html
26https://alexa.amazon.com/
27https://tools.ietf.org/html/rfc6749#section-1.3.1
28https://forums.developer.amazon.com/questions/8497/push-notifications.html
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Figure 4.6: Components which together form Alexa & information exchange between the components

workarounds29. Since push notifications are unidirectional, we only required a text-to-speech service and
not vice versa. To have compatible voice sounds, we looked into Amazon Polly30. However, available voices
did not sound similar to Alexa. In addition, we tested Mycroft Mimic31, which was just a single executable
running on the web server, expecting a string as input and outputting an audio file. We used some of the
sentences made in advance we intended to use for Alexa and converted them to speech by means of Mycroft
Mimic. Unfortunately, it did not sound as sophisticated as Alexa and Amazon Polly. As a third option, there
was Microsoft’s Cognitive services text-to-speech32. Both Amazon Polly and Microsoft Cognitive services of-
fered a free-tier service for a certain number of requests. Microsoft had an example project available in C#
(our back-end programming language) which was almost immediately ready for use, so we chose Microsoft’s
cognitive services for our text-to-speech processing.

DeskstApp would ask the server every minute whether a notification is required for the participant. If
that is the case, it would be determined whether they would still be on schedule. A notification message is
composed of sentences in the following categories, if applicable to the participant:

1. Sentence for moving too little
2. Sentence for moving irregular
3. Sentence for moving sufficient
4. Sentence for completing the daily goal

Thus, an example notification for a participant moving sufficient but irregular would be "You’re on the right
track towards your goal. However, taking a few small breaks instead of one large break is a good start to
break up your sedentary time". Irregularity is included because of Healy et al. [28], as we discussed in the
Introduction. This notification was read out loud on the participant’s smartphone instead of the Echo Dot.
It was optional for participants to connect their smartphone to the Echo Dot, using the latter as an external
speaker for the notification sound.

29https://forums.developer.amazon.com/questions/40799/workaround-for-push-notifications.html
30https://aws.amazon.com/polly/
31https://mycroft.ai/documentation/mimic/
32https://docs.microsoft.com/en-US/azure/cognitive-services/speech/api-reference-rest/bingvoiceoutput
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4.4. Challenges
The development road towards the final system was full of difficulties and challenges. This section discusses
the biggest obstacles that had most impact on the development and how they were overcome.

4.4.1. Ejecting from Expo
Building an app in React Native was supposed to ease cross-platform development for Android and iOS.
This would probably have been the case if we did not have to deviate from the original plan. Initially, we
started building our app using Expo33, an open-source tool to allow development of pure React and JavaScript
solutions without any restrictions on development OS’s or app distribution. Via Expo we were able to make
use of Google API’s and Apple API’s for accessing a participant’s number of steps34 without implementing
a pedometer algorithm. However, an open feature request is to run background tasks with an application
in Expo35, functionality that is currently not implemented. Frequent updates is one of the requirements of
our system, meaning that Expo is not a suitable solution. React Native has an alternative to aforementioned
approach, namely building an app with native code. For that, we had to "eject" from Expo, meaning that we
had the possibility to include plugins using ’native’ code for Android and iOS. An advantage of this approach
is that we could include React Native Background Fetch36, a plugin that periodically allows callbacks in the
background even if the app is closed, with a maximum of one callback every fifteen minutes. Disadvantages
are that (1) the app no longer had access to the Expo package, including the Expo pedometer and (2) apps
running native code require the installation of Android Studio for Android development and Xcode for iOS
development. We will further elaborate on platform-specific development in the next section.

4.4.2. Strict Apple policies
For app development in React Native with native code, platform specific integrated development environ-
ments (IDEs) are required. For developing and testing the application, we had access to an Android phone,
a laptop running Windows with Android Studio and the React Native CLI. However, for building the appli-
cation for iOS devices, a development machine running MacOS is required. Initially we tried to run MacOS
Sierra (10.12) on a virtual machine (VM) using Oracle VM VirtualBox, and when Xcode tools was unable to
install we subsequently ran MacOS High Sierra (10.13) on a VM. Xcode tools could not be installed for those
versions, because it required at least MacOS Mojave (10.14). Once running Mojave on the VM, it would not
install Xcode tools because installation required a restart, and restarting would wipe the VM’s applications.
For testing the application for iPhone, we were able to temporarily adopt a MacBook Pro. Xcode tools offers a
simulator for running the app on a virtual iPhone of choice. However, motion sensors like the accelerometer
could not be enabled on the simulator, thus we needed an iPhone for the last part of the testing phase. For
that, we could borrow one occasionally. Apple does not allow remote distribution of applications without a
developer account of 99 USD per year. A free account is only allowed to distribute apps via physical access
to the phone, with a certificate that is valid for at most seven days, which can be installed on at most three
distinct iPhones. A workaround for the number of phones restriction was to create multiple iTunes accounts.
Overcoming the first problem was done by giving the app a refresh installation every week for every partici-
pant using an iPhone.

4.4.3. Distribution of My Coach
In the past nine months, Amazon drastically changed the Alexa development interface. While in the pre-
vious version one had to perform some programming, the new version requires almost no programming
knowledge. The new interface requires little training, but nonetheless the structure of a skill seems different
compared to the old interface, which caused us to restructure our skill. However, a convenient feature in the
new interface is the ability to perform beta-testing. A public custom skill is usually distributed via Amazon
and available for every person owning an Alexa-enabled device. Beta-testing allows specific e-mail addresses
to receive an invite code for the custom skill. Accepting this invitation will show the custom skill in the Alexa
app, available for use. An advantage of this approach would also be that custom skills are instantly updated
during the beta-testing phase, whereas a publicly distributed custom skill should be re-published before any
changes are applied.

33https://expo.io/
34https://docs.expo.io/versions/latest/sdk/pedometer
35https://github.com/expo/expo/pull/2338
36https://github.com/transistorsoft/react-native-background-fetch
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4.4.4. Installing the Echo Dots
We were in the possession of five Echo Dots - two in Estonia and three in the Netherlands. Those numbers
do not cover the number of participants, thus we could not hand every participant a unique Echo Dot. This
means that devices were moved around quite often. Every Echo Dot requires a link to a unique Amazon
account, because if two devices are linked to the same Amazon account they can not be linked to separate
back-end accounts. We created a unique Gmail or Hotmail e-mail address for each Echo Dot and created an
Amazon account for each of these e-mail addresses. Echo Dots would be moved between participants either
the Friday before the Alexa reflection phase or the Monday of the Alexa reflection phase, and as they moved
we also unlinked the Amazon account from the back-end account of the previous participant, and linked
them with the back-end account of the current participant. For Estonia, accounts were unlinked and linked
remotely.

Every Echo Dot requires an internet connection via Wi-Fi. As the experiment ran mostly in university
buildings, Eduroam (education roaming)37, a world wide educational Wi-Fi network, was the intended net-
work of choice for connecting the Echo Dots. However, this network (WPA2 Enterprise) is not supported and
not recognised by the Echo Dot. As a solution, we requested Wi-Fi codes for the visitor network, a network
intended for temporary guests of the university. These codes were valid for three weeks, which was sufficient
for the experiment.

