
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Documenting Typical Crosscutting
Concerns

Marius Marin, Leon Moonen and Arie van Deursen

Report TUD-SERG-2007-010

SERG

TUD-SERG-2007-010

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication in the Proccedings of the 14th IEEE Conference on Reverse Engineering

c© copyright 2007, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.

Documenting Typical Crosscutting Concerns

Marius Marin

Delft University of Technology

The Netherlands

A.M.Marin@tudelft.nl

Leon Moonen

Delft University of Technology

The Netherlands

Leon.Moonen@computer.org

Arie van Deursen

Delft Univ. of Technology & CWI

The Netherlands

Arie.vanDeursen@tudelft.nl

Abstract

Our analysis of crosscutting concerns in real-life software

systems (totaling over 500,000 LOC) and in aspect-oriented

literature, indicated a number of properties that allow for

their decomposition in primitive building blocks which are

atomic crosscutting concerns. We identify these blocks as

crosscutting concern sorts, and we use them to describe

the crosscutting structure of many (well-known) designs and

common mechanisms in software systems.

In this paper, we formalize the notion of crosscutting con-

cern sorts by means of relational queries over (object ori-

ented) source models. Based on these queries, we present

a concern management tool called SOQUET, which can be

used to document the occurrences of crosscutting concerns in

object-oriented systems. We assess the sorts-based approach

by using the tool to cover various crosscutting concerns in

two open-source systems: JHotDraw and Java PetStore.

1. Introduction

The typically ill-modularized, scattered and tangled imple-

mentation of crosscutting concerns in existing software sys-

tems is known to be a challenge to understanding, and hence

to the maintenance and evolution of these systems. Despite

significant research efforts on the design and development of

aspect-oriented languages as well as on concern identifica-

tion techniques, there is still little consensus on what exactly

constitutes a crosscutting concern, and how such concerns

can be recognized, understood, and clearly documented in

source code. We believe that (enabling) consistent under-

standing and documentation of crosscutting concerns in ex-

isting code is the key to making such systems easier to com-

prehend and maintain.

Over the last three years, we have analyzed crosscutting

concerns in a range of Java systems, including JBoss, TOM-

CAT, JHOTDRAW, and the J2EE PETSTORE, totaling over

500,000 lines of code. A detailed description of the crosscut-

ting concerns in the latter three of these systems is provided

in our earlier work and accompanying web site [12].

In our study, we found several “building blocks” for cross-

cutting concerns. An example is the superimposition of a new

role on an existing class. An instance of such a role super-

imposition can be found in the drawing application JHOT-

DRAW, in which all classes representing figure types that are

to be stored on file should implement the “Storable” inter-

face. In AspectJ such a crosscutting concern would typically

be implemented through an “introduction” mechanism.

Another building block we noted involves “consistent be-

havior”. As an example, again from JHOTDRAW, all execute

methods as occurring in the Command hierarchy consistently

invoke their super method in order to check certain precondi-

tions. Here the AspectJ equivalent is a pointcut and advice.

In our previous work, we identified a dozen of such ba-

sic building blocks and labeled them “crosscutting concern

sorts” [13]. These sorts (described in Table 1) can be used on

their own, but can also be composed to construct more com-

plex designs or features. For example, the Observer pattern,

often used as a typical example of crosscutting behavior, can

be seen as consisting of two role superimpositions (one for

the Subject and one for the Observer role), and two consis-

tent behaviors (one for the notification and another for the

observer registration). Likewise, we have seen several other

well known crosscutting concerns that can be composed from

our sorts, like transaction management and undo support.

Our previous work on crosscutting concern sorts essen-

tially consists of a list of 12 sorts, each explained informally

in one or two paragraphs [16, 13]. There are, however, still a

range of open questions: What exactly is a “sort”? Is there a

way to formalize this notion? Based on such a formalization,

would there be a way to unambiguously identify the occur-

rence of a sort in source code? Can we offer tool support for

documenting crosscutting concerns based on sorts? And, last

but not least, how “typical” are the sorts we have proposed?

Do these sorts indeed occur in practice? How often? How

can certain well known crosscutting concerns as occurring in

existing systems be captured using sorts? In this paper, we

set out to provide an answer to questions such as these.

The main contributions of the paper are:

• We formalize the notion of crosscutting concern sort by

characterizing each sort by a specific query over a model

of the source code. We present the queries for the six

most commonly encountered sorts in this paper.

• We have developed SOQUET, an Eclipse plug-in that

implements the queries for each sort, which can be used

to document crosscutting behavior in Java applications.

• We provide an in depth study of sorts occurring in ex-

isting Java systems. In particular, we use SOQUET to

document a variety of crosscutting concerns as presently

implemented in the drawing application JHOTDRAW

and web application PETSTORE.

1

SERG Marin et al. – Documenting Typical Crosscutting Concerns

TUD-SERG-2007-010 1

The next sections each cover one of these contributions, af-

ter which we conclude with a discussion on these results, a

survey of related work, and an outlook towards future work.

2. Crosscutting Concern Sorts

In our previous work, we recognized several sorts of cross-

cuttingness, which recur in many well known and lesser

known crosscutting concerns. The full list is shown in Ta-

ble 1. We characterized each of these sorts by:

1. an intent, summarizing the purpose for which it is used;

2. an implementation idiom, explaining how the sort is typ-

ically implemented in an OO programming language;

3. an aspect mechanism, describing how the sort’s imple-

mentation can be modularized using aspects.

In the present paper, we go one step further, and discuss how

we can formalize the notion of a sort. To that end, we express

the six most commonly encountered sorts as queries over a

meta-model describing object oriented source code.

