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SUMMARY

Multivariate time series arise in a wide range of domains, such as weather forecasting
and financial modeling, where multiple interdependent variables evolve simultaneously
over time. For instance, temperature readings at one location may have a delayed influ-
ence on nearby regions, while currency exchange rates exhibit complex, lagged inter-
actions across global financial markets Effectively modeling these spatiotemporal inter-
actions, particularly in streaming and non-stationary settings, remains a fundamental
challenge. Traditional approaches such as Temporal PCA operate on sample covariance
matrices but often suffer from stability issues in the estimated eigenvectors, especially in
low-data regimes or when the corresponding eigenvalues are close. These covariance es-
timation errors can propagate into the learned representation and degrade performance
in downstream tasks. Recent graph-based learning methods address this limitation by
constructing graphs from the sample covariance matrix and learning from its structure.
However, these approaches typically consider only lag-zero correlations, thereby limit-
ing their ability to model cross-temporal dependencies and fully capture the spatiotem-
poral structure inherent in multivariate time series. To overcome this, this thesis pro-
poses the Lagged spatiotemporal coVariance Neural Network (LVNN), a neural network
architecture that leverages lagged covariance information to learn representations from
multivariate time series in a streaming setting. LVNN constructs a spatiotemporal graph
by concatenating consecutive temporal samples, computing their extended sample co-
variance matrix, and using it as a structural prior for graph convolutions. This design
enables the model to capture variable interactions not only within time steps but also
across temporal lags. However, the use of a larger spatiotemporal covariance matrix in-
troduces additional computational overhead and spurious correlations. To address this,
we introduce two structural modifications to our proposed model. First, we retain only
spatial and backward temporal connections, corresponding to the block upper triangu-
lar part of the extended covariance matrix. Second, we apply thresholding-based spar-
sification techniques to prune weak correlations and improve scalability. We begin by
proving that LVNN is robust to perturbations in the online estimation of the extended
covariance matrix in stationary settings, improving over the stability issues of temporal
PCA-based methods. These findings are empirically validated on synthetic stationary
datasets. Then, to assess the effectiveness of the learned embeddings, we evaluate LVNN
on single-step forecasting tasks using three real-world datasets across different forecast-
ing horizons. The standard LVNN model performs comparably to our baselines, while
the LVNN variant with the block upper triangular matrix demonstrates the most con-
sistent performance. Furthermore, applying hard and soft thresholding sparsification
techniques to the extended covariance matrix substantially reduces the computational
overhead, with only a minor impact on forecasting performance. These results support
our hypothesis that cross-temporal covariance terms are a valuable source of inductive
bias for representation learning in multivariate time series.
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High-dimensional multivariate time series data are central to a wide range of sci-
entific and real-world applications, where multiple interdependent variables evolve si-
multaneously over time. These data are commonly encountered in fields such as neuro-
science, where techniques like fMRI capture temporal activity across hundreds of brain
regions [129, 128, 127, 125, 124]; in finance, where asset prices, market indicators, and
macroeconomic variables can be modeled jointly [85, 51, 141] (Figure 1.1); and in weather
forecasting, where spatially distributed sensors record meteorological measurements
[65, 82]. The complexity of multivariate time series lies not only in their temporal dimen-
sion but also in the intricate and often unknown inter-variable dependencies. Moreover,
such data may evolve rapidly, exhibit non-stationary behavior, and become available
in a streaming fashion, adding further challenges to modeling. Unlike data with an ex-
plicit spatial or relational structure, multivariate time series often lack a clear underlying
topology, making it difficult to capture meaningful interactions among variables [19].
This structural uncertainty poses a major challenge for traditional time series models,
which typically assume predefined dependencies or rely on simplistic assumptions of
variable independence.

Figure 1.1: Visualization of a financial network, where nodes represent stocks and edges are correlations
higher than 0.6 of daily price log returns, adapted from [136]

To explicitly capture the inter-dependencies in high-dimensional multivariate time
series, a suitable starting point is the sample covariance matrix, which captures pairwise
relationships between variables [19, 28, 9]. This matrix provides a data-driven represen-
tation of the underlying structure and is commonly used as the basis for dimensionality
reduction techniques such as Principal Component Analysis (PCA) [78]. PCA projects
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high-dimensional data onto a lower-dimensional subspace that preserves maximal vari-
ance, yielding compact representations that can facilitate modeling and analysis. How-
ever, when applied to time series data, PCA exhibits several important limitations. First,
it does not account for temporal dependencies, treating time-indexed observations as
independent and identically distributed. Second, PCA typically operates in a batch set-
ting, which restricts its applicability in streaming scenarios. Third, closely spaced eigen-
values can lead to instabilities in the principal components and, subsequently, to unre-
liable representations and sensitivity to noise [31, 79].

Temporal PCA [78, Chapter 12.2] and online PCA variants [29] have been proposed to
address the first two challenges respectively. In particular, Temporal PCA concatenates
consecutive temporal samples and projects them on the eigenspace of their extended
covariance matrix. In the block structure view of this matrix, the diagonal blocks cor-
respond to lag-zero covariances, while the off-diagonal blocks represent covariances at
different time lags. Then, to overcome the instability to close eigenvalues, recent work
has drawn on advances in graph neural networks (GNNs), a class of neural networks
designed to process data represented as graphs by aggregating and transforming infor-
mation from a node’s local neighborhood. Two key properties of GNNs are their stability
to perturbations in the underlying topology [47] and their transferability to graphs of dif-
ferent sizes [115]. The coVariance Neural Networks (VNN) [126], designed for static tab-
ular data, leverage the covariance matrix as a graph representation matrix, showcasing
enhanced stability to perturbations in the finite sample covariance matrix in compari-
son to PCA. Because the sample covariance matrix is typically dense and associated with
high computational costs, the VNN paradigm has also been extended with sparsification
techniques in [30].

Building upon the VNN framework, the Spatio-Temporal coVariance Neural Network
(STVNN) introduces a unified approach for learning from multivariate time series in a
streaming setting, extending the stability advantages of VNNs [31]. STVNN performs in-
dependent spatial convolutions across variables at each time step using the sample co-
variance matrix and, then, aggregates the resulting embeddings across time via a tempo-
ral sum. The covariance matrix and model parameters are updated online, accounting
for the streaming data and possible distribution shifts. This design enables the model
to capture spatiotemporal dependencies while maintaining computational efficiency,
avoiding the high complexity associated with constructing and decomposing the ex-
tended covariance matrices required in approaches like Temporal PCA. However, it may
fail to capture dynamic patterns that involve lagged or time-shifted interactions between
variables, such as delayed causal effects or cross-temporal covariance terms. In many
real-world systems, interactions between variables are not synchronous; neural signals
in one brain regions may influence others with a short temporal delay [145], stock prices
may respond to market indicators over various time lags [37, 24], and weather patterns
often exhibit causal dependencies across hours or days [25]. This limits its expressive-
ness in domains where the spatiotemporal dynamics are tightly intertwined, motivating
the need for models that explicitly encode both spatial and temporal dependencies.

We argue that a natural next step towards capturing richer spatiotemporal dynam-
ics is to also account for these lagged relationships, which are encoded in the extended
sample covariance matrix. Incorporating such information would offer a more complete
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structural view of the data, enabling models to detect patterns that are distributed not
just across variables but also across time. By doing so, one can capture cross-temporal
dynamics that would otherwise be lost when relying solely on the lag-zero sample co-
variance matrix. This motivates the use of the extended sample covariance matrix as a
foundation for learning more intricate spatiotemporal embeddings in multivariate time
series modeling.

Therefore, in this thesis, we investigate how to learn from multivariate time series
data by effectively utilizing the extended sample covariance matrix in the GNN frame-
work, answering the research question:

(RQ) "How can we learn online meaningful embeddings from multivariate time series by
leveraging lagged covariance information as part of the GNN architecture?"

We propose a Lagged spatiotemporal coVariance Neural Network (LVNN) that builds
upon the GNN architecture principles and uses the extended sample covariance matrix
as a graph representation matrix. Analogous to STVNN, the extended sample covariance
matrix and model parameters are updated in an online manner. Since uncertainties in
the online updates could lead to instabilities in the output of LVNN, we first ask the fol-
lowing question:

(RQ1) "How robust is the proposed model to perturbations introduced by the online esti-
mation of the extended covariance matrix and model parameters?"

We theoretically derive an upper bound for the stability of LVNN in Section 4.3 and
compare it with the corresponding bound for Temporal PCA. In Section 5.2.1, we corrob-
orate our theoretical analysis with stability experiments in stationary and non-stationary
settings. After establishing the stability of LVNN, we ask the question:

(RQ2) "How effective are the learned embeddings from the proposed model when applied
to a downstream task, such as single-step forecasting?"

To answer this question, we begin by analyzing the convolution operations of LVNN
on the extended sample covariance matrix in Section 4.2. In Section 5.2.2, we evaluate
our model on three real-world datasets: the Molene [56] and NOAA [4] datasets, con-
taining temperature recordings, and the Exchange Rate [156] dataset, with the daily ex-
change rates of 8 countries’ currencies. Finally, given the increased computational cost
of processing the extended sample covariance matrix, we ask the question:

(RQ3) "How can we make the model more computationally efficient and potentially robust
to spurious correlations via thresholding sparsification?"

We adapt hard and soft thresholding strategies from [30] for the online sparsification
of the extended sample covariance matrix. In Section 5.2.3, we empirically evaluate the
impact of these thresholding techniques on the forecasting performance and computa-
tional time of LVNN.

By answering the research questions, this thesis provides the following contributions:
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(C1) Model Architecture. We introduce LVNN, a spatiotemporal GNN for multivari-
ate time series, which operates with online learning updates and employs the ex-
tended sample covariance matrix as a graph shift operator.

(C2) Stability Analysis. We theoretically prove that LVNN (with and without threshold-
ing sparsification) provides stability to perturbations in the finite sample estimate
of the extended covariance matrix and model parameters in stationary settings.

(C3) Empirical Evaluation. We conduct experiments on a synthetic stationary dataset
and three real-world datasets, focusing on corroborating the stability of LVNN,
evaluating its forecasting performance against a set of baseline models, and quan-
tifying the impact of thresholding sparsification techniques on the model.

The remainder of this thesis proceeds as follows. Chapter 2 covers the necessary
background information for the research carried out in this thesis. Chapter 3 discusses
the relevant literature for multivariate time series modeling, with a focus on covariance-
based approaches. Chapter 4 introduces the proposed LVNN architecture, leveraging
the extended sample covariance matrix, and its stability analysis. Chapter 5 contains the
numerical experiments and Chapter 6 concludes this thesis and lays down some future
research directions.

Notation. Throughout this thesis, the following notation is adopted. Scalars are denoted
by plain letters (i.e., a, A), vectors by lowercase boldface letters (i.e., a), and matrices by
uppercase boldface letters (i.e., A). The i -th entry of vector a is denoted by ai or [a]i

and, likewise, the (i , j )-th entry of matrix A is denoted by Ai j or [A]i j . A⊤ denotes the
transpose of a matrix, Ât denotes the sample estimate of a matrix, where, depending on
the context, t could indicate the time step or the number of samples, and x̃ and C̃ denote
the extended data sample vector and the extended covariance matrix respectively.





2
BACKGROUND

In this chapter, we introduce the background material necessary for the research car-
ried out in this thesis. Starting in the domain of static data, Section 2.1 presents Prin-
cipal Component Analysis, elaborating on its role in dimensionality reduction and data
decomposition. This acts as the basis for understanding the mechanisms behind co-
Variance Neural Networks in Section 2.2, a specific Graph Neural Network architecture
operating on covariance matrices. Then, we move to the temporal domain, by intro-
ducing time series in Section 2.3 and discussing statistical and principal component-
based techniques for modeling them in Section 2.4. Finally, we discuss different Spatio-
Temporal Graph Neural Network approaches for modeling spatial and temporal depen-
dencies in Section 2.5.

7
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2.1. PRINCIPAL COMPONENT ANALYSIS
Principal Component Analysis (PCA) is a powerful statistical method for dimensionality
reduction, feature extraction, and data visualization. It transforms a dataset consisting
of correlated variables into a new set of uncorrelated variables called principal compo-
nents [79]. By simplifying high-dimensional data into fewer components, PCA aids in
identifying dominant patterns and removing redundancy, making it an invaluable tool
in modern data analysis [122].

Consider a N -dimensional random vector x ∈ RN×1 and its corresponding true co-
variance matrix:

C = E[
(x−E [x])(x−E [x])⊤

]
(2.1)

In practice, the underlying data model x and its statistics, including the true covariance
matrix C, are not available. At our disposal, we have a dataset X̂n ∈RN×n with n random,
independent and identically distributed (i.i.d.) samples of x, given by xi ∈ RN×1,∀i ∈
{1, ...,n}. After shifting its feature columns, so that they exhibit a zero mean, we can use
this dataset to compute an estimate of the true covariance matrix, called sample covari-
ance matrix:

Ĉn = 1

n
X̂n X̂⊤

n (2.2)

Using the sample covariance matrix, the next step is to obtain the orthogonal matrix
V = [v1, ...,vN ], with its columns corresponding to eigenvectors, through the eigendecom-
position of Ĉn as:

Ĉn = VΛV⊤ (2.3)

whereΛ= diag(λ1, ...,λN ) is the diagonal matrix of eigenvalues, such thatλ1 ≥λ2... ≥λN .
PCA projects the data in the eigenvector space of Ĉn with the following transformation:

Ŷn = V⊤X̂n (2.4)

where Ŷn is the final representation of the n samples in the space determined by the N
eigenvectors of V [78].

The essence of PCA lies in finding a new coordinate system, whose directions would
maximize the variance of the data. These directions, or principal components, are rep-
resented by the set of pairwise orthogonal eigenvectors. These eigenvectors are ordered
in decreasing order, based on the percentage of the original variance they capture, which
is described by the corresponding eigenvalues. The application of PCA can be thought
of as a rotation of the data to align with these new axes, so that each axis represents a
meaningful dimension of variation in the data. By focusing on the first k eigenvectors,
we can reduce the dimensionality of the data while preserving its core characteristics.
The resulting k-dimensional space would be able to explain a percentage of the original
variance corresponding to the cumulative explained variance of the top k eigenvectors.
The aim of PCA is to select as few eigenvectors as possible, while retaining as much in-
formation as possible [79].

2.2. COVARIANCE-BASED GRAPH NEURAL NETWORKS
PCA provides a foundation for understanding the structure of multivariate data by ana-
lyzing its covariance matrix, revealing dominant modes of variation. Extending this idea,
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covariance-based methods have been explored in graph-based learning. By represent-
ing the N dimensions of the random vector x as the nodes of an undirected graph, the
sample covariance matrix Ĉn serves as an alternative to traditional adjacency matrices.
This perspective naturally leads to coVariance Neural Networks [126], a class of Graph
Neural Networks that leverage covariance structures as Graph Shift Operators for learn-
ing representations and processing multivariate data.

2.2.1. GRAPH FILTERS AND COVARIANCE FOURIER TRANSFORM
Consider an undirected, unweighted graph G = (V ,E) with a node set V = {1, ..., N } and
an edge set E ⊆ V ×V , and a graph signal x ∈ RN formed by the data associated with the
graph’s nodes. The structure of graph G can be represented by a Graph Shift Operator
(GSO) S ∈ RN×N respecting the graph’s topology, meaning that off-diagonal entries for
not directly connected nodes are zero. The graph signal x can be shifted over the nodes
via the GSO S, so that the i -th entry of the output Sx, combining information of x from
node i and its neighbors, is:

[Sx]i =
N∑

j=1
[S]i j [x] j =

∑
j∈Ni

si j x j (2.5)

where Ni is the one-hop neighborhood of node i . By introducing a set of real valued
parameters h = [h0, ...,hK ]⊤, the concept of graph signal shifting can be extended to the
linear shift-and-sum operation of graph convolution, which is defined as:

z = H(S)x =
K∑

k=0
hk Sk x (2.6)

where H(S) constitutes a graph convolutional filter. Graph convolution linearly com-
bines information from different neighborhoods of the graph by performing K succes-
sive shifts of the graph signal with one-hop neighbors, weighted by the corresponding
parameters [48]. An example of a graph convolution operation and visualizations of the
underlying signal shifts are presented in Figure 2.1.

Figure 2.1: Visualization of a graph convolution operation, adapted from [72]

By analyzing graph convolutions in the spectral domain, one may gain additional
insights into how the various signal components are processed. Similar to (2.3), the
eigendecomposition of the GSO S = VΛV⊤ leads to the orthogonal eigenvector matrix
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V ∈RN×N and the diagonal eigenvalue matrix Λ ∈RN×N . In the context of the graph fre-
quency domain, the eigenvalues λi can be interpreted as graph frequencies, while the
corresponding eigenvectors vi are signals representing the graph oscillating modes, con-
stituting the graph frequency basis [48]. The Graph Fourier Transform (GFT) operation
projects any signal x in the eigenvector space of S through these graph oscillating modes:

x̄ = V⊤x (2.7)

Each entry x̄i of the signal projection x̄ represents a Fourier coefficient, which is associ-
ated to graph frequency λi and measures the contribution of a graph oscillating mode vi

to the signal x [110, 48].
Now, consider the special setting where S = Ĉn , so that the sample covariance matrix

Ĉn of the data X̂n acts as the GSO of G. Then, the graph frequencies obtained by GFT
are equivalent to the eigenvalues of the sample covariance matrix, and the GFT projec-
tion into the eigenspace of the GSO, in (2.7), is equivalent to the PCA projection into the
eigenspace of the sample covariance matrix, in (2.4) [110]. This relation between PCA
and GFT, with the sample covariance matrix as the GSO, is formalized with the notion of
coVariance Fourier Transform (VFT), which is defined as:

x̄ = V⊤x (2.8)

This equation expresses the projection of a random sample x in the eigenspace of Ĉn ,
where entry x̄i represents the i -th Fourier coefficient and is associated with eigenvalue
wi [126].

2.2.2. COVARIANCE FILTERS
Analogous to the definition of VFT, the filtering through the graph convolution operation
in (2.6) can be extended to coVariance Filters (VF), polynomial functions applied to a
covariance matrix [126]. Given a set of parameters h = [h0, ...,hK ]⊤, a VF for the sample
covariance matrix Ĉn is expressed as:

H(Ĉn) =
K∑

k=0
hk Ĉk

n (2.9)

Similarly to graph convolutional filters, VFs combine information in different neighbor-
hoods of the graph in a weighted manner through their parameter set h [48]. For an input
signal x, the output of a VF is:

z = H(Ĉn)x =
K∑

k=0
hk Ĉk

n x (2.10)

By leveraging the eigendecomposition of Ĉn in (2.3), the orthonormality of eigenvec-
tors, and the definition of VFT in (2.8), the VF output can be projected in the eigenspace
of Ĉn as:

z̄ =
K∑

k=0
hkΛ

k x̄ (2.11)
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This leads to the definition of a coVariance filter’s frequency response over Ĉn :

h(λi ) =
K∑

k=0
hkλ

k
i (2.12)

which determines how each eigenvalue λi is weighted, effectively shaping how differ-
ent principal components contribute to the filtered signal. Because of the equivalence
between graph frequencies and principal components, one can construct a narrowband
VF, with a frequency response h(λ) = 1 if λ = λi and h(λ) = 0 otherwise, that recovers
the score for the projection of a data sample x on eigenvector vi , associated with the
i -th principal component of Ĉn . By extending this idea, for a given covariance matrix
Ĉn , it is possible to select a filter bank of narrowband VFs, with carefully selected filter
coefficients, which can recover the PCA transformation (Theorem 1 in [126]).

A significant advantage of using coVariance filters over direct PCA computation is
their robustness to perturbations in the sample covariance matrix Ĉn . Since Ĉn is esti-
mated from a finite dataset, it is subject to statistical uncertainties, leading to deviations
from the true covariance matrix C. To study the stability of VFs under the presence of
this type of perturbations, given a random data sample x, consider the comparison of
the outputs H(C)x and H(Ĉn)x. It is proven that the distance

∥∥H(Ĉn) −H(C)
∥∥ between

the two filters decays with the number of samples n in the dataset, at least at the rate of

1/n
1
2 −ϵ, where ϵ ∈ (0,1/2] (Theorem 2 in [126]), as:

∥∥H(Ĉn) −H(C)
∥∥= M

n
1
2 −ϵ

·O(
p

N + ∥C∥√
logN n

kmi nn2ϵ ), (2.13)

where kmi n is the minimum among the kurtoses of the distribution of x in the direction
of each eigenvector in V, for some constant M > 0. This means that the stability of co-
Variance filters increases as n increases, since the estimate Ĉn is expected to converge to
C, in accordance with the law of large numbers [126].

This observation about the stability of a coVariance filter H(C) relies on the assump-
tion that its frequency response satisfies the following relation:

∣∣h(λi )−h(λ j )
∣∣≤ M

∣∣λi −λ j
∣∣

ki
(2.14)

where ki is a measure of kurtosis of the distribution of x in the direction of vi , andλi ̸=λ j

are non-zero eigenvalues of C. From perturbation theory of eigenvectors and eigenval-
ues of sample covariance matrices, it is known that estimates of the eigenspaces become
harder to distinguish as

∣∣λi −λ j
∣∣ decreases [100]. Based on (2.14), the distance between

the frequency responses of two VFs for non-zero eigenvalues λi and λ j is limited by the
corresponding eigengap

∣∣λi −λ j
∣∣. Therefore, a VF sacrifices discriminability between

close eigenvalues by restraining the corresponding frequency responses to be close as
well, in order to gain stability with respect to the statistical uncertainty of the sample
covariance matrix. Then, this assumption also accounts for the fact that distributions
with higher kurtosis ki have heavier tails and more outliers, impeding the estimation of
the corresponding eigenvalue λi and eigenvector vi [100]. Observing the upper bound



2

12 2. BACKGROUND

in (2.14), a higher kurtosis ki further restricts the expressivity of the VF’s frequency re-
sponse for eigenvalue λi , while a smaller kurtosis provides more flexibility, since it is
associated with a faster decaying tail and a more accurate estimation.

2.2.3. COVARIANCE NEURAL NETWORKS
Building on the concept of coVariance filters, a coVariance Neural Network (VNN) pro-
vides an end-to-end, non-linear, parametric mapping from input data x to a specified
objective r, defined as:

r =Φ(x; Ĉn ,H) (2.15)

for a sample covariance matrix Ĉn and a set of filter coefficients H [126]. VNNs leverage
structured filtering operations to extract meaningful representations. A VNN consists
of multiple layers, each containing two key components: (i) a filter bank composed of
coVariance filters and (ii) a pointwise non-linear activation function. The architecture
resembles that of graph neural networks, with the sample covariance matrix serving as a
shift operator.

