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A B S T R A C T

In order to characterise a rock formation prior to subsurface operations, it is required to find a microscale
rock volume for which the homogenised property does not fluctuate when the size of the sample is increased;
the Representative Elementary Volume (REV). Its determination usually comes at the cost of a large number
of simulations, making it overall a computationally expensive process. Therefore, many scientific studies have
been dedicated to optimising the process of finding REV. Using statistical numerical methods, it is shown that
the fluctuation of the effective property corresponds overall to a cone-like shape convergence. We suggest
determining the generic evolution law of the cone of convergence, which can be used to predict the size
of the REV and the effective physical property. This study is based on simulations of Stokes flow through
idealised microstructures from which the permeability is upscaled. By tracing and plotting the convergence
of permeability for multiple samples, the full cone of convergence appears. The cone shows exponential
growth and decay, converging towards the effective permeability of the microstructure. By fitting a log-normal
distribution on the collected data points, we show that the generic evolution law of the cone of convergence
can always be described with two parameters, independently of the porosity. We show that the determined
law of the cone also applies to real microstructures, despite the presence of natural heterogeneities. The new
method allows us to reduce the computational costs of finding all characteristics related to REV by simulating
several subsamples rather than the full-sized sample, unlocking thereby high-resolution samples which are
often too computationally expensive. The use of a statistical model provides quantification of the precision
level we can obtain on the REV determination.
1. Introduction

Rock mass characterisation remains an important task in geoscience
since underground formations are still being considered for subsur-
face operations of sustainable interest, such as geothermal production
or CO2/H2 storage. To understand the behaviour of rocks and their
properties, it is essential to study the microscopic scale. For example,
porosity, connectivity of the voids and other morphologic parame-
ters directly influence the rock’s permeability.1–3 However, modelling
larger systems from their microstructures is not practical, as it requires
excessive computational power to capture the microscopic complexity.
Digital Rock Physics (DRP) provides a scheme to upscale the physical
properties of the heterogeneous porous media to the macroscopic scale.

The upscaling of the physical properties from the microstructure to
the macroscale requires the determination of the Representative Ele-
mentary Volume (REV). This is the smallest volume of a heterogeneous
sample that can accurately represent the mean constitutive response at
the macroscale. In DRP, defining the REV is crucial since the physical
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properties of the porous media vary significantly at the microscale. This
makes it difficult to model and predict the behaviour of the rock on
an upper scale based on microscopic samples. By identifying and char-
acterising the REV, the physical quantities can be upscaled from the
microstructure and used for macroscale applications. Another benefit
of REVs is the ability to apply multiscale modelling. The homogenised
macroscopic response is used as input to the microscopic boundary
value problem, which in turn provides the material response at the
macroscale. This circular system allows for the determination of non-
linear physical responses in the overall material behaviour without
making too many approximations.

While the REV determination is a fundamental exercise in DRP, it
remains a challenging task due to the complex nature of the porous
media considered. To find the physical effective properties of the mi-
croscopic samples, homogenisation is applied to a growing subsample.
Smaller volumes of the porous medium can exhibit significant variances
in the properties, thus simulations on larger volumes are needed to
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achieve convergence towards a stable value. Tracing this convergence is
computationally expensive, especially when dealing with large volumes
that are extremely computationally demanding in both resources and
time. On top of that, the resolution of CT-scan imaging continues to
increase (e.g. 0.7 μm reported by Ref. 4) leading to even more expensive
imulations.

Therefore, researchers have tried to simplify and optimise the pro-
ess of finding REV. Some studies have shown that the REV can
e related to the grain size or other morphological parameters, for
elected physical properties. Ref. 5 showed that the number of grains
equired for homogeneous elastic behaviour of polycrystalline should
e at least 230. Ref. 6 tested over 500 cubic polycrystals in the plane
tress problem and showed that the REV size of the polycrystals is
oughly 16 times the grain size. Ref. 7 determined experimentally
hat the minimum size to represent uniaxial compression and thermal
xpansion of PBS 9501 heterogeneous materials with an average crystal
iameter of around 100 μm is approximately 1.5 mm. Ref. 8 studied
one biomechanical behaviour and showed that the REV size of the
lastic coefficients of the tissue is about 1.5 mm. There are many
ore examples of studies for different physical properties of different
aterials, that define REV at a specific size. However, if the input
arameters – such as the type of material or physical property being
ssessed – are changed, the size of the REV will change unpredictably.

Instead, generic methods have also been developed to find REV
hich do not necessarily depend on a specific property or type of
aterial. Ref. 9 introduced a methodology involving the use of stere-

logical and image analysis techniques to quantitatively characterise
he microstructure of ceramic matrix composites. This is used to create
computer-generated REV which is statistically representative of the

eal microstructure, including fibre-rich and -poor regions. Ref. 10
uggested a representative unit cell approach, assuming a unit cell to
e periodic over a specific sample to find the REV, which is char-
cterised by a power law particle size distribution. Yet, while these
ethodologies provide useful approaches for finding the REV in dif-

erent materials and media, they are still time-consuming and require
ignificant computational power.

