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Chapter 1

Introduction and Learning
Objectives

L OGIC ORIGINALLY MEANT ‘the word’ or ‘what is spoken’ in Ancient Greece,
and today means ‘thought’ or ‘reason’.1 As a subject, logic is concerned

with the most general laws of truth. Why study this kind of reasoning in
computer science?

Logic is important because digital computers work with precision, and
because designing algorithms requires precision, and because comparing
algorithms requires precision.

Even when when a computer is, seemingly, computing with vague or
imprecise quantities, the underlying computation is precise.2 For example,
when a deep neural network is being trained to recognise cats, the algorithm
being used to train the network is specified precisely. More than this, the
criteria we use to assess whether the network has learned well enough are
also specified precisely. And any theoretical properties about the algorithm
have been proven precisely.

Reasoning, logic, and related mathematical concepts such as sets, are
foundational for computer science. One third of your first year TUDelft
CSE curriculum is mathematics: Reasoning & Logic, Calculus, Linear Algebra
and Probability Theory & Statistics.

As a computer scientist, you have to be capable of solving complex prob-
lems. One important aspect is to be able to come to the right conclusions.
On the basis of theorems and partial observations you can acquire more
knowledge and evidence to help prove that a specific conclusion is math-

1In Ancient Greek, λογική, according to Wikipedia: “possessed of reason, intellectual, dia-
lectical, argumentative”.

2You can take a course on quantum computing to learn whether they are an exception.

1
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ematically and logically correct. You learn how to do this with the course
Reasoning & Logic.

The foundational mathematical skills you learn in Reasoning & Logic are
used in all the other mathematics courses you will take, and in Computer
Organisation, Algorithms & Data Structures, Information & Data Management,
Machine Learning, andmany other courses. In fact, logic is studied and used
not only inmathematics and computer science, but also in philosophy (since
Ancient Greece) and today in fields such as linguistics and psychology.

This book is designed to help you achieve the learning goals ofReasoning
& Logic:

1. Translate a logically-precise claim to and from natural language.

2. Describe the operation of logical connectors and quantifiers.

3. Describe the notion of logical validity.

4. Explain and apply basic set and graph operations.

5. Define and perform computations with functions, relations and equi-
valence classes.

6. Construct and interpret recursive definitions, including recursive data
structures like trees.

7. Construct an appropriate function or relation given a description (in
natural language or formal notation).

8. Construct a direct or indirect proof (by contradiction, division into
cases, generalisation, or [structural] induction) or logical equivalence—
or counterexample for (in)valid arguments—in propositional logic,
predicate logic and set theory.

9. Identify what type of proof is appropriate for a given claim.

10. Solve simple Boolean Satisfiability (SAT) instances.

11. Develop specifications for verification tools like SAT or SMT solvers.

12. Interpret the response of verification tools like SAT or SMT solvers.

We do not cover every topic at the same level of detail. Some
topics have extra podcast videos to accompany the book. Other
topics, such as SAT and SMT solvers, we do not cover at all. Fur-
ther, the lectures will not cover everything in the book. Some
topics in the lectures you will prepare for using other materials:
these will be announced.
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Starred sections in the contents of this book are not included in
the syllabus for Reasoning & Logic.

We include solutions to some of the exercises, starting on
page 183. Exercises that have a solution are marked with a dag-
ger (†) symbol. You can contribute solutions to the other exer-
cises!

The theme of the book is about coming to the right conclusion: proving
the logical validity of arguments. What is a valid argument? When is an ar-
gument logically valid and when is it not? How can we determine whether
an argument is logically valid? How can we derive a logically valid conclu-
sion from the premises? Or how can we prove that a conclusion is not a
logical consequence of the premises? And how can we use these abilities in
computer science?

We will begin by talking further about logic.





Chapter 2

Logic

I N A SENSE, we know a lot more than we realise, because everything that
we know has consequences—logical consequences—that follow automat-

ically. If you know that all humans aremortal, and you know that Socrates is
human, then in a sense you know that Socrates ismortal, whether or not you
have ever considered or wanted to consider that fact. This is an example of
logical deduction: from the premises that “All humans are mortal” and “So-
crates is human”, the conclusion that “Socrates is mortal” can be deduced
by logic.

Socrateswas aGreek philosopherwho suffered
a most unfortunate fate. In one of the most
famous mathematical arguments—the one out-
lined above—he is the man that is destined to
die. History has since taught us we were right
as Socrates died after a long life (71 years), sen-
tenced to death for corrupting the minds of the
youth of Athens. His disciple Platowrotemany
Socratic dialogues which give an insight into
the philosophy of Socrates, often summarised as: “I know that I
know nothing”. The last words of this mortal man were (accord-
ing to Plato): “Crito, we owe a cock to Asclepius: pay it and do
not neglect it.” The fate of the chicken is unknown…
Source: en.wikipedia.org/wiki/Socrates.

5
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Logical deduction is a kind of computation. By applying rules of logic
to a given set of premises, conclusions that follow from those premises can
be generated automatically. This computational process could for instance
be carried out by a computer. Once you know the premises, or are will-
ing to accept them for the sake of argument, you are forced by logic to ac-
cept the conclusions. Still, to say that you ‘know’ those conclusions would
be misleading. The problem is that there are too many of them (infinitely
many), and, in general, most of them are not particularly interesting. Until
you have actuallymade the deduction, you don’t really know the conclusion,
and knowingwhich of the possible chains of deduction to follow is not easy.
The art of logic is to find an interesting conclusion and a chain of logical de-
ductions that leads from the premises to that conclusion. Checking that the
deductions are valid is the mechanical, computational side of logic.

Later in Reasoning & Logic, you will see some automated com-
putational techniques that can help us checking the deductions.
We don’t cover these in this edition of this book. In fact, there are
automated proof assistants that can even help us finding interest-
ing conclusions. One of the more famous is called Coq, a name
perhaps inspired by Socrates’s chicken.

This chapter is mostly about the mechanics of logic. We will investig-
ate logic as a branch of mathematics, with its own symbols, formulas and
rules of computation. Your objective is to learn the rules of logic, to under-
stand why they are valid, and to develop skill in applying them. As with
any branch of mathematics, there is a certain beauty to the symbols and for-
mulas themselves. But it is the applications that bring the subject to life for
most people. We will, of course, cover some applications as we go along.
In a sense, though, the real applications of logic include much of computer
science and of mathematics itself.

Among the fundamental elements of thought, and therefore of logic, are
propositions. A proposition is a statement that has a truth value: it is either
true or false. “Delft is a city” and “2 + 2 = 42” are propositions. In the
first part of this chapter, we will study propositional logic, which takes pro-
positions and considers how they can be combined and manipulated. This
branch of logic has surprising application to the design of the electronic cir-
cuits that make up computers. This ties closely to the digital and boolean
logic you will study in your course Computer Organisation.

Logic gets more interesting when we consider the internal structure of
propositions. In English, a proposition is expressed as a sentence, and, as
you know from studying grammar, sentences have parts. A simple sentence
like “Delft is a city” has a subject and a predicate. The sentence says some-
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thing about its subject. The subject of “Delft is a city” is Delft. The sentence
says something about Delft. The something that the sentence says about its
subject is the predicate. In the example, the predicate is the phrase ‘is a city’.
Once we start working with predicates, we can create propositions using
quantifiers like ‘all’, ‘some’ and ‘no’. For example, working with the predic-
ate ‘has a university’ we can move from simple propositions like “Delft has
a university” to “All cities have a university” or to “No city has a university”
or to the rather more realistic “Some cities have a university”.

Logical deduction usually deals with quantified statements, as shown
by the basic example of humanmortality with which we began this chapter.
Logical deduction will be a major topic of this chapter; and under the name
of proof , it will be the topic of the next chapter and a major tool for the rest
of this book and indeed your computer science degree programme.

2.1 Propositional Logic

We humans use a natural languagewhen we speak, such as Dutch, English
or Flemish. Natural languages are ambiguous and often vague. To start
modelling them we first consider propositional logic. This form of logic
is arguably the easiest to work with, but also has limited expressive power.
However even with this form we can already encapsulate many arguments
and power a number of applications, for instance digital logic in chip design.

2.1.1 Propositions

A proposition is a statement which is either true or false. In propositional
logic, we reason only about propositions and seewhat we can dowith them.
Since this is mathematics, we need to be able to talk about propositions
without saying which particular propositions we are talking about, so we
use symbolic names to represent them. Wewill always use lowercase letters
such as p, q and r to represent propositions. A letter used in this way is
called a propositional variable. Remember that when we say something
like “Let p be a proposition”, wemean “For the rest of this discussion, let the
symbol p stand for some particular statement, which is either true or false
(although we’re not at the moment making any assumption about which
it is).” The discussion has mathematical generality in that p can represent
any statement, and the discussion will be valid no matter which statement
it represents.
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Propositional variables are a little bit like variables in a program-
ming language such as Java. A basic Java variable such as int
x can take any integer value. There is ‘a little bit’ of similarity
between the two notions of variables—don’t take the analogy too
far at this point in your learning!

2.1.2 Logical operators
What we dowith propositions is combine themwith logical operators, also
referred to as logical connectives. A logical operator can be applied to one
or more propositions to produce a new proposition. The truth value of the
new proposition is completely determined by the operator and by the truth
values of the propositions to which it is applied.1 In English, logical oper-
ators are represented by words such as ‘and’, ‘or’ and ‘not’. For example,
the proposition “I wanted to leave and I left” is formed from two simpler
propositions joined by the word ‘and’. Adding the word ‘not’ to the pro-
position “I left” gives “I did not leave” (after a bit of necessary grammatical
adjustment).

But English is a little too rich for mathematical logic. When you read the
sentence “I wanted to leave and I left”, you probably see a connotation of
causality: I left because I wanted to leave. This implication does not follow
from the logical combination of the truth values of the two propositions “I
wanted to leave” and “I left”. Or consider the proposition “Iwanted to leave
but I did not leave”. Here, the word ‘but’ has the same logical meaning as
the word ‘and’, but the connotation is very different. So, in mathematical
logic, we use symbols to represent logical operators. These symbols do not
carry any connotation beyond their defined logical meaning. The logical
operators corresponding to the English words ‘and’, ‘or’ and ‘not’ are ∧, ∨
and ¬.2

Definition 2.1. Let p and q be propositions. Then p ∨ q, p ∧ q, and ¬p are
propositions, whose truth values are given by the rules:

• p ∧ q is true when both p is true and q is true, and in no other case

• p ∨ q is true when either p is true, or q is true, or both p and q are true,
and in no other case

1It is not always true that the truth value of a sentence can be determined from the truth
values of its component parts. For example, if p is a proposition, then ‘Johan Cruyff believes p’
is also a proposition, so ‘Cruyff believes’ is some kind of operator. However, it does not count
as a logical operator because just from knowing whether or not p is true, we get no information
at all about whether ‘Johan Cruyff believes p’ is true.

2Other textbooks might use different notations to represent a negation. For instance a bar
over the variable (x̄) or a ∼ symbol (∼ x). In Boolean algebra (and thus in your Computer
Organisation course) you will also often find the + symbol to represent an ‘or’ and a · (dot)
symbol to represent an ‘and’.
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• ¬p is true when p is false, and in no other case
The operators ∧, ∨ and ¬ are referred to as conjunction, disjunction and
negation, respectively. (Note that p ∧ q is read as ‘p and q’, p ∨ q is read as
‘p or q’, and ¬p is read as ‘not p’.)

Consider the statement “I am a CSE student or I am not a TPM
student.” Taking p to mean “I am a CSE student” and q to mean
“I am a TPM student”, you can write this as p ∨ ¬q.

2.1.3 Precedence rules
These operators can be used in more complicated expressions, such as p ∧
¬q or (p ∨ q) ∧ (q ∨ r). A proposition made up of simpler propositions and
logical operators is called a compound proposition. Just like in mathemat-
ics, parentheses can be used in compound expressions to indicate the order
in which the operators are to be evaluated. In the absence of parentheses,
the order of evaluation is determined by precedence rules. For the logical
operators defined above, the rules are that ¬ has higher precedence than ∧,
and∧ has precedence over∨. Thismeans that in the absence of parentheses,
any ¬ operators are evaluated first, followed by any ∧ operators, followed
by any ∨ operators.

For example, the expression ¬p ∨ q ∧ r is equivalent to the expression
(¬p) ∨ (q ∧ r), while p ∨ q ∧ q ∨ r is equivalent to p ∨ (q ∧ q) ∨ r.

This still leaves open the question of which of the ∧ operators in the ex-
pression p ∧ q ∧ r is evaluated first. This is settled by the following rule:
When several operators of equal precedence occur in the absence of paren-
theses, they are evaluated from left to right. Thus, the expression p∧ q∧ r is
equivalent to (p ∧ q)∧ r rather than to p ∧ (q ∧ r). In this particular case, as
a matter of fact, it doesn’t really matter which ∧ operator is evaluated first,
since the two compound propositions (p∧ q)∧ r and p∧ (q∧ r) always have
the same value, no matter what logical values the component propositions
p, q, and r have. We say that ∧ is an associative operation. We’ll see more
about associativity and other properties of operations in the next section.

In practice however you should always add parentheses in
places where ambiguity may arise. In fact some textbooks even
add them to single operators as well, e.g., writing (p ∧ q) instead
of p∧ q. Although for this coursewe do not require them around
single operators, we should never need the precedence rules out-
lined above. Your parentheses should make clear the order of
operations!
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p q r p ∧ q q ∧ r (p ∧ q) ∧ r p ∧ (q ∧ r)

0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 1 0 0
1 0 0 0 0 0 0
1 0 1 0 0 0 0
1 1 0 1 0 0 0
1 1 1 1 1 1 1

Figure 2.1: A truth table that demonstrates the logical equivalence of (p ∧
q) ∧ r and p ∧ (q ∧ r). The fact that the last two columns of this table are
identical shows that these two expressions have the same value for all eight
possible combinations of values of p, q, and r.

Every compound proposition has amain connective. The main connect-
ive is the connective that is evaluated last, according to the precedence rules
and parentheses. There should be no ambiguity over which is themain con-
nective in a compound proposition.

2.1.4 Logical equivalence
Suppose we want to verify that, in fact, (p ∧ q)∧ r and p ∧ (q ∧ r) do always
have the same value. To do so, we have to consider all possible combina-
tions of values of p, q, and r, and check that for all such combinations, the
two compound expressions do indeed have the same value. It is conveni-
ent to organize this computation into a truth table. A truth table is a table
that shows the value of one or more compound propositions for each pos-
sible combination of values of the propositional variables that they contain.
We call each such combination a situation. Figure 2.1 is a truth table that
compares the value of (p ∧ q) ∧ r to the value of p ∧ (q ∧ r) for all possible
values of p, q, and r. There are eight rows in the table because there are ex-
actly eight different ways in which truth values can be assigned to p, q, and
r.3 In this table, we see that the last two columns, representing the values
of (p ∧ q) ∧ r and p ∧ (q ∧ r), are identical.

3In general, if there are n variables, then there are 2n different ways to assign truth values
to the variables, i.e., 2n situations. This might become clear to you if you try to come up with
a scheme for systematically listing all possible sets of values. As this should not satisfy you,
you’ll find a rigorous proof of the fact later in this chapter.
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I discuss the creation of truth tables for statements written in
propositional logic inmore detail in one of the pencasts of this
course: youtu.be/oua_nvpFECQ.

In another pencast of this course, we discuss how you should
formulate your answerwhen using truth tables to test for equi-
valence:
youtu.be/sWu0fUu7s5c.

You can write the rows in a truth table in any order you like. We
suggest you write them in a sorted order, as in Table 2.1. This
helps you to be systematic in writing out the table. It also helps
us to provide feedback on your answers!

More generally, we say that two compound propositions are logically
equivalent if they always have the same value, no matter what truth values
are assigned to the propositional variables that they contain. If the number
of propositional variables is small, it is easy to use a truth table to check
whether or not two propositions are logically equivalent.

Whenwriting a piece of code youwill often have your codemake
decisions. For instance in a bit of Java code—such as in your
Object-Oriented Programming course—you might encounter an if-
statement to check if the user has inputted the right type of data.
Since the input you expect can be rather difficult, the if-statement
is a complex combination of many simple checked chained to-
gether by &&’s and ||’s. After taking a look at the code, you be-
lieve it can be simplified to a much smaller expression. Using a
truth table you can prove that your simplified version is equival-
ent to the original.

2.1.5 More logical operators
There are other logical operators besides ∧, ∨, and ¬. We will consider the
conditional operator, →, the biconditional operator, ↔, and the exclusive

youtu.be/oua_nvpFECQ
youtu.be/sWu0fUu7s5c
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or operator,⊕.4 These operators can be completely defined by a truth table
that shows their values for the four possible combinations of truth values
of p and q.

Definition 2.2. For any propositions p and q, we define the propositions
p → q, p ↔ q, and p ⊕ q according to the truth table:

p q p → q p ↔ q p ⊕ q

0 0 1 1 0
0 1 1 0 1
1 0 0 0 1
1 1 1 1 0

When these operators are used in expressions, in the absence of
parentheses to indicate order of evaluation, we use the follow-
ing precedence rules: The exclusive or operator, ⊕, has the same
precedence as ∨. The conditional operator, →, has lower pre-
cedence than ∧, ∨, ¬, and ⊕, and is therefore evaluated after
them. Finally, the biconditional operator, ↔, has the lowest pre-
cedence and is therefore evaluated last. For example, the expres-
sion p → q ∧ r ↔ ¬p ⊕ s is evaluated as if it were written
(p → (q ∧ r)) ↔ ((¬p) ⊕ s). But again you should always in-
clude the parentheses!

In order to work effectively with the logical operators, you need to know
more about their meaning and how they relate to ordinary English expres-
sions. To that end we first consider the conditional operator in more detail
in the next section.

2.1.6 Implications in English
The proposition p → q is called an implication or a conditional. It is usually
read as ‘p implies q’. In such an implication p and q also get special names
of their own. p is called the hypothesis or antecedent and q is called the
conclusion or consequent.

Furthermore we say that if the implication p → q holds, then p is suffi-
cient for q. That is if p is true that is sufficient to alsomake q true. Conversely

4Note that the symbols for these operations also differ from textbook to textbook. While→
is fairly standard, ↔ is sometimes represented by ≡ or ⇔. There is even less standardization
of the exclusive or operator, but that operator is generally not so important as the others.
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we say that q is necessary for p. Without q being true, it is impossible for p
to be true. That is if q is false, then p also has to be false.

In English, p → q is often expressed as ‘if p then q’. For example, if p
represents the proposition “Karel Luyben is Rector Magnificus of TU Delft”
and q represents “Prometheus is blessed by the gods”, then p → q could be
expressed in English as “If Karel Luyben is Rector Magnificus of TU Delft,
then Prometheus is blessed by the gods.” In this example, p is false and
q is also false. Checking the definition of p → q, we see that p → q is a
true statement. Most people would agree with this, even though it is not
immediately obvious.

The letter ‘T’ in the TUDelft logo bears
a stylized flame on top, referring to the
flame that Prometheus brought from
Mount Olympus to the people, against
the will of Zeus. Because of this, Pro-
metheus is sometimes considered as the
first engineer, and he is an important
symbol for the university. His bronze
statue stands in the Mekelpark at the
centre of campus.
Source: en.wikipedia.org/wiki/
Delft_University_of_Technology.
Image: weblog.library.tudelft.nl/
2016/01/04/english-prometheus-is-back/.

It is worth looking at a similar example in more detail. Suppose that
I assert that “If Feyenoord is a great team, then I’m the King of the Neth-
erlands”. This statement has the form m → k where m is the proposition
“Feyenoord is a great team” and k is the proposition “I’m the king of the
Netherlands”. Now, demonstrably I am not the king of the Netherlands, so
k is false. Since k is false, the onlyway for m → k to be true is for m to be false
as well. (Check the definition of → in the table, if you are not convinced!)
So, by asserting m → k, I am really asserting that the Feyenoord is not a
great team.

Or consider the statement, “If the party is on Tuesday, then I’ll be there.”

en.wikipedia.org/wiki/Delft_University_of_Technology
en.wikipedia.org/wiki/Delft_University_of_Technology
weblog.library.tudelft.nl/2016/01/04/english-prometheus-is-back/
weblog.library.tudelft.nl/2016/01/04/english-prometheus-is-back/
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What am I trying to say if I assert this statement? I am asserting that p → q
is true, where p represents “The party is on Tuesday” and q represents “I
will be at the party”. Suppose that p is true, that is, the party does in fact
take place on Tuesday. Checking the definition of→, we see that in the only
case where p is true and p → q is true, q is also true. So from the truth of “If
the party is on Tuesday, then I will be at the party” and “The party is in fact
on Tuesday”, you can deduce that “I will be at the party” is also true. But
suppose, on the other hand, that the party is actually on Wednesday. Then
p is false. When p is false and p → q is true, the definition of p → q allows
q to be either true or false. So, in this case, you can’t make any deduction
about whether or not I will be at the party. The statement “If the party is on
Tuesday, then I’ll be there” doesn’t assert anything about what will happen
if the party is on some other day than Tuesday.

2.1.7 More forms of implication
The implication ¬q → ¬p is called the contrapositive of p → q. An implic-
ation is logically equivalent to its contrapositive. The contrapositive of “If
this is Tuesday, then we are in Belgium” is “If we aren’t in Belgium, then
this isn’t Tuesday”. These two sentences assert exactly the same thing.

Note that p → q is not logically equivalent to q → p. The implication
q → p is called the converse of p → q. The converse of “If this is Tuesday,
thenwe are in Belgium” is “If we are in Belgium, then this is Tuesday”. Note
that it is possible for either one of these statements to be truewhile the other
is false. In English, we might express the fact that both statements are true
by saying “If this is Tuesday, thenwe are in Belgium, and conversely”. In logic,
this would be expressed with a proposition of the form (p → q) ∧ (q → p).

Similarly p → q is not logically equivalent to ¬p → ¬q. The implication
¬p → ¬q is called the inverse of p → q. Although this mistake is commonly
made in English, for instance people often assume that when I say: “If it is
morning, I drink some coffee”, I also mean that when it is not morning I
do not drink coffee. But my original statement does not tell you anything
about what I do when it is not morning.

The biconditional operator is closely related to the conditional operator.
In fact, p ↔ q is logically equivalent to (p → q) ∧ (q → p). The proposition
p ↔ q is usually read as ‘p if and only if q’. (The ‘p if q’ part represents
q → p, while ‘p only if q’ is another way of asserting that p → q.) It could
also be expressed as ‘if p then q, and conversely’. Occasionally in English,
‘if… then’ is used when what is really meant is ‘if and only if’. For example,
if a parent tells a child, “If you are good, Sinterklaas will bring you toys”,
the parent probably really means to say “Sinterklaas will bring you toys if
and only if you are good”. (The parent would probably not respond well to
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the child’s perfectly logical plea “But you never said what would happen if
I wasn’t good!”)

2.1.8 Exclusive or
Finally, we turn to the exclusive or operator. The English word ‘or’ is ac-
tually somewhat ambiguous. The two operators ⊕ and ∨ express the two
possible meanings of this word. The proposition p ∨ q can be expressed
unambiguously as “p or q, or both”, while p ⊕ q stands for “p or q, but not
both”. If a menu says that you can choose soup or salad, it doesn’t mean
that you can have both. In this case, ‘or’ is an exclusive or. On the other
hand, in “You are at risk of heart disease if you smoke or drink”, the or is
inclusive since you certainly don’t get off the hook if you both smoke and
drink. In theoretical computer science and mathematics, the word ‘or’ is
always taken in the inclusive sense of p ∨ q.

2.1.9 Universal operators
Now, any compound proposition that uses any of the operators →, ↔, and
⊕ can be rewritten as a logically equivalent proposition that uses only ∧, ∨,
and ¬. It is easy to check that p → q is logically equivalent to ¬p ∨ q. (Just
make a truth table for ¬p ∨ q.) Similarly, p ↔ q can be expressed as (¬p ∨
q) ∧ (¬q ∨ p), So, in a strict logical sense, →, ↔, and ⊕ are unnecessary.
(Nevertheless, they are useful and important, and we won’t give them up.)

Even more is true: in a strict logical sense, we could do without the con-
junction operator ∧. It is easy to check that p ∧ q is logically equivalent to
¬(¬p ∨¬q), so any expression that uses ∧ can be rewritten as one that uses
only ¬ and ∨. Alternatively, we could do without ∨ and write everything
in terms of ¬ and ∧. We shall study some of these rewrite rules in more
detail in Section 2.2.

We call a set of operators that can express all operations: functionally
complete. More formally we would state the following:

Definition 2.3. A set of logical operators is functionally complete if and
only if all formulas in propositional logic can be rewritten to an equivalent
form that uses only operators from the set.

Consider for instance the set {¬,∨}. As shown above the ∧, → and ↔-
operators can be expressed using only these operators. In fact all possible
operations can be expressed using only {¬,∨}. To prove this you will show
in one of the exercises that all possible formulas in propositional logic can
be expressed using {¬,∨,∧,→,↔}. So by showing that we do not need ∧,
→, and ↔ we can prove that {¬,∨} is also functionally complete.
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2.1.10 Classifying propositions

Certain types of propositionwill play a special role in our further workwith
logic. In particular, we define tautologies, contradictions, and contingencies
as follows:

Definition 2.4. A compound proposition is said to be a tautology if and
only if it is true for all possible combinations of truth values of the proposi-
tional variables which it contains. A compound proposition is said to be a
contradiction if and only if it is false for all possible combinations of truth
values of the propositional variables which it contains. A compound pro-
position is said to be a contingency if and only if it is neither a tautology nor
a contradiction.

For example, the proposition ((p ∨ q)∧¬q) → p is a tautology. This can
be checked with a truth table:

p q p ∨ q ¬q (p ∨ q) ∧ ¬q ((p ∨ q) ∧ ¬q) → p

0 0 0 1 0 1
0 1 1 0 0 1
1 0 1 1 1 1
1 1 1 0 0 1

The fact that all entries in the last column are true tells us that this ex-
pression is a tautology. Note that for any compound proposition P, P is a
tautology if and only if ¬P is a contradiction. (Here and moving forward,
we use uppercase letters to represent compound propositions. P stands for
any formula made up of simple propositions, propositional variables, and
logical operators.)

Logical equivalence can be defined in terms of tautology:

Definition 2.5. Two compound propositions, P and Q, are said to be logic-
ally equivalent if and only if the proposition P ↔ Q is a tautology.

The assertion that P is logically equivalent to Q will be expressed sym-
bolically as ‘P ≡ Q’. For example, (p → q) ≡ (¬p ∨ q), and p ⊕ q ≡
(p ∨ q) ∧ ¬(p ∧ q).
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What if P → Q and P is false? From a false premise we can
derive any conclusion (check the truth table of→). So if k stands
for “I’m the King of the Netherlands”, then k → Q is true for
any compound proposition Q. You can substitute anything for Q,
and the implication k → Q will hold. For example, it a logically
valid deduction that: If I’m the King of the Netherlands, then
unicorns exist. Taking this further, from a contradiction we can
derive any conclusion. This is called the Principle of Explosion.
(No unicorns were harmed by explaining this principle.)

Exercises

Recall that solutions to some of the exercises start on page 183. Exercises
that have a solution are marked with a dagger (†) symbol. We suggest
you attempt the exercise first before looking at the solution!

†1. Give the three truth tables that define the logical operators ∧, ∨, and ¬.
†2. Some of the following compound propositions are tautologies, some are contra-

dictions, and some are neither (i.e., so are contingencies). In each case, use a
truth table to decide to which of these categories the proposition belongs:

a) (p ∧ (p → q)) → q b) ((p → q) ∧ (q → r)) → (p → r)
c) p ∧ ¬p d) (p ∨ q) → (p ∧ q)
e) p ∨ ¬p f) (p ∧ q) → (p ∨ q)

†3. Use truth tables to show that each of the following propositions is logically equi-
valent to p ↔ q.

a) (p → q) ∧ (q → p) b) ¬p ↔ ¬q
c) (p → q) ∧ (¬p → ¬q) d) ¬(p ⊕ q)

†4. Is → an associative operation? This is, is (p → q) → r logically equivalent to
p → (q → r)?

†5. Let p represent the proposition “You leave” and let q represent the proposition
“I leave”. Express the following sentences as compound propositions using p
and q, and show that they are logically equivalent:

a) Either you leave or I do. (Or both!)
b) If you don’t leave, I will.

†6. Suppose that m represents the proposition “The Earthmoves”, c represents “The
Earth is the centre of the universe”, and g represents “Galileo was falsely ac-
cused”. Translate each of the following compound propositions into English:

a) ¬g ∧ c b) m → ¬c
c) m ↔ ¬c d) (m → g) ∧ (c → ¬g)

†7. Give the converse and the contrapositive of each of the following English sen-
tences:

a) If you are good, Sinterklaas brings you toys.
b) If the package weighs more than one kilo, then you need extra postage.
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c) If I have a choice, I don’t eat courgette.

†8. In an ordinary deck of fifty-two playing cards, for how many cards is it true

a) that “This card is a ten and this card is a heart”?

b) that “This card is a ten or this card is a heart”?

c) that “If this card is a ten, then this card is a heart”?

d) that “This card is a ten if and only if this card is a heart”?

†9. Define a logical operator ↓ so that p ↓ q is logically equivalent to ¬(p ∨ q). (This
operator is usually referred to as ‘NOR’, short for ‘not or’.) Show that each of the
propositions ¬p, p ∧ q, p ∨ q, p → q, p ↔ q, and p ⊕ q can be rewritten as a
logically equivalent proposition that uses ↓ as its only operator.

†10. For our proof that {¬,∨} is functionally complete, we need to show that all for-
mulas in propositional logic can be expressed in an equivalent form using only
{¬,∧,∨,→,↔}.

a) How many unique truth tables exist for formulas containing two atoms?

b) Create a function for each of the possible truth tables that uses only the 5
operators listed above.

c) Give an (informal) argument why this means all formulas in proposi-
tional logic can be expressed using only these five operators.

2.2 Boolean Algebra

So far we have discussed how to write and interpret propositions. This sec-
tion deals with manipulating them. For this, we need algebra. Ordinary
algebra, of the sort taught in high school, is about manipulating numbers,
variables that represent numbers, and operators such as+ and× that apply
to numbers. Now, we need an algebra that applies to logical values, propos-
itional variables, and logical operators. The first person to think of logic in
terms of algebra was the mathematician, George Boole, who introduced the
idea in a book that he published in 1854. The algebra of logic is now called
Boolean algebra in his honour.
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George Boole (1815–1864) was a largely self-
taught British mathematician, philosopher and
logician, most of whose short career was spent
as the first professor of mathematics at Queen’s
College, Cork in Ireland. He worked in the
fields of differential equations and algebraic lo-
gic, and is best known as the author of The
Laws of Thought (1854). Among TU Delft stu-
dents he is best known for the room named
after him in the EEMCS building 36.
Boolean logic is credited with laying the foundations for the in-
formation age: essentially, computer science. Boole maintained
that: “No general method for the solution of questions in the the-
ory of probabilities can be established which does not explicitly
recognise, not only the special numerical bases of the science, but
also those universal laws of thought which are the basis of all
reasoning, and which, whatever they may be as to their essence,
are at least mathematical as to their form.”
Source: en.wikipedia.org/wiki/George_Boole.

The algebra of numbers includes a large number of rules for manipu-
lating expressions. The distributive law, for example, says that x(y + z) =
xy+ xz, where x, y, and z are variables that stand for any numbers or numer-
ical expressions. This law means that whenever you see something of the
form xy+ xz in a numerical expression, you can substitute x(y+ z)without
changing the value of the expression, and vice versa. Note that the equals
sign in x(y + z) = xy + xz means “has the same value as, no matter what
numerical values x, y, and z have”.

In Boolean algebra, we work with logical values instead of numerical
values. There are only two logical values, true and false. Wewill write these
values as T and F or 1 and 0. The symbols T and F play a similar role in
Boolean algebra to the role that constant numbers such as 1 and 3.14159 play
in ordinary algebra. Instead of the equals sign, Boolean algebra uses logical
equivalence, ≡, which has essentially the same meaning.5 For example, for
propositions p, q, and r, the ≡ operator in p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r means

5In ordinary algebra, it is easy to be confused by the equals sign, because it has two very
different roles. In an identity such as the distributive law, it means ‘is always equal to’. On
the other hand, an equation such as x2 + 3x = 4 is a statement that might or might not be
true, depending on the value of x. Boolean algebra has two operators, ≡ and ↔, that play
roles similar to the two roles of the equals sign. ≡ is used for identity, whereas ↔ is used in
equations that may or may not be true.

en.wikipedia.org/wiki/George_Boole
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Double negation ¬(¬p) ≡ p

Excluded middle p ∨ ¬p ≡ T

Contradiction p ∧ ¬p ≡ F

Identity laws T ∧ p ≡ p

F ∨ p ≡ p

Idempotent laws p ∧ p ≡ p

p ∨ p ≡ p

Commutative laws p ∧ q ≡ q ∧ p

p ∨ q ≡ q ∨ p

Associative laws (p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

Distributive laws p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

DeMorgan’s laws ¬(p ∧ q) ≡ (¬p) ∨ (¬q)

¬(p ∨ q) ≡ (¬p) ∧ (¬q)
Figure 2.2: Laws of Boolean Algebra. These laws hold for any propositions
p, q, and r.

“has the same value as, no matter what logical values p, q, and r have”.

2.2.1 Basics of Boolean Algebra
Many of the rules of Boolean algebra are fairly obvious, if you think a bit
aboutwhat theymean. Even those that are not obvious can be verified easily
by using a truth table. Figure 2.2 lists the most important of these laws. You
will notice that all these laws, except the first, come in pairs: each law in
the pair can be obtained from the other by interchanging ∧ with ∨ and T

with F. This cuts down on the number of facts you have to remember.6
Just as an example, let’s verify the first rule in the table, the Law of

Double Negation. This law is just the old, basic grammar rule that two neg-
6It is also an example of a more general fact known as duality, which asserts that given any

tautology that uses only the operators∧,∨, and¬, another tautology can be obtained from it by
interchanging ∧ with ∨ and T with F. We won’t attempt to prove this here, but we encourage
you to try it!
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ativesmake a positive. Although theway this rule applies to English is ques-
tionable, if you look at how it is used—nomatter what the grammarian says,
“I can’t get no satisfaction” doesn’t really mean “I can get satisfaction”—the
validity of the rule in logic can be verified just by computing the two pos-
sible cases: when p is true and when p is false. When p is true, then by the
definition of the ¬ operator, ¬p is false. But then, again by the definition of
¬, the value of ¬(¬p) is true, which is the same as the value of p. Similarly,
in the case where p is false, ¬(¬p) is also false. Organized into a truth table,
this argument takes the rather simple form

p ¬p ¬(¬p)

0 1 0
1 0 1

The fact that the first and last columns are identical shows the logical
equivalence of p and ¬(¬p). The point here is not just that ¬(¬p) ≡ p, but
also that this logical equivalence is valid because it can be verified compu-
tationally based just on the relevant definitions. Its validity does not follow
from the fact that “it’s obvious” or “it’s a well-known rule of grammar”.

