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a b s t r a c t 

Three-dimensional direct numerical simulations of dense suspensions of monodisperse spherical parti- 

cles in simple shear flow have been performed at particle Reynolds numbers between 0.1 and 0.6. The 

particles translate and rotate under the influence of the applied shear. The lattice Boltzmann method 

was used to solve the flow of the interstitial Newtonian liquid, and an immersed boundary method was 

used to enforce the no-slip boundary condition at the surface of each particle. Short range spring forces 

were applied between colliding particles over sub-grid scale distances to prevent overlap. We computed 

the relative apparent viscosity for solids volume fractions up to 38% for several shear rates and particle 

concentrations and discuss the effects of these variables on particle rotation and cluster formations. The 

apparent viscosities increase with increasing particle Reynolds number (shear thickening) and solids frac- 

tion. As long as the particle Reynolds number is low (0.1), the computed viscosities are in good agreement 

with experimental measurements, as well as theoretical and empirical equations. For higher Reynolds 

numbers, we find much higher viscosities, which we relate to slower particle rotation and clustering. 

Simulations with a sudden change in shear rate also reveal a history (or hysteresis) effect due to the 

formation of clusters. We quantify the changes in particle rotation and clustering as a function of the 

Reynolds number and volume fraction. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Suspensions are heterogeneous mixtures of solid particles sus-

ended in a bulk fluid medium ( Rietema, 1982; Barnes et al.,

989 ). Flows of such suspensions are encountered in our daily

ives and many industrial applications in chemical, bio-chemical,

erospace and environmental engineering. Many researchers have

tudied the flow behaviour of suspensions, both experimentally

nd by means of models and computational simulations. Exam-

les of the latter include direct analysis of particle motion in sus-

ensions ( Aidun et al., 1998 ), particle dynamics in dense crys-

al slurries ( Ten Cate et al., 2004 ), sedimentation of blood cells

 Shardt and Derksen, 2012 ), mixing of suspended particles in
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tirred tanks ( Derksen, 2003; 2018 ), and transport of slurries with

ne particles ( Yoshida et al., 2013 ). When dense suspensions flow

hrough pipelines, they exhibit various forms of non-Newtonian

ehaviour that depend on the interactions of particles with each

ther and with the surrounding liquid. An understanding of the

heological behaviour of these suspensions is therefore necessary

or many practical industrial applications. 

The rheology of suspensions may be classified into different

ategories: shear thinning, shear thickening, yield stress (Bingham),

ield stress shear thinning (Herschel-Bulkley), and time depen-

ent (thixotropic) ( Barnes et al., 1989 ). The apparent viscosity of

 fluid may depend upon various factors such as shear rate, parti-

le concentration, size distribution and shape, interparticle forces,

nd time of shearing. The dynamic interactions of particles based

n these factors determine the suspension microstructure, from

hich the macroscopic rheological properties emerge ( Brady and

ossis, 1985 ). An important challenge is to determine how these

omplex physicochemical interactions affect rheology. 

https://doi.org/10.1016/j.ijmultiphaseflow.2019.103205
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijmulflow
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmultiphaseflow.2019.103205&domain=pdf
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mailto:Orest.Shardt@ul.ie
https://doi.org/10.1016/j.ijmultiphaseflow.2019.103205


2 S. Srinivasan, H.E.A. Van den Akker and O. Shardt / International Journal of Multiphase Flow 125 (2020) 103205 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

i

2

2

 

d  

r  

t  

t  

r  

t  

c  

t  

s  

k  

y  

d  

d  

o  

i  

i  

w

 

f  

c  

d  

m  

w  

t  

n

2

 

l  

e  

o  

t  

t  

p  

p  

t  

l  

d  

l  

Fig. 1. Schematic of the simulated monodisperse suspension. U ∗ = U x /U w is the di- 

mensionless fluid velocity with U x being the x component of the fluid velocity. 
Predicting the rheological behaviour of suspensions has been

a long-standing research problem ( Einstein, 1906; Batchelor and

Green, 1972; Mueller et al., 2009; Yoshida et al., 2013 ). The the-

oretical estimation of the relative apparent viscosity (the ratio of

the effective viscosity of a suspension and the viscosity of the

suspending fluid) for a dilute suspension of rigid spheres in sim-

ple shear flow in the Stokes regime originated from the work of

Einstein (1906) . Further extensions to Einstein’s formula by con-

sidering the effects of particle interactions have also been de-

veloped via experiments and theory ( Vand, 1948; Krieger and

Dougherty, 1959; Peterson and Fixman, 1963; Frankel and Acrivos,

1967; Batchelor and Green, 1972; Brady and Bossis, 1985 ). Sus-

pension viscosity is usually measured in rheometers of different

working principles, such as flow through an orifice or a capil-

lary, the falling rate of a piston or a ball, the response to an im-

posed vibration, or a Couette flow. The value of the suspension

viscosity may depend on the way it is measured. A recent review

of the rheology of dense granular suspensions by Guazzelli and

Pouliquen (2018) compared the viscosities due to several exper-

imental and theoretical correlations. The review also considered

how suspensions respond to changes in the flow, such as a reversal

in the shear direction (see also Gadala and Acrivos, 1980 ). 

In this paper, we focus on numerical simulations of translating

and rotating solid spherical particles in simple shear flow. An ad-

vantage of running computational simulations over conducting ex-

periments with the view of determining suspension viscosities is

that simulations allow far better control of the various parameters

that contribute to the complex interactions between particles and

liquid. Not only do these parameters comprise physical properties

such as particle and fluid density, particle size and concentration

and liquid viscosity, but also flow parameters such as the imposed

flow rate and local shear rate. In simulations, we can vary the rel-

evant parameters independently, with the view of distinguishing

their separate effects on suspension viscosity. In addition, simu-

lations allow us to look ‘inside’ dense suspensions to learn more

about, for example, clustering behaviour as a function of particle

concentration, which is not possible in experiments. As an exam-

ple of looking inside a suspension, Derksen et al. (2015) used an

immersed boundary method to simulate the dissolution of spheri-

cal particles in laminar shear flow. 

We perform computational simulations of shear-induced sus-

pension behaviour using the lattice Boltzmann method (LBM) and

determine the relative apparent viscosity of the suspensions ηr 

from the shear stress on the walls, 

ηr = 

〈 τ 〉 
μ ˙ γ

(1)

where 〈 τ 〉 is the average shear stress evaluated along a sliding

wall, μ is the dynamic viscosity of the interstitial liquid, and ˙ γ
is the shear rate. We discuss the observed rheology, emphasising

the effects of shear rate, particle concentration, particle rotation,

clustering, and sudden changes in the shear rate. 