Figure 2.2: A 3-layer VNN architecture, adapted from [126]

The fundamental building block of a VNN is the coVariance perceptron [126], defined
as a single-layer transformation applied to an input signal x:

Φ(x; Ĉn ,H) =σ(H(Ĉn)x) (2.16)

By stacking multiple perceptron layers, a deeper VNN is constructed, enabling more ex-
pressive representations. An example of a 3-layer VNN architecture can be seen in Figure
2.2. To further enhance representational power, VNNs incorporate filter banks, allowing
multiple parallel inputs and outputs per layer. For a layer with Fi n input channels and
Fout output channels, each input is processed by Fout coVariance filters in parallel, pro-
ducing multiple filtered outputs that undergo non-linear transformations. This leads to
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a layer containing Fi n ×Fout coVariance filters in total, with increased flexibility in cap-
turing complex dependencies in the data.

Following from the stability of coVariance filters, it is desirable that VNNs are also
stable, regarding perturbations in the sample covariance matrix. The stability of a VNN
extends from the stability properties of coVariance filters [126] and the stability proper-
ties of GNNs [48, 47], ensuring robustness to small changes in the input (Theorem 3 in
[126]): ∥∥Φ(x; Ĉn ,H)−Φ(x;C,H)

∥∥≤ LF L−1αn (2.17)

where L is the number of layers, F is the number of inputs and outputs per layer, and
αn > 0 represents the finite sample effect on the perturbations in Ĉn with respect to
C. As the number of layers L and the number of input-output channels per layer F in-
crease, the stability of VNNs decreases and their sensitivity to perturbations may grow.
For a coVariance perceptron, the computational cost scales as O(N 2K Fi nFout ). In high-
dimensional settings, enforcing sparsity in the covariance structure significantly reduces
computational demands, making VNNs more scalable [11].

2.3. INTRODUCTION TO TIME SERIES
A discrete time series is a sequence of data points indexed by time, typically recorded at
regular intervals [32]. Formally, a univariate time series can be defined as a sequence of
observations:

x = {xt : t = 1,2, ...,T } ∈RT (2.18)

where T is the total number of time steps and xt ∈ R represents the value of the time
series at time t . This definition can be naturally extended in the presence of multiple
variables. A multivariate time series consists of observations of multiple interdependent
variables over the same time period:

X = {xt : t = 1,2, ...,T } ∈RN×T (2.19)

where xt = [x(1)
t , x(2)

t , ..., x(N )
t ] ∈ RN represents an N -dimensional vector with the values

of observed variables at time t . Unlike independent data samples, time series exhibit
temporal dependencies, meaning that observations are inherently linked across time,
making their analysis and modeling distinct from traditional data-driven tasks [17].

The main goal of time series modeling is to extract meaningful insights and represent
the underlying structure of temporal data, enabling tasks such as time series forecasting,
anomaly detection, imputation and classification [75]. Forecasting involves predicting
future values of a time series based on its historical observations. The forecasting hori-
zon τ ∈ N, determining the number of steps into the future for which predictions are
made, distinguishes short-term forecasts (i.e. for scheduling needs), medium-term fore-
casts (i.e. for future resource requirements), and long-term forecasts (i.e. for strategic
planning) [68]. Anomaly detection identifies outliers or other types of irregularities in
time series data, often used for fraud detection [46] or fault monitoring in industrial sys-
tems [106]. Data Imputation focuses on reconstructing missing time series values while
preserving temporal consistency, allowing the utilization of initially incomplete time se-
ries. Classification assigns labels to entire time series or sequences of observations based
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on underlying patterns and characteristics [75], aiding in tasks such as disease detection
from physiological signals [114].

Despite its importance, time series modeling presents several challenges. Many time
series exhibit non-stationarity, where statistical properties such as mean and variance
change over time, requiring specialized methods to handle trends and seasonality. Noise
and random fluctuations can obscure meaningful patterns, complicating analysis. In
the multivariate setting, capturing dependencies between multiple variables adds an
additional layer of complexity, as relationships can evolve dynamically over time. Fur-
thermore, practical challenges such as missing values, irregular sampling rates, and data
sparsity often arise, necessitating advanced techniques to ensure reliable modeling [68].

To address these challenges, a variety of methods have been developed. Statistical
models rely on mathematical formulations to identify underlying patterns, offering in-
terpretable and computationally efficient solutions [68]. Machine learning techniques
provide greater flexibility by learning complex, non-linear relationships with minimal
manual feature engineering [50]. Graph-based approaches further extend time series
modeling by leveraging structured representations to capture both temporal dynamics
and interdependencies between variables, making them particularly useful for multi-
variate and spatiotemporal data [75]. These diverse methodologies enable robust time
series modeling, supporting decision-making across a wide range of applications.

2.4. TIME SERIES MODELING

Modeling time series data is essential for capturing temporal patterns and extracting
meaningful patterns for prediction and analysis. Unlike conventional datasets, time
series exhibit ordered dependencies, meaning that observations are not independent
but influenced by past values. Effective models must account for characteristics such
as trends, seasonality, and autocorrelations, while also addressing challenges like miss-
ing values, noise, and structural shifts over time. Statistical approaches remain widely
used due to their interpretability and strong theoretical foundation, providing insights
into underlying data dynamics. These models serve as the basis for more advanced ma-
chine learning and deep learning techniques, which aim to capture complex temporal
relationships beyond linear dependencies.

One of the most widely used statistical techniques for time series modeling is Expo-
nential Smoothing, which assumes that future values are weighted averages of past ob-
servations, with exponentially decreasing weights assigned more distant observations
[20]. Variants such as Holt’s method [67] extend this approach to capture trends, while
Holt-Winters method [67, 152] additionally incorporates seasonal components. Another
fundamental class of models is the AutoRegressive Integrated Moving Average (ARIMA)
family, which focuses on capturing linear relationships within the data, using autore-
gression (AR) terms, moving average (MA) terms, and differencing operations to en-
sure stationarity [15]. The Vector ARIMA (VARIMA) model extends ARIMA to multivari-
ate time series by capturing interactions among multiple variables. Due to their inter-
pretability and effectiveness, these statistical models remain widely used in settings with
stationary or well-structured time series. However, they may struggle with highly non-
linear time series or long-range dependencies [18].
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2.4.1. TEMPORAL PCA
As discussed in Section 2.1, PCA is a widely used dimensionality reduction technique
that projects high-dimensional data onto a lower-dimensional subspace while preserv-
ing the maximum variance. However, traditional PCA assumes that the available dataset
consists of i.i.d. samples of the underlying data distribution. For settings with non-
independent data, such as time series with inherent temporal dependencies, the PCA
framework has been extended to Temporal PCA (TPCA) [78]. Instead of focusing solely
on spatial relationships between the variables, TPCA also captures temporal and spatio-
temporal relationships, accounting for the special nature of time series.

At time t , consider the extended data sample X̃t = [x⊤t ,x⊤t−1, ...,x⊤t−T+1]⊤ ∈RN×T , given
by the concatenation of the latest T samples of the N -dimensional time series, under
a stationary setting. Then, based on this extended data sample, we can compute the
extended sample covariance matrix:

C̃ = E[
(X̃t − µ̃)(X̃t − µ̃)⊤

]
(2.20)

where µ̃ is the sample mean of the extended data sample. Analogous to PCA, TPCA
projects the data X̃t in the eigenvector space of C̃. To gain a better understanding of
this eigenvector space, we can view the extended covariance matrix in a block structure:

C̃ =


C C1 ... CT−1

C1 C ... CT−2
...

...
. . .

...
CT−1 CT−2 ... C

 (2.21)

under the assumption of stationarity. The diagonal matrices C are lag-zero covariance
matrices, representing the covariance between variables at the same time point. The off-
diagonal matrices Cτ are lagged covariance matrices, capturing the covariance between
variables at different times with a time lag τ:

Cτ = E
[
(xt −µ)(xt−τ−µ)⊤

]
(2.22)

We expect the covariance matrices with the same time lag τ (including τ= 0) to be equiv-
alent, assuming stationarity, which is reflected in the block structure of the extended
sample covariance matrix above. However, if the time series are not necessarily station-
ary, all the covariance matrices could be different, leading to this generic form of the
extended sample covariance matrix:

C̃ =


C0,0 C0,1 ... C0,T−1

C1,0 C1,1 ... C1,T−1
...

...
. . .

...
CT−1,0 CT−1,1 ... CT−1,T−1

 (2.23)

where the covariance matrix Ck,l captures the covariance between the variables at time
k and time l .
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A non-parametric method for performing TPCA is Singular Spectrum Analysis (SSA),
which decomposes and analyzes the autocovariance of a 1-dimensional time series [78].
Initially, considering L lagged copies of the series, SSA constructs a trajectory matrix:

X =


x1 x2 ... xT−L+1

x2 x3 ... xT−L+2
...

...
. . .

...
xL xL+1 ... xT

 (2.24)

Assuming stationarity, the (i , j )-th element of the corresponding covariance matrix de-
pends only on τ= ∣∣i − j

∣∣, and represents the autocovariance γτ of the series for a time lag
τ. After the eigendecomposition of this covariance matrix, SSA reconstructs the series by
selecting the most dominant eigenvalues, which represent main patterns of the series,
such as trends and cycles. Analogously, Multivariate Singular Spectrum Analysis (MSSA)
extends the SSA paradigm in the multivariate setting by capturing spatiotemporal rela-
tionships across multiple variables [78].

The aforementioned temporal principal component-based methods are valuable for
uncovering long-term spatiotemporal dependencies and reducing data dimensionality.
However, they face several challenges, especially in real-world applications. A key limita-
tion is the assumption of stationarity, as these methods rely on covariance structures that
may change over time, making them less effective for highly dynamic or non-stationary
time series. Additionally, time lag selection significantly impacts performance, requiring
careful tuning to balance capturing meaningful dependencies while avoiding excessive
noise. Computational complexity also increases with longer time horizons and higher-
dimensional data, as these methods involve large covariance or trajectory matrices that
require eigendecomposition, leading to scalability issues [78]. Nevertheless, their ability
to capture intricate patterns makes them highly effective when paired with forecasting
models, enhancing their ability to handle complex datasets.

2.4.2. ONLINE PCA
In dynamic environments, where data streams are generated continuously, traditional
batch PCA methods become impractical due to their computational and memory con-
straints. This challenge has led to the development of Online PCA, which updates the
principal components incrementally as new data arrives [14]. Unlike standard PCA,
which processes all data at once, Online PCA accommodates streaming data by itera-
tively refining estimates of the principal components, making it particularly well-suited
for applications in real-time systems, adaptive forecasting, and high-dimensional data
analysis [14].

Online PCA typically relies on optimization techniques for approximating principal
components without storing the entire data set. Given a sequence of data vectors {xt :
t = 1,2, ...,T }, Online PCA aims to iteratively estimate the leading eigenvectors of the
covariance matrix. At each time step t , the algorithm updates the principal components
by incorporating the new data sample xt , while adjusting the current estimates based
on the selected learning rates and convergence criteria. Several algorithms have been
proposed for Online PCA, each balancing computational efficiency, convergence speed,
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and accuracy differently. One key method is Oja’s Rule, a gradient-based method that
iteratively updates the principal component matrix by minimizing the reconstruction
error as new data arrives [108, 107]. Another approach is Incremental PCA (IPCA), which
maintains a low-rank approximation of the data matrix and updates it with small batches
of new data vectors arriving [5].

Online PCA methods, rooted in the aforementioned approaches, have inspired nu-
merous variants tailored to specific applications and computational constraints. These
methods are crucial for processing large-scale and streaming datasets, enabling dynamic
updates of principal components without requiring full data storage [29]. Despite their
utility, key challenges include maintaining computational efficiency, ensuring robust-
ness to noise, and effectively adapting to non-stationary data distributions [103, 109].
Addressing these challenges remains an active area of research, highlighting the evolv-
ing importance of online PCA in modern data-driven tasks.

2.5. SPATIO-TEMPORAL GRAPH NEURAL NETWORKS
By incorporating spatial dependencies alongside temporal dynamics, Spatio-Temporal
Graph Neural Networks (STGNNs) extend statistical and machine learning techniques
for time series modeling. This is achieved by leveraging the underlying graph structure
that characterizes the different time series, allowing the STGNNs to also capture com-
plex inter-variable relationships. This more expressive representation of multivariate
temporal data makes them well-suited for applications where both spatial and temporal
correlations are crucial.

2.5.1. MODELING SPATIAL AND TEMPORAL DEPENDENCIES
To effectively capture inter-variable relationships between different time series, STGNNs
incorporate spatial modeling techniques utilized by GNNs on static graphs [75]. By lever-
aging the underlying graph structures that represent how the time series are intercon-
nected, these methods ensure that relevant spatial patterns are preserved in the subse-
quent analysis. Broadly, there are 3 main approaches for spatial modeling:

• Spectral GNN-based Approaches. These methods stem from spectral graph the-
ory, capturing relationships in the graph frequency domain using the GSO [76,
123].

• Spatial GNNs-based Approaches. Instead of working in the frequency domain,
these methods design filters directly over the neighborhood of each node, model-
ing spatial dependencies through message passing [55] or graph diffusion [54].

• Hybrid Approaches. These models interwine spectral and spatial GNN techniques,
aiming to effectively combine their strengths.

Besides spatial dependencies, STGNNs must also account for how data evolves over
time. Temporal modeling is essential for understanding sequential patterns within the
time series. To achieve this, STGNNs incorporate temporal modules that process time-
dependent relationships, either in the time domain or frequency domain [75]. By learn-
ing meaningful temporal relationships, alongside the aforementioned spatial modules,
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STGNNs are capable of modeling complex spatio-temporal patterns. Operating in the
time domain, there are 4 categories of models:

• Recurrence-based Approaches. These methods rely on standard recurrent-based
architectures, like Recurrent Neural Networks (RNNs) [38] or variants, to model
inter-temporal relationships in the time domain.

• Convolution-based Approaches. Inspired by the efficient learning of CNNs through
parallel processing, these methods extract temporal patterns through temporal
convolutions [140]. Even though most proposed models operate in the time do-
main, there are also works focusing on the frequency domain.

• Attention-based Approaches. These methodologies focus on attention mecha-
nisms, such as transformers [147], to either model temporal dependencies within
univariate time series, or account for spatial and temporal features at the same
time, thus directly capturing spatiotemporal patterns.

• Hybrid Approaches. Again, the aforementioned approaches can be effectively
combined, resulting in more complex hybrid models that exploit the strengths of
each of these.

2.5.2. ARCHITECTURAL PARADIGMS
Effectively combining spatial and temporal modules is crucial for constructing power-
ful STGNN models. Different architectural paradigms determine how spatial and tem-
poral dependencies interact within the model, impacting its ability to capture complex
patterns. The following methods focus on processing static graphs, with a fixed spatial
structure and the data dynamically changing across time. An initial approach involves
concatenating distinct learning modules that handle separately the spatial and temporal
dependencies. These disjoint models typically consist of a combination of graph-based
learning algorithms for spatial feature extraction and sequence-based models to capture
temporal patterns. The two models can be ordered in any way, with the proper adjust-
ments, leading to a variety of different structures. For example, a GNN might first extract
spatial features at each timestamp, which are then fed into an LSTM to capture the un-
derlying temporal dynamics, or vice versa [71]. Even though this method offers flexibility
and simplicity for combining state-of-the-art methods for spatial and temporal relation-
ships, it may fail to explicitly capture more complex spatiotemporal patterns, since the
spatial and temporal components are not processed jointly [116].

One way to overcome the aforementioned challenge is to integrate the graph struc-
ture directly within a sequence-based model. These graph recursive models treat the
temporal dimensions as a sequence of snapshots, where spatial embeddings are con-
structed at each time step through graph convolutions. For example, graph convolu-
tions can be integrated in the autoregressive and moving average components of the
VARIMA framework by replacing the parameter matrices with graph convolutional fil-
ters. Respectively, for the non-linear extension of VARIMA with RNN variants, a similar
replacement of the parameter matrices induces graph-structure bias into the tempo-
ral mechanisms. This architectural paradigm processes spatial and temporal relation-
ships in a joint manner, however the RNN variants lead to an undesirable model bias by
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putting more emphasis on the latter [116], and face difficulties with parallelization and
vanishing gradients.

Figure 2.3: Different product graphs and the formation of multivariate temporal data over them, adapted
from [116]

Another approach is to extend the graph representation by considering snapshots of
the graph signal at every time step and connect them successively with temporal edges.
These larger graph representations put equal weight in spatial and temporal dependen-
cies, addressing the underlying temporal bias of the graph recursive models [116]. Nev-
ertheless, the design problem of connecting temporally-adjacent graph snapshots with
each other is not trivial. This is a crucial decision for creating powerful STGNN models,
especially considering the computational overhead of performing graph convolutions,
or other graph-based operations, on the larger graph. Product graphs, equipped with
desirable theoretical properties, such as permutation equivariance, and a higher degree
of interpretability, offer a range of choices for combining temporal graph replicas [116].
Three primary types of product graphs are commonly used to represent spatiotemporal
relationships:

• Kronecker Product Graph. The only types of relationships (edges) that exist with
this graph is among spatially neighboring nodes for successive time steps. For a
GSO S ∈RN×N of the static graph G, the Kronecker product graph is defined by the
following GSO:

S⊗ = ST ⊗S (2.25)

where ST is a subdiagonal identity matrix of size T ×T . It corresponds to the graph
with the gray edges in Figure 2.3.

• Cartesian Product Graph. This graph can be seen as the complement of the Kro-
necker product graph, since it involves spatial connections and temporal connec-
tions for the same node across successive time steps. The Cartesian product graph
is defined by the following GSO:

S× = ST ⊗ IN + IT ⊗S (2.26)

where IN and IT are identity matrices of size N ×N and T ×T respectively. It cor-
responds to the graph with the green and red edges in Figure 2.3.
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• Strong Product Graph. This graph is more general and involves all possible con-
nections of the two previous product graphs. The strong product graph is defined
by the following GSO:

S⊠ = ST ⊗ IN + IT ⊗S+ST ⊗S (2.27)

It corresponds to the graph with the green, gray, and red edges in Figure 2.3.

Product graphs provide a robust foundation for integrating spatial and temporal de-
pendencies, enabling joint spatiotemporal learning. By leveraging the unique properties
of different product types, they offer a flexible and comprehensive approach to model-
ing complex interactions [116]. Optimizing their computational efficiency and exploring
novel applications are key challenges for fully realizing their potential in STGNNs.

2.5.3. LEARNING WITH DYNAMIC GRAPHS

The aforementioned paradigms assume that the underlying graph structure remains un-
changed across time. In practice, most real-world graphs have a dynamic structure that
evolves across time, causing the static graph models to fail. To overcome these limita-
tions, several approaches exist that account for a time-varying graph topology. Originat-
ing from the graph recursive model paradigm, the evolving GNN models [112] employ
temporally-evolving weights through an RNN, instead of directly applying the RNN on
the GNN-extracted node features to learn the temporal dynamics. Namely, a GNN oper-
ates at each time stamp on the current state of the graph signal, producing spatial node
embeddings. Subsequently, the RNN model updates the GNN weights by combining
their previous values and the information from the last computed node embeddings.
Depending on the RNN variant and the problem parameters, the GNN weights could
correspond to the hidden state or the output of the RNN model. This model paradigm
aims to capture the temporal graph dynamics through its time-dependent parameters,
and therefore is capable of handling non-static graphs.

Figure 2.4: Schematic representation of 3 layers of a dynamic graph (A) and the corresponding supra max
adjacency matrix (B), adapted from [84]
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Another approach stems from the product graph models. Again, the dynamic graph
can be represented by a larger static graph, consisting of multiple layers [61]. The con-
nections among the nodes of this larger graph are expressed through a supra adjacency
matrix of size (N T )× (N T ), where N is the number of variables and T is the number of
layers (time steps). Across the diagonal, the matrices of size N ×N represent the spatial
connections within the respective layers, at specific time steps. The off-diagonal matri-
ces represent the temporal connections between nodes of different layers. The differ-
ence with product graphs is that, here, connections between non-successive time steps
are permitted. Even though this allows a GNN to capture more complex spatiotemporal
relationships, it also increases the computational overhead of processing the graph. To
ease the computational burden, the cross-layer temporal connections may be allowed
only between the same node of the original graph, similar to the Cartesian product.
Moreover, a temporal window w indicates the maximum time lag between layers for
which connections are allowed. Layers with longer time intervals would not be directly
connected [61]. Figure 2.4 illustrates a graph with the above restrictions and a temporal
window w = 2.

2.6. CONCLUSION
In this chapter, we discussed the background material necessary for the research carried
out in this thesis. Beginning with static data analysis, PCA was introduced as a funda-
mental technique for dimensionality reduction and data decomposition. Building upon
this, coVariance Neural Networks were presented, demonstrating how covariance ma-
trices can be leveraged within the GNN framework. The discussion then transitioned to
the temporal domain, covering the fundamentals of time series and various modeling
techniques, including statistical methods and principal component-based approaches.
Finally, STGNNs were explored as a framework for capturing both spatial and tempo-
ral dependencies in multi-variable sequential data. These topics establish the theoreti-
cal foundations for the subsequent chapters, where we will propose a novel covariance-
based GNN approach for multivariate time series modeling and forecasting.





3
LITERATURE REVIEW

In this chapter, we will provide an overview of the relevant literature for the research
carried out in this thesis. We begin by introducing the general landscape of time se-
ries modeling in Section 3.1, outlining key challenges and motivations behind different
approaches. Section 3.2 explores statistical techniques, ranging from classical time se-
ries models, such as Exponential Smoothing and ARIMA, to principal component-based
methods, like Temporal PCA and Online PCA algorithms. Then, Section 3.3 shifts to non-
graph Deep Learning approaches, presenting key works utilizing RNNs and their vari-
ants, CNNs, and attention mechanisms, as well as hybrid architectures that integrate
PCA-based techniques with these models. Section 3.4 reviews spatiotemporal GNNs,
covering various architectures for processing spatial and temporal dependencies, before
focusing on covariance-based STGNNs, which have a central role in this thesis. Finally,
this chapter concludes with a discussion in Section 3.5.
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Figure 3.1: Classification of methods for time series modeling

3.1. INTRODUCTION
Time series modeling is a fundamental problem in data analysis, where the objective is
to understand temporal dependencies and patterns within sequential data. These mod-
els can be applied to a variety of tasks, including forecasting [91], anomaly detection
[12], data imputation [44], and classification [70]; however, the emphasis of this the-
sis has been mainly placed on models developed for forecasting. Traditional statistical
methods have long been employed for this task, offering theoretically grounded, mathe-
matical approaches to capturing underlying patterns [68]. More recently, deep learning
techniques have emerged as powerful alternatives, leveraging neural networks to model
complex, nonlinear relationships in time series data [58]. Beyond purely temporal mod-
els, graph approaches have gained traction, particularly for settings where spatial depen-
dencies influence temporal dynamics [75]. In this chapter, we adhere to this taxonomy
of methods for time series modeling, with a further distinction for methods utilizing a
covariance matrix of the data, such as PCA [78] and covariance-based spatiotemporal
GNNs [31]. Our framework for categorizing these methods is shown in Figure 3.1.

