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ARTICLE

Detecting structural heterogeneity in single-
molecule localization microscopy data
Teun A.P.M. Huijben 1,4, Hamidreza Heydarian 1,4, Alexander Auer 2,3, Florian Schueder 2,3,

Ralf Jungmann 2,3, Sjoerd Stallinga 1 & Bernd Rieger 1✉

Particle fusion for single molecule localization microscopy improves signal-to-noise ratio and

overcomes underlabeling, but ignores structural heterogeneity or conformational variability.

We present a-priori knowledge-free unsupervised classification of structurally different

particles employing the Bhattacharya cost function as dissimilarity metric. We achieve 96%

classification accuracy on mixtures of up to four different DNA-origami structures, detect

rare classes of origami occuring at 2% rate, and capture variation in ellipticity of nuclear pore

complexes.
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S ingle-molecule localization microscopy (SMLM) enables
imaging below the diffraction limit1,2. The image quality
can be improved further by fusing hundreds of super-

resolution images of identical bio-molecular structures, further
referred to as particles, into a single reconstruction3–6. This
approach overcomes the problem of incomplete labeling using the
central assumption that all particles represent the same under-
lying structure. In reality, however, the sample might be hetero-
geneous in structure due to the biology itself4, sample
preparation7, diseases or drug-induced variations. These potential
variations between structures blur standard fusion and small
subsets of structurally different particles remain undetected.
Sporadic 9-fold symmetric nuclear pores8,9, for example, cannot
be detected in the reconstruction.

Image classification is commonly used in single-particle aver-
aging (SPA) for cryo-electron microscopy (cryo-EM)10,11 to find
the viewing direction of each particle from its projection. Using
EM classification techniques as such to SMLM data6,12 does not
employ the full potential of SMLM data, due to the different
image formation process, in particular the incomplete
labeling13,14, and the use of localization coordinates instead of
pixelated images. Previous work to separate classes in SMLM uses
a deep neural network for classification15. Here, however, the
different classes need to be known a-priori and imaged in sepa-
rate experiments to form learning sets in order to train the neural
network. This strong a-priori knowledge is not compatible with
discovering unknown data variation and is, therefore, inapplic-
able to most cellular imaging applications.

Here, we present an unsupervised classification tool to cluster
2D/3D SMLM data into (rare) structural subclasses without
assuming any prior knowledge about the different classes. The
method is capable of detecting multiple repeated structures in one
field of view or capture structural variations, which is expected for
many biological structures due to biological dynamics, deforma-
tion of the cellular structure, or phenotypical variations, within
one class of particles. We successfully classified experimental
DNA-PAINT and (d)STORM datasets, containing either multiple
structures, rare subclasses or continuous structural variation. On
experimental data, our approach shows 96% classification per-
formance on multi-class DNA-origami data, detects rare classes
of mirrored origami structures occurring at a 2% rate, identifies
elliptical shape variation in nuclear pore complexes, and reveals
height variation in 3D origami tetrahedron structures.

Results
Clustering pipeline. Our approach uses pairwise registration of
all particles to obtain a dissimilarity metric. Subsequently, a fea-
ture space is obtained by performing multidimensional scaling
(MDS)16 on the dissimilarity representation which is followed by
k-means clustering17 and particle fusion per cluster (Fig. 1). In
order to compare every pair of particles, we employ the Bhatta-
charya cost function, which we used earlier in the all-to-all

registration of template-free particle fusion5 (Methods). In con-
trast to this earlier use, we use the optimum value of this cost
function as similarity metric, we are not interested in their relative
translations and rotations. The Bhattacharya metric works
directly on the localization data, takes (possibly anisotropic)
localization uncertainties into account, and is robust against
underlabelling. The pairwise registration of N particles results in
N(N-1)/2 similarity values. After converting the similarity to
dissimilarity values, we use MDS to translate the pairwise dis-
similarities into spatial coordinates of the particles in a multi-
dimensional space16. This constellation preserves the pairwise
dissimilarities by minimizing the so-called metric stress loss
function (Methods).

We used k-means clustering in the multidimensional scaling
space17 in order to group the particles into clusters. K-means
clustering has several advantages over other existing approaches
that can be used on the MDS maps. First of all, it has the best
performance on spherical clusters which is the dominant cluster
shape appearing in our MDS space (Supplementary Fig. 1).
Secondly, it is fast (compared to for example mean-shift) and has
only one tuning parameter, K. Mean-shift clustering, which also
only has one free parameter, can potentially be used as an
alternative to k-means, however, the bandwidth size selection
itself is challenging and in our case does not have a physical
meaning as the distance between the points in the MDS maps is
based on the dissimilarity values. Other complex clustering
approaches like DBSCAN or OPTICS18 have similar difficulties in
tuning even more free parameters which are prohibitive for non-
expert end-users.