37https://www.eduroam.nl/
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5
User Study

The collected data from the user study is the basis of our analysis for answering our research questions. This
collection consists of sensor measurements, interactions with Alexa and survey reports. Sensor measure-
ments and interactions with Alexa were provided by all sixteen participants. Fifteen participants provided
feedback through surveys. This chapter will discuss how these data are analysed and how these may support
us in answering our research questions. In section 5.1, the collected data is assessed on its reliability. Then, in
section 5.2 we describe how participants interacted with Alexa (H1). Next, section 5.3 elaborates on the differ-
ence in physical activity levels between different phases is discussed. Finally, we describe to what extend we
could provide answers on our research questions, and discuss the challenges we faced during the user study.

5.1. Data quality assessment
In order to draw conclusions based on the collected data, we ensured that it is equal amongst participants
and complete. Equality of data amongst participants includes verifying that sensors of distinct phones re-
ported similar values, i.e. that their sensors behaved in the same way. Testing completeness is about verifying
whether the accelerometer-data and GPS-points are sampled sufficiently frequent, if participants enabled
and disabled their workday on time and whether they carried their phone with them for every bout.

5.1.1. Sensor equality
As discussed in section 4.2.2, magnitude values of the accelerometer vector are sent to the server in batch.
Storing each of these values separately would result in a relatively large claim on the available disk space. In-
stead, a summary of the batch data is stored in the database, reporting the mean (or average) of all values in
the batch, the maximum value, the minimum value and the number of elements in the batch as in figure 5.1.
As a way of assessing the quality for each of the smartphone accelerometer sensors, we compare the reported
summaries between different users (thus different phones). In section 4.2.2 we have seen that accelerometer
measurements are expressed in m/s2. If the phone does not move, it is expected to report only the gravita-
tional acceleration, because no other force is applied on it. Since our participants are office workers who are
most of the time in sedentary state, we expect that the median of magnitudes of the accelerometer vector
represents a phone that is not moving, thus being approximately equal to the gravitational acceleration. In
addition to accelerometer data, the participant’s location is supposed to be frequently reported by the app.
GPS data is compared on its accuracy and frequency of reports.

accelerometer sensor analysis is carried out in the following way: we collected all summaries of ac-
celerometer sensor reports per user and for each collection we calculated the median of average, maximum
and minimum values. The median is preferred over the mean, because it ignores outliers and values gen-
erated while the participant was moving (which would result in a higher magnitude of the accelerometer).
We found that the average (µ) of these median values is 9.85, which deviates 0.04 from the gravitational ac-
celeration of ≈ 9.81 [69]. The median of average values and maximum and minimum peak values per user
are depicted in figure 5.2. Figure A.1 specifically zooms in on the median of all reported average values. For
minimum values (µ= 9.14,σ= 0.71) and maximum values (µ= 10.71,σ= 0.97) we can observe that the vari-
ation is larger than for the average magnitude values. However, this is mostly due to three Android users that
report both high maximum values and low minimum values, which might indicate that their smartphone
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sensors are not well-calibrated. The majority of the accelerometers report magnitude values between 8.5 and
11, which is sufficiently accurate as input for our algorithm.

Figure 5.1: Example of capturing accelerometer data and transmitting it to the server in batch, where a record is created
summarising that batch. From a collection of this summaries, we calculated �max, âmean and �mi n accelerometer values

for each user.

Figure 5.2: Boxplot of the medians of minimum, average (mean) and maximum magnitude values, extracted from
summary reports for each participant

GPS sensors are compared on the ’accuracy’ attribute reported by the participants’ smartphones (see
table 4.1). Thus, for all collected GPS data, we determined the variance in accuracy values by calculating
the interquartile range (IQR), removing outliers that are 1.5·IQR away from the median and determining the
accuracy in meters of the produced data points. In this data set without outliers, we observed that 62.39% of
the location data points had an accuracy of exact 65 meters, all generated by iPhones. Additionally, 26.60%
of the measured locations had an accuracy value smaller than 65 meters, of which 88.43% was generated
by iPhones. These numbers indicate that Android phones are underrepresented in terms of location data
reports. This is supported by figure 5.3, which shows an example of two representative participants where
accumulated GPS data over three weeks are plotted on a map. It can be observed that iPhone smartphones
reported significantly more location data.
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(a) Location frequency for Android (b) Location frequency for iPhone

Figure 5.3: Location frequencies for two representative participants. This is the office in Holland where most
participants worked.

Summarising the observations of the mechanical differences between distinct smartphones:

• The average accelerometer values are similar between participants and slightly, but not significantly
higher than we expected.

• The variance in reported values from accelerometer sensors between participants is fairly small, except
for three outliers (participants)

• iPhone smartphones reported significantly more location data compared to Android phones

5.1.2. Completeness
Disciplinary behaviour of participants is involved when assessing completeness of the data, such as the habit
of taking their smartphone with them when leaving their desk and whether they would toggle the start/stop
workday switch in the app. According to the self-reports of participants, 26.7% (4) of the participants always
carried their phone with them. 53.3% (8) of the participants often took it with them. The remaining 20% (3)
reported that they carried it sometimes or occasionally.

Recapitulating from section 3.3, participants were given the task to start and stop their workday manually
to set a fixed time frame for which their physical activity would be recorded. According to self-reports from
participants, most of the participants never or occasionally forgot to perform these tasks as shown in table
5.1. On average, participants were especially forgetful on starting their workday. However, according to the
information on the server, 73.3% (11) participants forgot to switch the workday off in the app at least once,
indicating that at least three participants who filled in ’never’ should be assigned to ’occasionally’. The reports
for the ’sometimes’ and ’often’ categories are in accordance with the numerical data, as can be observed in
table 5.2. In total, 79.3% of all started workdays were finished correctly by the participants.

Table 5.1: Percentage of participants reporting the frequency for which they forgot to start or stop their workday in the
app

I ... forgot to
start my workday
(% of participants)

end my workday
(% of participants)

Never 26.7% (4) 46.7% (7)

Occasionally 40.0% (6) 33.3% (5)

Sometimes 26.7% (4) 13.3% (2)

Often 6.7% (1) 6.7% (1)
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Table 5.2: Percentage of participants that forgot to end their workday according to the data available on the web server

% of participants No of times

13.3% (2) 1

6.7% (1) 2

20.0% (3) 3

13.3% (2) 4

13.3% (2) 5

6.7% (1) 7

During the experiment, some participants sent us feedback indicating that the app for Android phones
did not always behave as expected. These had especially to do with the app reporting a lower number of steps
than they expected. In response, we analysed the raw accelerometer data coming from Android phones and
whether any particularities could be observed. As a result, it was found that:

1. The sample rate of the accelerometer sensor for Android phones was often too low
2. The application was sometimes shut down

Briefly, why (1) results in a lower number of steps is due to the following reason: the algorithm is built for
a certain sample rate of accelerometer values. The less values are reported by the accelerometer, the lower
the calculated number of steps is. This is explained in detail in 5.5.1. (2) could have multiple explanations.
First, it was found in the Android documentation about life cycles of processes and applications1 that "an
application process’s lifetime is not directly controlled by the application itself. Instead, it is determined by
the system through a combination of the parts of the application that the system knows are running, how
important these things are to the user, and how much overall memory is available in the system." If there
is insufficient memory available, and another application requires memory, activities and services may be
throttled or closed by the operating system. Additionally, Android will restrict sensors running in the back-
ground2 for phones running Android 9. For some participants, the app would often only report accelerometer
values +- every 15-20 minutes for a period of 30-60 seconds. This is due to the React-native-background-fetch
plugin3, which allows an app to be active in the background at most every fifteen minutes. How often an app
is woken up in the background is determined by the grace of the operating system. For other participants,
the app would sometimes entirely stop reporting data. Besides the array of potential technical reasons that
are possible explanations for data loss, it could also be the case that participants accidentally closed the ap-
plication themselves. Closing the application would remove all sensor listeners. Therefore, participants were
urged to keep it open, either in the foreground or background.