To get more insight into the evolution of the REV convergence,
umerical–statistical methods have been applied in the process of
inding REV. Ref. 11 studied the geometrical properties of the mi-
rostructure and showed that the variance of the particle distribution
ithin the sample converges with an increasing measured area. Ref. 12
resented the rate of convergence based on the number of grains
n the length of a cubic sample, depending on the porosity, with a
ecreasing variance of the porosity considering larger samples. Ref. 13
tudied the heat flow and the linear elasticity of a random medium.
hey applied a two-point probability and a lineal-path function to find
converged value of the physical properties. Ref. 14 computed the

EV for linear elastic properties and thermal conductivity including a
onvergence of the variance considering larger samples. They showed
hat the properties can be determined not only using numerical simu-
ations on large volumes but also with mean values of multiple small
olumes. Ref. 15 continued the work using a new stopping criterion
o reduce computational costs, which is especially convenient in non-
inear cases. Ref. 16 used the statistical–numerical approach to find the
EV for polymers subjected to finite deformations with a predefined
ercentage of the average deformation and a predefined error as the
topping criteria. Ref. 17 homogenised a REV for composites to find the
lastoplastic response for transverse tension and longitudinal shear and
hows the convergence towards a certain stress level with a decrease
n scatter. Similar types of graphs, displaying the REV convergence for
he directional moisture diffusion within glass/epoxy composites, are
hown by Ref. 18. Ref. 19 showed the REV convergence for porosity
or five different rock samples and demonstrated that the variance of
he porosity can be used as a qualitative indicator for rock heterogene-
ty. Ref. 20 looked for the mean and bounds of the REV convergence

f a dataset of multiple rock samples to prove the convergence of the

2 
permeability tensor asymmetry to zero at REV and clearly shows that
the process of finding the REV results in a cone-shaped convergence
pattern of the physical property.

The numerical statistical studies all demonstrate that the property
varies substantially when different smaller volumes are considered and
as the size of the samples is growing, the variance of the property
will decrease and converge towards a stable value. When the variance
of the property is small and the average value of the property has
stabilised, the size of the REV can be determined. Due to the direct
correlation between the geometric properties of the microstructure and
the homogenised physical quantity, the convergence is always bounded
by the cone shape, starting with a wide base and becoming increasingly
narrow with a growing sample size.

In this study, we propose a new method to find REV, by making use
of the known shape of the cone of convergence. The shape provides
information on both the rate of convergence and the value of the
homogenised property, allowing us to find the REV in a more accurate
way. In addition, if the digital rock sample is not large enough to
find REV, which is often the case considering carbonate rock samples
for example, the cone of convergence can still provide information
about the expected size of the REV and homogenised property value.
With a focus on permeability, a property of significant interest in
DRP, we aim to find the evolution law of the REV convergence cone.
The energy dissipation will also be considered due to its relevance to
homogenisation schemes.21

This paper is organised as follows. In Section 2, we do a benchmark
study with idealised microstructures and determine the generic evolu-
tion law of the REV convergence cone. In Section 3, the law is applied
to real microstructures, to validate whether the generic evolution law
still holds when natural heterogeneities interfere. In Section 4, the
requirements to apply the method are discussed and compared to
traditional methods.

2. Material and methods

For the benchmark study, we consider an ideal porous medium,
random packing of perfectly round spheres. As such, by avoiding the in-
fluence of the grain properties, we aim in this section to find the generic
evolution law of the REV cone of convergence. In this contribution, we
follow the research design presented in Ref. 21, which shows the set-up
to generate the random packings, the mesh, the Stokes-flow model and
the postprocessing of the permeability and energy dissipation of the
fluid transport.

With Finite Element simulations of Stokes-flow run in MOOSE,22,23

we can calculate the energy of the fluid transport and the permeability
of the samples. With the recommendations of Ref. 24 in mind, the
postprocessing of the effective properties are applied within a sub-
volume away from the boundary layer, without the influence of the
boundary conditions. We follow the recommendations from Ref. 21
and plot the evolution of the energy consistency index with increasing
subsample size to determine the REV of the permeability. The index
is defined as the ratio between the macro- and micro-scale energy. At
REV, we respect the Hill–Mandel principle and obtain therefore the
energy consistency across scales, which means that the index becomes
unitary.

2.1. Generating the cone of convergence

The REV convergence cone represents the convergence of
homogenised properties for samples with increasing size. The cone
consists of a collection of data points, each representing the value of
a homogenised property obtained from different samples that vary in
size and morphological properties of the microstructure. At small sizes,
close to the scale of the local heterogeneities of the porous medium, we
obtain a substantial variability of the homogenised properties. Larger

sizes, including more grains, are more representative and approach
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Fig. 1. The different REV convergence cones of the random packings of different porosities. The left column displays the evolution of the energy consistency index of various
orosities and the right side shows the normalised permeability. The grey lines show the evolution of the individual random packings and the blue dashed line the mean value
f the property. The red lines are the determined evolution law of the cone, with the mean value plotted in a dashed line and the boundaries as continuous lines.
EV, which means that the homogenised property converges towards
specific value. As such, the REV convergence follows a cone shape.