This paper is organised as follows: We first define the flow sys-

tem and the relevant dimensionless parameters. Then we discuss

the fluid flow solver, the numerical method used to enforce the no-

slip boundary condition on the surface of each particle, and the in-

tegration scheme for the translational and rotational motion of the

particles. We then describe a forcing scheme for handling parti-

cle collisions. Next, we discuss several validations of the numerical

method before comparing the simulation viscosities of dense sus-

pensions with theoretical equations and empirical correlations. We

study the effects of shear rate, particle concentration, and changes

in the shear rate on the apparent viscosity of the suspension. We

discuss the relationship between the apparent viscosities, the ro-

tation rates of individual particles, and the extent of clustering
ithin the sheared suspension. Finally, we summarise our findings

n the conclusions. 

. Numerical methods 

.1. Flow system 

The purpose of our research is to develop expressions for the

ependence of the apparent viscosity of a suspension on the shear

ate (or particle Reynolds number) and solids volume fraction with

he view of predicting the transport behaviour of dense slurries

hrough industrial pipelines. The size of the particles in these slur-

ies is 150 to 300 μm, and the solids volume fraction φv amounts

o 35%. Our approach towards this goal is to run, for a small par-

el of a slurry, numerical simulations of many monodisperse neu-

rally buoyant rigid spheres placed initially randomly in a simple

hear flow, as shown in Fig. 1 . The liquid phase is Newtonian with

inematic viscosity ν . The simulation domain is periodic in x and

 , which means that the liquid and solids leaving one end of the

omain re-enter from the opposite end. The top and bottom ( z -

irection) x − y planes are sheared in opposite directions with an

verall shear rate ˙ γ = 2 U w 

/H, where U w 

is the wall speed and H

s the distance between the walls. The liquid and solids are at rest

nitially and the flow is induced only by the shearing motion of the

alls. 

In order to match the simulations with physical systems, the

ollowing dimensionless parameters were considered: the parti-

le Reynolds number Re p = ˙ γ R 2 /ν, (where R is the particle ra-

ius), and the confinement ratio δ = 2 R/H (where H is the do-

ain height). We study the rheological behaviour of suspensions

ith 2% ≤ φv ≤ 38%. In order to match the conditions relevant to

he pipeline application, we consider the range of particle Reynolds

umbers 0.11 ≤ Re p ≤ 0.55. 

.2. Flow solver 

We use LBM to solve the flow of the interstitial Newtonian

iquid ( Chen and Doolen, 1998; Krüger et al., 2017 ). LBM is an

xplicit time marching finite difference scheme for the continu-

us Boltzmann equation. This method uses a regular cubic lat-

ice, where the fluid is described by fictitious particles (popula-

ions f i ) that move with discrete velocities c i . Forces may be ap-

lied to these particles, and momentum transport occurs when the

articles stream from each lattice node to the neighbouring lat-

ice nodes and collide with each other according to the BGK col-

ision operator ( Bhatnagar et al., 1954 ). The simulations are three-

imensional and we use a D3Q19 (three-dimensional with 19 ve-

ocities) LB model. The populations evolve according to the discrete
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oltzmann equation 

f i (x + c i �t, t + �t) = f i (x , t) − �t 

τ
( f i (x , t) − f eq 

i 
(x , t)) (2)

here the subscript i counts over the number of discrete velocities.

is the relaxation time, t is the simulation time, and �t = 1 is the

ime step. The equilibrium distribution function is 

f eq 
i 

(x , t) = w i ρ
(

1 + 3(u · c i ) + 

9 

2 

(u · c i ) 
2 − 3 

2 

(u · u ) 
)
, (3)

here the values of the weights are: w 0 = 

1 

3 
, w 1 −6 = 

1 

18 
, and

 7 −18 = 

1 

36 
. At each lattice node, the density of the fluid ρ( x , t )

nd the velocity u ( x , t ) are computed from the populations accord-

ng to: 

(x , t) = 

∑ 

i 

f i (x , t) (4)

nd 

 (x , t) = 

1 

ρ(x , t) 

∑ 

i 

f i (x , t) c i + 

F (x , t)�t 

2 ρ(x , t) 
(5)

here F ( x , t ) is the Eulerian force density per unit volume.

his body force is incorporated in the LBM simulation using the

han and Chen (1993) forcing scheme, which modifies the velocity

sed to calculate the equilibrium distribution. The fluid kinematic

iscosity ν is related to the relaxation time by 

= 

2 τ − 1 

6 

. (6) 

To simulate incompressible flow with LBM, we require that the

ach number Ma � 1 . The shear speed in the simulations does

ot exceed 0.025 lu/ts (where lu is lattice spacing and ts is lattice

ime), and it is therefore well below the speed of sound c s = 1 / 
√ 

3

n LBM. 

.3. Boundary conditions 

To enforce the no-slip boundary condition for the moving

alls, we used a bounce back scheme with momentum correc-

ion ( Ladd, 1994 ). The no-slip boundary condition on the sur-

ace of each finite-sized particle is implemented by means of an

mmersed boundary method (IBM). Several variants of IBM have

een developed over the past two decades: Derksen and Van den

kker (1999) , Rohde et al. (2002) , Ten Cate et al. (2004) , Feng and

ichaelides (2004) and Tschisgale et al. (2018) , and we use the

ethod proposed by Feng and Michaelides (2004) . This method

ses a fixed Cartesian mesh for fluid flow (the LBM lattice) and

wo sets of Lagrangian points. These Lagrangian points consist

f N l marker points r p,j that follow the fluid and N l reference

oints r 0 
p, j 

that move by the rigid motion of the particles. In or-

er to distribute the Lagrangian (marker and reference) points uni-

ormly on the surface of each rigid sphere, we use the algorithm

f Vogel (1979) . During the simulation, the marker points are ad-

ected by the fluid, and any displacement between a marker point

nd its corresponding reference point leads to a Lagrangian force

p,j ( t ). An explicit forcing scheme is implemented to compute this

agrangian force using the linear spring relationship 

p, j ( t ) = −κ
a 

�x 2 
[ r p, j (t) − r 0 p, j (t)] (7)

here the subscripts p and j count over the number of particles

nd Lagrangian points respectively. The force is weighted by the

verage surface area per Lagrangian point, a = 4 πR 2 /N . κ is the
l 
pring constant. The Lagrangian force is spread to the Eulerian fluid

odes according to 

 (x , t) = 

∑ 

p, j 

�p, j (t) D (q p, j ) , (8)

hich is then used as the body force (that is present only along

he surface of each particle) in the LBM solver for the Navier-Stokes

quations in the entire flow domain. Here, q p, j = r p, j (t) − x is the

istance between the marker point and the Eulerian fluid node,

nd D (q ) = δ(q x ) δ(q y ) δ(q z ) / �x 3 is a Dirac delta distribution func-

ion where δ( x ) is given by ( Krüger et al., 2017 ) 