2.1. The query model

Our query model is aimed at providing a standard, formal-

ized description of the relations underlying each of the cross-

cutting concern sorts. The model consists of a generic query

definition and a set of query templates (sort queries) that cap-

ture the relations specific to each of the sorts.

A sort query is a binary relation between elements of two

sets, the source context and the target context. The elements

in these contexts are program elements, such as classes or

methods. The relation between them is based on a combina-

tion of various source code relations, such as call or inheri-

tance relations, that can be extracted using static analysis. A

query can limit each context by selection clauses that impose

restrictions to the elements that participate in the relation.

The elements and collaborations relevant to the sort

queries are shown in Figure 1. These relations are used

to pose restrictions in queries, such as “any method m that

Project

Package

Type

Name

Interface Method

Field

Exception

Class Constructor

Member

throws

implements

contains

contains

declares

has-argument

has-parameter

invokes

invokes

invokes

is_of_type

extends

Element

encloses

dataflow

Figure 1. Meta-model relevant to sort queries

is of type T”. The type of a method is considered to be its

returned type.

2.2. Formalization of sorts

This section covers a selection of the crosscutting concerns

sorts shown in Table 1. Because of space constraints, we

only discuss those six sorts most commonly encountered in

practice. The remaining sorts are covered in the technical

report [11].

(Method) Consistent Behavior The crosscutting relation

specific to this sort occurs between a set of methods in a de-

fined (source) context and a given action implemented by a

method. The methods in the set consistently invoke the action

to fulfill a requirement additional to their core functionality.

While the target context is defined through one method,

namely the invoked action, the definition of the source con-

text can cover various cases; for example, a logging instance

could define the set of all methods in a Java project as source

context. In this case, the seed to define the context is a project

element. Other contexts could cover a type hierarchy, or just

the set of methods of a class, etc. Each of these contexts re-

quires a different (type of) seed element. Our helper function

ContextCB distills all methods from a given starting point s.

We formalize the concern sort and document its instances

through a query that takes as input the invoked method and

the seed element to define the source context.

CB(Element s,Method m) := { (m′
,m) |

m′ ∈ Method∩ContextCB(s) ∧ m′ invokes m }

The common idiom to implement instances of this sort in an

object-oriented (particularly Java) language consist of scat-

tered method calls (from a defined context) to the method im-

plementing the common action to be executed consistently.

An example of consistent behavior is the notification

mechanism in the Observer pattern: actions that change the

state of the Subject have to consistently call the notification

method to allow the observers to update their state.

Another example from transaction management is aimed

at maintaining data integrity by ensuring that an operation

is committed only when it is fully completed and rolled-

back otherwise (e.g., in bank transfers both the debit and

credit operations have to succeed to keep the data in a con-

sistent state). Transaction management in Java is supported

via JDBC transactions and the Java Transaction API (JTA) 1.

A JTA transaction requires that methods implementing the

transaction logic consistently invoke dedicated methods of

the javax.transaction.UserTransaction interface: the begin

method at the beginning and the commit (or rollback) at

the end to demarcate a JTA transaction. These invocations

are instances of the Consistent behavior sort.

Other instances of this sort include Logging of excep-

tions thrown in a system; Wrapping service level exceptions

1http://java.sun.com/j2ee/1.4/docs/tutorial/doc/

2

Marin et al. – Documenting Typical Crosscutting Concerns SERG

2 TUD-SERG-2007-010

Sort Short description

(Method) Consistent Behavior A set of method-elements consistently invoke a specific action as a step in their execution.

Redirection Layer A type-element acts as a front-end interface having its methods responsible for receiving calls and redirecting

them to dedicated methods of a specific reference, optionally executing additional functionality.

Expose Context (Pass Context) Methods in a call chain consistently use parameter(s) to propagate context information along the chain.

Role Superimposition Type-elements extend their core functionality through the implementation of a secondary role.

Support Classes for

Role Superimposition

Type-elements implement secondary roles by enclosing nested support classes. The nesting enforces (and makes

explicit) the relation between the role of the enclosing class and that of the support class.

Exception Propagation

(Declare throws Clause)

Method-elements in a call chain consistently (re-)throw exceptions from their callees in the absence of an appro-

priate answer.

Contract Enforcement A set of method-elements consistently check a common condition.

Interfacing Layer Elements implementing different roles are highly coupled, with one element (e.g., an UI component) wrapping

and interfacing the other (e.g., action-controller, model) to mirror its state and action-response.

Add Variability Clients consistently pass method-objects to server elements which invoke them via these callback methods.

Policy Enforcement References between program elements are restricted as part of a (system) policy rule.

Design Enforcement A set of elements are forced to comply with specific design rules, such as “all types in a context have to declare a

no-argument constructor”.

Dynamic Behavior Enforcement A set of elements implement certain rules for object use, such as the use of life-cycle methods.

Table 1. Sorts of crosscuttingness. The first six sorts are discussed and formalized in this paper.

of business services into application level exceptions [12];

Checking credentials as part of authorization [10]; etc.

Redirection layer A redirection layer defines an interfac-

ing layer to an existing object (to add functionality or change

the context) which acts as a front-end that accepts calls and

redirects them to dedicated methods, optionally executing ad-

ditional functionality. The consistent (yet, method specific)

redirection logic crosscuts this layer’s methods.

The relation for this sort is between the redirecting layer

and the target object, and resides in the consistent redirection

of calls between method pairs. The source context is defined

by the class acting as a redirector, the target context is the

type whose methods receive the redirection. The implemen-

tation idiom consists of the identical logic in the methods (of

a class) that redirect their calls to partner methods of a given

type.