Concluding, Android phones in general reported between 0-70% of the expected data. Therefore, they are
unfit to serve as trusted data source for proper statistical analysis. For comparing the number of steps taken
in the Alexa reflection phase and app reflection phase we therefore decided to only take into account data
from iPhones. iPhone smartphones generally produced the expected number of accelerometer reports, on
which section 5.3 will elaborate.

Summarising the findings related to the completeness of data:

• Approximately 80% of the participants reported they often carried their phone with them
• According to self-reports, on average participants occasionally forgot to start or stop their workday in

the app
• Self-reports of participants are relatively well-aligned with data on the server
• Data from Android-phones is incomplete, which had two potential causes: (1) a low sample rate and

(2) the fact that the app is sometimes closed either by the OS or participants
• Given that Android phones reported few location points and provided incomplete accelerometer data,

only iPhones will be taken into account for further analysis
1https://developer.android.com/guide/components/activities/process-lifecycle
2https://developer.android.com/guide/topics/sensors/sensors_overview
3https://github.com/transistorsoft/react-native-background-fetch

https://developer.android.com/guide/components/activities/process-lifecycle
https://developer.android.com/guide/topics/sensors/sensors_overview
https://github.com/transistorsoft/react-native-background-fetch
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5.2. Interactions with Alexa
Interactions with Alexa consist of user-initiated conversations and Alexa-initiated notifications. Only conver-
sations with the custom skill My Coach could be recorded due to restrictions in the software of Alexa. The
number of conversations differs very much between users, as can be seen in 5.4. Two of the participants
conversed respectively 25 and 28 times with Alexa in a single week, whereas on the other side of the spec-
trum, three participants initiated zero interactions. The number of notifications varies between participants
because it depends on the length of the workday and the up time of the application.

Figure 5.4: A boxplot visualising the No of conversations with and notifications from Alexa

In section 4.3.2 it was explained that a conversation starts with a voice request from a participant, trig-
gering an ’intent’. We then categorised intents into the categories informative, attractive and functional. As a
functional feature, participants could tell the system what time they would go home such that notifications
would provide tailored information adapted to the situation, e.g.: if a participant would only work four hours,
there is less time to reach a certain goal than if a participant would work for eight hours. Secondly, there
are informative intents that provide the participants information about their physical activity. To make in-
teractions with Alexa more attractive, two such features were added. Table 5.3 shows attractive features were
least used by participants, requested by half of the participants. The functional intent, however, is more often
used, on average approximately three times per participant. This was the only intent we explicitly asked par-
ticipants to trigger. Informative intents were most often requested by participants: on average seven times
per participant. The number of conversation intents resonates with self-reported data from participants: 80%
(12) of them reported they used Alexa once a day, 13.3% (2) of them 2-3 times a day and one participant never
used the available functionality.

Table 5.3: Distribution of conversation intents amongst participants and the total number of initiated conversations

Intent No of initiated conversations No of distinct participants Category

Get No of steps 94 12 Informative

Start workday 44 12 Functional

Get remaining No of steps 17 6 Informative

Request stimulative song 11 7 Attractive

Get a fun fact 7 3 Attractive

On a 5-point Likert scale, 46.6% (7) of the participants found talking to Alexa moderately (4/5) or very (5/5)
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intuitive. Another 46.6% found it neither intuitive nor counter-intuitive (3/5). However, 60% (9) of the partici-
pants found talking to Alexa in the office with colleagues uncomfortable, something that was also mentioned
in prior work [12, 18]. One of the participants told us "I felt a bit uncomfortable while giving voice commands
to Alexa as I thought that it disturbed my colleagues (open-office). I probably would have used Alexa’s other
functionalities much more if I would have had it at home." In addition, participants were generally satisfied
with the way Alexa understood their commands. 66.7% (10) of them reported that Alexa always understood
their commands and 26.7% (4) experienced Alexa understood them, but not always. Overall, on a 10-point
Likert scale participants rated their overall experience with Alexa with a 6.4, varying from three to ten.

Recalling from section 4.3.6, notifications were sent through the mobile application. Due to partial in-
activity of the Android version of DeskstApp, notifications were suppressed and therefore the number of
notifications varies between participants. In total, the system registered that 86.7% (13) of the participants
received at least two notifications and 46.7% (7) of the participants received ten or more notifications. How-
ever, according to self-reports 53.3% (8) participants perceived notifications. A potential reason could be that
their volume was too low to hear the notification, or that they were away from their phone. Six out of eight
participants would find notifications not motivational and none of the participants found that notifications
stimulated them to talk with Alexa. On the other hand, five out of eight participants did not find the notifi-
cations disturbing. Most notifications were about stimulating insufficient or infrequent activity. This means
that participants often were not on schedule for their goal. In the next section we take a closer look at why
this could be the case and we compare the number of steps taken in each phase.

Summarising findings related to interactions with Alexa:

• The No of conversations with Alexa differs significantly between participants
• Participants mostly requested informative conversations (i.e. asked for their No of steps), in contrast to

attractive features that were least used
• On average, participants found talking to Alexa intuitive, but uncomfortable when other colleagues

were around
• Notifications were not experienced as motivational by most participants

5.3. Comparison of performed physical activity between phases
For comparing results of the Alexa reflection phase and app reflection phase (section 3.3) results from the An-
droid version are excluded in this section because they reported insufficient data. Thus, this section reports
data from the remaining four participants, consequently referred to as participant 1, 2, 3 and 4. For them, it
was found that there are sufficient accelerometer data reports to cover some days (see figure A.2). In addition,
it was perceived by these participants that the application accurately predicted their steps.

5.3.1. Evolution of self-set goals over time
Participants were able to set their own goal, as advocated by the goal-setting theory. They would start with a
default value of eight thousand steps and urged to reflect on it every day, and update it if they noticed it would
be too high or too low. It was found that a goal of eight thousand steps is perceived as too high. Table 5.4 shows
that every participant lowered it in the course of the experiment. Some of them gradually lowered their goal
and some of them changed it once during the experiment. Three of the participants found the available range
of goals sufficient, whereas one of the participants wanted to set a goal lower than two thousand steps.