3.2. STATISTICAL APPROACHES
Exponential Smoothing (ES) and ARIMA models are two well established statistical ap-
proaches in time series modeling, each offering distinct advantages. ES methods, such
as the Holt-Winters model [67, 152], are effective in applications with strong seasonal
patterns and trend indications, like rainfall forecasting [149]. Recently, they have been
extended with the grey generating operator [94], addressing their limitations in settings
with irregular and highly dynamic data, with applications in air quality index estimation
[154] and electricity price prediction [117]. Then, ARIMA models constitute a corner-
stone of time series analysis due to their ability to capture linear relationships, such as
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autocorrelation [15]. They have been widely applied in environmental modeling [83],
including air quality [73, 97, 164], noise pollution [52, 60], and traffic pollution forecast-
ing [151]. Additionally, ARIMA models have been extensively explored in financial time
series applications, such as stock price prediction [85, 139] and market volatility estima-
tion [92]. In multivariate settings, vector autoregressive models extend these capabili-
ties, enabling applications in wind forecasting [167] and socio-economic trend analysis
[142].

Despite their effectiveness with capturing trend-seasonality components and linear
relationships respectively, ES and ARIMA models struggle with more complex time series
characterized by non-linearity and long-term dependencies [18]. These limitations have
been augmented with the emergence of neural networks and deep learning techniques,
which can capture more intricate, non-linear patterns at the expense of interpretability
[58]. In response, hybrid models have been proposed, leveraging statistical techniques
with deep learning methods to leverage their complementary strengths. For instance,
ES models have been combined with RNNs and their variants [131, 132, 21], as well as
with Transformer models [153], in various applications. Similarly, ARIMA models have
been integrated with RNNs for wind speed forecasting [95], and further extended with
attention mechanisms [163] or CNNs [74] for financial forecasting. Nevertheless, these
hybrid models have an increased complexity, because of the data-driven nature of the
deep learning component and the theoretical assumptions of the statistical component
[62].

PCA-BASED MODELS

PCA has long been a cornerstone for dimensionality reduction and feature extraction,
particularly in time-domain analysis through its extended framework in TPCA. By de-
composing time series into orthogonal components, principal component methods iso-
lates dominant patterns that contribute most to the variance, offering insights into un-
derlying temporal structures [78]. Focusing on the multivariate setting, MSSA consti-
tutes an effective method for performing TPCA, with applications in modeling traffic
flows [102] and galaxy dynamics [146]. The MSSA paradigm has led to numerous vari-
ants for spatiotemporal modeling. In [3], MSSA is integrated with the cumulative sum
statistic from sequential hypothesis testing into a factor model for a financial system,
aiming to detect abrupt changes in the underlying series dynamics in an online manner.
Further works in the same direction suggest that variants of this model have compara-
ble or even better performance than deep learning alternatives, such as a LSTM, on the
same task [1]. Apart from the MSSA paradigm, in [87], a custom spatiotemporal PCA
method is proposed for multivariate datasets. It employs an extended covariance matrix
across space and time [81] and replaces the original spatiotemporal data with a multi-
variate functional dataset [59], aiming to increase the expressivity and address the "curse
of dimensionality" often associated with conventional spatiotemporal PCA approaches.

Nevertheless, the application of PCA-based techniques becomes less effective with
streaming or non-stationary data settings. As traditional PCA fails to account for evolv-
ing data distributions, online PCA methods address this limitation by updating the prin-
cipal components incrementally as new data arrives [14]. A plethora of PCA variants
have been proposed, incorporating various mechanisms to handle the challenges in the
online setting. In [29], a comparative study evaluates different algorithms, such as batch
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PCA, incremental PCA [5], and stochastic gradient approaches (Oja’s rule [108, 107]), over
computation time and estimation error with high dimensional data. Stemming from in-
cremental PCA, various adaptive online methods have been suggested for dimensional-
ity and principal component adjustments [103, 2, 104]. Moreover, with non-stationary
data, almost all of the underlying data variation is often accredited to a few components,
which may be spurious and lead to misinterpretations [109]. Motivated by this obser-
vation and an application of PCA on the first difference of bond returns [39], in [63] the
focus shifts on applying PCA on the forecast errors rather than the time series them-
selves. Finally, it is crucial to develop algorithms addressing both the limitations of an
online setting and the underlying non-stationarity, such as the probabilistic PCA method
in [101], since many problems fall into both categories.

The PCA framework also has a number of limitations, similar to Exponential Smooth-
ing and ARIMA models. PCA operates on a sample covariance matrix, which is a per-
turbed version of the true covariance matrix based on a finite number of samples. For
eigenvalues that are close to each other, PCA proves to be unstable in constructing their
principal components, since they could largely deviate with small changes in the avail-
able data [77], and thus lead to irrreproducible statistical results [43]. Then, considering
the online setting, various PCA variants have been proposed to account for missing val-
ues, high time and space complexity, slow computation speed, and low statistical accu-
racy [16, 29]. Still, they either require careful hyperparameter optimization, since they
have a limited number of observations in their disposal, or they are accompanied by
significant tradeoffs with respect to accuracy, convergence, and computational speed
[29]. Moreover, for multivariate time series data, temporal PCA approaches estimate the
correlations between points across space and time, constructing a larger spatiotempo-
ral covariance matrix [78]. However, the processing this matrix is associated with high
computational costs, which limit scalability and the available temporal memory [31].

3.3. SEQUENTIAL AND CONVOLUTIONAL MODELS
Deep learning models have gained significant traction for time series modeling due to
their ability to learn complex temporal dependencies directly from the data. Recurrent
Neural Networks [38] are a class of deep learning architectures specifically designed to
model sequential data by retaining past information through a hidden state, which is
updated at every time step [144]. Because of their focus on temporal dependencies, nu-
merous applications of RNN models have been suggested in environmental problems
[33], healthcare analytics [6], and modeling traffic patterns [69] among others. To al-
low more intricate representations, bidirectional RNNs process sequential data also in
reverse order, which facilitates the interpretation of earlier observations [27, 160]. How-
ever, traditional RNNs suffer from the vanishing and exploding gradient problems, im-
peding their learning of longer-term relationships [113]. To mitigate these issues, var-
ious RNN variants have been proposed, such as LSTM [66] and GRU [35]. These ar-
chitectures have been adjusted to various problem settings, ranging from stock trend
prediction [64, 51] and supply chain [111] optimization to natural language processing
[105, 49], speech recognition [137, 121], and recommender systems [42, 8, 99]. Besides
recurrence-based architectures, Convolutional Neural Networks have also been adapted
to time series problems. Their ability to exploit spatial or temporal locality in the data
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and their fewer parameters in comparison to RNNs are the main motivating factors for
exploring their application in time series modeling [166, 13].

More recently, transformer-based architectures have emerged as powerful tools for
time series modeling, primarily due to their ability to capture long-range patterns using
self-attention mechanisms [148]. Most variants, such as in [89, 169, 96, 170], introduce
newly designed attention modules within the vanilla transformer architecture, aiming
to incorporate time series inductive biases into it. Another approach is to design a new
transformer architecture to account for sequential data, as in [36, 118]. Nevertheless,
these models focus only on temporal relationships. In the multivariate time series set-
ting, distinct attention blocks are constructed for temporal and spatiotemporal relation-
ships and are interwined with graph convolution networks, such as the works in [22,
159] for traffic flow forecasting and [162] for modeling pedestrian trajectories. Moreover,
hybrid models of statistical techniques, like PCA, and the aforementioned deep learn-
ing methods have gained attention. For instance, the works in [158] and [93] integrate
PCA and SSA with the LSTM architecture for wind power and wind speed forecasting
respectively. These principal component-based techniques act as a preprocessing step,
reducing the dimensionality of the input and extracting main components of the series,
in order to facilitate the work of the subsequent deep learning model. In a similar man-
ner, in [51] PCA is integrated with LSTM and GRU models for stock trend prediction,
while in [34, 135] MSSA is integrated with LSTM models for electric load forecasting.

Despite promising results, these deep learning models face limitations when applied
to real-world time series. Most of these methods treat the time series as independent
or flattened inputs, thus not explicitly modeling the spatial relations between different
series. This limits the expressiveness of these models with respect to inter-variable pat-
terns and leads to an implicit bias in favor of temporal relationships [75]. As a result,
there is a growing interest in models that account for both spatial and temporal dynam-
ics, capturing more intricate spatiotemporal relationships and improving generalization
[75].

3.4. SPATIOTEMPORAL GNN METHODS
For multivariate time series modeling, one main advantage of STGNNs over non-graph
deep learning approaches is how they process inter-variable dependencies. They achieve
this by representing the series and their pairwise interactions with graph structures and
processing them in a similar manner as GNNs with static graphs [75]. Most of the ap-
proaches operating in the spectral domain approximate the graph convolution opera-
tions with Chebyshev polynomials, heavily inspired by the seminal work in [40]. Some
of these works focus on effectively entangling Chebyshev polynomial convolution layers
and temporal convolution layers, in order to learn both spatial and temporal dependen-
cies coherently, as in [161]. Others aim to jointly capture spatiotemporal relationships
by moving the graph to the spectral domain through GFT and performing frequency-
domain convolutions before moving back to the time domain, as in [26]. The work in [88]
alternatively proposes the construction of multiple spatiotemporal graphs with different
functionalities and processing them through convolutions and a custom spatiotemporal
attention mechanism to extract meaningful patterns.

Then, inspired by the more intuitive approach of spatial-based GNNs [155], several
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methods focus on modeling inter-variable dependencies in the spatial domain. By view-
ing the spatial-domain graph convolutions as diffusion processes [54], one can achieve
spatiotemporal modeling by incorporating graph diffusion layers into RNN-based ar-
chitectures, as in [157]. Alternatively, by viewing the graph convolution as a message
passing/information propagation process [55], the work in [98] proposes graph prop-
agation with temporal polynomial coefficients, while the work in [45] suggests using a
transformer-based model with multi-head spatiotemporal self-attention blocks to cap-
ture cross-spatial-temporal correlations. Apart from these two subcategories, other ap-
proaches extend the pre-existing spectral domain methods to the spatial domain, such
as the work in [133] adapting the spectral graph convolutions [86] to synchronous graph
convolutions on localized spatiotemporal graphs. Finally, some hybrid models combine
both spectral-based and spatial-based GNN techniques, such as performing Chebyshev
polynomial convolutions on a global level and message passing on a local level [165].

With respect to inter-temporal relationships, most spatiotemporal GNNs rely on well-
established deep learning architectures, which have been proven to be effective in mod-
eling temporal dynamics. As mentioned earlier, RNN-based architectures are often cou-
pled with graph diffusion [157, 90] or with spectral graph convolutions [7]. Instead of
RNN-based models, others focus on integrating graph convolution mechanisms with
CNN models, both in the spatial [161] and the spectral domain [26]. Another option is
attention-based architectures, such as transformers, with most related works either con-
structing distinct spatial and temporal attention mechanisms [168], or using transformer
layers to produce representations of the individual temporal dependencies of each se-
ries and, afterwards, model the inter-variable dependencies through them [119]. Hybrid
methods have also been proposed [143], however it is not clear how the aforementioned
temporal models should be optimally combined for the task at hand [75].

The majority of these GNN-based methods for spatiotemporal modeling either pro-
cess the spatial and temporal dependencies in a sequential manner, or the graph spatial-
processing operations are integrated within the temporal-processing architecture. The
former approach fails to jointly capture the dependencies on a data-level, while the lat-
ter often limits the expressivity and introduces a bias in favor of the temporal over the
spatial patterns [116]. One response to this design limitation is to create larger prod-
uct graphs to represent both spatial and temporal dependencies equally, facilitating the
extraction of spatiotemporal patterns in a joint manner [116]. However, the rule for cre-
ating edges within the product graph, and therefore determining the information prop-
agation, is not clear, while they are also associated with high computational complexity
[116]. Moreover, modeling the inter-variable dependencies usually requires an underly-
ing graph structure, which may not be available in various multivariate time series prob-
lems [126].

COVARIANCE-BASED MODELS

In a static data setting, coVariance Neural Networks [126] leverage the sample covariance
matrix as the underlying graph structure for modeling inter-variable dependencies. Un-
like traditional adjacency or Laplacian-based GSOs, the covariance matrix encapsulates
second-order statistical dependencies between data dimensions, aligning naturally with
PCA’s ability to reveal dominant modes of variance. PCA-based approaches are often in-
terwined with deep learning techniques in order to remove redundant information from



3.4. SPATIOTEMPORAL GNN METHODS

3

29

the features at every layers, as described in Section 3.3. VNNs are attempting to exploit
this beneficial functionality of PCA, along with the low number of parameters of GNNs.
Furthermore, VNNs are more stable to perturbations in the sample covariance matrix
from the finite data, extending from the stability of coVariance Filters, as explained in
Section 2.2.2. In the seminal work [126], a set of experiments for age prediction from cor-
tical thickness brain data at different resolutions hinted that the performance of VNNs
can be transferred across resolutions without re-training. This led to a series of addi-
tional works focusing on brain age prediction [129, 128, 130, 125], with a focus on this
performance transferability property of VNNs. Moreover, another desirable property of
VNNs would be explainability. The VNNs explanatory capabilities are also explored on
this same task in [127, 124]. Overall, the stability of VNNs to perturbations in the sam-
ple covariance matrix, along with performance transferability and a significant degree of
explainability, constitute a notable advancement in graph-based neural network frame-
works.

In [31], the VNN framework is extended to multivariate time series data. This Spatio-
Temporal VNN (STVNN) approach addresses the challenges of PCA with streaming and
temporal data, as well as adapting to distributional shifts. First, STVNNs handle stream-
ing data by parametrically updating the covariance matrix as new data becomes avail-
able. Then, over a time horizon T , STVNNs apply a spatiotemporal covariance filter
on the corresponding series, with a weighted sum operator aggregating the outputs of
the convolutions at different time steps. Experiments showcase STVNN’s superior sta-
bility over PCA-based methods, faster adaptability to distribution shifts, and, in fore-
casting tasks, more consistent performance across datasets and single-step predictions
than LSTM, VNN, hybrid TPCA-MLP, and hybrid VNN-LSTM models [31]. One of the key
takeaways from this work is the importance of using the sample covariance matrix as in-
ductive bias in this spatiotemporal setting, with STVNN offering a robust framework for
utilizing it.

In high-dimensional static data settings, the VNN framework suffers from more diffi-
cult covariance estimation and a more dense sample covariance matrix regardless of the
state of the true one. In response to this, in [30], hard and soft thresholding sparsification
strategies have been suggested for sparse true covariance matrices and stochastic spar-
sification strategies if their state is unknown. These methods lower the computational
time for a VNN forward pass, maintain the stability property, and, often, even lead to im-
proved performance. The reason is that many of the estimated entries of the covariance
matrix may be spurious, similar to what is suggested in [109]. These spurious correla-
tions would negatively impact the modeling of the underlying data distributions, how-
ever many of them are eliminated through the covariance sparsification process. Nev-
ertheless, these techniques have not yet been adapted to the STVNN in the multivariate
time series setting, where the same limitations with respect to the covariance matrix
persist. Another limitation of the work in [31] is that covariances among variables at
time lags other than zero are implicitly captured through the temporal sums, providing
a lower computational overhead. This relates to the motivation behind product graph
models [116], as a mode to explicitly capture these spatiotemporal dependencies.



3

30 3. LITERATURE REVIEW

3.5. DISCUSSION
This chapter reviewed different approaches for time series modeling. Statistical models,
like Exponential Smoothing and ARIMA, have been widely applied in time series fore-
casting for their robust theoretical foundation and their ability to capture trends and lin-
ear dependencies. PCA-based methods, including temporal PCA and MSSA, have also
been used for dimensionality reduction and to extract dominant temporal patterns in
multivariate settings. While effective in structured or stationary environments, the for-
mer approaches struggle with non-linear dynamics and long-range dependencies, while
the latter are unstable to perturbations in the sample covariance networks and are often
associated with high computational costs. Deep learning models, such as RNNs, LSTMs,
CNNs, and Transformers, have recently emerged as powerful solutions for learning com-
plex temporal features directly from data. However, these models still face challenges
with multivariate data, because they do not explicitly capture the spatial relations be-
tween different series.

Spatiotemporal GNNs extend deep learning models by explicitly incorporating spa-
tial relationships among variables using graph structures, allowing for more expressive
representations in multivariate time series modeling. These approaches typically oper-
ate in either the spectral or spatial domain, leveraging graph convolution mechanisms
to model inter-variable dependencies alongside temporal dynamics. Temporal model-
ing is usually achieved through established architectures like RNNs, CNNs, or attention-
based mechanisms, which are integrated with the graph-based components. Neverthe-
less, most STGNNs process spatial and temporal dependencies either sequentially or
embed the spatial component within the temporal one, limiting the capacity to model
joint spatiotemporal interactions. Attempts to overcome this through more unified for-
mulations, such as product graphs, often lead to increased model complexity and com-
putational costs. Furthermore, the assumption of a predefined graph structure poses a
challenge, as such information is often unavailable or difficult to infer reliably in many
time series applications.

STVNNs extend the VNN framework, which uses the sample covariance matrix as
an inductive bias to model inter-variable dependencies, to the time series domain. Un-
like traditional graph neural networks, this approach captures second-order statistical
structure without requiring a predefined graph. STVNNs handle streaming data by up-
dating the covariance matrix parametrically and apply a spatiotemporal filter to extract
patterns across time. Compared to PCA-based and deep learning hybrid methods, they
offer improved stability, adaptability to distribution shifts, and consistent forecasting
performance. However, like their static counterparts, STVNNs face challenges with high-
dimensional data and dense, potentially spurious covariance estimates. While sparsifi-
cation strategies have been proposed to address this in static settings, their integration
into the spatiotemporal framework remains unexplored. Additionally, covariances be-
yond lag-zero are only implicitly modeled via a temporal sum, thus unable to directly
capture cross-dependencies between the time series.

Building on this limitation of the STVNN model, this thesis directly addresses the
challenge of modeling lagged spatiotemporal covariances. Specifically, the proposed
model extends the STVNN framework by constructing a larger sample covariance ma-
trix that captures the cross-dependencies between time series variables across multiple
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time lags. This approach aims to enhance the expressiveness of the model, drawing a
direct parallel to TPCA. To address the increased computational complexity associated
with this larger covariance structure, sparsification strategies are also integrated into this
model, ensuring more efficient computation while preserving the accuracy of the covari-
ance estimation. By exploring these covariance sparsification techniques in the multi-
variate time series setting, this approach offers a more scalable and robust solution for
explicitly modeling the underlying relationships of multivariate time series and captur-
ing spatiotemporal patterns.





4
METHODOLOGY

In this chapter, we present our proposed approach for multivariate time series model-
ing with an extended covariance-based GNN model. We begin with the definition of
the problem in Section 4.1, where we introduce the modeling setting. In Section 4.2, we
present the proposed model architecture, based on an extended covariance representa-
tion that accounts for lagged dependencies, and its extension that incorporates thresh-
olding sparsification strategies to enhance efficiency. Then, in Section 4.3, we provide a
theoretical analysis of the model’s stability with respect to perturbations in the sample
covariance matrix. Finally, we conclude this chapter with a summarization of the main
contributions in Section 4.4.

33



4

34 4. METHODOLOGY

4.1. PROBLEM FORMULATION
We aim to process multivariate time series xt ∈ RN , composed of N variables evolving
over time in vectors ...,x−1,x0,x1, ... . To capture both temporal and cross-variable de-
pendencies, we extend the classical covariance formulation to account for lagged inter-
actions across time. Under the assumption of stationarity, the mean vector µ and the
lag-τ covariance matrix Cτ are defined as:

µ= E[xt ] and Cτ = E[(xt −µ)(xt−τ−µ)⊤]. (4.1)

To jointly model temporal and spatial correlations, we consider an extended represen-
tation of the multivariate time series x̃t = [x⊤t−T+1, ...,x⊤t−1,x⊤t ]⊤, by concatenating T con-
secutive time steps. The corresponding extended covariance matrix is:

C̃ = E[(x̃t − µ̃)(x̃t − µ̃)⊤], (4.2)

where µ̃denotes the mean of the extended time series vector. The matrix C̃ captures joint
spatial and temporal correlations through its block structure, where diagonal blocks cor-
respond to lag-zero covariance matrices and off-diagonal blocks correspond to lagged
covariance matrices, as depicted in Figure (4.2).

Our objective is to learn a function Φ(x̃t , C̃ ;h) that takes as input an extended data
sample x̃t with temporal memory of size T and the extended covariance matrix C̃ includ-
ing lagged covariances up to lag T −1. This function maps the input to a target output
y, which may represent a future instance xt+θ at horizon θ > 0, or, alternatively, a class
label. Here, h constitutes the parameter set of function Φ(·). The extended covariance
matrix C̃ serves as an inductive bias, in order to reduce the parameters and computa-
tional complexity of the model in comparison to purely data-driven models, as well as
develop a solution directly related to TPCA.

In practice, the extended covariance matrix must be estimated in a streaming setting,
as neither the true extended covariance matrix is available nor a reliable batch of data
to retrieve it from. As a result, we update the estimates of the extended mean ˆ̃µt and

the extended covariance matrix ˆ̃Ct in a recursive manner, as described in Section 4.2.1.
Additionally, the model parameters are also updated in an online fashion, based on the

current estimate ht and the model loss L(Φ(x̃t , ˆ̃Ct ;ht ),y) at time t .

4.2. PROPOSED MODEL
The proposed model architecture is illustrated in Figure 4.1. At a time step t , the Lagged
spatiotemporal coVariance Neural Network (LVNN) receives as input an extended data
sample x̃t , consisting of the T most recent observation of the time series. This input is

initially used to update the extended sample covariance matrix ˆ̃Ct in an online fashion,
in order to improve the estimate of the true extended covariance matrix C̃ and reflect

the most recent dynamics of the series. Once updated, ˆ̃Ct serves as the GSO over which
our model operates, comprising a set of Lagged spatiotemporal coVariance Filters (LVF).

The filters apply localized polynomial transformations of ˆ̃Ct to the extended input sig-
nal, allowing the model to aggregate and propagate information through the extended
sample covariance matrix. The output contains a set of node embeddings that encode
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rich, localized spatiotemporal representations of each variable across the observation
window. These embeddings can either be used directly for a downstream task or further
processed by a readout layer. An in-depth description of the individual components of
the model is provided below.

Figure 4.1: Lagged spatiotemporal covariance filter pipeline. We observe a new time series sample xt and

construct the extended data sample x̃t to update the extended covariance estimate ˆ̃Ct . The estimate of the
extended covariance matrix is employed as a weighted graph adjacency matrix, leading to a fully-connected

graph across all variables and time steps. The LVNN performs convolutions over this graph, producing a set of
spatiotemporal embeddings.