(x ) = 

{
1 − | x | , 0 ≤ | x | ≤ �x 
0 , �x ≤ | x | (9) 

he velocity v p,j ( t ) of each marker point on each particle is com-

uted from the fluid velocity by interpolation as 

 p, j (t) = 

∑ 

x 

u (x , t) D (q p, j ) . (10)

fter interpolating the fluid velocity at the marker points, we up-

ate the marker positions by explicit Euler integration of 

dr p, j 

dt 
= v p, j . (11) 

To determine the required number of Lagrangian points on each

article, a test simulation of shear around a stationary sphere was

erformed. For a fixed particle radius ( R = 4 lu), several values of

 l ranging from 300 to 1500 were used in these simulations to

heck the velocity profile through the centre of the sphere. In each

f these simulations, the spring constant κ was varied between

.002 and 2, and we chose κ = 0 . 002 because numerical instability

as observed in suspension simulations with higher spring con-

tants. No substantial difference was seen in the velocity profile in-

ide the sphere for the number of Lagrangian points in this range

nd hence, we chose N l = 800 ( a = 0 . 25 lu 

2 ) for all simulations.

s another test of the accuracy of the chosen IBM, we computed

he drag force on a sphere (with R = 4 lu) moving at a constant

peed u p = 0 . 002 lu/ts. To avoid the effects of periodic bound-

ries, we chose a large domain of size 100 R × 50 R × 50 R lu with

= 1 / 6 lu 

2 /ts. By comparing the computed force on the sphere

ith the expected Stokes drag force, we determined that the effec-

ive (hydrodynamic) radius of the sphere ( R hyd ) was 4.2 lu, which is

arger than the input radius R = 4 lu. Several authors ( Ladd, 1994;

ohde et al., 2002; Feng and Michaelides, 2009; Krüger et al., 2011 )

ave observed a hydrodynamic radius larger than the input radius,

nding values of R hyd − R between 0.2 �x and 0.5 �x . To make it

imple for the reader, we use R = R hyd in all parameters that we re-

ort about the simulations; in the simulations, however, collisions

re calculated using the input radius R = 4 lu. 

.4. Particle motion 

Due to the shearing motion of the top and bottom walls, the

ow starts to develop and the particles translate, rotate, and col-

ide. As a result of the interaction between the particles and liquid,

ach particle experiences a force F p , which is written as 

 p = 

∑ 

j 

−�p, j . (12) 

he particles’ translational velocities u p and positions x p are up-

ated by applying leapfrog integration to Newton’s equations of

otion 

 

du p 

dt 
= F p (13) 

dx p = u p (14) 

dt 
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Fig. 2. Gap width between two colliding particles as a function of time for several 

repulsive force strengths κp . Inset: sample visualisation of the cross-section through 

the colliding particles at an instant of time after the collision. The background is 

coloured according to the x component of the liquid velocity. (For interpretation of 

the references to colour in this figure, the reader is referred to the web version of 

this article.) 
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where M is the mass of each particle, and the initial particle po-

sitions are randomly selected ( Bernal, 1964; Finney, 2013 ) for each

φv that is considered. Similarly, the torque T p acting on a particle

is 

T p = 

∑ 

j 

d p, j × −�p, j (t) (15)

where d p,j is a vector from the center of mass of the p th particle

and its j th marker point. We again apply leapfrog integration to

the rotational equation of motion for a sphere 

I 
d ω p 

dt 
= T p (16)

and compute the angular velocity ω p of each particle starting

from the initial condition ω p (t = 0) = 0 . The moment of inertia

I = (2 / 5) MR 2 is a constant for all the particles. The rotation of each

particle in the lattice reference frame is tracked by computing the

small angle rotation given by the matrix 

R p (t) = 

( 

1 −ω 

z 
p �t ω 

y 
p �t 

ω 

z 
p �t 1 −ω 

x 
p �t 

−ω 

y 
p �t ω 

x 
p �t 1 

) 

(17)

where ω p = (ω 

x 
p , ω 

y 
p , ω 

z 
p ) . The Lagrangian reference points are up-

dated based on the new orientation of the particle at the end of a

time step according to: 

r 0 p, j (t + �t) = x p (t + �t) + R p (t )[ r 0 p, j (t ) − x p (t)] (18)

2.5. Particle collisions 

While simulating suspensions, collisions between particles are

unavoidable, and hence a repulsive force is necessary to prevent

overlap. As two particles collide, the size of the gap between the

particles approaches the resolution of the simulation grid. After

this time, the simulation can no longer resolve the flow of fluid

between the particles accurately. Hence, we included an additional

short range repulsive force when the gap width between the par-

ticles becomes less than a threshold ζ . The collision forces on a

particle p due to another particle q and a wall w (top or bottom)

are calculated as ( Glowinski et al., 2001 ) 

F col 
p,q = 

⎧ ⎨ 

⎩ 

0 , h > 2 R + ζ

κp 

(
h − 2 R − ζ

ζ

)2 

ˆ n qp , h ≤ 2 R + ζ
(19)

F col 
p,w 

= 

⎧ ⎨ 

⎩ 

0 , s > R + ζ / 2 

κw 

(
s − R − ζ / 2 

ζ

)2 

ˆ n wp , s ≤ R + ζ / 2 

(20)

where h = | x p − x q | is the distance between the particles and s =
| x p − x w 

| is the distance between the particle and the nearest

point, x w 

, on the wall. ˆ n qp and ˆ n wp are unit vectors that connect

the center of sphere p with sphere q and the wall. κp and κw 

spec-

ify the strengths of the repulsive forces. The collision forces are

added to the IB force to obtain 

F p = 

∑ 

j 

−�p, j (t) + 

∑ 

q � = p 
F col 

p,q + 

∑ 

w 

F col 
p,w 

. (21)

The collision forces are always normal to the surface of the parti-

cles and therefore do not affect the torque. 

In order to determine a suitable value of the repulsive force

strength ( κp ) to suppress overlap, we performed simulations of

two colliding rigid spheres with R = 4 lu each. The aspect ratios

β = L/H and � = L/W (with L = 100 lu, W = 50 lu, and H = 50 lu)

and the confinement ratio δ = 2 R/H were 2, 2, and 0.17 respec-
ively. The other parameters were ν = 1 / 30 lu 

2 /ts and Re p = 0 . 33 .

he initial gap width ( h − 2 R ) between the particles was ≈ 3 R , and

he initial vertical ( z ) distance was ≈ 1.25 R . The threshold distance

as ζ = 1 lu. 