In case of the absence of prior knowledge about the number of
subclasses present in the data, we propose a two-step approach
for determining the optimal number of clusters (K) for the k-
means algorithm. Firstly, the user can inspect the silhouette
cluster evaluation values19 (see Methods), for a range of K and
choose for the one which gives the highest average score for all
particles (Supplementary Fig. 2). Secondly, the user can inspect
the scatter plot of the first three dimensions of the MDS space to
determine the proper value of K (Supplementary Fig. 1). In
certain situations, such as highly imbalanced subclasses, the
silhouette graph would not have a predominant peak and visual
inspection of the MDS maps may not be helpful to infer the
number of underlying classes. Here, the general advice is to
choose a large value of K. This will result in many small classes
which can subsequently be grouped further using the eigen image
approach (Methods). Reconstruction per cluster is quick since the
computationally most intensive procedure, the all-to-all registra-
tion, is already performed prior to the classification. This fast
reconstruction makes it possible to investigate multiple values for
the number of clusters, K.

Clustering of multi-class SMLM data imaged separately. We
applied our classification algorithm to different multi-class

Fig. 1 Classification pipeline. N particles are pairwise registered, resulting in N(N-1)/2 dissimilarity values. Multidimensional scaling (MDS) embeds the
elements of the dissimilarity matrix in a multidimensional space (only the first 3 dimensions are shown). K-means clustering in this space results in K
clusters and the particles are fused per cluster.
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SMLM datasets in Figs. 2 and 3. We show the nanoTRON
dataset15 (further referred to as digits), which consisted of four
classes: the digits 1, 2, 3, and a 3 × 4 grid (Fig. 2a). Each class
comprises 2500 instances of each structure. The data were imaged
separately per class. We randomly selected 5000 particles from all
classes and fused them without classification. This resulted in a
blurred reconstruction which resembled vaguely the digit 3
(Fig. 2b), caused by the different numbers of localizations per
class (Supplementary Fig. 3a). Classification of the particles fol-
lowed by fusion, however, resulted in four clearly distinct classes
(Fig. 2c–f). The classification performance, which we define as the
percentage of correctly classified particles, is 96.4%, and can be
calculated since the ground truth class of each particle is known.
The confusion matrix (Fig. 2g) gives further insight into the
performance by indicating the false/true positives/negatives per
class.

Clustering of multi-class SMLM data imaged together. To
demonstrate that the classification is not selecting on different
imaging conditions between the four classes, we repeated the
same classification procedure on 5000 particles, 1250 per class,
where all four designs were mixed in a single sample and acquired
together. Here, the fusion without classification showed the digit

1, again explained by different numbers of localizations (Sup-
plementary Fig. 3b). The fusions after classification in Fig. 2h–l
show similar improvements as before, with an overall classifica-
tion performance of 96.4% (Fig. 2m), using manual labeling15 as
ground truth. The worse reconstruction of digit 1 (Fig. 2c) and
digit 2 (Fig. 2j) compared to other classes, is due to lower quality
of the individual particles in this experiment (Supplementary
Fig. 4), not to suboptimal classification performance. The Fourier
ring correlation (FRC) image resolution20 after reconstruction
ranges from 3.7 nm to 5.7 nm per class (Supplementary Fig. 5).

Clustering of multi-class SMLM data with misfold class. We
further tested our algorithm on a more challenging DNA-origami
dataset imaged with DNA-PAINT (Methods), containing three
designed structures: the letters T, O, and L (compare Fig. 2n).
These structures are harder to separate by classification, due to
the presence of a significant number of misfolded structures in
the dataset (Supplementary Fig. 6) and a large variation in loca-
lization uncertainty between the classes (Supplementary Fig. 7m).
We investigated a set containing 600 particles (200 per class)
which were imaged separately. Reconstruction without classifi-
cation gave an unrecognizable outcome (Fig. 2o), whereas clas-
sification prior to fusion using K= 3 (as suggested by the MDS

Fig. 2 Classification of experimental DNA origami datasets. a Templates of four DNA-origami designs in the digits dataset: the digits 1, 2, and 3 and a
20 nm grid. b Fusion result without classification of 2000 particles (randomly selected from a set of 10,000 images, 2500 per class). This data is imaged
separately per class and combined into one dataset prior to the classification. c–f The four classes resulting from the classification of 5000 images
(randomly selected from a set of 10,000 images, 2500 per class) containing 1374, 1179, 1214, and 1233 particles, respectively. g Confusion matrix of the
classifications c–f with an overall performance of 96.4%. h Fusion result without classification of 2000 particles imaged in one FOV. i–l The four classes
resulting from the classification of 5000 particles images in one FOV, containing 1219, 1309, 1278, and 1194 particles, respectively. m Confusion matrix of
the classifications i–l, with an overall performance of 96.4%. n Templates of three DNA-origami designs in the letters dataset: letters T, O, and L. o Fusion
result without classification of 600 particles (200 per class). This data is imaged separately per class and combined into one dataset prior to the
classification. p–s The four classes resulting from the classification of o, containing 207, 122, 176, and 95 particles, respectively. t Average confusion matrix
of two independent classifications performed as in p–s with an average performance of 97.3 ± 1.9%, where the class of misfolds, s, is not taken into
account. u Fusion result without classification of 800 particles imaged in one FOV. v–z The five classes resulting from the classification of u, containing
170, 238, 130, 139, and 123 particles, respectively. Scale bar of b applies to c–f and h–l. Scale bar of o applies to p–s and u–z.
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scatter plots in Supplementary Fig. 1d–f and the silhouette plot in
Supplementary Fig. 2c) resulted in clearly visible classes (Sup-
plementary Fig. 6a–c) and a classification performance of 89%
(Supplementary Fig. 6d). In contrast to the digits dataset, this
dataset contained misfolded and unrecognizable particles (Sup-
plementary Fig. 6h), because the simple design of only a few dots
makes it hard for particle picking to exclude misfolded structures.
Therefore, classification into four classes (Fig. 2p-s) was needed to
capture the misfolded structures into a separate class (Fig. 2s). An
average classification performance of 97.3 ± 1.9% was obtained