4.2.1. EXTENDED COVARIANCE MATRIX
Figure 4.2 illustrates the structure of an extended covariance matrix used to capture both
spatial and temporal dependencies in a multivariate time series. On the left, the large T×
T block matrix represents the full extended covariance matrix across a temporal window
of length T , where Ĉτ encodes the pairwise covariance terms between variables at time
lag τ (for the lag-0 covariance blocks capturing spatial relationships, the subscript 0 is
omitted). Under the assumption of stationarity, the sample covariance matrices Ĉτ with
the same time lag τ are equivalent. The matrix is organized such that the entry at block
column i and block row j corresponds to the covariance between the signal at time step
t−T +i and t−T + j , up to lag T −1. To the right, a magnified view of an individual N×N
covariance block Ĉ shows its internal structure for N time series variables, where each
element ck,l denotes the covariance between variables k and l at the corresponding time
lag. The full matrix forms the backbone of the LVFs, enabling joint learning of spatio-
temporal relationships.

In this data streaming setting, the estimate of the extended covariance matrix is up-
dated every T time steps. Because the extended data samples consist of T consecutive
observations of the N time series variables, smaller intervals between updates would
lead to overlaps among the extended data samples and, hence, they would not be inde-
pendent. Therefore, moving from time step t to t +T , a new extended data sample x̃t+T

is constructed from the observations between time steps t+1 and t+T . Since our model
operates in an online setting, x̃t+T will be used to update the estimates of the extended

data sample mean ˆ̃µt and the extended covariance matrix ˆ̃Ct according to:

ˆ̃µt+T =αt ˆ̃µt +βt x̃t+T , (4.3)

ˆ̃Ct+T = ξt
ˆ̃Ct +ζt (x̃t+T − ˆ̃µ)(x̃t+T − ˆ̃µ)⊤ (4.4)
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Figure 4.2: The structure of the extended sample covariance matrix for N variables and a temporal window
size T , at time t . It consists of T ×T blocks, capturing the covariance between the variables at two time steps
t1 and t2, with a time lag |t2 − t1|. Therefore, each covariance block has a size N ×N , for each pair of variables

between the two time steps.

where αt ,βt ,ξt ,ζt ∈ [0,1] are scalar update coefficients. These coefficients account for
both stationary ( αt = t/(t +T ), βt = ζt = T /(t +T ), ξt = (t −T )/t ) and non-stationary
( αt = ξt = 1−γ, βt = ζt = γ ) settings, where an additional parameter γ ∈ [0,1] controls
the contributions of x̃t+T to the previous estimates.

To gain a better understanding of how the extended covariance matrix is updated,
let us consider a setting with N = 4 time series variables and a temporal window size
T = 3. As a new extended data sample becomes available at time t , Figures 4.3a-4.3c
illustrate how different relationships contribute to the updates of different blocks of the
extended covariance matrix. In Figure 4.3a, for the lag-0 case, only spatial relationships
between variables within the same time step are present, updating the covariance blocks
on the diagonal. In Figure 4.3b, the relationships between variables at consecutive time
steps are used to update the lag-one covariance terms, reflected by the off-diagonal Ĉ1

blocks in the extended covariance matrix. Finally, in Figure 4.3c, relationships between
variables located two time steps apart update the Ĉ2 off-diagonal blocks in the corners
of the matrix.

Depending on the target task, the extended sample covariance matrix can be pro-
cessed differently: for tasks like anomaly detection or data imputation, bidirectional spa-
tiotemporal dependencies may be desirable; however, for single-step forecasting, we opt
to retain only the temporal relationships flowing backward in time. As shown in Figure
4.4, we zero-out the blocks below the diagonal, which, in our formulation of the prob-
lem, correspond to edges from previous to more recent time steps, therefore effectively
disabling the forward-looking temporal connections. First, as we will discuss in Section
4.2.2, this structure creates nested temporal neighborhoods, allowing our model to focus
on more recent time steps and incrementally enrich the embeddings with earlier infor-
mation. Furthermore, this approach significantly improves the computational efficiency
of processing the extended sample covariance matrix, since it zeroes out T × (T −1)/2 of
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(a) Update of Lag-Zero Covariance Blocks

(b) Update of Lag-1 Covariance Blocks

(c) Update of Lag-2 Covariance Blocks

Figure 4.3: A visualization of the updates of the extended sample covariance matrix in a setting with N = 4
variables and a temporal window size T = 3. The updated covariance blocks with each lagged connection are

highlighted with green. For the lag-1 and lag-2 covariance block updates, we only draw the relevant
relationships for the green node at t −1 and t −2 respectively.

its T ×T blocks.
The presence of spurious covariance terms and the substantial computational over-

head are two key challenges associated with the extended covariance matrix. As the
number of variables N and the temporal window size T increase, the dimensionality of
the extended covariance matrix grows quadratically with each of them, leading to scala-
bility issues in both memory and computation. At the same time, the finite data sample
estimate of the extended covariance matrix may contain spurious or noisy correlations,
especially in high-dimensional settings with limited data. These entries introduce mis-
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Figure 4.4: A visualization of the graph structure of the block upper triangular extended covariance matrix in a
setting with N = 4 variables and a temporal window size T = 3. Spatial connections are bidirectional, while

temporal connections are unidirectional towards the past. Each color represents a different temporal
neighborhood, starting from time step t and incrementally incorporating each of the previous time steps. For
the lag-1 and lag-2 temporal connections, we only draw the relevant edges originating from the green nodes

and leading to the red and blue ones.

leading dependencies into the graph structure and negatively impact the quality of the
produced embeddings. To address these issues, assuming that the true extended co-
variance matrix is sparse, we adapt two thresholding-based sparsification methods from
[30] to our setting. This sparsification approach reduces the computational overhead
and aims to prune spurious correlations, thus helping the model focus on meaningful
spatiotemporal relationships.

The first approach is hard thresholding, where we remove the weaker entries of the
extended sample covariance matrix. To achieve this in the stationary setting, we apply a
threshold that decreases over time (since we process more data and get a more accurate
estimate of the extended sample covariance matrix). All entries of the matrix with an
absolute value below this threshold are set to zero, effectively pruning the weaker cor-
relations. This technique has been shown to be especially effective in high-dimensional
low-data settings [10].

Definition 1 (Hard Thresholding). Given the extended sample covariance matrix ˆ̃C and a

coefficient τ> 0, the hard thresholding function is η( ˆ̃C)i j = ˆ̃ci j if
∣∣ ˆ̃ci j

∣∣≥ τ
√

T
t , 0 otherwise.

Alternatively, while hard thresholding applies a strict threshold and keeps the remain-
ing entries intact, soft thresholding reduces the magnitude of these remaining entries by
subtracting a value equivalent to the current threshold from all of them. This technique
often leads to more reliable covariance estimates and can be especially effective in set-
tings where noise is expected to affect the whole matrix [41].
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Definition 2 (Soft Thresholding). Given the extended sample covariance matrix ˆ̃C and a

coefficient τ> 0, we define the soft thresholding function as η( ˆ̃C)i j = ˆ̃ci j − sign( ˆ̃ci j )τ
√

T
t if∣∣ ˆ̃ci j

∣∣≥ τ
√

T
t , 0 otherwise.

In both these thresholding functions, we have incorporated the time window T inversely
proportional to time variable t to account for the estimate updates every T time steps
and, hence, assume statistical independence among the extended observations x̃t . We
elaborate more on this assumption in Section 4.3, where we discuss the stability of L-
STVFs and, subsequently, L-STVNNs under perturbations in the estimate of the extended
covariance matrix.

4.2.2. LAGGED SPATIOTEMPORAL COVARIANCE NEURAL NETWORKS
The LVNN architecture is inspired by the STVNN architecture in [31] and the VNN ar-
chitecure in [126]. The module we propose is depicted in Figure 4.1. It can jointly learn

spatiotemporal patterns from multivariate time series data by leveraging ˆ̃Ct as an induc-
tive bias, resulting in a set of representations for each variable across the time window T
of the extended data input x̃t . A key notion for developing the LVNN architecture is the
Lagged spatiotemporal coVariance Filter (LVF), a polynomial in the extended covariance

matrix ˆ̃Ct .

Definition 3 (Lagged spatiotemporal coVariance Filter (LVF)). The input-output rela-
tion of an LVF of order K is defined as

zt := H( ˆ̃Ct , x̃t ) =
K∑

k=0
hk

ˆ̃Ck
t x̃t (4.5)

where hk are the filter parameters.

The formulation of LVF is analogous to that of the standard graph convoloutional fil-
ters [72]. The spatiotemporal propagation depth of the filter is controlled by the order K ,
leading to a linear combination of signal values that lie at most K hops away in extended

covariance graph ˆ̃Ct . It should be noted that LVF is inherently agnostic to the choice of
the time window T , allowing it to seamlessly operate on extended input structures of
varying lengths without modification to its core architecture.

The LVF fundamentally differs from the spatiotemporal coVariance filter in [31] in
how it models temporal interactions. The LVF leverages the extended sample covariance

matrix ˆ̃Ct , including cross-temporal covariances up to lag T −1, to jointly encode both
spatial and temporal relationships. This formulation allows LVF to process spatiotempo-
ral dependencies with a single graph filtering step, capturing direct interactions between
variables across both space and time dimensions and leading to greater parameter effi-
ciency. The cross-temporal interactions often contain important information about the



4

40 4. METHODOLOGY

(a) Full Extended Covariance Matrix (b) Block Upper Triangular Extended Covariance Matrix

Figure 4.5: The output embeddings of an LVF of order 1, where the input is an extended data input of temporal
window T , with the full extended covariance matrix and the corresponding block upper triangular matrix.

underlying dynamics of the multivariate time series that can be used to improve their
modeling. On the contrary, in the STVF setting, a bank of T independent spatial fil-
ters, each operating on a lagged input xt−t ′ with t ′ = 0,1, ...,T −1 using the same sample
lag-zero covariance matrix Ĉt , is followed by a summation of the produced embeddings
across time to capture temporal interactions. These independent filter banks for each lag
offer greater flexibility in capturing lag-specific dynamics and combining them. More-
over, STVF processes a single covariance matrix of size N ×N , while the LVF handles an
extended covariance matrix of size N T ×N T .

Figure 4.5a illustrates the output of an LVF of order 1 applied to the full extended
sample covariance matrix, where the input consists of an extended data sample with
temporal window T . Representing the underlying graph structure through the full ex-
tended covariance matrix induces a fully connected graph over both variables and time
steps. In this configuration, the filter aggregates information across the entire temporal
window T , with the contribution of each variable at each time step modulated solely by
the corresponding covariance term. Consequently, the LVF is unable to isolate the influ-
ence of specific time lags and becomes highly sensitive to the accuracy of the estimated
covariance structure. Figure 4.5b illustrates the output of the LVF of order 1 applied to
the block upper triangular of the extended sample covariance matrix, as described in
Section 4.2.1. This setup naturally induces nested temporal neighborhoods, enabling
the model to distinguish and emphasize specific time windows. For example, the em-
beddings at time t are computed using lag-zero covariance terms and the signal values
at time t (pink area), while the embeddings at time t −1 incorporate both lag-one and
lag-zero covariance terms, as well as the signal values at times t and t −1, respectively
(green area). Moreover, we observe that the first set of embeddings focuses on the most
recent time step and the pertinent spatial covariance terms, while each subsequent set
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of embeddings increases the temporal window towards the past. This shifts the focus of
the LVF to the more recent time steps and allows it to construct embeddings without the
potentially misleading effect of past information. By modifying the structure of the co-
variance matrix over which the LVF operates, this approach enhances the expressiveness
of the resulting representations, enabling the model to capture patterns over temporal
windows of increasing length.

In the spectral domain, assuming the eigendecomposition ˆ̃Ct = V̂Λ̂V̂⊤ of the ex-
tended covariance matrix, we can compute the graph Fourier transform of the LVF out-
put z̄t as:

z̄t = V̂⊤zt =
K∑

k=0
hkΛ̂

k
V̂⊤x̃t (4.6)

which holds from the orthonormality of the eigenvectors. In accordance with the spec-
tral analysis of graph convolutional filters, we can further define the frequency response
of LVF for each component i as:

[z̄t ]i = h(λ̂i )[x̃t ]i . (4.7)

This shows that the LVF processes the extended time series data by amplifying or atten-
uating their principal components. Taking into account the result from [126, Theorem
1], Equation (4.7) shows that there exist filterbanks of narrowband LVFs that enable the
recovery of the TPCA transformation. In contrast to STVF in [31], by employing the ex-

tended covariance matrix ˆ̃Ct , the LVF naturally aligns with the formulation of TPCA and
establishes a direct connection with it.

Given the LVF, we can now introduce the LVNN architecture.

Definition 4 (Lagged spatiotemporal coVariance Neural Network (LVNN)). The LVNN is
a layered architecture where each layer l = 1, ...,L comprises a LVF nested into a pointwise
nonlinearity σ(·), i.e.,

zl
t =σ(Hl ( ˆ̃Ct ,hl ,zl−1

t )) =σ(
K∑

k=0
hl

k
ˆ̃Ck

t zl−1
t ), for l = 1, ...,L (4.8)

with input z0
t = x̃t .

In principle, the architecture of LVNNs is similar to the architecture of graph neural

networks with the extended covariance matrix ˆ̃Ct as GSO. The inter-layered activation
functions increase the expressiveness of LVNNs beyond the linear mappings of LVFs,
allowing them to learn joint, non-linear, spatiotemporal representations of the mul-
tivariate time series. The output of the last layer constitutes the output of the LVNN

zL
t :=Φ(x̃t , ˆ̃Ct ; h), and comprises the final learned set of embeddings. The learnable pa-

rameters h = {
hl

k

}
span all filter coefficients across all layers and are of order O((K +1)L).

Further, we can enhance the representation capabilities of LVNNs by extending each
layer with parallel filter banks [71], able to handle multiple parallel inputs and outputs.
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Specifically, at a layer l , a filterbank of Fi n ×Fout filters processes Fi n input features and
transforms them into Fout output features as:

[zl
t ] f =σ(

Fi n∑
g=1

Hl ( ˆ̃Ct ,h,zl−1
t ,g )), for f = 1, ...,Fout , l = 1, ...,L, (4.9)

where zl−1
t ,g refers to the g -th input feature of the embeddings of the l-th layer.

Online learning. The LVNN is designed to operate with streaming data and adapt to dis-
tribution shifts by recursively updating the filter parameters in an online manner. Specif-
ically, with a slight abuse of notation, let ht denote the concatenation of all coefficients
hl

k for each layer l and order k at time t . Then, at time t , as a new data sample xt be-
comes available, the extended data sample x̃t is constructed and, after the update of the
covariance matrix, the model parameters are updated as:

ht+1 = ht −η∇tL(Φ(x̃t , ˆ̃Ct ; ht )), (4.10)

where η> 0 is the learning rate, and L(·) is the task-specific loss function.

Computational complexity. According to Equation 4.9, each LVNN layer processes an
input of size N T with an extended covariance matrix of size N T ×N T , resulting in a com-
putational complexity of the order O(N 2T 2K Fi nFout ). The term N 2T 2, which originates
from the size of the extended covariance matrix, degrades the model’s performance with
large datasets, in terms of both number of variables and long temporal memory. How-
ever, practical implementations rely on sparse estimates of large covariance matrices,
via sparsification techniques like the ones we discussed in 4.2.1, reducing the computa-
tional complexity to O(|E |K Fi nFout ), where |E | is the number of non-zero entries in the
sparse extended covariance matrix.

4.3. STABILITY ANALYSIS
In a data streaming setting, the LVNN operates on an extended sample covariance ma-

trix ˆ̃Ct , which is estimated from finite data up to time t . This perturbation in the ex-
tended covariance matrix results in a subsequent perturbation in the embeddings w.r.t.
an LVNN trained with the true extended covariance matrix C̃. Moreover, the model pa-
rameters ht are updated online, which requires a sub-optimality regret-like analysis w.r.t.
the optimal parameters h∗ over the complete dataset. Here, we consider the robustness
of LVNN to both these sources of perturbation, which we refer to as covariance uncer-
tainty error and parameter sub-optimality error respectively.

The subsequent analysis is formulated under the assumption of stationary time se-
ries, where the true extended covariance matrix does not change over time and con-
vergence is feasible. We also consider an extended data sample of time length T every
T time steps. This ensures that there is no overlapping between consecutive extended
data samples, and, therefore, we can assume they are statistically independent. Further-
more, we adjust the following assumptions from [31] to our setting, which we will use
throughout our analysis:
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Assumption 1. The frequency response h(λ) of a LVF is Lipschitz. That is, there exists a
constant P > 0 such that: ∣∣h(λi )−h(λ j )

∣∣≤ P
∣∣λi −λ j

∣∣ , (4.11)

for each pair of distinct eigenvalues (λi ,λ j ) of the extended covariance matrix C̃.

Assumption 2. [138, Theorem 5.6.1] For an extended multivariate time series x̃t with ex-
tended covariance matrix C̃ the following holds:

P

(
∥x̃t∥ ≤G

√
E[∥x̃t∥2]

)
≥ 1−δ, (4.12)

where G ≥ 1 is a constant, δ≈ 0, and ∥·∥ is the l2-norm.

Assumption 3. [100, Theorem 4.1] Given the frequency response h(λ) of a LVF, the eigen-

values {λi }N T−1
i=0 and

{
λ̂i

}N T−1
i=0 of the true and extended sample covariance matrix, respec-

tively, satisfy:

sign(λi −λ j )2λ̂i > sign(λi −λ j )(λi +λ j ), (4.13)

for each pair of distinct eigenvalues (λi ,λ j ) of the extended covariance matrix C̃.

The role of each of these assumptions is analogous to that for the stability analysis of
STVNN in [31, Section 5.1]. As. 1 limits the discriminability of LVF by upper bounding the
change rate of its frequency response with constant P . As. 2 pertains to the variance of
the distribution of the extended multivariate data, with higher values of G corresponding
to higher variance. As. 3 addresses the approximation error of the extended sample
covariance eigenvalues w.r.t the ones of the true extended covariance matrix. It holds
for each eigenvalue pair (λi ,λ j ) with probability at least 1−2k2

i /(N
∣∣λi −λ j

∣∣), where ki =
(E

[∥∥x̃t x̃⊤t vi
∥∥2

]
−λ2

i )1/2 is related to the kurtosis of the extended data distribution for each

eigenvalue-eigenvector pair (λi ,vi ) of the extended covariance matrix.

4.3.1. STABILITY OF LAGGED SPATIOTEMPORAL COVARIANCE FILTER

We begin by establishing the stability of LVF, as defined in (4.5). This constitutes a paramount
component of this work, as it is essential for the stability analysis of LVNN and allows the
comparison with STVNN [31] and TPCA [78] on a theoretical basis.

Theorem 1. Consider a multivariate time series xt ∈RN , define x̃t ∈RN×T as an extended
representation of xt from T consecutive time steps with an underlying extended covariance
matrix C̃ and let the extended sample covariance matrix estimated until time step t be
ˆ̃Ct . Additionally, let the instances satisfy w.l.o.g. ∥x̃t∥ ≤ 1, let assumptions 1-3 hold, and
let the learning rate η > 0 be small enough to guarantee convergence. Denote also the
filter parameters optimized over the complete dataset by h∗ and those optimized online
until time step t using the online update in (4.10) by ht . Then, the following holds with
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probability at least (1−e−ϵ)(1−2e−u):∥∥∥H( ˆ̃Ct ,ht , x̃t )−H(C̃,h∗, x̃t )
∥∥∥≤

1p
t

PT 3/2N
(
kmaxeϵ/2 +QG

∥∥C̃
∥∥√

log(N T )+u
)

︸ ︷︷ ︸
covariance uncertainty

+ T ∥h∗∥2

2ηt︸ ︷︷ ︸
parameter sub-optimality

+ O
(

1

t

)
,

(4.14)

where Q is an absolute constant, kmax = max j k j , and k j = (E
[∥∥x̃t x̃⊤t v j

∥∥2
]
−λ2

j )1/2 is re-

lated to the kurtosis of the data distribution for each eigenvalue-eigenvector pair (λ j ,v j )
of the extended covariance matrix. Here, ϵ,u > 0 can be arbitrarily large and ∥·∥ denotes
the l2-norm for vectors and the spectral norm for matrices.

Proof. See Appendix A.1.
The result highlights the effect of the online updates in the extended covariance ma-

trix and the parameters on the stability of LVF. For comparison, we report the stability
bound of STVF [31, Theorem 1]:∥∥H(Ĉt ,ht ,xT :t )−H(C,h∗,xT :t )

∥∥≤
1p

t
PT N

(
kmaxeϵ/2 +QG ∥C∥

√
logN +u

)
︸ ︷︷ ︸

covariance uncertainty

+ ∥h∗∥2

2ηt︸ ︷︷ ︸
parameter sub-optimality

+ O
(

1

t

)
, (4.15)

With respect to this upper bound in (4.15) and our result in (4.14), we make the following
observations:

Number of time samples. Focusing on the covariance uncertainty term in (4.14), we
observe that it decreases with a rate O(1/

p
t ). Given that the parameter sub-optimality

term decreases with a rate of O(1/t ) (along with the final term of our upper bound), we
deduce that the scale factor of the upper bound is mainly determined by the covariance
uncertainty term. The upper bound of STVF in (4.15) showcases the same behavior.

Temporal window size. As expected, a larger time window T leads to a lower stability for
the LVF. As the extended covariance matrix grows quadratically with T , there are more el-
ements that need to be estimated and, hence, an increased uncertainty in the extended
covariance estimation. With respect to the STVF upper bound in (4.15), we first focus on
the covariance uncertainty term. Besides the spectral norm of the extended covariance
matrix

∥∥C̃
∥∥, which replaces the spectral norm of the lag-zero covariance matrix ∥C∥, the

main differences between the two bounds are w.r.t to the temporal window T . Specif-
ically, we observe the LVF covariance uncertainty bound depends on T 3/2, in contrast
to T for STVF. This additional T 1/2 factor originates from our update rate every T time
steps, to ensure statistical independence. Moreover, having N T nodes in our graph rep-
resentation leads to T being incorporated into [138, Theorem 5.6.1] and, consequently,
to the factor

√
log(N T )+u instead of

√
logN +u. As a result, the stability of LVF is more
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severely affected as T increases w.r.t. the stability of STVF. Finally, regarding the param-
eter sub-optimality term, we observe an additional T factor which again originates from
our sampling rate assumption, however it does not affect the filter bound as much as the
covariance uncertainty term.