When the flow starts to develop, the particles translate, ro-

ate, and move closer. Fig. 2 shows a comparison between the gap

idths of two colliding particles under several repulsive strengths

p . Starting from κp = 0 , i.e. in the absence of a collision force,

e performed simulations with increasing κp up to 10. It is evi-

ent that the minimum gap width increases to the threshold dis-

ance, with a small difference between using κp = 1 or κp = 10 . Al-

hough this simulation with two particles was stable with κp = 10 ,

imulations of suspensions were unstable with this value. Instead,

e chose κp = 1 for particle-particle collisions (which nonetheless

aintains gap widths close to the collision threshold) while retain-

ng κw 

= 10 for particle-wall collisions for the simulations that fol-

ow. 

.6. Implementation 

The simulations were implemented using a custom C ++ code.

imulations that involve a large domain size require significant

emory, and the simulation time needed for the suspended par-

icles to reach steady state conditions can take up to several days

f computational time. Running the simulations on multiple pro-

essors and cores helps to keep the simulation times reasonable

nd makes larger domains and longer simulation times feasible.

e therefore parallelised the custom immersed boundary lattice

oltzmann (IB-LB) code using the Message Passing Interface (MPI)

ibrary to implement full 3 − D domain decomposition for the LBM

uid flow solver. This is achieved by dividing the simulation do-

ain into several subdomains and updating each subdomain inde-

endently while sharing data between them ( Krüger et al., 2017 ).

hen simulating suspensions, the coupling of the particle motion

ith the fluid complicates the implementation of the 3 − D do-

ain decomposition because the Lagrangian points of a particle

an be located in up to eight adjacent cuboid subdomains. Every

PI process stores a copy of the locations of all the particles and

omputes the contributions to the total force and torque on each

article that is (partially or completely) located within that sub-

omain. If a particle is located in more than one subdomain, then

he total forces and torques on it are computed as a sum of the
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Fig. 4. Trajectories of two particles in simple shear flow at Re p = 0 . 1 . Solid and 

dashed lines show the simulation results obtained by the present IB-LBM code and 

Kulkarni and Morris (2008) , respectively. x ∗ and z ∗ are the particle positions scaled 

by particle radius and relative to the centre of the domain. Arrows indicate the 

direction of the motion. 
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ontributions from each subdomain. The results presented in the

pcoming sections were obtained using two parallel processes on

 4 core Intel i7-6700 processor with 64 GB RAM. The suspension

imulations required ≈ 0.5 GB of memory. 

. Validation studies 

We discuss the validation of the implemented IB-LB method by

erforming two simulations: steady-state rotation of a single con-

ned sphere and the trajectories of two interacting spheres, both

n simple shear flow. The simulation of single particle rotation is

ompared with Bikard et al. (2006) and D’Avino et al. (2009) , and

he motion of two spheres is compared with Kulkarni and Mor-

is (2008) . 

.1. Simulation of freely rotating particle 

The angular velocity ω p of a sphere suspended in a sheared

ewtonian liquid is ( Einstein, 1906; Jeffery, 1922; Clift et al., 2005 )

 p = 

˙ γ

2 

(22) 

n the absence of inertia or wall effects. We computed the rota-

ion rates of a sphere for varying particle-wall distances and a fixed

article radius. The confinement ratio δ was varied between 0.26

nd 0.7 by using channel heights H between 32 and 12 lu. The as-

ect ratios were β = 2 & Γ = 2 and the liquid kinematic viscosity

as 1/6 lu 

2 /ts. The shear speed U w 

was varied to maintain a fixed

article Reynolds number. To ensure steady state, all the simula-

ions ran for 20,0 0 0 time steps, and Fig. 3 presents the steady ro-

ation rate of the sphere midway between two walls as a function

f confinement ratio δ. 

The rotational speed of the particle decreases with increasing δ.

or δ < 0.3, the rotation rate approaches the theoretical value for

nconfined shear ( Eq. (22) ). Therefore wall effects become negli-

ible for heights greater than 6 R , and confinement decreases the

otation rate noticeably for smaller heights. The computed rotation

ates agree with earlier computations ( Bikard et al., 2006; D’Avino

t al., 2009 ). For δ = 0 . 7 , however, the gap between the particle

nd wall is about 2 lu when R = 4 lu, and the discrepancy seen

or high δ (filled red triangles in Fig. 3 ) is attributed to inadequate
ig. 3. Steady rotation rate of a particle in shear between parallel plates as a func- 

ion of the confinement δ at two different resolutions with R = 4 (filled red trian- 

les) and 8 lu (open and filled blue triangles), and Re p = 0 . 033 and 0.3. Dashed line 

hows the steady rotation rate in an unbounded domain. (For interpretation of the 

eferences to colour in this figure legend, the reader is referred to the web version 

f this article.) 
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esolution of the flow in the gap between the particle and wall. At

ow confinements, the results approach the theoretical value. 

Doubling the resolution of the simulations (domain dimensions

nd particle radius) while keeping all dimensionless parameters

he same shows closer agreement with the other numerical re-

ults. To have the same average surface area per Lagrangian point

 a = 0 . 25 lu 

2 ) we quadrupled the number of Lagrangian points

 N l = 3200 ) and repeated the simulation of a freely translating

phere to compute the hydrodynamic radius. In this simulation, the

omain was twice the size in the y (vorticity) and z (wall normal)

irections, and 1.5 times in the x (shear) direction compared with

he previous case (see Section 2.3 ). The effective radius R hyd was

omputed to be 8.6 lu. In addition to increasing the resolution, we

lso considered the effect of increasing the particle Reynolds num-

er by a factor 10 ( Re p = 0 . 3 ) on the rotation rate of the sphere

filled blue triangles in Fig. 3 ). It is evident that the effect of in-

reasing the particle Reynolds number is not significant at least for

hese low values. 

.2. Trajectories of a pair of spheres 

Approaching particles in a laminar shear flow may pass over

ach other, reverse their trajectories, or spiral, depending upon

heir initial conditions, as found by Kulkarni and Morris (2008) by

eans of (also) LB simulations. As a validation of our code, we per-

ormed a simulation where two particles of equal radii were ini-

ially separated by a vertical ( z direction) distance of ≈ 2.5 R and

 horizontal ( x direction) distance of ≈ 10 R and located at the

ame y position. The other simulation parameters were chosen to

atch the conditions of Kulkarni and Morris (2008) as follows: do-

ain size 20 R × 20 R × 20 R , U w 

= 0 . 005 lu/ts, ν = 1 / 30 lu 

2 /ts, and

herefore Re p = 0 . 1 . The simulation ran for 20 0,0 0 0 time steps, and

ig. 4 presents the trajectories of the two particles. The particles

aintained a sufficient distance between them that inclusion of a

ollision model was not necessary. 