for two independent repeats (Fig. 2t). The same three classes were
visible after classification when all three designs were acquired
from a single sample (Fig. 2u–w). Again, K= 3 (suggested by the
analysis of MDS scatter plots and silhouette plots) was sufficient
to correctly classify the structures (Supplementary Fig. 7a–c), but
two additional misfold classes were needed to get correct recon-
structions as the misfolds themselves vary (Supplementary Fig. 7).
The digits dataset did not need a separate misfold class, as particle
picking was successful in automatically removing all misfolded
particles.

Fig. 3 Classification of flipped DNA Origami data and NPC data. a Fusion result without classification of 456 DNA-origami structures of the TUD-logo
with 80% DoL. b, c The two classes resulting from the classification of a, containing 446 (normal orientation) and 10 (flipped orientation) particles per
class, respectively. d–f Same as a–c, but with 50% DoL and 381 and 8 particles per class, respectively. g, h The two classes resulting from the classification
of i, containing 168 and 136 particles, respectively. We used K= 4 for the 80% DoL data and K= 40 for the 50% DoL data, followed by further grouping
with the eigen image approach with C= 2 (Methods). i Fusion result without classification of 304 NPCs. j–l Same as g, h, but with classification into three
classes, with 133, 90 and 81 particles per class, respectively. For g–l, the ellipticity values e are defined as the ratio of the major axis over the minor axis of
the ellipse fitted to the localizations, and are indicated below each class. Scale bar of a applies to b–f. Scale bar of g applies to h–l.
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Detection of rare subclasses. In addition to datasets that contain
multiple, equally abundant classes, we tested the classification
algorithm on experimental data with skewed distributions of the
number of particles per class. The TUD-logo DNA-origami data5

contains a small fraction that is unintentionally imaged upside-
down, resulting in mirrored logos. Normally, these mirrored
images are manually removed from data before fusion. Both for
80% and 50% density of labeling (DoL), the mirrored particles
were not visible when all of them are fused (Fig. 3a, d), due to
their low abundance. However, classification found these classes
containing, respectively, 10 and 8 mirrored particles (Fig. 3c, f),
from a total of 456 and 381 particles. We used K= 4 for the 80%
DoL data (guided by visual inspection of the MDS scatter plot in
Supplementary Fig. 1g–i) and K= 40 and for the 50% DoL data,
both followed by further grouping (Methods) into two final
classes. For the 50% DoL data, neither the MDS scatter plots nor
the silhouette plots (Supplementary Fig. 2f) could help in deter-
mining the optimal value for K. Following our rule of thumb to
use a high value and investigate the outcome for multiple values,
K= 40 appeared to work best. To test how low we can go in the
detection of rare events, we also applied our method to simulated
nuclear pore complexes (NPC), with a rare 9-fold symmetric
class. Classification could find these rare cases, even when only
2% was 9-fold symmetric (Supplementary Fig. 8). For rare class
detection, it is necessary to have a high total number of particles
as the rare class needs at least approximately 10 particles for
successful detection.

Detection of structural variations in 2D SMLM data. Next to
DNA-PAINT data, we applied our method to data3 acquired with
(d)STORM of the integral membrane protein gp210, part of the
NPC. Previously, Heydarian et al.5 used prior knowledge about
the 8-fold symmetry for particle fusion and obtained a circular
reconstruction with a homogeneous distribution of localizations.
We applied our method to the same data and found classes with a
range of ellipses (Fig. 3g–l). The classification separated the
particles on their ellipticity (Supplementary Fig. 9c, d). The major
axes of the ellipses align in the field-of-view (Supplementary
Fig. 9a, b), suggesting that the deformations were caused either by
the sample preparation or by the projection of the tilted rings
onto the image plane. Since a tilt of 25° is needed to create the
detected elliptical deformation, we think that the sample pre-
paration is the more likely root cause for the found ellipticity. We
further characterized and quantified the classification perfor-
mance of our method on simulated data with discrete variation,
TUD-logos with and without flame, and continuous variation,
NPCs with a varying diameter (Supplementary Fig. 10). In the
latter case, the classification perfectly separates the NPCs on
diameter.