Block upper triangular. We aim to establish a similar upper stability bound for the block

upper triangular extended sample covariance matrix (which we denote as ˆ̃U). The pa-
rameter sub-optimality error remains the same, however directly deriving a covariance
uncertainty error bound involving the spectral norm is challenging. To address this, we
perform a similar analysis of the covariance uncertainty error for the block upper trian-
gular matrix, and derive the following upper bound:∥∥∥H( ˆ̃Ut ,h∗, x̃t )−H(Ũ,h∗, x̃t )

∥∥∥≤ P
p

N T ∥EU∥ (1+
p

N T ) + O(∥EU∥2). (4.16)

The proof for this upper bound is included in Appendix A.2 Then, we leverage two key
properties from norm equivalences. First, we use the fact that the spectral norm of any
matrix is upper bounded by the corresponding Frobenius norm, i.e., ∥A∥ ≤ ∥A∥F . Sec-
ond, a matrix A′, that is obtained by zeroing out entries of a matrix A, cannot have a
larger Frobenius norm, i.e.,

∥∥A′∥∥
F ≤ ∥A∥F . Using the first property on the estimation er-

ror of the block upper triangular matrix and the second property on its relationship with
the estimation error of the full extended covariance matrix, we derive:

∥EU∥ ≤ ∥E∥F (4.17)

Adjusting [23, Theorem 4] to our setting, and taking into account that the extended sam-
ple covariance matrix is dense and our sampling rate is T , we get:

∥E∥F ≤QT

√
N

t
, (4.18)

where Q is a constant. Using the inequalities 4.17 and 4.18 in 4.16, and ignoring the last
error term O(∥E∥2) since we consider that it becomes too small after a few training steps
(t ≫ 0), we derive:∥∥∥H( ˆ̃Ut ,h∗, x̃t )−H(Ũ,h∗, x̃t )

∥∥∥≤ 1p
t

QPT 3/2N (1+
p

N T ). (4.19)

We observe that this bound scales quadratically with T , meaning that using the block
upper triangular matrix leads to lower stability than using the full extended covariance
matrix. However, this bound also decreases with a rate O(1/

p
t ), as we process more

extended data samples of the time series.

4.3.2. STABILITY OF LVF WITH THRESHOLDING SPARSIFICATION
Then, we extend the stability analysis of LVF by incorporating hard-thresholding sparsi-
fication, as defined in Section 4.2.1. Here, the optimal parameters h∗ are optimized over
the complete dataset using the hard-thresholded true extended covariance matrix. As
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a result, this technique will not affect the parameter sub-optimality error, but only the
error caused by the extended covariance estimation.

Theorem 2. Let the true extended covariance C̃ belong to the sparse class C = {C̃ : c̃i i ≤
M ,

∑N T
j=1 1[c̃i j ̸= 0] ≤ c0,∀} where M > 0 is a constant, 1(·) is the indicator function, and

c0 is the maximum number of non-zero elements in each row of C̃. Consider a hard-

thresholded extended sample covariance matrix ˆ̃Ct following the definition in Def. 1 with
τ= M ′pN T and M ′ large enough. With a high probability, it holds that:∥∥∥H( ˆ̃Ct ,ht , x̃t )−H(C̃,h∗, x̃t )

∥∥∥≤
1p

t
Pc0T

√
N log(N T )

(
1+

p
N T

)
︸ ︷︷ ︸

covariance uncertainty

+ T ∥h∗∥2

2ηt︸ ︷︷ ︸
parameter sub-optimality

+ O
(

1

t

)
, (4.20)

Proof. See Appendix A.2.

Comparison with LVF bound. Comparing the result in (4.20) with the previous one for
the standard LVF in (4.14), we notice that the covariance uncertainty term decreases
again with a rate of O(1/

p
t ), dominating the stability bound for large t . Then, we ob-

serve that the role of time window T and number of variables N remains the same across
the thresholded and non-thresholded LVF. Specifically, expanding the covariance uncer-
tainty terms of both filters and focusing only on variables T and N , we see that the most
intensive term would contain T 3/2N

√
log(N T ) in both cases. However, the main ad-

vantage of the hard-thresholded LVF is the replacement of the spectral norm of the ex-
tended covariance matrix

∥∥C̃
∥∥ with c0, the maximum number of non-zero elements in

each of its rows. Working with the assumption that the true extended covariance matrix
is sparse, we have c0 ≪ ∥∥C̃

∥∥, therefore hard thresholding improves the stability of LVF.
This is analogous to the observation in [30], where the stability of a hard-thresholded
VNN is compared to that of a dense VNN.

Then, in a similar manner, we proceed with the stability analysis of LVF with soft-
thresholding sparsification, as defined in Section 4.2.1. Soft thresholding has been found
to provide more reliable covariance estimates when the underlying data follows the spiked
covariance estimates [41]. This means that extended data points follow:

x̃i =
r∑

q=1

√
βq uq,i vq +zi , (4.21)

where vi , ...,vr ∈RN T are orthonormal vectors with exactly c0 non-zero entries of magni-
tudes with a lower bound θ/c0 for some constant θ > 0, ug ,i ∼N (0,1) and zi ∼N (0,I)
are i.i.d., and βq ∈ R+ is a measure of the signal-to-noise ratio. Again, we re-define
the optimal parameters h∗ as those optimized over the complete dataset with the soft-
thresholded extended covariance matrix.
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Theorem 3. Consider a soft-thresholded estimate of the extended covariance matrix ˆ̃Ct

as per Def. 2, with τ = M ′
√

log(N T /c2
0 ) and M ′, C two large enough constants. Let the

eigenvalues of the true extended covariance matrix {λi }N T−1
i=0 be all distinct. Then, the

following holds with high probability:∥∥∥H( ˆ̃Ct ,ht , x̃t )−H(C̃,h∗, x̃t )
∥∥∥≤

1p
t

PT
p

NC c0max(1,λmax)

√
max(log

N T

c2
0

,1)
(
1+

p
N T

)
︸ ︷︷ ︸

covariance uncertainty

+ T ∥h∗∥2

2ηt︸ ︷︷ ︸
parameter sub-optimality

+ O
(

1

t

)
,

(4.22)

Proof. See Appendix A.3.

Comparison with hard-thresholded LVF bound. The main takeaways of the LVF with
soft thresholding, w.r.t. the stability of the standard LVF in (4.14), are the same as the
ones for the hard thresholding. Consequently, we focus on the comparison of the two
thresholded filters. Analogous to [30], we observe that soft thresholding provides bet-
ter stability than hard thresholding in low-data settings under spiked covariance, since
the hard-thresholded bound contains

√
log(N T ), while the soft-thresholded bound con-

tains the smaller term
√

log(N T )/c2
0 .

4.3.3. STABILITY OF LVNN
Finally, we extend the stability analysis w.r.t to the covariance uncertainty to a LVNN,
composed of L layers and F filterbanks per layer. We only account for the covariance
uncertainty error and not for the sub-optimality of the parameters, because the LVNN
function is highly non-convex and we cannot guarantee the convergence of the param-
eters.

Theorem 4. Consider a true extended covariance matrix C̃, a extended sample covari-

ance matrix ˆ̃Ct and a bank of LVF with frequency response terms |h(λ)| ≤ 1 and non-
linearity σ(·) such that |σ(α)−σ(b)| ≤ |a −b|. Given a generic βt , if the filters satisfy∥∥∥H( ˆ̃Ct ,h∗, x̃t ) − H(C̃t ,h∗, x̃t )

∥∥∥≤βt , then the LVNN satisfies:∥∥∥Φ( ˆ̃Ct ,h∗, x̃t )−Φ(C̃t ,h∗, x̃t )
∥∥∥≤ LF L−1βt . (4.23)

The proof follows directly from [47, Theorem 4], for a generic βt . In our case, βt is the
bound corresponding to the first term on the r.h.s. of (4.14), if we do not employ any
sparsification techniques on the extended sample covariance matrix, or to the first term
on the r.h.s. of (4.20) or (4.22), if we apply hard or soft thresholding sparsification respec-
tively. In any case, this bound decreases with the number of extended data samples with
rate O(1/

p
t ).
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Comparison with STVNN bound. The comparison between the bound in (4.23) and
that of STVNN in [31, Theorem 2] reduces to the comparison of their respective coVari-
ance filters. Since the bound of STVF grows linearly with T and the bound of LVF grows
super-linearly (specifically T 3/2

√
logT ), LVNN is less stable than STVNN w.r.t T . How-

ever, LVNN remains a more stable approach than a VNN model with the temporal values
as node features, which would have a stability bound of L(F T )L−1 [31]. Specifically, from
[126, Theorem 3], the bound of the VNN model would grow quadratically with T , w.r.t to
the number of layers, while the LVNN bound grows sub-quadratically.

Comparison with TPCA bound. Further, we compare the stability of LVNN with the sta-
bility of online TPCA w.r.t the uncertainties in the extended covariance matrix. It is easy
to show that the bound of online TPCA inversely depends on the smallest difference be-
tween eigenvalues of the covariance matrix, by working in a similar manner as in the
stability proof [31, Proposition 1] for online PCA. This eigenvalue difference causes in-
stabilities when these eigenvalues are close [80], by exploding the stability bound of on-
line TPCA. However, via As. 1, we diminish this effect with the Lipschitz constant, which
guarantees the output stability by limiting the filter’s discriminability. This shows that
LVNN shows improved stability compared to online TPCA, while the non-linear map-
pings of LVNN improve the discriminability of LVF and, hence, address this undesirable
effect of achieving improved stability.

4.4. CONCLUSION
To summarize, we introduced a novel architecture for multivariate time series mod-
eling, the Lagged spatiotemporal coVariance Neural Network (LVNN), which leverages
spatiotemporal convolutions with an online estimation of the extended covariance ma-
trix as inductive bias to represent these interactions. The extended covariance matrix
contains spatial and cross-temporal relationships between the time series with a lag
τ = 0,1, ...,T −1, allowing LVNN to directly capture dynamic spatiotemporal dependen-
cies with a single graph filtering operation. We demonstrated that this architecture en-
ables principled processing aligned with temporal PCA, while benefiting from the ro-
bustness and flexibility of graph-based convolutional methods. Furthermore, we theo-
retically established the stability of LVNN under perturbations in the extended covari-
ance and the online update of the parameters, positioning it between online TPCA and
STVNNs in terms of stability-performance trade-offs. In the next chapter, we empirically
evaluate LVNN across forecasting tasks and compare it to relevant baselines.



5
NUMERICAL EXPERIMENTS

In this chapter, we will present the numerical experiments and results carried out for
evaluating the performance of our proposed LVNN model. Initially, we detail the exper-
imental settings in Section 5.1, elaborating on the selected datasets and the design of
our experimental procedure. In Section 5.2, we present our experimental results, aim-
ing to practically confirm the stability of LVNN, benchmark its forecasting performance
against other baseline models, and examine the effects of thresholding sparsification on
the extended sample covariance matrix. Finally, in Section 5.3, we offer a discussion of
the results.

49
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(a) Temperature recordings at a station in Brest, France

(b) Extended covariance matrix

Figure 5.1: The time series of the temperature recordings on a specific station and the extended covariance
matrix over the complete Molene dataset up to a lag of 12 hours.

5.1. EXPERIMENTAL SETUP
In this section, we outline the main components of our experimental environment. First,
in Subsection 5.1.1, we introduce the 3 real-world datasets we are using in our exper-
iments and discuss their covariance dynamics and the data preprocessing and splits.
Then, in Subsection 5.1.2, we discuss the baseline models that we will compare the
LVNN against. In Subsection 5.1.3, we present the loss metrics we employ for evaluat-
ing our model’s performance. Afterwards, in Subsection 5.1.4, we describe the details of
the LVNN model evaluation pipeline and the hyperparameter search.

5.1.1. DATASETS

To evaluate our model, we consider three real-world datasets of different variable and
temporal sizes, resolutions, and dynamics. A brief overview of each follows here.
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MOLENE DATASET

The first dataset we consider in our work is the Molene dataset [56]. The original data
were collected as part of the Archipel Molene operation from the French national mete-
orological service in January 2014, containing three types of measurements (wind, tem-
perature, and air) for a number of weather stations in the area of Brest, France. Specifi-
cally, it contains 744 hourly measurements across N = 37 stations. Figure 5.1a shows the
hourly temperature measurements at a specific station.

In this work, we only consider the temperature measurements of the weather sta-
tions. This is the smallest dataset among the ones included in this work, in terms of total
observations per variable (station). As a result, we would expect that a strong prior, such
as an adjacency matrix based on station coordinates, would significantly aid learning.
However, in our streaming data setting, the size of the dataset would pose a challenge
for capturing the underlying dynamics with the extended sample covariance matrix.

Figure 5.1b depicts the extended covariance matrix for the complete Molene dataset
up to lags of 12 hours. First, we observe that the time series exhibit high positive covari-
ances for lags up to 4 hours. This indicates that the temperatures are strongly correlated
across nearby time steps in an hourly resolution, justified by the proximity of the sta-
tions (all located in the same geographical area) and the gradual changes in temperature
over time. Then, as the lags between the series increase up to 10 hours, the temperature
covariances across the stations tend to significantly decrease. This decay in covariance
suggests that the influence of past temperature values weakens over time.

EXCHANGE RATE DATASET

The second dataset we consider is the Exchange-Rate [156]. It contains the daily ex-
change rates of N = 8 countries’ currencies (Australia, UK, Canada, Switzerland, China,
Japan, New Zealand, and Singapore) against the US dollar. These exchange rates are
recorded for 7588 open days, from 1990 to 2016. Because of the nature of exchange rates,
the corresponding time series do not often exhibit abrupt changes, but periods of high
volatility tend to cluster together. Similar to other financial time series, they are typically
non-stationary. Figure 5.2a shows the daily fluctuations of the exchange rate of the Swiss
franc within this period.

Among the selected datasets, this is the smallest one in terms of variables (coun-
tries’ currencies) and significantly larger than Molene w.r.t the available observations
per variable. Consequently, we expect that there are enough data for accurately estimat-
ing the extended covariance matrix in the online setting. Moreover, the small number
of variables means that there are in general less cross-temporal covariance terms to be
estimated and, hence, a smaller risk of incorporating spurious correlations.

Figure 5.2b depicts the extended covariance matrix for the complete exchange rate
dataset up to lags of 7 days. Notably, the covariance blocks remain remarkably consistent
across all lags, indicating that the statistical relationship between exchange rate values is
largely invariant to temporal differences. This homogeneity reflects the smooth tempo-
ral dynamics of financial markets, where dependencies evolve slowly and are less likely
to exhibit sudden changes across short time lags. Moreover, in comparison to the Mo-
lene extended covariance matrix in Figure 5.1b, the covariance values within the same
temporal block are more distinct, ranging from highly positive (close to 1) to slightly neg-
ative (close to −0.2).
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(a) Swiss franc exchange rate

(b) Extended covariance matrix

Figure 5.2: The time series of the daily exchange rate of the Swiss franc against the US dollar from 1990 to 2016
and the extended covariance matrix over the complete exchange rate dataset up to a lag of 7 days.

NOAA DATASET

The third dataset we consider is the NOAA dataset [4]. This dataset has been issued
by the National Oceanic and Atmospheric Administration as part of an effort led by the
World Meteorological Organization to compute climatological standard normals every
30 years. It contains 8579 hourly temperature measurements across N = 109 weather
stations in the United States, recorded over the year 2010. We present two plots of the
temperature measurements of a specific station, to gain a better insight into the dynam-
ics of the time series. Figure 5.3a shows the hourly temperature recordings of the station
across the year, where we can observe seasonal temperature patterns, with a rise during
the summer months and a decline during the winter months. Then, Figure 5.3b shows
the temperature measurements for the first month of 2010, where we can observe daily
cyclical patterns of temperature fluctuations across the 31 days of January.

Among the selected datasets, the NOAA dataset is the largest both in terms of vari-
ables (stations) and total observations per variable. Similar to the Exchange-Rate dataset,
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(a) Temperature recordings at a US station across a year

(b) Temperature recordings at a US station across a month

(c) Extended covariance matrix

Figure 5.3: The time series of the temperature recordings on a specific US station, across the year and the first
month of 2010, and the extended covariance matrix over the complete NOAA dataset up to a lag of 31 days.
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the number of observations seems sufficient for accurately estimating the extended co-
variance matrix in an streaming fashion. However, the large number of variables means
that there is probably an increased presence of spurious cross-temporal covariance terms,
which might negatively impact the model’s forecasting performance.

Figure 5.3c depicts the extended covariance matrix for the complete NOAA dataset
up to lags of 31 days. Initially, the time series exhibit very high positive covariance up to
time lags of 5 days, which is subsequently weakened up to time lags of 21 days. This be-
havior agrees with that of the Molene dataset, despite the different resolutions between
them. Afterwards, we observe another period of very high positive covariance among
the time series for time lags between 22 and 26 days, which is indicative of long-term
temperature patterns.

DATA PRE-PROCESSING AND SPLIT

In the data preprocessing stage, we begin by loading the raw time series data and then
apply standard normalization to ensure consistent scaling across the series. Specifically,
we fit a Standard Scaler on the complete datasets to compute the mean and standard de-
viation, and then use it to transform the data. This is crucial for training the LVNN model
and our baselines, as it ensures that all variables contribute equally during optimization
by preventing those with larger numerical ranges from dominating the learning process
and improving convergence. After normalization, for the LVNN model, we reshape the
data by concatenating successive time steps into extended data samples based on the
pre-defined temporal window T . This converts the series into overlapping sequences
that will serve as input to the LVNN, where each sample contains T consecutive time
steps. Despite assuming a sampling rate T in our theoretical analysis in Chapter 4 for
stationary settings, the non-stationary nature of our real-world datasets allows us to con-
sider an extended data sample at each time step. Finally, we also locate and construct
the target forecasting values, based on the forecasting horizon τ.

Figure 5.4: An example of the data split on the Swiss franc exchange rate. The first 20% of the time series is
used for training, the subsequent 10% is used for validation, and the last 70% is used for testing.

For the data split, we allocate 20% of the dataset for training, 10% for validation, and
the remaining 70% for testing, hence simulating a streaming data setting. Since we are
working with time series data, it is essential to preserve the temporal order during the
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split to avoid data leakage and to ensure that the model is tested on actually unseen
future observations. Maintaining the chronological structure is also essential because
of the changing dynamics and distributional shifts of the selected datasets. It allows the
model to learn how to adapt to evolving patterns and changing statistical properties over
time, which is a key aspect of online learning in non-stationary environments. Figure 5.4
shows an example of this data split on the time series of the Swiss franc exchange rate.

5.1.2. BASELINE MODELS
To contextualize the performance of LVNN, we benchmark it against various baselines
on single-step forecasting with different forecasting horizons, using the aforementioned
datasets. Below, we group these models according to the classification provided in Chap-
ter 3.

PCA-BASED METHODS

• TPCA [79]. This model initially processes the multivariate time series data with
temporal PCA to extract spatiotemporal features. These features are then passed
as input to an MLP for the forecasting task. Besides the comparison on single-step
forecasting in 5.2.2, we also compare the learned embeddings of TPCA with the
ones of LVNN in 5.2.1, in order to corroborate the stability of LVNN against TPCA.

SEQUENTIAL MODELS

• LSTM. This is a vector LSTM model that is trained online on the multivariate time
series. This comparison allows to showcase the importance of covariance net-
works as inductive biases for spatiotemporal relational learning.

COVARIANCE-BASED GNN METHODS

• VNN [126]. This is the original VNN model with the previous T time snapshots of
the multivariate time series being treated as node features. As a tabular covariance-
based GNN model that ignores temporal relationships, the comparison with this
model highlights the importance of explicitly learning these temporal dependen-
cies.

• VNNL (VNN-LSTM). This is a hybrid disjoint model, where a static VNN is followed
by a shared LSTM across the different time series. We compare the joint spatiotem-
poral learning module of LVNN with the distinct learning modules of VNNL, sepa-
rately handling the spatial and temporal dependencies.

• STVNN [31]. This is the original STVNN model, performing T independent spatial
convolutions with the lag-zero sample covariance matrix at the previous T time
snapshots and, then, summing the learned embeddings across time. The LVNN
replaces the temporal sum of STVNN by employing the extended sample covari-
ance matrix of the multivariate series, containing covariance terms at time lags
τ= 0,1, ...,T −1. Therefore, we aim to compare these two approaches, highlighting
the importance of including cross-temporal dependencies in the graph filtering
operation.
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5.1.3. EVALUATION METRICS
To evaluate the forecasting performance of LVNN and the baseline models, we use three
complementary metrics: Mean Squared Error (MSE), Mean Absolute Error (MAE), and
symmetric Mean Absolute Percentage Error (sMAPE) [120]. This combination allows us
to capture both the scale of absolute errors and the model’s behavior relative to the pre-
dicted and true values. These metrics provide a balanced perspective on accuracy, ro-
bustness, and interpretability, and are particularly suited for time series tasks.

• Mean Squared Error is a common metric that measures the average of the squared
differences between predicted and actual values. Formally, for a set of predictions
ŷ and corresponding true values y, the MSE is defined as:

MSE = 1

n

n∑
i=0

(ŷi −yi )2. (5.1)

By squaring the errors, MSE places greater weight on larger deviations, making it
particularly sensitive to outliers. Therefore, this differentiable loss function is a
more useful metric when large errors are especially undesirable.

• Mean Absolute Error calculates the average absolute difference between predicted
and actual values, providing a straightforward measure of prediction accuracy. It
is defined as:

MAE = 1

T

n∑
i=0

∣∣ŷi −yi
∣∣ . (5.2)

Unlike MSE, MAE treats all errors equally, regardless of their magnitude, making it
more robust to outliers. Moreover, it is easier to interpret as it is expressed in the
same units as the original data.

• Symmetric Mean Absolute Percentage Error is a scale-independent metric that
expresses the prediction error as a percentage of the average magnitude of actual
and predicted values. It is given by:

sMAPE = 100

n

n∑
i=0

∣∣ŷi −yi
∣∣

(
∣∣yi

∣∣+ ∣∣ŷi
∣∣)/2

. (5.3)

sMAPE addresses the limitations of traditional MAPE, particularly its instability
when actual values are near zero. By symmetrically normalizing the error, sMAPE
provides a more balanced and meaningful percentage error measure, especially
for time series data with varying scales.

In Section 5.2, we focus primarily on sMAPE. However, results for all three metrics
are provided in Appendix E for a more comprehensive evaluation of the model’s perfor-
mance.

5.1.4. EXPERIMENTAL DESIGN
The model evaluation pipeline begins with loading, preprocessing, and splitting the dataset
as described previously. All procedures of our framework (training, validation, and test-
ing) are conducted with a batch size of 1 to allow continuous updates and mimic an
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online learning setting. At each step, the extended sample covariance matrix ˆ̃Ct , operat-
ing as a GSO for the LVNN, is dynamically updated with the new available extended data

sample. During training, the principal eigenvalue of ˆ̃C tends to become large for some

of the datasets. To ensure numerical stability, we keep the scale of ˆ̃Ct consistent over

time by applying trace-normalization (therefore using ˆ̃Ct /trace( ˆ̃Ct )). We select MSE as
the training loss for backpropagation. After each epoch, we transition to the validation
phase of the model evaluation pipeline. The model with the best validation MAE across
all epochs is selected and used for testing. Before proceeding to testing, the GSO of the
selected model is re-initialized with the extended sample covariance matrix computed
from the combined training and validation data. This ensures that the model begins
testing with a comprehensive view of the prior dynamics of the time series.