Students often ask “Why do I have to prove something when
it’s obvious?” The point is that logic—and mathematics more
generally—is its own little world with its own set of rules. Al-
though this world is related somehow to the real world, when
you say that something is obvious (in the real world), you aren’t
playing by the rules of the world of logic. The realmagic of math-
ematics is that by playing by its rules, you can come up with
things that are decidedly not obvious, but that still say some-
thing about the real world or the computational world—often,
something interesting and important.

Each of the rules in Figure 2.2 can be verified in the sameway, bymaking
a truth table to check all the possible cases. In one of the pencasts of this
course we further discuss how to check the equivalence of two propositions
using truth tables.

2.2.2 Substitution laws
It’s important to understand that the propositional variables in the laws
of Boolean algebra can stand for any propositions, including compound
propositions. It is not just true, as the Double Negation Law states, that
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¬(¬p) ≡ p. It is also true that ¬(¬q) ≡ q, that ¬(¬(p ∧ q)) ≡ (p ∧ q), that
¬(¬(p → (q ∧ ¬p))) ≡ (p → (q ∧ ¬p)), and an infinite number of other
statements of the same form. Here, a ‘statement of the same form’ is one
that can be obtained by substituting something for p in both places where
it occurs in ¬(¬p) ≡ p. How can I be sure that all these infinitely many
statements are valid when all that I’ve checked is one little two-line truth
table? The answer is that any given proposition, Q, no matter how complic-
ated, has a particular truth value, either true or false. So, the question of
the validity of ¬(¬Q) ≡ Q always reduces to one of the two cases I already
checked in the truth table. (Note that for this argument to be valid, the same
Q must be substituted for p in every position where it occurs.) While this
argument may be ‘obvious’, it is not exactly a proof, but for nowwewill just
accept the validity of the following theorem:

Theorem 2.1 (First Substitution Law). Suppose that Q is any proposition, and
that p is a propositional variable. Consider any tautology. If (Q) is substituted for
p in all places where p occurs in the tautology, then the result is also a tautology.

Since logical equivalence is defined in terms of tautology, it is also true
that when (Q) is substituted for p in a logical equivalence, the result is again
a logical equivalence.7

The First Substitution Law lets you do algebra! For example, you can
substitute p → q for p in the lawof double negation,¬(¬p) ≡ p. This allows
you to ‘simplify’ the expression ¬(¬(r → q)) to r → q with confidence
that the resulting expression has the same logical value as the expression
you started with. (That’s what it means for ¬(¬(r → q)) and r → q to
be logically equivalent.) You can play similar tricks with all the laws in
Figure 2.2. Evenmore important is the Second Substitution Law, which says
that you can substitute an expression for a logically equivalent expression,
wherever it occurs. Once again, we will accept this as a theorem without
trying to prove it here. It is surprisingly hard to put this law into words:

Theorem 2.2 (Second Substitution Law). Suppose that P and Q are any pro-
positions such that P ≡ Q. Suppose that R is any compound proposition in which
(P) occurs as a sub-proposition. Let R′ be the proposition that is obtained by sub-
stituting (Q) for that occurrence of (P) in R. Then R ≡ R′.

Note that in this case, the theorem does not require (Q) to be substituted
for every occurrence of (P) in R. You are free to substitute for one, two,

7I’ve added parentheses around Q here for technical reasons. Sometimes, the parentheses
are necessary tomake sure that Q is evaluated as a whole, so that its final value is used in place
of p. As an example of what can go wrong, consider q ∧ r. If this is substituted literally for p
in ¬(¬p), without parentheses, the result is ¬(¬q ∧ r). But this expression means ¬((¬q)∧ r),
which is not equivalent to q ∧ r. Did we say to always write parentheses if you’re in doubt? See
page 9.
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or as many occurrences of (P) as you like, and the result is still logically
equivalent to R.

The Second Substitution Law allows us to use the logical equivalence
¬(¬p) ≡ p to ‘simplify’ the expression q → (¬(¬p)) by substituting ¬(¬p)
for p. The resulting expression, q → p, is logically equivalent to the original
q → (¬(¬p)). Once again, we have to be careful about parentheses: The
fact that p ∨ p ≡ p does not allow us to rewrite q ∧ p ∨ p ∧ r as q ∧ p ∧ r. The
problem is that q ∧ p ∨ p ∧ r means (q ∧ p) ∨ (p ∧ r), so that (p ∨ p) is not
a sub-expression. This again underlines the importance of always writing
parentheses in your propositional formulas.

2.2.3 Simplifications
The final piece of algebra in Boolean algebra is the observation that we can
chain logical equivalences together. That is, from P ≡ Q and Q ≡ R, it
follows that P ≡ R. This is really just a consequence of the Second Substi-
tution Law. The equivalence Q ≡ R allows us to substitute R for Q in the
statement P ≡ Q, giving P ≡ R. (Remember that, by Definition 2.5, logical
equivalence is defined in terms of a proposition.) This means that we can
show that two compound propositions are logically equivalent by finding
a chain of logical equivalences that lead from one to the other.

Here is an example of such a chain of logical equivalences:

p ∧ (p → q) ≡ p ∧ (¬p ∨ q) definition of p → q, Theorem 2.2
≡ (p ∧ ¬p) ∨ (p ∧ q) Distributive Law
≡ F ∨ (p ∧ q) Law of Contradiction, Theorem 2.2
≡ (p ∧ q) Identity Law

Each step in the chain has its own justification. In several cases, a substitu-
tion law is used without stating as much. In the first line, for example, the
definition of p → q is that p → q ≡ ¬p ∨ q. The Second Substitution Law
allows us to substitute (¬p ∨ q) for (p → q). In the last line, we implicitly
applied the First Substitution Law to the Identity Law, F ∨ p ≡ p, to obtain
F ∨ (p ∧ q) ≡ (p ∧ q).

The chain of equivalences in the above example allows us to conclude
that p ∧ (p → q) is logically equivalent to p ∧ q. This means that if you
were to make a truth table for these two expressions, the truth values in
the column for p ∧ (p → q) would be identical to those in the column for
p ∧ q. We know this without actually making the table. Don’t believe it? Go
ahead and make the truth table. In this case, the table is only be four lines
long and easy enough to make. But Boolean algebra can be applied in cases
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where the number of propositional variables is too large for a truth table to
be practical.

Let’s do another example. Recall that a compound proposition
is a tautology if it is true for all possible combinations of truth
values of the propositional variables that it contains. But another
way of saying the same thing is that P is a tautology if P ≡ T. So,
we can prove that a compound proposition, P, is a tautology by
finding a chain of logical equivalences leading from P to T. For
example:

((p ∨ q) ∧ ¬p) → q
≡ (¬((p ∨ q) ∧ ¬p)) ∨ q definition of →
≡ (¬(p ∨ q) ∨ ¬(¬p)) ∨ q DeMorgan’s Law, Theorem 2.2
≡ (¬(p ∨ q) ∨ p) ∨ q Double Negation, Theorem 2.2
≡ (¬(p ∨ q)) ∨ (p ∨ q) Associative Law for ∨
≡ T Law of Excluded Middle

From this chain of equivalences, we can conclude that ((p ∨ q)∧
¬p) → q is a tautology.

Now, it takes some practice to look at an expression and see which rules
can be applied to it; to see (¬(p ∨ q)) ∨ (p ∨ q) as an application of the law
of the excludedmiddle for example, you need to mentally substitute (p ∨ q)
for p in the law as it is stated in Figure 2.2. Often, there are several rules that
apply, and there are no definite guidelines about which one you should try.
This is what makes algebra something of an art.

2.2.4 More rules of Boolean algebra
It is certainly not true that all possible rules of Boolean algebra are given in
Figure 2.2. For one thing, there are many rules that are easy consequences
of the rules that are listed there. For example, although the table asserts
only that F ∨ p ≡ p, it is also true that p ∨ F ≡ p. This can be checked
directly or by a simple calculation:

p ∨ F ≡ F ∨ p Commutative Law
≡ p Identity Law as given in the table
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Additional rules can be obtained by applying theCommutative Law to other
rules in the table, and we will use such rules freely in the future.

Another sort of easy extension can be applied to the Associative Law,
(p ∨ q) ∨ r ≡ p ∨ (q ∨ r). The law is stated for the ∨ operator applied to
three terms, but it generalizes to four or more terms. For example

((p ∨ q) ∨ r) ∨ s
≡ (p ∨ q) ∨ (r ∨ s) by the Associative Law for three terms
≡ p ∨ (q ∨ (r ∨ s)) by the Associative Law for three terms

We will, of course, often write this expression as p ∨ q ∨ r ∨ s, with no par-
entheses at all, knowing that wherever we put the parentheses the value is
the same.

One other thing that you should keep in mind is that rules can
be applied in either direction. The Distributive Law, for example,
allows you to distribute the p in p ∨ (q ∧¬p) to get (p ∨ q)∧ (p ∨
¬p). But it can also be used in reverse to ‘factor out’ a term, as
when you start with (q ∨ (p → q)) ∧ (q ∨ (q → p)) and factor
out the q to get q ∨ ((p → q) ∧ (q → p)).

So far in this section, we have been working with the laws of Boolean
algebra without saying much about what they mean or why they are reas-
onable. Of course, you can apply the laws in calculations without under-
standing them. But if you want to figure out which calculations to do, you
need some understanding. Most of the laws are clear enough with a little
thought. For example, if we already know that q is false, then p ∨ q will be
true when p is true and false when p is false. That is, p ∨ F has the same
logical value as p. But that’s just what the Identity Law for ∨ says. A few of
the laws need more discussion.

The Law of the Excluded Middle, p ∨ ¬p ≡ T, says that given any pro-
position p, at least one of p or ¬p must be true. Since ¬p is true exactly
when p is false, this is the same as saying that p must be either true or false.
There is no middle ground. The Law of Contradiction, p ∧ ¬p ≡ F, says
that it is not possible for both p and ¬p to be true. Both of these rules are
obvious.
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There are some who set out to question the law of there being no
middle ground. Already in the 1920’s people like Tarski (who
we will meet later) talked about other forms of logic where
another value representing ‘unknown’ or ‘not proven’ also
exists. You can also see this in some programming languages
where they are referred to as ‘tri-state booleans’.

These so-called non-standard logics have been
developed and have also lead to things like
‘fuzzy logic’, which some consider quite contro-
versial. Lotfi Zadeh is credited as the first per-
son to refer to this type of logic as fuzzy logic
in his work on ‘fuzzy sets’ in 1965. Zadeh was
later quoted as saying: “Not being afraid to get
embroiled in controversy. … That’s part of my
character, too. I can be very stubborn. That’s
probably been beneficial for the development
of Fuzzy Logic.”
Source: en.wikipedia.org/wiki/Lotfi_A._Zadeh

The Distributive Laws cannot be called obvious, but a few examples can
show that they are reasonable. Consider the statement, “This card is the
ace of spades or clubs.” Clearly, this is equivalent to “This card is the ace
of spaces or this card is the ace of clubs.” But this is just an example of the
first distributive law! For, let a represent the proposition “This card is an
ace”, let s represent “This card is a spade” and let c represent “This card
is a club”. Then “This card is the ace of spades or clubs” can be translated
into logic as a ∧ (s ∨ c), while “This card is the ace of spades or this card is
the ace of clubs” becomes (a ∧ s)∨ (a ∧ c). And the distributive law assures
us that a ∧ (s ∨ c) ≡ (a ∧ s) ∨ (a ∧ c). The second distributive law tells us,
for example, that “This card is either a joker or is the ten of diamonds” is
logically equivalent to “This card is either a joker or a ten, and it is either a
joker or a diamond”. That is, j ∨ (t ∧ d) ≡ (j ∨ t) ∧ (j ∨ d). The distributive
laws are powerful tools and you should keep them in mind whenever you
are faced with a mixture of ∧ and ∨ operators.

DeMorgan’s Laws must also be less than obvious, since people often get
themwrong. Fortunately you get to practice them both inReasoning & Logic,
as well as in Computer Organisation, so you will soon get them right. More
importantly perhaps they do also make sense. When considering ¬(p ∧ q),
you should ask yourself, how can ‘p and q’ fail to be true. It will fail to be

en.wikipedia.org/wiki/Lotfi_A._Zadeh
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true if either p is false or if q is false (or both). That is, ¬(p ∧ q) is equivalent
to (¬p)∨ (¬q). Consider the sentence “A raven is large and black.” If a bird
is not large and black, then it is not a raven. But what exactly does it mean to
be ‘not (large and black)’? How can you tell whether the assertion ‘not (large
and black)’ is true of something? This will be true if it is either not large or
not black. (It doesn’t have to be both—it could be large and white, it could
be small and black.) Similarly, for ‘p or q’ to fail to be true, both p and q must
be false. That is, ¬(p ∨ q) is equivalent to (¬p) ∧ (¬q). This is DeMorgan’s
second law.

Recalling that p → q is equivalent to (¬p)∨ q, we can apply DeMorgan’s
law to obtain a formula for the negation an implication:

¬(p → q) ≡ ¬((¬p) ∨ q)
≡ (¬(¬p)) ∧ (¬q)
≡ p ∧ ¬q

That is, p → q is false exactly when both p is true and q is false. For example,
the negation of “If you have an ace, you win” is “You have an ace, and you
don’t win”. Think of it this way: if you had an ace and you didn’t win, then
the statement “If you have an ace, you win” was not true.

Exercises
1. Construct truth tables to demonstrate the validity of each of the distributive

laws.
2. Construct the following truth tables:

a) Construct truth tables to demonstrate that ¬(p ∧ q) is not logically equi-
valent to (¬p) ∧ (¬q).

b) Construct truth tables to demonstrate that ¬(p ∨ q) is not logically equi-
valent to (¬p) ∨ (¬q).

c) Construct truth tables to demonstrate the validity of both DeMorgan’s
Laws.

3. Construct truth tables to demonstrate that ¬(p → q) is not logically equivalent
to any of the following.

a) (¬p) → (¬q)
b) (¬p) → q
c) p → (¬q)

Refer back to this section for a formula that is logically equivalent to ¬(p → q).
†4. Is ¬(p ↔ q) logically equivalent to (¬p) ↔ (¬q)?
5. In the algebra of numbers, there is a distributive law of multiplication over ad-

dition: x(y + z) = xy + xz. What would a distributive law of addition over
multiplication look like? Is it a valid law in the algebra of numbers?
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6. The distributive laws given in Figure 2.2 are sometimes called the leftdistributive
laws. The right distributive laws say that (p ∨ q)∧ r ≡ (p ∧ r)∨ (q ∧ r) and that
(p ∧ q) ∨ r ≡ (p ∨ r) ∧ (q ∨ r). Show that the right distributive laws are also
valid laws of Boolean algebra. (Note: In practice, both the left and the right
distributive laws are referred to simply as the distributive laws, and both can be
used freely in proofs.)

7. Show that p ∧ (q ∨ r ∨ s) ≡ (p ∧ q) ∨ (p ∧ r) ∨ (p ∧ s) for any propositions p,
q, r, and s. In words, we can say that conjunction distributes over a disjunction
of three terms. (Recall that the ∧ operator is called conjunction and ∨ is called
disjunction.) Translate into logic and verify the fact that conjunction distributes
over a disjunction of four terms. Argue that, in fact, conjunction distributes over
a disjunction of any number of terms.

8. There are two additional basic laws of logic, involving the two expression p ∧ F

and p∨T. What are the missing laws? Show that your answers are, in fact, laws.
9. For each of the following pairs of propositions, show that the two propositions

are logically equivalent by finding a chain of equivalences from one to the other.
State which definition or law of logic justifies each equivalence in the chain.

a) p ∧ (q ∧ p), p ∧ q b) (¬p) → q, p ∨ q
c) (p ∨ q) ∧ ¬q, p ∧ ¬q d) p → (q → r), (p ∧ q) → r
e) (p → r) ∧ (q → r), (p ∨ q) → r f) p → (p ∧ q), p → q

†10. For each of the following compound propositions, find a simpler proposition
that is logically equivalent. Try to find a proposition that is as simple as possible.

a) (p ∧ q) ∨ ¬q b) ¬(p ∨ q) ∧ p c) p → ¬p
d) ¬p ∧ (p ∨ q) e) (q ∧ p) → q f) (p → q) ∧ (¬p → q)

†11. Express the negation of each of the following sentences in natural English:
a) It is sunny and cold.
b) I will have stroopwafel or I will have appeltaart.
c) If today is Tuesday, this is Belgium.
d) If you pass the final exam, you pass the course.

12. Apply one of the laws of logic to each of the following sentences, and rewrite it
as an equivalent sentence. State which law you are applying.

a) I will have coffee and stroopwafel or appeltaart.
b) He has neither talent nor ambition.
c) You can have oliebollen, or you can have oliebollen.

13. Suppose it is simultaneously true that “All lemons are yellow” and “Not all lem-
ons are yellow”. Derive the conclusion “Unicorns exist”. (If you get stuck, check
out en.wikipedia.org/wiki/Principle_of_explosion.)

2.3 Application: Logic Circuits
Aswe saw inChapter 1, computers have a reputation—not always deserved—
for being ‘logical’. But fundamentally, deep down, they are made of logic in
a very real sense. The building blocks of computers are logic gates, which

en.wikipedia.org/wiki/Principle_of_explosion
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are electronic components that compute the values of simple propositions
such as p ∧ q and ¬p. (Each gate is in turn built of even smaller electronic
components called transistors, but this needn’t concern us here: see the
course Computer Organisation.)

Don’t worry, logic circuits will be examined in Computer Organ-
isation, not in Reasoning & Logic. They are a good example and
application of propositional logic, and that’s why we’re talking
about them in this section. Normal forms (Section 2.3.4) are def-
initely on the syllabus, however, so pay attention!

2.3.1 Logic gates
Awire in a computer can be in one of two states, whichwe can think of as be-
ing on and off. These two states can be naturally associatedwith the Boolean
values T and F. When a computer computes, the multitude of wires inside
it are turned on and off in patterns that are determined by certain rules. The
rules involved can be most naturally expressed in terms of logic. A simple
rule might be: “turn wire C on whenever wire A is on and wire B is on”.
This rule can be implemented in hardware as an AND gate. An AND gate is
an electronic component with two input wires and one output wire, whose
job is to turn its output on when both of its inputs are on and to turn its out-
put off in any other case. If we associate ‘on’ with T and ‘off’ with F, and if
we give the names A and B to the inputs of the gate, then the gate computes
the value of the logical expression A ∧ B. In effect, A is a proposition with
the meaning “the first input is on”, and B is a proposition with the meaning
“the second input is on”. The AND gate functions to ensure that the output
is described by the proposition A ∧ B. That is, the output is on if and only
if the first input is on and the second input is on.

As you hopefully know from Computer Organisation, an OR gate is an
electronic component with two inputs and one output which turns its out-
put on if either (or both) of its inputs is on. If the inputs are given names
A and B, then the OR gate computes the logical value of A ∨ B. A NOT gate
has one input and one output, and it turns its output off when the input is
on and on when the input is off. If the input is named A, then the NOT gate
computes the value of ¬A.

As we mentioned earlier, other textbooks might use different
notations to represent a negation. For instance a bar over the
variable x̄ or a ∼ symbol. In digital logic (and thus in your Com-
puter Organisation course) you will also often find the + symbol
to represent an ‘or’ and a · (dot) symbol to represent an ‘and’.
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AND gate OR gate NOT gate

A

B

C

output

Figure 2.3: The standard symbols for the three basic logic gates, and a
logic circuit that computes the value of the logical expression (¬A)∧ (B ∨
¬(A ∧ C)). The input wires to each logic gate are on the left, with the
output wire on the right. Note that whenwires cross each other in a diagram
such as this, the wires don’t actually intersect unless there is a black circle
at the point where they cross.

Other types of logic gates are, of course, possible. Gates could be made
to compute A → B or A ⊕ B, for example. However, any computation
that can be performed by logic gates can be done using only AND, OR, and
NOT gates, as we will see below. (In practice, however, NAND gates and NOR
gates, which compute the values of ¬(A∧ B) and ¬(A∨ B) respectively, are
often used because they are easier to build from transistors than AND and
OR gates.)

2.3.2 Combining gates to create circuits
The three types of logic gates are represented by standard symbols, as shown
in Figure 2.3. Since the inputs and outputs of logic gates are just wires carry-
ing on/off signals, logic gates can be wired together by connecting outputs
from some gates to inputs of other gates. The result is a logic circuit. An
example is also shown in Figure 2.3.

The logic circuit in the figure has three inputs, labeled A, B, and C. The
circuit computes the value of the compound proposition (¬A)∧ (B∨¬(A∧
C)). That is, when A represents the proposition “the input wire labeled A
is on,” and similarly for B and C, then the output of the circuit is on if and
only if the value of the compound proposition (¬A) ∧ (B ∨ ¬(A ∧ C)) is
true.

Given any compound proposition made from the operators ∧, ∨, and ¬,
it is possible to build a logic circuit that computes the value of that propos-
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ition. The proposition itself is a blueprint for the circuit. As noted in Sec-
tion 2.1, every logical operator that we have encountered can be expressed
in terms of∧,∨, and¬, so in fact every compoundproposition thatwe know
how to write can be computed by a logic circuit.

Given a proposition constructed from ∧, ∨, and ¬ operators, it is easy
to build a circuit to compute it. First, identify the main operator in the
proposition—the one whose value will be computed last. Consider (A ∨
B) ∧ ¬(A ∧ B). This circuit has two input values, A and B, which are rep-
resented by wires coming into the circuit. The circuit has an output wire
that represents the computed value of the proposition. The main operator
in (A ∨ B) ∧ ¬(A ∧ B), is the first ∧, which computes the value of the ex-
pression as a whole by combining the values of the subexpressions A ∨ B
and ¬(A ∧ B). This ∧ operator corresponds to an AND gate in the circuit
that computes the final output of the circuit.

Once the main operator has been identified and represented as a logic
gate, you just have to build circuits to compute the input or inputs to that
operator. In the example, the inputs to the main AND gate come from two
subcircuits. One subcircuit computes the value of A ∨ B and the other com-
putes the value of ¬(A ∧ B). Building each subcircuit is a separate problem,
but smaller than the problem you started with. Eventually, you’ll come to
a gate whose input comes directly from one of the input wires—A or B in
this case—instead of from a subcircuit.

2.3.3 From circuits to propositions
So, every compound proposition is computed by a logic circuit with one out-
put wire. Is the reverse true? That is, given a logic circuit with one output,
is there a proposition that expresses the value of the output in terms of the
values of the inputs? Not quite. When you wire together some logic gates
to make a circuit, there is nothing to stop you from introducing feedback
loops. A feedback loop occurs when the output from a gate is connected—
possibly through one or more intermediate gates—back to an input of the
same gate. Figure 2.5 shows an example of a circuit with a feedback loop.
Feedback loops cannot be described by compound propositions, basically
because there is no place to start, no input to associate with a propositional
variable. But feedback loops are the only thing that can go wrong. A logic
circuit that does not contain any feedback loops is called a combinatorial lo-
gic circuit. Every combinatorial logic circuit with just one output computes
the value of some compound proposition. The propositional variables in
the compound proposition are just names associated with the input wires
of the circuit. (Of course, if the circuit has more than one output, you can
simply use a different proposition for each output.)
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A
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(A B)

(A B)

(A B)

(A B)
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B

(A B)

(A B)

1.  We know that the final

output of the circuit is

computed by an AND gate,

whose inputs are as shown.

2.  These inputs, in

turn come from an

OR gate and a NOT

gate, with inputs as

shown.

3.  The circuit is completed by adding an AND gate

to compute the input for the NOT gate, and and connecting

the  circuit inputs, A and B, to the apropriate gate inputs.

Figure 2.4: Stages in the construction of a circuit that computes the com-
pound proposition (A ∨ B) ∧ ¬(A ∧ B).

The key to understanding why this is true is to note that each wire in the
circuit—not just the final output wire—represents the value of some pro-
position. Furthermore, once you knowwhich proposition is represented by
each input wire to a gate, it’s obvious what proposition is represented by
the output: You just combine the input propositions with the appropriate
∧, ∨, or ¬ operator, depending onwhat type of gate it is. To find the propos-
ition associated with the final output, you just have to start from the inputs
andmove through the circuit, labeling the output wire of each gate with the
proposition that it represents. Figure 2.6 illustrates this process.

2.3.4 Disjunctive Normal Form
Compound propositions, then, correspond naturally with combinatorial lo-
gic circuits. But we have still not quite settled the question of just how
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Figure 2.5: This circuit contains a feedback loop, so it is not a combinatorial
logic circuit. The feedback loop includes the AND gate and the OR gate on the
right. This circuit does not compute the value of a compound proposition.
This circuit does, however, play an important role in computer memories,
since it can be used to store a logical value.

A

B

C

(B C)

(A B)

A B

B C

(A B)

C

1 2

3
4

5

Figure 2.6: Finding the proposition whose value is computed by a combin-
atorial logic circuit. Each wire in the circuit is labeled with the proposition
that it represents. The numbering of the labels shows one of the orders in
which they can be associated with the wires. The circuit as a whole com-
putes the value of ¬(A ∧ B) ∧ (B ∨ ¬C).

powerful these circuits and propositions are. We’ve looked at a number
of logical operators and noted that they can all be expressed in terms of ∧,
∨, and ¬. But might there be other operators that cannot be so expressed?
Equivalently, might there be other types of logic gates—possibly with some
large number of inputs—whose computations cannot be duplicated with
AND, OR, and NOT gates? Any logical operator or logic gate computes a value
for each possible combination of logical values of its inputs. We could al-
ways make a truth table showing the output for each possible combination
of inputs. As it turns out, given any such truth table, it is possible to find
a proposition, containing only the ∧, ∨, and ¬ operators, whose value for
each combination of inputs is given precisely by that table.

To see why this is true, it is useful to introduce a particular type of com-
pound proposition. Define a simple term to be either a propositional vari-
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able or the negation of a propositional variable. A conjunction of simple
terms would then consist of one or more simple terms put together with ∧
operators. (A ‘conjunction of one simple term’ is just a single simple term
by itself. This might not make grammatical sense, but it’s the way math-
ematicians think.) Some examples of conjunctions of simple terms would
be p ∧ q, p, ¬q, and p ∧ ¬r ∧ ¬w ∧ s ∧ t. Finally, we can take one or more
such conjunctions and join them into a ‘disjunction of conjunctions of simple
terms’. This is the type of compound proposition we need. We can avoid
some redundancy by assuming that no propositional variable occurs more
than once in a single conjunction (since p ∧ p can be replaced by p, and if p
and ¬p both occur in a conjunction, then the value of the conjuction is false,
and it can be eliminated.) We can also assume that the same conjunction
does not occur twice in the disjunction.

Normal forms are part of the syllabus for Reasoning & Logic.
These normal forms, such as Disjunctive Normal Form (this sub-
section) and Conjunctive Normal Form (see the exercises), are
important in propositional logic. There are normal forms for
other logics, too, such as for predicate logic which we’ll look at
in the next Section 2.4.

Definition 2.6. A compound proposition is said to be in disjunctive normal
form, or DNF, if it is a disjunction of conjunctions of simple terms, and if,
furthermore, each propositional variable occurs at most once in each con-
junction and each conjunction occurs at most once in the disjunction.

Using p, q, r, s, A, and B as propositional variables, here are a few ex-
amples of propositions that are in disjunctive normal form:

(p ∧ q ∧ r) ∨ (p ∧ ¬q ∧ r ∧ s) ∨ (¬p ∧ ¬q)
(p ∧ ¬q)

(A ∧ ¬B) ∨ (¬A ∧ B)
p ∨ (¬p ∧ q) ∨ (¬p ∧ ¬q ∧ r) ∨ (¬p ∧ ¬q ∧ ¬r ∧ w)

Propositions in DNF are just what we need to deal with input/output tables
of the type that we have been discussing. Any such table can be computed
by a proposition in disjunctive normal form. It follows that it is possible to
build a circuit to compute that table using only AND, OR, and NOT gates.

Theorem 2.3. Consider a table that lists a logical output value for every combin-
ation of values of several propositional variables. Assume that at least one of the
output values is true. Then there is a proposition containing those variables such
that the value of the proposition for each possible combination of the values of the
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variables is precisely the value specified in the table. It is possible to choose the
proposition to be in disjunctive normal form.

Proof. Consider any row in the table forwhich the output value is T. Form a
conjunction of simple terms as follows: For each variable, p, whose value is
T in that row, include p itself in the conjunction; for each variable, q, whose
value is F in the row, include ¬q in the conjunction. The value of this con-
junction is T for the combination of variable values given in that row of the
table, since each of the terms in the conjuction is true for that combination of
variables. Furthermore, for any other possible combination of variable val-
ues, the value of the conjunction will be F, since at least one of the simple
terms in the conjunction will be false.

Take the disjunction of all such conjunctions constructed in this way, for
each row in the table where the output value is true. This disjunction has
the value T if and only if one of the conjunctions that make it up has the
value T—and that is precisely when the output value specified by the table
is T. So, this disjunction of conjunctions satisfies the requirements of the
theorem.

This is the first proof of a non-trivial claim that we’ve seen. You
will learn about theorems and proofs, and proof techniques, at
the end of this chapter and in Chapter 3.

As an example, consider the table in Figure 2.7. This table specifies a
desired output value for each possible combination of values for the pro-
positional variables p, q, and r. Look at the second row of the table, where
the output value is true. According to the proof of the theorem, this row cor-
responds to the conjunction (¬p ∧ ¬q ∧ r). This conjunction is true when p
is false, q is false, and r is true; in all other cases it is false, since in any other
case at least one of the terms ¬p, ¬q, or r is false. The other two rows where
the output is true give two more conjunctions. The three conjunctions are
combined to produce the DNF proposition (¬p ∧ ¬q ∧ r) ∨ (¬p ∧ q ∧ r) ∨
(p ∧ q ∧ r). This proposition computes all the output values specified in the
table. Using this proposition as a blueprint, we get a logic circuit whose
outputs match those given in the table.

Now, given any combinatorial logic circuit, there are many other circuits
that have the same input/output behaviour. When two circuits have the
same input/output table, the compound propositions associated with the
two circuits are logically equivalent. To put this another way, propositions
that are logically equivalent produce circuits that have the same input/out-
put behaviour. As a practical matter, we will usually prefer the circuit that
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p q r output
F F F F

F F T T (¬p ∧ ¬q ∧ r)

F T F F

F T T T (¬p ∧ q ∧ r)

T F F F

T F T F

T T F F

T T T T p ∧ q ∧ r
Figure 2.7: An input/output table specifying a desired output for each
combination of values of the propositional variables p, q, and r. Each row
where the output is T corresponds to a conjunction, shown next to that row
in the table. The disjunction of these conjunctions is a proposition whose
output values are precisely those specified by the table.

is simpler. The correspondence between circuits and propositions allows
us to apply Boolean algebra to the simplification of circuits.

Our preference for simpler applies to compound propositions,
whether or not they correspond to circuits. We usually prefer
the equivalent form of the proposition that is simpler. Any pro-
position has an equivalent proposition in DNF. So when proving
a theorem about compound propositions, it is sufficient to con-
sider only DNF propositions. This can make the proof easier to
write.

For example, consider theDNFproposition corresponding to the table in
Figure 2.7. In (¬p ∧¬q ∧ r)∨ (¬p ∧ q ∧ r)∨ (p ∧ q ∧ r), we can factor (q ∧ r)
from the last two terms, giving (¬p ∧ ¬q ∧ r) ∨ ((¬p ∨ p) ∧ (q ∧ r)). Since
¬p ∨ p ≡ T, and T ∧ Q ≡ Q for any proposition Q, this can be simplified
to (¬p ∧ ¬q ∧ r) ∨ (q ∧ r). Again, we can apply the distributive law to this
to factor out an r, giving ((¬p ∧ ¬q) ∨ q) ∧ r). This compound proposition
is logically equivalent to the one we started with, but implementing it in
a circuit requires only five logic gates, instead of the ten required by the
original proposition.8

8No, we didn’t count wrong. There are eleven logical operators in the original expression,



2.3. Application: Logic Circuits

2

37

If you start with a circuit instead of a proposition, it is often possible
to find the associated proposition, simplify it using Boolean algebra, and
use the simplified proposition to build an equivalent circuit that is simpler
than the original. And simplifying a proposition to DNF is often a sensible
approach.

One way to simplify propositions is using a Karnaugh-map
(or K-map for short) as you will learn in Computer Organisa-
tion. Using a K-map you can find what they will call a ‘min-
imal sum of products’. Notice that a sum of products is just
a proposition written in DNF. For the course of Reasoning &
Logicwemay ask you to translate propositions to a DNF form.
You can then choose to either do so using rewrite rules, but
you are also free to use a K-map if you prefer. In one of the
pencasts of this course we show how both methods lead to a
result in DNF: youtu.be/GwVngCU9eYY.

2.3.5 Binary addition
All this explains nicely the relationship between logic and circuits, but it
doesn’t explain why logic circuits should be used in computers in the first
place. Part of the explanation is found in the fact that computers use binary
numbers. A binary number is a string of zeros and ones. Binary numbers
are easy to represent in an electronic device like a computer: Each position
in the number corresponds to a wire. When the wire is on, it represents one;
when the wire is off, it represents zero. When we are thinking in terms of
logic, the same states of the wire represent true and false, but either repres-
entation is just an interpretation of the reality, which is a wire that is on or
off. The question is whether the interpretation is fruitful.

Once wires are thought of as representing zeros and ones, we can build
circuits to do computations with binary numbers. Which computations?
Any that we want! If we know what the answer should be for each combin-
ation of inputs, then by Theorem 2.3 we can build a circuit to compute that
answer. Of course, the procedure described in that theorem is only practical
for small circuits, but small circuits can be used as building blocks to make
all the calculating circuits in a computer.

For example, let’s look at binary addition. To add two ordinary, decimal

but you can get by with ten gates in the circuit: Use a single NOT gate to compute ¬p, and
connect the output of that gate to two different AND gates. Reusing the output of a logic gate is
an obvious way to simplify circuits that does not correspond to any operation on propositions.

youtu.be/GwVngCU9eYY
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A B C output

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

A B C output

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Figure 2.8: Input/output tables for the addition of three binary digits, A,
B, and C.

numbers, you line them up one on top of the other, and add the digits in
each column. In each column, there might also be a carry from the previous
column. To add up a column, you only need to remember a small number
of rules, such as 7 + 6 + 1 = 14 and 3 + 5 + 0 = 8. For binary addition, it’s
even easier, since the only digits are 0 and 1. There are only eight rules:

0 + 0 + 0 = 00 1 + 0 + 0 = 01
0 + 0 + 1 = 01 1 + 0 + 1 = 10
0 + 1 + 0 = 01 1 + 1 + 0 = 10
0 + 1 + 1 = 10 1 + 1 + 1 = 11

Here, we’ve written each sum using two digits. In a multi-column addition,
one of these digits is carried over to the next column. Here, we have a calcu-
lation that has three inputs and two outputs. We canmake an input/output
table for each of the two outputs. The tables are shown in Figure 2.8. We
know that these tables can be implemented as combinatorial circuits, so we
know that circuits can add binary numbers. To addmulti-digit binary num-
bers, we just need one copy of the basic addition circuit for each column in
the sum.