In this research, the data points are obtained by tracing the evo-
ution of energy dissipation and permeability for a series of random
ackings with the same characteristics. For each sample, the properties
3 
are traced on a subsample growing in size starting from the centre of
the random packing, gradually to the maximum size of the sample. This
method of tracing the REV convergence, validated by Ref. 21 allows to
reduce the number of simulations needed to one – for the full sample –
and the data points are obtained with postprocessing. We repeat the
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Fig. 2. Histograms of the energy consistency index at a minimum, half and maximum subsample size of the samples with a porosity of 53%.
a
r

rocess for a series of samples and plot it all together in the same
raph, see Fig. 1. To obtain statistical representativeness, we consider
00 samples for each porosity, which ranges from 33% up to 74%. At
first glance, this number of models already allows to visually display

he cone of convergence.

.2. Evolution law of the REV convergence cone

The overall shape of the REV convergence cone is visualised through
he superposition of the trace of the individual samples, shown with
rey lines in Fig. 1. Note that the missing spaces present in the cone
ould be filled if more statistical representativeness is considered.
ll the cones start with a wide base and converge towards a specific
alue, as shown by the decreasing width of the cone. The mean value
f the homogenised property, considering all individual samples, is
lotted with a dashed blue line. Compared to the overall convergence
f the cone, we observe a faster convergence of the mean value.
nce the mean value has stabilised, its value is the true effective
omogenised property. As mentioned previously, we confirm that the
nergy consistency index mean value is always one.

Based on the distribution of the data points at each size 𝑠 and
ince the energy dissipation and the permeability are inherent average
roperties of the rock sample, the boundary of the cone 𝑦 can be, from a
tatistical point of view, described with a mean value 𝜇 and a standard
eviation of the mean 𝜎:

𝑠 = 𝜇𝑠±𝜎 (1)

n probability theory, the central limit theorem states that a distribution
onverges towards a Gaussian distribution when considering large and
ndependent datasets. However, we observe that the overall shape of
he cone exhibits asymmetry around the mean value, in contrast to
he perfectly symmetric Gaussian distribution. A closer examination of
he histogram of the samples with 1% size of the full sample, shown
n Fig. 2, presents values between zero and over 2.5 for the energy
onsistency index while the mean value remains unitary. This range
f values is realistic since at the scale of a single grain size the flow
an either be fully obstructed by the rock grains (resulting in zero
ermeability) or have a completely unobstructed flow path (leading
o high values). The same holds true for the energy consistency index.
his aspect has for consequence that the cone is not exactly symmetric
round the mean value for samples at the size of one or a few grains.
nterestingly, when more grains are included in the sample, symmetry
s recovered and a smaller range of values between 0.94 and 1.05 is
entred around the energy consistency index of one, which corresponds
o a more representative flow path on the macroscale. Due to the asym-
etric shape of the distributions, we apply a modified version of the

entral limit theorem, commonly known as Gibrat’s law, and fit a log-
ormal distribution to our data. The log-normal distribution exhibits an
symmetrical range between zero and infinity, which therefore includes
he very high values observed at the beginning of the cone but excludes
alues below zero. We note that as the variance, which is the squared
alue of the standard deviation, of a log-normal distribution decreases,
he difference with a normal distribution becomes negligible, which

reates a more symmetric shape as observed in our case with volumes

4 
pproaching the full sample size. For simplicity, we will subsequently
efer to the log-normal standard deviation of the distribution 𝜎𝑙𝑛;𝑠 for a

certain size with 𝜎𝑠:

ln 𝑦𝑠 = ln𝜇𝑠±𝜎𝑠 (2)

Focusing on the mean value, we observe its convergence within
the first segment of the cone to a stabilised value, for each cone in
Fig. 1. The fluctuation observed with samples containing only a few
grains can be attributed to the wide range of the values, leading to
an increase in the standard error of the sample,25 and thus the mean
can be considered stable over the whole evolution of the convergence.
Considering the total number 𝑛𝑡𝑜𝑡 of data points 𝑥, we approximate
the mean value of the log-normal distribution 𝜇 with the weighted
geometric mean ⟨ln 𝑥⟩, proportional to the sample volume 𝑉𝑖.

𝜇 ≈ ⟨𝑥⟩ = exp
∑𝑛𝑡𝑜𝑡

𝑖 ln 𝑥𝑖 ⋅ 𝑉𝑖
∑𝑛

𝑖 𝑉𝑖
(3)

For the determination of the variance, we make use of the law of
large numbers, which describes that the variance of a mean from a
number of independent observations of the same distribution is calcu-
lated by taking the average of the variance of the sum. We note that in
our case, as the sample size increases, smaller samples are encompassed
within the larger sample sizes. Considering that permeability is a
mean homogenised property, we can assume that the permeability of
a sample is equal to the average permeability for a certain number
of subsamples, which together are equal in volume to the sample of
interest. This principle is schematically shown in Fig. 3.