Detection of structural variations in 3D SMLM data. Finally, we
applied our classification pipeline to PAINT images of a
tetrahedron-shaped 3D DNA-Origami nanostructures (Methods)
with an edge length of ~100 nm (height ~ 90 nm). Our analysis
shows that there is a variation in the height distribution of the
tetrahedrons. This is consistent with the fact that the structural
stability of large DNA origami nanostructures is limited. Before
classification (Supplementary Fig. 11a), the histogram of the z-
coordinate of the localization data suggests a height of 90 nm.
However, the distribution of the localizations around the binding
sites are clearly elongated along the optical axis larger than the
mean axial localization uncertainty of 8 nm. Classification of the
tetrahedrons and within-class fusion of them results in a more
isotropic resolution of the reconstructions (Supplementary
Fig. 11b, c). Here, we identified different heights with a mean

height of 55 and 95 nm or 45, 65, and 95 nm depending on the
number of quantization levels of the continuous height dis-
tribution. The data suggest a continuous distribution of heights,
which by definition does not provide the user with a preferred
number of clusters, allowing the user to divide the distribution
into a desired number of clusters. This analysis shows that the
elongation of the binding sites along the z-axis in the recon-
struction of all 218 tetrahedrons is due to the structural hetero-
geneity of the DNA-origami structures and not due to the poor
imaging conditions.

Discussion
The developed classification pipeline (Fig. 1) is based on the
dissimilarities between all the particles. The clustering is per-
formed by using MDS as a spatial embedding of the particles,
followed by k-means clustering. An alternative would be to
directly cluster based on the dissimilarity values using hierarchical
clustering (HAC). We have implemented and optimized both
strategies and tested them on multiple datasets. The performance
of the first method, i.e., clustering based on a spatial embedding,
performs significantly better than hierarchical clustering (Sup-
plementary Note 1, Supplementary Fig. 12). Therefore, the first
method, is used for all classifications in this paper. Sabinina
et al.21 recently proposed a similar HAC approach, however, with
a different dissimilarity metric. Easy-to-classify data can be
classified correctly by both approaches, although HAC does
require the delicate choice of the right parameters, like the dis-
tance criterion and the pruning threshold. Other advantages of
our approach are that there is no choice for the linkage criterion
and that no particles are lost in pruning the dendrogram, because
of the creation of single-particle clusters. We can conclude that
our MDS approach performs significantly better than HAC and
has fewer tuning parameters, which supports the decision to use
the MDS approach in this paper.

In summary, we have developed an a-priori knowledge-free
classification tool to identify (rare) structural subclasses in SMLM
data. Once data heterogeneity is found, particle fusion algorithms
can be employed. We successfully classified experimental DNA-
PAINT and (d)STORM datasets, containing either multiple
structures, rare subclasses or continuous structural variation.

Methods
DNA origami design and self-assembly of letters dataset. The DNA origami
structures were designed with the software package Picasso22 using the Design
module. The DNA origami were synthesized in a one-pot reaction with 50 μl total
volume containing 10 nM scaffold strand, 100 nM core staples, 1 μM biotinylated
staples and 1 μM DNA-PAINT docking sites staples. The DNA sequences are listed
in Supplementary Tables 1–4. The folding buffer was 1× TE buffer with 12.5 mM
MgCl2. The DNA origami were annealed using a thermal ramp. First, incubating
for 5 min at 80 °C, then going from 65 °C to 4 °C over the course of 3 h. DNA
origami structures were purified via two rounds of PEG precipitation by adding the
same volume of PEG-buffer, centrifuging at 14,000 × g at 4 °C for 30 min, removing
the supernatant and resuspending in folding buffer. The 2× PEG buffer stock was
1× TE buffer with 500 mM NaCl and 15% PEG-8000 (v/w).

Optical setup for the acquisition of letters dataset. Fluorescence imaging was
carried out on an inverted microscope (Nikon Instruments, Eclipse Ti2) with the
Perfect Focus System, applying a custom-built objective-type TIRF configuration
with an oil-immersion objective (Nikon Instruments, SR HP Apo TIRF 100XC,
numerical aperture 1.49, Oil). A 560 nm and a 642 nm laser (both MPB Com-
munications Inc., 500 mW, DPSS-system) were used for excitation. The coaxially
aligned laser beams were passed through a quad-band cleanup filter (Chroma
Technology, ZET405/488/561/640xv2) and coupled into the microscope objective
using a quad-band beam splitter (Chroma Technology, ZT405/488/561/640rpcv2).
Fluorescence light was spectrally filtered with a quad-band emission filter (Chroma
Technology, ZET405/488/561/640m-TRFv2) and imaged on a sCMOS camera
(Andor, Zyla 4.2 Plus) without further magnification, resulting in an effective pixel
size of 130 nm (after 2 × 2 binning).
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DNA-PAINT sample preparation of letter dataset. For chamber preparation, a
piece of coverslip (no. 1.5, 18 × 18mm, ~0.17mm thick) and a glass slide (76 × 26mm,
1mm thick) were sandwiched together by two strips of double-sided tape to form a
flow chamber with inner volume of ~20 μl. First, 20 μl of biotin-labeled bovine albumin
(1mg/ml, dissolved in buffer A) was flown into the chamber and incubated for 2min.
Then the chamber was washed using 40 μl of buffer A. Second, 20 μl of streptavidin
(0.5mg/ml, dissolved in buffer A) was then flown through the chamber and incubated
for 2min. Next, the chamber was washed with 20 μl of buffer A and subsequently with
20 μl of buffer B. Then ~500 pM of the DNA origami structures were flown into the
chamber and allowed to attach to the surface for 2min. Finally, the imaging buffer with
buffer B with dye-labeled imager strands was flowed into the chamber and sealed with
silicon. Imager sequences are stated in Supplementary Table 5. Imaging conditions are
listed in Supplementary Tables 6–9.