Exercises
1. Using only AND, OR, and NOT gates, draw circuits that compute the value of each

of the propositions A → B, A ↔ B, and A ⊕ B.
2. For each of the following propositions, find a combinatorial logic circuit that

computes that proposition:
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a) A ∧ (B ∨ ¬C) b) (p ∧ q) ∧ ¬(p ∧ ¬q)
c) (p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r) d) ¬(A ∧ (B ∨ C)) ∨ (B ∧ ¬A)

3. Find the compound proposition computed by each of the following circuits:

A

B

C

A

B

C

4. This section describes a method for finding the compound proposition com-
puted by any combinatorial logic circuit. This method fails if you try to apply it
to a circuit that contains a feedback loop. What goes wrong? Give an example.

5. Show that every compound proposition which is not a contradiction is equival-
ent to a proposition in disjunctive normal form. (Note: We can eliminate the re-
striction that the compound proposition is not a contradiction by agreeing that
‘F’ counts as a proposition in disjunctive normal form. F is logically equivalent
to any contradiction.)

6. Aproposition in conjunctive normal form (CNF) is a conjunction of disjunctions
of simple terms (with the proviso, as in the definition of DNF that a single item
counts as a conjunction or disjunction). Show that every compound proposition
which is not a tautology is logically equivalent to a compound proposition in
conjunctive normal form. (Hint: What happens if you take the negation of a
DNF proposition and apply DeMorgan’s Laws?)

7. Use the laws of Boolean algebra to simplify each of the following circuits:

A

B

A

B

C

A

B

C

8. Design circuits to implement the input/output tables for addition, as given in
Figure 2.8. Try to make your circuits as simple as possible. (The circuits that are
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used in real computers for this purpose are more simplified than the ones you
will probably come up with, but the general approach of using logic to design
computer circuits is valid. If you are interested to learn more about this, the
second year variant course Digital Systems describes circuit design in more de-
tail.)

2.4 Predicate Logic
In propositional logic, we can let p stand for “Roses are red” and q stand
for “Violets are blue”. Then p ∧ q will stand for “Roses are red and violets
are blue”. But we lose a lot in the translation into logic. Since propositional
logic only deals with truth values, there’s nothing we can do with p and
q in propositional logic that has anything to do with roses, violets, or col-
our. To apply logic to such things, we need predicates. The type of logic
that uses predicates is called predicate logic or, when the emphasis is on
manipulating and reasoning with predicates, predicate calculus.

2.4.1 Predicates
A predicate is a kind of incomplete proposition, which becomes a propos-
ition when it is applied to some entity (or, as we’ll see later, to several en-
tities). In the proposition “the rose is red”, the predicate is is red. By itself,
‘is red’ is not a proposition. Think of it as having an empty slot, that needs
to be filled in to make a proposition: “— is red”. In the proposition “the
rose is red”, the slot is filled by the entity “the rose”, but it could just as well
be filled by other entities: “the barn is red”; “the wine is red”; “the banana
is red”. Each of these propositions uses the same predicate, but they are
different propositions and they can have different truth values.

If P is a predicate and a is an entity, then P(a) stands for the proposition
that is formed when P is applied to a. If P represents ‘is red’ and a stands
for ‘the rose’, then P(a) is ‘the rose is red’. If M is the predicate ‘is mortal’
and s is ‘Socrates’, then M(s) is the proposition “Socrates is mortal”.

Now, youmight be asking, just what is an entity anyway? I am using the
term here to mean some specific, identifiable thing to which a predicate can
be applied. Generally, it doesn’t make sense to apply a given predicate to
every possible entity, but only to entities in a certain category. For example,
it probably doesn’t make sense to apply the predicate ‘is mortal’ to your
living room sofa. This predicate only applies to entities in the category of
living things, since there is noway something can bemortal unless it is alive.
This category is called the domain of discourse for the predicate.9

9In the language of set theory, which will be introduced in Chapter 4, we would say that a
domain of discourse is a set, U, and a predicate is a function from U to the set of truth values.
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We are now ready for a formal definition of one-place predicates. A one-
place predicate, like all the examples we have seen so far, has a single slot
which can be filled in with one entity:

Definition 2.7. A one-place predicate associates a proposition with each
entity in some collection of entities. This collection is called the domain of
discourse for the predicate. If P is a predicate and a is an entity in the do-
main of discourse for P, then P(a) denotes the proposition that is associated
with a by P. We say that P(a) is the result of applying P to a.

We can obviously extend this to predicates that can be applied to two or
more entities. In the proposition “John lovesMary”, loves is a two-place pre-
dicate. Besides John and Mary, it could be applied to other pairs of entities:
“John loves Jane”, “Bill loves Mary”, “John loves Bill”, “John loves John”.
If Q is a two-place predicate, then Q(a, b) denotes the proposition that is
obtained when Q is applied to the entities a and b. Note that each of the
‘slots’ in a two-place predicate can have its own domain of discourse. For
example, if Q represents the predicate ‘owns’, then Q(a, b) will only make
sense when a is a person and b is an inanimate object. An example of a
three-place predicate is “a gave b to c”, and a four-place predicate would be
“a bought b from c for d euros”. But keep in mind that not every predicate
has to correspond to an English sentence.

When predicates are applied to entities, the results are propositions, and
all the operators of propositional logic can be applied to these propositions
just as they can to any propositions. Let R be the predicate ‘is red’, and let L
be the two-place predicate ‘loves’. If a, b, j, m, and b are entities belonging to
the appropriate categories, then we can form compound propositions such
as:

R(a) ∧ R(b) a is red and b is red
¬R(a) a is not red
L(j, m) ∧ ¬L(m, j) j loves m, and m does not love j
L(j, m) → L(b, m) if j loves m then b loves m
R(a) ↔ L(j, j) a is red if and only if j loves j

The definition should be clear enough without the formal language of set theory, and in fact
you should think of this definition—and many others—as motivation for that language.



2

42 Chapter 2. Logic

Predicate logic is founded on the ideas de-
veloped by Charles Sanders Peirce (1839–
1914), an American philosopher, logician,
mathematician, and scientist.10 Many of
his contributions to logic were appreciated
only years after he died. He has been called
“the most original and versatile of Amer-
ican philosophers and America’s greatest
logician.” and “one of the greatest philo-
sophers ever”. As early as 1886 he saw that logical operations
could be carried out by electrical switching circuits; the same
idea was used decades later to produce digital computers, as we
saw in Section 2.3. You can read about his colourful life at the
link below.
Source: en.wikipedia.org/wiki/Charles_Sanders_Peirce.

2.4.2 Quantifiers
Let’s go back to the proposition with which we started this section: “Roses
are red”. This sentence is more difficult to handle than it might appear. We
still can’t express it properly in logic. The problem is that this proposition
is not saying something about some particular entity. It really says that
all roses are red (which happens to be a false statement, but that’s what it
means). Predicates can only be applied to individual entities.

Many other sentences raise similar difficulties: “All persons are mortal.”
“Some roses are red, but no roses are black.” “All maths courses are inter-
esting.” “Every prime number greater than two is odd.” Words like all, no,
some, and every are called quantifiers. We need to be able to express similar
concepts in logic.

Suppose that P is a predicate, and we want to express the proposition
that P is true when applied to any entity in the domain of discourse. That is,
wewant to say “for any entity x in the domain of discourse, P(x) is true”. In
predicate logic, we write this in symbols as ∀x(P(x)). The ∀ symbol, which
looks like an upside-down ‘A’, is usually read ‘for all’, so that ∀x(P(x)) is
read as ‘for all x, P(x)’. (It is understood that this means for all x in the
domain of discourse for P.) For example, if R is the predicate ‘is red’ and
the domain of discourse consists of all roses, then ∀x(R(x)) expresses the
proposition “All roses are red”. Note that the same proposition could be
expressed in English as “Every rose is red” or “Any rose is red”.

Now, suppose we want to say that a predicate, P, is true for some entity
in its domain of discourse. This is expressed in predicate logic as ∃x(P(x)).

en.wikipedia.org/wiki/Charles_Sanders_Peirce
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The ∃ symbol, which looks like a backwards ‘E’, is usually read ‘there exists’,
but a more exact reading would be ‘there is at least one’. Thus, ∃x(P(x)) is
read as ‘There exists an x such that P(x)’ , and it means “there is at least one
x in the domain of discourse for P for which P(x) is true”. If, once again,
R stands for ‘is red’ and the domain of discourse is ‘roses’, then ∃x(R(x))
could be expressed in English as “There is a red rose” or “At least one rose
is red” or “Some rose is red”. It might also be expressed as “Some roses are
red”, but the plural is a bit misleading since ∃x(R(x)) is true even if there
is only one red rose. We can now give the formal definitions:

Definition 2.8. Suppose that P is a one-place predicate. Then ∀x(P(x)) is
a proposition, which is true if and only if P(a) is true for every entity a in
the domain of discourse for P. And ∃x(P(x)) is a proposition which is true
if and only if there is at least one entity, a, in the domain of discourse for P
for which P(a) is true. The ∀ symbol is called the universal quantifier, and
∃ is called the existential quantifier.

The x in ∀x(P(x)) and ∃x(P(x)) is a variable. (More precisely, it is an
entity variable, since its value can only be an entity.) Note that a plain P(x)—
without the ∀x or ∃x—is not a proposition. P(x) is neither true nor false
because x is not some particular entity, but just a placeholder in a slot that
can be filled in with an entity. P(x) would stand for something like the
statement ‘x is red’, which is not really a statement in English at all. But
it becomes a statement when the x is replaced by some particular entity,
such as ‘the rose’. Similarly, P(x) becomes a proposition if some entity a is
substituted for the x, giving P(a).11

An open statement is an expression that contains one or more entity
variables, which becomes a propositionwhen entities are substituted for the
variables. (Anopen statement has open ‘slots’ that need to be filled in.) P(x)
and “x is red” are examples of open statements that contain one variable.
If L is a two-place predicate and x and y are variables, then L(x, y) is an
open statement containing two variables. An example in English would be
“x loves y”. The variables in an open statement are called free variables. An
open statement that contains x as a free variable can be quantified with ∀x
or ∃x. The variable x is then said to be bound. For example, x is free in
P(x) and is bound in ∀x(P(x)) and ∃x(P(x)). The free variable y in L(x, y)
becomes bound in ∀y(L(x, y)) and in ∃y(L(x, y)).

Note that ∀y(L(x, y)) is still an open statement, since it contains x as a
free variable. Therefore, it is possible to apply the quantifier ∀x or ∃x to

11There is certainly room for confusion about names here. In this discussion, x is a variable
and a is an entity. But that’s only because we said so. Any letter could be used in either role,
and you have to pay attention to the context to figure out what is going on. Usually, x, y, and
z will be variables.
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∀y(L(x, y)), giving ∀x
(
∀y(L(x, y))

)
and ∃x

(
∀y(L(x, y))

)
. Since all the vari-

ables are bound in these expressions, they are propositions. If L(x, y) repres-
ents ‘x loves y’, then ∀y(L(x, y)) is something like “x loves everyone”, and
∃x
(
∀y(L(x, y))

)
is the proposition, “There is someonewho loves everyone”.

Of course, we could also have started with ∃x(L(x, y)): “There is someone
who loves y”. Applying ∀y to this gives ∀y

(
∃x(L(x, y))

)
, which means “For

every person, there is someone who loves that person”. Note in particular
that ∃x

(
∀y(L(x, y))

)
and ∀y

(
∃x(L(x, y))

)
do not mean the same thing. Al-

together, there are eight different propositions that can be obtained from
L(x, y) by applying quantifiers, with six distinct meanings among them.

From now on, wewill leave out parentheses when there is no am-
biguity. For example, we will write ∀x P(x) instead of ∀x(P(x))
and ∃x ∃y L(x, y) instead of ∃x

(
∃y(L(x, y))

)
. Make sure though

that when you leave out the parentheses you do so only when no
ambiguity exists. In one of the problems of this chapter, you will
see an example of two very similar statements where the paren-
theses do change the meaning significantly!
Further, we will sometimes give predicates and entities names
that are complete words instead of just letters, as in Red(x) and
Loves(john, mary). Thismight help tomake examplesmore read-
able.

2.4.3 Operators
In predicate logic, the operators and laws of Boolean algebra still apply. For
example, if P and Q are one-place predicates and a is an entity in the domain
of discourse, then P(a) → Q(a) is a proposition, and it is logically equival-
ent to ¬P(a)∨ Q(a). Further, if x is a variable, then P(x) → Q(x) is an open
statement, and ∀x(P(x) → Q(x)) is a proposition. So are P(a) ∧ (∃x Q(x))
and (∀x P(x)) → (∃xP(x)). Obviously, predicate logic can be very express-
ive. Unfortunately, the translation between predicate logic and English sen-
tences is not always obvious.

One of the commonly-made mistakes in predicate logic is the
difference in translation between statements like: “All humans
aremortal” and “There is a human that is mortal”. We discuss
the difference in translation of these statements in one of our
pencasts: youtu.be/BJeGHIX_ldY.

youtu.be/BJeGHIX_ldY
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Let’s look one more time at the proposition “Roses are red”. If the do-
main of discourse consists of roses, this translates into predicate logic as
∀x Red(x). However, the sentence makes more sense if the domain of dis-
course is larger—for example if it consists of all flowers. Then “Roses are
red” has to be read as “All flowers which are roses are red”, or “For any
flower, if that flower is a rose, then it is red”. The last form translates dir-
ectly into logic as ∀x

(
Rose(x) → Red(x)

)
. Suppose we want to say that all

red roses are pretty. The phrase ‘red rose’ is saying both that the flower is a
rose and that it is red, and it must be translated as a conjunction, Rose(x) ∧
Red(x). So, “All red roses are pretty” can be rendered as ∀x

(
(Rose(x) ∧

Red(x)) → Pretty(x)
)
.
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Here are a few more examples of translations from predicate lo-
gic to English. Let H(x) represent ‘x is happy’, let C(y) represent
‘y is a computer’, and let O(x, y) represent ‘x owns y’. Then we
have the following translations:

• Jack owns a computer: ∃x
(
O(jack, x) ∧ C(x)

)
. (That is,

there is at least one thing such that Jack owns that thing
and that thing is a computer.)

• Everything Jack owns is a computer: ∀x
(
O(jack, x) →

C(x)
)
.

• If Jack owns a computer, then he’s happy:(
∃y(O(jack, y) ∧ C(y))

)
→ H(jack).

• Everyone who owns a computer is happy:
∀x
( (

∃y(O(x, y) ∧ C(y)
)
→ H(x)

) )
.

• Everyone owns a computer: ∀x ∃y
(
C(y) ∧ O(x, y)

)
. (Note

that this allows each person to own a different computer.
The proposition ∃y ∀x

(
C(y) ∧ O(x, y)

)
would mean that

there is a single computer which is owned by everyone.)
• Everyone is happy: ∀xH(x).
• Everyone is unhappy: ∀x(¬H(x)).
• Someone is unhappy: ∃x(¬H(x)).
• At least two people are happy: ∃x∃y

(
H(x) ∧ H(y) ∧ (x ̸=

y)
)
. (The stipulation that x ̸= y is necessary because two

different variables can refer to the same entity. The propos-
ition ∃x∃y(H(x) ∧ H(y)) is true even if there is only one
happy person.)

• There is exactly one happy person:(
∃xH(x)

)
) ∧

(
∀y∀z((H(y) ∧ H(z)) → (y = z))

)
.

(The first part of this conjunction says that there is at least
one happy person. The second part says that if y and z are
both happy people, then they are actually the same person.
That is, it’s not possible to find two different people who are
happy. The statement can be simplified a little however, to
get: ∃x(H(x) ∧ ∀y(H(y) → (x = y))). Do you see why
this works as well?)

• For another worked example, check out the pencast on the
topic here: https://youtu.be/XsI2DJpaGYA

https://youtu.be/XsI2DJpaGYA
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a b

c

de

Figure 2.9: An instance of a Tarski World.

2.4.4 Tarski’s world and formal structures
To help you reason about sets of predicate logic statements, or even argu-
ments expressed in predicate logic, we often use a ‘mathematical structure’.
For some of these structures a visualisation in the form of a Tarski’s world
can sometimes be useful.

What is truth? In 1933, Polish
mathematician Alfred Tarski (1901–
1983) published a very long paper
in Polish (titled Pojeçie prawdy w
jez̧ykach nauk dedukcyjnych), setting
out a mathematical definition of
truth for formal languages. “Along
with his contemporary, Kurt Gödel
[who we’ll see in Chapter 4], he changed the face of logic in the
twentieth century, especially through his work on the concept of
truth and the theory of models.”
Source: en.wikipedia.org/wiki/Alfred_Tarski.

In a Tarski’s world, it is possible to describe situations using formulas
whose truth can be evaluated, which are expressed in a first-order language
that uses predicates such as Rightof(x, y), which means that x is situated—
somewhere, not necessarily directly—to the right of y, or Blue(x), which
means that x is blue. In the world in Figure 2.9, for instance, the formula
∀x(Triangle(x) → Blue(x)) holds, since all triangles are blue, but the con-
verse of this formula, ∀x(Blue(x) → Triangle(x)), does not hold, since ob-
ject c is blue but not a triangle.

Such an instance of Tarski world can be more formally described as a

en.wikipedia.org/wiki/Alfred_Tarski


2

48 Chapter 2. Logic

‘mathematical structure’ (which we refer to as a formal structure occasion-
ally). These structures allow us to evaluate statements in predicate logic as
being true or false. To formalise a structure, we need to describe two things:
the domain of discourse D of the structure and for all of the predicates, for
which objects of the domain they are true. We do so using set-notationwhich
we discuss in more depth in Chapter 4. The formal description of the struc-
ture S depicted in Figure 2.9 is:

• D = {a, b, c, d, e}
• BlueS = {b, c}
• GrayS = {a, d}
• RedS = {e}
• SquareS = {a}
• TriangleS = {b}
• CircleS = {c, d, e}

• RightOf S = {(b, a), (c, a), (d, a), (e, a),
(b, c), (d, c), (b, e), (c, e), (d, e)}

• LeftOf S = {(a, b), (c, b), (e, b), (a, c),
(e, c), (a, d), (c, d), (e, d), (a, e)}

• BelowOf S = {(a, c), (a, d), (a, e), (b, c),
(b, d), (b, e), (c, d), (c, e)}

• AboveOf S = {(c, a), (c, b), (d, a), (d, b),
(d, c), (e, a), (e, b), (e, c)}

Notice that for the one-place predicateswe have a set of objects forwhich
this predicate is true (e.g., only b and c are blue) and such a set is denoted
using ‘{’ and ‘}’ symbols, called ‘curly braces’ or just ‘braces’.12 For the two-
place predicates we have a set of tuples that are denoted using ‘(’ and ‘)’
symbols, called ‘parentheses’ or ‘round brackets’. In this case, for instance,
the fact that (a, b) is in the set LeftOf S means that LeftOf (a, b) is true for this
structure, i.e., a is left of b.

Such formal structures can also be defined to disprove arguments writ-
ten in predicate logic, as we will see in Section 2.5.3.

2.4.5 Logical equivalence
To calculate in predicate logic, weneed anotion of logical equivalence. Clearly,
there are pairs of propositions in predicate logic that mean the same thing.
Consider the propositions ¬(∀xH(x)) and ∃x(¬H(x)), where H(x) repres-
ents ‘x is happy’. The first of these propositions means “Not everyone is
happy”, and the second means “Someone is not happy”. These statements
have the same truth value: if not everyone is happy, then someone is un-
happy and vice versa. But logical equivalence is much stronger than just
having the same truth value. In propositional logic, logical equivalence is
defined in terms of propositional variables: two compound propositions
are logically equivalent if they have the same truth values for all possible
truth values of the propositional variables they contain. In predicate logic,

12See Chapter 4.
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¬ (∀xP(x)) ≡ ∃x(¬P(x))

¬ (∃xP(x)) ≡ ∀x(¬P(x))

∀x∀yQ(x, y) ≡ ∀y∀xQ(x, y)

∃x∃yQ(x, y) ≡ ∃y∃xQ(x, y)
Figure 2.10: Four important rules of predicate logic. P can be any one-
place predicate, and Q can be any two-place predicate. The first two rules
are called DeMorgan’s Laws for predicate logic.

two formulas are logically equivalent if they have the same truth value for
all possible predicates.

Consider ¬(∀xP(x)) and ∃x(¬P(x)). These formulas make sense for
any predicate P, and for any predicate P they have the same truth value.
Unfortunately, we can’t—as we did in propositional logic—just check this
fact with a truth table: there are no subpropositions, connected by ∧, ∨, etc,
out of which to build a table. So, let’s reason it out: To say ¬(∀xP(x)) is true
is just to say that it is not the case that P(x) is true for all possible entities
x. So, there must be some entity a for which P(a) is false. Since P(a) is
false, ¬P(a) is true. But saying that there is an a for which ¬P(a) is true is
just saying that ∃x(¬P(x)) is true. So, the truth of ¬(∀xP(x)) implies the
truth of ∃x(¬P(x)). On the other hand, if ¬(∀xP(x)) is false, then ∀xP(x)
is true. Since P(x) is true for every x, ¬P(x) is false for every x; that is, there
is no entity a for which the statement ¬P(a) is true. But this just means
that the statement ∃x(¬P(x)) is false. In any case, then, the truth values of
¬(∀xP(x)) and ∃x(¬P(x)) are the same. Since this is true for any predicate
P, we will say that these two formulas are logically equivalent and write
¬(∀xP(x)) ≡ ∃x(¬P(x)).

A similar argument would show that ¬(∃xP(x)) ≡ ∀x(¬P(x)). These
two equivalences, which explicate the relation between negation and quan-
tification, are known as DeMorgan’s Laws for predicate logic. (They are
closely related to DeMorgan’s Laws for propositional logic; see the exer-
cises.) These laws can be used to help simplify expressions. For example,

¬∀y(R(y) ∨ Q(y)) ≡ ∃y(¬(R(y) ∨ Q(y)))
≡ ∃y((¬R(y)) ∧ (¬Q(y))

It might not be clear exactly why this qualifies as a ‘simplification’, but it’s
generally considered simpler to have the negation operator applied to basic
propositions such as R(y), rather than to quantified expressions such as
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∀y(R(y) ∨ Q(y)). For a more complicated example:

¬∃x
(

P(x) ∧ (∀y(Q(y) → Q(x)))
)

≡ ∀x
(
¬
(

P(x) ∧ (∀y(Q(y) → Q(x)))
)

≡ ∀x
(
(¬P(x)) ∨ (¬∀y(Q(y) → Q(x)))

)
≡ ∀x

(
(¬P(x)) ∨ (∃y(¬(Q(y) → Q(x))))

)
≡ ∀x

(
(¬P(x)) ∨ (∃y(¬(¬Q(y) ∨ Q(x))))

)
≡ ∀x

(
(¬P(x)) ∨ (∃y(¬¬Q(y) ∧ ¬Q(x)))

)
≡ ∀x

(
(¬P(x)) ∨ (∃y(Q(y) ∧ ¬Q(x)))

)
DeMorgan’s Laws are listed in Figure 2.10 along with two other laws of pre-
dicate logic. The other laws allow you to interchange the order of the vari-
ables when two quantifiers of the same type (both ∃ or ∀) occur together.

Notice however that we may not change the order of quanti-
fiers that are not the same! For instance: ∀x∃y(R(x, y)) ̸≡
∃y∀x(R(x, y)). If you are not convinced about this, try to draw
up a Tarski’s world that shows this unequivalence.

To define logical equivalence in predicate logic more formally, we need
to talk about formulas that contain predicate variables, that is, variables that
act as place-holders for arbitrary predicates in the same way that proposi-
tional variables are place-holders for propositions and entity variables are
place-holders for entities. With this in mind, we can define logical equival-
ence and the closely related concept of tautology for predicate logic. We’ll
see that these are crucial pieces of writing proofs.

Definition 2.9. Let P be a formula of predicate logic which contains one or
more predicate variables. P is said to be a tautology if it is true whenever
all the predicate variables that it contains are replaced by actual predicates.
Two formulas P and Q are said to be logically equivalent if P ↔ Q is a tauto-
logy, that is if P and Q always have the same truth value when the predicate
variables they contain are replaced by actual predicates. The notationP ≡ Q

asserts that P is logically equivalent to Q.

Exercises
†1. Simplify each of the following propositions. In your answer, the ¬ operator

should be applied only to individual predicates.
a) ¬∀x(¬P(x)) b) ¬∃x(P(x) ∧ Q(x))
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c) ¬∀z(P(z) → Q(z)) d) ¬
(
(∀xP(x)) ∧ (∀yQ(y))

)
e) ¬∀x∃yP(x, y) f) ¬∃x(R(x) ∧ ∀yS(x, y))
g) ¬∃y(P(y) ↔ Q(y)) h) ¬

(
∀x(P(x) → (∃yQ(x, y)))

)
2. Give a careful argument to show that the second of DeMorgan’s laws for predic-

ate calculus, ¬(∀xP(x)) ≡ ∃x(¬P(x)), is valid.
3. Find the negation of each of the following propositions. Simplify the result; in

your answer, the ¬ operator should be applied only to individual predicates.
a) ∃n(∀sC(s, n))
b) ∃n(∀s(L(s, n) → P(s)))
c) ∃n(∀s(L(s, n) → (∃x∃y∃zQ(x, y, z)))).
d) ∃n(∀s(L(s, n) → (∃x∃y∃z(s = xyz ∧ R(x, y) ∧ T(y) ∧ U(x, y, z)))).

4. Suppose that the domain of discourse for a predicate P contains only two entities.
Show that ∀xP(x) is equivalent to a conjunction of two simple propositions, and
∃xP(x) is equivalent to a disjunction. Show that in this case, DeMorgan’s Laws
for propositional logic and DeMorgan’s Laws for predicate logic actually say
exactly the same thing. Extend the results to a domain of discourse that contains
exactly three entities.

5. Let H(x) stand for ‘x is happy’, where the domain of discourse consists of people.
Express the proposition “There are exactly three happy people” in predicate lo-
gic.

6. What is the difference between the following two statements?
∃xRed(x) ∧ ∃xSquare(x) and ∃x(Red(x) ∧ Square(x))

7. Draw a Tarski world for the last exercise.
†8. Express Johan Cruyff’s statement “There is only one ball, so you need to have it”

in predicate logic.
9. Let T(x, y) stand for ‘x has taken y’, where the domain of discourse for x con-

sists of students and the domain of discourse for y consists of CS courses (at
TUDelft). Translate each of the following propositions into an unambiguous
English sentence:

a) ∀x ∀y T(x, y) b) ∀x ∃y T(x, y) c) ∀y ∃x T(x, y)
d) ∃x ∃y T(x, y) e) ∃x ∀y T(x, y) f) ∃y ∀x T(x, y)

10. Let F(x, t) stand for “You can fool person x at time t.” Translate the following
sentence into predicate logic: “You can fool some of the people all of the time,
and you can fool all of the people some of the time, but you can’t fool all of the
people all of the time.”

11. Translate each of the following sentences into a proposition using predicate logic.
Make up any predicates you need. State clearly what each predicate means.

a) All crows are black.
b) Any white bird is not a crow.
c) Not all politicians are honest.
d) All purple elephants have green feet.
e) There is no one who does not like pizza.
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f) Anyone who passes the final exam will pass the course.13
g) If x is any positive number, then there is a number y such that y2 = x.

12. Consider the following description of a Tarski World. Does an instance of a
Tarski World exist with these properties? If so, give one with a domain of at
most 5 elements. If no such instance exists, explain why not.
• ∀x(Circle(x) → ¬Blue(x))

• ∃x(Circle(x)) ∧ ∃x(Blue(x))

• RightOf (a, b)

• LeftOf (a, b) ∨ Square(c)

†13. The sentence “Someone has the answer to every question” is ambiguous. Give
two translations of this sentence into predicate logic, and explain the difference
in meaning.

14. The sentence “Jane is looking for a dog” is ambiguous. One meaning is that
there is some particular dog—maybe the one she lost—that Jane is looking for.
The other meaning is that Jane is looking for any old dog—maybe because she
wants to buy one. Express the first meaning in predicate logic. Explain why the
second meaning is not expressed by ∀x(Dog(x) → LooksFor(jane, x)). In fact,
the second meaning cannot be expressed in predicate logic. Philosophers of
language spend a lot of time thinking about things like this. They are especially
fond of the sentence “Jane is looking for a unicorn”, which is not ambiguous
when applied to the real world. Why is that?

2.5 Deduction
Logic can be applied to draw conclusions from a set of premises. A premise
is just a proposition that is known to be true or that has been accepted to be
true for the sake of argument, and a conclusion is a proposition that can be
deduced logically from the premises. The idea is that if you believe that the
premises are true, then logic forces you to accept that the conclusion is true.
An argument is a claim that a certain conclusion follows from a given set of
premises. Here is an argument laid out in a traditional format:

If today is Tuesday, then this is Belgium
Today is Tuesday
∴ This is Belgium

The premises of the argument are shown above the line, and the conclusion
below. The symbol ∴ is read ‘therefore’. The claim is that the conclusion,
“This is Belgium”, can be deduced logically from the two premises, “If today
is Tuesday, then this is Belgium” and “Today is Tuesday”. In fact, this claim
is true. Logic forces you to accept this argument. Why is that?

13This is not true for Reasoning & Logic: see the syllabus.
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2.5.1 Arguments
Let p stand for the proposition “Today is Tuesday”, and let q stand for the
proposition “This is Belgium”. Then the above argument has the form

p → q
p
∴ q

Now, for anypropositions p and q—not just the ones in this particular argument—
if p → q is true and p is true, then q must also be true. This is easy to check
in a truth table:

p q p → q

0 0 1
0 1 1
1 0 0
1 1 1

The only case where both p → q and p are true is on the last line of the
table, and in this case, q is also true. If you believe p → q and p, you have no
logical choice but to believe q. This applies nomatterwhat p and q represent.
For example, if you believe “If Jill is breathing, then Jill pays taxes”, and
you believe that “Jill is breathing”, logic forces you to believe that “Jill pays
taxes”. Note that we can’t say for sure that the conclusion is true, only that
if the premises are true, then the conclusion must be true.

This fact can be rephrased by saying that
(
(p → q) ∧ p

)
→ q is a tau-

tology. More generally, for any compound propositions P and Q, saying
“P → Q is a tautology” is the same as saying that “in all cases where P

is true, Q is also true”.14 We will use the notation P =⇒ Q to mean that
P → Q is a tautology. Think of P as being the premise of an argument or
the conjunction of several premises. To say P =⇒ Q is to say that Q follows
logically from P. We will use the same notation in both propositional logic
and predicate logic. (Note that the relation of =⇒ to → is the same as the
relation of ≡ to ↔.)

Definition 2.10. Let P and Q be any formulas in either propositional logic
or predicate logic. The notation P =⇒ Q is used to mean that P → Q is a
tautology. That is, in all cases where P is true, Q is also true. We then say
that Q can be logically deduced from P or that P logically implies Q.

14Here, “in all cases” means for all combinations of truth values of the propositional vari-
ables in P and Q, i.e., in every situation. Saying P → Q is a tautology means it is true in all
cases. But by definition of →, it is automatically true in cases where P is false. In cases where
P is true, P → Q will be true if and only if Q is true.



2

54 Chapter 2. Logic

An argument inwhich the conclusion follows logically from thepremises
is said to be a valid argument. To test whether an argument is valid, you
have to replace the particular propositions or predicates that it containswith
variables, and then test whether the conjunction of the premises logically
implies the conclusion. We have seen that any argument of the form

p → q
p
∴ q

is valid, since
(
(p → q) ∧ p

)
→ q is a tautology. This rule of deduction is

calledmodus ponens. It plays a central role in logic. Another, closely related
rule is modus tollens, which applies to arguments of the form

p → q
¬q
∴ ¬p

To verify that this is a valid argument, just check that
(
(p → q) ∧ ¬q

)
=⇒

¬p, that is, that
(
(p → q) ∧ ¬q

)
→ ¬p is a tautology. As an example, the

following argument has the form of modus tollens and is therefore a valid
argument:

If Feyenoord is a great team, then I’m the king of the Netherlands
I am not the king of the Netherlands
∴ Feyenoord is not a great team

Youmight remember this argument frompage 13. You should note carefully
that the validity of this argument has nothing to do with whether or not
Feyenoord can play football well. The argument forces you to accept the
conclusion only if you accept the premises. You can logically believe that the
conclusion is false, as long as you believe that at least one of the premises is
false.15

Another named rule of deduction is the Law of Syllogism, which has
the form

p → q
q → r
∴ p → r

For example:
15Unless the conclusion is a tautology. If that’s the case, then even when a premise is false

the conclusion will still be true. You do always know that if the conclusion is false then at least
one of the premises is false.
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If you study hard, you do well in school
If you do well in school, you get a good job
∴ If you study hard, you get a good job

There are many other rules. Here are a few that might prove useful.
Some of them might look trivial, but don’t underestimate the power of a
simple rule when it is combined with other rules.

p ∨ q
¬p
∴ q

p
q
∴ p ∧ q

p ∧ q
∴ p

p
∴ p ∨ q

Logical deduction is related to logical equivalence. We defined P and Q

to be logically equivalent if P ↔ Q is a tautology. Since P ↔ Q is equivalent
to (P → Q) ∧ (Q → P), we see that P ≡ Q if and only if both Q =⇒ P and
P =⇒ Q. Thus, we can show that two statements are logically equivalent
if we can show that each of them can be logically deduced from the other.
Also, we get a lot of rules about logical deduction for free—two rules of
deduction for each logical equivalence we know. For example, since ¬(p ∧
q) ≡ (¬p ∨ ¬q), we get that ¬(p ∧ q) =⇒ (¬p ∨ ¬q). For example, if we
know “It is not both sunny andwarm”, thenwe can logically deduce “Either
it’s not sunny or it’s not warm.” (And vice versa.)

2.5.2 Valid arguments and proofs

In general, arguments are more complicated than those we’ve considered
so far. Here, for example, is an argument that has five premises:

(p ∧ r) → s
q → p
t → r
q
t
∴ s

Is this argument valid? Of course, you could use a truth table to check
whether the conjunction of the premises logically implies the conclusion.
But with five propositional variables, the table would have 32 lines, and the
size of the table grows quickly when more propositional variables are used.
So, in general, truth tables are not practical when we have a large number
of variables.
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For a relatively small number of variables (say three or fewer)
a truth table can be a rather efficient method to test validity of
an argument. In one of the pencasts of this course I show how
you can use truth tables to test for validity as well as how you
can use them to find counterexamples for invalid arguments:
youtu.be/lSZS3qbA88o

Fortunately, there is another way to proceed, based on the fact that it is
possible to chain several logical deductions together. That is, if P =⇒ Q

and Q =⇒ R, it follows that P =⇒ R. This means we can demonstrate the
validity of an argument by deducing the conclusion from the premises in a
sequence of steps. These steps can be presented in the form of a proof:

Definition 2.11. A formal proof that an argument is valid consists of a se-
quence of propositions such that the last proposition in the sequence is the
conclusion of the argument, and every proposition in the sequence is either
a premise of the argument or follows by logical deduction frompropositions
that precede it in the list.