To apply this principle, we introduce a reference sample 𝑉𝑟𝑒𝑓 and
establish a relationship with a sample with a specific size 𝑉𝑠 by consid-
ering the number of reference subsamples 𝑛𝑟𝑒𝑓 that can fit within the
volume of the sample of interest. This relationship is expressed as:

𝜎2
𝑠 = 𝑉 𝑎𝑟

(
∑𝑛𝑟𝑒𝑓

𝑖=1 𝑥𝑖
𝑛𝑟𝑒𝑓

)

=
∑𝑛𝑟𝑒𝑓

𝑖=1 𝑉 𝑎𝑟
(

𝑥𝑖
)

𝑛2𝑟𝑒𝑓
= 1

𝑛2𝑟𝑒𝑓

[

𝑛𝑟𝑒𝑓𝜎
2
𝑟𝑒𝑓

]

=
𝜎2
𝑟𝑒𝑓

𝑛𝑟𝑒𝑓
=

𝑉𝑟𝑒𝑓

𝑉𝑠
𝜎2
𝑟𝑒𝑓

(4)

Note that the number of samples is equal to the volume ratio of
the reference subsample size to the size of interest. To ensure that the
observations are independent, we suggest considering only the largest
samples as the reference samples, as including smaller subsamples
would make the observations of the effective properties dependent on
each other since the larger samples include the data of the smaller
samples. The variance of the log-normal distribution for an arbitrary
size 𝑠 can now be described as a relationship to a constant reference
value, which is calculated as per the definition of variance:

𝜎2𝑠 =
𝑉𝑟𝑒𝑓
𝑉𝑠

𝑛𝑟𝑒𝑓
∑

𝑖=1

(

ln
𝑥𝑖
𝜇

)2
(5)

To assess the validity of coupling the variance for a specific size with
the reference variance and the size ratio, we compare the formula with
the variance calculated individually for each size, in Fig. 4. We obtain
approximately the same values with both methods and can therefore
conclude that the mean values of the reference subsamples are indeed
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Fig. 3. An abstract visualisation of the correlation of the physical properties 𝑋, the mean value 𝜇, and the variance 𝜎 of the reference subsamples and a specific sample of interest,
in which the sample of interest encompasses the reference subsamples.
Fig. 4. Evolution of the standard deviation according to the size of the model. The
orange line is the standard deviation computed per sample size and the blue dashed
line is the standard deviation as a function of the sample size and our reference value,
computed on the largest size considered.

correlated to the mean of samples with a specific size and consequently
can be used to describe the evolution of the variance. Note that this
relation still holds, even if the size of the reference sample is larger
than the size of the sample of interest.

With both the mean value and the variance described, the boundary
of the cone, shown in Eq. (2), can now be rewritten in terms of the mean
value, a reference variance and a size ratio:

ln 𝑦 = ln𝜇 ±

√

𝑉𝑟𝑒𝑓
𝑉𝑠

𝜎𝑟𝑒𝑓 ⇔ 𝑦 = 𝜇 ⋅ exp
⎛

⎜

⎜

⎝

±

√

𝑉𝑟𝑒𝑓
𝑉𝑠

𝜎𝑟𝑒𝑓
⎞

⎟

⎟

⎠

(6)

The width of the base of the cone is also associated with the number of
standard deviations considered, as determined by the Empirical Rule.
Considering the statistical presence of potential outliers in the obser-
vations, which can impact the boundaries of the cone, we incorporate
twice the standard deviation in our fitting approach, which includes
95% of the data.

𝑦 = 𝜇 ⋅ exp
⎛

⎜

⎜

⎝

±2

√

𝑉𝑟𝑒𝑓
𝑉𝑠

𝜎𝑟𝑒𝑓
⎞

⎟

⎟

⎠

(7)

In the two-dimensional case, which applies to the random packings, the
volume is equal to the square of the length 𝑉𝑠 = 𝐿2

𝑠 . As the permeability
and REV convergence are typically plotted with respect to the sample
length, the evolution of the cone of the REV convergence is described
5 
as

𝑦 = 𝜇 ⋅ exp
(

±2
𝐿𝑟𝑒𝑓

𝐿𝑠
𝜎𝑟𝑒𝑓

)

(8)

In the three-dimensional case, which typically applies when analysing
real samples, the evolution of the cone is described as

𝑦 = 𝜇 ⋅ exp

(

±2
(𝐿𝑟𝑒𝑓

𝐿𝑠

)3∕2

𝜎𝑟𝑒𝑓

)

(9)

2.3. Fit of the determined evolution law

From the data points of Fig. 1, for both the energy consistency index
and permeability, we calculate the mean value and the variance of the
reference size taken as the largest and using Eq. (8), we plot the evolu-
tion of the fitted log-normal distributions in Fig. 1. The boundaries of
the distribution, determined by the variance, are shown with a red line
and the mean value with a red dashed line. We observe that the mean
value determined with the log-normal distribution accurately describes
the stable average value of properties of the samples, as they superpose
in the figure. The boundaries of the log-normal distribution also visibly
correspond with the boundaries of the REV convergence cone. This
confirms that fitting a log-normal distribution on the data points is
adequate to describe the shape of the cone and can therefore be used to
describe the convergence behaviour. The cone appears to always follow
the same shape and only differ by the value of convergence and its rate,
reflected in the fitting parameters.