When the shearing motion of the walls starts, the particles be-

in to translate and rotate. The particles approach each other from

pposite directions, pass over each other, and then separate (indi-

ated by the hump in Fig. 4 ). Comparing the trajectories of these

articles with Kulkarni and Morris (2008) , it is evident that the

esults are in good agreement even though the resolution is low

 R = 4 lu). 
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Fig. 5. Visualisation of a cross-section through a simulated suspension in simple 

shear flow ( φv = 38% , and Re p = 0 . 55 ) at t ∗ = 17 . 6 . The white lines in each circle 

show the orientation of the particle and the colours represent the x component of 

the interstitial liquid velocity scaled by the wall speed. (For interpretation of the 

references to colour in this figure, the reader is referred to the web version of this 

article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Relative apparent viscosity of a rigid sphere suspension as a function of time 

obtained for one random initial particle configuration (set 1) with φv = 38%. Top 

row: Re p = 0 . 11 , 0 . 22 , 0 . 33 . Bottom row: Re p = 0 . 44 , 0 . 55 . (For interpretation of the 

references to colour in the text, the reader is referred to the web version of this 

article.) 

Fig. 7. Average relative apparent viscosities (computed from top and bottom wall) 

of the suspensions at varying shear rates (and therefore Re p ) at a constant confine- 

ment ratio δ = 0 . 17 for several random initial configurations of the particles. The 

third set (filled symbol) was computed only for Re p = 0 . 44 . For all cases, φv = 38% 

and the errorbars show the standard deviations of the fluctuations. 
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4. Suspension simulations 

We now turn our attention to simulations of monodisperse

suspensions in simple shear flow. We report the response of the

relative apparent viscosity of the suspension to the effects of

shear rate, particle concentration, particle rotation, clustering, and

changes in the shear rate (to a higher value and back to the initial

value). In these simulations, we vary the particle Reynolds number

between 0.11 and 0.55 by changing the shear speed. The aspect ra-

tios β and � were 2 and 2, and the confinement ratio δ = 0 . 17

was kept constant in all the simulations that follow. The liquid

kinematic viscosity ν = 1 / 30 lu 

2 /ts. A solids volume fraction of 38%

was used in all the simulations (except in Sec. 4.2 ), for which we

simulate 310 particles with R hyd = 4 . 2 lu. 

4.1. Effects of shear rate 

We investigated the rheological behaviour of the simulated sus-

pensions for two different random initial particle configurations.

Fig. 5 shows a sample 2 − D visualisation of the 3 − D simulated

suspension at a moment in time. All particles have equal size and

only those that intersect the mid-plane of the simulation domain

are presented. For all shear rates, the same non-dimensional time

range, 0 ≤ ˙ γ t ≤ 400 , was computed. In order to evaluate the rel-

ative apparent viscosity of the suspension, we first computed the

local shear stress τ as 

τ = μ
U w 

− U xw 

�y 
(23)

where �y = 0 . 5 lu is the distance between the wall and the adja-

cent fluid node, and U xw 

is the x component of the liquid velocity

in the two x − y planes of nodes that are adjacent to a wall. This

local shear stress was evaluated at every lattice node in these two

planes and then averaged to obtain the overall apparent viscosity

(see Eq. (1) ). 

The evolution of the relative apparent viscosity over time in

simulations at various shear rates (and therefore Re p ) is presented

in Fig. 6 . It is evident that the viscosity of the suspension fluc-

tuates throughout the simulations due to the interactions of the

particles with the interstitial liquid and walls, as well as the dy-

namic evolution of particle clusters. The effect of the shear rate

can be seen from these figures. The viscosity of the suspension for

Re p = 0.11, 0.22, and 0.33 (top row of Fig. 6 ) decreases gradually

and reaches a steady value. In contrast, at higher shear rates ( Re p =
0.44 and 0.55; bottom row of Fig. 6 ), the suspension viscosity in-

creases at the beginning and then remains constant. In all these

cases, the particles start from the same random initial positions.
n the case of Re p = 0 . 55 (bottom right of Fig. 6 ), for example, we

an qualitatively say that the viscosity remains steady for t ∗ > 200.

ence, we evaluated a mean apparent viscosity (average of top and

ottom) over this steady region of fluctuations and computed the

tandard deviation. The statistical steadiness of the fluctuations in-

icates that the rigid spheres suspended in the liquid have reached

 dynamic equilibrium. We followed the same averaging procedure

or the simulations with the other particle Reynolds numbers and

omputed the average and standard deviation for each case (solid

nd dashed lines, respectively, in Fig. 6 ). 

The relationship between the relative apparent viscosity and

he shear rate (particle Reynolds number) for several random ini-

ial configurations is shown in Fig. 7 . The apparent viscosity of

he suspension increases with increasing particle Reynolds num-

er, and the suspensions therefore exhibit shear thickening. 

This type of rheological behaviour was observed by Brady and

ossis (1985) for zero particle Reynolds number and areal pack-

ng fraction φA = 0 . 5 , by Picano et al. (2013) for 0.1 ≤ Re p ≤ 10

nd φv = 0 . 30 , and by Javaran et al. (2014) for 0.1 ≤ Re p ≤ 1 and

v = 0 . 25 . In our simulations, we obtained similar values for the

iscosities with two random initial particle configurations (set 1

nd set 2), except at Re p = 0 . 44 . To understand the reason for the

pparent discrepancy at Re p = 0 . 44 , we performed another simu-
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Fig. 8. Fluctuations in the average relative apparent viscosities of the suspension 

for three random initial configurations at Re p = 0 . 44 and φv = 38% . 
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Fig. 9. Average relative apparent viscosities of suspensions with varying solids vol- 

ume fractions (computed based on R hyd ) as determined by theoretical and empirical 

expressions (solid and broken lines) and IB-LBM simulations (present work: filled 

symbols). The simulations of Thorimbert et al. (2018) at Re p = 0 . 1 are also included 

(open triangles). 
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ation with a different initial configuration (set 3) and computed

he average viscosity. The value for the third set agrees with the

econd. 

Fig. 8 shows the fluctuations in the viscosity for the three sets

f random initial particle positions at Re p = 0.44. 