The existence of such a proof shows that the conclusion follows logically
from the premises, and therefore that the argument is valid. Here is a formal
proof that the argument given above is valid. The propositions in the proof
are numbered, and each proposition has a justification.

Proof.

1. q → p premise
2. q premise
3. p from 1 and 2 (modus ponens)
4. t → r premise
5. t premise
6. r from 4 and 5 (modus ponens)
7. p ∧ r from 3 and 6
8. (p ∧ r) → s premise
9. s from 7 and 8 (modus ponens)

youtu.be/lSZS3qbA88o
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Once a formal proof has been constructed, it is convincing. Un-
fortunately, it’s not necessarily easy to come up with the proof.
Usually, the best method is a combination of working forward
(“Here’s what I know, what can I deduce from that?”) and work-
ing backwards (“Here’s what I need to prove, what other things
would imply that?”). For this proof, Imight have thought: I want
to prove s. I know that p ∧ r implies s, so if I can prove p ∧ r, I’m
okay. But to prove p ∧ r, it’ll be enough to prove p and r separ-
ately….

Of course, not every argument is valid, so the question also arises, how
can we show that an argument is invalid? Let’s assume that the argument
has been put into general form, with all the specific propositions replaced
by propositional variables. The argument is valid if in all cases where all
the premises are true, the conclusion is also true. The argument is invalid
if there is even one case where all the premises are true and the conclusion
is false. We can prove that an argument is invalid by finding an assignment
of truth values to the propositional variables which makes all the premises
true but makes the conclusion false. We call such an assignment a counter-
example . To disprove the validity of an argument you should always provide
a counterexample. This holds in propositional logic, predicate logic, and
any other type of argument you may be asked to disprove.

For example, consider an argument of the form:
p → q
q → (p ∧ r)
r
∴ p

In the case where p is false, q is false, and r is true, the three premises of
this argument are all true, but the conclusion is false. This counterexample
shows that the argument is invalid.

To apply all this to arguments stated in English, we have to introduce
propositional variables to represent all the propositions in the argument.
For example, consider:

John will be at the party if Mary is there and Bill is not there.
Mary will be at the party if it’s on Friday or Saturday. If Bill is
at the party, Tom will be there. Tom won’t be at the party if it’s
on Friday. The party is on Friday. Therefore, John will be at the
party.

Let j stand for “John will be at the party”, m for “Mary will be there”, b for
“Bill will be there”, t for “Tom will be there”, f for “The party is on Friday”,
and s for “The party is on Saturday”. Then this argument has the form
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(m ∧ ¬b) → j
( f ∨ s) → m
b → t
f → ¬t
f
∴ j

This is a valid argument, as the following proof shows:

Proof.

1. f → ¬t premise
2. f premise
3. ¬t from 1 and 2 (modus ponens)
4. b → t premise
5. ¬b from 4 and 3 (modus tollens)
6. f ∨ s from 2
7. ( f ∨ s) → m premise
8. m from 6 and 7 (modus ponens)
9. m ∧ ¬b from 8 and 5

10. (m ∧ ¬b) → j premise
11. j from 10 and 9 (modus ponens)

You may have noticed that we start our proofs with the word
‘proof’ and end it with a little square. This is done to illustrate
clearly where our proof starts and ends. Historically different
symbols and expressions have been used to indicate that a proof
is done. You may have heard of the abbreviation Q.E.D. for
instance for ‘Quod Erat Demonstrandum’, which translates to:
‘what was to be shown’. Even in ancient Greece a Greek version
of Q.E.D. was used by Greek mathematicians like Euclid. You
are free to choose between Q.E.D. and the open square, so long
as you remember that no proof is complete if it does not have
either one of them.

2.5.3 Proofs in predicate logic
So far in this section, we have been working mostly with propositional lo-
gic. But the definitions of valid argument and logical deduction apply to
predicate logic as well.
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One of the most basic rules of deduction in predicate logic says that
(∀xP(x)) =⇒ P(a) for any entity a in the domain of discourse of the pre-
dicate P. That is, if a predicate is true of all entities, then it is true of any
given particular entity. This rule can be combined with rules of deduction
for propositional logic to give the following valid arguments:

∀x(P(x) → Q(x))
P(a)
∴ Q(a)

∀x(P(x) → Q(x))
¬Q(a)
∴ ¬P(a)

These valid arguments go by the names of modus ponens and modus tollens
for predicate logic. Note that from the premise ∀x(P(x) → Q(x)) we can
deduce P(a) → Q(a). From this and from the premise that P(a), we can
deduce Q(a) by modus ponens. So the first argument above is valid. The
second argument is similar, using modus tollens.

Themost famous logical deduction of them all is an application ofmodus
ponens for predicate logic:

All humans are mortal
Socrates is human
∴ Socrates is mortal

This has the formofmodus ponenswith P(x) standing for “x is human”, Q(x)
standing for “x is mortal”, and a standing for the noted entity, Socrates.

To disprove validity of arguments in predicate logic, you again need to
provide a counterexample. These are most easily given in the form of a
mathematical structure. Consider for instance the following argument:

∃xP(x)
∀x(P(x) → Q(x))
∴ ∀xQ(x)

This argument is not valid and we can prove that using the following
structure A.

• D = {a, b}

• PA = {a}

• QA = {a}
As you can see, the first premise is true. There is an x such that P(x)

holds, namely x = a. The second premise is also true, as for all x for which
P(x) holds (so only x = a), Q(x) also holds (and indeed Q(a)) holds. How-
ever the conclusion is false, as Q(b) does not hold, so the Q(x) does not hold
for all x.

There is a lot more to say about logical deduction and proof in predicate
logic, and we’ll spend the whole of the next chapter on the subject.



2

60 Chapter 2. Logic

Exercises
†1. Verify the validity of modus tollens and the Law of Syllogism.
†2. Each of the following is a valid rule of deduction. For each one, give an example

of a valid argument in English that uses that rule.

p ∨ q
¬p
∴ q

p
q
∴ p ∧ q

p ∧ q
∴ p

p
∴ p ∨ q

†3. There are two notorious invalid arguments that look deceptively like modus pon-
ens and modus tollens:

p → q
q
∴ p

p → q
¬p
∴ ¬q

Show that each of these arguments is invalid. Give an English example that uses
each of these arguments.

†4. Decide whether each of the following arguments is valid. If it is valid, give a
formal proof. If it is invalid, show that it is invalid by finding an appropriate
assignment of truth values to propositional variables.

a) p → q
q → s
s
∴ p

b) p ∧ q
q → (r ∨ s)
¬r
∴ s

c) p ∨ q
q → (r ∧ s)
¬p
∴ s

d) (¬p) → t
q → s
r → q
¬(q ∨ t)
∴ p

e) p
s → r
q ∨ r
q → ¬p
∴ ¬s

f) q → t
p → (t → s)
p
∴ q → s

†5. For each of the following English arguments, express the argument in terms of
propositional logic and determine whether the argument is valid or invalid.

a) If it is Sunday, it rains or snows. Today, it is Sunday and it’s not raining.
Therefore, it must be snowing.

b) If there is herring on the pizza, Jack won’t eat it. If Jack doesn’t eat pizza,
he gets angry. Jack is angry. Therefore, there was herring on the pizza.

c) At 8:00, Jane studies in the library or works at home. It’s 8:00 and Jane is
not studying in the library. So she must be working at home.
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Proof

M ATHEMATICS IS UNIQUE in that it claims a certainty that is beyond all pos-
sible doubt or argument. A mathematical proof shows how some res-

ult follows by logic alone from a given set of assumptions, and once the
result has been proven, it is as solid as the foundations of logic themselves.
Of course, mathematics achieves this certainty by restricting itself to an ar-
tificial, mathematical world, and its application to the real world does not
carry the same degree of certainty.

Within the world of mathematics, consequences follow from assump-
tions with the force of logic, and a proof is just a way of pointing out logical
consequences. Of course, the fact that mathematical results follow logically
does not mean that they are obvious in any normal sense. Proofs are con-
vincing once they are discovered, but finding them is often very difficult.
They are written in a language and style that can seem obscure to the un-
initiated. Often, a proof builds on a long series of definitions and previous
results, andwhile each step along the waymight be ‘obvious’ the end result
can be surprising and powerful. This is what makes the search for proofs
worthwhile.

In this chapter, we’ll look at some approaches and techniques that can
be used for proving mathematical results, including two important proof
techniques known as proof by contradiction and mathematical induction.
Along the way, we’ll encounter a few new definitions and notations. Hope-
fully, you will be left with a higher level of confidence for exploring the
mathematical world on your own.

61
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3.1 A Little Historical Background

The mathematical world and the real world weren’t always quite so separ-
ate. Until around the middle of the nineteenth century, the statements of
mathematics were regarded as statements about the world. A proof was
simply a convincing argument, rather than a chain forged of absolute logic.
It was something closer to the original meaning of the word ‘proof’, as a test
or trial: you might have heard of the proverb, “The proof of the pudding is
in the eating.” So, to prove something was to test its truth by putting it to
the trial of logical argument.

A commonly made mistake centres around the difference
between ‘proof‘ (a noun) and ‘to prove‘ (a verb). You can prove a
certain claim using a proof. But grammatically speaking you can-
not proof a certain claim using a prove. Historically, in the course
Reasoning & Logic this is one of the most common spelling/gram-
mar mistakes on exams. By including it in this book, we hope
that you will now know better.

The first rumble of trouble came in the form of non-Euclidean geometry.
For two thousand years, the geometry of the Greek mathematician Euclid
had been accepted, simply, as the geometry of the world. In the middle
of the nineteenth century, it was discovered that there are other systems of
geometry, which are at least as valid and self-consistent as Euclid’s system.
Mathematicians can work in any of these systems, but they cannot all claim
to be working in the real world.

Near the end of the nineteenth century came another shock, in the form
of cracks in the very foundation of mathematics. At that time, mathem-
atician Gottlob Frege was finishing a book on set theory that represented
his life’s work. In Frege’s set theory, a set could be defined by any prop-
erty. You could have, for example, the set consisting of all sets that contain
three objects. As he was finishing his book, Frege received a letter from
a young mathematician named Bertrand Russell which described what be-
came known as Russell’s Paradox. Russell pointed out that the set of all
sets—that is, the set that contains every entity that satisfies the property of
being a set—cannot logically exist. We’ll see Russell’s reasoning in the fol-
lowing chapter. Frege could only include a postscript in his book stating
that the basis of the work had been swept away.
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A contemporary of Peirce (see page 42),
Friedrich Ludwig Gottlob Frege (1848–
1925) was a German philosopher, logician,
and mathematician. Peirce and Frege were
apparently mostly unaware of each other’s
work. Frege is understood by many to be
the father of analytic philosophy, concen-
trating on the philosophy of language and
mathematics. Like Peirce, his work was
largely ignored during his lifetime, and came to be recognised
by later mathematicans—including Russell.
Source: en.wikipedia.org/wiki/Gottlob_Frege.

Mathematicians responded to these problems by banishing appeals to
facts about the real world frommathematical proof. Mathematics was to be
its own world, built on its own secure foundation. The foundation would
be a basic set of assumptions or ‘axioms’ fromwhich everything else would
follow by logic. It would only be necessary to show that the axioms them-
selveswere logically consistent and complete, and theworld ofmathematics
would be secure. Unfortunately, even this was not to be. In the 1930s, Kurt
Gödel showed that there is no consistent, finite set of axioms that completely
describes even the corner of the mathematical world known as arithmetic.
Gödel showed that given any finite, consistent set of axioms, there are true
statements about arithmetic that do not follow logically from those axioms.
We will return to Gödel and his contemporaries in Chapter 5.

We are left with a mathematical world in which iron chains of logic still
bind conclusions to assumptions. But the assumptions are no longer rooted
in the real world. Nor is there any finite core of axioms to which the rest
of the mathematical world can be chained. In this world, axioms are set up
as signposts in a void, and then structures of logic are built around them.
For example, in the next chapter, instead of talking about the set theory that
describes the real world, we have a set theory, based on a given set of axioms.
That set theory is necessarily incomplete, and it might differ from other set
theories which are based on other sets of axioms.

3.2 Mathematical Proof
Understandably, mathematicians are very picky about getting their proofs
right. It’s how they construct their world. Students sometimes object that

en.wikipedia.org/wiki/Gottlob_Frege
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mathematicians are too picky about proving things that are ‘obvious’. But
the fact that something is obvious in the real world counts for very little
in the constructed world of mathematics. Too many obvious things have
turned out to be deadwrong. (For that matter, even things in the real world
that seem ‘obviously’ true are not necessarily true at all.)

For example, consider the quantity f (n) = n2 + n + 41. When
n = 0, f (n) = 41 which is prime; when n = 1, f (n) = 43 which
is prime; when n = 2, f (n) = 47, which is prime. By the time you
had calculated f (3), f (4), . . . , f (10) and found that they were all
prime, you might conclude that it is ‘obvious’ that f (n) is prime
for all n ≥ 0. But this is not in fact the case! (See exercises.)

As we saw in Section 2.5, a formal proof consists of a sequence of state-
ments where each statement is either an assumption or follows by a rule
of logic from previous statements. The examples in that section all worked
with unspecified generic propositions (p, q, etc). Let us now look at how
onemight use the same techniques to prove a specific proposition about the
mathematical world. We will prove that for all integers n, if n is even then
n2 is even. (Definition: an integer n is even iff n = 2k for some integer k. For
example, 2 is even since 2 = 2 · 1; 66 is even since 66 = 2 · 33; 0 is even since
0 = 2 · 0.)

Proof. This is a proposition of the form ∀n(P(n) → Q(n)) where P(n) is “n
is even” and Q(n) is “n2 is even.” We need to show that P(n) → Q(n) is true
for all values of n. Or alternatively we can phrase it as: ∀n(E(n) → E(n2))
where E(x) is ‘x is even’.

In the language of Section 2.5, we need to show that for any n, E(n) lo-
gically implies E(n2); or, equivalently, that E(n2) can be logically deduced
from E(n); or, equivalently, that

n is even
∴ n2 is even

is a valid argument. Here is a formal proof that

n is even
∴ n2 is even

is in fact a valid argument for any value of n:
Let n be an arbitrary integer.
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1. n is even premise
2. if n is even, then n = 2k

for some integer k definition of even
3. n = 2k for some integer k from 1, 2 (modus ponens)
4. if n = 2k for some integer k,

then n2 = 4k2 for that integer k basic algebra
5. n2 = 4k2 for some integer k from 3, 4 (modus ponens)
6. if n2 = 4k2 for some integer k,

then n2 = 2(2k2) for that k basic algebra
7. n2 = 2(2k2) for some integer k from 5, 6 (modus ponens)
8. if n2 = 2(2k2) for some integer k,

then n2 = 2k′ for some integer k′ basic fact about integers
9. n2 = 2k′ for some integer k′ from 7, 8 (modus ponens)

10. if n2 = 2k′ for some integer k′,
then n2 is even definition of even

11. n2 is even from 9, 10 (modus ponens)

(The “basic fact about integers” referred to above is that the product of in-
tegers is again an integer.) Since n could be replaced by any integer through-
out this argument, we have proved the statement “if n is even then n2 is
even” is true for all integers n. (You might worry that the argument is only
valid for even n; see the disclaimer about Feyenoord’s football ability on
page 54, or remind yourself that P(n) → Q(n) is automatically true if P(n)
is false.)

Mathematical proofs are rarely presented with this degree of detail and
formality. A slightly less formal proof of our propositionmight leave out the
explicit implications and instances of modus ponens and appear as follows:

Proof. Let n be an arbitrary integer.

1. n is even premise
2. n = 2k for some integer k definition of even
3. n2 = 4k2 for that integer k basic algebra
4. n2 = 2(2k2) for that k basic algebra
5. n2 = 2k′ for some integer k′ substituting k′ = 2k2

6. n2 is even definition of even

Since n was an arbitrary integer, the statement is true for all integers.

A more typical proof would take the argument above and present it in
prose rather than list form:
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Proof. Let n be an arbitrary integer and assume n is even. Then n = 2k for
some integer k by the definition of even, and n2 = 4k2 = 2(2k2). Since
the product of integers is an integer, we have n2 = 2k′ for some integer k′.
Therefore n2 is even. Since n was an arbitrary integer, the statement is true
for all integers.

Typically, in a ‘formal’ proof, it is this kind of (relatively) informal dis-
cussion that is given, with enough details to convince the reader that a com-
plete, formal proof could be constructed. Of course, how many details the
reader can be expected to fill in depends on the reader, and reading proofs
is a skill that must be developed and practiced.

In the course Reasoning & Logic you are learning to write proper
formal proofs, and as a part of that we also need to evaluate your
performance. To this end we ask you to write proofs similar to
the second example given above (the list form rather than the
prose form) as this shows more clearly that you are aware of the
formalisms required in a proof.

Writing a proof is even more difficult than reading a proof. Every proof
involves a creative act of discovery, in which a chain of logic that leads from
assumptions to conclusion is discovered. It also involves a creative act of
expression, in which that logic is presented in a clear and convincing way.
There is no algorithm for producing correct, coherent proofs. There are,
however, some general guidelines for discovering and writing proofs. Let’s
look at some of these next.

3.2.1 How to write a proof
One of the most important pieces of advice to keep in mind is: “Use the
definition”. In the world of mathematics, terms mean exactly what they are
defined tomean and nothingmore. Definitions allow very complex ideas to
be summarized as single terms. When you are trying to prove things about
those terms, you generally need to ‘unwind’ the definitions. In our example
above, we used the definition of even to write n = 2k, and then we worked
with that equation. When you are trying to prove something about equival-
ence relations in Chapter 4, you can be pretty sure that you will need to use
the fact that equivalence relations, by definition, are symmetric, reflexive,
and transitive. (And, of course, you’ll need to know how the term ‘relation’
is defined in the first place! We mean something quite different than the
idea that ‘relations’ are something like your aunt and uncle.)

More advice along the same line is to check whether you are using the
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assumptions of the theorem. An assumption that is made in a theorem is
called an hypothesis. The hypotheses of the theorem state conditionswhose
truth will guarantee the conclusion of the theorem. To prove the theorem
means to assume that the hypotheses are true, and to show, under that as-
sumption, that the conclusion must be true. It’s likely (though not guaran-
teed) that you will need to use the hypotheses explicitly at some point in
the proof, as we did in our example above.1 Also, you should keep in mind
that any result that has already been proved is available to be used in your
proof.

A proof is a logical argument, based on the rules of logic. Since there are
really not all that many basic rules of logic, the same patterns keep showing
up over and over. Let’s look at some of the patterns.

The most common pattern arises in the attempt to prove that something
is true ‘for all’ or ‘for every’ or ‘for any’ entity in a given category. In terms
of logic, the statement you are trying to prove is of the form ∀x P(x). In
this case, the most likely way to begin the proof is by saying something like,
“Let x be an arbitrary entity in the domain of discourse. We want to show
that P(x).” We call this a proof by generalisation. In the rest of the proof,
x refers to some unspecified but definite entity in the domain of discourse.
Since x is arbitrary, proving P(x) amounts to proving ∀x P(x). You only
have to be careful that you don’t use any facts about x beyond what you
have assumed. For example, in our proof above, we cannot make any as-
sumptions about the integer n except that it is even; if we for instance also
assume x = 6 or that x is divisible by 3, then the proof would have been
incorrect, or at least incomplete.

Sometimes, you have to prove that an entity exists that satisfies certain
stated properties. Such a proof is called an existence proof . In this case,
you are attempting to prove a statement of the form ∃x P(x). The way to do
this is to find an example, that is, to find a specific entity a for which P(a) is
true. One way to prove the statement “There is an even prime number” is
to find a specific number that satisfies this description. The same statement
could also be expressed “Not every prime number is odd.” This statement
has the form ¬(∀x P(x)), which is equivalent to the statement ∃x (¬P(x)).
An example that proves the statement ∃x (¬P(x)) also proves ¬(∀x P(x)).
Such an example is called a counterexample to the statement ∀x P(x): A
counterexample proves that the statement ∀x P(x) is false. The number 2 is
a counterexample to the statement “All prime numbers are odd.” In fact, 2
is the only counterexample to this statement; by contrast, many statements
have multiple counterexamples.

1Of course, if you set out to discover new theorems on your own, you aren’t given the
hypotheses and conclusion in advance, which makes things quite a bit harder—and more in-
teresting.
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Note that we have now discussed how to prove and disprove universally
quantified statements, and how to prove existentially quantified statements.
How do you disprove ∃x P(x)? Recall that ¬∃x P(x) is logically equivalent
to ∀x (¬P(x)), so to disprove ∃x P(x) you need to prove ∀x (¬P(x)).

Many statements, like that in our example above, have the logical formof
an implication, p → q. (More accurately, they are of the form “∀x (P(x) →
Q(x))”, but as discussed above the strategy for proving such a statement
is to prove P(x) → Q(x) for an arbitrary element x of the domain of dis-
course.) The statement might be “For all natural numbers n, if n is even
then n2 is even,” or “For all strings x, if x is in the language L then x is
generated by the grammar G,”2 or “For all elements s, if s ∈ A then s ∈ B.”
Sometimes the implication is implicit rather than explicit: for example, “The
sum of two rationals is rational” is really short for “For any numbers x and
y, if x and y are rational then x + y is rational.” A proof of such a statement
often begins something like this: “Assume that p. We want to show that q.”
In the rest of the proof, p is treated as an assumption that is known to be
true. As discussed above, the logical reasoning behind this is that you are
essentially proving that

p
∴ q

is a valid argument. Another way of thinking about it is to remember that
p → q is automatically true in the case where p is false, so there is no need
to handle that case explicitly. In the remaining case, when p is true, we can
show that p → q is true by showing that the truth of q follows from the
truth of p. So remember that proving an implication you should assume
the antecedent and prove the consequent (you can refresh your memory of
what those words mean on page 12).

A statement of the form p ∧ q can be proven by proving p and q separ-
ately. A statement of the form p ∨ q can be proved by proving the logically
equivalent statement (¬p) → q: to prove p ∨ q, you can assume that p is
false and prove, under that assumption, that q is true. For example, the state-
ment “Every integer is even or odd” is equivalent to the statement “Every
integer that is not even is odd”.

Since p ↔ q is equivalent to (p → q) ∧ (q → p), a statement of the
form p ↔ q is often proved by giving two proofs, one of p → q and one of
q → p. In English, p ↔ q can be stated in several forms such as “p if and
only if q”, “if p then q and conversely,” and “p is necessary and sufficient for
q”. The phrase ‘if and only if’ is so common in mathematics that it is often
abbreviated iff .

2You will learn about this in the course Automata, Computability and Complexity in your
second year.
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You should also keep in mind that you can prove p → q by displaying a
chain of valid implications p → r → s → · · · → q. Similarly, p ↔ q can be
proved with a chain of valid biconditionals p ↔ r ↔ s ↔ · · · ↔ q.

3.2.2 Some terminology
Beforewe look at some sample proofs, here is some terminology thatwewill
use throughout our sample proofs and the rest of the course of Reasoning &
Logic.

• The natural numbers (denoted N) are the numbers 0, 1, 2, . . .. Note
that the sum and product of natural numbers are natural numbers.

• The integers (denotedZ) are the numbers 0,−1, 1,−2, 2,−3, 3, . . .. Note
that the sum, product, and difference of integers are integers.

• The rational numbers (denoted Q) are all numbers that can bewritten
in the form m

n where m and n are integers and n ̸= 0. So 1
3 and −65

7

are rationals; so, less obviously, are 6 and
√

27√
12

since 6 = 6
1 (or, for that

matter, 6 = −12
−2 ), and

√
27√
12

=
√

27
12 =

√
9
4 = 3

2 . Note the restriction
that the number in the denominator cannot be 0: 3

0 is not a number at
all, rational or otherwise; it is an undefined quantity. Note also that
the sum, product, difference, and quotient of rational numbers are
rational numbers (provided you don’t attempt to divide by 0).

• The real numbers (denoted R) are numbers that can be written in
decimal form, possiblywith an infinite number of digits after the decimal
point. Note that the sum, product, difference, and quotient of real
numbers are real numbers (providedyoudon’t attempt to divide by 0).

• The irrational numbers are real numbers that are not rational, i.e., that
cannot be written as a ratio of integers. Such numbers include

√
3

(which we will prove is not rational) and π (if anyone ever told you
that π = 22

7 , remember that 22
7 is only an approximation of the value

of π). Later you will learn that we can describe this set of irrational
numbers as R − Q, that is: it is all the numbers that are in R but are
not in Q.

• An integer n is divisible by m iff n = mk for some integer k. This can
also be expressed by saying that m evenly divides n, which has the
mathematical notation m | n. So for example, 2 | 8, but 8 ∤ 2. 2 | n
iff n = 2k for some integer k; n is divisible by 3 iff n = 3k for some
integer k, and so on. Note that if 2 ∤ n (i.e., n is not divisible by 2),
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then n must be 1 more than a multiple of 2 so n = 2k + 1 for some
integer k. Similarly, if n is not divisible by 3 then n must be 1 or 2 more
than a multiple of 3, so n = 3k + 1 or n = 3k + 2 for some integer k.

• An integer is even iff it is divisible by 2 and odd iff it is not.

• An integer n > 1 is prime if it is divisible by exactly two positive in-
tegers, namely 1 and itself. Note that a number must be greater than
1 to even have a chance of being termed ‘prime’. In particular, neither
0 nor 1 is prime.

3.2.3 Examples
Let’s look now at another example of a proof. We set out to prove that the
sum of any two rational numbers is rational.

Proof. We start by assuming that x and y are arbitrary rational numbers.
Here’s a formal proof that the inference rule

x is rational
y is rational
∴ x + y is rational

is a valid rule of inference:

1. x is rational premise
2. if x is rational, then x = a

b
for some integers a and b ̸= 0 definition of rationals

3. x = a
b for some integers a and b ̸= 0 from 1,2 (modus ponens)

4. y is rational premise
5. if y is rational, then y = c

d for
some integers c and d ̸= 0 definition of rational

6. y = c
d for some c and d ̸= 0 from 4,5 (modus ponens)

7. x = a
b for some a and b ̸= 0 and

y = c
d for some c and d ̸= 0 from 3,6

8. if x = a
b for some a and b ̸= 0 and

y = c
d for c and d ̸= 0 then

x + y = ad+bc
bd where a, b, c, d

are integers and b, d ̸= 0 basic algebra
9. x + y = ad+bc

bd for some a, b, c, d
where b, d ̸= 0 from 7,8 (modus ponens)

10. if x + y = ad+bc
bd for some a, b, c, d

where b, d ̸= 0 then x + y = m
n

where m, n are integers and n ̸= 0 properties of integers
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11. x + y = m
n where m and n

are integers and n ̸= 0 from 9,10 (modus ponens)
12. if x + y = m

n where m and n are
integers and n ̸= 0
then x + y is rational definition of rational

13. x + y is rational from 11,12 (modus ponens)

So the rule of inference given above is valid. Since x and y are arbitrary
rationals, we have proved that the rule is valid for all rationals, and hence
the sum of any two rationals is rational.

Again, amore informal presentation that we expect from you during the
course would look like:

Proof. Proof by generalisation:

• Let x and y be arbitrary rational numbers.

• By the definition of rational, there are integers a, b ̸= 0, c, d ̸= 0 such
that x = a

b and y = c
d .

• Then x + y = ad+bc
bd ;

• We know ad + bc and bd are integers since the sum and product of
integers are integers, and we also know bd ̸= 0 since neither b nor d is
0.

• So we have written x + y as the ratio of two integers, the denominator
being non-zero.

• Therefore, by the definition of rational numbers, x + y is rational.

• Since x and y were arbitrary rationals, the sum of any two rationals is
rational.

And one more example: we will prove that any 4-digit number d1d2d3d4
is divisible by 3 iff the sum of the four digits is divisible by 3.

Proof. This statement is of the form p ↔ q; recall that p ↔ q is logically
equivalent to (p → q) ∧ (q → p). So we need to prove for any 4-digit
number d1d2d3d4 that (1) if d1d2d3d4 is divisible by 3 then d1 + d2 + d3 + d4
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is divisible by 3, and (2) if d1 + d2 + d3 + d4 is divisible by 3 then d1d2d3d4
is divisible by 3. So let d1d2d3d4 be an arbitrary 4-digit number.

(1) Assume d1d2d3d4 is divisible by 3, i.e., d1d2d3d4 = 3k for some in-
teger k. The number d1d2d3d4 is actually d1 × 1000+ d2 × 100+ d3 × 10+ d4,
so we have the equation

d1 × 1000 + d2 × 100 + d3 × 10 + d4 = 3k.

Since 1000 = 999 + 1, 100 = 99 + 1, and 10 = 9 + 1, this equation can be
rewritten

999d1 + d1 + 99d2 + d2 + 9d3 + d3 + d4 = 3k.

Rearranging gives

d1 + d2 + d3 + d4 = 3k − 999d1 − 99d2 − 9d3

= 3k − 3(333d1)− 3(33d2)− 3(3d3).

We can now factor a 3 from the right side to get

d1 + d2 + d3 + d4 = 3(k − 333d1 − 33d2 − d3).

Since (k − 333d1 − 33d2 − d3) is an integer, we have shown that d1 + d2 +
d3 + d4 is divisible by 3.

(2) Assume d1 + d2 + d3 + d4 is divisible by 3. Consider the number
d1d2d3d4. As remarked above,

d1d2d3d4 = d1 × 1000 + d2 × 100 + d3 × 10 + d4

so

d1d2d3d4 = 999d1 + d1 + 99d2 + d2 + 9d3 + d3 + d4

= 999d1 + 99d2 + 9d3 + (d1 + d2 + d3 + d4).

We assumed that d1 + d2 + d3 + d4 = 3k for some integer k, so we can sub-
stitute into the last equation to get

d1d2d3d4 = 999d1 + 99d2 + 9d3 + 3k = 3(333d1 + 33d2 + 3d3 + k).

Since the quantity in parentheses is an integer, we have proved that d1d2d3d4
is divisible by 3.

In (1) and (2) above, the number d1d2d3d4 was an arbitrary 4-digit in-
teger, so we have proved that for all 4-digit integers, d1d2d3d4 is divisible by
3 iff the sum of the four digits is divisible by 3.
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Now suppose we wanted to prove the statement “For all integers n, n2

is even if and only if n is even.” We have already proved half of this state-
ment (“For all integers n, if n is even then n2 is even”), so all we need to
do is prove the statement “For all integers n, if n2 is even then n is even”
and we’ll be done. Unfortunately, this is not as straightforward as it seems:
suppose we started in our standardmanner and let n be an arbitrary integer
and assumed that n2 = 2k for some integer k. Then we’d be stuck! Taking
the square root of both sides would give us n on the left but would leave
a
√

2k on the right. This quantity is not of the form 2k′ for any integer k′;
multiplying it by

√
2√
2
would give 2

√
k√
2
but there is no way for us to prove that

√
k√
2
is an integer. So we’ve hit a dead end. What do we do now?
The answer is that we need a different proof technique. The proofs we

have written so far are what are called direct proofs: to prove p → q you
assume p is true and prove that the truth of q follows. Sometimes, when
a direct proof of p → q fails, an indirect proof will work. Recall that the
contrapositive of the implication p → q is the implication ¬q → ¬p, and
that this proposition is logically equivalent to p → q. An indirect proof of
p → q, then, is a direct proof of the contrapositive ¬q → ¬p. In our current
example, instead of proving “if n2 is even then n is even” directly, we can
prove its contrapositive “if n is not even (i.e., n is odd) then n2 is not even
(i.e., n2 is odd)”. We call this method a proof by contrapositive. The proof
of this contrapositive is a routine direct argument which we leave to the
exercises.

Alternatively we sometimes need a proof by division into cases. Con-
sider for instance that we want to prove that 3 | (n3 + 3n2 + 2n) for all
integers n. What we can do is split our proof into three different case based
on the divisibility by 3. Recall from the definition of divisibility that every
number can be written as either n = 3k, n = 3k + 1, or n = 3k + 2. In a
proof by division into cases, we prove that the claim holds for all of these
cases and thereby prove the claim holds for all numbers.

We have also created a pencast about several of the different
proof techniques outlined in this chapter. This includes one
in which we prove that 3 | (n3 + 3n2 + 2n) using a proof by
division into cases, found here: youtu.be/4OHyyGY_WpI

Exercises
1. Find a natural number n for which n2 + n + 41 is not prime.

youtu.be/4OHyyGY_WpI
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2. Show that the propositions p ∨ q and (¬p) → q are logically equivalent.
3. Show that the proposition (p ∨ q) → r is equivalent to (p → r) ∧ (q → r).
4. Determine whether each of the following statements is true. If it true, prove it.

If it is false, give a counterexample.
a) Every prime number is odd.
b) Every prime number greater than 2 is odd.
c) If x and y are integers with x < y, then there is an integer z such that

x < z < y.
d) If x and y are real numbers with x < y, then there is a real number z such

that x < z < y.
†5. Suppose that r, s, and t are integers, such that r evenly divides s and s evenly

divides t. Prove that r evenly divides t.
6. Prove that for all integers n, if n is odd then n2 is odd.
7. Prove that an integer n is divisible by 3 iff n2 is divisible by 3. (Hint: give an

indirect proof of “if n2 is divisible by 3 then n is divisible by 3.”)
8. Prove or disprove each of the following statements. Remember that to disprove

a statement we always expect a counterexample!
a) The product of two even integers is even.
b) The product of two integers is even only if both integers are even.
c) The product of two rational numbers is rational.
d) The product of two irrational numbers is irrational.
e) For all integers n, if n is divisible by 4 then n2 is divisible by 4.
f) For all integers n, if n2 is divisible by 4 then n is divisible by 4.

3.3 Proof by Contradiction
Suppose that we start with some set of assumptions and apply rules of lo-
gic to derive a sequence of statements that can be proved from those as-
sumptions, and suppose that we derive a statement that we know to be false.
When the laws of logic are applied to true statements, the statements that
are derivedwill also be true. If we derive a false statement by applying rules
of logic to a set of assumptions, then at least one of the assumptionsmust be
false. This observation leads to a powerful proof technique, which is known
as proof by contradiction.