Table 5.4: Goal for each participant at the start and end of the experiment

Participant Goal at the start Goal at the end

1 8000 3000

2 8000 7000

3 8000 2500

4 8000 5500
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5.3.2. Physical activity per phase
In section 3.4.2 it was determined that the most important physical activity metric is a participant’s number
of steps. This number should then be verified by the available GPS data, as discussed in section 3.4.3. For
each of the four participants, we first determined which working days would qualify as days with sufficient
data reports. Therefore, we included only working days where at least 75% of the expected number of ac-
celerometer data was reported. In addition, workdays shorter than six hours were excluded to create a fair
comparison. Activity performed on those workdays were then categorised per phase. For each day of every
participant, we excluded physical activity where GPS data indicated a user would travel faster than 10 km/h.
For example, participant 4 once forgot to disable their workday and left the application on when travelling
by train. Our filtering method filtered out the falsely detected physical activity in the train, and kept detected
activity during the short bouts from the office to the railway station of departure, and from the railway station
of arrival to the presumed destination. Because participants sometimes forgot to stop their workday in the
app, we also applied a distance filter on the results. If a participant would move more than five kilometres
away from the office, measured physical activity would be excluded, such that only physical activity during
working hours and near the office are measured.

For each phase, active days per phase were collected and the mean number of steps per participant was
calculated, visualised in figure 5.5. It can be observed that for participants 2 and 4, there is no data available
for the app reflection phase. This is due to the fact that these participants worked in the office for less than five
days and the remaining data reports were of insufficient quality for these participants. Most of the missing
data is due to troubleshooting interventions for participants with iPhone smartphones for reasons explained
in section 4.4.2. In the next section we will evaluate our research questions and to what extend the results are
supportive in answering them.

Figure 5.5: Mean absolute No of steps taken (y-axis) for days longer than six hours where at least 75% of the expected
accelerometer-data was collected

Summarising findings related to the comparison of performed physical activity between phases:

• Only data from four participants using iPhones is included for evaluating their goals & No of steps
• Participants lowered their goal during the experiment, either gradually or at once
• Physical activity performed more than five kilometres away from the office or while travelling at high

speed is removed from the final results
• No of steps taken per phase are visualised for four participants
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5.4. Evaluation of the research statement
For our study, we investigated how proactive intelligent personal assistants affected a participant’s physical
activity levels, especially compared to activity trackers (RQ1). In addition, at the end of the experiment, par-
ticipants were asked to indicate whether they felt the need to take more active breaks during their workday
in the future (RQ2). They also reported how often they would perform sports outside working hours, such
that we could observe possible differences in those who have an active lifestyle and those who do not (RQ3).
In addition, it was hypothesised that participants would probably not often use Alexa (H1) and that activity
trackers (i.e. the app reflection phase) would not lead to a significant increase in number of steps (H2).

RQ1 We intended to use data from all sixteen people participating in our experiment for performing
non-parametric statistical tests in order to answer RQ1. Four out of sixteen participants provided
sufficient data, which we consider too little for proving the effectiveness of Alexa compared to ac-
tivity trackers. Due to the combination of (1) the small number of participants (2) insufficient data
and (3) habits of participants such as forgetting their phone, it is impossible to draw conclusions
on whether Alexa can be considered ’more effective’ than activity trackers. Therefore, this question
remains unanswered. However, we can still learn from the process of developing the system and
executing the user study. For example, aspect (3) gives us insight in whether smartphones are suit-
able devices for measuring physical activity. Also, for (2) we found that accelerometers are relatively
stable sensors, but not suitable for running in the foreground for a longer period of time. These are
insights for future work that will be addressed in section 6.4.

RQ2 As discussed in the introduction, the duration of the experiment is too short for measuring long-
term integration of physical activity in people’s daily lives. However, 46.6% (7) of the participants
reported they intend to use an app or activity tracker for monitoring their physical activity, based
on the experience of the user study. It could be the case that some participants misinterpreted
this question, as beforehand 66.7% (10) of the participants were already using activity trackers and
fitness apps. In addition, 73.3% (11) of them reported they feel the need to take active breaks based
on the experiment. This indicates that participants in general have a positive attitude towards
taking active breaks.

RQ3 This question remains unanswered for the same reason RQ1 remains unanswered.

H1 Based on the observed number of interactions with Alexa, it can be concluded that the number
of interactions varies per participant: some of them used Alexa regularly, some did not initiate
any conversation at all. Depending on how one interprets ’occasionally’, this hypotheses is either
accepted or rejected. On average, participants had ten interactions a week, which we consider more
often than occasionally. A possible explanation is that for our user study we used a headless device,
whereas in Cohen et al. [9] they investigated IPAs on smartphones. Also, perhaps IPAs gained more
popularity since the study performed by Cohen et al. [9] - 60% (9) of our participants were already
familiar with intelligent personal assistants. Another explanation is that Alexa was used relatively
often for one week, because it was perceived by participants as a novel feature. Perhaps its use
would stagnate if the experiment would have lasted for a longer period of time.

H2 This hypothesis can neither be accepted nor rejected, as it depends on results from RQ1.

Besides results answering directly to our research questions, we observed elements in the behaviour of par-
ticipants during the experiment that are nonetheless interesting to mention. In the next sections we will
evaluate the tasks that are handed to participants, and the feedback we received on our experiment.

5.4.1. Tasks for participants
In advance, participants were requested to perform several tasks during the experiment such as carrying
their phone at every bout, starting and stopping the workday in the app and telling Alexa what time they
expected to go home. As presented in section 5.1.2, participants reported they often perform such tasks.
Advantages of tracking methods that are ’framed’ or ’labelled’ by participants, is that they exactly know when
their workday started and stopped, where automated methods may fail to do so. However, this could also
result in unrepresentative physical activity data. Therefore, future work could address methods that do not
merely rely on daily or weekly tasks by participants.
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5.4.2. Feedback from participants
Communication with the participants was a significant part of the time we spent on the user study. We re-
ceived over one hundred e-mails from participants. Most of them were about (1) arranging a meeting to hand
over instructions and Echo Dot devices or (2) troubleshooting the application. In contrast, some e-mails
included useful feedback and advice about Alexa and DeskstApp.

One participant advised us that it would be good to use text push-notifications instead of voice-notifications.
The self-reports of participants indeed found voice-notifications not stimulating. In addition, it was reported
by a participant through e-mail that "until this date I have not received any notifications", which was an in-
dication that the Android app was sometimes suddenly ’killed’ without transmitting notifications. Other e-
mails for example addressed the issue of connecting Alexa to the educational Wi-Fi network (Eduroam) and
one participant commented on the interpretation of the use of the concept ’playing sports’ in one of the sur-
vey questions: "E.g. play sports typically refers to games with a ball, however most sports don’t. I do sports but
I don’t play sports." Providing a platform for participants on which they can provide feedback on the experi-
ment in any way is certainly recommended for future work.

5.5. Challenges
During the user study, many challenges were faced such as distributing the right software (app) and hardware
(Echo Dot), monitoring multiple participants in parallel, and conversing with all the participants during the
experiment and quickly respond to their problems. However, the biggest challenge we faced was keeping the
app up and running for all the participants using Android phones. We thoroughly investigated why it did not
always behave as expected and therefore we assessed DeskstApp its sample rate, which we will discuss in the
next section.