The fit of the REV convergence cones of the energy consistency
index appears to exclude more outliers than the cones of the permeabil-
ity, despite having similar proportions of data points fitting within the
mathematical model with twice the standard deviation. The outliers of
the convergence cone of the energy consistency index are particularly
visible as they appear near the start of the cone. While the overall shape
and evolution law of the REV convergence cones remain consistent, we
observe that the convergence behaviour is dependent on the porosity
of the sample, since some porosities result in wider base widths of
the cones compared to other porosities. For instance, the width of the
energy consistency index convergence cone with a porosity of 53% is
nearly double the width of the cone with a porosity of 41%. The cor-
relation between the reference variance and the porosity is presented
in Fig. 5. In the figure, the standard deviation shows distinct values
for each porosity. For both the permeability and energy consistency
index convergence, we observe that at lower porosities the value of the
standard deviation decreases, until a porosity of 35%. For the energy
consistency index, the standard deviation increases past this point,
following a linear trend, reaching 2.25 at 76% porosity. The differences
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Fig. 5. The evolution of the standard deviation compared to the porosities of the random packings. On the left the standard deviation of the energy consistency index is shown,
and of the permeability on the right.
in the standard deviation values indicate that even though the het-
erogeneities of the grains are excluded in the random packings, other
morphological properties of the microstructure, such as the porosity
here, still influence the convergence of effective properties. Specifically,
the chaotic correlation, observed with the permeability, suggests that
more morphological parameters influence the convergence. The less
chaotic and clearly linear trend from the energy consistency index in
comparison to the permeability confirms the observations of Ref. 21,
that the new index that was introduced in that study is a better
indicator of permeability REV.

Having confirmed the adequate fit of the log-normal distribution,
we can leverage the additional properties of this statistical model.
While the description of the convergence towards the effective property
with the statistical model offers insights into the accuracy of the REV
size, the statistical model also allows us to quantify the error made
on the fit of the cone itself, considering both the mean value and
the standard deviation.26 As the standard deviation determines the
width of the cone, its error directly impacts the width of the cone
and consequently the convergence behaviour. We can relate the error
𝜖 directly to the reference standard deviation with
𝜖

𝜎𝑟𝑒𝑓
= 1

√

2𝑛𝑟𝑒𝑓 − 2
(10)

We present the convergence of the reference standard deviation with
the number of samples considered in Fig. 6 for three different porosi-
ties, considering the REV convergence of the permeability. The contin-
uous line in the plot presents a convergence of the standard deviation
towards a specific value as the fluctuation dampens out with an in-
crease of the number of samples. We also plot the boundaries of
the estimated error with the dashed lines, calculated by multiplying
the relative error shown in Eq. (10) with the corresponding standard
deviation. Since the value of the standard deviation is not completely
stabilised yet, we take the value of the standard deviation with the
maximum number of samples (100), as this provides the best estimate
of the converged value (still a calculated error of 7%). We observe
that the evolution of standard deviation with the number of samples
is accurately described with the use of the equation and can therefore
be used to determine the size of the models when a specific accuracy
of the fit of the cone is required.

The value of the standard deviation decreases when larger samples
are considered, as shown by the cone of convergence. However, we
note that the relative error solely depends on the number of samples
considered and not on the value of the standard deviation itself. This
implies that the relative error when considering different sample sizes
is the same for each size. Therefore, any subsample size can be selected
in order to fit the REV convergence cone. Consequently, this means that
simulations on large samples are not required since theoretically, the
simulations on smaller samples would estimate the REV convergence
cone with the same level of accuracy.
6 
Fig. 6. Three examples of the evolution of the reference standard deviation of the
permeability with respect to the number of samples considered. The solid line is
the evolution of the standard deviation and the dashed line shows the boundaries
of absolute error.

3. Application to real microstructures

The previous section confirms the existence of the REV convergence
cone and shows that the generic evolution law of the convergence can
be described by fitting the data points in a log-normal distribution.
Our benchmark was done on idealised microstructures, and we aim
now to verify if the law we derived in Section 2.2 also applies to real
rock microstructures. These contain natural heterogeneities which may
affect the evolution of the cone of convergence and disturb our fit. This
section will analyse samples of increasing heterogeneity.

The reconstruction of digital rocks follows the methodology pro-
posed by Ref. 27. To start with, a stack of 2D 𝜇CT-scans grey-scale
images are subjected to segmentation and subsequently transformed
into 3D computational models, enabling the differentiation between
rock and void spaces. To optimise computational efficiency during
simulations, the Displaced Boundary method, introduced by Ref. 28,
is used. This technique enables the pore-boundary interface to be
conformed to a coarser background mesh, leading to reduced mesh
file sizes at mesh convergence. The larger simulations on the real rock
samples are run on the DelftBlue supercomputer.29

Contrary to random packings, rock samples provide limited data due
to the natural limits of physical sample size and scan resolution. As we
require the input of several independent samples to fit our law with
more accuracy, the full rock sample is split into multiple subsamples.
To enforce that the subsamples still reflect the permeable behaviour
of the rock, the subsamples cannot be excessively small, as they may
not have reached the percolation threshold yet. Larger samples lead
to a better representation of the flow behaviour through the rock, yet
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Fig. 7. The results for the LV60A sandpack. On the left, the pore space of the sandpack is shown. The middle graph shows the REV convergence cone of the energy consistency
index and the right graph shows the permeability, with our fitted law shown with a red colour.
Fig. 8. The results for the S1 sandstone. On the left, the pore space of the sandstone is shown. The middle graph shows the REV convergence cone of the energy consistency
index and the right graph shows the permeability, with our fitted law shown with a red colour.
their lower number comes at the cost of a higher error, according to
Eq. (10). As a compromise, each rock sample is cut into four equal parts
in three dimensions, resulting in 64 subsamples which gives a relative
fitting error of 9%. To maintain the independence of the postprocessed
permeability and energy dissipation within each subsample, there is no
overlap between the samples.