Suppose that you want to prove some proposition, p. To apply proof by
contradiction, assume that ¬p is true, and apply the rules of logic to derive
conclusions based on this assumption. If it is possible to derive a statement
that is known to be false, it follows that the assumption, ¬p, must be false.
(Of course, if the derivation is based on several assumptions, then you only
know that at least one of the assumptions must be false.) The fact that ¬p is
false proves that p is true. Essentially, you are arguing that p must be true,
because if it weren’t, then some statement that is known to be false could be
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proved to be true. Generally, the false statement that is derived in a proof
by contradiction is of the form q ∧ ¬q. This statement is a contradiction in
the sense that it is false no matter what the value of q. Note that deriving
the contradiction q ∧ ¬q is the same as showing that the two statements, q
and ¬q, both follow from the assumption that ¬p.

As a first example of proof by contradiction, consider the following the-
orem:

Theorem 3.1. The number
√

3 is irrational.

Proof. Proof by contradiction:

• Assume for the sake of contradiction that
√

3 is rational.

• Then
√

3 can be written as the ratio of two integers,
√

3 = m′
n′ for some

integers m′ and n′.

• Furthermore, the fraction m′
n′ can be reduced to lowest terms by can-

celing all common factors of m′ and n′. So
√

3 = m
n for some integers

m and n which have no common factors.

• Squaring both sides of this equation gives 3 = m2

n2 and re-arranging
gives 3n2 = m2.

• From this equation we see that m2 is divisible by 3; you proved in the
previous section (Exercise 6) that m2 is divisible by 3 iff m is divisible
by 3. Therefore m is divisible by 3 and we can write m = 3k for some
integer k.

• Substituting m = 3k into the last equation above gives 3n2 = (3k)2 or
3n2 = 9k2, which in turn becomes n2 = 3k2. From this we see that n2

is divisible by 3, and againwe know that this implies that n is divisible
by 3.

• But now we have (i) m and n have no common factors, and (ii) m
and n have a common factor, namely 3. It is impossible for both these
things to be true, yet our argument has been logically correct.

• Therefore our original assumption, namely that
√

3 is rational, must
be incorrect.

• Therefore
√

3 must be irrational.
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One of the oldest mathematical proofs, which goes all the way back to
Euclid, is a proof by contradiction. Recall that a prime number is an integer
n, greater than 1, such that the only positive integers that evenly divide n are
1 and n. We will show that there are infinitely many primes. Before we get
to the theorem, we need a lemma. (A lemma is a theorem that is introduced
only because it is needed in the proof of another theorem. Lemmas help to
organize the proof of a major theorem into manageable chunks.)

Lemma 3.2. If N is an integer and N > 1, then there is a prime number which
evenly divides N.

Proof. Let D be the smallest integerwhich is greater than 1 andwhich evenly
divides N. (D exists since there is at least one number, namely N itself,
which is greater than 1 and which evenly divides N. We use the fact that
any non-empty subset of N has a smallest member.) We claim that D is
prime, so that D is a prime number that evenly divides N.

Suppose that D is not prime. We show that this assumption leads to a
contradiction. Since D is not prime, then, by definition, there is a number
k between 2 and D − 1, inclusive, such that k evenly divides D. But since
D evenly divides N, we also have that k evenly divides N (by exercise 5
in the previous section). That is, k is an integer greater than one which
evenly divides N. But since k is less than D, this contradicts the fact that
D is the smallest such number. This contradiction proves that D is a prime
number.

Theorem 3.3. There are infinitely many prime numbers.

Proof. Suppose that there are only finitely many prime numbers. We will
show that this assumption leads to a contradiction.

Let p1, p2, …, pn be a complete list of all prime numbers (which exists
under the assumption that there are only finitely many prime numbers).
Consider the number N obtained by multiplying all the prime numbers to-
gether and adding one. That is,

N = (p1 · p2 · p3 · · · pn) + 1.

Now, since N is larger than any of the prime numbers pi, and since p1, p2,
…, pn is a complete list of prime numbers, we know that N cannot be prime.
By the lemma, there is a prime number p which evenly divides N. Now, p
must be one of the numbers p1, p2, …, pn. But in fact, none of these numbers
evenly divides N, since dividing N by any pi leaves a remainder of 1. This
contradiction proves that the assumption that there are only finitely many
primes is false.
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This proof demonstrates the power of proof by contradiction. The fact
that is proved here is not at all obvious, and yet it can be proved in just a
few paragraphs.

It is easy to get a proof by contradiction wrong however.
In one of the pencasts of this course we treat a commonly-
mademistakewhen using proofs by contradiction: youtu.be/
OqKvBWxanok.

Exercises

1. Suppose that a1, a2, …, a10 are real numbers, and suppose that a1 + a2 + · · · +
a10 > 100. Use a proof by contradiction to conclude that at least one of the
numbers ai must be greater than 10.

2. Prove that each of the following statements is true. In each case, use a proof by
contradiction. Remember that the negation of p → q is p ∧ ¬q.

a) Let n be an integer. If n2 is an even integer, then n is an even integer.
b)

√
2 is irrational.

c) If r is a rational number and x is an irrational number, then r + x is an
irrational number. (That is, the sumof a rational number and an irrational
number is irrational.)

d) If r is a non-zero rational number and x is an irrational number, then rx is
an irrational number.

e) If r and r + x are both rational, then x is rational.
†3. The pigeonhole principle is the following obvious observation: If you have n

pigeons in k pigeonholes and if n > k, then there is at least one pigeonhole that
contains more than one pigeon. Even though this observation seems obvious,
it’s a good idea to prove it. Prove the pigeonhole principle using a proof by
contradiction.

3.4 Mathematical Induction
The structure of the natural numbers—0, 1, 2, 3, and on to infinity—makes
possible a powerful proof technique known as induction or mathematical
induction. Although the idea behind induction is simple, students often
struggle with it. Take your time and study this material thoroughly! You
will have opportunity to practice in the labs after we discuss induction in
the lectures.

youtu.be/OqKvBWxanok
youtu.be/OqKvBWxanok
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Let P be a one-place predicate whose domain
of discourse includes the natural numbers. Sup-
pose that we can prove that P(0) is true. Suppose
thatwe can also prove the statements P(0) → P(1),
P(1) → P(2), P(2) → P(3), and so on. The prin-
ciple of mathematical induction is the observation
that we can then conclude that P(n) is true for all
natural numbers n. This should be clear. It’s like a line of dominos, lined up
and ready to fall, one after the next.3 Since P(0) and P(0) → P(1) are true,
we can apply the rule of modus ponens to conclude that P(1) is true. Then,
since P(1) and P(1) → P(2) are true, we can conclude bymodus ponens that
P(2) is true. From P(2) and P(2) → P(3), we conclude that P(3) is true.
For any given n in the set N, we can continue this chain of deduction for n
steps to prove that P(n) is true.

When applying induction, we don’t actually prove each of the implic-
ations P(0) → P(1), P(1) → P(2), and so on, individually. That would
require an infinite amount of work. The whole point of induction is to
avoid any infinitely long process. Instead, we prove ∀k (P(k) → P(k + 1))
(where the domain of discourse for the predicate P is N. The statement
∀k (P(k) → P(k + 1)) summarizes all the infinitely many implications in a
single statement. Stated formally, the principle of mathematical induction
says that if we can prove the statement P(0) ∧

(
∀k (P(k) → P(k + 1)

)
, then

we can deduce that ∀n P(n) (again, with N as the domain of discourse).

KhanAcademyoffers a videowith a clear explanation ofmath-
ematical induction: www.khanacademy.org/math/algebra-
home/alg-series-and-induction/alg-induction/v/
proof-by-induction. We highly recommend that you watch
it to also hear this information from another perspective.

3.4.1 How to write a proof by induction
It should be intuitively clear that the principle of induction is valid. It fol-
lows from the fact that the list 0, 1, 2, 3, …, if extended long enough, will
eventually include any given natural number. If we start from P(0) and
take enough steps of the form P(k) → P(k + 1), we can get P(n) for any
given natural number n. However, whenever we deal with infinity, we are
courting the possibility of paradox. Wewill prove the principle of induction

3Image: commons.wikimedia.org/wiki/File:Dominoeffect.png.

www.khanacademy.org/math/algebra-home/alg-series-and-induction/alg-induction/v/proof-by-induction
www.khanacademy.org/math/algebra-home/alg-series-and-induction/alg-induction/v/proof-by-induction
www.khanacademy.org/math/algebra-home/alg-series-and-induction/alg-induction/v/proof-by-induction
commons.wikimedia.org/wiki/File:Dominoeffect.png
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rigorously in the next chapter (see Theorem 4.3), but for now we just state
it as a theorem:

Theorem 3.4. Let P be a one-place predicate whose domain of discourse includes
the natural numbers. Suppose that P(0)∧

(
∀k ∈ N (P(k) → P(k + 1))

)
.4 Then

P(n) is true for all natural numbers n. (That is, the statement ∀n P(n) is true,
where the domain of discourse for P is the set of natural numbers.)

Mathematical induction can be applied inmany situations: you canprove
things about strings of characters by doing induction on the length of the
string, things about graphs by doing induction on the number of nodes in
the graph, things about grammars by doing induction on the number of
productions in the grammar, and so on. We’ll be looking at applications
of induction for the rest of this chapter, and treat a form called structural
induction in the next chapter.

Although proofs by induction can be very different from one another,
they all follow just a few basic structures. A proof based on the preced-
ing theorem always has two parts. First, P(0) is proved. This is called the
base case of the induction. Then the statement ∀k (P(k) → P(k + 1)) is
proved. This statement can be proved by letting k be an arbitrary element
of N and proving P(k) → P(k + 1). This in turn can be proved by assum-
ing that P(k) is true and proving that the truth of P(k + 1) follows from
that assumption. This case is called the inductive case, and P(k) is called
the inductive hypothesis or the induction hypothesis. Note that the base
case is just as important as the inductive case. By itself, the truth of the
statement ∀k (P(k) → P(k + 1)) says nothing at all about the truth of any
of the individual statements P(n). The chain of implications P(0) → P(1),
P(1) → P(2), …, P(n− 1) → P(n) says nothing about P(n) unless the chain
is anchored at the other end by the truth of P(0).

3.4.2 Examples
Let’s look at a few examples.

Theorem 3.5. The number 22n − 1 is divisible by 3 for all natural numbers n.

Proof. Here, P(n) is the statement that 22n − 1 is divisible by 3.
Base case: When n = 0, 22n − 1 = 20 − 1 = 1 − 1 = 0 and 0 is divisible

by 3 (since 0 = 3 · 0.) Therefore the statement holds when n = 0.
Inductive case: We want to show that if the statement is true for n = k

(where k is an arbitrary natural number), then it is true for n = k + 1 also.
That is, wemust prove the implication P(k) → P(k+ 1). Sowe assume P(k),

4We will encounter this notation of k ∈ N again in Chapter 4. For now you should just
remember that k ∈ N means: k is an integer from the set N.
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that is, we assume that 22k is divisible by 3. This means that 22k − 1 = 3m
for some integer m. We want to prove P(k + 1), that is, that 22(k+1) − 1 is
also divisible by 3:

22(k+1) − 1 = 22k+2 − 1

= 22k · 22 − 1 properties of exponents
= 4 · 22k − 1

= 4 · 22k − 4 + 4 − 1

= 4(22k − 1) + 3 algebra
= 4(3m) + 3 the inductive hypothesis
= 3(4m + 1) algebra

and from the last line we see that 22k+1 is in fact divisible by 3. (The third
step—subtracting and adding 4—was done to enable us to use our inductive
hypothesis.)

Altogether, we have proved that P(0) holds and that, for all k, P(k) →
P(k + 1) is true. Therefore, by the principle of induction, P(n) is true for all
n in N, i.e. 22n − 1 is divisible by 3 for all n in N.

The principle of mathematical induction gives a method for proving
P(n) for all n in the set N. It should be clear that if M is any natural number,
a similar method can be used to show that P(n) is true for all natural num-
bers n that satisfy n ≥ M. Just start the induction with a base case of n = M
instead of with a base case of n = 0. We leave the proof of this extension of
the principle of induction as an exercise. We can use the extended principle
of induction to prove a result that was first mentioned in Section 2.1.

Theorem 3.6. Suppose that a compound proposition contains exactly n proposi-
tional variables, where n ≥ 1. Then there are exactly 2n different ways of assigning
truth values to the n variables.

Proof. Let P(n) be the statement “There are exactly 2n different ways of as-
signing truth values to n propositional variables.” We will use induction to
prove the P(n) is true for all n ≥ 1.

Base case: First, we prove the statement P(1). If there is exactly one
variable, then there are exactly two ways of assigning a truth value to that
variable. Namely, the variable can be either true or false. Since 2 = 21, P(1)
is true.

Inductive case: Suppose that P(k) is already known to be true. We want
to prove that, under this assumption, P(k + 1) is also true. Suppose that p1,
p2, …, pk+1 are k + 1 propositional variables. Since we are assuming that



3.4. Mathematical Induction

3

81

P(k) is true, we know that there are 2k ways of assigning truth values to
p1, p2, …, pk. But each assignment of truth values to p1, p2, …, pk can be
extended to the complete list p1, p2, …, pk, pk+1 in two ways. Namely, pk+1
can be assigned the value true or the value false. It follows that there are
2 · 2k ways of assigning truth values to p1, p2, …, pk+1. Since 2 · 2k = 2k+1,
this finishes the proof.

3.4.3 More examples

The sum of an arbitrary number of terms is written using the symbol ∑.
(This symbol is theGreek letter sigma, which is equivalent to the Latin letter
S and stands for ‘sum’.) Thus, we have

5

∑
i=1

i2 = 12 + 22 + 32 + 42 + 52

7

∑
k=3

ak = a3 + a4 + a5 + a6 + a7

N

∑
n=0

1
n + 1

=
1

0 + 1
+

1
1 + 1

+
1

2 + 1
+ · · ·+ 1

N + 1

This notation for a sum, using the ∑ operator, is called summation notation.
A similar notation for products uses the symbol ∏. (This is the Greek letter
pi, which is equivalent to the Latin letter P and stands for ‘product’.) For
example,

5

∏
k=2

(3k + 2) = (3 · 2 + 2)(3 · 3 + 2)(3 · 4 + 2)(3 · 5 + 2)

n

∏
i=1

1
i
=

1
1
· 1

2
· · · 1

n
·

Induction can be used to prove many formulas that use these notations.
Here are two examples:

Theorem 3.7.
n

∑
i=1

i =
n(n + 1)

2
for any integer n greater than zero.

We’ll prove this theorem in class. Can you do it yourself?
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The summation of Theorem 3.7 is often at-
tributed to mathematician and physicist Carl
Friedrich Gauss (1777–1855). Gauss has been
exceptionally influential in a variety of fields;
he is called “the greatest mathematician since
antiquity”. For example, youmight have heard
of the Gaussian probability distribution, or per-
haps of the Gauss unit for magnetic flux (al-
though we now commonly use the Tesla for
that, with 1 Tesla equalling 105 Gauss). His brilliance was
already apparent in primary school when he allegedly used the
‘Gauss sum’ from Theorem 3.7 to solve the maths homework the
teacher had set the class—to great astonishment of the teacher.
You will see this summation again in the course Algorithms &
Data Structures when analysing the runtime of algorithms con-
taining loops.
Source: en.wikipedia.org/wiki/Carl_Friedrich_Gauss.

Theorem 3.8.
n

∑
i=1

i2i−1 = (n − 1) · 2n + 1 for any natural number n > 0.

Proof. Let P(n) be the statement
n

∑
i=1

i2i−1 = (n − 1) · 2n + 1. We use induc-

tion to show that P(n) is true for all n > 0

Base case: Consider the case n = 1. P(1) is the statement that
1

∑
i=1

i2i−1 =

(1 − 1) · 21 + 1. Since each side of this equation is equal to one, this is true.

Inductive case: Let k ≥ 1 be arbitrary, and assume that P(k) is true. We

want to show that P(k + 1) is true. P(k + 1) is the statement
k+1

∑
i=1

i2i−1 =

en.wikipedia.org/wiki/Carl_Friedrich_Gauss
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((k + 1)− 1) · 2k+1 + 1. But, we can compute that

k+1

∑
i=1

i2i−1 =

(
k

∑
i=1

i2i−1

)
+ (k + 1)2(k+1)−1

=
(
(k − 1) · 2k + 1

)
+ (k + 1)2k (inductive hypothesis)

=
(
(k − 1) + (k + 1)

)
2k + 1

= (k · 2) · 2k + 1

= k2k+1 + 1

which is what we wanted to show. This completes the induction.

For example, these theorems show that
100

∑
i=1

i = 1 + 2 + 3 + 4 + · · · +

100 = 100(100+1)
2 = 5050 and that 1 · 20 + 2 · 21 + 3 · 22 + 4 · 23 + 5 · 24 =

(5 − 1)25 + 1 = 129, as well as infinitely many other such sums.

3.5 Strong Mathematical Induction
There is a second form of the principle of mathematical induction which is
useful in some cases. To apply the first form of induction, we assume P(k)
for an arbitrary natural number k and show that P(k + 1) follows from that
assumption. In the second form of induction, the assumption is that P(x)
holds for all x between 0 and k inclusive, and we show that P(k + 1) follows
from this. This gives us a lot more to work with when deducing P(k + 1).
Wewill need this second, stronger formof induction in the next two sections.
A proof will be given in the next chapter.

Theorem 3.9. Let P be a one-place predicate whose domain of discourse includes
the natural numbers. Suppose that P(0) is true and that

(P(0) ∧ P(1) ∧ · · · ∧ P(k)) → P(k + 1)

is true for each natural number k ≥ 0. Then P(n) is true for every natural num-
ber n.

For example, we can use this theorem to prove that every integer greater
than one can be written as a product of prime numbers (where a num-
ber that is itself prime is considered to be a product of one prime num-
ber). The proof illustrates an important point about applications of this
theorem: When proving P(k + 1), you don’t necessarily have to use the as-
sumptions that P(0), P(1), …, and P(k) are true. If P(k + 1) is proved by any
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means—possibly including the assumptions—then the statement (P(0) ∧
P(1) ∧ · · · ∧ P(k)) → P(k + 1) has been shown to be true. It follows from
this observation that several numbers, not just zero, can be ‘base cases’ in
the sense that P(x + 1) can be proved independently of P(0) through P(x).
In this sense, 0, 1, and every prime number are base cases in the following
theorem.

Theorem 3.10. Every natural number greater than one can be written as a product
of prime numbers.

Proof. Let P(n) be the statement “if n > 1, then n can bewritten as a product
of prime numbers”. We will prove that P(n) is true for all n by applying the
second form of the principle of induction.

Note that P(0) and P(1) are both automatically true, since n = 0 and
n = 1 do not satisfy the condition that n > 1, and P(2) is true since 2 is the
product of the single prime number 2. Suppose that k is an arbitrary natural
numberwith k > 1, and suppose that P(0), P(1), …, P(k) are already known
to be true; we want to show that P(k + 1) is true. In the case where k + 1 is
a prime number, then k + 1 is a product of one prime number, so P(k + 1)
is true.

Consider the case where k + 1 is not prime. Then, according to the defin-
ition of prime number, it is possible to write k + 1 = ab where a and b are
numbers in the range from 2 to k inclusive. Since P(0) through P(k) are
known to be true, a and b can each be written as a product of prime num-
bers. Since k + 1 = ab, k + 1 can also be written as a product of prime num-
bers. We have shown that P(k + 1) follows from P(0) ∧ P(1) ∧ · · · ∧ P(k),
and this completes the induction.

In two of the pencasts of this course, we treat two flawed in-
duction proofs and examine what mistakes have been made.
You can find them here: youtu.be/m0EIgQyukdQ and youtu.
be/2c-zw-ENNss.

Exercises
1. Use induction to prove that n3 + 3n2 + 2n is divisible by 3 for all natural numbers

n.
2. Use induction to prove that

n

∑
i=0

ri =
1 − rn+1

1 − r

youtu.be/m0EIgQyukdQ
youtu.be/2c-zw-ENNss
youtu.be/2c-zw-ENNss
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for any natural number n and for any real number r such that r ̸= 0 ∧ r ̸= 1.
3. Use induction to prove that for any natural number n,

n

∑
i=0

1
2i = 2 − 1

2n

In addition to proving this by induction, show that it follows as a corollary of
Exercise 2.

4. Use induction to prove that for any natural number n,

n

∑
i=0

2i = 2n+1 − 1

In addition to proving this by induction, show that it follows as a corollary of
Exercise 2.

5. Use induction to prove that for any positive integer n,

n

∑
i=1

i2 =
n(n + 1)(2n + 1)

6

6. Use induction to prove that for any positive integer n,

n

∑
i=1

(2i − 1) = n2

7. Evaluate the following sums, using results proved in this section and in the pre-
vious exercises:

a) 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19

b) 1 +
1
3
+

1
32 +

1
33 +

1
34 +

1
35 +

1
36

c) 50 + 51 + 52 + 53 + · · ·+ 99 + 100
d) 1 + 4 + 9 + 16 + 25 + 36 + 49 + 64 + 81 + 100

e) 1
22 +

1
23 + · · ·+ 1

299

8. Write each of the sums in the preceding problem using summation notation.
9. Rewrite the proof of Theorem 3.8 without using summation notation.
10. Use induction to prove the following generalized distributive laws for propos-

itional logic: For any natural number n > 1 and any propositions q, p1, p2, …,
pn,

a) q ∧ (p1 ∨ p2 ∨ · · · ∨ pn) = (q ∧ p1) ∨ (q ∧ p2) ∨ · · · ∨ (q ∧ pn)

b) q ∨ (p1 ∧ p2 ∧ · · · ∧ pn) = (q ∨ p1) ∧ (q ∨ p2) ∧ · · · ∧ (q ∨ pn)
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3.6 Application: Recursion and Induction

In computer programming, there is a technique called recursion that is closely
related to induction. In a computer program, a subroutine is a named se-
quence of instructions for performing a certain task. When that task needs
to be performed in a program, the subroutine can be called by name. A
typical way to organize a program is to break down a large task into smal-
ler, simpler subtasks by calling subroutines to perform each of the subtasks.
A subroutine can perform its task by calling other subroutines to perform
subtasks of the overall task. A subroutine can also call itself. That is, in
the process of performing some large task, a subroutine can call itself to
perform a subtask. This is known as recursion, and a subroutine that does
this is said to be a recursive subroutine. Recursion is appropriate when a
large task can be broken into subtasks where some or all of the subtasks are
smaller, simpler versions of the main task.

Prolog is an example of a programming language that uses recur-
sion to powerful effect. Classical Prolog has no loop construct:
loops are defined using recursive subroutines.

Like induction, recursion is often considered to be a ‘hard’ topic by stu-
dents. Experienced computer scientists, on the other hand, often say that
they can’t see what all the fuss is about, since induction and recursion are
elegant methods which ‘obviously’ work. In fairness, students have a point,
since induction and recursion both manage to pull infinite rabbits out of
very finite hats. But the magic is indeed elegant, and learning the trick is
very worthwhile.

In your course Computer Organisation you will be tasked to write
a small recursive program to compute the factorial in Assembly.
You can have a sneak-preview below of of what the pseudocode
for such a program might be. In future courses like Algorithms
& Data Structures and Algorithm Design you will also be tasked to
write and analyse recursive algorithms.

3.6.1 Recursive factorials

A simple example of a recursive subroutine is a function that computes n!
for a non-negative integer n. n!, which is read “n factorial”, is defined as
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follows:

0! = 1

n! =
n

∏
i=1

i for n > 0

For example, 5! = 1 · 2 · 3 · 4 · 5 = 120. Note that for n > 1,

n! =
n

∏
i=1

i =

(
n−1

∏
i=1

i

)
· n =

(
(n − 1)!

)
· n

It is also true that n! =
(
(n − 1)!

)
· n when n = 1. This observation makes

it possible to write a recursive function to compute n!.

All the programming examples in this section are written in the
Java programming language. We won’t put these blue boxes
around them.

1 int factorial( int n ) {
// Compute n!. Assume that n >= 0.

3 int answer;
if (n == 0) {

5 answer = 1;
} else {

7 answer = factorial(n-1) * n;
}

9 return answer;
}

To compute factorial(n) for n > 0, we can write a function (in Java).
This function computes factorial(n− 1) first by calling itself recursively. The
answer from that computation is thenmultiplied by n to give the value of n!.
The recursion has a base case, namely the case when n = 0. For the base
case, the answer is computed directly rather than by using recursion. The
base case prevents the recursion from continuing forever, in an infinite chain
of recursive calls.

Now, as it happens, recursion is not the best way to compute n!. It can
be computed more efficiently using a loop. Furthermore, except for small
values of n, the value of n! is outside the range of numbers that can be repres-
ented as 32-bit ints. However, ignoring these problems, the factorial function
provides a first example of the interplay between recursion and induction.
We can use induction to prove that factorial(n) does indeed compute n! for
n ≥ 0.5

5In the proof, we pretend that the data type int is not limited to 32 bits. In reality, the
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Theorem 3.11. Assume that the data type int can represent arbitrarily large in-
tegers. Under this assumption, the factorial function defined above correctly com-
putes n! for any natural number n.

Proof. Let P(n) be the statement “factorial(n) correctly computes n!”. We
use induction to prove that P(n) is true for all natural numbers n.

Base case: In the case n = 0, the if statement in the function assigns the
value 1 to the answer. Since 1 is the correct value of 0!, factorial(0) correctly
computes 0!.

Inductive case: Let k be an arbitrary natural number, and assume that
P(k) is true. From this assumption, wemust show that P(k + 1) is true. The
assumption is that factorial(k) correctly computes k!, and we want to show
that factorial(k + 1) correctly computes (k + 1)!.

When the function computes factorial(k + 1), the value of the parameter
n is k + 1. Since k + 1 > 0, the if statement in the function computes
the value of factorial(k + 1) by applying the computation factorial(k) ∗ (k +
1). We know, by the induction hypothesis, that the value computed by
factorial(k) is k!. It follows that the value computed by factorial(k + 1) is
(k!) · (k + 1). As we observed above, for any k + 1 > 0, (k!) · (k + 1) =
(k + 1)!. We see that factorial(k + 1) correctly computes (k + 1)!. This com-
pletes the induction.

In this proof, we see that the base case of the induction corresponds to
the base case of the recursion, while the inductive case corresponds to a
recursive subroutine call. A recursive subroutine call, like the inductive
case of an induction, reduces a problem to a ‘simpler’ or ‘smaller’ problem,
which is closer to the base case.

3.6.2 Towers of Hanoi
Another standard example of recursion is the Towers of Hanoi problem. Let
n be a positive integer. Imagine a set of n discs of decreasing size, piled up
in order of size, with the largest disc on the bottom and the smallest disc on
top. The problem is to move this tower of discs to a second pile, following
certain rules: Only one disc can be moved at a time, and a disc can only be
placed on top of another disc if the disc on top is smaller. While the discs
are being moved from the first pile to the second pile, discs can be kept in a
third, spare pile. All the discs must at all times be in one of the three piles.

function only gives the correct answer when the answer can be represented as a 32-bit binary
number. This is the kind of implementation issue that matters in practice, especially in lower-
level languages like Assembly.
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TheTowers ofHanoi puzzlewas
first published by Édouard Lu-
cas in 1883. The puzzle is based
on a legend of temple wherein
there initially was one pile of
discs neatly sorted from largest
to smallest. In Lucas’s story,
monks have since been continuously moving discs from this pile
of 64 discs according to the rules of the puzzle to again created a
sorted stack at the other end of the temple. It is said thatwhen the
last disc is placed, the world will end. But on the positive side,
even if the monks move one disc every second, it will take ap-
proximately 42 times the age of the universe until they are done.
And that is assuming they are using the optimal strategy…
Source: en.wikipedia.org/wiki/Tower_of_Hanoi

For example, if there are two discs, the problem can be solved by the
following sequence of moves:

Move disc 1 from pile 1 to pile 3
Move disc 2 from pile 1 to pile 2
Move disc 1 from pile 3 to pile 2

A simple recursive subroutine can be used to write out the list of moves
to solve the problem for any value of n. The recursion is based on the ob-
servation that for n > 1, the problem can be solved as follows: Move n − 1
discs from pile number 1 to pile number 3 (using pile number 2 as a spare).
Then move the largest disc, disc number n, from pile number 1 to pile num-
ber 2. Finally, move the n − 1 discs from pile number 3 to pile number 2,
putting them on top of the nth disc (using pile number 1 as a spare). In
both cases, the problem of moving n − 1 discs is a smaller version of the
original problem and so can be done by recursion. Here is the subroutine,
written in Java:
void Hanoi(int n, int A, int B, int C) {

2 // List the moves for moving n discs from
// pile number A to pile number B, using

4 // pile number C as a spare. Assume n > 0.
if (n == 1) {

6 System.out.println("Move disc 1 from pile " + A + " to pile " +
B);

}
8 else {

Hanoi(n-1, A, C, B);
10 System.out.println("Move disc " + n + " from pile " +

en.wikipedia.org/wiki/Tower_of_Hanoi
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A + " to pile " + B);
12 Hanoi(n-1, C, B, A);

}
14 }

This problem and its fame have led to implementations in a vari-
ety of languages, including a language called Brainf*ck.6 In the
Computer Organisation course, you can implement an interpreter
for this language and test it on the implementation of the Hanoi
algorithm.

We can use induction to prove that this subroutine does in fact solve the
Towers of Hanoi problem.

Theorem 3.12. The sequence of moves printed by the Hanoi subroutine as given
above correctly solves the Towers of Hanoi problem for any integer n ≥ 1.

Proof. We prove by induction that whenever n is a positive integer and A,
B, and C are the numbers 1, 2, and 3 in some order, the subroutine call
Hanoi(n, A, B, C) prints a sequence of moves that will move n discs from
pile A to pile B, following all the rules of the Towers of Hanoi problem.

In the base case, n = 1, the subroutine call Hanoi(1, A, B, C) prints out
the single step “Move disc 1 from pile A to pile B”, and this move does solve
the problem for 1 disc.

Let k be an arbitrary positive integer, and suppose that Hanoi(k, A, B, C)
correctly solves the problemofmoving the k discs frompile A to pile B using
pile C as the spare, whenever A, B, and C are the numbers 1, 2, and 3 in some
order. We need to show that Hanoi(k + 1, A, B, C) correctly solves the prob-
lem for k + 1 discs. Since k + 1 > 1, Hanoi(k + 1, A, B, C) begins by calling
Hanoi(k, A, C, B). By the induction hypothesis, this correctly moves k discs
from pile A to pile C. disc number k + 1 is not moved during this process.
At that point, pile C contains the k smallest discs and pile A still contains the
(k + 1)st disc, which has not yet been moved. So the next move printed by
the subroutine, “Move disc (k + 1) from pile A to pile B”, is legal because
pile B is empty. Finally, the subroutine calls Hanoi(k, C, B, A), which, by
the induction hypothesis, correctly moves the k smallest discs from pile C
to pile B, putting them on top of the (k+ 1)st disc, which does not move dur-
ing this process. At that point, all (k + 1) discs are on pile B, so the problem
for k + 1 discs has been correctly solved.

Exercises
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1. TheHanoi subroutine given in this section does not just solve the Towers ofHanoi
problem. It solves the problem using the minimum possible number of moves.
Use induction to prove this fact.

2. Use induction to prove that the Hanoi subroutine uses 2n − 1 moves to solve the
Towers of Hanoi problem for n discs.

3. Consider the following recursive function:

int power(int x, int n) {
2 // Compute x raised to the power n.

// Assume that n >= 0.
4 int answer;

if (n == 0) {
6 answer = 1;

} else if (n % 2 == 0) {
8 answer = power(x * x, n / 2);

} else {
10 answer = x * power(x * x, (n-1) / 2);

}
12 return answer;

}

Show that for any integer x and anynon-negative integer n, the function power(x,n)
correctly computes the value of xn. (Assume that the int data type can represent
arbitrarily large integers.) Note that the test “if (n % 2 == 0)” tests whether
n is evenly divisible by 2. That is, the test is true if n is an even number. (This
function is actually a very efficient way to compute xn.)

3.7 Recursive Definitions

Recursion occurs in programmingwhen a subroutine is defined—or at least
partially defined—in terms of itself. But recursion also occurs outside of
programming. A recursive definition is a definition that includes a refer-
ence to the term that is being defined. A recursive definition defines some-
thing at least partially in terms of itself. As in the case of recursive sub-
routines, mathematical induction can often be used to prove facts about
things that are defined recursively.

Aswe already noted, there is a recursive definition for n!, for n in N, and
we can use this definition to prove facts about the factorials. We can define
0! = 1 and n! = n · (n − 1)! for n > 0. Do you see how the base case and
the inductive case in an inductive proof can correspond to the two parts of
the recursive definition?

Other sequences of numbers can also be defined recursively. For ex-
ample, the famous Fibonacci sequence is the sequence of numbers f0, f1,
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Figure 3.1: Fibonacci numbers occur in nature, as in this model of the
florets in the head of a sunflower. Source: commons.wikimedia.org/
wiki/File:SunflowerModel.svg

f2, …, defined recursively by

f0 = 0
f1 = 1
fn = fn−1 + fn−2 for n > 1

Using this definition, we compute that

f2 = f1 + f0 = 0 + 1 = 1
f3 = f2 + f1 = 1 + 1 = 2
f4 = f3 + f2 = 2 + 1 = 3
f5 = f4 + f3 = 3 + 2 = 5
f6 = f5 + f4 = 5 + 3 = 8
f7 = f6 + f5 = 8 + 5 = 13

commons.wikimedia.org/wiki/File:SunflowerModel.svg
commons.wikimedia.org/wiki/File:SunflowerModel.svg
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and so on. Based on this definition, we can use induction to prove facts
about the Fibonacci sequence. We can prove, for example, that fn grows
exponentially with n, even without finding an exact formula for fn:

Theorem 3.13. The Fibonacci sequence, f0, f1, f2, …, satisfies fn >
( 3

2
)n−1, for

n ≥ 6.

Proof. We prove this by induction on n. For n = 6, we have that fn = 8
while 1.5n−1 = 1.55, which is about 7.6. So fn > 1.5n−1 for n = 6. Similarly,
for n = 7, we have fn = 13 and 1.5n−1 = 1.56, which is about 11.4. So
fn > 1.5n−1 for n = 7.

Now suppose that k is an arbitrary integer with k > 7. Suppose that we
already know that fn > 1.5n−1 for n = k − 1 and for n = k − 2. We want to
show that the inequality then holds for n = k as well. But

fk = fk−1 + fk−2

> 1.5(k−1)−1 + 1.5(k−2)−1 (by the induction hypothesis)
= 1.5k−2 + 1.5k−3

= (1.5) · (1.5k−3) + (1.5k−3)

= (2.5) · (1.5k−3)

> (1.52) · (1.5k−3) (since 1.52 = 2.25)
= 1.5k−1

This string of equalities and inequalities shows that fk > 1.5k−1. This com-
pletes the induction and proves the theorem.

Exercises
†1. Prove that the Fibonacci sequence, f0, f1, f2, …, satisfies fn < 2n for all natural

numbers n ≥ 1.
†2. Suppose that a1, a2, a3, …, is a sequence of numbers which is defined recursively

by a1 = 1 and an = 2an−1 + 2n−1 for n > 1. Prove that an = n2n−1 for every
positive integer n.