Since the fluctuations of the viscosities computed from the top

nd bottom walls follow similar trends (red and blue lines in

ig. 6 ), we show here the average of the values for the top and

ottom walls. It is evident that the simulation viscosity of set 3

grees closely with the results obtained for set 2. Though the vis-

osity for set 1 is typically higher than for the other two sets, all

hree agree at t ∗ ≈ 150. This suggests that the evolution of the rel-

tive apparent viscosity of the suspension may vary due to changes

n the particle configuration. We verify this by cluster analysis in

he following section. 

.2. Effects of particle concentration 

To study the effects of particle concentration, we conducted a

eries of simulations for several particle Reynolds numbers Re p =
 . 11 , 0 . 33 , and 0.55. The solids volume fraction was varied from

% to 38%, for which we simulated 20 to 310 spheres in a periodic

ox. The confinement ratio δ = 0 . 17 and all the simulations ran for

he same non-dimensional time duration ( ̇ γ t = 400 ). For validation

f the IB-LBM code, we compared the average computed viscosities

f the suspensions with several theoretical ( Einstein, 1906; Batche-

or and Green, 1972 ) and empirical expression ( Vand, 1948; Krieger

nd Dougherty, 1959; Barnea and Mizrahi, 1973 ), as presented in

ig. 9 . 

The apparent viscosity of the suspensions increases with

ncreasing solids volume fraction. At a low particle Reynolds

umber ( Re p = 0 . 11 ), the simulation viscosities agree with

instein (1906) for φv < 5%, Barnea and Mizrahi (1973) for

v < 10%, Batchelor and Green (1972) for φv < 15%, Krieger and

ougherty (1959) using the parameters B = 2 . 5 and a maxi-

um packing fraction φmax 
v = 0 . 60 ( Bird et al., 2007 ) for φv 

p to 30%, as well as Vand (1948) for φv up to 38%. Recently,

horimbert et al. (2018) reported values for apparent viscosities

btained through IB-LBM simulations (for Re p ≤ 0.1 and density

atio = 1 . 3 ). Our simulation viscosities are in good agreement with

horimbert et al. (2018) at Re p = 0 . 1 and φv up to 38%. 

At higher solids volume fractions and higher particle Reynolds

umbers, our apparent suspension viscosities are higher than the

mpirical and theoretical correlations. Up to φv = 12% , Fig. 9 shows

hat the particle Reynolds number does not affect the appar-

nt viscosity of the suspension. However, we start to observe
he Reynolds number effect for simulations with φv ≥ 17% and

e p > 0.11. We now present an analysis to demonstrate that these

igher apparent viscosities are due to two phenomena, viz. the ro-

ation of particles and clustering. 

Fig. 10 presents histograms of the rotation rates of an arbi-

rary particle (left column) over the time of steady fluctuations

 200 ≤ ˙ γ t ≤ 400 ) and the rotation rates of all particles (right col-

mn) at ˙ γ t = 400 . Between the histograms, we show the fluctua-

ion in the rotation rate of one particle over time. The solids vol-

me fraction varies from 17% (top), 30% (middle) to 38% (bottom).

he rotation rates are calculated for every particle within the re-

ion of steady fluctuations using a sampling interval of ˙ γ�t = 20 .

t is evident that, at low volume fraction ( φv = 17% ) and Re p = 0 . 11

nd 0.55, the particles on average rotate at a speed equal to the

teady rotation rate in an unbounded domain (see Eq. (22) ). How-

ver, as the solids volume fraction increases, we start to observe

he effect of Reynolds number on the rotational speed of the par-

icles. At φv = 38% and Re p = 0 . 55 , we see that the particles rotate

t a slower rate than for Re p = 0 . 11 . From these results we can

ee that both histograms show similar trends, and it is interest-

ng that the particles temporarily rotate against the applied shear

indicated by negative ω p / ̇ γ in Fig. 10 ). Consistent with electrorhe-

logical fluids where an applied torque increases the rotation rate

nd decreases the apparent viscosity ( Lemaire et al., 2008 ), we see

hat the apparent viscosity is higher when particles rotate slower.

e also performed simulations in which the angular velocity of all

articles is fixed at zero. The details of these simulations, which

xhibit a higher viscosity than the simulations with freely rotating

articles, are provided in Appendix A . 

Another reason for an increased apparent viscosity at high Re p 
nd φv is the formation of particle clusters. It is intuitive that for a

ilute suspension the particles are rather far away from each other

nd few clusters (groups of particles within a small distance h c of

ach other, with h c � R hyd ) will be present. With increasing solids

raction, more and larger clusters can be expected. We analysed

he extent of clustering for the highest φv = 38% and Re p = 0 . 55 .

n these simulations, we computed the number of clusters which

ave two or more particles. Appendix B details how the number

f clusters depends on the threshold h c (which we normalise by

 hyd ). For a small enough threshold, no clusters are found, whereas

or a large enough threshold, all the particles would be counted
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Fig. 10. Left column: Distributions of the rotation rates of an arbitrary particle in a sheared suspension during 200 ≤ ˙ γ t ≤ 400 . Right column: Histograms of the rotation 

rates of all the particles at ˙ γ t = 400 . In both columns (top to bottom) φv = 17% , 30%, and 38%. Insets (in the middle) show the rotation rate of a particle as a function of ˙ γ t

during the steady fluctuations between 200 and 400. 
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Fig. 11. Evolution of the number of clusters and the relative apparent viscosity 

(average of top and bottom wall) as a function of time. The cluster threshold is 

h c /R hyd = 0 . 083 , Re p = 0 . 55 , and φv = 38% . 
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Fig. 12. Fluctuations in the average relative apparent viscosity of the suspension as 

a function of time in a simulation with a varying shear rate computed for three 
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s one cluster. In between, we find a maximum number of clusters

or h c /R hyd = 0 . 083 . Fig. 11 compares the evolution of apparent vis-

osity over time with the evolution of the number of clusters (for

 c /R hyd = 0 . 083 ). With this threshold distance, we see that both

he number of clusters and the apparent viscosity increase until

˙ t = 100 and then stabilise. 

Though we discuss only the case of φv = 38% and Re p = 0 . 55 , a

rief discussion of the clustering behaviour in suspensions at lower

v and Re p is also given in Appendix B . 