The query to document instances of this sort is parame-

terized with the redirecting type and a reference to the object

receiving the redirection:

RL(Class c,Member f) := { (m,m′) | m,m′ ∈ Method ∧
c declares m ∧ f is of type c′ ∧ c′ declares m′ ∧
invokes(m) ∩ methods(c′) = {m′} ∧
invokes−1(m′) ∩ methods(c) = {m} }

where invokes(m) = {m′ | m invokes m′}, invokes−1(m) =
{m′ | m′ invokes m}, and methods(c) = {m | c declares m}.

Implementations of the Decorator pattern are common ex-

amples of instances of this sort. For example, decorators are

used in JHOTDRAW to allow to attach elements like borders

to Figure objects. The decorators for figures extend Decora-

torFigure, which defines the set of methods to consistently

forward their calls to the stored reference of the decorated

object. Subclasses of DecoratorFigure, like Border or An-

imationDecorator, override its methods to dynamically ex-

tend its functionality. Consistent redirection is also common

in implementation of patterns like Adapter and Facade, as

well as wrapper classes [12].

Expose context (Context passing) Instances of this sort

are characterized by methods that are part of a call chain that

use an (additional) parameter to pass context along the chain.

The caller exposes its context to a callee by passing infor-

mation to each method in the call stack of that callee. The

idiom specific to this sort is the crosscutting declaration of

additional parameters that are used to pass context.

The elements related by this sort are the caller that wishes

to propagate the context info and the callees to which the

caller passes the argument. We use transitive closure to get a

complete description of context passing along the chain.

EC(Method m) := { (m1,n) | (m1,n) ∈ Method×Name ∧
m has-parameter n ∧ m1 = endpoint(invokes+ (m)) ∧
∀m2 ∈ invokes+(m,m1) . ∃n2 ∈ Name .

m2 has-argument n2 ∧ n dataflow n2 ∧
m1 6= m2 ↔¬ uses(m2,n2) }

where endpoint(invokes+(m)) returns last element of the

call-chain started from m, and uses(m2,n2) indicates that m2

uses the value of n2 for something else than propagation to

its callees (i.e. n2 occurs in another statement than a call to

the next methods on the call-chain towards m1).

An example instance of this sort is the use of IProgress-

Monitor objects to monitor progress of long-running oper-

ations in Eclipse applications. These operations are passed

a reference to the monitor class through a parameter. They

invoke methods of this monitor to indicate progress, like

the worked(int) method to indicate that a given number of

work units of the executing task have been completed. Any

sub-operations receive a reference to the same monitor and

use it to report their contribution to general progress.

Laddad discusses several other examples of concerns of

this sort, part of transaction management or authorization

3

SERG Marin et al. – Documenting Typical Crosscutting Concerns

TUD-SERG-2007-010 3

mechanisms, and proposes an AspectJ solution to improve

modularization (the Wormhole pattern) [10].

Role superimposition This sort applies to types that im-

plement a specific secondary role or responsibility, like

classes that participate in multiple collaborations and hence

implement multiple roles [18]. The idiom is implementation

of multiple interfaces (or methods that can be abstracted into

an interface), and possibly the declaration or inheritance of

attributes to support secondary role(s). The crosscuttingness

resides in the entanglement of multiple roles in a single class.

In order to get those classes that implement an extra role,

other than their defining hierarchy, we specify a seed ele-

ment for the source context, as well as the role-element. The

definition of the context is similar to that of the Consistent

behavior sort. The role-element is specified as an interface

or class, or, as we shall see in Section 3, as a virtual interface

if the role does not have a dedicated type.

RSI(Element s,Type role) := { (t,role) |
t ∈ Type∩ContextRSI(s) ∧ ((role ∈ Interface ∧
t implements role)∨ (role ∈ Class ∧ t extends role)) }

Common examples of Role superimposition occur in imple-

mentations of design patterns defining specific roles, like the

Visitor pattern, or the Observer pattern discussed before.

The implementation of persistence is also possible

through role superimposition: the Figure elements in JHOT-

DRAW implement a Storable interface which defines the

methods for a (figure) object to write and read itself to and

from a file. Each figure implements these methods in a spe-

cific way to provide persistence and recovery of drawings

over work sessions.

Other examples of this sort are based on implementations

of multiple interfaces with dedicated, specific roles, e.g., Se-

rializable, Cloneable, Undoable, etc.

Support classes for role superimposition The mechanism

of nested classes enforces and explicates the relation between

the enclosing and the nested classes. This allows for super-

imposition of roles, as a number of elements can share a com-

mon role by enclosing support classes of a specific type.

Role superimposition through nested, support classes typ-

ically occurs for complex roles, and as an alternative to im-

plementation of multiple interfaces: two hierarchies can in-

teract by having common classes (that implement elements

from both hierarchies) or by having elements from one hier-

archy as support classes for the elements in the second hier-

archy.

The relation between the enclosing and the support class

(and their respective roles) can be formalized as:

SC(Type c,Type role) := { (c1,c2) | c1,c2 ∈ Type ∧
c1 implements c ∧ c1 encloses c2 ∧ c2 implements role }

An idiomatic implementation of the sort exhibits interaction

of hierarchies through containment of nested classes.

An instance of this sort is present in JHOTDRAW as part of

the support for undo functionality. Two type-hierarchies in-

teract through support classes by having the members of one

hierarchy enclosing members of the second one. The main

hierarchy, Command, defines command elements for exe-

cuting various application-specific activities like, copy and

paste, or operations for setting the attributes of a figure. The

second hierarchy, Undoable, defines operations for undo-ing

and redo-ing the results of executing a command. Typically,

each Command class encloses its associated Undo class.

Other examples of instances of the sort include implemen-

tations of specialized iterators for various Collection types

and event dispatcher classes for managing notifications of lis-

teners.