3.8 Trees
Recursion is often usedwith linked data structures. A linked data structure
is a type of data structure constructed by linking several objects of the same
type together with pointers. In this section we will take a look at one of the
most common recursive data structures in computer science: trees.
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3.8.1 Nomenclature of trees
Trees in the mathematical world are often drawn in the opposite direction
compared to real-world trees, with the root of the tree at the top. Why?
Maybe because most people write from top of page downwards. The root
has zero or more children nodes that each form the root of a subtree. Con-
sider for example the following tree:

8

17

207

42

Nodes are represented by circles. The nodes of a tree can contain any
type of data, but we will in this example each node contains an integer. The
node containing 8 is the root of this tree, with 42 and 17 being its children.
Both 42 and 17 are root of subtrees. For example, the subtree rooted in 17
has three nodes: 17 as the root with its children 7 and 20. Nodes with no
children are called leaf nodes. In our example tree, the leaf nodes are 42, 7
and 20.

We will formalise this structure—trees—when we learn about sets and
relations in the next chapter, but for now we will settle for the following
informal definition:

Definition 3.1 (Tree node (informal)). A node in a tree has a) a value, b) a
list of nodes.

There are many more names used in a description of a tree, and some of
thesemight vary a bit between textbooks. In this book, we use the following
set of terminology. Notice how some of these are recursively defined!

Parent of x The node in whose list of nodes x occurs.

Siblings of x The other nodes in the list of children of x’s parent.

Descendants of x x and the descendants of the children of x.

Ancestors of x x and the ancestors of the parent of x.

Leaf A node that has no children.

Root The node that has no parent.

Binary tree A tree where every node has at most 2 children.
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Height The largest number of vertices on a path from a leaf to the root,
excluding the leaf.

Using this terminology, we can now say that the example tree above has
a height of 2, contains 3 leaves, and is a binary tree. Further, the ancestors
of 20 are 20 itself, 17 and 8.

3.8.2 An application of trees

Trees are popular in computer science because they can be used for a large
number of different applications, from sorting, to memory management
and keeping track of familymembers (though the latter is not strictly speak-
ing a tree: do you seewhy?). During the courseAlgorithms&Data Structures
you will encounter many of these applications as well. Trees are a special
type of a more general linked data structure, graphs, which are also very
useful in computer science. We’ll look at graphs in the next chapter.

For now we will only take a look at one example, using trees to repres-
ent mathematical formulae. Consider for example the expression: (8+ 3) ∗
(10/5). We can represent this using a tree, by having every operator be the
root of a subtree, and the leaves of the tree be the different numbers:

∗

/

510

+

38

Notice how this tree has different types of ‘data’ in its nodes: some are
numbers and some are operators.

You will find that for each of these trees there is exactly one expression
that matches it! For example, the following tree represents the statement:
− x+8

(x+1)(y−1) − 2
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−

2−

/

∗

−

1y

+

1x

+

8x

If you already have some programming experience, perhaps you can
already see how this could be a useful way to represent mathematical ex-
pressions. We can now write a recursive algorithm that first evaluates the
value of the children, and then applies the operator at the root of the subtree.
Simply put:

1. If this node is a number, return the number.

2. Else evaluate the value of each child.

3. Combine the values using the operator in this node.

In the exercises you will practice also with turning statements from pro-
positional and predicate logic into trees.

3.8.3 Binary trees in Java
For an example of recursive definitions and proof by induction, we’ll look at
the data structure known as a binary tree. As you can guess from its name,
and as we indicated earlier, a binary tree is a type of tree.

If you don’t already know about objects and pointers, you will
not be able to follow the rest of this section. Time to read about
it on the internet?

Like any tree, a binary tree consists of nodes linked together in a tree-
like structure. A binary tree can be empty, or it can consist of a node (the
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root of the tree) and two smaller binary trees (called the left subtree and the
right subtree of the tree). You can already see the recursive structure: a tree
can contain smaller trees. Notice that this recursive definition immediately
limits each node to have at most two children.

In the programming language Java, the nodes of a tree can be represen-
ted by objects belonging to this class

1 class BinaryTreeNode {
int item; // An integer value stored in the node.

3 BinaryTreeNode left; // Pointer to left subtree.
BinaryTreeNode right; // Pointer to right subtree.

5 }

An empty tree is represented by a pointer that has the special value null.
If root is a pointer to the root node of a tree, then root.left is a pointer to
the left subtree and root.right is a pointer to the right subtree. Of course,
both root.left and root.right can be null if the corresponding subtree is empty.
Similarly, root.item is a name for the integer in the root node.

Let’s say that wewant a function that will find the sum of all the integers
in all the nodes of a binary tree. We can do this with a simple recursive
function. The base case of the recursion is an empty tree. Since there are no
integers in an empty tree, the sum of the integers in an empty tree is zero.
For a non-empty tree, we can use recursion to find the sums of the integers
in the left and right subtrees, and then add those sums to the integer in the
root node of the tree. In Java, this can be expressed as follows:

1 int TreeSum( BinaryTreeNode root ) {
// Find the sum of all the integers in the

3 // tree that has the given root.
int answer;

5 if (root == null) { // The tree is empty.
answer = 0;

7 } else {
answer = TreeSum(root.left);

9 answer += TreeSum(root.right);
answer += root.item;

11 }
return answer;

13 }

We can use the second form of the principle of mathematical induction to
prove that this function is correct.

Theorem 3.14. The function TreeSum, defined above, correctly computes the sum
of all the integers in a binary tree.

Proof. We use induction on the number of nodes in the tree. Let P(n) be the
statement “TreeSum correctly computes the sum of the nodes in any binary
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tree that contains exactly n nodes”. We show that P(n) is true for every
natural number n.

Consider the case n = 0. A tree with zero nodes is empty, and an empty
tree is represented by a null pointer. In this case, the if statement in the
definition ofTreeSum assigns the value 0 to the answer, and this is the correct
sum for an empty tree. So, P(0) is true.

Let k be an arbitrary natural number, with k > 0. Suppose we already
know P(x) for each natural number x with 0 ≤ x < k. That is, TreeSum
correctly computes the sum of all the integers in any tree that has fewer
than k nodes. We must show that it follows that P(k) is true, that is, that
TreeSum works for a tree with k nodes. Suppose that root is a pointer to the
root node of a tree that has a total of k nodes. Since the root node counts as a
node, that leaves a total of k− 1 nodes for the left and right subtrees, so each
subtree must contain fewer than k nodes. By the induction hypothesis, we
know that TreeSum(root.left) correctly computes the sum of all the integers
in the left subtree, and TreeSum(root.right) correctly computes the sum of
all the integers in the right subtree. The sum of all the integers in the tree is
root.item plus the sums of the integers in the subtrees, and this is the value
computed by TreeSum. So, TreeSum does work for a tree with k nodes. This
completes the induction.

Note how closely the structure of the inductive proof follows the struc-
ture of the recursive function. In particular, the second principle of math-
ematical induction is very natural here, since the size of subtree could be
anything up to one less than the size of the complete tree. It would be very
difficult to use the first principle of induction in a proof about binary trees.

Exercises

1. Draw a binary tree so that the root has a total of 8 descendants, and there is node
that has exactly 4 ancestors.

2. What is the value of the expression represented by the following tree?
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3. Draw a tree for the propositional logic statement: (p ∧ q) → ¬(r ↔ z)

4. Draw a tree for the predicate logic statement: ∀x(P(x) → (Q(x)∨ ∃y(R(x, y))))

5. A leaf node in a binary tree is a node in which both the left and the right sub-
trees are empty. Prove that the following recursive function correctly counts the
number of leaves in a binary tree:

1 int LeafCount(BinaryTreeNode root) {
// Counts the number of leaf nodes in

3 // the tree with the specified root.
int count;

5 if (root == null) {
count = 0;

7 } else if (root.left == null && root.right == null) {
count = 1;

9 } else {
count = LeafCount(root.left);

11 count += LeafCount(root.right);
}

13 return count;
}

6. A binary search tree satisfies the following property: If node is a pointer to any
node in the tree, then all the integers in the left subtree of node are less than
node.item and all the integers in the right subtree of node are greater than or equal
to node.item. Prove that the following recursive subroutine prints all the integers
in a binary search tree in non-decreasing order:

void SortPrint(BinaryTreeNode root) {
2 // Assume that root is a pointer to the

// root node of a binary sort tree. This
4 // subroutine prints the integers in the

// tree in non-decreasing order.
6 if (root == null) {

// There is nothing to print.
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8 }
else {

10 SortPrint(root.left);
System.out.println(root.item);

12 SortPrint(root.right);
}

14 }

7. Extend Theorem 3.14 to work for non-binary trees.

3.9 Invariants
Recursion is closely linked to iteration. In fact, a while loop can be written
as a recursive subroutine (and this how the programming language Pro-
log achieves ‘iteration’: see page 86). In computer science we would like
to prove correctness and other properties about algorithms. Proofs about
algorithms can be more difficult than the proofs about simple properties of
the integers that we often use as examples this book.

A tool that helps us to prove properties about algorithms is an invariant.
For example, a loop invariant is a property P of a loop such that:

1. P is true before the loop is executed, and

2. P remains true after each execution of the body of the loop (but not
necessarily in-between the steps within the body).

So to prove that an algorithm A has the property Q (the post-condition),
we can find an invariant P of A such that Q follows from P, together with
the fact that A has terminated. This last fact that A has terminated means
that the loop condition (the guard of the loop) has become false.

In more detail, we need to find an invariant and show four things about
it:

1. Initialization or basis property. The invariant holds before the first iter-
ation of the loop.

2. Maintenance or inductive property. If the invariant holds before an it-
eration, then it also holds before the next iteration.

3. Termination and falsity of guard. After a finite number of iterations the
guard becomes false and the loop terminates.

4. Correctness of the post-condition. The invariant together with the neg-
ation of the guard imply that the post-condition holds, in which case the
program is correct.
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In one of the pencasts of this course, we prove the correctness
of an algorithm using an invariant. You can find that pencast
here: youtu.be/GSvqF48TVM4.

As an example, consider the simple loop:
while (x < 10)

2 x = x+1;

What does this loop achieve? What is an invariant that helps us to prove
the loop correctly achieves this? The invariant is x ≤ 10—check that it does
satisfy the above four properties!

While invariants can be useful, a suitable invariant can be difficult to
find.

For a more complex example, consider the following. Note that you
should call this bit of code with an integer n ≥ 0 and a > 0.

r = 0
2 b = n

while (b >= a)
4 b -= a

r += 1

Try to convince yourself that this code computes: ⌊n/a⌋. Don’t believe
us? We will prove it to you:

Proof. Invariant: r · a + b = n

1. Initialization or basis property. Before the loop runs, b = n and r = 0.
Thus r · a + b = b = n.

2. Maintenance or inductive property. Assume the invariant holds before
iteration k, thus: rold · a + bold = n.
Now we prove that it holds after iteration k, that is: rnew · a + bnew = n.
From line 4 we derive that: bnew = bold − a and rnew = rold + 1. Thus
rnew · a + bnew = (rold + 1) · a + bold − a = rold · a + a + bold − a = rold ·
a + bold

IH
= n.

3. Termination and falsity of guard. Every iteration b decreases by a. Since
a > 0, this means that eventually b < a will hold.

4. Correctness of the post-condition. Since 0 ≤ b < a and r · a + b = n, we
know that: r · a ≤ n and n = r · a + b < r · a + a < (r + 1) · a. So we get:
r ≤ n/a and n/a < r + 1, thus n/a − 1 < r ≤ n/a. Since r is integer, this
means: f = ⌊n/a⌋.

youtu.be/GSvqF48TVM4
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There is a form of logic, Floyd–Hoare logic, in which we can ex-
press invariants and can formally prove the (partial) correctness
of a program. Read about it on wikipedia: en.wikipedia.org/
wiki/Loop_invariant.

en.wikipedia.org/wiki/Loop_invariant
en.wikipedia.org/wiki/Loop_invariant


Chapter 4

Sets, Functions, and
Relations

W E DEALWITH THE COMPLEXITY of theworld by putting things into categor-
ies. There are not just hordes of individual creatures. There are dogs,

cats, elephants and mice. There are mammals, insects and fish. Animals,
vegetables and minerals. Solids, liquids and gases. Things that are red. Big
cities. Pleasant memories…. Categories build on categories. They are the
subject and the substance of thought.

In mathematics, which operates in its own abstract and rigorous world,
categories are modelled by sets. A set is just a collection of elements. Along
with logic, sets form the ‘foundation’ of mathematics, just as categories are
part of the foundation of day-to-day thought. In this chapter, we study sets
and relationships among sets. And, yes, that means we’ll prove theorems
about sets!

4.1 Basic Concepts
A set is a collection of elements. A set is defined entirely by the elements
that it contains. An element can be anything, including another set. You
will notice that this is not a precise mathematical definition. Instead, it is an
intuitive description of what the word ‘set’ is supposed to mean: any time
you have a bunch of entities and you consider them as a unit, you have a
set. Mathematically, sets are really defined by the operations that can be
performed on them. These operations model things that can be done with
collections of objects in the real world. These operations are the subject of
the branch of mathematics known as set theory.

103



4

104 Chapter 4. Sets, Functions, and Relations

Figure 4.1: Venn diagram of an example set.

The most basic operation in set theory is forming a set from a given list
of specific entities. The set that is formed in thisway is denoted by enclosing
the list of entities between a left brace, ‘{’, and a right brace, ‘}’. The entities
in the list are separated by commas. For example, the set denoted by

{ 17, π, New York City, King Willem-Alexander, Euromast }

is the set that contains the entities 17, π, NewYorkCity, KingWillem-Alexander,
and Euromast. These entities are the elements of the set. Figure 4.1 is an ab-
stract depiction this set.

Since we assume that a set is completely defined by the elements that
it contains, the set is well-defined. Of course, we still haven’t said what it
means to be an ‘entity’. Something as definite as ‘New York City’ should
qualify, except that it doesn’t seem like New York City really belongs in the
world of mathematics. The problem is that mathematics is supposed to be
its own self-contained world, but it is supposed to model the real world.
When we use mathematics to model the real world, we admit entities such
as New York City and even Euromast. But when we are doing mathematics
per se, we’ll generally stick to obviously mathematical entities such as the
integer 17 or the real number π. We will also use letters such as a and b to
refer to entities. For example, when we say something like “Let A be the set
{a, b, c}”, we mean a, b, and c to be particular, but unspecified, entities.
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It’s important to understand that a set is defined by the ele-
ments that it contains, and not by the order in which those ele-
ments might be listed. For example, the notations {a, b, c, d}
and {b, c, a, d} define the same set. Furthermore, a set can
only contain one copy of a given element, even if the notation
that specifies the set lists the element twice. This means that
{a, b, a, a, b, c, a} and {a, b, c} specify exactly the same set. Note
in particular that it’s incorrect to say that the set {a, b, a, a, b, c, a}
contains seven elements, since some of the elements in the list are
identical. The notation {a, b, c} can lead to some confusion, since
it might not be clear whether the letters a, b, and c are assumed to
refer to three different entities. A mathematician would generally
notmake this assumption without stating it explicitly, so that the
set denoted by {a, b, c} could actually contain either one, two, or
three elements. When it is important that different letters refer
to different entities, we will say so explicitly, as in “Consider the
set {a, b, c}, where a, b, and c are distinct.”

4.1.1 Elements of sets
The symbol ∈ is used to express the relation ‘is an element of’. That is, if a
is an entity and A is a set, then a ∈ A is a statement that is true if and only
if a is one of the elements of A. In that case, we also say that a is a member
of the set A. The assertion that a is not an element of A is expressed by the
notation a ̸∈ A. Note that both a ∈ A and a ̸∈ A are statements in the sense
of propositional logic. That is, they are assertions which can be either true
or false. The statement a ̸∈ A is equivalent to ¬(a ∈ A).

As you may have noticed by now, it is convention for sets to be
denoted using capital letters (e.g. ‘A’) and elements within sets
to be denoted using lowercase letters (e.g. ‘a’). You should ad-
here to the same convention to prevent misunderstandings!

It is possible for a set to be empty, that is, to contain no elements whatso-
ever. Since a set is completely determined by the elements that it contains,
there is only one set that contains no elements. This set is called the empty
set, and it is denoted by the symbol ∅. Note that for any element a, the
statement a ∈ ∅ is false. The empty set, ∅, can also be denoted by an empty
pair of braces, i.e., { }.

If A and B are sets, then, by definition, A is equal to B if and only if they
contain exactly the same elements. In this case, we write A = B. Using the
notation of predicate logic, we can say that A = B if and only if ∀x(x ∈ A ↔
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x ∈ B).

Later, when proving theorems in set theory, wewill find it can of-
ten help to use this predicate logic notation to simplify our proofs.
To avoid having to look them up later, make sure that you under-
stand why the predicate logic notation is equivalent to the set
notation.

Suppose now that A and B are sets such that every element of A is an
element of B. In that case, we say that A is a subset of B, i.e. A is a subset
of B if and only if ∀x(x ∈ A → x ∈ B). The fact that A is a subset of B is
denoted by A ⊆ B. Note that ∅ is a subset of every set B: x ∈ ∅ is false for
any x, and so given any B, (x ∈ ∅ → x ∈ B) is true for all x.

If A = B, then it is automatically true that A ⊆ B and that B ⊆ A. The
converse is also true: If A ⊆ B and B ⊆ A, then A = B. This follows
from the fact that for any x, the statement (x ∈ A ↔ x ∈ B) is logically
equivalent to the statement (x ∈ A → x ∈ B) ∧ (x ∈ B → x ∈ A). This fact
is important enough to state as a theorem.

Theorem 4.1. Let A and B be sets. Then A = B if and only if both A ⊆ B and
B ⊆ A.

This theorem expresses the following advice: If you want to check that
two sets, A and B, are equal, you can do so in two steps. First check that
every element of A is also an element of B, and then check that every ele-
ment of B is also an element of A.

If A ⊆ B but A ̸= B, we say that A is a proper subset of B. We use the
notation A ⊊ B to mean that A is a proper subset of B. That is, A ⊊ B if
and only if A ⊆ B ∧ A ̸= B. We will sometimes use A ⊇ B as an equivalent
notation for B ⊆ A, and A ⊋ B as an equivalent for B ⊊ A. Other textbooks
also sometimes use the ⊂ symbol to represent proper subsets, e.g., A ⊂
B ≡ A ⊊ B. Additionally, you may come across A ̸⊆ B which means that
A is not a subset of B. Notice that (especially in written text) the difference
between A ⊊ B and A ̸⊆ B can be small, so make sure to read properly and
to write clearly!

4.1.2 Set-builder notation
A set can contain an infinite number of elements. In such a case, it is not
possible to list all the elements in the set: we cannot give an extensional
definition of the set. Sometimes the ellipsis ‘…’ is used to indicate a list that
continues on infinitely. For example, N, the set of natural numbers, can be
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specified as
N = {0, 1, 2, 3, . . . }

However, this is an informal notation, which is not really well-defined, and
it should only be used in cases where it is clear what it means. It’s not very
useful to say that “the set of prime numbers is {2, 3, 5, 7, 11, 13, . . . }”, and it
is completely meaningless to talk about “the set {17, 42, 105, . . . }”. Clearly,
we need another way to specify sets besides listing their elements. The need
is fulfilled by predicates.

If P(x) is a predicate, then we can form the set that contains all entities a
such that a is in the domain of discourse for P and P(a) is true. The notation
{x | P(x)} is used to denote this set. This is the intensional definition of the
set. The name of the variable, x, is arbitrary, so the same set could equally
well be denoted as {z | P(z)} or {r | P(r)}. The notation {x | P(x)} can be
read “the set of x such that P(x)”. We call this the set-builder notation, as
you can think of the predicate as a building material for the elements of the
set. For example, if E(x) is the predicate ‘x is an even number’, and if the
domain of discourse for E is the set N, then the notation {x | E(x)} specifies
the set of even natural numbers. That is,

{x | E(x)} = {0, 2, 4, 6, 8, . . . }

It turns out, for deep and surprising reasons that we will discuss
later, that we have to be a little careful about what counts as a
predicate. In order for the notation {x | P(x)} to be valid, we
have to assume that the domain of discourse of P is in fact a set.
(You might wonder how it could be anything else. That’s the
surprise!)

Often, it is useful to specify the domain of discourse explicitly in the
notation that defines a set. In the above example, to make it clear that x
must be a natural number, we could write the set as {x ∈ N | E(x)}. This
notation can be read as “the set of all x in N such that E(x)”. More generally,
if X is a set and P is a predicate whose domain of discourse includes all the
elements of X, then the notation

{x ∈ X | P(x)}

is the set that consists of all entities a that are members of the set X and for
which P(a) is true. In this notation, wedon’t have to assume that the domain
of discourse for P is a set, since we are effectively limiting the domain of
discourse to the set X. The set denoted by {x ∈ X | P(x)} could also be
written as {x | x ∈ X ∧ P(x)}.
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We can use this notation to define the set of prime numbers in
a rigorous way. A prime number is a natural number n which
is greater than 1 and which satisfies the property that for any
factorization n = xy, where x and y are natural numbers, either
x or y must be n. We can express this definition as a predicate
and define the set of prime numbers as

{n ∈ N | (n > 1) ∧
∀x∀y

(
(x ∈ N ∧ y ∈ N ∧ n = xy) → (x = n ∨ y = n)

)
}

Admittedly, this definition is hard to take in in one gulp. But this
example shows that it is possible to define complex sets using
predicates.

4.1.3 Operations on sets
Now that we have a way to express a wide variety of sets, we turn to oper-
ations that can be performed on sets. The most basic operations on sets are
union and intersection. If A and B are sets, then we define the union of A
and B to be the set that contains all the elements of A together with all the
elements of B. The union of A and B is denoted by A ∪ B. The union can be
defined formally as

A ∪ B = {x | x ∈ A ∨ x ∈ B}.

The intersection of A and B is defined to be the set that contains every entity
that is both a member of A and a member of B. The intersection of A and B
is denoted by A ∩ B. Formally,

A ∩ B = {x | x ∈ A ∧ x ∈ B}.

An entity gets into A ∪ B if it is in either A or B. It gets into A ∩ B if it is in
both A and B. Note that the symbol for the logical ‘or’ operator, ∨, is similar
to the symbol for the union operator, ∪, while the logical ‘and’ operator, ∧,
is similar to the intersection operator, ∩.

The set difference of two sets, A and B, is defined to be the set of all
entities that are members of A but are not members of B. The set difference
of A and B is denoted A ∖ B or alternatively as A − B. The idea is that
A∖ B is formed by starting with A and then removing any element that is
also found in B. Formally,

A∖ B = {x | x ∈ A ∧ x ̸∈ B}.

Union and intersection are clearly commutative operations. That is, A∪ B =
B ∪ A and A ∩ B = B ∩ A for any sets A and B. However, set difference is
not commutative. In general, A∖ B ̸= B∖ A.
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Suppose that A = {a, b, c}, that B = {b, d}, and that C = {d, e, f }.
Then we can apply the definitions of union, intersection, and set
difference to compute, for example, that:

A ∪ B = {a, b, c, d} A ∩ B = {b} A∖ B = {a, c}
A ∪ C = {a, b, c, d, e, f } A ∩ C = ∅ A∖ C = {a, b, c}

In this example, the sets A and C have no elements in common, so that
A ∩ C = ∅. There is a term for this: Two sets are said to be disjoint if they
have no elements in common. That is, for any sets A and B, A and B are
said to be disjoint if and only if A ∩ B = ∅.

Of course, the set operations can also be applied to sets that are defined
by predicates. The next example illustrates this.

let L(x) be the predicate ‘x is lucky’, and letW(x) be the predicate
‘x is wise’, where the domain of discourse for each predicate is
the set of people. Let X = {x | L(x)}, and let Y = {x |W(x)}.
Then

X ∪ Y = {x | L(x) ∨ W(x)} = {people who are lucky or wise}
X ∩ Y = {x | L(x) ∧ W(x)} = {people who are lucky and wise}
X∖Y = {x | L(x) ∧ ¬W(x)} = {people who are lucky but not wise}
Y∖ X = {x |W(x) ∧ ¬L(x)} = {people who are wise but not lucky}

You have to be a little careful with the English word ‘and’. We
might say that the set X ∪ Y contains people who are lucky and
people who are wise. But what this means is that a person gets
into the set X ∪Y either by being lucky or by beingwise, so X ∪Y
is defined using the logical ‘or’ operator, ∨.

4.1.4 Visualising sets1

It can be helpful to visualise sets. A Venn diagram shows all possible logical
relations between a finite collection of different sets. These diagrams depict

1This subsection is derived from en.wikipedia.org/wiki/Venn_diagram.

en.wikipedia.org/wiki/Venn_diagram
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Notation Definition

a ∈ A a is a member (or element) of A

a ̸∈ A ¬(a ∈ A), a is not a member of A

∅ the empty set, which contains no elements
A ⊆ B A is a subset of B, ∀x(x ∈ A → x ∈ B)

A ⊊ B A is a proper subset of B, A ⊆ B ∧ A ̸= B

A ⊇ B A is a superset of B, same as B ⊆ A

A ⊋ B A is a proper superset of B, same as B ⊊ A

A = B A and B have the same members, A ⊆ B ∧ B ⊆ A

A ∪ B union of A and B, {x | x ∈ A ∨ x ∈ B}
A ∩ B intersection of A and B, {x | x ∈ A ∧ x ∈ B}
A∖ B set difference of A and B, {x | x ∈ A ∧ x ̸∈ B}
A∆B symmetric difference of A and B, {x | (x ∈ A ∧ x ̸∈ B) ∨ (x ̸∈ A ∧ x ∈ B)}
P(A) power set of A, {X | X ⊆ A}
Figure 4.2: Some of the notations that are defined in this section. A and B
are sets, and a is an entity.

elements as points in the plane, and sets as regions inside closed curves.
So a Venn diagram consists of multiple overlapping closed curves, usually
circles, each representing a set. The points inside a curve (circle) labelled S
represent elements of the set S, while points outside the boundary represent
elements not in the set S. Figure 4.1 shows our example set which opened
the section.

Venn diagrams help us to visualise sets and set operations. For example,
the set of all elements that aremembers of both sets S and T, S∩ T, is repres-
ented visually by the area of overlap of the regions S and T: see Figure 4.3.
In Venn diagrams the curves are overlapped in every possible way, show-
ing all possible relations between the sets. You can find it useful to draw a
Venn diagram to gain intuition of what’s happening. On their own, how-
ever, Venn diagrams do not offer a proof for theorems in set theory.
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Figure 4.3: Venn diagram of the intersection of two sets.

4.1.5 Sets of sets

Sets can contain other sets as elements. For example, the notation {a, {b}}
defines a set that contains two elements, the entity a and the set {b}. Since
the set {b} is a member of the set {a, {b}}, we have that {b} ∈ {a, {b}}.
On the other hand, provided that a ̸= b, the statement {b} ⊆ {a, {b}} is
false, since saying {b} ⊆ {a, {b}} is equivalent to saying that b ∈ {a, {b}},
and the entity b is not one of the two members of {a, {b}}. For the entity
a, it is true that {a} ⊆ {a, {b}} and for the set {b}, it is true that {{b}} ⊆
{a, {b}}. Study these examples carefully before you continue, as many stu-
dents struggle with the notion and notation of putting sets in sets.

Given a set A, we can construct the set that contains all the subsets of
A. This set is called the power set of A, and is denoted P(A). Formally, we
define

P(A) = {X | X ⊆ A}.

For example, if A = {a, b}, then the subsets of A are the empty
set, {a}, {b}, and {a, b}, so the power set of A is set given by

P(A) = {∅, {a}, {b}, {a, b} }.

So the power set of of A has four elements. Does this surprise
you?

Note that since the empty set is a subset of any set, the empty set is an
element of the power set of any set. That is, for any set A, ∅ ⊆ A and ∅ ∈
P(A). Since the empty set is a subset of itself, and is its only subset, we
have that P(∅) = {∅}. The set {∅} is not empty. It contains one element,
namely ∅.
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The Nobel Prize was won by Ber-
trand Russell (1872–1970), a domin-
ant figure in British thought during
the twentieth century. Russell was
a philosopher and mathematician,
and also a historian, social critic and
political activist. With A. N. White-
head, Russell wrote Principia Math-
ematica, an epic attempt to create a
logical basis for mathematics. His
work has had a considerable influ-
ence on computer science, and not
just for his contributions to logic
and set theory: he proposed the be-
ginnings of what are now called type systems.
Source: en.wikipedia.org/wiki/Bertrand_Russell.

We remarked earlier in this section that the notation {x | P(x)} is only
valid if the domain of discourse of P is a set. This might seem a rather puzz-
ling thing to say—after all, why and howwould the domain of discourse be
anything else? The answer is related to Russell’s Paradox, which we men-
tioned briefly in Chapter 3 and which shows that it is logically impossible
for the set of all sets to exist. This impossibility can be demonstrated using a
proof by contradiction. In the proof, we use the existence of the set of all sets
to define another set which cannot exist because its existence would lead to
a logical contradiction.
Theorem 4.2. There is no set of all sets.
Proof. Suppose that the set of all sets exists. We will show that this assump-
tion leads to a contradiction. Let V be the set of all sets. We can then define
the set R to be the set which contains every set that does not contain itself.
That is,

R = {X ∈ V | X ̸∈ X}
Now, we must have either R ∈ R or R ̸∈ R. We will show that either case
leads to a contradiction.

Consider the case where R ∈ R. Since R ∈ R, R must satisfy the condi-
tion for membership in R. A set X is in R iff X ̸∈ X. To say that R satisfies

en.wikipedia.org/wiki/Bertrand_Russell
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this condition means that R ̸∈ R. That is, from the fact that R ∈ R, we
deduce the contradiction that R ̸∈ R.

Now consider the remaining case, where R ̸∈ R. Since R ̸∈ R, R does
not satisfy the condition for membership in R. Since the condition for mem-
bership is that R ̸∈ R, and this condition is false, the statement R ̸∈ R must
be false. But this means that the statement R ∈ R is true. From the fact that
R ̸∈ R, we deduce the contradiction that R ∈ R.

Since both possible cases, R ∈ R and R ̸∈ R, lead to contradictions, we
see that it is not possible for R to exist. Since the existence of R follows from
the existence of V, we see that V also cannot exist.

This (in)famous contradiction has been adapted to natural lan-
guage to make it easier to convey the problem to laymen. Unfor-
tunately many of these translations are flawed. Can you think of
a solution for the following for instance? “The barber of Seville
shaves all men who do not shave themselves. Who shaves the
barber?”

To avoid Russell’s paradox, we must put limitations on the construction
of new sets. We can’t force the set of all sets into existence simply by thinking
of it. We can’t form the set {x | P(x)} unless the domain of discourse of P
is a set. Any predicate Q can be used to form a set {x ∈ X | Q(x)}, but
this notation requires a pre-existing set X. Predicates can be used to form
subsets of existing sets, but they can’t be used to form new sets completely
from scratch.

The notation {x ∈ A | P(x)} is a convenient way to effectively limit the
domain of discourse of a predicate, P, to members of a set, A, that we are
actually interested in. We will use a similar notation with the quantifiers ∀
and ∃. The proposition (∀x ∈ A)(P(x)) is true if and only if P(a) is true
for every element a of the set A. And the proposition (∃x ∈ A)(P(x)) is
true if and only if there is some element a of the set A for which P(a) is
true. These notations are valid only when A is contained in the domain
of discourse for P. As usual, we can leave out parentheses when doing so
introduces no ambiguity. So, for example, we might write ∀x ∈ A P(x).

4.1.6 Ordered collections: Tuples
If a and b are entities, then (a, b) denotes the ordered pair containing a and b.
The ordered pair (a, b) differs from the set {a, b} because a set is not ordered.
That is, {a, b} and {b, a} denote the same set, but if a ̸= b, then (a, b) and
(b, a) are different ordered pairs. More generally, two ordered pairs (a, b)
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and (c, d) are equal if and only if both a = c and b = d. If (a, b) is an
ordered pair, then a and b are referred to as the coordinates of the ordered
pair. In particular, a is the first coordinate and b is the second coordinate.

In high school you would also have to write (x,y)-coordinates
using this ordered pair notation. For instance youwould say that
the line y = ax + b intersects the y-axis at (0, b) and the x-axis at
(− b

a
, 0).

You can extend this concept to more than just pairs. With three ele-
ments we can create ordered triples (a, b, c). The definition for four or more
coordinates is similar. The general term for such an ordered collection is
tuple (recall page 48) or, more specifically, ordered n-tuple. For example,
(a, b, c, d, e) is an ordered 5-tuple.

4.1.7 One more set operation: Cartesian product
If A and B are sets, then we can form the set A × B which is defined by

A × B = {(a, b) | a ∈ A and b ∈ B}.

This set is called the cross product or Cartesian product of the sets A and B.
The set A × B contains every ordered pair whose first coordinate is an ele-
ment of A and whose second coordinate is an element of B. For example, if
X = {c, d} andY = {1, 2, 3}, then X×Y = {(c, 1), (c, 2), (c, 3), (d, 1), (d, 2), (d, 3)}.

It is possible to extend this idea to the cross product of more than two
sets. The cross product of the three sets A, B, and C is denoted A × B × C
and produced ordered triples (a, b, c) where a ∈ A, b ∈ B, c ∈ C. An-
other example can be found in the homework duos you have formed for
this course. Each of these pairs of students is a 2-tuple, from the set S × S
where S is the set of students currently taking Reasoning & Logic.

4.1.8 Mathematical induction revisited
We end this section by returning to the topic of mathematical induction.
First, we will give proofs of the two forms of the principle of mathematical
induction. These proofs were omitted from the previous chapter, but only
for the lack of a bit of set notation. In fact, the principle of mathematical
induction is valid only because it follows from one of the basic axioms that
define the natural numbers, namely the fact that any non-empty set of nat-
ural numbers has a smallest element. Given this axiom, we can use it to
prove the following two theorems:
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Theorem 4.3. Let P be a one-place predicate whose domain of discourse includes
the natural numbers. Suppose that P(0) ∧

(
∀k ∈ N (P(k) → P(k + 1))

)
. Then

∀n ∈ N, P(n).

Proof. Suppose that both P(0) and
(
∀k ∈ N (P(k) → P(k + 1))

)
are true,

but that
(
∀n ∈ N, P(n)

)
is false. We show that this assumption leads to a

contradiction.
Since the statement ∀n ∈ N, P(n) is false, its negation,¬(∀n ∈ N, P(n)),

is true. The negation is equivalent to ∃n ∈ N, ¬P(n). Let X = {n ∈
N | ¬P(n)}. Since ∃n ∈ N, ¬P(n) is true, we know that X is not empty.
Since X is a non-empty set of natural numbers, it has a smallest element.
Let x be the smallest element of X. That is, x is the smallest natural number
such that P(x) is false. Since we know that P(0) is true, x cannot be 0. Let
y = x − 1. Since x ̸= 0, y is a natural number. Since y < x, we know, by
the definition of x, that P(y) is true. We also know that ∀k ∈ N (P(k) →
P(k + 1)) is true. In particular, taking k = y, we know that P(y) → P(y+ 1).
Since P(y) and P(y) → P(y + 1), we deduce by modus ponens that P(y + 1)
is true. But y+ 1 = x, sowe have deduced that P(x) is true. This contradicts
the fact that P(x) is false. This contradiction proves the theorem.