3.1. LV60A sandpack

The first rock sample in this study is the LV60A sandpack,30 which
is displayed in Fig. 7a. While the sand pack is relatively homogeneous
for a real rock sample, it still contains natural heterogeneities in
the grain properties, such as grain roughness and non-sphericity. The
sandpack has high permeability owing to the good connectivity of its
voids, shown with a porosity of 38% and a characteristic length of
149 μm. Note that we compute the characteristic length as introduced
by Ref. 31. These properties make it a good starting point for verifying
the identified evolution law of the REV convergence cone. The LV60A
sand pack sample has a size of just over three mm and is scanned
using a resolution of 10.008 μm, resulting in 3003 voxels. The cones
of convergence for both the permeability and energy consistency index
of the sandpack are shown in Fig. 7b and c.

The REV convergence cone of the sandpack presents a difference in
magnitude compared to the random packings as we observe on the sand
pack a wider base of the cone with values going over 14 for the energy
consistency index and 300 D for the permeability, does not affect the
fitting of the cone of convergence. Still, both the energy consistency
index and the permeability present a good fit of the law determined
from the random packing. We also observe that the lack of percolation
within small subsamples, shown with an energy consistency index and
permeability of zero (up to a size of 0.25 mm), is also included in
the fit. This highlights the adequacy of the asymmetrical nature of the
log-normal distribution. We also observe that the converged values at
the full sample size of both properties are within the cone of conver-
gence, from which we conclude that the determined evolution law is
accurate in predicting the homogenised properties. Visually, it appears
that the convergence of the energy index is fitted more accurately,
7 
compared to the convergence of the permeability, due to the presence
of empty spaces observed in the permeability data. However, this can
be attributed to the fact that the variance of the permeability cone
is much larger than the variance of the energy consistency index. We
know, from the log-normal distribution, that the likelihood of obtaining
observations on the edges of the distribution is lower, specifically on
the higher range of values. Consequently, the lower part of the cone
appears to be better fitted than the upper part. We use the evolution
law of the REV convergence cone to determine the permeability and
the size of the REV and obtain values that align with those reported
by Ref. 32. The permeability is found to be 37 Darcy, which is within
a five per cent margin of 39 Darcy noted by that study. They found
REV at a length of 1.1 mm for the permeability, at which we measure
a margin of only four per cent using the REV convergence cone of the
energy consistency index.

3.2. S1 sandstone

The second sample in this study is the S1 sandstone,33 shown in
Fig. 8a. Unlike sandpacks, which consist of individual grains, sandstone
is a type of rock with a cohesive structure in which the grains are
cemented together by minerals. Sandstones tend to have lower per-
meability due to the lower connectivity of their voids and the more
tortuous flow paths. As a result, the S1 Sandstone exhibits slightly more
heterogeneous properties, shown with a porosity of 20% and a charac-
teristic length of 311 μm, which makes it harder to find REV. The S1
sandstone is scanned with a resolution of 8.7 μm over a total length of
just over 2.6 mm, resulting in 3003 voxels. The REV convergence cones
for both the permeability and energy consistency index of the sandstone
are shown in Fig. 8b and c. The results show that the lower connectivity
of the voids in the sandstone, compared to the sandpack, leads to slower
convergence towards the effective permeability of the rock or unitary
energy consistency index, as some of the subsamples lack percolation
up to a sample size of 0.25 mm or have a high energy consistency index
and permeability. However, the fit with the determined evolution law
does include these values, as the lower boundary of the cone can be

distinguished from zero values from that size. The upper boundary of
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Fig. 9. The results for the Ketton limestone. On the left, the pore space of the limestone is shown. The middle graph shows the REV convergence cone of the energy consistency
index and the right graph shows the permeability, with our fitted law shown with a red colour.
Fig. 10. The results for the carbonate C2. On the left, the pore space of the carbonate is shown. The middle graph shows the REV convergence cone of the energy consistency
index and the right graph the permeability, with our fitted law shown with a red colour.
the cone does include the higher values as well, excluding a peak value
around 0.5 mm, which is an outlier according to the statistical model.
Above a size of 0.25 mm, it is clearly observed that the properties of
the subsamples converge exponentially towards a certain value. We also
observe similar trends as with the sandstone. as the energy consistency
visually represents the cone better than the permeability, and the lower
part of the cone is better represented. Ref. 32 has shown the REV to
be around 1.3 mm in length size, yet there is still some evolution in
the permeability which we also observe as the variance near the full
size of the sample has a value of 0.11, almost three times as big as the
sandpack. If we fit the evolution law of the cone of convergence, we
find that at 1.3 mm the margin of the size of the permeability REV is
around 12%.