Exception propagation The intent of the sort is described

by the consistent propagation of exceptions in a call chain

when no appropriate response is available in the callers. Sim-

ilar to context passing, the relation of the sort applies to a call

chain. The callers implement the consistent (enforced) logic

of re-throwing exceptions if they are not able to handle them.

To document such a concern, the query needs the method

in which the exception originates and the type of exception.

Optionally, a context seed can be provided to restrict the set

of methods considered for (re-)throwing the exception:

EP(Element s,Method m,Exception e) := { (m′
,e) |

m,m′ ∈ Method∩ContextEP(s) ∧ m′ invokes+ m ∧
m throws e ∧ m′ throws e }

Common examples of this sort in Java are implemented by

not catching a given exception but re-throwing it through the

declaration of a throws clause. A concrete example is the

IOException discussed later in Section 4.1.

3. Sort-Based Concern Modeling

Concern modeling tools support software engineers in mod-

eling their software systems in terms of concerns. Exam-

ples of such tools are the Concern Manipulation Environ-

ment CME [8], and the Feature Exploration and Analysis

Tool FEAT [19]. A study by Robillard and Murphy shows

that concern models help software maintenance [19].

Currently, concern modeling tools create rather low level

models that are built from concrete source elements from the

system that is documented. We propose the use of crosscut-

ting concern sorts to raise the level of abstraction in concern

modeling. We integrate sorts into concern models by permit-

ting queries as elements in the concern hierarchy.

To support sort-based concern modeling, we have built an

Eclipse plug-in called SOQUET (SOrts QUEry Tool) that is

available from our website.2 This tool allows one to describe

crosscutting relations in a system based on querying the sys-

tem’s source code for instances of crosscutting concern sorts.

2http://swerl.tudelft.nl/view/AMR/SoQueT

4

Marin et al. – Documenting Typical Crosscutting Concerns SERG

4 TUD-SERG-2007-010

Figure 2. SoQueT views and dialogs

These queries can be composed and stored to create persis-

tent, sort-based documentation of concerns in existing code.

The tool’s main user interfaces are shown in Figure 2.

SOQUET assists the user in documenting and/or under-

standing crosscutting concerns in a system in the following

way: First, the user defines a query for a specific sort based

on its predefined template. The template guides the user in

querying for elements that pertain to concrete sort instances

and the user can restrict the query context, for example, by

limiting it to a certain inheritance hierarchy.

Next, the results of the query are displayed in the Sort-

search results view. This view provides a number of options

for navigating and investigating the results, like display and

organization layouts, sorting and filtering options, links from

the query results for source code inspection, etc.

Finally, a Concern model view allows one to organize sort

instances in composite concerns and describe them by user

defined names. The concern model is a tree that defines a

view over the system that is complementary to Eclipse’s stan-

dard package explorer. The system’s sort instances are leaves

in this tree and intermediate nodes describe composite con-

cerns. An element representing a sort instance element can be

selected to re-run its associated query and inspect the results.

Note that queries can be associated only with sort instances

and not to a composite concern. A model can describe com-

plex concerns, system features, or whole projects.

SOQUET introduces the concept of a virtual interface to

define and describe a role whose definition is tangled within

another type. This mechanism allows the user to create a

virtual type by selecting in a graphical interface those mem-

bers of the multi-role type, such as methods or fields, that are

part of the role of interest. Further implementation details are

available in a formal research demonstration paper [15].

4. Sorts in Practice

In this section, we look at how sort instances occur in real

systems. We describe two cases, totaling around 40,000

non-comment lines of code, from different application do-

mains: JHOTDRAW3 is an open-source drawing application

and framework, and PETSTORE is a sample J2EE e-business

application (an on-line shop) developed by SUN.4 These ap-

plications have regularly been used as benchmarks in (collab-

orative) aspect mining studies, and detailed reports of earlier

findings have been published [12, 2, 14, 17].

Discussion of the first case is based on the main sorts that

occur in our sort-based concern documentation of the case

3 http://jhotdraw.org/, version 5.4b1
4 http://java.sun.com/blueprints/, Java PetStore v. 1.3.2.

5

SERG Marin et al. – Documenting Typical Crosscutting Concerns

TUD-SERG-2007-010 5

using SOQUET. The concern model created for this case can

be downloaded from the same web-site as the tool. We dis-

cuss a significant number of instances to show how “typical”

the proposed sorts are and how they occur in practice. Ta-

ble 2 shows the number of identified and documented sort

instances. A number of additional sorts, not discussed in this

paper, are described in a technical report which presents con-

cerns in JHOTDRAW organized by design patterns [11].

The organization of the second case is aimed at showing

how well-known crosscutting features and mechanisms can

be decomposed and captured using crosscutting sorts.

4.1. JHOTDRAW

Figure 3 shows the core components of JHOTDRAW’s archi-

tecture and their collaborations. The Figure type general-

izes the notion of geometrical and text figures in the appli-

cation. Figure elements support core operations like draw-

ing and management of their display box. On top of these

responsibilities, Figures participate in collaborations that re-

quire implementation of multiple roles, such as observability

for changes, composability, and visitability for insertion or

deletion of figures in composites. Moreover, figures and their

enclosing drawings are persistent and implement specialized

(read and write) methods defined by the Storable interface.

JHOTDRAW’s user interface contains menus to execute

operations like storing drawings and manipulating figures. It

uses a dedicated Command hierarchy of around 40 elements

to implement these operations. Figures can also be manipu-

lated through a set of Tools, such as a selection or copy tool.

Tools access figures via a common interface realized by Han-

dle elements, which act as Figure adapters.