Two buffers were used for sample preparation and imaging: buffer A (10 mM
Tris-HCl pH 7.5, 100 mM NaCl, 0.05% Tween 20, pH 7.5); buffer B (5 mM Tris-
HCl pH 8, 10 mM MgCl2, 1 mM EDTA, 0.05% Tween 20, pH 8). Imaging Buffer B
was supplemented with: 1× Trolox, 1× PCA and 1× PCD. Trolox, PCA and PCD
stocks were as follows: 100× Trolox: 100 mg Trolox, 430 μl 100% methanol, 345 μl
1 M NaOH in 3.2 ml H2O. 40× PCA: 154 mg PCA, 10 ml water and NaOH were
mixed and the pH was adjusted to 9.0. 100× PCD: 9.3 mg PCD, 13.3 ml of buffer
was used (100 mM Tris-HCl pH 8, 50 mM KCl, 1 mM EDTA, 50% glycerol).

DNA-origami design and self-assembly of tetrahedron dataset. The tetra-
hedron DNA-origami structures were formed in a one-pot reaction with a 50 μl
total volume containing 10 nM scaffold strand (p8064), 100 nM core staples,
100 nM connector staples, 100 nM vertex staples, 100 nM biotin handles, 100 nM
DNA-PAINT docking site staples, and 1400 nM biotin anti-handles in folding
buffer (1× TE (5 mM Tris, 1 mM EDTA) buffer with 10 mM MgCl2). The solution
was annealed using a thermal ramp cooling from 80 to 4 °C over the course of 15 h.
After self-assembly, the structures were mixed with 1× loading dye and then
purified by agarose gel electrophoresis (1.5% agarose, 0.5× TAE, 10 mM MgCl2, 1×
SYBR Safe) at 3 V/cm for 3 h. Gel bands were cut, crushed and filled into a Freeze
‘N Squeeze column and spun for 5 min at 1000 × g at 4 °C.

Optical setup for the acquisition of tetrahedron dataset. Fluorescence imaging
was carried out on an inverted microscope (Nikon Instruments, Eclipse Ti) with
the Perfect Focus System, applying an objective-type TIRF configuration with an
oil-immersion objective (Nikon Instruments, Apo SR TIRF ×100, numerical
aperture 1.49, Oil). A 561 nm (200 mW, Coherent Sapphire) laser was used for
excitation. The laser beam was passed through cleanup filters (Chroma Technol-
ogy, ZET561/10) and coupled into the microscope objective using a beam splitter
(Chroma Technology, ZT561rdc). Fluorescence light was spectrally filtered with an
emission filter (Chroma Technology, ET600/50m, and ET575lp) and imaged on a
sCMOS camera (Andor, Zyla 4.2 Plus) without further magnification, resulting in
an effective pixel size of 130 nm (after 2 × 2 binning).

DNA-PAINT sample preparation of tetrahedron structures. For chamber pre-
paration, a piece of coverslip (no. 1.5, 18 × 18 mm2, ~0.17 mm thickness) and a
glass slide (3 × 1 inch2 1 mm thick) were sandwiched together by two strips of
double-sided tape to form a flow chamber with inner volume of ~20 μl. First, 20 μl
of biotin-labeled bovine albumin (1 mg/ml, dissolved in buffer A) was flown into
the chamber and incubated for 2 min. Then the chamber was washed using 40 μl of
buffer A. Second, 20 μl of streptavidin (0.5 mg/ml, dissolved in buffer A) was then
flown through the chamber and incubated for 2 min. Next, the chamber was
washed with 40 μl of buffer A and subsequently with 40 μl of buffer B. Then ~50
pM of the tetrahedron DNA origami structures were flown into the chamber and
allowed to bind for 30 min. Afterward the chamber was washed with 40 μl of buffer
B again. Finally, the imaging buffer with buffer B and 1× Trolox, 1× PCA, and 1×
PCD with the Cy3b-labeled imager strand (P1, 9nt at 3 nM) was flown into the
chamber. The chamber was sealed with epoxy before subsequent imaging.

Two buffers were used for sample preparation and imaging: buffer A (10 mM
Tris-HCl pH 7.5, 100 mM NaCl, 0.05% Tween 20, pH 7.5); buffer B (10 mM
MgCl2, 5 mM Tris-HCl pH 8, 1 mM EDTA, 0.05% Tween 20, pH 8). The imaging
buffer was supplemented with: 1× Trolox, 1× PCA and 1× PCD Trolox, PCA and
PCD were as follows: 100× Trolox:100 mg Trolox, 430 μl 100% methanol, 345 μl 1
M NaOH in 3.2 ml H2O. 40× PCA: 154 mg PCA, 10 ml water and NaOH were
mixed and the pH was adjusted to 9.0. 100× PCD:9.3 mg PCD, 13.3 ml of buffer
was used (100 mM Tris-HCl pH 8, 50 mM KCl, 1 mM EDTA, 50% glycerol).