3.3. Ketton limestone

The third sample in this study is the Ketton limestone,34 which is
shown in Fig. 9a. Limestone is typically composed of calcium carbonate
and is therefore often quite heterogeneous, with substantial variance
in grain shapes and sizes and non-uniformly connected pore spaces.
However, this particular limestone sample is relatively homogeneous
and has reasonably well-connected voids, shown with a porosity of 13%
and a characteristic length of 331 μm. The sample has a high-resolution
CT-scan image of three μm and with a total size of just over 3 mm, the
digital reconstruction results in 10003 voxels. The REV convergence
cones for both the permeability and energy consistency index of the
limestone are shown in Fig. 9b and c. We find many similarities to
the results of the S1 sandstone in both values as in trend. The fit for
both the permeability and the energy consistency index is excellent
and the values of the full-sized sample remain within the boundaries of
the cone. Assuming REV convergence below an error of 5%, the REV
would be found at approximately 1.7 mm, as determined by the energy
consistency index REV convergence cone.

3.4. C2 carbonate

The final sample in this study is the C2 carbonate,35 as shown in
Fig. 10a. This carbonate exhibits high heterogeneity in grain properties
8 
and low connectivity of voids, shown with a porosity of 14% and a
characteristic length of 220 μm, resulting in low permeability overall.
The sample has an image resolution of 5.7 μm and a total size of just
under 2.3 mm, which results in 4003 voxels. The cones of convergence
for the carbonate are presented in Fig. 10b and c. The C2 carbonate
shows that the variance of the values for both the permeability and
the energy dissipation are higher than observed with the previous sam-
ples. We observe that, despite considering the full subsample size, the
percolation threshold is not always reached. Consequently, the fitted
law only deviates from values near zero after the full subsample size.
This also means that high values, above 15 for the energy consistency
index, are also captured in this same region. At the maximum size of the
subsamples, we observe some level of convergence, with the boundaries
of the cone width decreasing significantly. Ref. 32 showed that the REV
size cannot be determined for permeability, even when the full sample
is considered. By extrapolating from our fitted REV convergence law,
an estimation of the REV size is possible. We predict that the REV size,
considering a variance of 5%, for the energy consistency index, which
is known to converge to one, should have a length of 4.9 mm, which
is more than double the full sample size. It is, however, challenging
to verify the validity of the evolution law for the permeability of the
C2 carbonate due to the high variance of the data points used for the
fit. The main difference between this sample and the others is that the
percolation threshold still has not been reached at the full subsample
size, which seems to influence the accuracy of the fit.

4. Method requirements and computational performance

This section discusses the subsample requirements to fit our law
in order to find REV. For users of our method, it is important to
understand how to control the error made on the REV estimation. In
Section 2 it was established that the relative error is theoretically solely
dependent on the number of subsamples considered and independent of
the magnitude of the variance. However, as demonstrated in Section 3,
considering a subsample size below the percolation threshold leads to
a significant increase in the variance, making it challenging to validate
the evolution law effectively due to the observed empty spaces. In

addition, while the relative error should not be influenced by the
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subsample size, the absolute error is larger with higher variance values
and therefore leads to a bigger deviation of the fitted cone from the
true boundary of the REV convergence cone.

To overcome this pitfall, we recommend finding pre-emptively the
percolation threshold, in order to consider a subsample size past the
threshold, where the variance has drastically reduced. Additionally,
choosing the smallest subsample size just above the percolation thresh-
old has the advantage of maximising the number of samples which
reduces the error of the fit and therefore provides the best estimation
for the convergence of the size of the REV and its properties.

This subsampling offers the obvious benefit to reduce the amount
of computational resources required to determine REV. Memory usage
for each of our simulations is shown in Appendix to scale linearly with
the number of degrees of freedom – as theoretically expected– and
therefore fits a cubic power law with the length of a 3D sample. If
we compare our method, where the memory requirement is related to
the size of the subsamples of length 𝑙, to the traditional method where
we need the memory to simulate the full sample of length 𝐿, then by
ntroducing the ratio 𝜂 = 𝐿

𝑙 , we obtain a decrease in memory use of
1∕𝜂3 with our method.

To give a few examples, we determined that the simulations run in
sequential for the REV of the LV60A sandpack – found at 120 voxels
length by Ref. 32 – require a minimum memory requirement of over
280 GB, corresponding to three nodes of 128 GB on the DelftBlue
supercomputer we use. However, the subsamples of 83 voxels length
used in the case study of Section 3 require only 92 GB, which allows
to run the simulation on a single node and additionally provides more
statistical information about the REV convergence. While there will be
an increase in access to computational resources over the years (e.g. the
DelftBlue supercomputer offers memory nodes with access to 1.5 TB of
memory29), larger samples will exceed this memory availability rapidly
due to the cubic increase of memory requirement with the sample size.
In the case of the C2 carbonate, for example, we already see a large
increase of the REV numerical size, to 860 voxels. On top of that chal-
lenge, recent developments in CT-imaging and the segmentation into
computational models, produce microstructures with a length going up
to multiple thousands of voxels.36,37 To stay ahead of this race between
computational resources requirement and accessibility, the method of
the REV convergence cone provides a possibility to unlock those large
and/or high-resolution samples.