Operations on figures notify listeners, such as drawing

views, of changes and support undo functionality of such

changes. Below we give an overview of the sorts encoun-

tered in JHOTDRAW together with their concrete instances.

Figure 3. Collaborations in JHotDraw

Role superimposition We document the multiple respon-

sibilities in the Figure elements as distinct instances of the

Role superimposition sort. Roles like observability or manip-

ulating parts of a composite figure require the use of virtual

interfaces since their elements are tangled within the main

Figure interface. Concerns such as persistence simply re-

quire to pass the Storable interface as a parameter to instan-

tiate the sort-query. A similar case holds for drawing persis-

tence.

Other instances of Role superimposition describe listeners

for Command and Tool events. Listeners typically implement

a secondary, dedicated interface. However, in JHOTDRAW

the elements of the Observable role are defined by the same

top interfaces as the core concerns of each of the two ele-

ments. These interfaces also include elements of the role for

undo support, which requires another virtual interface.

The Command, Tool and Handle elements participate in

various design patterns, like Command, State, and Adapter,

respectively. We use sort instances to document each of the

roles associated with these patterns in the three elements.

Other elements of our documentation are drawing views

and editors that are common event and change listeners.

Consistent behavior and Contract enforcement A large

number of concern instances documented for JHOTDRAW

belong to the Consistent behavior sort. Some of these imple-

ment notification mechanisms for the various Observer de-

signs, like drawing and figure changes, tool state changes,

etc. Others crosscut the Command hierarchy, like consis-

tently checking that a view is active before command exe-

cution, and refreshing that view after execution. The same

(named) commands initialize the reference to the associated

undo activity prior to their execution, and save the set of af-

fected figures. Similar instances are present in the Tool and

Handle implementations. The specific Undo activities for an

activity also consistently conduct a number of checks before

execution, like checking the undo/redo state of that action.

Consistent behavior is also present in several constructors,

like Commands and Tools, and in mouse or key handling ac-

tions, that implement a shared functionality by means of su-

per calls. These concerns cut across specific type hierarchies.

Exception propagation The operations to implement per-

sistence, like reading Figure objects from input streams,

throw IOExceptions if not successful. The exception is prop-

agated upward in the call chain to the method handling the

drawing-recovery command triggered by the user actions,

which catches the exception and prints an error message. We

document the mechanism in SOQUET through an instance

of the Exception propagation sort: The query starts from the

method generating the exception of the given type, and dis-

plays recursively those callers re-throwing the exception.

Figure 4 shows the results of the query in the SOQUET

view; The nodes for the callers re-throwing the exception can

6

Marin et al. – Documenting Typical Crosscutting Concerns SERG

6 TUD-SERG-2007-010

Figure 4. SoQueT view for Exception Propagation

be expanded to display their own callers that propagate the

same exception further in the call chain.

Redirection layer Besides the figure decorators that were

previously discussed, JHOTDRAW contains a number of redi-

rector instances for event handling and action delegation.

Command invokers implement the ActionListener inter-

face whose only method, actionPerformed, consistently in-

vokes the execute method of the associated command. We

document this action delegation for command execution as

an instance of the Redirection layer sort. Similar Redirection

instances occur in key and mouse listeners which forward the

handling of the captured event to associated tools.

Finally, commands that can be undone are wrapped by an

UndoableCommand, which redirects requests to the wrapped

command. We document this concern using a sort query

that reports those methods that consistently redirect from the

wrapper to the Command reference. A similar wrapper is

used for Tool elements. Redirection layers are also used to re-

verse undo/redo activities, as in the UndoRedoActivity class.

Support classes Commands use Support classes to imple-

ment undo functionality. Similar instances are present in the

undo support for Tools as well as for Handles.

Other instances of this sort document EventDispatchers

nested classes that implement more complex notification

mechanisms for various Observers, like for AbstractTool.

The support class stores the association between a tool and its

list of observers, and notifies the observers of various events.

To document this concern, we pass the EventDispatcher and

the Tool hierarchy as input parameters to the sort query.

4.2. Enterprise Applications

Several mechanisms commonly encountered in enterprise

(J2EE) application development, such as transaction man-

agement, persistence or component lookup are well-known

to be crosscutting and amenable to aspect-oriented solu-

tions [10, 3]. To elaborate on the coverage of real-life cross-

cutting concerns by crosscutting concern sorts, we discuss a

number of these mechanisms as encountered in PETSTORE.

Resource lookup: Service locator and caching, Business

delegate, and exception wrapping and handling PET-

STORE uses service locators [1] to provide single access

points for resource lookup. The (singleton) implementation

of the service locator in the web tier includes a caching mech-

anism to hold references to enterprise bean home objects or

Java Message Service (JMS) resources for re-use. The lo-

cator is used by a business delegate (AdminRequestBD) to

lookup business components. The delegate handles the dis-

tributed component lookup, decoupling the business services

from their (presentation-tier) clients, and is responsible for

catching exceptions thrown by the underlying implementa-

tion and converting them to application exceptions. We refer

to this mechanism as exception wrapping [12].

Documenting the caching is based on two crosscutting

concern sorts: First, the caching support in the service lo-

cator is a secondary role and an instance of Role superimpo-

sition. The role elements comprise the map structure used

for caching. Second, the component lookup uses Consistent

behavior to first check the cache for the searched component,

and then insert the key in the cache if not present.

The exception wrapping mechanism, present in both the

locator and the business delegate, is an instance of Consis-

tent behavior, very common in enterprise applications. The

concern implementation consists of invoking the constructor

of a specific exception type to wrap a caught exception. The

delegate class also implements Consistent behavior for log-

ging the caught (and wrapped) exceptions.