All suspension simulations that have been presented so far

ere obtained in the same domain size given by L × W × H (see

ec. 2.5 ). The sensitivity of our results to the size of the periodic

omain (in the x and y directions) was examined by doubling the

izes in these directions. Other parameters such as ν , δ, and Re p 
ere unchanged. Average relative apparent viscosities were com-

uted and compared with the previous simulations. For φv = 31%

 N p = 10 0 0 ) and Re p = 0 . 55 , a 2% increase in the average vis-

osity value was observed. This could be because the solids vol-

me fraction is increased by 1% compared with the earlier case

here φv was 30% ( N p = 240 ). Hence, we consider that by dou-

ling the simulation domain in the periodic directions, the results

re not affected by a significant amount. However, the presence of

hysical walls in the wall normal ( z ) direction, introduces a con-

nement effect. An additional simulation with double the domain

eight (half the confinement ratio) was performed. For this simu-

ation, we compared the average viscosity at φv = 31% ( N p = 500 )

nd Re p = 0 . 26 with the previous simulation. We again observed

 2% increase in the average value of the apparent viscosity and

herefore we conclude that the chosen value of δ = 0 . 17 is suffi-

ient to represent larger domains with a small confinement effect. 

Overall, we agree with Thorimbert et al. (2018) that replacing a

pring-like repulsive force approach by a lubrication model is not

ecessarily required to arrive at satisfactory results for Re p � 1.

owever, in addition to normal and tangential lubrication correc-

ions, there may also be other sub-grid scale forces, for example

olloidal forces, that may become important while studying the

heology of suspensions. Hence, inclusion of corrections that ac-

ount for colloidal forcing are expected to produce more accurate

heological data for suspensions. The changes in the apparent vis-

osity of suspensions under various interparticle forces could be a

opic of future investigation. 

.3. Simulations with changes in shear rate: History effects 

Dense suspensions exhibit complex rheological characteristics,

nd the relative apparent viscosity of a suspension depends not
nly on the effects of shear rate and concentration, but may also

epend on the duration of shearing and the previous shear history.

ence, we investigated the effects of step changes in the shear rate

n the apparent viscosity of the suspensions. The parameters were

dentical to the previous simulations with φv = 38% . In this case,

owever, we changed the shear rate twice. We started the simu-

ation with an initial shear rate ˙ γo = 6 × 10 −4 ts −1 (zone 1) up to

˙ o t = 360 and increased the shear rate to ˙ γ f = 10 −3 ts −1 (zone 2)

nd kept it constant for the same duration (up to ˙ γo t = 720). Fi-

ally, we reduced the shear rate back to its initial value in the last

art of the simulation (zone 3). The particle Reynolds numbers in

he simulation changed between 0.33 and 0.55. Fig. 12 shows the

ariation in apparent viscosity as a function of time with sudden

hanges in the shear rate for three different random initial states. 

From the previous observations, we know that the shear

tresses on the top and bottom walls follow similar trends, and

ence in Fig. 12 we present only the average apparent viscosity.

he peaks at t ∗ = 360 and 720 indicate the times of the changes

n the shear rate. After the first change, the relative apparent vis-

osity of the suspension (for set 1, 2 & 3) retains its previous value

 ≈ 5) before it gradually increases to ≈ 12. This delay before

he start of the increase is several times larger than the viscous

imescale τν = (H/ 2) 2 /ν = 750 ts ( ̇ γo τν = 0 . 45 ). This indicates that

he suspension temporarily remembers its previous shear history

efore it reaches a new configuration in zone 2. When the shear

ate decreases back to its initial value, the suspended particles at-

ain a different equilibrium viscosity ( ≈ 9) in zone 3 than at the

nd of zone 1. The end state of the suspended particles in each

one is the initial configuration for the next shear rate. 

The reason for a different viscosity in zone 3 is that the spa-

ial structure of the particle assembly differs from that of zone 1,

hich started with a random distribution. We used the same clus-

er cut-off ( h c /R hyd = 0 . 083 ) as previously (see Fig. 11 ) to examine

he transient evolution of particle clusters for the set 3 simulation

resented in Fig. 12 . From the number of clusters in each zone, it is

oticeable from Fig. 14 (filled red triangles) that the particles form

ifferent cluster configurations in the three zones. For example, in

he initial lower Reynolds number regime (zone 1, Re p = 0 . 33 ) the

uspension forms ≈ 4 clusters on average. After the first change in

one 2, the particle Reynolds number is higher than in zone 1 and

he number of clusters increases. When the shear rate is brought

ack to its initial value, the particles attain a new cluster config-

ration different from that in zone 1. It is interesting to note that

he trend in the evolution of the particle clusters follows the evo-
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Fig. 13. Effect of increasing the shear time on the relative apparent viscosity of 

the suspension for a random initial configuration (set 3) at φv = 38% . The parti- 

cle Reynolds number in these simulations switches between 0.33 and 0.55 and the 

duration of shear in each zone is ˙ γo �t = 480 and 360. (For interpretation of the 

references to colour in text, the reader is referred to the web version of this arti- 

cle.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Evolution of particle clusters over time for a suspension with 38% solids. 

The particle Reynolds number switches between 0.33 in zone 1 to 0.55 in zone 

2, and back to 0.33 in zone 3. The suspension is sheared for a time interval 

˙ γo �t = 360 in each zone of the shorter simulation and ˙ γo �t = 480 in the longer 

simulation. (For interpretation of the references to colour in text, the reader is re- 

ferred to the web version of this article.) 
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lution of the relative apparent viscosity. From an average of ≈ 4

clusters in zone 1, the suspension gradually evolves over time to

an average of ≈ 35 clusters in the high Reynolds number regime

(zone 2) and decreases back to an average of ≈ 15 clusters in

zone 3. These varying cluster configurations explain the differences

in apparent viscosity. However, one might argue that the suspen-

sion viscosity in zone 3 could have reached the same value as at

the end of zone 1 ( ≈ 5) if the suspension had been sheared for

a longer time. If the viscosity in zone 3 were to eventually reach

the same viscosity as in zone 1, the timescale of the change would

be surprisingly long. From Fig. 12 , we can estimate that the sus-

pension takes a time �t ≈ 100 / ̇ γo to reach a steady viscosity after

the first change. For a particle with a 100 μm radius in water at

Re p = 0 . 3 , this corresponds to a delay of 3.5 s. 

In order to investigate whether increasing the shear time will

bring the viscosity back to its initial value, we ran the set 3 simula-

tion for a longer time. In this simulation, we increased the duration

of each zone to ˙ γo �t = 480 . Average apparent viscosity data for

these longer simulation runs are shown in Fig. 13 along with the

data from the earlier, shorter simulation. Though in the simulation

with ˙ γo �t = 360 the shear rate changes at ˙ γo �t = 360 and 720,

the data for this shorter simulation are plotted with gaps to match

the times of the changes in shear rate of the longer simulation.