A similar comparison is made for the simulation run time. As shown
in Appendix, the CPU run time follows a classical power law with
the length of a 3D sample, as expected from the Generalised Minimal
Residual Method solver used. By using the subsample size ratio 𝜂, we
btain with our method a run time speed-up of 𝜂3(𝑑−1), with 𝑑 > 1 that
epends on the efficiency of the solver.

As an example, we observe that an equivalent volume of the full
ample of the LV60A sandpack (300 voxels) can be simulated with
ubsamples just above the percolation threshold (40 voxels) 2.5 times
aster. On top of this, the lower memory requirement enables an effi-
ient parallelisation of the simulations, which means that the wall time
tself can be drastically decreased, depending on the computational
esources available.

. Conclusion

In conclusion, this paper presented a computationally cheap yet ef-
icient method to find the Representative Volume Element (REV). From
statistically representative set of samples of idealised microstructures,
e show that the REV convergence of an effective property – here

ocused on permeability and the energy consistency index introduced
n Ref. 21 – follows a cone of convergence, with exponential growth and
ecay towards a converged value. Derived from statistical relationships,
e describe the boundaries of this cone as the variance of a log-normal
istribution centred around its mean value which represents the REV
 o

9 
alue. By fitting a log-normal distribution, we obtain additional infor-
ation that cannot be obtained using the traditional REV convergence
ethod, about the accuracy of our fit and of the REV size prediction.

Our method is tested on real rock samples and successfully deter-
ined the REV size of previously benchmarked samples. While the
atural rock heterogeneities lead to a wider base of the cone, our
aw can still be fitted to the data points. However, the accuracy of
he fit improves greatly if the subsample size considered is above the
ercolation threshold.

This new method allows us to speed up the process of finding the
EV. Instead of trying to simulate the full sample size like traditionally
one for the REV convergence, a large number of small subsamples is
ufficient. The computational gain obtained by reducing the size of the
imulations allows to overcome the upcoming computational limitation
temming from the current increase of 𝜇CT-scan resolution testing the

limits of our simulator’s capacity.
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Appendix. Computational performance

In this appendix, we approximate the evolution laws of the sample
size with the memory usage and run time of our simulations based on
data points from sequential runs on growing subsamples, extrapolated
using a fit from the Least Square Method. The memory usage follows a
linear function of the Degrees of Freedom as 𝑎 ∗ 𝐷𝑜𝐹𝑠 + 𝑏. Given the
se of the Generalised Minimal Residual Method for our FEM solver, we
xpect and obtain a classical power law for the run time, 𝑐 ∗ 𝐷𝑜𝐹𝑠𝑑 .
he results of the fits are shown in Fig. A.11, for which satisfying values
f coefficient of determination 𝑅2 are obtained.

For a more intuitive comparison between the sample sizes, we refer
n the text to those laws with regard to cubic sample length 𝑙. Once
he porosity has converged with the growing sample size, the number
f degrees of freedom increases linearly with 𝑙3. The evolution of the
inimal memory requirement is therefore expressed as 𝑎 ∗ 𝑙3 + 𝑏 and

he simulation time 𝑐 ∗ 𝑙3𝑑 . Despite a slightly reduced coefficient of
etermination, the fits continue to be adequate.

As suggested by our method, we simulate an equivalent volume
f a large sample L3 with as many subsamples as can fit within the
ample. To obtain a comparison of the computational performance
f our method with the traditional one that only simulates the large
ample, we introduce the ratio 𝜂 = 𝐿

𝑙 . The reduction in memory usage,
determined between one subsample and the sample, can be calculated
as

𝑚𝑟𝑒𝑙 =
𝑎(𝐿𝜂 )

3 + 𝑏

𝑎𝐿3 + 𝑏
=

𝑏𝜂3 + 𝑎𝐿3

𝜂3(𝑎𝐿3 + 𝑏)
≈ 1

𝜂3
(A.1)

iven the negligible contribution of b that corresponds to the necessary
verheads of the simulator. The total speed-up obtained by using our
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Fig. A.11. The fitted evolution laws, extrapolated to the size of the REV. The memory requirement is shown on the left side and the computational time on the right side. The
blue dots are the obtained data points, the grey dashed line is the fitted function.
Fig. A.12. The evolution of the memory reduction on the left and the simulation speed-up time on the right, both relative to the traditional method of finding REV. The derived
formulas are shown with the grey dashed line and the observed data points are shown with blue dots.
method is calculated as:

𝑡𝑟𝑒𝑙 =
𝑐𝐿3𝑑

𝜂3𝑐(𝐿𝜂 )
3𝑑

= 1
𝜂3(1−𝑑)

= 𝜂3(𝑑−1) (A.2)

Those two formulas are plotted in Fig. A.12 against the data col-
ected in Fig. A.11 which displays a good fit. Both memory usage and
untime of our method at the different sizes of the subsamples are com-
ared to the traditional method for REV convergence, corresponding
ore specifically in this case study to the requirements for the full

ample of the LV60A sandpack.
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