Category Hyperparameter Search Space

Training
Learning rate {0.001,0.0001}

Online coefficient γ {0.01,0.05,0.1,0.3}
Optimizer Adam, SGD

Architecture

Number of layers {1,2,3}
Feature size per-layer {8,16,32,64,128,256}

Order of graph filters K {1,2,3,4}
Temporal memory T {2,3,5,8,12}

Table 5.1: A tabular description of the hyperparameter search for the numerical experiments.

To perform forecasting, we produce a weighted sum of the embeddings generated
by LVNN and, then, apply a 2-layer MLP on it. This allows us to draw a more direct
comparison with the STVNN model, which uses the same post-embeddings component
for single-step forecasting. We perform hyperparameter optimization for the LVNN and
the baseline models on each of the datasets in 5.1.1 and for three forecasting horizons
{1,3,5}. To achieve this, we conduct a hyperparameter search over a predefined search
space, allowing us to identify the most suitable configuration for our model. The full
set of hyperparameter values considered during the search is summarized in Table 5.1.
The LVNN and STVNN, among the baselines, are optimized over all the hyperparame-
ters presented in Table 5.1. For VNN and VNN-LSTM, we use the best corresponding
hyperparameter configuration of STVNN. For TPCA and LSTM, we use a fixed architec-
ture and only optimize the temporal memory T . All models are trained for 80 epochs on
the Molene dataset and for 40 epochs on the exchange rate and NOAA datasets. The se-
lected non-linearity is LeakyReLU with a negative slope of 0.1. The average performance
and standard deviation over 5 experiments are reported. For each dataset and forecast-
ing horizon, the best hyperparameter configuration for the LVNN and the baselines is
provided in Appendix C. All tests were performed with Pytorch v2.1.0, using a 13th Gen
Intel(R) Core(TM) i9-13900H CPU (2600 Mhz, 14 Cores, 20 Logical Processors).

5.2. RESULTS
This section presents the empirical results from the experiments conducted. The results
are naturally divided w.r.t the research questions they are aiming to answer. In Subsec-
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tion 5.2.1, we corroborate the stability of the LVNN when trained online with finite sam-
ples against TPCA. Then, in Subsection 5.2.2, we compare the forecasting performance
of LVNN against the baseline models. Finally, in Subsection 5.2.3, we evaluate the ef-
fect of hard and soft thresholding techniques on the performance of LVNN. The main
discussion on the results is provided in Section 5.3.

5.2.1. STABILITY ANALYSIS
Motivated by our theoretical analysis in Section 4.3, the aim of this experiment is to as-
sess the stability of the proposed LVNN model under varying temporal memory window
sizes T . Stability here refers to the robustness of LVNN to perturbations in the extended
covariance matrix and, consequently, in the learned embeddings, as discussed in Section
4.3. To evaluate stability, we compute the difference between the embeddings learned
with the online-estimated and the true extended covariance matrices.

Our first experiment is conducted in a stationary environment, consistent with the
setting of our theoretical analysis. To achieve this, we construct several synthetic sta-
tionary datasets. Initially, we sample observations zt ∼ N (0,C), where C is a fixed co-
variance matrix. We then construct the time series by enforcing temporal causality over

the sampled observations as xt =∑τ
t ′=0 ht ′zt−t ′ , where ht ′ = h′

t ′/
√∑

t h′
t and h′

t = e−t for

t = 0, ...,τ. We set τ = 9 for our experiments. Three synthetic datasets are generated,
each with covariance matrix C having different eigenvalue tail sizes (0.1,0.5,0.9), reflect-
ing differences in the kurtosis and eigenvalue closeness. A more detailed description of
the synthetic dataset generation process is provided in Appendix B. Each dataset is split
20/10/70 into training, validation, and test sets, respectively, and the LVNN is run with
different values of T ({2,5,10}). For our analysis, we consider the embedding difference
on the test set. During testing, LVNN parameters are updated online, and the embed-
dings are recorded at each time step. We then retain the final parameter set and, using
the true extended covariance matrix, compute the corresponding optimal embeddings.
Each experiment is repeated on 10 independently generated time series using the same
parameters, and the average results are reported.

Figure 5.5 shows the embedding differences of LVNN and TPCA across the test sets of
the synthetic stationary datasets. We observe that LVNN consistently outperforms TPCA
for all temporal memory window sizes T . This finding supports our theoretical stability
results, indicating that LVNN is more robust to finite sample perturbations in the ex-
tended covariance matrix than TPCA. It is also aligns with the conclusions of [126] and
[31], which highlight the enhanced stability of graph convolution methods over PCA-
based approaches. Furthermore, the stability gap between LVNN and TPCA becomes
more pronounced for datasets with heavier-tailed eigenvalue distributions, where eigen-
values are closer to each other and TPCA stability deteriorates. In contrast, LVNN main-
tains similar stability levels as the tail weight increases, illustrating its design trade-off -
reduced discriminability between close eigenvalues for increased stability - as described
in Assumption 1. Finally, examining LVNN’s performance as T increases, we find that
the model becomes increasingly unstable. This observation aligns with our theoretical
upper bound on stability from Equation (4.14), which grows sub-quadratically with T .

We next evaluate the stability of LVNN in non-stationary settings using the three real-
world datasets introduced in Section 5.1.1. Due to their non-stationarity, these datasets
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Figure 5.5: Embedding difference of the LVNN (i.e.,
∥∥∥Φ( ˆ̃Ct ,h∗, x̃t )−Φ(C̃t ,h∗, x̃t )

∥∥∥) and TPCA with estimated

and optimal covariance parameters on synthetic datasets for distinct temporal memory window sizes T and
covariance eigenvalues distribution tails.

exhibit time-varying covariance dynamics and lack a true extended covariance matrix.
Therefore, we use the extended covariance matrix computed over the entire dataset as
a proxy for the “true” structure. Again, we run LVNN using the same set of temporal
memory window sizes T , and analyze the embeddings on each dataset’s test set.

Figures 5.6a to 5.6c show the embedding differences for LVNN and TPCA across the
test sets of the three real-world datasets. In all cases, LVNN outperforms TPCA for every
temporal window size T , further corroborating the results from the stationary experi-
ments. We also find that larger T values generally lead to greater divergence between the
online-estimated and final covariance embeddings, and hence increased instability for
LVNN. However, this trend is less consistent and less pronounced than in the stationary
case. This is due to the assumption that the extended covariance matrix over the com-
plete dataset acts as a benchmark: the non-stationarity of the time series implies that not
all samples contribute towards learning the dynamics of this final matrix. This effect is
evident in the oscillatory embedding differences of LVNN across the test sets, in contrast
to the smoother behavior observed in Figure 5.5. For instance, in the final test samples
of the NOAA dataset (Figure 5.6c), where the time series behavior more closely matches
that of the final covariance matrix and there are less oscillations, we observe that T = 2
leads to a steady decrease in embeddings difference, T = 5 keeps it relatively constant,
and T = 10 increases it towards the end of the test set. Nonetheless, because the final
covariance matrix is only a proxy, these findings should be interpreted cautiously as in-
dicative of LVNN’s stability in non-stationary conditions.
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(a) Molene Dataset

(b) Exchange Rate Dataset

(c) NOAA Dataset

Figure 5.6: Embedding difference of LVNN (i.e.,
∥∥∥Φ( ˆ̃Ct ,h∗, x̃t )−Φ(C̃t ,h∗, x̃t )

∥∥∥) and TPCA with estimated and

"optimal" covariance and parameters on the selected real-world datasets for distinct observation windows T .
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5.2.2. SINGLE-STEP FORECASTING

The main goal of the following experiments is to assess the effectiveness of the learned
spatiotemporal embeddings by LVNN when applied to a downstream task, specifically
single-step forecasting. We conduct our experiments on the three real-world datasets
presented in Section 5.1.1, following the preprocessing steps and dataset splits provided
there. For each dataset, we report results over forecasting horizons of 1,3, and 5 time
steps using the baselines reported in Section 5.1.2. Performance is measured using the
MSE, MAE, and sMAPE loss metrics (Section 5.1.3) averaged over 5 runs. However, be-
cause the relative performance of the models with each of these loss metrics is similar,
we only discuss the sMAPE loss metric in this Section and provide the full results in Ap-
pendix E. We evaluate two versions of our proposed model. The first uses the full ex-
tended sample covariance matrix as a graph representation matrix and is denoted by
LVNN. The second uses the block upper triangular extended sample covariance matrix
and is denoted by T-LVNN.

Table 5.2 provides the forecasting results on the Molene dataset across three forecast-
ing horizons. Among all the baselines, STVNN achieves the best results across all fore-
casting horizons, reflecting its ability to effectively capture meaningful spatiotemporal
patterns. Both versions of our proposed model, using the full extended sample covari-
ance matrix and the block upper triangular matrix, match or outperform the baselines
across all horizons. In particular, LVNN consistently outperforms TPCA and achieves
comparable or better results than LSTM, VNN, and VNNL, but its performance remains
slightly weaker than than of STVNN across all settings. To interpret this performance
gap, we consider the characteristics of the Molene dataset, which include 37 time series
variables but a limited number of training observations. This makes accurate estima-
tion of the covariance terms challenging, potentially introducing noise that LVNN is not
sufficiently equipped to handle by design. As discussed in Section 4.2.2, LVNN lacks the
flexibility to modulate the influence of these noisy covariance terms in the learned em-
beddings. In contrast, STVNN operates solely on the lag-zero sample covariance matrix
and processes the graph signal at each time step independently, making it more robust to
these challenges. Notably, T-LVNN performs comparably or slightly better than STVNN,
demonstrating that the block upper triangular matrix improves LVNN’s expressivity by
constructing increasing temporal neighborhoods for each set of embeddings, moving
backwards in time. The performance boost over STVNN may also be attributed to the
better utilization of the cross-temporal covariance terms, which offer additional infor-
mation for modeling the time series.

Table 5.3 presents the single-step forecasting results on the Exchange Rate dataset
across forecasting horizons 1,3, and 5. Among all baselines, STVNN, VNN, and VNNL
perform similarly, outperforming LSTM and TPCA by a large margin. Our LVNN model,
using the full extended sample covariance matrix, achieves substantially better perfor-
mance than all baselines across all horizons, while T-LVNN with the block upper triangu-
lar matrix consistently yields the best results overall. This performance difference can be
partially interpreted by the larger number of training observations and the smaller num-
ber of time series variables (N = 8) in the Exchanger Rate dataset, which allows for a more
accurate estimation of the extended covariance matrix with less noise in the covariance
terms. As a result, both LVNN and T-LVNN are able to effectively utilize the information
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Forecasting Horizon
Model 1 3 5
TPCA 0.37±0.00 0.55±0.00 0.66±0.00

LSTM 0.28±0.00 0.46±0.01 0.59±0.01

VNN 0.20±0.00 0.41±0.01 0.63±0.01

VNNL 0.20±0.00 0.40±0.00 0.60±0.00

STVNN 0.19±0.01 0.39±0.01 0.58±0.01

LVNN (ours) 0.20±0.00 0.41±0.01 0.60±0.01

T-LVNN (ours) 0.18±0.00 0.38±0.00 0.58±0.01

Table 5.2: Results for single-step forecasting on the test-split of the Molene dataset. All results are averaged
over 5 runs.

provided by the lagged covariances. The slight edge of T-LVNN over LVNN can be at-
tributed to the simpler selected hyperparameter configurations for the two models [cf.
Appendix C]. Overall, these experiments demonstrate that effectively leveraging lagged
covariance terms in the embedding learning process leads to improved performance in
downstream tasks such as single-step forecasting.

Forecasting Horizon
Model 1 3 5
TPCA 1.95±0.02 2.01±0.02 2.08±0.02

LSTM 1.22±0.04 1.33±0.05 1.39±0.04

VNN 0.55±0.01 0.88±0.01 1.10±0.01

VNNL 0.55±0.00 0.87±0.03 1.08±0.01

STVNN 0.53±0.01 0.84±0.01 1.06±0.01

LVNN (ours) 0.50±0.00 0.81±0.01 1.02±0.01

T-LVNN (ours) 0.49±0.00 0.80±0.01 1.00±0.01

Table 5.3: Results for single-step forecasting on the test-split of the exchange rate dataset. All results are
averaged over 5 runs.

Table 5.4 presents the forecasting results on the NOAA dataset across three forecast-
ing horizons. Among the baseline models, LSTM achieves the best performance at hori-
zons 3 and 5, although it performs worse than most baseline models at horizon 1. The
proposed LVNN model with the full extended sample covariance matrix shows compa-
rable results to STVNN and outperforms all other baselines at horizon 1, but its per-
formance degrades slightly at longer horizons. However, using the block upper trian-
gular matrix, T-LVNN consistently improves upon LVNN and outperforms most base-
lines at horizon 1 and 5, and performs comparable to STVNN at horizon 3. Similar to
the experiments with the Molene dataset, we observe a clear performance improvement
when using T-LVNN, which could be partly explained by the large number of time series
variables (N = 107), and therefore large number of introduced covariance terms, in the
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NOAA dataset. This highlights the benefit of using the block upper triangular matrix in
handling datasets with a relatively large number of variables, such as NOAA and Molene.
Overall, both LVNN variants consistently exhibit strong forecasting performance across
varying time horizons.

Forecasting Horizon
Model 1 3 5
TPCA 3.03±0.04 4.78±0.04 5.78±0.03

LSTM 2.02±0.04 3.15±0.06 3.33±0.11

VNN 1.42±0.01 3.16±0.13 4.06±0.26

VNNL 1.75±0.02 3.30±0.11 4.21±0.22

STVNN 1.36±0.02 3.22±0.10 3.82±0.17

LVNN (ours) 1.35±0.01 3.26±0.11 3.89±0.16

T-LVNN (ours) 1.25±0.03 3.20±0.05 3.66±0.09

Table 5.4: Results for single-step forecasting on the test-split of the NOAA dataset. All results are averaged over
5 runs.

TEMPORAL WINDOW SIZE ANALYSIS

Figure 5.7 presents the forecasting performance of the best-performing LVNN configu-
rations across varying temporal window sizes for the three real-world datasets discussed
earlier. Since the behaviors across different settings are similar, we report results for a
single representative horizon per dataset in this section, while the full set of results across
all horizons and datasets is provided in Appendix D. Overall, we observe that T-LVNN,
which leverages the block upper triangular part of the extended sample covariance ma-
trix, consistently performs comparably to or better than the standard LVNN across all
window sizes, forecasting horizons, and datasets. This supports our hypothesis that re-
taining only spatial and backward temporal connections would enhance the flexibility of
LVNN and allow it to generate more expressive embeddings that emphasize more recent
time windows. Additionally, we find that the optimal temporal window size varies across
datasets and horizons, suggesting that it is closely tied to the inherent characteristics of
each dataset.

For the Molene dataset at horizon 1 (Figure 5.7a), both LVNN and T-LVNN achieve
their best forecasting performance at a temporal window size of T = 3. This marks an
improvement over their performance at T = 2, indicating that incorporating past signal
values and lag-2 covariance terms contributes positively to the learned representations.
However, as the temporal window continues to grow, forecasting error increases, sug-
gesting that larger windows introduce additional noisy or spurious correlations, particu-
larly given the limited number of observations in this dataset. For the Exchange Rates
dataset at horizon 3 (Figure 5.7b), performance consistently degrades as the tempo-
ral window size increases beyond T = 2. This pattern suggests that, due to the highly
non-stationary nature of currency exchange rates, LVNN benefits more from focusing
on recent information rather than extending the temporal window to incorporate past
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(a) Molene Dataset at forecasting horizon 1

(b) Exchange Rate Dataset at forecasting horizon 3

(c) NOAA Dataset at forecasting horizon 5

Figure 5.7: Forecasting performance of the best LVNN configurations across different temporal horizons, with
three different datasets.
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observations. In contrast, the NOAA dataset at horizon 5 (Figure 5.7c) displays the op-
posite behavior. Namely, performance steadily improves with larger temporal windows,
reaching its optimum at T = 12. Despite the high dimensionality of this dataset, which
increases the number of estimated covariance terms as T grows, the longer temporal
context appears to enhance the quality of the learned representations. This can likely be
attributed to the nature of temperature data, which exhibits more robust spatiotemporal
trends, and the abundance of available observations, which supports accurate covari-
ance estimation even with longer time windows.

5.2.3. THRESHOLDING SPARSIFICATION

The goal of this final set of experiments is to evaluate how hard and soft thresholding
sparsification techniques affect the forecasting performance and computational effi-
ciency of the LVNN model. To this end, we measure the runtime of the forward pass for
the best-performing LVNN and T-LVNN configurations from the previous section across
the entire test set for each dataset. Forecasting accuracy (measured by % sMAPE loss)
and computational time are reported for all datasets and forecasting horizons in Fig-
ures 5.8, 5.9, and 5.10, while the full results are reported in Appendix E. We investigate
the effect of progressively increasing sparsification rates (25%, 50%, and 75%) to better
understand the model’s behavior under a more sparse covariance structure and to exam-
ine how this interacts with each dataset. Since we adapt these sparsification techniques
from the static to the online setting, we dynamically compute the appropriate threshold
at each forward pass to maintain the desired sparsity level and apply it to the updated
extended covariance matrix in real time. Overall, we find no significant performance
difference between hard and soft thresholding strategies. In high-dimensional scenar-
ios, sparsification leads to substantial improvements in computational efficiency, while
performance degradation remains minimal. The sparsified models continue to perform
at levels comparable to their dense counterparts and remain competitive with the base-
line models discussed in the previous section.

Figure 5.8 compares forecasting performance and computation time for a forward
pass over the entire test set using the LVNN and T-LVNN models under different sparsi-
fication strategies across forecasting horizons 1, 3, and 5 on the Molene dataset. Since
the two models have substantially different optimal hyperparameter configurations, we
present their results in separate plots for clarity. Across all horizons and for both models,
we observe that both hard and soft thresholding sparsification significantly reduce com-
putational time, with no consistently clear distinction between the two strategies. A 25%
sparsification rate yields a moderate reduction in runtime of approximately 15%–20%,
while a 75% sparsification rate leads to a more substantial decrease, up to 65% in com-
putational overhead (Figure 5.8d). Given that the Molene dataset includes N = 37 vari-
ables and the best-performing configurations utilize a temporal window size of T = 3,
the graph convolutions over the extended covariance graph contribute significantly to
the overall runtime. Consequently, the sparsification techniques have a pronounced
impact on computational efficiency. In terms of forecasting performance, both mod-
els show some degradation across all sparsification levels. However, the T-LVNN model
maintains a consistent advantage, since its worst-reported performance in each setting
still outperforms the best results of the standard LVNN. This further supports our earlier
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hypothesis regarding the enhanced flexibility and expressivity of T-LVNN when using
the block upper triangular matrix. Moreover, when comparing these results to the base-
line models presented in Section 5.2.2, we find that even with sparsification, both LVNN
variants achieve comparable or superior scores, further confirming the effectiveness of
incorporating cross-temporal covariance terms in a computationally efficient manner.

Figure 5.9 presents the forecasting performance and computation time of the LVNN
and T-LVNN models on the Exchange Rates dataset. Unlike in the experiments with the
Molene dataset, we report the results of both models within the same plots, as they share
similar hyperparameter configurations. We first observe that the impact of thresholding-
based sparsification on computational overhead is notably smaller, with reductions rang-
ing from approximately 10% to 25%. This can be attributed to the characteristics of the
Exchange Rates dataset and the corresponding model configurations. Specifically, the
extended covariance matrix is relatively small due to the limited number of variables
(N = 8) and the use of a short temporal window (T = 2), resulting in lower overall com-
putational overhead during a forward pass and, thus, diminishing the relative impact
of sparsification. This also explains why we cannot see a clear improvement in compu-
tational efficiency when using the T-LVNN model, which operates on the block upper
triangular matrix. Nonetheless, both hard and soft thresholding still yield moderate im-
provements in efficiency, especially at higher sparsification rates. In terms of forecasting
performance, the models’ performance remains very close to that without any sparsi-
fication across all settings, while still outperforming the baseline models from Section
5.2.2 regardless of the sparsification level. Notably, in Figure 5.9b, we even observe an
improvements in performance under sparsification. This suggests that pruning weak or
noisy covariance terms may act as a regularization mechanism, encouraging the model
to focus on more robust and informative dependencies in the data.

Figure 5.10 displays the forecasting performance and computation time of LVNN
and T-LVNN on the NOAA dataset. Due to the large number of variables in this dataset
(N = 109) and the longer temporal windows used in the selected configurations (T = 2
in Figure 5.10a, T = 8 in Figure 5.10b, T = 12 in Figure 5.10c), the resulting extended co-
variance matrices are significantly larger than in the previous datasets. As a result, spar-
sification has a much more substantial effect on computational efficiency, with clearly
more pronounced improvements, ranging from approximately 15% with a sparsification
rate of 25% to approximately 70% with a sparsification rate of 75% (Figure 5.10c). Addi-
tionally, in Figures 5.10a and 5.10c, where LVNN and T-LVNN have comparable hyper-
parameter configurations, it becomes evident that the block upper triangular structure
employed by T-LVNN not only enhances expressivity but also contributes to improved
computational efficiency. In terms of forecasting performance, both models remain
highly competitive across all sparsification levels and forecasting horizons. T-LVNN con-
sistently retains its performance from Section 5.2.2, demonstrating its robustness even
under heavier sparsification. LVNN, while slightly less accurate, maintains solid perfor-
mance and remains competitive with most baselines. These results further confirm that
sparsification is more beneficial in high-dimensional settings, where the extended co-
variance matrix monopolizes the model’s computational requirements.
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(a) LVNN / Molene dataset at forecasting horizon 1 (b) T-LVNN / Molene dataset at forecasting horizon 1

(c) LVNN / Molene dataset at forecasting horizon 3 (d) T-LVNN / Molene dataset at forecasting horizon 3

(e) LVNN / Molene dataset at forecasting horizon 5 (f) T-LVNN / Molene dataset at forecasting horizon 5

Figure 5.8: The sMAPE loss and computation time for a forward pass over the entire test for LVNN and
T-LVNN on the Molene dataset. From top to bottom, we report results for adjusted thresholds to achieve

sparsification rates of 25%, 50%, and 75%, for hard and soft thresholding. Horizontal axis reports the sMAPE
loss, with the performance improving towards the left.
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(a) Exchange Rates dataset at forecasting horizon 1

(b) Exchange Rates dataset at forecasting horizon 3

(c) Exchange Rates dataset at forecasting horizon 5

Figure 5.9: The sMAPE loss and computation time for a forward pass over the entire test for LVNN and
T-LVNN on the Exchange Rates dataset. From top to bottom, we report results for adjusted thresholds to

achieve sparsification rates of 25%, 50%, and 75%, for hard and soft thresholding. Horizontal axis reports the
sMAPE loss, with the performance improving towards the left.
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(a) NOAA dataset at forecasting horizon 1

(b) NOAA dataset at forecasting horizon 3

(c) NOAA dataset at forecasting horizon 5

Figure 5.10: The sMAPE loss and computation time for a forward pass over the entire test for LVNN and
T-LVNN on the NOAA dataset. From top to bottom, we report results for adjusted thresholds to achieve

sparsification rates of 25%, 50%, and 75%, for hard and soft thresholding. Horizontal axis reports the sMAPE
loss, with the performance improving towards the left.
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5.3. DISCUSSION
Effectively learning from multivariate time series requires models that can capture both
spatial correlations between variables and temporal dependencies across time steps.
This challenge is particularly pronounced in online and non-stationary settings, where
data arrives sequentially and the underlying relationships may evolve over time. To ad-
dress this, we introduced the Lagged spatiotemporal coVariance Neural Network (LVNN),
a graph-based learning architecture that leverages lagged correlations to represent and
learn from multivariate time series. By constructing spatiotemporal graphs from the ex-
tended sample covariance matrix, LVNN generalizes prior covariance-based methods
and provides a more expressive framework for modeling intricate spatiotemporal inter-
actions, moving beyond the conventional focus on lag-zero correlations.