5.5.1. Infrequent sample rate
The React Native package that was used for tapping values from the hardware accelerometer, requested an
update interval for measuring acceleration points, i.e. a number in milliseconds for which the accelerome-
ter should provide an acceleration value in m/s2 (Android) or g (iOS) to the x, y and z direction4. iPhones
used for this study indeed provided accelerometer-data in the right frequency. However, when subscribing
to an Android accelerometer, its sampling rate suddenly varied. We observed that, despite the variation in
reporting frequency, the ’real’ frequency would never exceed the requested update interval, thus if S was the
provided update interval, the accelerometer would produce values with a sampling rate ≥ S. After conversing
with the creators of the React-native-sensors package5, it was pointed out that the Android documentation
tells us that "the data delay (or sampling rate) controls the interval at which sensor events are sent to your ap-
plication (...) The delay that you specify is only a suggested delay. The Android system and other applications
can alter this delay."6. This lower sampling rate of the accelerometer generally results in a lower amount of
recorded steps.

To examine the step detection quality of different sample rates of the accelerometer, we tested several
sample rates three times. In an indoor environment, we performed a little walk consisting of exactly 50 steps,
walking the same path every time on a flat surface. The device we used was a Motorola Moto G4 plus. As
depicted in figure 5.6, the average number of steps decreases as the real sample rate decreases. An odd ob-
servation is that a requested sampling rate of 100ms produces a lower real sampling rate than a requested
sampling rate of 150ms. An explanation for this could be the order in which we tested each of the requested
sampling rates: we started with our original sampling rate (150ms), then went up (250ms, 400ms) and at last
tested a sampling rate of 100ms.

Before performing the sample rate test, we asked for verification of our problem identification. After
performing this test, the developers of the React-native-sensors package commented on our question that "it
might have been a problem with having multiple accelerometers overwriting each others updateIntervals"7

and that it should be fixed in the new version of the package. However, when requesting clarification on this
statement, we found that it might be a different issue that does not apply to our system.

4https://github.com/react-native-sensors/react-native-sensors/blob/master/README.md
5https://github.com/react-native-sensors/react-native-sensors/issues/163#issuecomment-433647022
6https://developer.android.com/guide/topics/sensors/sensors_overview#sensors-monitor
7https://github.com/react-native-sensors/react-native-sensors/issues/163#issuecomment-442439393

https://github.com/react-native-sensors/react-native-sensors/blob/master/README.md
https://github.com/react-native-sensors/react-native-sensors/issues/163#issuecomment-433647022
https://developer.android.com/guide/topics/sensors/sensors_overview#sensors-monitor
https://github.com/react-native-sensors/react-native-sensors/issues/163#issuecomment-442439393
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Figure 5.6: Relation between average real sample rates and number of steps in an experiment walking 50 steps



6
Discussions & Conclusion

Previously, we evaluated the results from the user study with respect to the research questions. In this chapter,
we will further elaborate on questions raised by our study and the impact of the results. Additionally, we
will reflect on its limitations and set out possible directions for future work based on our experiences and
observations regarding the experiment. Concluding, we will once more reflect on the problem statement,
our contribution to the problem and results from the user study.

6.1. Discussion
Our aim for the user study was to integrate physical activity of moderate intensity into daily routines of work-
ers with sedentary jobs. In this section, we will reflect on the results from this user study and to what extend
they contribute to the solution of breaking up sedentary time in the office.

Table A.1 shows there were fourteen different phone types in the experiment, used by fifteen participants.
For assessing physical activity, we foremost relied on the values reported by the built-in hardware accelerom-
eter for each of these phones. Since each accelerometer could behave in a different way, we analysed the
quality of the sensor measurements. We found that the average values reported by these distinct sensors are
more or less identical. However, the variance in reported values is slightly larger, especially due to three out-
liers (phones). This level of accuracy was sufficient for our step count algorithm. Based on the results from
our study, smartphone accelerometers are considered sufficiently accurate for monitoring physical activity
intensity. However, there are other limitations concerning smartphones that should be considered before
adopting smartphones as main tracking device, as we will discuss in section 6.2.1.

Observing the interactions between Alexa and the participants, we found that the majority of all interac-
tions are requests for the taken number of steps. Thus informative requests were preferred over the built-in
attractive features. Also, some participants interacted with Alexa very often, and some participants never
requested any information from Alexa. Because prior work indicated that intelligent personal assistants are
used occasionally, or not at all by the majority of the users [9], we decided to configure Alexa such that it
is proactive. For that, we used voice notifications. Participants reported they were not stimulated to either
perform physical activity or interact more often with Alexa concerning their physical activity. Possibly, this is
due to the fact that the notification feature was integrated in the mobile application instead of the Echo Dot,
due to restrictions in the custom skill software. Qualitative results show that some participants indicated that
notifications were too long, which was experienced as disturbing.

Prior work stimulated an approach based on the quantified self movement [77]. We made participants
reflect on their number of steps as a single metric. However, one participant indicated that "I missed more
feedback (statistics) and information about what is considered healthy/unhealthy during working hours and
why." Other participants indicate that "the steps is not really help for me to do some practice, and most of my
practice is done after work time" and "I usually take most steps from home to work and from work to home,
but then the app is off...". This indicates that breaking up sedentary behaviour is not yet a goal for some
participants. Explaining participants why physical activity during working hours supports them in improving
their health outcomes was done by means of notifications. Future work could address other ways of raising
awareness for breaking up sedentary time, for example by presenting different metrics such as number of
active breaks.

45
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As we discussed in the Introduction chapter, we were particularly interested in measuring physical activity
during working hours, because working hours are likely to contain sedentary behaviour. For that, we partially
relied on the discipline of participants to carry out daily and weekly tasks. We found that participants most
of the time remembered to execute daily tasks such as starting their workday and telling Alexa what time
they would go home. However, for some tasks there is a small discrepancy between their self-reports and
the collected data, where participants reported more executed tasks than they actually performed. From
our side, it required a lot of task monitoring and we reminded participants to execute certain tasks if they
seem to forget to do so. Afterwards, we filtered out physical activity that was not performed in the workplace.
Future work may investigate the options of automatically determining the participant their location, to ease
the burden on participants.

Concluding, we found that Alexa is generally well-perceived by participants. Talking to Alexa was experi-
enced as intuitive, and the majority of the participants reported Alexa could understand them well. On the
other hand, we also found that talking to Alexa is experienced as uncomfortable when other colleagues are
around. Prior work indicated this may be caused by privacy concerns, especially when personally identifying
information is involved [18]. Future work could address this issue by anonymising personal information with-
out losing its relevance, for example by setting collective goals for the office cubicle. Besides the perceived
inconvenience of talking to Alexa in the office, the majority of the participants found Alexa not necessarily
more convenient than the application. Therefore, when designing for intelligent personal assistants in the
office, these constraints should be taken into account. In section 6.4 we will further elaborate on potential
research directions.