Persistence strategy PETSTORE allows online purchases

from a list of items whose details are stored in an external

catalog that is accessed only for creating these lists. The ap-

plication uses Data Access Objects (DAOs) to read the cata-

log and keep the data access mechanism hidden.

Client access to the catalog is done through a stateless ses-

sion bean (CatalogEJB), which gets the data (Item, Product,

or Category) from its wrapped DAO object (CatalogDAO):

The data-access methods of the bean forward their invoca-

tions to the business methods of the DAO object. The DAO

object manages persistence of the (Serializable) catalog en-

tries by accessing the Enterprise Information System (EIS).

The serialization of the catalog entries is an instance of

Role superimposition. To further document the wrapping of

the DAO object in the stateless session bean, we use the Redi-

rection layer sort. Both the DAO and the session bean ele-

ments implement exception wrapping, by catching specific

type of exception thrown by their business methods, and re-

throwing a different exception type; the concern is an in-

stance of the Consistent behavior sort.

The DAO objects managing access to the persistent stor-

age exhibit several other instances of Consistent behavior:

the business methods consistently require a (JDBC) connec-

tion before executing the specific query, and after execution,

the connection is closed through specific method invocation.

7

SERG Marin et al. – Documenting Typical Crosscutting Concerns

TUD-SERG-2007-010 7

Similar mechanisms and concerns are present in other

J2EE persistence examples described in literature, such as

the use of Hibernate5 for persistence by Colyer et al. [3].

Transaction management Programmatic transaction

management is often acknowledged as crosscutting due

to the consistent calls to Java Transaction API (JTA) for

demarcation of the transaction, which has to execute com-

pletely or not at all [10]. The transaction mechanism in

PETSTORE is similar to the one discussed by Laddad in [10]:

the application’s web-tier does not benefit from automatic

(declarative) transaction management and hence implements

it through JTA calls (e.g., the TemplateServlet servlet).

Transaction control implies several instances of Consis-

tent behavior: first, a lookup action provides a UserTrans-

action object that can be used to begin the transaction by in-

voking the object’s begin method. Next, the execution of the

operation is followed by a commit if no exception occurred,

or by a rollback otherwise. These actions invoke specialized

methods on the transaction object.

PETSTORE also uses instances of Consistent behavior for

(simple) exception logging. Laddad’s example exhibits an in-

stance of the same sort to wrap the exception when the lookup

operation for the transaction object fails.

The ServletTemplate class, which implements a templat-

ing service for composing multiple views in one page, dis-

patches specific requests to an appropriate template compo-

nent by passing its request and response parameters as ar-

guments. We document this mechanism as an instance of the

Expose context sort.

Order processing center: Transition delegates Transi-

tion delegates are part of an asynchronous messaging sys-

tem implemented by the application for processing customer

orders. After an order is received, a number of activities exe-

cute specific operations in a defined succession; these include

sending emails to customers to acknowledge orders, sending

order documents to suppliers, or updating orders based on

invoice information. At the end of its execution, an activity

passes a message asynchronously to the next activity by us-

ing a dedicated transition delegate. The delegate knows the

successive activity in the workflow to be notified.

The activities are implemented as message-driven beans

and trigger the notification by first setting-up their re-

lated transition delegate and then invoking the delegate’s

doTransition method at the end of their work. This no-

tification occurs as a distinct concern from the main logic of

the activity sending it, and hence we document it as a (Con-

sistent behavior) sort instance.

5hibernate.org

5. Discussion

Coverage of the crosscutting concerns by sorts The list

of sorts is open-ended, and new sorts can be added, following

the rules of the proposed catalog for formalizing concerns, if

their relations cannot be covered by the existing sorts. With

the present catalog we cover all concerns that we are aware

of in complex cases, like PETSTORE and JHOTDRAW, as

discussed in this paper. The analysis carried out and the ex-

amples accompanying the description of sorts also show that

these sorts cover well many of the crosscutting concerns de-

scribed in the aspect-oriented literature.

It is important to notice that while crosscutting concerns

can be discussed or even recognized at a higher level of gran-

ularity, like an Observer design or a transaction management

mechanism, the concerns described by sorts are meaningful

on their own. In fact, common refactoring solutions typically

address concern sorts, like introduction of roles or advice for

consistent behavior, which are only presented in a larger con-

text of a specific feature or design [10, 7]. The classification

in sorts helps us to describe those crosscutting concerns at a

consistent granularity level.

Crosscutting concerns as relations The sort-based ap-

proach to crosscutting concerns proposed in this paper looks

at such concerns as non-explicit relations between two sets

of elements of variable cardinality (i.e., the source and the

target contexts respectively). Each sort is described by a dis-

tinctive relation captured by the sort’s specific query. While

the relation is common to all instances of the sort, the defi-

nition of the context can vary from instance to instance: for

example, a log method (the target context) can be invoked

by, and hence be crosscutting for, all the methods in a sys-

tem (the source context), while a notification action (target)

is invoked by the set of methods changing the state of an

Observable object (source). Each of these instances of the

Consistent behavior sort has particular contexts.

The definition of contexts is a research topic on its own.

Current aspect languages cover definitions based on naming

conventions or some structural relations (e.g., type hierar-

chies), but do not support specification of a context like “all

elements changing the state of a Figure object”. SOQUET

allows for a number of context definitions, such as class,

project, package, or hierarchy, as well as for simple collec-

tions of elements. Although the last option is very flexi-

ble, permitting any selection of elements, a concise definition

based on common properties of the context set’s elements is

more relevant for the intent of the crosscutting concern.