We began by investigating the robustness of LVNN under uncertainty in the finite-
sample estimation of the extended covariance matrix. Through theoretical analysis, we
showed that LVNN remains stable under such perturbations, with an upper stability
bound that improves as more data becomes available and scales sub-quadratically with
the temporal window size. These theoretical guarantees were validated empirically in
both stationary and non-stationary environments, where LVNN demonstrated consis-
tently stable behavior and improved upon the limitations of techniques like Tempo-
ral PCA. These findings offer foundational support for incorporating lagged covariance
structure into online learning without compromising robustness.

Next, we assessed the effectiveness of the learned embeddings in a downstream single-
step forecasting task across three real-world datasets and multiple forecasting horizons.
While the standard LVNN performed competitively with strong baselines, the variant
that selectively retains only spatial and backward temporal connections, by using the
block upper triangular portion of the covariance matrix, achieved the most consistent
performance. This result highlights the value of enforcing temporal structure in the
graph, which increases the model’s flexibility by allowing it to focus on recent, more
relevant information. By capturing how variable interactions evolve over time, rather
than treating them as static or temporally independent, LVNN is able to construct richer
and more informative representations. These findings confirm that modeling cross-
temporal covariance terms strengthens the underlying graph structure and enhances the
model’s ability to exploit spatiotemporal dependencies, ultimately improving forecast-
ing performance in dynamic environments. We began by investigating the robustness
of LVNN under uncertainties in the finite sample estimation of the extended covariance
matrix. Through theoretical analysis, we demonstrated that LVNN remains stable under
these perturbations, with an upper stability bound that improves as more data becomes
available and grows sub-quadratically with the temporal window size.

Finally, we explored thresholding-based sparsification as a method to improve com-
putational efficiency. Both hard and soft thresholding techniques yielded significant re-
ductions in runtime, particularly in high-dimensional scenarios, while preserving pre-
dictive performance. This demonstrates that lagged covariance-based models can be
made more scalable without sacrificing performance, and that removing weak or noisy
correlations may even serve as a useful regularization mechanism. In specific cases,
sparsification even led to slight improvements in forecasting performance, suggesting it
not only reduces complexity but can also enhance generalization by focusing the model
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on more robust spatiotemporal patterns.
In conclusion, this thesis demonstrates the practical and theoretical benefits of in-

corporating lagged covariance information into graph-based models for multivariate
time series. By moving beyond static or purely spatial representations, LVNN captures
richer temporal dynamics and adapts effectively to streaming and evolving data. The
combination of principled modeling, robust learning, and efficient implementation opens
promising directions for future research at the intersection of graph learning and time
series modeling.





6
CONCLUSION

In this chapter, we conclude this thesis and provide possible future work directions. Sec-
tion 6.1 gives a summary of this research work, outlining the main takeaways. Section
6.2 answers the research questions posed in Chapter 1. Finally, Section 6.3 discusses
promising future work directions that originate from the research work conducted in
this thesis.
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6.1. THESIS SUMMARY
Chapter 1 motivated the integration of lagged covariance terms into multivariate time
series modeling with covariance-based GNNs, introduced the research questions, and
set the context for the following chapters. In Chapter 2, we presented the necessary back-
ground material for our research. We introduced the notion of coVariance Neural Net-
works (VNN), followed by statistical and PCA-based methods for modeling multivariate
time series and spatiotemporal GNN architectures. Chapter 3 provided an overview of
the relevant literature, covering different methods for time series modeling and, finally,
focusing on covariance-based spatiotemporal GNN approaches, which have a central
role in the research carried out in this thesis.

In Chapter 4, we discussed the main contribution of this thesis, the Lagged spa-
tiotemporal coVariance Neural Network (LVNN) architecture for modeling multivariate
time series. The LVNN leverages the extended covariance matrix as a graph representa-
tion matrix [cf. Section 4.2.1], and performs graph convolutions over this larger graph
to produce spatiotemporal embeddings [cf. Section 4.2.2]. We proposed the use of the
block upper triangular matrix and thresholding sparsification strategies to enhance the
computational efficiency of LVNN. Additionally, we conducted a theoretical analysis of
LVNN’s stability under perturbations in the finite sample estimation of the extended co-
variance matrix, comparing its robustness against that of TPCA. In Chapter 5, we ini

In Chapter 5, we presented our empirical evaluation of the proposed LVNN model.
First, we validated the stability of LVNN under both stationary and non-stationary con-
ditions, confirming our theoretical findings from Chapter 4. Next, we evaluated the
model’s capabilities on single-step forecasting using three real-world datasets, where the
LVNN with the block upper triangular matrix achieved the most consistent performance
across the baselines. Finally, we explored the effects of thresholding-based sparsifica-
tion, demonstrating a substantial reduction in computational cost with only minimal
impact on forecasting performance.

6.2. ANSWERS TO RESEARCH QUESTIONS
In this section, we address the research questions posed in Chapter 1 and provide an-
swers based on our research findings from Chapters 4 and 5.

(RQ1) "How robust is the proposed model to perturbations introduced by the online esti-
mation of the extended covariance matrix and model parameters?"

To answer this question, we first theoretically proved that LVNN is stable to uncertain-
ties caused by these online estimations in a stationary setting, in Section 4.3. Specifically,
we observed that the upper stability bound decreases with a rate O(1/

p
t ) as more sam-

ples become available, while it grows sub-quadratically with the temporal window size
T . Therefore, LVNN provides improved stability compared to Temporal PCA and VNN,
but remains less stable than STVNN. Moreover, we derived the corresponding upper sta-
bility bounds for the LVNN variants with the block upper triangular extended sample
covariance matrix and with the application of hard and soft thresholding sparsification.
Then, in Section 5.2.1, we empirically validate our theoretical findings against TPCA in
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a stationary setting with synthetic data, as well as in non-stationary settings for three
real-world datasets.

(RQ2) "How effective are the learned embeddings from the proposed model when applied
to a downstream task, such as single-step forecasting?"

We answered this question in Section 5.2.2. We evaluated the performance of the pro-
posed LVNN model on single-step forecasting across multiple forecasting horizons. We
conducted our experiments on three real-world datasets with different characteristics:
Molene and NOAA, containing temperature recordings, and Exchange Rates, containing
time series of currency exchange rates. Overall, our results indicate that LVNN showcases
the most consistent performance across all experiments. When using the full sample ex-
tended covariance matrix, LVNN achieves comparable or better results than the TPCA,
LSTM, VNN, and VNN-LSTM benchmark models, while, compared to STVNN, it per-
forms similarly or slightly worse on Molene and NOAA datasets, but consistently better
on Exchange Rates. This is indicative of the inability of LVNN to isolate the contribu-
tions of specific time steps with the full sample extended covariance matrix. Then, using
the block upper triangular of the matrix improves LVNN’s performance across all experi-
ments, leading to better results than STVNN in most settings. This supports our analysis
in Sections 4.2.1 and 4.2.2, indicating that the block upper triangular matrix leads to
nested temporal neighborhoods, allowing LVNN to modulate contributions from differ-
ent time windows and enhance its expressiveness.

(RQ3) "How can we make the model more computationally efficient and potentially robust
to spurious correlations via thresholding sparsification?"

To address this research question, we extended LVNN with both hard and soft threshold-
ing sparsification techniques and evaluated its performance on the real-world datasets
of the previous experiments. First, in Section 4.3, we theoretically proved that these spar-
sification strategies do not affect the upper stability bound of LVNN, w.r.t. the number of
variables N or the temporal window size T . Then, in our empirical evaluation in Section
5.2.3, we tested varying sparsification rates (25%, 50%, and 75%) and observed a sub-
stantial improvement in computational time as the rate increased. In terms of predictive
performance, the results show that the LVNN loss metrics slightly degrade as the sparsity
levels increase, however remaining comparable to the original LVNN performance with-
out sparsification. Notably, in specific cases, performance actually improves, suggest-
ing that thresholding may effectively prune spurious covariance terms. Overall, there
were not any strong patterns in the results to distinguish the application of hard and
soft thresholding. These findings highlight that sparsification can efficiently address the
computational overhead of the extended sample covariance matrix without significant
sacrifices in performance.

Based on the answers to these research questions, we can now provide an answer to
the main research question of this thesis.

(RQ) "How can we learn online meaningful embeddings from multivariate time series by
leveraging lagged covariance information as part of the GNN architecture?"
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The proposed LVNN model effectively captures and leverages lagged covariance infor-
mation from multivariate time series by performing graph convolutions over spatiotem-
poral graphs. The underlying graph structure is defined by the finite sample extended
covariance matrix, which encodes correlations across both variables and time. LVNN
demonstrates stability under perturbations introduced by the finite sample estimation
of the extended covariance matrix, and its stability is only moderately affected by the
temporal window size, in contrast to Temporal PCA. Furthermore, both the standard
LVNN using the full extended covariance matrix and its block upper triangular variant
prove effective in single-step forecasting tasks across diverse datasets. Lastly, applying
thresholding-based sparsification significantly reduces computational overhead with-
out compromising the model stability or substantially affecting its forecasting perfor-
mance.

6.3. FUTURE WORK
To conclude this thesis, we discuss possible future research directions. Taking into con-
sideration the focal points of our research work, we identify the following directions: (i)
improving the LVNN performance by enhancing its expressiveness and, subsequently,
the learned embeddings; (ii) improving the computational efficiency of LVNN and miti-
gating the effect of spurious correlations by alternative sparsification techniques.

PROCESSING LAGGED COVARIANCE TERMS WITH DIFFERENT PARAMETERS

One limitation of the LVNN architecture lies in the use of shared parameters across all
connections in the graph representation, corresponding to lagged covariance terms. As
discussed in Section 4.2.2, the extended sample covariance matrix induces a fully con-
nected graph where each signal value across the temporal window contributes to all
learned embeddings. However, treating all connections with the same set of parame-
ters significantly limits the model’s flexibility. For instance, an LVNN cannot selectively
amplify the contributions from lag-1 connections and attenuate the contributions of lag-
2 connections. While we partially addressed this issue by altering the underlying graph
structure through the block upper triangular extended sample covariance matrix, the
expressivity of the model could be further enhanced by retaining the full graph struc-
ture and assigning distinct parameters to connections based on their time lag. Figure 6.1
demonstrates the benefits of using distinct parameters with an application of a filter of
order 1 on a setting with N = 4 variables and a temporal window size T = 3. The greater
flexibility of this filter is evident, especially if we compare the embeddings expressions
with those of the proposed LVF in Figure 4.5a.

ALTERNATIVE STRUCTURAL SPARSIFICATION STRATEGIES

Another limitation of LVNN is the computational overhead and spurious correlations
associated with the extended sample covariance matrix. In this thesis, we experimented
with the block upper triangular extended sample covariance matrix, which improved the
computational efficiency of LVNN. However, it still retains all lagged covariance terms
within the selected temporal window, thus not addressing the issue of spurious covari-
ance terms. Inspired by the supra-max adjacency framework [84], another approach
would be to decouple the temporal window size from the time lags considered in the
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Figure 6.1: A visualization of the graph structure of the extended covariance matrix in a setting with N = 4
variables and a temporal window size T = 3. A filter of order 1 performs graph convolutions over the induced

graph. Covariances of different lags are depicted in a different color, as they correspond to different filter
parameters (which are visible in the embeddings expressions). For the lag-1 (green) and lag-2 (purple)

temporal connections, we only draw the relevant edges originating from the green nodes and leading to the
subsequent red and orange ones.

graph structure. Figure 6.2b shows an example of a setting with temporal window size
T = 4, where retaining only lag-zero and lag-1 covariance terms results in a sparsification
rate of 37,5%. By evaluating the relevance of each time lag to the task at hand, we can
construct more computationally efficient spatiotemporal graphs, tailored to the tempo-
ral dynamics of the data. Therefore, this structural sparsification approach would allow
the model to focus on the most informative time lags within the temporal window, while
reducing the computational overhead.

(a) Full Extended Covariance Matrix (b) Matrix with Lag-Zero and Lag-1
Covariance Blocks

Figure 6.2: The extended sample covariance matrix in a setting with T = 4. By retaining the temporal window
size T , but only considering the lag-zero and lag-1 covariance blocks (and zeroing out the orange blocks), the

matrix is sparsified by 37,5%.
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A.1. PROOF OF THEOREM 1
The following provides a proof of Theorem 1. To bound the filter output difference∥∥∥H( ˆ̃Ct ,ht , x̃t )−H(C̃,h∗, x̃t )

∥∥∥, we follow a similar approach to the proof of the stability

of STVF in [31, Appendix B]. First, we add and subtract the term H( ˆ̃Ct ,h∗, x̃t ) within the
norm and, using the triangle inequality, we have the following upper bound:∥∥∥H( ˆ̃Ct ,ht , x̃t )−H(C̃,h∗, x̃t )

∥∥∥
≤

∥∥∥H( ˆ̃Ct ,ht , x̃t )−H( ˆ̃Ct ,h∗, x̃t )
∥∥∥+∥∥∥H( ˆ̃Ct ,h∗, x̃t )−H(C̃,h∗, x̃t )

∥∥∥
≤ αt + βt (A.1)

where
∥∥∥H( ˆ̃Ct ,ht , x̃t )−H( ˆ̃Ct ,h∗, x̃t )

∥∥∥ ≤ αt corresponds to the parameter sub-optimality

error, while
∥∥∥H( ˆ̃Ct ,h∗, x̃t )−H(C̃,h∗, x̃t )

∥∥∥≤βt corresponds to the covariance uncertainty

error. Next, we will upper bound each of these terms and, therefore, establish an upper
bound for the lagged spatiotemporal covariance filter.

PARAMETER SUB-OPTIMALITY ERROR

Given h∗ as the optimal set of coefficients for the multivariate time series forecasting
problem, we formulate the problem of optimizing ht as:

min
ht

∥∥∥H( ˆ̃Ct ,ht , x̃t )−H( ˆ̃Ct ,h∗, x̃t )
∥∥∥2

(A.2)

This constitutes an unconstrained convex optimization problem. Assuming that ht is
updated via online gradient descent with a learning rate η> 0 small enough to guarantee
convergence, we exploit the upper bound of the distance between the online update and
the optimal solution in [53, Theorem 3.4] to obtain:

αt ≤ T ∥h∗∥2

2ηt
(A.3)

COVARIANCE UNCERTAINTY ERROR

We begin by expressing the estimated extended covariance matrix as ˆ̃Ct = C̃+E, where E

is an error matrix, and analyzing the Taylor expansion of ˆ̃Ck
t as:

ˆ̃Ck
t = (C̃+E)k = C̃k +

k−1∑
r=0

C̃r EC̃k−r−1 + Ē (A.4)

where Ē is such that
∥∥Ē

∥∥ = O(∥E∥2). For this proof of the standard L-STVF, we ignore
this last term Ē, as we consider the error to be very small (∥E∥ ≪ 1) after a few training
steps (t ≫ 0). Therefore, we analyze the filter output difference for the covariance uncer-
tainty error by using the eigendecomposition of the true extended and sample extended

covariance matrices, C̃ = VΛV⊤ and ˆ̃Ct = V̂Λ̂V̂⊤ respectively, and the first two terms as
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shown in (A.4):

H( ˆ̃Ct ,h∗, x̃t )−H(C̃,h∗, x̃t ) =
K∑

k=0
hk

k−1∑
r=0

C̃r EC̃k−r−1x̃t

=
N T−1∑

i=0
x̄t ,i

K∑
k=0

hk

k−1∑
r=0

C̃r EC̃k−r−1vi

=
N T−1∑

i=0
x̄t ,i

K∑
k=0

hk

k−1∑
r=0

C̃rλk−r−1
i Evi (A.5)

where x̄t ,i is the i -th entry of the graph Fourier transform of signal x̃t , which is x̄t =
V⊤x̃t . We will now expand (A.5) into three terms, which we will bound separately and,
therefore, compute an upper bound for the covariance uncertainty error:

N T−1∑
i=0

x̄t ,i

K∑
k=0

hk

k−1∑
r=0

C̃rλk−r−1
i (λi IN T − C̃)(v̂i −vi ) (A.6)

+
N T−1∑

i=0
x̄t ,i

K∑
k=0

hk

k−1∑
r=0

C̃rλk−r−1
i (λ̂i −λi )vi (A.7)

+
N T−1∑

i=0
x̄t ,i

K∑
k=0

hk

k−1∑
r=0

C̃rλk−r−1
i ((λ̂i −λi )IN T −E)(v̂i −vi ) (A.8)

First term (A.6). We start by plugging the eigendecompositions of the covariance matri-
ces into (A.6) to get:

N T−1∑
i=0

x̄t ,i

K∑
k=0

hk

k−1∑
r=0

C̃rλk−r−1
i V(λi IN T −Λ)V⊤(v̂i −vi )

=
N T−1∑

i=0
x̄t ,i

K∑
k=0

hk

k−1∑
r=0

λk−r−1
i VΛr (λi IN T −Λ)V⊤(v̂i −vi )

=
N T−1∑

i=0
x̄t ,i VLi V⊤(v̂i −vi ) (A.9)

where Li is a diagonal matrix, whose j -th diagonal element is:

Li , j =
{

0, if i = j

h(λi )−h(λ j ), if i ̸= j ,
(A.10)

where h(λi ) is the frequency response of the lagged spatiotemporal covariance filter de-
fined in (4.5). Expanding this with the last terms in (A.9), we get:

[Li V⊤(v̂i −vi )] j =
{

0, if i = j

(h(λi )−h(λ j ))v⊤j v̂i , if i ̸= j
(A.11)

Then, we consider the norm of (A.9). By plugging in (A.11) and successively applying the
triangle and Cauchy-Schwarz inequalities, the orthonormality of the eigenvectors, and
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the bound
∥∥y

∥∥≤p
M max

i
yi for any arbitrary vector y ∈RM , we get:

∥∥∥∥∥N T−1∑
i=0

x̄t ,i VLi V⊤(v̂i −vi )

∥∥∥∥∥≤
N T−1∑

i=0

∣∣x̄t ,i
∣∣∥V∥∥∥Li V⊤(v̂i −vi )

∥∥
≤
p

N T
N T−1∑

i=0

∣∣x̄t ,i
∣∣max

j

∣∣h(λi )−h(λ j )
∣∣ ∣∣∣v⊤j v̂i

∣∣∣ (A.12)

Under As. 3, we leverage the result of [100, Theorem 4.1] to characterize the dot product
of the eigenvectors of the true and sample extended covariance matrices:

P(
∣∣∣v⊤j vi

∣∣∣≥ B) ≤ T

t

(
2k j

B
∣∣λi −λ j

∣∣
)2

(A.13)

where the term k j is related to the kurtosis of the data distribution [100, 126]. Then, we
set:

B =
√

T

t

2k j eϵ/2∣∣λi −λ j
∣∣ (A.14)

and, with respect to the last terms in (A.12), we get:

max
j

∣∣h(λi )−h(λ j )
∣∣ ∣∣∣v⊤j v̂i

∣∣∣≤ max
j

∣∣h(λi )−h(λ j )
∣∣∣∣λi −λ j

∣∣ 2
p

T k j eϵ/2

p
t

(A.15)

with probability at least 1− e−ϵ. Finally, by using the fact that the frequency responses
h(λ) of the filters are Lipschitz with a constant P by As. 1, and leveraging ∥x̃t∥ ≤ 1 for all
t, with

∑N T−1
i=0

∣∣x̄t ,i
∣∣≤p

N T ∥x̃t∥ and kmax = max
j

k j , we bound the term in (A.6) as:

∥∥∥∥∥N T−1∑
i=0

x̄t ,i

K∑
k=0

hk

k−1∑
r=0

C̃rλk−r−1
i (λi IN T − C̃)(v̂i −vi )

∥∥∥∥∥≤
N T−1∑

i=0

∣∣x̄t ,i
∣∣ 2PT

p
N kmaxeϵ/2

p
t

≤ 2p
t

Pkmaxeϵ/2T 3/2N (A.16)

with probability at least 1−e−ϵ.

Second term (A.7). We rewrite (A.7) as:

N T−1∑
i=0

x̄t ,i

K∑
k=0

hk

k−1∑
r=0

C̃rλk−r−1
i (λ̂i −λi )vi =

N T−1∑
i=0

x̄t ,i

K∑
k=0

hk

k−1∑
r=0

λr
i λ

k−r−1
i (λ̂i −λi )vi

=
N T−1∑

i=0
x̄t ,i

K∑
k=0

khkλ
k−1
i (λ̂i −λi )vi

=
N T−1∑

i=0
x̄t ,i h′(λi )(λ̂i −λi )vi (A.17)
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where h′(λi ) is the derivative of h(λi ) w.r.t. λ. By taking the norm of (A.17), similarly to
the first term, we get:∥∥∥∥∥N T−1∑

i=0
x̄t ,i h′(λi )(λ̂i −λi )vi

∥∥∥∥∥≤
N T−1∑

i=0

∣∣x̄t ,i
∣∣ ∣∣h′(λi )

∣∣ ∣∣(λ̂i −λi )
∣∣∥vi∥ (A.18)

Among the terms in the right-hand side of (A.18), we have that ∥vi∥ = 1, the filter deriva-
tive h′(λi ) is bounded by P from As. 1, and ∥x̃t∥ ≤ 1 for all t, with

∑N T−1
i=0

∣∣x̄t ,i
∣∣≤p

N T ∥x̃t∥.
Then, to bound the eigenvalue difference, we use Weyl’s Theorem [57, Theorem 8.1.6],
where

∥∥Ē
∥∥≤α implies that

∣∣λ̂i −λi
∣∣≤α for any α> 0, and the result from [138, Theorem

5.6.1]:

P

∥E∥ ≤Q

√
G2T 2N (log(N T )+u)

t
+ G2T 2N (log(N T )+u)

t

∥∥C̃
∥∥

︸ ︷︷ ︸
α

≥ 1−2e−u (A.19)

where Q is an absolute value and G ≥ 1 derives from As. 2. Putting all these together, we
derive the following upper bound for the term in A.7:∥∥∥∥∥N T−1∑

i=0
x̄t ,i

K∑
k=0

hk

k−1∑
r=0

C̃rλk−r−1
i (λ̂i −λi )vi

∥∥∥∥∥
≤P

p
N T Q

√
G2T 2N (log(N T )+u)

t
+ G2T 2N (log(N T )+u)

t

∥∥C̃
∥∥ (A.20)

with probability at least 1−2e−u .