6.2. Limitations
6.2.1. Technical improvements
During the system development phase and user study we encountered a number of challenges, of which most
issues were related to technical issues with the mobile application. In prior work, we can also observe that
collecting and presenting data to participants was often troublesome: in Consolvo et al. [10], it was men-
tioned that a situation where the device failed to present the correct data caused "(...) frustration [which]
often led to participants questioning if the device was malfunctioning or if they had accidentally broken it".
Also, in Cambo et al. [3] problems concerning noisy sensing were experienced. For our study, we found that
a persistent subscription on the accelerometer via the react-native-sensors plugin1 caused the app to shut
down at a certain point in time, which results in infrequent data reports and data loss. It was reported by
one of the developers of this package that they detected a possible bug, causing update intervals of different
accelerometers to overwrite each other. Future work using React Native software could solve this problem
in several ways. At first, one could develop a self-made plugin for React Native which accesses the Google
Pedometer via Google Fit their Recording2 and Sensors3 APIs and for Apple via the HealthKit API4. Another
approach is to build and distribute the app in Expo, because processing tasks in the background is a feature
currently in progress5. A third option is to make use of recently developed plugins for React Native that han-
dle the communication between Google and Apple APIs for you such as React Native Apple Healthkit6 and
React Native Google Fit7.

6.3. Threats to validity
For drawing reliable conclusions, one needs to eliminate threats to validity, i.e. factors beside the techni-
cal intervention that unintentionally may have caused participants to behave differently or produce biased
results. We discuss the selection procedure of participants, the effect of Alexa as novel phenomenon, our
experimental setup, and a small inequality in the two versions of our system, in order to provide insights on
threats to validity of future work.

1https://github.com/react-native-sensors/react-native-sensors
2https://developers.google.com/fit/android/record
3https://developers.google.com/fit/android/sensors
4https://developer.apple.com/documentation/healthkit
5https://expo.canny.io/feature-requests/p/background-tasks-support
6https://github.com/terrillo/rn-apple-healthkit
7https://github.com/StasDoskalenko/react-native-google-fit

https://github.com/react-native-sensors/react-native-sensors
https://developers.google.com/fit/android/record
https://developers.google.com/fit/android/sensors
https://developer.apple.com/documentation/healthkit
https://expo.canny.io/feature-requests/p/background-tasks-support
https://github.com/terrillo/rn-apple-healthkit
https://github.com/StasDoskalenko/react-native-google-fit
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6.3.1. Selection of participants
The number of participants is comparable to that in similar studies [3, 10] and representative for qualitative
measurements. In terms of resources we were restricted to this number of participants. For obtaining sta-
tistically relevant insights by applying, for example, the Mann Whitney U test8, one needs more participants
and more resources to provide each participant with. In addition, the majority of the participants had a tech-
nical background, and participants were between 22-46 years old. Future work could address the selection
of participants in such a way that a representative set of workers is selected, covering more distinct ages and
backgrounds.

6.3.2. The novelty of Alexa
The majority of the participants reported they did not use Alexa nor any similar IPA prior to the experiment.
The novelty of Alexa could possibly influence the number of times it was used by participants to reflect on
their physical activity. To overcome this potential threat, one could either (1) select participants who are
already familiar with Alexa or similar IPAs, or (2) expand the duration of the experiment to detect whether the
use of IPAs decreases over time.

6.3.3. Real-world situation versus controlled setting
For comparing activity trackers and Alexa in the workplace used by people with sedentary jobs, one could
decide to carry out an experiment in a real-world setting or in a controlled setting. In our definition, a real-
world setting represents a real-life situation without full control over external factors, whereas for a controlled
setting, the environment is designed and heavily regulated. Compared to a real-world setting, a controlled
setting allows a better oversight and regulation over all variables, and could for example be executed in an
external location, which could be identical for each of the participants. In addition, identical activity tracking
devices could be handed to each of the participants. In contrast, a real-world setting is an approach we chose
based on prior work [77], which means the experiment is executed in a real office using the devices that
belong to participants, casting little restrictions on their daily schedules and whereabouts. However, there
are limitations of this approach compared to controlled settings:

• Participants sometimes forget their phone when leaving their desk
• Participants use smartphones of different types, which may behave in a different way
• The state of the out-of-office environment is not taken into account. For example, we did not verify if

people would perform a different amount of exercise when it was raining outside, while it might affect
the motivation for taking a walk

• Participants work different time lengths

In other prior work, it was decided to put more constraints on the experimental setup, in order to gain more
control over environment variables [3, 10]. While these studies take place in a less realistic environment,
controlled environments are able to overcome the aforementioned limitations. Therefore, future work could
consider to design their experiment in line with studies focusing on control over environment variables.

6.3.4. Notifications
To ensure a fair comparison between the app and Alexa, notifications should be enabled for participants in
the app reflection phase, because participants in the Alexa reflection phase receive voice-notifications. Our
goal was to compare the effectiveness of Alexa with the effectiveness of activity trackers, and not necessarily
the effectiveness of notifications. Due to time restrictions we were unable to implement push notifications
for DeskstApp. There are React Native libraries9 available for future applications.

6.4. Future work
6.4.1. Improving data collection
For our system, we explored several options for collecting physical activity data. Potential tracking devices
were, for example, smart watches, smartphones or other accelerometer-enabled devices. We found that
smartphones are suitable tracking devices for the reason that they are able to transmit data wireless to a
web service in real-time, both indoors and outdoors, a function that most smart watches do not yet possess.

8http://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/BS704_Nonparametric/BS704_Nonparametric4.html
9https://github.com/wix/react-native-notifications
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Because we were limited in resources, participants allowed us to use their smartphones as tracking devices.
As software for monitoring their activity, we looked into prior work such as the Sense-IT mobile application
[63]. However, this is an Android-only solution, whereas we wanted to make use of a cross-platform app for
our participants in the possession of iPhone smartphones. The same holds for some other applications we
investigated. Thus, we built our own application in React Native, using the hardware accelerometer sensor
on iPhone and Android smartphones. However, especially data reported by Android phones turns out to be
infrequent and insufficient. For Android 9 and later versions, accelerometers can not be used for long-term
monitoring in the background10.

To overcome these shortcomings, future work could consider using smartphone pedometers instead of
accelerometers for tracking the amount of physical activity, however they do not report the activity intensity.
How to use pedometers for React Native is explained in section 6.2.1. Because Android and iOS have different
pedometer APIs, their accuracy should be compared.

We found that participants sometimes forgot their phone during bouts. If one has access to more re-
sources, we recommend providing every participant with a dedicated tracking device worn on either the
wrist, ankle, hip or thigh, or tied to a person’s body in any other way. An example of such is the ActiGraph
accelerometer11, which allows tracking of multiple motion and physiological metrics, and is able to transmit
data wireless nearly in real-time via Bluetooth12. However, a downside of this approach is that measurements
are recorded all day, while participants should especially be urged to reflect on their physical activity during
work time.