Theorem 4.4. Let P be a one-place predicate whose domain of discourse includes
the natural numbers. Suppose that P(0) is true and that

(P(0) ∧ P(1) ∧ · · · ∧ P(k)) → P(k + 1)

is true for each natural number k ≥ 0. Then it is true that ∀n ∈ N, P(n).

Proof. Suppose that P is a predicate that satisfies the hypotheses of the the-
orem, and suppose that the statement ∀n ∈ N, P(n) is false. We show that
this assumption leads to a contradiction.

Let X = {n ∈ N | ¬P(n)}. Because of the assumption that ∀n ∈ N, P(n)
is false, X is non-empty. It follows that X has a smallest element. Let x be
the smallest element of X. The assumption that P(0) is true means that
0 ̸∈ X, so we must have x > 0. Since x is the smallest natural number
for which P(x) is false, we know that P(0), P(1), …, and P(x − 1) are all
true. From this and the fact that (P(0) ∧ P(1) ∧ · · · ∧ P(x − 1)) → P(x), we
deduce that P(x) is true. But this contradicts the fact that P(x) is false. This
contradiction proves the theorem.

4.1.9 Structural induction
Next, while we are on the topic of induction, let’s generalise the idea of
induction to also apply it to sets. This more general form of induction is
often called structural induction. Structural induction is used to prove that
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some proposition P(x) holds for all x of some sort of recursively defined
structure, such as formulae, lists, or trees—or recursively-defined sets. In a
proof by structural induction we show that the proposition holds for all the
‘minimal’ structures, and that if it holds for the immediate substructures of
a certain structure S, then it must hold for S also. Structural induction is use-
ful for proving properties about algorithms; sometimes it is used together
with invariants for this purpose.

To get an idea ofwhat a ‘recursively defined set’might look like, consider
the following definition of the set of natural numbers N.

Basis: 0 ∈ N.
Succession: x ∈ N → x + 1 ∈ N.
Exclusivity: Noother elements other than those outlined by the rules above

are in N.

This definition is similar to one we have seen before, first stating that
0 ∈ N and then saying that we can add 1 to an element in N to get another
element of N. The final clause is needed to ensure that other items are not
part of N. Without it, you and I, as well as π, ‘New York City’, and ‘King
Willem-Alexander’ might have been in the set. After all there was no reason
for those elements not to be in there.

Now compare that recursive definition, with the method for mathemat-
ical induction we have seen before:

Base case: Prove that P(0) holds.
Inductive case: Prove that ∀k ∈ N(P(k) → P(k + 1)) holds.
Conclusion: ∀n ∈ N(P(n)) holds.

Aswe can seemathematical induction and this recursive definition show
large similarities. The base case of the induction proves the property for the
basis of our recursive definition and the inductive step proves the property
for the succession rule. In fact, this similarity is no coincidence and we can
generalise this method to get to structural induction.

Consider for instance the set PROP, which represents all valid formulae
in propositional logic:

Atoms: pi ∈ PROP for all i ∈ N.

Negation: x ∈ PROP → ¬x ∈ PROP.

Binary connective: x, y ∈ PROP → (x ∗ y) ∈ PROP, s.t. ∗ ∈ {∧,∨,→,↔}.

Exclusivity: Nothing else is in PROP.
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Using this definition of the set PROP we can use structural induction to
prove certain claims about PROP. For instance we can prove that every for-
mula in PROP has equally many left parentheses ‘(’ and right parentheses
‘)’.

Proof. Let l(ϕ) denote the number of left parentheses in a formula ϕ. Simil-
arly let r(ϕ) denote the number of right parentheses. Let P(ϕ) be the state-
ment that l(ϕ) = r(ϕ). We need to prove that ∀ϕ ∈ PROP(P(ϕ)).

Base case: Consider the Atoms rule of the definition of PROP: l(pi) =
0 = r(pi). Therefore P(pi) holds.

Inductive case: We want to show that if the statement is true for x, y ∈
PROP (where x and y are arbitrary formula), then it is true for ¬x and
(x ∗ y) for all ∗ ∈ {∨,∧,→,↔}. That is, we must prove the implication
(P(x) ∧ P(y)) → (P(¬x) ∧ P((x ∗ y))). So we assume P(x) ∧ P(y), that is,
we assume that for both formula x and y: l(x) = r(x) and l(y) = r(y). We
want to prove P(¬x), that is, that for ¬x l(¬x) = r(¬x)

l(¬x) = l(x) by the Negation rule of PROP
= r(x) by the inductive hypothesis
= r(¬x) by the Negation rule of PROP

Secondly we prove that P((x ∗ y)) holds for all ∗ ∈ {∨,∧,→,↔}:
l((x ∗ y)) = 1 + l(x) + l(y) by the Binary connective rule of PROP

= 1 + r(x) + r(y) by the inductive hypothesis
= r((x ∗ y)) by the Binary connective rule of PROP

Altogether, we have shown that P(pi) holds and that, for all x, y ∈ PROP
and ∗ ∈ {∨,∧,→,↔}, (P(x) ∧ P(y)) → (P(¬x) ∧ P((x ∗ y)) is true. There-
fore, by the principle of structural induction, P(ϕ) is true for all ϕ ∈ PROP,
so for all propositional formula the number of left parentheses equals the
number of right parentheses. This completes the proof by structural induc-
tion.

Such structural inductionproofs can be applied on any recursively defined
set of numbers, formulae or even strings (pieces of text) or lists or trees,
making this a powerful generalised proof method.

In one of the pencasts of this course, we show an example of
applying structural induction over a recursively defined set of
strings.https://youtu.be/HAtgYJbCMf0

https://youtu.be/HAtgYJbCMf0
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4.1.10 Revisiting trees

In Chapter 3.8 we defined trees very informally. Now that we know about
tuples and recursive sets, we can formally define the set of trees TREE as
follows:

Empty Tree ∅ ∈ TREE

Leaf Nodes (x, ∅) ∈ TREE if x ∈ D

Internal Nodes (x, (T1, T2, . . . , Tk)) ∈ TREE if x ∈ D ∧ ∀i(1 ≤ i ≤ k →
Ti ∈ TREE) for some integer k

Exclusivity Nothing else is in TREE

Note that in this definition we have included a free variable D. This is
the domain of values that are allowed in the tree. For example for our parse
trees from Chapter 3.8.2 we could use D = R ∪ {+,−, /, ∗}.2

This way we can have the following tree be formally represented as:

(∗, ((+, ((8, ∅), (3, ∅))), (/, ((10, ∅), (5, ∅)))))

You can probably see now why we often choose to represent trees visu-
ally!

∗

/

510

+

38

Note that we could alternatively have represented our leaf node 8 as
(8, (∅)). After all, one could argue this also describe a node without any
children containing values. However, this description describes a different
tree. After all it now says that the node 8 has a child (and thus is an internal
node), but that this child has no value (it is an empty tree). To visualise this,

2This set of rules also allows us to make invalid parse trees! For example where a leaf node
has a ∗ value or where operators have a wrong number of operands. Creating ‘proper’ parse
trees is commonly done with grammars which you will study in Automata, Computability and
Complexity.
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other authors sometimes use squares as such:

∗

/

510

+

38

Notice also how we can now ‘easily’ define binary trees by simply lim-
iting k = 2 in the Internal Nodes rule. For example (8, ((3, (∅, (2, ∅))), ∅))

would be a binary tree, represented like this:

8

3

2

But have you spotted an unfortunate side effect of this definition? In our
visualisation, both our squares and our node containing 2 are considered
leaves. After all they have no children! As a result, some books instead use
the following definition for binary trees. This removes the ambiguity on the
definition of a leaf, but as a downside does not allow any leaf to have a value.
It is a nice example of one of the many trade-offs in computer science.

Leaf Nodes ∅ ∈ BTREE

Internal Nodes (x, (T1, T2)) ∈ BTREE if x ∈ D ∧ T1, T2 ∈ BTREE

Exclusivity Nothing else is in BTREE

Now that we have formalised our definition of binary trees, we can also
start proving interesting properties about them. One such property is that
the number of leaves of a binary tree nL ≤ 2h where h is the height of the
tree. A proof for this claim can now follow our structural induction format
as outlined in the previous section:

Proof. Base case (Empty Tree): consider the Empty Tree rule of the defin-
ition of TREE. The empty tree has no nodes, so a height of 0 and also no
leaves. Hence nL = 0 ≤ 20 = 1 holds.
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Base case (Leaf Nodes): consider the Leaf Nodes rule of the definition
of TREE. A leaf node has a height of 0 as longest path from a leaf to the root
excluding the leaf has no nodes (there are no nodes except the leaf!), hence
nL = 1 ≤ 20 = 1 holds.

Inductive case (Internal Nodes): Let T1 and T2 be some trees with nL1
and nL2 as their number of leaves and h1 and h2 as their heights respectively.
Now assume that nL1 ≤ 2h1 and nL2 ≤ 2h

2 (IH). Now we use the Internal
Nodes rule to create a new Tree T = (x, (T1, T2)) for some value x. For this
tree T, nL = nL1 + nL2 and the height h = max(h1, h2) + 1. Now we use a
division into cases:

• h1 > h2 In this case it follows that nL2 ≤ 2h2 < 2h1 . As a result:
nL = nL1 + nL2 < 2 · 2h1 = 2h1+1 = 2max(h1,h2)+1.

• h1 = h2 In this case it follows that nL2 ≤ 2h2 = 2h1 . As a result:
nL = nL1 + nL2 ≤ 2 · 2h1 = 2h1+1 = 2max(h1,h2)+1.

• h1 < h2 Is analogous to the first case.

Nowwe have shown that the property holds for all rules of TREE where
k = 2 in the internal nodes rule. This completes the proof by structural
induction.

Exercises

†1. If we don’t make the assumption that a, b, and c are distinct, then the set de-
noted by {a, b, c} might actually contain either 1, 2, or 3 elements. How many
different elements might the set { a, b, {a}, {a, c}, {a, b, c} } contain? Explain
your answer.

†2. Compute A ∪ B, A ∩ B, and A∖ B for each of the following pairs of sets
a) A = {a, b, c}, B = ∅
b) A = {1, 2, 3, 4, 5}, B = {2, 4, 6, 8, 10}
c) A = {a, b}, B = {a, b, c, d}
d) A = {a, b, {a, b}}, B = {{a}, {a, b}}

†3. Draw a Venn diagram for each of the computed sets of the last exercise.
†4. Recall that N represents the set of natural numbers. That is, N = {0, 1, 2, 3, . . . }.

Let X = {n ∈ N | n ≥ 5}, let Y = {n ∈ N | n ≤ 10}, and let Z = {n ∈
N | n is an even number}. Find each of the following sets:

a) X ∩ Y b) X ∪ Y c) X∖Y d) N∖ Z
e) X ∩ Z f) Y ∩ Z g) Y ∪ Z h) Z∖N

†5. Find P
(
{1, 2, 3}

)
. (Hint: It has eight elements.)
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†6. Assume that a and b are entities and that a ̸= b. Let A and B be the sets defined
by A = { a, {b}, {a, b} } and B = { a, b, {a, {b}} }. Determine whether each of
the following statements is true or false. Explain your answers.

a) b ∈ A b) {a, b} ⊆ A c) {a, b} ⊆ B
d) {a, b} ∈ B e) {a, {b}} ∈ A f) {a, {b}} ∈ B

†7. Since P(A) is a set, it is possible to form the set P
(
P(A)

)
. What is P

(
P(∅)

)
?

What is P
(
P({a, b})

)
? (Hint: It has sixteen elements.)

†8. In the English sentence, “She likes dogs that are small, cuddly, and cute”, does
she like an intersection or a union of sets of dogs? How about in the sentence,
“She likes dogs that are small, dogs that are cuddly, and dogs that are cute”?

†9. If A is any set, what can you say about A ∪ A ? About A ∩ A ? About A∖ A ?
Why?

†10. Suppose that A and B are sets such that A ⊆ B. What can you say about A ∪ B ?
About A ∩ B ? About A∖ B ? Why?

†11. Suppose that A, B, and C are sets. Show that C ⊆ A ∩ B if and only if (C ⊆
A) ∧ (C ⊆ B).

†12. Suppose that A, B, and C are sets, and that A ⊆ B and B ⊆ C. Show that A ⊆ C.
†13. Suppose that A and B are sets such that A ⊆ B. Is it necessarily true thatP(A) ⊆

P(B) ? Why or why not?
†14. Let M be any natural number, and let P(n) be a predicate whose domain of

discourse includes all natural numbers greater than or equal to M. Suppose
that P(M) is true, and suppose that P(k) → P(k + 1) for all k ≥ M. Show that
P(n) is true for all n ≥ M.

†15. Prove that the number of propositional variables is always at most one more
than the number of connectives for every formula ϕ ∈ PROP.

16. A ternary tree is a tree in which every node has at most three children. Give
a formal definition a ternary trees, and prove a theorem about the number of
nodes in a ternary tree.

4.2 The Boolean Algebra of Sets
It is clear that set theory is closely related to logic. The intersection and
union of sets can be defined in terms of the logical ‘and’ and logical ‘or’
operators. The notation {x | P(x)} makes it possible to use predicates to
specify sets. And if A is any set, then the formula x ∈ A defines a one place
predicate that is true for an entity x if and only if x is a member of A. So it
should not be a surprise that many of the rules of logic have analogues in
set theory.

For example, we have already noted that ∪ and ∩ are commutative op-
erations. This fact can be verified using the rules of logic. Let A and B
be sets. According to the definition of equality of sets, we can show that
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A ∪ B = B ∪ A by showing that ∀x
(
(x ∈ A ∪ B) ↔ (x ∈ B ∪ A)

)
. But for

any x,

x ∈ A ∪ B ↔ x ∈ A ∨ x ∈ B (definition of ∪)
↔ x ∈ B ∨ x ∈ A (commutativity of ∨)
↔ x ∈ B ∪ A (definition of ∪)

The commutativity of ∩ follows in the same way from the definition of ∩ in
terms of ∧ and the commutativity of ∧, and a similar argument shows that
union and intersection are associative operations.

The distributive laws for propositional logic give rise to two similar rules
in set theory. Let A, B, and C be any sets. Then

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

and

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

These rules are called the distributive laws for set theory. To verify the first
of these laws, we just have to note that for any x,

x ∈ A ∪ (B ∩ C)
↔ (x ∈ A) ∨ ((x ∈ B) ∧ (x ∈ C)) (definition of ∪, ∩)
↔ ((x ∈ A) ∨ (x ∈ B)) ∧ ((x ∈ A) ∨ (x ∈ C)) (distributivity of ∨)
↔ (x ∈ A ∪ B) ∧ (x ∈ A ∪ C) (definition of ∪)
↔ x ∈ ((A ∪ B) ∩ (A ∪ C)) (definition of ∩)

The second distributive law for sets follows in exactly the same way.

4.2.1 Set complement
While ∪ is analogous to ∨ and ∩ is analogous to ∧, we have not yet seen
any operation in set theory that is analogous to the logical ‘not’ operator,
¬. Given a set A, it is tempting to try to define {x | ¬(x ∈ A)}, the set that
contains everything that does not belong to A. Unfortunately, the rules of
set theory do not allow us to define such a set. The notation {x | P(x)} can
only be used when the domain of discourse of P is a set, so there must be an
underlying set fromwhich the elements that are/are not in A are chosen, i.e.,
some underlying set of which A is a subset. We can get around this problem
by restricting the discussion to subsets of some fixed set. This set will be
known as the universal set. Keep in mind that the universal set is only
universal for some particular discussion. It is simply some set that is large
enough to contain all the sets under discussion as subsets. Given a universal
set U and any subset A of U, we can define the set {x ∈ U | ¬(x ∈ A)}.
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Definition 4.1. Let U be a given universal set, and let A be any subset of
U. We define the complement of A in U to be the set A that is defined by
A = {x ∈ U | x ̸∈ A}.

Usually, we will refer to the complement of A in U simply as the com-
plement of A, but you should remember that whenever complements of
sets are used, there must be some universal set in the background. Other
textbooks may use Ac to denote the complement of A instead.

Given the complement operation on sets, we can look for analogues to
the rules of logic that involve negation. For example, we know that p∧¬p =
F for any proposition p. It follows that for any subset A of U,

A ∩ A = {x ∈ U | (x ∈ A) ∧ (x ∈ A)} (definition of ∩)
= {x ∈ U | (x ∈ A) ∧ (x ̸∈ A)} (definition of complement)
= {x ∈ U | (x ∈ A) ∧ ¬(x ∈ A)} (definition of ̸∈)
= ∅

the last equality following because the proposition (x ∈ A) ∧ ¬(x ∈ A) is
false for any x. Similarly, we can show that A ∪ A = U and that A = A
(where A is the complement of the complement of A, that is, the set ob-
tained by taking the complement of A.)

The most important laws for working with complements of sets are De-
Morgan’s Laws for sets. These laws, which followdirectly fromDeMorgan’s
Laws for logic, state that for any subsets A and B of a universal set U,

A ∪ B = A ∩ B

and

A ∩ B = A ∪ B

For example, we can verify the first of these laws with the calculation

A ∪ B = {x ∈ U | x ̸∈ (A ∪ B)} (definition of complement)
= {x ∈ U | ¬(x ∈ A ∪ B)} (definition of ̸∈)
= {x ∈ U | ¬(x ∈ A ∨ x ∈ B)} (definition of ∪)
= {x ∈ U | (¬(x ∈ A)) ∧ (¬(x ∈ B))} (DeMorgan’s Law for logic)
= {x ∈ U | (x ̸∈ A) ∧ (x ̸∈ B)} (definition of ̸∈)
= {x ∈ U | (x ∈ A) ∧ (x ∈ B)} (definition of complement)
= A ∩ B (definition of ∩)
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Double complement A = A

Miscellaneous laws A ∪ A = U

A ∩ A = ∅

∅ ∪ A = A

∅ ∩ A = ∅

Idempotent laws A ∩ A = A

A ∪ A = A

Commutative laws A ∩ B = B ∩ A

A ∪ B = B ∪ A

Associative laws A ∩ (B ∩ C) = (A ∩ B) ∩ C

A ∪ (B ∪ C) = (A ∪ B) ∪ C

Distributive laws A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

DeMorgan’s laws A ∩ B = A ∪ B

A ∪ B = A ∩ B
Figure 4.4: Some Laws of Boolean Algebra for sets. A, B, and C are sets.
For the laws that involve the complement operator, they are assumed to be
subsets of some universal set, U. For the most part, these laws correspond
directly to laws of Boolean Algebra for propositional logic as given in Fig-
ure 2.2.

An easy inductive proof can be used to verify generalized versions of
DeMorgan’s Laws for set theory. (In this context, all sets are assumed to
be subsets of some unnamed universal set.) A simple calculation verifies
DeMorgan’s Law for three sets:

A ∪ B ∪ C = (A ∪ B) ∪ C

= (A ∪ B) ∩ C (by DeMorgan’s Law for two sets)
= (A ∩ B) ∩ C (by DeMorgan’s Law for two sets)
= A ∩ B ∩ C

From there, we can derive similar laws for four sets, five sets, and so on.
However, just saying ‘and so on’ is not a rigorous proof of this fact. Whereas
we may have excused ourselves about that in Chapter 2, we can now prove
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this fact. Here is a rigorous inductive proof of a generalized DeMorgan’s
Law:

Theorem 4.5. For any natural number n ≥ 2 and for any sets X1, X2, …, Xn,

X1 ∪ X2 ∪ · · · ∪ Xn = X1 ∩ X2 ∩ · · · ∩ Xn

Proof. We give a proof by induction. In the base case, n = 2, the statement
is that X1 ∪ X2 = X1 ∩ X2. This is true since it is just an application of
DeMorgan’s law for two sets.

For the inductive case, suppose that the statement is true for n = k. We
want to show that it is true for n = k + 1. Let X1, X2, …, Xk+1 be any k + 1
sets. Then we have:

X1 ∪ X2 ∪ · · · ∪ Xk+1 = (X1 ∪ X2 ∪ · · · ∪ Xk) ∪ Xk+1

= (X1 ∪ X2 ∪ · · · ∪ Xk) ∩ Xk+1

= (X1 ∩ X2 ∩ · · · ∩ Xk) ∩ Xk+1

= X1 ∩ X2 ∩ · · · ∩ Xk+1

In this computation, the second step follows by DeMorgan’s Law for two
sets, while the third step follows from the induction hypothesis. Therefore
by the principle of induction we have proven the theorem.

4.2.2 Link between logic and set theory

Just as the laws of logic allow us to do algebra with logical formulas, the
laws of set theory allow us to do algebra with sets. Because of the close rela-
tionship between logic and set theory, their algebras are very similar. The
algebra of sets, like the algebra of logic, is Boolean algebra. When George
Boolewrote his 1854 book about logic, it was really asmuch about set theory
as logic. In fact, Boole did not make a clear distinction between a predicate
and the set of objects for which that predicate is true. His algebraic laws
and formulas apply equally to both cases. More exactly, if we consider only
subsets of some given universal set U, then there is a direct correspondence
between the basic symbols and operations of propositional logic and certain
symbols and operations in set theory, as shown in this table:
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∅c

true
A ↔ A

Ac ∪ Bc

¬A ∨ ¬B
A → ¬B

A ∪ B

A ∨ B
¬B → A

A ∪ Bc

A ∨ ¬B
B → A

A∆Bc

A ⊕ B
A ↔ ¬B

Ac ∪ B

¬A ∨ B
A → B

Bc

¬B

A

A

Ac

¬A

B

B

A ∩ Bc

A ∧ ¬B

(A∆B)c

A ↔ B

Ac ∩ B

¬A ∧ B

Ac ∩ Bc

¬A ∧ ¬B

A ∩ B

A ∧ B

∅

false
A ↔ ¬A

Figure 4.5: The correspondence between set operators and propositional
operators. Recreation of: commons.wikimedia.org/wiki/Template:
Operations_and_relations_in_set_theory_and_logic

commons.wikimedia.org/wiki/Template:Operations_and_relations_in_set_theory_and_logic
commons.wikimedia.org/wiki/Template:Operations_and_relations_in_set_theory_and_logic
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Logic Set Theory

T U

F ∅

p ∧ q A ∩ B

p ∨ q A ∪ B

¬p A

Any valid logical formula or computation involving propositional variables
and the symbols T, F, ∧, ∨, and ¬ can be transformed into a valid formula
or computation in set theory by replacing the propositions in the formula
with subsets of U and replacing the logical symbols with U, ∅, ∩, ∪, and
the complement operator. Figure 4.5 illustrates.

Just as in logic, the operations of set theory can be combined to form com-
plex expressions such as (A ∪ C) ∩ (B ∪ C ∪ D). Parentheses can always be
used in such expressions to specify the order in which the operations are
to be performed. In the absence of parentheses, we need precedence rules
to determine the order of operation. The precedence rules for the Boolean
algebra of sets are carried over directly from the Boolean algebra of proposi-
tions. When union and intersection are used together without parentheses,
intersection has precedence over union. Furthermore, when several oper-
ators of the same type are used without parentheses, then they are evalu-
ated in order from left to right. (Of course, since ∪ and ∩ are both asso-
ciative operations, it really doesn’t matter whether the order of evaluation
is left-to-right or right-to-left.) For example, A ∪ B ∩ C ∪ D is evaluated as
(A ∪ (B ∩ C)) ∪ D. The complement operation is a special case. Since it is
denoted by drawing a line over its operand, there is never any ambiguity
about which part of a formula it applies to.

Unfortunately in hand-written work this is not always true.
Make sure to write neatly and unambiguously when working
with complements. Also note that, similarly to parentheses in
propositional logic, although parentheses may not be necessary
I strongly encourage you to add them them to improve readabil-
ity of the order of operations.

The laws of set theory can be used to simplify complex expressions in-
volving sets. (As usual, of course, the meaning of ‘simplification’ is partly
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in the eye of the beholder.) For example, for any sets X and Y,

(X ∪ Y) ∩ (Y ∪ X) = (X ∪ Y) ∩ (X ∪ Y) (Commutative Law)
= (X ∪ Y) (Idempotent Law)

where in the second step, the Idempotent Law, which says that A ∩ A =
A, is applied with A = X ∪ Y. For expressions that use the complement
operation, it is usually considered to be simpler to apply the operation to an
individual set, as in A, rather than to a formula, as in A ∩ B. DeMorgan’s
Laws can always be used to simplify an expression inwhich the complement
operation is applied to a formula. For example,

A ∩ B ∪ A = A ∩ (B ∩ A) (DeMorgan’s Law)
= A ∩ (B ∩ A) (Double Complement)
= A ∩ (A ∩ B) (Commutative Law)
= (A ∩ A) ∩ B) (Associative Law)
= A ∩ B (Idempotent Law)

As a final example of the relationship between set theory and logic, con-
sider the set-theoretical expression A∩ (A∪ B) and the corresponding com-
pound proposition p ∧ (p ∨ q). (These correspond since for any x, x ∈
A ∩ (A ∪ B) ≡ (x ∈ A) ∧ ((x ∈ A) ∨ (x ∈ B)).) You might find it in-
tuitively clear that A ∩ (A ∪ B) = A. Formally, this follows from the fact
that p ∧ (p ∨ q) ≡ p, which might be less intuitively clear and is surprising
difficult to prove algebraically from the laws of logic. However, there is an-
other way to check that a logical equivalence is valid: Make a truth table.
Consider a truth table for p ∧ (p ∨ q):

p q p ∨ q p ∧ (p ∨ q)

0 0 0 0
0 1 1 0
1 0 1 1
1 1 1 1

The fact that the first column and the last column of this table are identical
shows that p ∧ (p ∨ q) ≡ p. Taking p to be the proposition x ∈ A and q to
be the proposition x ∈ B, it follows that the sets A and A ∩ (A ∪ B) have the
same members and therefore are equal.
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In one of the pencasts of the course, we describe howVenn dia-
grams can also be used as alternatives to truth tables based
on an old exam question. You can find that pencast here:
youtu.be/5xle5qfrh0k.

Exercises
†1. Use the laws of logic to verify the associative laws for union and intersection.

That is, show that if A, B, and C are sets, then A ∪ (B ∪ C) = (A ∪ B) ∪ C and
A ∩ (B ∩ C) = (A ∩ B) ∩ C.

†2. Show that for any sets A and B, A ⊆ A ∪ B and A ∩ B ⊆ A.
†3. Recall that the symbol ⊕ denotes the logical exclusive or operation. If A and

B sets, define the set A △ B by A △ B = {x | (x ∈ A) ⊕ (x ∈ B)}. Show that
A △ B = (A∖ B) ∪ (B∖ A). (A △ B is known as the symmetric difference of A
and B.)

†4. Choose three non-empty sets A, B, C. Draw a Venn diagram of A △ B △ C.

†5. Let A be a subset of some given universal set U. Verify that A = A and that
A ∪ A = U.

†6. Verify the second of DeMorgan’s Laws for sets, A ∩ B = A ∪ B. For each step in
your verification, state why that step is valid.

†7. The subset operator,⊆, is defined in terms of the logical implication operator,→.
However, ⊆ differs from the ∩ and ∪ operators in that A ∩ B and A ∪ B are sets,
while A ⊆ B is a statement. So the relationship between ⊆ and → isn’t quite the
same as the relationship between ∪ and ∨ or between ∩ and ∧. Nevertheless, ⊆
and → do share some similar properties. This problem shows one example.

a) Show that the following three compound propositions are logically equi-
valent: p → q, (p ∧ q) ↔ p, and (p ∨ q) ↔ q.

b) Show that for any sets A and B, the following three statements are equi-
valent: A ⊆ B, A ∩ B = A, and A ∪ B = B.

†8. DeMorgan’s Laws apply to subsets of some given universal set U. Show that for
a subset X of U, X = U∖ X. It follows that DeMorgan’s Laws can be written as
U∖ (A ∪ B) = (U∖ A)∩ (U∖ B) and U∖ (A ∩ B) = (U∖ A)∪ (U∖ B). Show
that these laws hold whether or not A and B are subsets of U. That is, show that
for any sets A, B, and C, C∖ (A ∪ B) = (C∖ A) ∩ (C∖ B) and C∖ (A ∩ B) =
(C∖ A) ∪ (C∖ B).

†9. Show that A ∪ (A ∩ B) = A for any sets A and B.
†10. Let X and Y be sets. Simplify each of the following expressions. Justify each step

in the simplification with one of the rules of set theory.
a) X ∪ (Y ∪ X) b) (X ∩ Y) ∩ X
c) (X ∪ Y) ∩ Y d) (X ∪ Y) ∪ (X ∩ Y)

youtu.be/5xle5qfrh0k
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†11. Let A, B, and C be sets. Simplify each of the following expressions. In your
answer, the complement operator should only be applied to the individual sets
A, B, and C.

a) A ∪ B ∪ C b) A ∪ (B ∩ C) c) A ∪ B

d) B ∩ C e) A ∩ B ∩ C f) A ∩ A ∪ B

†12. Use induction to prove the following generalizedDeMorgan’s Law for set theory:
For any natural number n ≥ 2 and for any sets X1, X2, …, Xn,

X1 ∩ X2 ∩ · · · ∩ Xn = X1 ∪ X2 ∪ · · · ∪ Xn

†13. State and prove generalized distributive laws for set theory.

4.3 Application: Graphs
Generalising from the data structure of a tree, we can create a graph. In
computer science, we can model many different problems as graphs: from
shortest paths to help your navigation system, to scheduling sportsmatches.
Think of a graph like a tree, except that there can be edges between ‘sibling’
nodes—and more.

4.3.1 Graph nomenclature
A graph is a 2-tuple of two sets often denoted as G = (V, E). The first co-
ordinate V is a set of vertices, also called nodes. The second coordinate E
is a set of edges, where each edge represents a connection between two ver-
tices. Two vertices connected by an edge are called neighbours. Graphically,
we often draw vertices as circles with edges as lines between them, as we
did for trees in the last chapter. For example consider the following visual
representation of a graph G1:

s a

bt

This graph can also be expressed more formally as:

G1 = ({s, a, b, t}, {{s, t}, {s, b}, {a, b}, {b, t}})

This graph is what we call undirected, by which we mean that edges do
not have a direction. As a result we represent the edges as sets meaning
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E ⊆ {{v1, v2} | v1 ̸= v2 ∧ v1, v2 ∈ V}. In contrast in a directed graph, edges
have an origin and a destination. Consider now graph G2:

s a

bt

This graph can be expressed as a 2-tuple as:

G2 = ({s, a, b, t}, {(s, t), (s, b), (a, b), (b, t)})

Notice that for directed graphs it holds that E ⊆ V × V. Finally we
define a path as a sequence of some edges. For example a path π = ((s, b), (b, t))
denotes a path from s to t in the graph G2 above.

In Section 4.5.5 we will revisit this model for graphs and explore what
the addition of functions can do to enrich our graph model.

4.3.2 An application of graphs: Task ordering
As you are taking Reasoning & Logic, you have many different tasks that you
need to complete. Reading sections from the book, doing book exercises,
homework assignments, and of course exams. This can be quite overwhelm-
ing, both in figuring out where to start, as well as to figure out what order
to complete tasks in. Fortunately you can use a graph to help you structure
your tasks!

If you are given a number of tasks you need to do, with precedence con-
straints between them (for example you need to read the book and watch
a video, before doing the homework) as a set of ordered pairs. You can
model this problem as a graph, turning tasks into vertices and these pre-
cedence constraints into edges. The result may look very similar to those
you find on ad-cs.ewi.tudelft.nl! Assuming it is feasible to do the tasks,
your graph will be what we call a Directed Acyclic Graph (or DAG). After
all, if there is some cycle in your graph, then a task can never be completed!
(Do you see why?)

Now to find an order in which the tasks can be completed, we look for
what we call a topological ordering. In such an ordering we number the
vertices v1 through v|V| in such a way that for all edges (vx, vy) ∈ E it holds
that x < y. For example, for the graph G2 in the previous section, a, s, b, t is a
possible topological ordering. Amethod to find such a topological ordering
is as follows:

1. Pick a vertex without incoming edges.

ad-cs.ewi.tudelft.nl
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2. Add it to the topological ordering, and remove it and its outgoing
edges from the graph.

3. While there are still vertices left, go back to step 1.

In the exercises, you will be asked to write a proof by contradiction to
prove that there is always a vertex without incoming edges in a DAG. You
will further analyse and also implement this algorithm in the Algorithms &
Data Structures course.

Exercises
1. Draw an undirected graph of 10 vertices, so that the longest path in the graph

consists of 6 edges.
2. Draw a directed acyclic graph of 8 vertices, and 13 edges.
3. Give a topological ordering of the DAG you drew in the previous exercise.
4. Prove the following claim: “Every DAGhas at least one vertexwithout incoming

edges.” You may find a proof by contradiction to be useful here.

4.4 Application: Programming with Sets
On a computer, all pieces of data are represented, ultimately, as strings of
zeros and ones. At times, computers need to work with sets. How can sets
be represented as strings of zeros and ones? And once we have represented
sets on a computer, how do we program with them?

In this section we go into detail about representing and comput-
ing with sets. You won’t be examined on this in Reasoning & Lo-
gic. Youwill find that there is again quite some overlapwith your
study materials from Computer Organisation however, as we dis-
cuss different numeric systems.

4.4.1 Representing sets
A set is determined by its elements. Given a set A and an entity x, the funda-
mental question is, does x belong to A or not? If we know the answer to this
question for each possible x, thenwe know the set. For a given x, the answer
to the question, “Is x a member of A”, is either yes or no. The answer can be
encoded by letting 1 stand for yes and 0 stand for no. The answer, then, is
a single bit, that is, a value that can be either zero or one. To represent the
set A as a string of zeros and ones, we could use one bit for each possible
member of A. If a possible member x is in the set, then the corresponding
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bit has the value one. If x is not in the set, then the corresponding bit has
the value zero.

Now, in cases where the number of possible elements of the set is very
large or infinite, it is not practical to represent the set in this way. It would re-
quire too many bits, perhaps an infinite number. In such cases, some other
representation for the set can be used. However, suppose we are only inter-
ested in subsets of some specified small set. Since this set plays the role of a
universal set, let’s call it U. To represent a subset of U, we just need one bit
for each member of U. If the number of members of U is n, then a subset of
U is represented by a string of n zeros and ones. Furthermore, every string
of n zeros and ones determines a subset of U, namely that subset that con-
tains exactly the elements of U that correspond to ones in the string. You
know by now from Computer Organisation that a string of n zeros and ones
is called an n-bit binary number. So, we see that if U is a set with n elements,
then the subsets of U correspond to n-bit binary numbers.