DNA-PAINT super-resolution microscopy of tetrahedron dataset. Images were
acquired with an imager strand concentration of 3 nM (P1-Cy3B, 9nt) in imaging
buffer. Here, 30,000 frames were acquired at 300 ms exposure time. The readout
bandwidth was set to 200MHz. Laser power (at 561 nm) was set to 110 mW
(measured at the BFP of the objective). This power corresponds to an intensity of
~990 W cm-2 at the sample plane.

Super-resolution reconstruction. Raw fluorescence data were subjected to spot-
finding and subsequent super-resolution reconstruction with the Picasso software
package using the Localize module. The drift correction was performed with

Picasso Render using a redundant cross-correlation (RCC) with segmentation set to
1000 frames. The remaining drift was corrected with the Render’s function Undrift
from picked with all picked DNA-origami structures. The DNA-origami were
picked using Render Pick similar.

Materials. Unmodified DNA oligonucleotides, fluorescently modified DNA oli-
gonucleotides, and biotinylated DNA oligonucleotides were purchased from MWG
Eurofins. M13mp18 scaffold was obtained from Tilibit. BSA-Biotin was obtained
from Sigma-Aldrich (cat: A8549). Streptavidin was ordered from Invitrogen (cat: S-
888). Tris 1 M pH 8.0 (cat: AM9856), EDTA 0.5M pH 8.0 (cat: AM9261), Mag-
nesium 1M (cat: AM9530G) and Sodium Chloride 5M (cat: AM9759) were
ordered from Ambion. Ultrapure water (cat: 10977-035) was purchased from
Gibco. Polyethylene glycol (PEG)-8000 (catalog no. 6510-1KG) was purchased
from Merck. Tween-20 (P9416-50ML), glycerol (65516-500 ml), methanol (32213-
2.5 L), protocatechuate 3,4-dioxygenase pseudomonas (PCD; P8279), 3,4-dihy-
droxybenzoic acid (PCA; 37580-25G-F) and (±)-6-hydroxy- 2,5,7,8-tetra-methyl-
chromane-2-carboxylic acid (trolox; 238813-5 G) were ordered from Sigma-
Aldrich. Glass slides (cat: 48811-703) were obtained from VWR. Coverslips were
purchased from Marienfeld (cat: 0107032). Silicon (cat.1300 1000) was ordered
from picodent. Double-sided tape (cat: 665D) was ordered from Scotch.

Classification. The developed clustering or classification pipeline (Fig. 1) consists
of four main building blocks: (1) pairwise registration of all particles resulting in an
upper triangular matrix of dissimilarity values; (2) multidimensional scaling based
on the dissimilarity representation; (3) k-means clustering of the multidimensional
embedding; and (4) per cluster particle fusion.

Pairwise registration. The registration of every particle to every other particle is
performed as in Heydarian et al.5. A Gaussian-mixture-model-based (GMM)
registration in combination with the Bhattacharya cost function results in trans-
formation parameters and a cost function value for each pair of particles. The
GMM registration23 finds the optimal transformation by placing a Gaussian dis-
tribution onto every localization and maximizing the overall overlap between all
Gaussians of the two particles. The Gaussian distributions are all given the same
width, the so-called scale, which is a parameter that is dataset specific. The optimal
scale parameter is determined by performing a scale-sweep in the range 0.001–0.5
camera pixels (corresponding to 0.13–65 nm). Since the minimum spacing between
fluorophore binding sites ranges from 5 nm (DNA origami) to 60 nm (Xenopus
nuclear pore), this range is sufficient. A smaller scale would result in overfitting on
individual localizations and a larger scale would blur the localizations belonging to
different binding sites. In the scale-sweep, 10 random combinations of particles are
registered using GMM for 50 scales linearly distributed over the above range. The
optimal scale parameter corresponds to the maximum GMM value after normal-
izing and averaging the obtained 10 GMM values over all scales. This procedure
results in a scale value of 0.03 for the digits, 0.15 for the letters, 0.1 for NPC and
0.01 for the TUD-logo (in camera pixels). Each GMM registration is initialized
with six angles (uniformly distributed between 0 and 2π) and the optimal regis-
tration is determined by evaluating the Bhattacharya cost function (Eq. (1) of
Heydarian et al.5) on the six found transformations. The Bhattacharya cost func-
tion is adapted by adding a normalization with respect to the number of locali-
zations and with respect to the localization uncertainties as follows:

Sða; bÞ ¼ 1
KaKb

∑
Ka

i¼1
∑
Kb

j¼1

1
ðσ2a;i þ σ2b;jÞ

exp � 1
2

ðra;i � rb;jÞ2
σ2a;i þ σ2b;j

 !
; ð1Þ

where Ka and Kb are the number of localizations, ra and rb the localization coor-
dinates and σa and σb the isotropic localization uncertainties for particles a and b,
respectively. Both normalizations are crucial to reliably compare the similarity of
different pairs of particles. Without the normalizing with respect to the number of
localizations, particles with a high number of localizations will give a high-cost
function value. This is unfavorable, since we want the cost function to reflect the
degree of similarity between particles, not the number of localizations. The nor-
malization with respect to the uncertainty is necessary to prevent that localizations
with a high uncertainty result in a high-cost function value. The cost function
essentially calculates the overlap between two Gaussian mixtures. Without nor-
malization, the area under the curve is not equal to 1, and the overlap can become
very high for large uncertainties.