6.4.2. Evaluating the goal setting theory
We developed our system in accordance with the quantified self movement, advocated by prior work [77]. For
physical activity quantification, we used the number of steps participants took as single metric of reflection.
However, due to technical issues, some participants found this number to be inaccurate. To lead a person
their attention away from technical imperfections, one could decide to abstract the physical activity metric,
e.g. classify activity as ’little’, ’sufficient’ and ’good’ [3]. On the other hand, the goal setting theory points out
that specific goals are considered more effective [38]. Therefore, one should decide what level of accuracy a
system is able to offer, and try to be as specific as possible to the user without losing their trust in the system.

Besides being specific, self-efficacy is an important aspect in goal setting theory. However, recent work
by Konstanti and Karapanos [35] brings to light that 61% of their 81 participants adopted the default goal
provided by the system. We observed that none of the participants using DeskstApp adopted the default goal.
A possible explanation for this discrepancy with our results is that we urged participants to reflect on their
goal on a daily basis. Additionally, all participants using our system lowered their goal over time, indicating
that the default value was too high. This may have caused participants to update it. Future work could address
the effect of self-set goals of different levels of difficulty on behaviour of participants, especially regarding the
goal update frequency.

6.4.3. Sensing well-being
In section 6.1 we discussed the fact that more metrics could be used to make a person reflect on their physical
activity and their number of breaks in sedentary time. In addition, section 2.3 elaborated on a number of
studies involved in well-being assessment. Aspects of well-being such as cognitive focus, the absence of stress
and attentiveness could respectively be measured by capturing audio and motion data [56], breath cycles
[27] and mouse and keyboard interactions [16]. Besides this information being of interest to the worker as it
improves health outcomes, well-being at work could also be in the employer their interest, as it decreases the
number of workers that require sick leave [23]. Future work may investigate whether extra mental well-being
metrics would result in an increased awareness of the importance of physical activity during working hours.

6.4.4. Context-awareness and interruptibility
Voice notifications sent by the system were transmitted with a fixed time interval between the notifications.
An improvement of such is to make them context-aware, taking into account a person their interruptibility
[65]. According to Iqbal and Bailey [30], interruptions such as notifications would best be served at break
points: "moments of transition between two observable, meaningful units of task execution". Doing so, re-

10https://developer.android.com/guide/topics/sensors/sensors_overview
11https://www.actigraphcorp.com/actigraph-wgt3x-bt/
12https://www.actigraphcorp.com/cdh/

https://developer.android.com/guide/topics/sensors/sensors_overview
https://www.actigraphcorp.com/actigraph-wgt3x-bt/
https://www.actigraphcorp.com/cdh/
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duces the cost of an interruption, such as frustration. Context-awareness is also beneficial for receiving tai-
lored information from intelligent personal assistants. Amazon employee Sarikaya [62] tells us that the key
promise of an IPA is to stitch together information from different sources, to ease the user their burden of go-
ing through different applications. In addition, proactive assistants continuously learn from feedback signals
provided by the user. Future work could investigate to what extend intelligent personal assistants are able to
provide the right information at the right moment.

However, for both assessing a person their context and providing the right information at the right time,
one needs a lot of data. A question that is raised when systems know a lot about a person their whereabouts,
is: to what extend can accuracy be exchanged for privacy? The next section elaborates on questions that
future work could investigate regarding privacy of intelligent personal assistants.

6.4.5. Privacy
Using a commercial device such as the Amazon Echo Dot raises certain privacy concerns, such as the fact that
it is a device that constantly listens to voice inputs until the wake-word is detected. These concerns could be
overcome by a system ensuring privacy, such as the privacy-driven data model by Nogueira et al. [43]. Key
aspects of such a system are transparency and data ownership by the user. Future work may investigate
whether the attitude of people towards IPAs changes if such promises are made, and to what extend these are
possible to ensure using an IPA.

Besides external parties collecting data, there could also be vulnerabilities in intelligent personal assis-
tants, a realistic scenario as we have seen in the past [8]. To address that problem, IPAs should be thoroughly
tested to reveal such vulnerabilities. Proper voice authentication could also provide extra assurance for pri-
vacy [21]. Future work using the Echo Dot should take into account the vulnerabilities of Echo devices. For
example, unauthorised voice purchasing is a weakness in the current system, as products can be purchased
without any verification and by any voice [25, 75]. In addition, the 4-digit PIN that can be added for restricted
actions can be cracked by brute-force attacks. One could also decide to keep track of the development of
open-source IPAs such as Mycroft13, as these promise transparency and data-ownership by the user.

6.4.6. Future applications of IPAs
The development of IPAs is still ongoing, as we also experienced during our implementation phase of My
Coach for Alexa. There is still much to gain in terms of resource consumption, as IPAs are mainly "fueled
by the extraction of non-renewable materials, labor, and data" [31]. Prior work shed their light on the future
of intelligent personal assistants, and which elements are important for its relevance in any system. Azaria
and Hong [1] claims that IPAs should be personal, dynamic learners, supportive, affable (or kind) and at
last instructable to be of use in a recommender system. Also, as a next step, the autonomy of an IPA could
be increased if it can be ensured that actions executed by the IPA are approved by the user. However, it is
believed that full autonomy of IPAs is not desired, as users want to keep some level of direct control over
them. In contrast to Azaria and Hong [1], Cohen et al. [9] believes that the HCI community should especially
focus on "useful, usable, delightful, caring, ethical, entertaining and educational personal assistants".

We believe that, considering the privacy issues in previous section and experiences from our user study,
useful, ethical and educational aspects of personal assistants are especially important. An IPA should be
useful, in the sense that it should have added value to a system compared to existing techniques. The strength
of IPAs is the ability to tailor information together from multiple applications, which make them suitable
for combining different information sources in complex systems where otherwise multiple applications are
required. However, an IPA should also be ethical, thus taking privacy into account, act in the user their interest
unless other people are harmed by it, and have limited autonomy unless ethical behaviour can be assured.
At last, for our study we wanted Alexa to be especially educational, in the sense that participants would learn
something about their own behaviour. Whereas some evidence indicates that the application of intelligent
personal assistants for educational purposes are successful [15], the added value of IPAs for such needs to
be investigated. Future work could take these considerations into account when building applications with
intelligent personal assistants.

6.5. Conclusion
First world countries struggle with health-related issues due to people being physical inactive [36, 46]. In
particular, sedentary behaviour is widely integrated in the western lifestyle. Evidence indicates that more

13https://mycroft.ai/

https://mycroft.ai/
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interruptions in sedentary time is positively associated with a reduction of metabolic risk [28]. An environ-
ment where sitting often occurs is the workplace. The World Health Organisation [47] acknowledges physical
inactivity during work hours as a problem, and proposes a more healthy lifestyle for both employers and em-
ployees, respectively by allowing flexible working hours and encouraging walking and cycling. The latter are
examples of physical activity of moderate intensity, which has convincing health benefits [46].