We compare the two simulations that start with identical particle

initial states, i.e. set 3, and see that the apparent viscosities ob-

tained from these simulations do not match exactly in zones 2 and

3. This is because in each zone the structure of a particle assem-

bly at the end of the longer simulation time (the broken blue lines

in Fig. 13 ) is different from the structure at the end of the shorter

simulation time (the solid red line in Fig. 13 ). Considering the am-

plitude of fluctuations, however, the differences are not significant,

and the result is effectively the same with the longer shear du-

rations as with the shorter durations. From the cluster analysis of

the longer run simulation (filled blue circles in Fig. 14 ), we infer

that the suspension has a different structure in zone 3 than zone

1, which explains the difference in the apparent viscosity. 

5. Conclusions 

We implemented a three-dimensional, parallel, custom im-

mersed boundary lattice Boltzmann method code and used it to

simulate dense suspensions up to 38% solids by volume in sim-
le shear flow. We used a repulsive spring force model to prevent

verlap between particles during collisions. We validated the code

y simulating two systems: the rotation of a single sphere under

arying confinements δ and the trajectories of two spheres, both

n simple shear flow. The simulations of one sphere at Re p = 0 . 03

nd 0.3 showed that for higher confinements the computed rota-

ion rates are more accurate with a higher resolution, in agreement

ith earlier computations, and wall effects become negligible for

≤ 0.3. The simulation of a pair of spheres in simple shear at a

article Reynolds number of Re p = 0 . 1 demonstrated the expected

pproach and separation of the particles. 

Simulations of suspensions with varying shear rates ˙ γ showed

hear thickening. Good agreement between the simulation vis-

osities and theoretical and empirical equations was observed

or Re p = 0 . 11 and solids volume fractions φv up to 38%. For

e p > 0.11, the apparent viscosity of the suspension increased sub-

tantially with increasing Re p . We found that this increase in the

pparent viscosity is related to particle rotation and clustering. At

igher particle Reynolds numbers and higher solids volume frac-

ions, particles rotate slower, down to 35% of the imposed shear

ate, than in more dilute suspensions (in which the average rota-

ion rate is half the shear rate). Differences in cluster configura-

ion and rotation speed contribute substantially to the momentum

ransport and underpin the variations in the suspension behaviour

nd so the apparent viscosity. 

We investigated the effect of sudden changes in the shear rate

n the apparent viscosity and cluster formation. We found that

hanges in shear rate led to different cluster configurations and,

ence, different apparent viscosities. Temporary shear at a higher

ate led to increased clustering, which was retained when the

hear rate was returned to its initial value. The consequence was

n increased apparent viscosity due to the temporarily increased

hear rate. 

The simulations that were presented used a repulsive spring

orce model to handle particle collisions. We will next determine

he effects of including a lubrication force correction (normal and

angential) on the apparent viscosity of the suspensions and mod-

fy the sub-grid scale force model to include surface potentials and

olloidal forces. The effects of intermolecular forces on the cluster-

ng of particles are expected to influence both the steady apparent

iscosity of the suspension and the re-configuration of suspensions

n response to changes in the shear rate. 
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Fig. 16. Transient evolution of particle clusters as a function of time for several 

cluster cut-off distances h c / R hyd ranging between 0.02 and 0.1. φv = 38% and Re p = 
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ppendix A 

In this appendix, we discuss the hypothetical case of a suspen-

ion in which the particles do not rotate. For this purpose, we con-

ucted two simulations ( φv = 30% and 38%) at Re p = 0 . 55 in which

article rotation was fully turned off by removing the update of

he angular positions and angular velocities of the particles. This is

quivalent to applying a time varying torque to every particle that

xactly cancels the torque from the fluid. The result is that the an-

ular velocity of all particles remains as zero. As shown in Table 1 ,

he apparent viscosity is higher when particle rotation is switched

ff than in the simulations where particles are allowed to rotate

reely (zero applied torque). We also conducted a cluster analysis

with h c /R hyd = 0 . 083 ) for φv = 38% and Re p = 0 . 55 without parti-

le rotation. In the range of steady fluctuations ( 200 ≤ ˙ γ t ≤ 400 ),

5 clusters were observed on average for cases with and without
Table 1 

Average apparent viscosities of suspensions computed in simulations 

with free particle rotation and no particle rotation at φv = 30% and 

38%, and Re p = 0 . 55 . 

φv η̄r (translation and free rotation) η̄r (only translation) 

30% 3.9 5.3 

38% 10.8 14.9 

s  

a  

s  

u  

t  

g  

h  

h  

c  

Fig. 15. Average cluster size as a function of cluster threshold h c / R hyd for several solid
article rotation. This suggests that particle rotation affects the ap-

arent viscosity but not the extent of clustering. 

ppendix B 

This appendix briefly discusses the effects of the particle

eynolds number on the average cluster size, N̄ 

c 
p , which is com-

uted as 

¯
 

c 
p = 

N p N s 

N 

t 
c 

(24) 

here N p is the number of particles in the simulation, for instance,

 p = 310 for φv = 38% . N 

t 
c is the total number of clusters observed

ver N s evenly spaced time intervals (including all single particles).

he dependence of N̄ 

c 
p on the choice of cut-off h c is presented in

ig. 15 for two Reynolds numbers and three solids volume frac-

ions. In all cases, the value of N̄ 

c 
p starts at 1 and then increases to

qual the number of particles N p for large h c . 

It can be seen that for φv = 38% and Re p = 0 . 11 and 0.55, the

ncrease in the average cluster size is steeper than in more di-

ute suspensions, and then stabilises for h c / R hyd > 0.5. The cluster

hreshold that was chosen to analyse the structure of the suspen-

ions (0.083) coincides with the start of the increase in the aver-

ge cluster size for φv = 38% . With this choice, clear changes in

uspension structure are evident as a function of the solids vol-

me fraction and particle Reynolds number. In Fig. 16 we present

he evolution of the number of particle clusters (excluding sin-

le particles) as a function of time for several cut-off distances

 c / R hyd ranging from 0.02 to 0.1 for φv = 38% and Re p = 0 . 55 . For

 c /R hyd = 0 . 023 , we hardly see any clusters and as the cut-off in-

reases the number of clusters increases. For h c /R hyd = 0 . 083 , we
s volume fractions (left to right) φv = 17% , 30%, and 38% at Re p = 0 . 11 and 0.55. 
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observed a maximum of 40 clusters on average, and the number

of clusters decreases with further increase in h c / R hyd . 

Supplementary material 

Supplementary material associated with this article can be

found, in the online version, at 10.1016/j.ijmultiphaseflow.2019.

103205 . 
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