The pairwise registration of N particles results in an upper triangular matrix of
N(N-1)/2 cost function values, where a higher value indicates a better match
between the particles. The cost function values S are converted to dissimilarity
values D by subtracting all of them from the highest value in the matrix:

Dða; bÞ ¼ maxðSÞ � Sða; bÞ: ð2Þ

Multidimensional scaling. To cluster the particles based on the dissimilarity
matrix, multidimensional scaling (MDS)16 is used to embed the particles in a
multidimensional space. MDS provides a spatial representation of the data by a
nonlinear mapping while preserving the pairwise, symmetric dissimilarities
between the particles. Essentially, every particle is given a position in space, in such
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a way, that the Euclidean distances between pairs of particles are approximately
equal to their dissimilarity measure. In this way, particles with a high dissimilarity
will be placed far apart in the new space, and particles with a low dissimilarity will
end up close to each other. Basically, this is the inverse process to determining
distances. Instead of having a spatial embedding and measuring the distances
between all pairs of particles, we start with the distances (dissimilarities) and try to
find their spatial embedding. We use nonclassical MDS which iteratively updates
the MDS coordinates by minimizing the metric stress loss function, defined as:

Stress ¼ ∑ijðdij � kxi � xjkÞ2
∑ijd

2
ij

 !1=2

; ð3Þ

where dij is the dissimilarity between particles i and j, and xi the MDS coordinates
of particle i. This stress loss function assures that the dissimilarities are preserved as
the inter-particle distances in the multidimensional space. We choose to embed the
particles into 30 dimensions, since we empirically determined that any value
between above 15 is sufficient (Supplementary Fig. 13) and we take as rule of
thumb twice this value.

K-means clustering. K-means clustering in the multidimensional scaling space
results in K clusters of particles. To prevent finding suboptimal clusters due to the
random initialization of the k-means algorithm, the clustering procedure is repe-
ated 1000 times. Using a high number of repeats is especially important in cases
where a group containing a small number of particles has to be found. Here, we
advise taking the number of repeats equal to the number of total particles, to assure
that every particle is on average at least once selected as initial seed for the k-means
algorithm. From all initializations, the clustering with the lowest within-cluster
sums of points-to-centroid distances is chosen. To determine the value of K, the
scatter plot containing the first 3 dimensions of the MDS space can be inspected
visually (Supplementary Fig. 1). Reviewing only the first three dimensions is suf-
ficient, since they contain the most important variation within the MDS space and
reviewing the order in a higher-dimensional space is visually challenging. Addi-
tionally, determining the optimal number of clusters can be guided by using the
silhouette measure as cluster evaluation method (Supplementary Fig. 2). If the first
dimensions show separated clusters, or the silhouette plot shows a clear peak, K can
be chosen to match the number of clusters. However, when the variation between
the different classes of particles is small, the MDS scatter plot will be a single point
cloud, and does not give a clear indication for the choice of K. In this case, as
always, selecting the optimal K requires some tweaking. The user can start with an
educated guess of K and then vary K to manually inspect what number of clusters is
preferred. This can be done quickly as the computationally most time-consuming
part of the method is the pairwise registration, which only has to be done once. The
fusing of clusters is significantly faster and can, therefore, be repeated for multiple
values of K. If the goal is to find a small subgroup with an estimated occurrence of
2%, for example, it is advised to use a high value for K (as for the mirrored TUD-
logo’s with 50% DoL, Fig. 3d–f) or when the variation is a continuous spectrum, a
low value for K in the range of 2-3 will suffice (as for the elliptical NPCs, Fig. 3g–l
and 3D tetrahedrons Supplementary Fig. 11).

Particle fusion per cluster. Each of the clusters found in the previous step is
reconstructed according to the particle fusion pipeline of Heydarian et al.5. The
reconstruction of the grid structure in the digits dataset is done differently. The
data contains 12 binding sites at 20 nm spacing in a 4 × 3 pattern. Due to the
regular, symmetric nature of this structure in combination with an unbalanced
number of localizations per binding site, reconstruction with the above-mentioned
algorithm is suboptimal. Therefore, the localizations are first clustered per binding
site. This is done by using the density-based clustering for applications with noise
(DBSCAN) technique24, with an epsilon value of 0.03 pixels and 4 as the minimal
number of points per cluster. Subsequently, the above-mentioned particle fusion
algorithm is applied using the centers of the found clusters. The mean uncertainty
of localizations per cluster is used as the uncertainty for each center. Afterward, the
centers are replaced by all the original localizations of the particles.