Activity trackers are often used as a means of reflecting on physical activity. However, a large-scale study
indicated that activity trackers are not very effective, especially if there is no additional incentive such as cash
[22]. Therefore, we aimed for a different approach, using an intelligent personal assistant (IPA). A key promise
of IPAs is that they are able to combine data from different sources to provide tailored information. We used
the Amazon Echo Dot as headless device serving Alexa, Amazon their personal assistant. Cambo et al. [3]
inspired us to develop a solution for the workplace to break up sedentary time. The role of Alexa in our system
was to proactively interrupt participants, providing them updates on their physical activity. To measure the
effectiveness of Alexa for stimulating physical activity, it was compared to the effectiveness of a self-made
activity tracker app (DeskstApp) for iPhone and Android phones. Zuckerman and Gal-Oz [77] advocated the
quantified self approach14, feeding a person their intrinsic motivation by making them reflect on physical
activity metrics. Alexa and DeskstApp presented the number of steps as single metric, respectively by voice
or as text to the sixteen participants. Participants were allowed to set a daily step goal, which has promising
effects on a person their motivation, according to the goal setting theory [38]. For one week, half of the
participants used Alexa, and the other half reflected on their physical activity in the app, and vice versa the
week after. Besides investigating the differences between the two versions of the system, we were interested
in the integration of moderate physical activity into daily routines, which we assessed in a qualitative way.
In addition, we investigated whether people who perform physical exercise outside working hours would
behave in a different way compared to people who do not.

At the beginning of the experiment, we faced some technical challenges. At first, the mobile application
for iPhone smartphones were hard to distribute remotely. Remote distribution was a requirement, because
half of our participants worked in Estonia and the other half in the Netherlands. In addition, Apple disallows
free apps to be installed longer than seven subsequent days. Therefore, participants in the Netherlands using
iPhone smartphones required weekly app updates. While distribution was mainly a challenge for iPhone
smartphones, Android smartphones suffered from noisy data reports. We found that DeskstApp running
on Android infrequently sampled data from the accelerometer, whereas this data is crucial to determining a
participant his physical activity. In addition, there was much difference in the number of collected GPS values
for both smartphone operating systems.

At the end of the experiment, we performed a thorough data quality analysis. We found that physical ac-
tivity data for participants with Android smartphones was insufficient for drawing conclusions concerning
physical activity. Prior work indicated that data collection using sensors is a challenging step, which could
result in noisy sensor data and frustrated participants [3, 10]. However, we were able to observe interactions
between participants and Alexa, and we found that most participants tend to make use of informative fea-
tures compared to attractive features. On average, participants found talking to Alexa rather intuitive, and
they perceived that Alexa often understood their requests correctly. On the other hand, using Alexa in shared
offices with colleagues around was perceived as uncomfortable by 60% of the participants. Four participants
with a reasonable collected amount of qualitatively good data, found the step detection algorithm to be accu-
rate. We observed that they either immediately or gradually lowered their daily step goal over time. Regarding
the performed physical activity, we were unable to draw conclusions of significance.

Future work relying on sensor-based data collection methods are advised to especially focus on obtain-
ing qualitatively good data, for example using dedicated devices like ActiGraph accelerometers15 that do not
rely on disciplinary behaviour of participants. Additionally, one could make use of the built-in pedometer for
Android an iPhone smartphones, however their accuracy should be assessed. Furthermore, one could raise
awareness of the fact that breaks in sedentary time are beneficial for health outcomes. This could be done by
providing additional metrics to the participant, such as number of active breaks. For applications using intel-
ligent personal assistants, future work could investigate the effect of context-aware notifications on a person
their cognitive focus and overall well-being. However, for that one needs a lot of data. Therefore, a challenge
for future work is to design for privacy, without reducing the IPAs ’personality’. For example, by providing col-
lective physical activity metrics (e.g. office cubicle) which anonymises physical activity data for individuals.
We believe that future work should especially focus on useful, ethical and educational applications.

14http://quantifiedself.com/
15https://www.actigraphcorp.com/actigraph-wgt3x-bt/
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A
User study and System design & validation

A.1. User Study

Table A.1: List of different phone types that were used during the experiment

iPhone Android

iPhone 5c Blackview BV7000

iPhone 6s Huawei P10 lite

iPhone 7 Nokia 8

iPhone 7 plus OnePlus 3

OnePlus 5T

Samsung Galaxy A8

Sony Xperia X

Sony Xperia X Compact

Xiaomi Mi A1

Xiaomi Redmi Note 5 pro

Table A.2: Operating systems & No of participants using that specific OS

iPhone Android

OS No of participants OS No of participants

iOS 10.3.3 1 7.0 2

iOS 11 3 7.1.2 1

8.0 5

8.1 3
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A.2. System design & validation

Table A.3: Sample rates of the accelerometer in DeskstApp for Android while detecting 50 steps

requested sampling rate detected steps real sampling rate measurements duration (ms)

18/50 314ms 108 33915

100ms 17/50 349ms 97 33856

23/50 301ms 115 34594

25/50 259ms 218 56543

150ms 30/50 252ms 133 33566

30/50 260ms 162 42058

25/50 402ms 88 35345

250ms 22/50 401ms 85 34115

24/50 396ms 84 33253

8/50 1041ms 32 33299

400ms 5/50 1152ms 29 33421

5/50 1353ms 25 33820

Table A.4: Count of the perceived deviation in accuracy values

Accuracy range (m) Count

0-24 5268

25-49 1152

50-74 17885

75-99 149

100-124 730

125-149 279

150-174 391

175-199 26

200-224 1273

225-249 22

250-274 35

275-299 6

300-314 11

Figure A.1: Median of mean values from the summary reports, where each dot represents a participant, µ= 9.85,σ= 0.10



A.2. System design & validation 53

Algorithm 1 Pedometer Algorithm

Require: AVG, function that calculates the average value of a set of numbers
Require: ABS, function that takes a set and returns it s.t. every value is transformed to its absolute value
Require: MINPEAKVALUE, function that determines the miminum required peak height

. M is a set of magnitude values (m) and their corresponding timestamps (t), ordered on timestamp
function STEPS(M)

mi nV al ← M I N PE AK V ALU E(M) .Determine minimum required peak height (see 2)
mi nDi f f ← 0.31 .Minimum time (in seconds) between different peaks
Mnor mali sed ← ABS(M − AV G(M)) .Normalise the set by extracting its average
tl ast peak ← NU LL
peaks ← 0
for i ← 1 to |Mnor mali sed |−1 do

(mi , ti ) ∈ Mnor mali sed

if mi > mi nV al then . If the current value is high enough to be a peak
if mi > mi+1 AND mi > mi−1 then . If the current value peaks

if tl ast peak = NU LL OR tl ast peak − ti > mi nDi f f then
peaks = peaks +1
tl ast peak ← ti

end if
end if

end if
end for
return peaks . Return number of steps

end function

Table A.5: Mean absolute No of steps for days longer than 6 hours with a coverage of 75%

Participant Steps phase 1 Steps phase 2 Steps phase 3

1 1675 2245 3483

2 1686 2458

3 2226 1472 1071

4 3916 570

Algorithm 2 Helper Functions

function MINPEAKVALUE(M)
Mr ang e ←∅
thr eshol d ← 0.5
max ← 9
for each (m, t ) ∈ M do

if m > thr eshol d AND m < max then
Mr ang e ← Mr ang e ∪ {m}

end if
end for
mav g ← AV G(SD)
return mav g

end function
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Figure A.2: Normalised coverage of accelerometer reports of every workday hour
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