Tool usage SOQUET can typically be used from two per-

spectives, namely, (1) as a tool for consistently creating

crosscutting concern documentation for a system, and (2) as

a tool for exploring query-based crosscutting concern docu-

mentation that was defined earlier for the system under in-

vestigation. In the first scenario, the user is assumed to be

8

Marin et al. – Documenting Typical Crosscutting Concerns SERG

8 TUD-SERG-2007-010

acquainted with the concerns to be documented. An example

is a developer that wants to make explicit some relations that

are otherwise “hidden” by the object-based decomposition of

a given system.

In the second scenario, a user can explore a given sys-

tem by loading the (pre-existing) sort-based documentation

of an application into SOQUET in order to locate and better

understand certain crosscutting concerns in the implementa-

tion. This documentation highlights policies and contracts

in the code that are relevant for software evolution tasks and

migration towards aspect solutions.

The main problems with describing and documenting

crosscutting concerns stem from to the flexibility of the tool

for defining contexts, as discussed above. SOQUET could

be improved by allowing set theoretic operations, such as the

union of type hierarchies. Furthermore, defining contexts us-

ing pattern matching on names (e.g., all set* methods) is not

implemented at the moment.

Adding new sort queries in the current version of the tool

is also fairly complex and relies on the “extension points”

mechanism in Eclipse. We are exploring how we can proto-

type our queries using tools that support more direct source

code queries, as discussed in the next section. This support

is, however, still limited at the moment.

Using sorts in aspect mining and refactoring We have

used crosscutting concern sorts to define a common frame-

work for aspect mining [14]. The framework uses the sort

specific idioms as a starting point for the design of aspect

mining techniques and as a reference for defining mining re-

sults representation that can ensure consistent comparison of

techniques and results. The definition and description of sorts

further allow us to conduct idiom-driven aspect mining, and

to engineer techniques that target specific idioms and hence

sort instances.

Sort instances also allow us to group elements participat-

ing in relevant crosscutting relations, which are not explicit

in source code. In this respect, sorts are modular units com-

parable with aspects. Sorts are mainly aimed at supporting

crosscutting concern comprehension by describing atomic el-

ements in a standard, consistent way. However, sorts can

be associated with template refactorings and sort queries can

help instantiate such refactorings by selecting the right pro-

gram elements. This can help in refactoring concerns to as-

pect solutions.

The number of sort instances One observation about the

data shown in Table 2 regards the number of sort instances in

JHOTDRAW case compared to the PETSTORE one. A reason

for this difference is the nature of the two applications: PET-

STORE is a J2EE applications and a number of (potential)

crosscutting concerns can be dealt with by the container, such

as declarative transaction management. Therefore, these con-

cerns do not occur in the source code.

Sort JHotDraw PetStore

(Method) Consistent behavior 34 15

Contract enforcement 5 1

Redirection layer 15 2

Expose context (Context passing) 1 1

Role superimposition 32 2

Support classes for role superimposition 5 0

Exception propagation (Declare throws clause) 11 5

TOTAL 103 26

Table 2. Number of sort instances.

Another observation is that some sorts are (typically)

more common than others, like Consistent behavior or Role

superimposition. This suggests that aspect language mecha-

nisms aimed at refactoring instances of these sorts could ad-

dress most of the encountered crosscuttingness. However, as

previously mentioned, a major difficulty in dealing with these

concerns resides in the ability to define contexts for the sorts

relations. This is similar to the challenge of having a flex-

ible and expressive pointcut definition in an aspect-oriented

language.

6. Related Work

Our approach differs from related work by identifying typ-

ical implementation idioms of crosscutting concerns which

we formalize as sorts. The sorts define a system to con-

sistently describe crosscutting implementation of concerns,

which helps us to recognize and document such concerns in

source code. Furthermore, the approach emphasizes relations

rather than program elements as crosscutting.

A number of tools support source code querying and

exploration for concern understanding. FEAT organizes

program elements that implement a concern in concern

graphs [19]. The user can add elements to a concern graph by

investigating the incoming and outgoing relations to and from

an element that is part of the concern implementation. The

elements in a concern graph are classes, methods or fields

connected by a call, read, write, check, create, declare, or

superclass relation.

Although the tool allows one to add relations to the graph

describing a concern, the focus is on the elements partici-

pating in the implementation of the concern. The navigation

for understanding a concern and incrementally building its

graph representation is from a root (class) element to other

elements in the relation chain. That is, a concern is described

by its elements, and an element is described by its relations.

Unlike FEAT, the sorts-based approach uses relations as the

main representation of a concern and builds concern mod-

els based on these relations. Moreover, FEAT has no built-in

support for describing typical crosscutting relations, focusing

on code browsing and organization instead.

The Concern Manipulation Environment (CME) [8] also

allows for code querying, and, furthermore, for restricting

9

SERG Marin et al. – Documenting Typical Crosscutting Concerns

TUD-SERG-2007-010 9

the query domain similar to context definitions in SOQUET.

The CME concern model is persistent and the queries, written

in its own (pattern-matching) language Panther [20], can be

saved over work sessions. However, neither CME nor FEAT

allow for complex queries like the ones we used to describe

redirections, (exception) propagations or support classes.

We analyzed the possibility to use CME’s query language

and its internal code representation for implementing our sort

queries. As yet the syntax of the language is not completely

defined and is not fully implemented. Informal communica-

tion with CME developers revealed that they see queries as

available in SOQUET, as a desired extension for CME.

Alike CME, JQuery is a code browser developed as an

Eclipse plugin [9]. JQuery uses a logic query language

(TyRuBa) similar to Prolog [4]. The TyRuBa predicates sup-

ported by JQuery cover all relationships defined by FEAT

and include additional ones, such as checking the type of an

argument. It also supports additional source relations with

respect to FEAT and Panther, such as thrown exceptions.