Further clustering using eigen images. When classifying small subgroups of
structurally different particles, for example low-abundant mirrored DNA-origami
(Fig. 3a–f) or 9-fold symmetric NPCs (Supplementary Fig. 8), the multidimensional
scaling space has to be clustered into many clusters (high value of K, see Methods).
Here, the number of obtained K clusters is higher than the desired C classes. The
clusters can optionally be grouped further using the eigen image method, which
exists of four steps: (1) calculation of the eigen images using principal component
analysis (PCA); (2) projection of the K clusters onto the first eigen image; (3)
hierarchical agglomerative clustering (HAC) on the obtained weights; and (4)
merging of the grouped clusters (Supplementary Fig. 14).

The K reconstructed clusters are optionally grouped further using the eigen
image method with the aim to find C < K classes. First, we need to align the K
clusters with respect to each other, which is done by using the particle fusion
pipeline5. Instead of fusing the particles, only the final transformation parameters

are applied to align the different clusters. These clusters are converted to pixelated
images by binning the localizations in an N ´N grid, with N= 400. This number of
pixels results in a pixel size of 0.2 nm for the DNA origami experiments and 0.7 nm
for the nuclear pore experiments. As a rule of thumb, the pixel size should be about
¼ of the localization uncertainty in the data20. A larger pixel size would result in
blurring of the images and thereby loss of structural details, whereas a smaller pixel
size will make the images too noisy. Thereafter, the images are normalized to have
zero mean and a 2-norm of one. The K images are reshaped into column vectors
and concatenated into a matrix X of size N2 ´K , where every column represents an
image. The eigen images are computed by applying singular-value decomposition
(SVD) to the covariance matrix M ¼ XXT . SVD is a generalized version of eigen
decomposition that works for non-diagonalizable and even non-square matrices.
The decomposition ofXXT results in:

XXTu ¼ suv; ð4Þ
where u and v are the left- and right-singular vectors, respectively, with associated
singular valuesu . Since the matrix XXT is normal (it commutes with its conjugate
transpose), the left- and right-singular vectors are identical, and the SVD algorithm
is effectively the same as eigen decomposition. The resulting singular vectors, u,
represent the eigen images and the associated singular value, su , indicates how
much variation of the data is explained by its respective singular vector. Instead of
computing the SVD on the immense covariance matrix M (sizeN2 ´N2), applying
SVD on XTX (sizeK2 ´K2) is computationally less expensive:

XTX a!¼ saa: ð5Þ
After left-multiplying both sides of the equation with X:

XXTXa ¼ saXa; ð6Þ
we see this resembles the decomposition of XXT as shown before (Eq. (4) and the
sought-after singular vector, u, can be calculated as u ¼ Xa. By reshaping and
normalizing the singular vectors, the eigen images of size N ´N are formed. Since
the eigen images are sorted based on their singular values, the first one represents
most of the variation between the different images. All K images are projected onto
the first eigen image and the resulting weights are clustered into C classes by
hierarchical agglomerative clustering with an average-linkage criterion25. The value
of C represents the final number of classes of the classification. For the low-
abundant mirrored DNA-origami structures (Fig. 3a–f), as well as for the 9-fold
symmetric nuclear pores (Supplementary Fig. 8) we used C= 2. The localizations
of the K clusters are fused per class (using the particle fusion pipeline of Heydarian
et al.5) to form the final C output classes.

Silhouette cluster evaluation. The silhouette value is a measure of how similar an
object is to its own cluster compared to other clusters. The silhouette value ranges
from −1 to 1, where a high value indicates a big separation between the clusters
mutually. The silhouette value for a point i is defined as ðbi � aiÞ=maxðai; biÞ,
where ai is the average distance of this point to all other points in the same cluster,
and bi the minimum average distance to points in a different cluster, minimized
over the other clusters. The silhouette values shown in Supplementary Fig. 2 are
based on the first three dimensions of the MDS space and represent the average
silhouette value over all particles.

Fitting ellipses to nuclear pore data. The ellipticity is defined as the ratio of the
length of the major axis over the length of the minor axis of the ellipse that is fitted to
the data. To make the elliptical fit less sensitive to the imbalanced distribution of
localizations over the 8 binding sites, we fit the ellipse to the medians of the 8 blobs.
After grouping the localizations into 8 clusters by k-means clustering, the median
position if calculated for all the localizations of each cluster and fitted with an ellipse.

Order parameter. The order parameter is calculated for the orientation of the
elliptical fits of the experimental nuclear pore data (Supplementary Fig. 9) and is
defined as hcosð2ðθ � �θÞÞi, where θ represents the orientation of the ellipse, �θ the
director which is the average angle of all ellipses, and h¼ i the population average
over all ellipses of the respective class. By definition, a value for the order parameter
of 1 indicates complete alignment of all ellipses and a value of 0 indicates a
homogeneous random orientation.

Data availability
Single molecule localization data for the Digits and Letters DNA-origami nanostructures
are publically available via 4TU.Research dataset repository26 (https://doi.org/10.4121/
14074091.v1). Source data are provided with this paper.

Code availability
The software is available for download under the terms of the Apache2.0 license from
Github and 4TU Research Data repository27 at https://github.com/imphys/
smlm_classification2d (https://doi.org/10.4121/14135849.v1).
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