Third term (A.8). As in the proof of STVF [31], we can leverage the equations (65)-(68) in
[126] with minimal changes and show that this term scales as O(1/t ).

By bringing together the upper bounds in (A.16) and (A.20), along with the observation
that (A.8) scales as O(1/t ), we derive an upper bound for the covariance uncertainty er-
ror. Further combining this bound with the parameter sub-optimality bound in (A.3),we
derive the upper bound of the lagged spatiotemporal covariance filter, as shown in (4.14).

A.2. PROOF OF THEOREM 2
The following provides a proof of Theorem 2. To bound the filter output difference when
hard thresholding is applied, we will rely on our previous proof of the stability of L-
STVF in Section A.1 and the corresponding proof of the stability of sparse VNN with hard
thresholding in [30, Appendix C]. Again, we would break down the computation of the
upper bound to bounding the parameter sub-optimality error and the covariance uncer-
tainty error, as in (A.1). The parameter sub-optimality error remains the same as in (A.3)
for the standard L-STVF. In order to compute the bound for the covariance uncertainty
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error, we perform the same analysis of the filter difference into the 3 terms in (A.6), (A.7),
and (A.8), and address each one of them individually.

First term (A.6). From [150, Chapter 2, (10.2)], assuming the true extended covariance
matrix C̃ is positive definite with distinct eigenvalues, the first-order approximation of
the i -th estimated covariance eigenvector v̂i is:

v̂i ≈ vi +
N T∑

k=1,k ̸=i

v⊤k Evi

λk −λi
+D, (A.21)

with ∥D∥ =O(∥E∥2). By projecting on v j and taking the absolute value, we get:

∣∣∣v⊤j v̂i

∣∣∣≤
∣∣∣v⊤j Evi

∣∣∣∣∣λi −λ j
∣∣ +O(∥E∥2)

≤ ∥E∥∣∣λi −λ j
∣∣ +O(∥E∥2), (A.22)

where the last step follows from the spectral norm definition ∥E∥ = maxv,∥v∥2=1
∣∣v⊤Ev

∣∣.
Then, we consider the norm of (A.6), deriving the inequality in (A.12). By plugging (A.22)
into (A.12), and using the Lipschitz property of the filter by As. 1 and the inequality∑N T−1

i=0

∣∣x̄t ,i
∣∣≤p

N T ∥x̃t∥, we have:

p
N T

N T−1∑
i=0

∣∣x̄t ,i
∣∣max

j ̸=i

∣∣h(λi )−h(λ j )
∣∣ ∣∣∣v⊤j v̂i

∣∣∣≤pN T ∥E∥
N T−1∑

i=0

∣∣x̄t ,i
∣∣max

j ̸=i

∣∣h(λi )−h(λ j )
∣∣∣∣λi −λ j

∣∣
≤
p

N T ∥E∥
N T−1∑

i=0

∣∣x̄t ,i
∣∣P

≤P N T ∥E∥ (A.23)

Second term (A.7). We leverage the expression (A.17) and Weyl’s Theorem [57, Theorem
8.1.6] to derive: ∥∥∥∥∥N T−1∑

i=0
x̄t ,i h′(λi )(λ̂i −λi )vi

∥∥∥∥∥≤
N T−1∑

i=0

∣∣x̄t ,i
∣∣ ∣∣h′(λi )

∣∣∥E∥∥vi∥

≤
N T−1∑

i=0

∣∣x̄t ,i
∣∣P ∥E∥

≤ P
p

N T ∥E∥ (A.24)

Third term (A.8). Analogous to [30], from Weyl’s Theorem [57, Theorem 8.1.6] and the
sin-theta theorem [134, Theorem V.3.6], we derive that this term scales as O(∥E∥2). Un-
der small perturbation assumption, this term is dominated by the terms in (A.6) and
(A.7).
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By bringing together the bounds in (A.23) and (A.24), along with the previous observa-
tion that (A.8) scales as O(∥E∥2), we derive the following upper bound for the covariance
uncertainty error w.r.t. ∥E∥:∥∥∥H( ˆ̃Ct ,h∗, x̃t )−H(C̃,h∗, x̃t )

∥∥∥≤ P
p

N T ∥E∥ (1+
p

N T ) + O(∥E∥2) (A.25)

Adjusting [10, Theorem 1] to the extended covariance setting, given a true extended

covariance matrix C̃ and a hard-thresholded sample extended covariance matrix ˆ̃Ct , it
holds with high probability that:

∥∥∥ ˆ̃Ct − C̃
∥∥∥= ∥E∥ ≤ c0

√
T log(N T )

t
(A.26)

By replacing (A.26) into (A.25), we compute the bound of the covariance uncertainty
error. Combining this with the parameter sub-optimality error in (A.3), we derive the
upper bound of L-STVF with hard thresholding, as shown in (4.20).

A.3. PROOF OF THEOREM 3
The following provides a proof of Theorem 3. Adjusting [41, Theorem 1] to the extended
covariance setting, given a true extended covariance matrix C̃ and a soft-thresholded

sample extended covariance matrix ˆ̃Ct , it holds with high probability that:

∥∥∥ ˆ̃Ct − C̃
∥∥∥= ∥E∥ ≤

√
T

t
C c0max(1,λ0)

√√√√max

(
log

N T

c2
0

,1

)
(A.27)

for a generic constant C . By replacing ∥E∥ from (A.27) into (A.25), we obtain the up-
per bound of the covariance uncertainty error with soft thresholding. Combining this
bound with the upper bound in (A.3) for the parameter sub-optimality error, we derive
the complete bound for the filter output difference, as shown in (4.22).
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To generate stationary synthetic datasets, we begin with a covariance matrix C and
sample observations zt ∼N (0,C). We then introduce temporal causality by constructing
the multivariate time series xt as a weighted sum of past observations: xt =∑τ

t ′=0 ht ′zt−t ′ ,

where the weights ht ′ are normalized using ht ′ = h′
t ′/

√∑
t h′

t ′ and ht ′ = e−t for t = 0, ...,τ.

In our experiments, we set τ= 9. To shape the eigenvalue distribution of the covariance
matrices used in the synthetic datasets, we utilize the sklearn.make_regression function,
which allows us to adjust the size of the distribution tail and thereby control the spacing
between eigenvalues. Figure B.1 displays the eigenvalue spectra for the three covariance
matrices used, where larger tails correspond to higher kurtosis and more closely spaced
eigenvalues.

Figure B.1: Eigenvalue distribution for different tail sizes.
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TPCA CONFIGURATION

Parameters
Dataset Horizon Temporal Window T

Molene
1 3
3 3
5 5

Exchange Rates
1 2
3 2
5 2

NOAA
1 3
3 5
5 8

LSTM CONFIGURATION

Parameters
Dataset Horizon Temporal Window T

Molene
1 3
3 3
5 3

Exchange Rates
1 2
3 2
5 2

NOAA
1 3
3 3
5 5

VNN-VNNL-STVNN CONFIGURATION

Parameters
Dataset Horizon Learning Rate Coefficient γ Optimizer Layers Temporal Window T Filter Order K

Molene
1 0.001 0.1 Adam [32] 3 3
3 0.001 0.1 Adam [32,16] 3 3
5 0.001 0.1 Adam [32,16] 3 3

Exchange Rates
1 0.001 0.1 Adam [32] 2 2
3 0.001 0.1 Adam [32] 2 2
5 0.001 0.1 Adam [64] 2 3

NOAA
1 0.001 0.05 Adam [32] 2 2
3 0.001 0.05 Adam [32] 3 2
5 0.001 0.05 Adam [64,32] 5 2
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LVNN CONFIGURATION - FULL EXTENDED COVARIANCE MATRIX

Parameters
Dataset Horizon Learning Rate Coefficient γ Optimizer Layers Temporal Window T Filter Order K

Molene
1 0.001 0.3 Adam [32] 3 2
3 0.001 0.05 Adam [256] 3 2
5 0.001 0.05 Adam [32] 3 2

Exchange Rates
1 0.001 0.1 Adam [16] 2 2
3 0.001 0.1 Adam [32] 2 2
5 0.001 0.1 Adam [16] 2 3

NOAA
1 0.001 0.05 Adam [32] 2 3
3 0.001 0.05 Adam [64] 8 3
5 0.001 0.05 Adam [32] 12 2

LVNN CONFIGURATION - BLOCK UPPER TRIANGULAR MATRIX

Parameters
Dataset Horizon Learning Rate Coefficient γ Optimizer Layers Temporal Window T Filter Order K

Molene
1 0.001 0.05 Adam [32,16] 3 3
3 0.001 0.05 Adam [64,32] 3 4
5 0.001 0.05 Adam [64,32] 3 2

Exchange Rates
1 0.001 0.1 Adam [16] 2 2
3 0.001 0.1 Adam [16] 2 3
5 0.001 0.1 Adam [16] 2 3

NOAA
1 0.001 0.05 Adam [32] 2 3
3 0.001 0.05 Adam [64,32] 8 2
5 0.001 0.05 Adam [32] 12 2
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(a) Forecasting horizon 1

(b) Forecasting horizon 3

(c) Forecasting horizon 5

Figure D.1: True temperatures in degrees Kelvin and single-step predictions from LVNN and T-LVNN for a
selection station from the Molene test set.
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(a) Forecasting horizon 1

(b) Forecasting horizon 3

(c) Forecasting horizon 5

Figure D.2: True exchange rate and single-step predictions from LVNN and T-LVNN for the Swiss franc from
the Exchange Rates test set, for 500 test samples.
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(a) Forecasting horizon 1

(b) Forecasting horizon 3

(c) Forecasting horizon 5

Figure D.3: True temperature in degrees Fahreneit and single-step predictions from LVNN and T-LVNN for a
selected station from the NOAA test set, for 500 test samples.
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(a) Forecasting horizon 1

(b) Forecasting horizon 3

(c) Forecasting horizon 5

Figure D.4: Performance of LVNN and T-LVNN on the Molene dataset across three forecasting horizons, with
different temporal window sizes T .
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(a) Forecasting horizon 1

(b) Forecasting horizon 3

(c) Forecasting horizon 5

Figure D.5: Performance of LVNN and T-LVNN on the Exchange Rates dataset across three forecasting
horizons, with different temporal window sizes T .
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(a) Forecasting horizon 1

(b) Forecasting horizon 3

(c) Forecasting horizon 5

Figure D.6: Performance of LVNN and T-LVNN on the NOAA dataset across three forecasting horizons, with
different temporal window sizes T .
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MOLENE - SINGLE-STEP FORECASTING

Forecasting Horizon
1 3 5

Model MSE MAE sMAPE (%) MSE MAE sMAPE (%) MSE MAE sMAPE (%)
TPCA 1.95±0.01 1.04±0.00 0.37±0.00 4.21±0.04 1.55±0.00 0.55±0.00 5.83±0.05 1.86±0.01 0.66±0.00
LSTM 1.23±0.04 0.79±0.01 0.28±0.00 3.30±0.08 1.29±0.02 0.46±0.01 5.04±0.14 1.67±0.02 0.59±0.01
VNN 0.57±0.02 0.55±0.01 0.20±0.00 2.32±0.07 1.15±0.02 0.41±0.01 5.25±0.29 1.78±0.04 0.63±0.01

VNNL 0.62±0.01 0.57±0.01 0.20±0.00 2.26±0.01 1.13±0.00 0.40±0.00 4.56±0.02 1.67±0.01 0.60±0.00
STVNN 0.54±0.01 0.54±0.01 0.19±0.01 2.13±0.07 1.08±0.02 0.39±0.01 4.29±0.06 1.61±0.01 0.58±0.01

LVNN (ours) 0.58±0.01 0.55±0.01 0.20±0.00 2.27±0.02 1.15±0.02 0.41±0.01 4.72±0.1 1.65±0.03 0.60±0.01
T-LVNN (ours) 0.48±0.00 0.50±0.00 0.18±0.00 1.99±0.03 1.07±0.01 0.38±0.00 4.33±0.04 1.63±0.01 0.58±0.01

EXCHANGE RATES - SINGLE-STEP FORECASTING

Forecasting Horizon
1 3 5

Model MSE MAE sMAPE (%) MSE MAE sMAPE (%) MSE MAE sMAPE (%)
TPCA 5.01±0.07 1.36±0.01 1.95±0.02 5.23±0.10 1.40±0.01 2.01±0.02 5.65±0.05 1.45±0.01 2.08±0.02
LSTM 1.89±0.16 0.85±0.04 1.22±0.04 2.47±0.08 0.95±0.02 1.33±0.05 2.77±0.20 0.99±0.02 1.39±0.04
VNN 0.54±0.01 0.42±0.00 0.55±0.01 1.20±0.02 0.66±0.01 0.88±0.01 1.71±0.02 0.80±0.01 1.10±0.01

VNNL 0.51±0.00 0.42±0.00 0.55±0.00 1.15±0.04 0.64±0.02 0.87±0.03 1.64±0.01 0.78±0.00 1.08±0.01
STVNN 0.49±0.00 0.39±0.00 0.53±0.01 1.14±0.01 0.64±0.00 0.84±0.01 1.63±0.01 0.77±0.00 1.06±0.01

LVNN (ours) 0.44±0.00 0.36±0.00 0.50±0.00 1.02±0.00 0.60±0.00 0.81±0.01 1.56±0.01 0.75±0.00 1.02±0.01
T-LVNN (ours) 0.43±0.00 0.36±0.00 0.49±0.00 1.00±0.01 0.59±0.00 0.80±0.01 1.53±0.02 0.74±0.00 1.00±0.01

NOAA - SINGLE-STEP FORECASTING

Forecasting Horizon
1 3 5

Model MSE MAE sMAPE (%) MSE MAE sMAPE (%) MSE MAE sMAPE (%)
TPCA 5.50±0.13 1.74±0.02 3.03±0.04 13.37±0.21 2.75±0.02 4.78±0.04 19.19±0.22 3.29±0.01 5.78±0.03
LSTM 2.89±0.01 1.19±0.01 2.02±0.04 7.02±0.25 1.86±0.04 3.15±0.06 8.53±0.55 1.95±0.06 3.33±0.11
VNN 1.30±0.10 0.82±0.04 1.42±0.01 5.60±0.42 1.75±0.07 3.16±0.13 8.77±0.48 2.25±0.17 4.06±0.26

VNNL 1.74±0.01 0.99±0.02 1.75±0.02 6.07±0.40 1.90±0.09 3.30±0.11 9.04±0.58 2.45±0.31 4.21±0.22
STVNN 1.15±0.02 0.77 ±0.02 1.36±0.02 6.10±0.44 1.79±0.06 3.22±0.10 8.41±0.24 2.08±0.10 3.82±0.17

LVNN (ours) 1.24±0.04 0.77 ±0.01 1.35±0.01 5.94±0.36 1.79±0.07 3.26±0.11 8.14±0.43 2.11±0.13 3.89±0.16
T-LVNN (ours) 1.03±0.07 0.70±0.02 1.25±0.03 5.81±0.32 1.76±0.03 3.20±0.05 7.72±0.29 2.01±0.04 3.66±0.09

MOLENE - SPARSIFICATION

Forecasting Horizon
1 3 5

Model sMAPE (%) Time (sec) sMAPE (%) Time (sec) sMAPE (%) Time (sec)
LVNN - Dense 0.20±0.00 0.12±0.02 0.41±0.00 0.24±0.03 0.60±0.01 0.11±0.02

LVNN - Hard (25%) 0.20±0.00 0.09±0.02 0.42±0.00 0.21±0.01 0.61±0.00 0.09±0.01
LVNN - Hard (50%) 0.20±0.00 0.07±0.01 0.42±0.01 0.19±0.02 0.62±0.00 0.07±0.01
LVNN - Hard (75%) 0.21±0.00 0.05±0.01 0.42±0.00 0.17±0.01 0.61±0.01 0.05±0.01
LVNN - Soft (25%) 0.21±0.00 0.09±0.03 0.42±0.00 0.21±0.01 0.62±0.02 0.08±0.01
LVNN - Soft (50%) 0.20±0.00 0.07±0.01 0.42±0.00 0.19±0.00 0.61±0.00 0.07±0.02
LVNN - Soft (75%) 0.20±0.00 0.05±0.01 0.42±0.00 0.17±0.01 0.61±0.01 0.05±0.01
T-LVNN - Dense 0.18±0.00 0.53±0.03 0.38±0.00 1.48±0.1 0.58±0.00 0.51±0.04

T-LVNN - Hard (25%) 0.18±0.00 0.42±0.05 0.39±0.00 1.26±0.06 0.59±0.00 0.43±0.04
T-LVNN - Hard (50%) 0.18±0.00 0.36±0.05 0.39±0.00 0.74±0.06 0.59±0.01 0.37±0.03
T-LVNN - Hard (75%) 0.19±0.00 0.26±0.03 0.40±0.01 0.45±0.02 0.60±0.01 0.26±0.01
T-LVNN - Soft (25%) 0.18±0.00 0.44±0.03 0.40±0.00 1.22±0.16 0.59±0.00 0.45±0.02
T-LVNN - Soft (50%) 0.19±0.00 0.37±0.01 0.40±0.01 0.55±0.00 0.60±0.00 0.38±0.03
T-LVNN - Soft (75%) 0.19±0.00 0.27±0.01 0.40±0.00 0.48±0.05 0.59±0.00 0.28±0.04
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EXCHANGE RATES - SPARSIFICATION

Forecasting Horizon
1 3 5

Model sMAPE (%) Time (sec) sMAPE (%) Time (sec) sMAPE (%) Time (sec)
LVNN - Dense 0.50±0.00 0.86±0.04 0.81±0.01 0.87±0.03 1.01±0.01 0.89±0.03

LVNN - Hard (25%) 0.50±0.01 0.79±0.02 0.82±0.00 0.80±0.02 1.01±0.01 0.82±0.02
LVNN - Hard (50%) 0.50±0.00 0.73±0.02 0.81±0.00 0.70±0.02 1.01±0.01 0.77±0.02
LVNN - Hard (75%) 0.50±0.00 0.67±0.01 0.81±0.00 0.69±0.01 1.02±0.01 0.71±0.02
LVNN - Soft (25%) 0.50±0.00 0.79±0.01 0.80±0.01 0.81±0.01 1.01±0.01 0.81±0.01
LVNN - Soft (50%) 0.50±0.00 0.74±0.01 0.82±0.00 0.74±0.01 1.02±0.00 0.76±0.01
LVNN - Soft (75%) 0.50±0.00 0.69±0.01 0.81±0.00 0.70±0.02 1.02±0.01 0.70±0.01
T-LVNN - Dense 0.49±0.00 0.85±0.05 0.80±0.00 1.48±0.1 1.00±0.00 0.87±0.03

T-LVNN - Hard (25%) 0.50±0.00 0.77±0.05 0.80±0.01 0.81±0.01 1.01±0.00 0.80±0.01
T-LVNN - Hard (50%) 0.49±0.00 0.73±0.04 0.80±0.00 0.75±0.02 1.01±0.00 0.76±0.01
T-LVNN - Hard (75%) 0.49±0.00 0.67±0.09 0.79±0.00 0.70±0.02 1.01±0.01 0.70±0.02
T-LVNN - Soft (25%) 0.50±0.00 0.78±0.06 0.80±0.00 0.80±0.01 1.01±0.00 0.80±0.01
T-LVNN - Soft (50%) 0.49±0.00 0.73±0.05 0.80±0.01 0.75±0.02 1.01±0.00 0.75±0.01
T-LVNN - Soft (75%) 0.49±0.00 0.67±0.05 0.79±0.00 0.71±0.02 1.01±0.00 0.69±0.01

NOAA - SPARSIFICATION

Forecasting Horizon
1 3 5

Model sMAPE (%) Time (sec) sMAPE (%) Time (sec) sMAPE (%) Time (sec)
LVNN - Dense 1.35±0.01 9.13±0.54 3.26±0.16 127.47±2.88 3.89±0.21 94.30±3.77

LVNN - Hard (25%) 1.40±0.01 7.47±0.37 3.31±0.07 102.96±0.26 3.92±0.11 85.81±1.33
LVNN - Hard (50%) 1.44±0.00 4.76±0.68 3.39±0.11 69.14±3.36 3.95±0.14 66.11±4.84
LVNN - Hard (75%) 1.42±0.01 2.53±0.60 3.33±0.09 41.13±2.43 3.91±0.12 40.18±3.94
LVNN - Soft (25%) 1.45±0.03 7.63±0.38 3.35±0.07 106.67±2.49 3.93±0.09 86.00±1.37
LVNN - Soft (50%) 1.46±0.03 4.89±0.45 3.38±0.07 76.62±5.42 3.90±0.11 68.85±2.35
LVNN - Soft (75%) 1.39±0.02 2.37±0.46 3.87±0.10 42.23±4.98 3.40±0.08 40.35±3.48
T-LVNN - Dense 1.25±0.03 4.41±0.71 3.20±0.03 181.55±3.02 3.66±0.09 66.88±1.59

T-LVNN - Hard (25%) 1.28±0.03 3.60±0.09 3.25±0.10 157.28±6.65 3.69±0.07 60.59±5.22
T-LVNN - Hard (50%) 1.33±0.03 2.48±0.70 3.28±0.10 109.06±5.23 3.72±0.11 41.60±5.02
T-LVNN - Hard (75%) 1.28±0.02 1.93±0.29 3.29±0.09 68.73±0.18 3.74±0.08 31.63±5.26
T-LVNN - Soft (25%) 1.29±0.03 3.41±0.23 3.29±0.09 143.77±4.74 3.70±0.09 60.10±6.24
T-LVNN - Soft (50%) 1.32±0.03 2.35±0.64 3.27±0.07 108.71±0.81 3.67±0.13 38.72±3.47
T-LVNN - Soft (75%) 1.31±0.02 1.54±0.53 3.23±0.07 70.79±4.63 3.73±0.09 23.11±7.24
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