Despite being more flexible than CME for querying code,

JQuery does not allow to save and then re-load a concern

model of choice for a given project. The tool is also not suit-

able for large systems due to performance issues.

Such performance improvements have motivated the work

on CodeQuest, a software query tool using Datalog as a query

language, implemented on top of a relational database sys-

tem [6]. We plan to experiment with our template queries in

CodeQuest’s Datalog once the announced release of the tool

becomes available.

Sextant is another tool similar to JQuery, which allows

querying different kinds of system artifacts [5]. The tool rep-

resents these artifacts as XML and uses the XQuery 6 lan-

guage to query this representation. Our focus so far has been

on describing crosscutting relations in source code.

7. Conclusions

This paper proposes a system for addressing crosscutting

functionality in source code based on crosscutting concern

sorts. Such a system can provide consistency and coherence

for referring to and describing crosscutting concerns. As a

result, sorts are useful in program comprehension and areas

like aspect mining and refactoring.

We have described crosscutting concern sorts as relations

between sets of program elements and formalized these re-

lations as queries over source representations. We have dis-

cussed a selection of sorts in detail and presented the SO-

QUET tool for documenting sort instances using queries.

Last but not least, we have used sorts to analyze crosscutting

relations present in systems from two different application

domains.

6www.w3.org/TR/xquery

References

[1] D. Alur, J. Crupi, and D. Malks. Core J2EE Patterns. Sun Microsys-

tems, Inc., 2003.

[2] M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella, and

T. Tourwé. Applying and combining three different aspect mining

techniques. Software Quality Journal, 14(3), 2006.

[3] A. Colyer, A. Clement, G. Harley, and M. Webster. Eclipse AspectJ.

Pearson Education, Inc., 2005.

[4] P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog, The Standard :

Reference Manual. Springer Verlag, 1996.

[5] M. Eichberg, M. Haupt, M. Mezini, and T. Schäfer. Comprehensive

software understanding with Sextant. In Proc. 21st IEEE Intl. Conf.

on Softw. Maintenance, pages 315–324. IEEE, Sept. 2005.

[6] E. Hajiyev, M. Verbaere, and O. de Moor. CodeQuest: Scalable source

code queries with Datalog. In D. Thomas, editor, Proc. 20th Euro-

pean Conf. on Object-Oriented Programming, volume 4067 of Lecture

Notes in Computer Science, pages 2–27. Springer, 2006.

[7] J. Hannemann and G. Kiczales. Design pattern implementation in Java

and AspectJ. In Proc. 17th ACM Conf. on OO Prog. Syst. Lang. &

Appl., pages 161–173. ACM, 2002.

[8] W. Harrison, H. Ossher, S. S. Jr., and P. Tarr. Concern modeling in the

concern manipulation environment. Technical Report RC23344, IBM

TJ Watson Research Center, 2004.

[9] D. Janzen and K. De Volder. Navigating and querying code without

getting lost. In Proc. 2nd Intl. Conf. on Aspect-Oriented Softw. Dev.,

pages 178–187. ACM, Mar. 2003.

[10] R. Laddad. AspectJ in Action - Practical Aspect Oriented Program-

ming. Manning Publications Co., 2003.

[11] M. Marin. Formalizing typical crosscutting concerns. Technical Re-

port TUD-SERG-2006-010, Delft University of Technology, 2006.

[12] M. Marin, A. van Deursen, and L. Moonen. Identifying crosscutting

concerns using fan-in analysis. ACM Trans. on Softw. Eng. and Meth.,

2007. Accepted for publication, preprint available as Tech. Report

TUD-SERG-2006-013, Delft Univ. of Technology.

[13] M. Marin, L.Moonen, and A. van Deursen. A classification of cross-

cutting concerns. In Proc. Intl. Conf. on Softw. Maintenance, pages

673–677. IEEE, 2005.

[14] M. Marin, L. Moonen, and A. van Deursen. A common framework

for aspect mining based on crosscutting concern sorts. In Proc. 13th

Working Conf. on Reverse Engineering. IEEE, 2006.

[15] M. Marin, L. Moonen, and A. van Deursen. SoQueT: Query-based

documentation of crosscutting concerns. In Proc. 29th Intl. Conf.

on Softw. Eng. IEEE, 2007. Formal research demonstration, preprint

available as TUD-SERG-2007-005.

[16] M. Marin, L. Moonen, and A. van Deursen. An approach to aspect

refactoring based on crosscutting concern types. In MACS ’05: Proc.

2005 workshop on Modeling and analysis of concerns in software,

pages 1–5. ACM, 2005. Softw. Eng. Notes 30(4).

[17] A. Mesbah and A. van Deursen. Crosscutting concerns in J2EE appli-

cations. In Proc. 7th Intl. Symp. on Web Site Evolution. IEEE, 2005.

[18] D. Riehle and T. Gross. Role model based framework design and inte-

gration. In Proc. 13th ACM SIGPLAN Conf. on OO Prog. Syst. Lang.

& Appl., pages 117–133. ACM, 1998.

[19] M. Robillard and G. Murphy. Concern graphs: finding and describing

concerns using structural program dependencies. In Proc. 24th Intl.

Conf. on Softw. Eng., pages 406–416. ACM, 2002.

[20] P. Tarr, W. Harrison, and H. Ossher. Pervasive query support in the

concern manipulation environment. Technical Report RC23343, IBM

TJ Watson Research Center, Yorktown Heights, NY, 2004.

10

Marin et al. – Documenting Typical Crosscutting Concerns SERG

10 TUD-SERG-2007-010

TUD-SERG-2007-010
ISSN 1872-5392 SERG