To make things more definite, let U be the set {0, 1, 2, . . . , 31}. This set
consists of the 32 integers between 0 and 31, inclusive. Then each subset ofU
can be represented by a 32-bit binary number. We use 32 bits because most
computer languages can work directly with 32-bit numbers. For example,
the programming languages Java has a data type named int. A value of
type int is a 32-bit binary number.3 Before we get a definite correspondence
between subsets of U and 32-bit numbers, we have to decide which bit in
the number will correspond to each member of U. Following tradition, we
assume that the bits are numbered from right to left. That is, the rightmost
bit corresponds to the element 0 in U, the second bit from the right corres-
ponds to 1, the third bit from the right to 2, and so on. For example, the
32-bit number

1000000000000000000001001110110

corresponds to the subset {1, 2, 4, 5, 6, 9, 31}. Since the leftmost bit of the
number is 1, the number 31 is in the set; since the next bit is 0, the number
30 is not in the set; and so on.

From now on, I will write binary numbers with a subscript of 2 to avoid
confusion with ordinary numbers. Further, we will often leave out leading
zeros. For example, 11012 is the binary number that would be written out
in full as

00000000000000000000000000001101

and which corresponds to the set {0, 2, 3}. On the other hand 1101 repres-
ents the ordinary number one thousand one hundred and one.

Even with this notation, it can be very annoying to write out long bin-
ary numbers—and almost impossible to read them. So binary numbers are

3If in a future version of Java, a value of type int is, for instance, a 64-bit number—which
can be used to represent a subset of the set {0, 1, 2, . . . , 63}—the principle remains the same.
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Hex. Binary Hex. Binary

0 00002 8 10002

1 00012 9 10012

2 00102 A 10102

3 00112 B 10112

4 01002 C 11002

5 01012 D 11012

6 01102 E 11102

7 01112 F 11112

Figure 4.6: The 16 hexadecimal digits and the corresponding binary num-
bers. Each hexadecimal digit corresponds to a 4-bit binary number. Longer
binary numbers can be written using two or more hexadecimal digits. For
example, 1010000111112 = 0xA1F.

never written out as sequences of zeros and ones in computer programs.
An alternative is to use hexadecimal numbers. Hexadecimal numbers are
written using the sixteen symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E,
and F. These symbols are knows as the hexadecimal digits. Each hexa-
decimal digit corresponds to a 4-bit binary number, as shown in Figure 4.6.
To represent a longer binary number, several hexadecimal digits can be
strung together. For example, the hexadecimal number C7 represents the
binary number 110001112. In Java and many related languages, a hexa-
decimal number is written with the prefix 0x. Thus, the hexadecimal num-
ber C7 would appear in the program as 0xC7. We’ll follow the same con-
vention here. Any 32-bit binary number can be written using eight hexa-
decimal digits (or fewer if leading zeros are omitted). Thus, subsets of
{0, 1, 2, . . . , 31} correspond to 8-digit hexadecimal numbers. For example,
the subset {1, 2, 4, 5, 6, 9, 31} corresponds to 0x80000276, which represents
the binary number 10000000000000000000010011101102. Similarly, 0xFF cor-
responds to {0, 1, 2, 3, 4, 5, 6, 7} and 0x1101 corresponds to the binary num-
ber 00010001000000012 and to the set {0, 8, 12}.

Now, if you have worked with binary numbers or with hexadecimal
numbers, you know that they have another, more common interpretation.
They represent ordinary integers. Just as 342 represents the integer 3 · 102 +
4 · 101 + 2 · 100, the binary number 11012 represents the integer 1 · 23 +
1 · 22 + 0 · 21 + 1 · 20, or 13. When used in this way, binary numbers are
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known as base-2 numbers, just as ordinary numbers are base-10 numbers.
Hexadecimal numbers can be interpreted as base-16 numbers. For example,
0x3C7 represents the integer 3 · 162 + 12 · 161 + 7 · 160, or 874. So, does 11012
really represent the integer 13, or does it represent the set {0, 2, 3} ? The
answer is that to a person, 11012 can represent either. Both are valid inter-
pretations, and the only real question is which interpretation is useful in a
given circumstance. On the other hand, to the computer, 11012 doesn’t rep-
resent anything. It’s just a string of bits, and the computer manipulates the
bits according to its program, without regard to their interpretation.

Of course, we still have to answer the question ofwhether it is ever useful
to interpret strings of bits in a computer as representing sets.

4.4.2 Computing with sets
If all we could do with sets were to ‘represent’ them, it wouldn’t be very
useful. We need to be able to compute with sets. That is, we need to be able
to perform set operations such as union and complement.

Many programming languages provide operators that perform set oper-
ations. In Java and related languages, the operators that perform union, in-
tersection, and complement are written as | , &, and ~. For example, if x and
y are 32-bit integers representing two subsets, X and Y, of {0, 1, 2, . . . , 31},
then x | y is a 32-bit integer that represents the set X ∪ Y. Similarly, x & y
represents the set X ∩ Y, and ~x represents the complement, X.

The operators | , &, and ~ are called bitwise logical operators because of
theway they operate on the individual bits of the numbers towhich they are
applied. If 0 and 1 are interpreted as the logical values false and true, then
the bitwise logical operators perform the logical operations ∨, ∧, and ¬ on
individual bits. To see why this is true, let’s look at the computations that
these operators have to perform.

Let k be one of the members of {0, 1, 2, . . . , 31}. In the binary numbers
x, y, x | y, x & y, and ~x, the number k corresponds to the bit in position k.
That is, k is in the set represented by a binary number if and only if the bit
in position k in that binary number is 1. Considered as sets, x & y is the
intersection of x and y, so k is a member of the set represented by x & y if
and only if k is a member of both of the sets represented by x and y. That
is, bit k is 1 in the binary number x & y if and only if bit k is 1 in x and bit
k is 1 in y. When we interpret 1 as true and 0 as false, we see that bit k of
x & y is computed by applying the logical ‘and’ operator, ∧, to bit k of x
and bit k of y. Similarly, bit k of x | y is computed by applying the logical
‘or’ operator, ∨, to bit k of x and bit k of y. And bit k of ~x is computed
by applying the logical ‘not’ operator, ¬, to bit k of x. In each case, the
logical operator is applied to each bit position separately. (Of course, this



4

136 Chapter 4. Sets, Functions, and Relations

discussion is just a translation to the language of bits of the definitions of the
set operations in terms of logical operators: A ∩ B = {x | x ∈ A ∧ x ∈ B},
A ∪ B = {x | x ∈ A ∨ x ∈ B}, and A = {x ∈ U | ¬(x ∈ A)}.)

For example, consider the binary numbers 10110102 and 101112, which
represent the sets {1, 3, 4, 6} and {0, 1, 2, 4}. Then 10110102 & 101112 is
100102. This binary number represents the set {1, 4}, which is the inter-
section {1, 3, 4, 6} ∩ {0, 1, 2, 4}. It’s easier to see what’s going on if we write
out the computation in columns, the way you probably first learned to do
addition:

1 0 1 1 0 1 0 { 6, 4, 3, 1 }
& 0 0 1 0 1 1 1 { 4, 2, 1, 0 }

0 0 1 0 0 1 0 { 4, 1 }

Note that in each column in the binary numbers, the bit in the bottom row is
computed as the logical ‘and’ of the two bits that lie above it in the column.
We have written out the sets that correspond to the binary numbers to show
how the bits in the numbers correspond to the presence or absence of ele-
ments in the sets. Similarly, we can see how the union of two sets is com-
puted as a bitwise ‘or’ of the corresponding binary numbers.

1 0 1 1 0 1 0 { 6, 4, 3, 1 }
| 0 0 1 0 1 1 1 { 4, 2, 1, 0 }

1 0 1 1 1 1 1 { 6, 4, 3, 2, 1, 0 }

The complement of a set is computed using a bitwise ‘not’ operation. Since
we are working with 32-bit binary numbers, the complement is taken with
respect to the universal set {0, 1, 2, . . . , 31}. So, for example,

~10110102 = 111111111111111111111111101001012

Of course, we can apply the operators &, | , and ~ to numbers written in
hexadecimal form, or even in ordinary, base-10 form. When doing such
calculations by hand, it is probably best to translate the numbers into binary
form. For example,

0xAB7 & 0x168E = 1010 1011 01112 & 1 0110 1000 11102

= 0 0010 1000 01102

= 0x286

When computing with sets, it is sometimes necessary to work with in-
dividual elements. Typical operations include adding an element to a set,
removing an element from a set, and testing whether an element is in a set.
However, instead of working with an element itself, it’s convenient to work
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with the set that contains that element as its only member. For example,
testing whether 5 ∈ A is the same as testing whether {5} ∩ A ̸= ∅. The
set {5} is represented by the binary number 1000002 or by the hexadecimal
number 0x20. Suppose that the set A is represented by the number x. Then,
testing whether 5 ∈ A is equivalent to testing whether 0x20 & x ̸= 0. Simil-
arly, the set A ∪ {5}, which is obtained by adding 5 to A, can be computed
as x | 0x20. The set A∖ {5}, which is the set obtained by removing 5 from
A if it occurs in A, is represented by x & ~0x20.

The sets {0}, {1}, {2}, {3}, {4}, {5}, {6}, …, {31} are represented by
the hexadecimal numbers 0x1, 0x2, 0x4, 0x8, 0x10, 0x20, …, 0x80000000. In
typical computer applications, some of these numbers are given names, and
these names are thought of as names for the possible elements of a set (al-
though, properly speaking, they are names for sets containing those ele-
ments). Suppose, for example, that a, b, c, and d are names for four of the
numbers from the above list. Then a | c is the set that contains the two ele-
ments corresponding to the numbers a and c. If x is a set, then x & ~d is the
set obtained by removing d from x. And we can test whether b is in x by
testing if x & b ̸= 0.

Here is an actual example, which is used in the Apple Mac operating
systems (macOS). Characters can be printed or displayed on the screen in
various sizes and styles. A font is a collection of pictures of characters in
a particular size and style. On the Mac, a basic font can be modified by
specifying any of the following style attributes: bold, italic, underline, outline,
shadow, condense, and extend. The style of a font is a subset of this set of at-
tributes. A style set can be specified by or-ing together individual attributes.
For example, an underlined, bold, italic font has style set underline | bold |
italic. For a plain font, with none of the style attributes set, the style set is
the empty set, which is represented by the number zero.

The Java programming language uses a similar scheme to specify style
attributes for fonts, but currently there are only twobasic attributes, Font.BOLD
and Font.ITALIC. A more interesting example in Java is provided by event
types. An event in Java represents some kind of user action, such as press-
ing a key on the keyboard. Events are associated with ‘components’ such as
windows, buttons and scroll bars. Components can be set to ignore a given
type of event. We then say that that event type is disabled for that compon-
ent. If a component is set to process events of a given type, then that event
type is said to be enabled. Each component keeps track of the set of event
types that are currently enabled. It will ignore any event whose type is not
in that set. Each event type has an associated constant with a name such as
AWTEvent.MOUSE_EVENT_MASK. These constants represent the possible ele-
ments of a set of event types. A set of event types can be specified by or-ing
together a number of such constants. If c is a component and x is a number
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representing a set of event types, then the command ‘c.enableEvents(x)’ en-
ables the events in the set x for the component c. If y represents the set of
event types that were already enabled for c, then the effect of this command
is to replace y with the union, y | x. Another command, ‘c.disableEvents(x)’,
will disable the event types in x for the component c. It does this by repla-
cing the current set, y, with y & ~x.

Exercises
1. Suppose that the numbers x and y represent the sets A and B. Show that the set

A∖ B is represented by x & (~y).
2. Write each of the following binary numbers in hexadecimal:

a) 101101102 b) 102 c) 1111000011112 d) 1010012

3. Write each of the following hexadecimal numbers in binary:
a) 0x123 b) 0xFADE c) 0x137F d) 0xFF11

4. Give the value of each of the following expressions as a hexadecimal number:
a) 0x73 | 0x56A b) ~0x3FF0A2FF
c) (0x44 | 0x95) & 0xE7 d) 0x5C35A7 & 0xFF00
e) 0x5C35A7 & ~0xFF00 f) ~(0x1234 & 0x4321)

5. Find a calculator (or a calculator program on a computer) that can work with
hexadecimal numbers. Write a short report explaining how to work with hexa-
decimal numbers on that calculator. You should explain, in particular, how the
calculator can be used to do the previous problem.

6. This question assumes that you know how to add binary numbers. Suppose x
and y are binary numbers. Under what circumstances will the binary numbers
x + y and x | y be the same?

7. In addition to hexadecimal numbers, the programming languages Java and C
(but not the latest version of C++) support octal numbers. Look up and report
on octal numbers in Java or C. Explain what octal numbers are, how they are
written, and how they are used.

8. In the Unix (and Linux, macOS, …) operating system, every file has an associ-
ated set of permissions, which determine who can use the file and how it can be
used. The set of permissions for a given file is represented by a nine-bit binary
number. This number is sometimes written as an octal number. Research and
report on the Unix systems of permissions. What set of permissions is represen-
ted by the octal number 752? by the octal number 622? Explain what is done by
the Unix commands chmod g+rw filename and chmod o-w filename in terms
of sets.

9. Most modern programming languages have a boolean data type that has the
values true and false. The usual logical and, or, and not operators on boolean
values are represented in Java, C and C++ by the operators &&, | |, and !. C and
C++ (but not Java) allow integer values to be used in places where boolean
values are expected. In this case, the integer zero represents the boolean value
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false while any non-zero integer represents the boolean value true. This means
that if x and y are integers, then both x & y and x && y are valid expressions,
and both can be considered to represent boolean values. Do the expressions
x & y and x && y always represent the same boolean value, for any integers x
and y? Do the expressions x | y and x | | y always represent the same boolean
values? Explain your answers.

10. Suppose that you, as a programmer, want to write a subroutine that will open
a window on the computer’s screen. The window can have any of the following
options: a close box, a zoom box, a resize box, a minimize box, a vertical scroll
bar, a horizontal scroll bar. Design a scheme whereby the options for the win-
dow can be specified by a single parameter to the subroutine. The parameter
should represent a set of options. How would you use your subroutine to open
a window that has a close box and both scroll bars and no other options? Inside
your subroutine, how would you determine which options have been specified
for the window?

4.5 Functions
Both the real world and theworld of mathematics are full of what are called,
in mathematics, ‘functional relationships’. A functional relationship is a
relationship between two sets, which associates exactly one element from
the second set to each element of the first set.

For example, each item for sale in a store has a price. The first set in
this relationship is the set of items in the store. For each item in the store,
there is an associated price, so the second set in the relationship is the set of
possible prices. The relationship is a functional relationship because each
item has a price. That is, the question “What is the price of this item?” has
a single, definite answer for each item in the store.

Similarly, the question “Who is the (biological) mother of this person?”
has a single, definite answer for each person.4 So, the relationship ‘mother
of’ defines a functional relationship. In this case, the two sets in the rela-
tionship are the same set, namely the set of people. On the other hand, the
relationship ‘child of’ is not a functional relationship. The question “Who
is the child of this person?” does not have a single, definite answer for each
person. A given person might not have any child at all. And a given per-
son might have more than one child. Either of these cases—a person with
no child or a person with more than one child—is enough to show that the
relationship ‘child of’ is not a functional relationship.

Or consider an ordinary map, such as a map of Zuid-Holland or a street
map of Rome. The whole point of the map, if it is accurate, is that there is a
functional relationship between points on themap andpoints on the surface

4For the sake of the example, we leave aside possibilities of surrogacy, etc.
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of the Earth. Perhaps because of this example, a functional relationship is
sometimes called a mapping.

There are alsomanynatural examples of functional relationships inmath-
ematics. For example, every rectangle has an associated area. This fact ex-
presses a functional relationship between the set of rectangles and the set
of numbers. Every natural number n has a square, n2. The relationship
‘square of’ is a functional relationship from the set of natural numbers to
itself.

4.5.1 Formalising the notion of functions
In mathematics, of course, we need to work with functional relationships in
the abstract. To do this, we introduce the idea of function. You should think
of a function as a mathematical object that expresses a functional relation-
ship between two sets. The notation f : A → B expresses the fact that f is a
function from the set A to the set B. That is, f is a name for a mathematical
object that expresses a functional relationship from the set A to the set B.
The notation f : A → B is read as “ f is a function from A to B” or more
simply as “ f maps A to B”.

Mathematical functions are different to functions in a program-
ming language in Java. We’ll come back to this in the next sec-
tion.

If f : A → B and if a ∈ A, the fact that f is a functional relationship
from A to B means that f associates some element of B to a. That element
is denoted f (a). That is, for each a ∈ A, f (a) ∈ B and f (a) is the single,
definite answer to the question “What element of B is associated to a by
the function f ?” The fact that f is a function from A to B means that this
question has a single, well-defined answer. Given a ∈ A, f (a) is called the
value of the function f at a.

For example, if I is the set of items for sale in a given store and
M is the set of possible prices, then there is function c : I → M
which is defined by the fact that for each x ∈ I, c(x) is the price
of the item x. Similarly, if P is the set of people, then there is
a function m : P → P such that for each person p, m(p) is the
mother of p. And if N is the set of natural numbers, then the
formula s(n) = n2 specifies a function s : N → N.

It is in the form of formulas such as s(n) = n2 or f (x) = x3 − 3x + 7 that
most people first encounter functions. But you should note that a formula
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by itself is not a function, although it might well specify a function between
two given sets of numbers. Functions aremuchmore general than formulas,
and they apply to all kinds of sets, not just to sets of numbers.

4.5.2 Operations on functions
Suppose that f : A → B and g : B → C are functions. Given a ∈ A, there is
an associated element f (a) ∈ B. Since g is a function from B to C, and since
f (a) ∈ B, g associates some element of C to f (a). That element is g( f (a)).
Starting with an element a of A, we have produced an associated element
g( f (a)) of C. This means that we have defined a new function from the set
A to the set C. This function is called the composition of g with f , and it is
denoted by g ◦ f . That is, if f : A → B and g : B → C are functions, then
g ◦ f : A → C is the function which is defined by

(g ◦ f )(a) = g( f (a))

for each a ∈ A. For example, suppose that p is the function that associates
to each item in a store the price of the item, and suppose that t is a func-
tion that associates the amount of tax on a price to each possible price. The
composition, t ◦ p, is the function that associates to each item the amount of
tax on that item. Or suppose that s : N → N and r : N → N are the func-
tions defined by the formulas s(n) = n2 and r(n) = 3n + 1, for each n ∈ N.
Then r ◦ s is a function from N to N, and for n ∈ N, (r ◦ s)(n) = r(s(n)) =
r(n2) = 3n2 + 1. In this case, we also have the function s ◦ r, which satisfies
(s ◦ r)(n) = s(r(n)) = s(3n + 1) = (3n + 1)2 = 9n2 + 6n + 1. Note in par-
ticular that r ◦ s and s ◦ r are not the same function. The operation ◦ is not
commutative.

If A is a set and f : A → A, then f ◦ f , the composition of f with itself,
is defined. For example, using the function s from the preceding example,
s ◦ s is the function from N to N given by the formula (s ◦ s)(n) = s(s(n)) =
s(n2) = (n2)2 = n4. If m is the function from the set of people to itself which
associates to each person that person’s mother, then m ◦ m is the function
that associates to each person that person’s maternal grandmother.

Given a function f : A → B, consider the set {(a, b) ∈ A × B | a ∈
A and b = f (a)}. This set of ordered pairs consists of all pairs (a, b) such
that a ∈ A and b is the element of B that is associated to a by the function f .
The set {(a, b) ∈ A × B | a ∈ A and b = f (a)} is called the graph of the
function f . Since f is a function, each element a ∈ A occurs once and only
once as a first coordinate among the ordered pairs in the graph of f . Given
a ∈ A, we can determine f (a) by finding that ordered pair and looking at
the second coordinate. In fact, it is convenient to consider the function and
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(a) Graph for the formula f (n) = n2

for −10 ≤ n ≤ 10
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(b) Graph for the function g : A → B
with A = {a, b, c} and B = {1, 2, 3},
such that g = {(a, 2), (b, 3), (c, 1)}.

Figure 4.7: Two different graphs representing functions.

its graph to be the same thing, and to use this as our official mathematical
definition.5

You are already familiar with the process of graphing numerical func-
tions from high school (for instance you can graph the formula f (n) = n2

as depicted in Figure 4.7a), but we can also graph non-numerical functions
as indicated in Figure 4.7b. To do so, we draw all elements from the set A
and connect them to the elements of B they map to.

Definition 4.2. Let A and B be sets. A function from A to B is a subset of
A × B which has the property that for each a ∈ A, the set contains one and
only one ordered pair whose first coordinate is a. If (a, b) is that ordered
pair, then b is called the value of the function at a and is denoted f (a). If
b = f (a), then we also say that the function f maps a to b. The fact that f is
a function from A to B is indicated by the notation f : A → B.

For example, if X = {a, b} and Y = {1, 2, 3}, then the set
{(a, 2), (b, 1)} is a function from X to Y, and {(1, a), (2, a), (3, b)}
is a function from Y to X. On the other hand, {(1, a), (2, b)} is not
a function from Y to X, since it does not specify any value for 3.
And {(a, 1), (a, 2), (b, 3)} is not a function from X to Y because it
specifies two different values, 1 and 2, associated with the same
element, a, of X.

5This is a convenient definition for the mathematical world, but as is often the case in math-
ematics, it neglects much of the real world. Functional relationships in the real world aremean-
ingful, but we model them in mathematics with meaningless sets of ordered pairs. We do this
for the usual reason: to have something precise and rigorous enough that we can make logical
deductions and prove things about it.
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Even though the technical definition of a function is a set of ordered
pairs, it’s usually better to think of a function from A to B as something that
associates some element of B to every element of A. The set of ordered pairs
is one way of expressing this association. If the association is expressed
in some other way, it’s easy to write down the set of ordered pairs. For
example, the function s : N → N which is specified by the formula s(n) =
n2 can be written as the set of ordered pairs {(n, n2) | n ∈ N}.

4.5.3 Properties of functions

Suppose that f : A → B is a function from the set A to the set B. We say that
A is the domain of the function f and that B is the range of the function. We
define the image of the function f to be the set {b ∈ B | ∃a ∈ A (b = f (a))}.
Put more simply, the image of f is the set { f (a) | a ∈ A}. That is, the image
is the set of all values, f (a), of the function, for all a ∈ A. For example, for
the function s : N → N that is specified by s(n) = n2, both the domain and
the range are N, and the image is the set {n2 | n ∈ N}, or {0, 1, 4, 9, 16, . . . }.

In some cases—particularly in courses like Calculus—the term
‘range’ is used to refer to what we are calling the image.

Note that the image of a function is a subset of its range. It can be a
proper subset, as in the above example, but it is also possible for the image
of a function to be equal to the range. In that case, the function is said to
be onto. Sometimes, the fancier term surjective is used instead. Formally, a
function f : A → B is said to be onto (or surjective) if every element of B is
equal to f (a) for some element of A. In terms of logic, f is onto if and only
if

∀b ∈ B
(
∃a ∈ A (b = f (a))

)
.
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For example, let X = {a, b} and Y = {1, 2, 3}, and consider
the function from Y to X specified by the set of ordered pairs
{(1, a), (2, a), (3, b)}. This function is onto because its image,
{a, b}, is equal to the range, X. However, the function from X to
Y given by {(a, 1), (b, 3)} is not onto, because its image, {1, 3}, is
a proper subset of its range, Y.

As a further example, consider the function f from Z to Z given
by f (n) = n − 52. To show that f is onto, we need to pick an
arbitrary b in the range Z and show that there is some number
a in the domain Z such that f (a) = b. So let b be an arbitrary
integer; we want to find an a such that a − 52 = b. Clearly this
equation will be true when a = b + 52. So every element b is the
image of the number a = b + 52, and f is therefore onto. Note
that if f had been specified to have domain N, then f would not
be onto, as for some b ∈ Z the number a = b + 52 is not in the
domain N (for example, the integer −73 is not in the image of f ,
since −21 is not in N.)

If f : A → B and if a ∈ A, then a is associated to only one element of
B. This is part of the definition of a function. However, no such restriction
holds for elements of B. If b ∈ B, it is possible for b to be associated to zero,
one, two, three, …, or even to an infinite number of elements of A. In the
case where each element of the range is associated to at most one element
of the domain, the function is said to be one-to-one. Sometimes, the term
injective is used instead. The function f is one-to-one (or injective) if for
any two distinct elements x and y in the domain of f , f (x) and f (y) are also
distinct. In terms of logic, f : A → B is one-to-one if and only if

∀x ∈ A ∀y ∈ A
(

x ̸= y → f (x) ̸= f (y)
)
.

Since a proposition is equivalent to its contrapositive, we can write this con-
dition equivalently as

∀x ∈ A ∀y ∈ A
(

f (x) = f (y) → x = y
)
.

Sometimes, it is easier to work with the definition of one-to-one when it is
expressed in this form.
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The function that associates every person to his or her mother is
not one-to-one because it is possible for two different people to
have the same mother. The function s : N → N specified by
s(n) = n2 is one-to-one. However, we can define a function
r : Z → Z by the same formula: r(n) = n2, for n ∈ Z. The
function r is not one-to-one since two different integers can have
the same square. For example, r(−2) = r(2).

A function that is both one-to-one and onto is
said to be bijective.6 The function that associates
each point in a map of Zuid-Holland to a point in
the state itself is presumably bijective. For each
point on themap, there is a corresponding point in
the province, and vice versa. If we specify the func-
tion f from the set {1, 2, 3} to the set {a, b, c} as the
set of ordered pairs {(1, b), (2, a), (3, c)}, then f is
a bijective function. Or consider the function from
Z to Z given by f (n) = n − 52. We have already
shown that f is onto. We can show that it is also one-to-one.

Proof. Pick an arbitrary x and y in Z and assume that f (x) = f (y). This
means that x − 52 = y − 52, and adding 52 to both sides of the equation
gives x = y. Since x and y were arbitrary, we have proved ∀x ∈ Z ∀y ∈
Z ( f (x) = f (y) → x = y), that is, that f is one-to-one.

Altogether, then, f is a bijection.

4.5.4 Functions on trees
Using our formal definition of TREE from Section 4.1.10, we can now define
functions for certain properties and operations on these trees. Why? Well,
remember for example that we have defined the height of a tree as: the
length of the longest path from a leaf to the root. We can nowuse a recursive
function h : TREE → N to define this more formally:

h(t) =


0 if t = ∅
0 if t = (x, ∅) for some x ∈ D
1 + max

1≤i≤k
(h(Ti)) else

You will find that since trees are recursive data structures, many func-
tions on trees are also recursively defined. Here we also see that our func-

6Image: commons.wikimedia.org/wiki/File:Bijection.svg.

commons.wikimedia.org/wiki/File:Bijection.svg
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tion closely follows our formal definition of TREE, with one outcome for
every rule from the definition.

Similarly, we can also define a function r : TREE × D × D → TREE
that replaces elements in a tree. For example r(t, 8, 42) would change all the
values 8 to 42 in a tree t. Again our function will follow the rules from the
definition of TREE, recursively calling the function on subtrees, as well as
replacing any value that needs to be replaced. In other words, we can define
r like this:

r(t, s, d) =



∅ if t = ∅
(d, ∅) if t = (s, ∅)

(x, ∅) if t = (x, ∅) ∧ x ̸= s for some x ∈ D
(d, (r(T1, s, d), . . . , r(Tk, s, d))) if t = (s, (T1, . . . , Tk))

(x, (r(T1, s, d), . . . , r(Tk, s, d))) else

In Algorithms & Data Structures you will be implementing these
functions in Java, as well as analyse their run time complexity!

4.5.5 Functions on graphs
When we add functions to our graph structures from Section 4.3, we can
start modelling evenmore interesting problems. Not only canwe have func-
tions that operate on graphs—for example a function n : G → N that com-
putes the number of vertices in a graph—but we can also add functions to
give elements of a graph more properties!

Consider a map of the Netherlands represented as a graph. Cities be-
come vertices, and the motorways become edges between them. In the
model we have previously seen, we can now answer questions like: “Is
there a path from Haarlem to Delft?”. However, if we add a weight func-
tion w : E → N that assigns weights to edges (for example the travel time in
minutes), we can start to ask questions like: “What is the shortest path from
Haarlem to Delft?” In the following weighted graph we have indicated the
weights of edges on the edges. The shortest path from s to t here has a total
weight of 8, and is ((s, b), (b, t)).

s a

bt

10 3 7

5
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In Algorithms & Data Structures as well as Algorithm Design you
will learn about a lot of different algorithms that operate on
graphs. From Dijkstra’s algorithm for shortest paths, to Ford-
Fulkerson to solve maximum flow problems.

4.5.6 First-class objects
One difficulty that people sometimes have with mathematics is its general-
ity. A set is a collection of entities, but an ‘entity’ can be anything at all, in-
cluding other sets. Oncewe have defined ordered pairs, we can use ordered
pairs as elements of sets. We could also make ordered pairs of sets. Now
that we have defined functions, every function is itself an entity. This means
that we can have sets that contain functions. We can even have a function
whose domain and range are sets of functions. Similarly, the domain or
range of a function might be a set of sets, or a set of ordered pairs. Com-
puter scientists have a good name for this. Theywould say that sets, ordered
pairs, and functions are first-class objects or first-class citizens. Once a set,
ordered pair, or function has been defined, it can be used just like any other
entity. If they were not first-class objects, there could be restrictions on the
way they can be used. For example, it might not be possible to use functions
as members of sets. (This would make them ‘second class.’)

One way that programming languages differ is by what they al-
low as first-class objects. For example, Java added a ‘lambda syn-
tax’ to help writing ‘closures’ in version 8.

For example, suppose that A, B, and C are sets. Then since A × B is
a set, we might have a function f : A × B → C. If (a, b) ∈ A × B, then
the value of f at (a, b) would be denoted f ((a, b)). In practice, though, one
set of parentheses is usually dropped, and the value of f at (a, b) is denoted
f (a, b). As a particular example, wemight define a function p : N×N → N

with the formula p(n, m) = nm + 1. Similarly, we might define a function
q : N × N × N → N × N by q(n, m, k) = (nm − k, nk − n).

Suppose that A and B are sets. There are, in general, many functions that
map A to B. We can gather all those functions into a set. This set, whose
elements are all the functions from A to B, is denoted BA. (We’ll see later
why this notation is reasonable.) Using this notation, saying f : A → B is
exactly the same as saying f ∈ BA. Both of these notations assert that f is a
function from A to B. Of course, we can also form an unlimited number of
other sets, such as the power set P

(
BA), the cross product BA × A, or the

set AA×A, which contains all the functions from the set A × A to the set A.
And of course, any of these sets can be the domain or range of a function.
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An example of this is the function E : BA × A → B defined by the formula
E( f , a) = f (a). Let’s see if we can make sense of this notation. Since the
domain of E is BA × A, an element in the domain is an ordered pair inwhich
the first coordinate is a function from A to B and the second coordinate is
an element of A. Thus, E( f , a) is defined for a function f : A → B and an
element a ∈ A. Given such an f and a, the notation f (a) specifies an element
of B, so the definition of E( f , a) as f (a)makes sense. The function E is called
the ‘evaluation function’ since it captures the idea of evaluating a function
at an element of its domain.

Exercises

†1. Let A = {1, 2, 3, 4} and let B = {a, b, c}. Find the sets A × B and B × A.
†2. Let A be the set {a, b, c, d}. Let f be the function from A to A given by the set of

ordered pairs {(a, b), (b, b), (c, a), (d, c)}, and let g be the function given by the
set of ordered pairs {(a, b), (b, c), (c, d), (d, d)}. Find the set of ordered pairs for
the composition g ◦ f .

†3. Let A = {a, b, c} and let B = {0, 1}. Find all possible functions from A to B. Give
each function as a set of ordered pairs. (Hint: Every such function corresponds
to one of the subsets of A.)

†4. Consider the functions from Z to Z which are defined by the following formulas.
Decide whether each function is onto and whether it is one-to-one; prove your
answers.

a) f (n) = 2n b) g(n) = n + 1 c) h(n) = n2 + n + 1

d) s(n) =
{

n/2, if n is even
(n+1)/2, if n is odd

†5. Prove that composition of functions is an associative operation. That is, prove
that for functions f : A → B, g : B → C, and h : C → D, the compositions (h ◦
g) ◦ f and h ◦ (g ◦ f ) are equal.

†6. Suppose that f : A → B and g : B → C are functions and that g ◦ f is one-to-one.
a) Prove that f is one-to-one. (Hint: use a proof by contradiction.)
b) Find a specific example that shows that g is not necessarily one-to-one.

†7. Suppose that f : A → B and g : B → C, and suppose that the composition g ◦ f
is an onto function.

a) Prove that g is an onto function.
b) Find a specific example that shows that f is not necessarily onto.

8. For each of the following function descriptions, give a (recursive) function defin-
ition.

a) Create a function n : TREE → N that counts the number of leaves in a
tree.

b) Create a function m : TREE → N that counts the number of odd values
appearing in the tree.
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c) Create a function b : TREE → {0, 1} that returns 1 iff the number of values
in the tree is odd.

d) Create a function =: TREE × TREE → {0, 1} that returns 1 iff the two
input trees are the same.

9. Draw a weighted directed graph G where there are 3 paths of equal total weight
from a vertex s to a vertex t.

4.6 Application: Programming with Functions
Functions are fundamental in computer programming, althoughnot everything
in programming that goes by the name of ‘function’ is a function according
to the mathematical definition.

In this section we go into detail about functions in computer pro-
gramming. You won’t be examined on this in Reasoning & Logic!
You will find that there is again quite some overlap with your
study materials from Object-Oriented Programming and later on
in your curriculum with Concepts of Programming Languages.

In computer programming, a function is a routine that is given some
data as input and that will calculate and return an answer based on that
data. For example, Java, a function that calculates the square of an integer
could be written

1 int square(int n) {
return n*n;

3 }

In Java, int is a data type. From the mathematical point of view, a data type
is a set. The data type int is the set of all integers that can be represented
as 32-bit binary numbers. Mathematically, then, int ⊆ Z. (You should get
used to the fact that sets and functions can have names that consist of more
than one character, since it’s done all the time in computer programming.)
The first line of the above function definition, int square(int n), says that
we are defining a function named square whose range is int and whose do-
main is int. In the usual notation for functions, we would express this as
square : int → int, or possibly as square ∈ intint, where intint is the set of all
functions that map the set int to the set int.

The first line of the function, int square(int n), is called the proto-
type of the function. The prototype specifies the name, the domain, and
the range of the function and so carries exactly the same information as the
notation f : A → B. The ‘n’ in the prototype int square(int n) is a name
for an arbitrary element of the data type int. We call n a parameter of the
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function. The rest of the definition of square tells the computer to calculate
the value of square(n) for any n ∈ int by multiplying n times n. The state-
ment return n*n says that n ∗ n is the value that is computed, or ‘returned’,
by the function. (The ∗ stands for multiplication.)

Java has many data types in addition to int. There is a boolean data type
named boolean. The values of type boolean are true and false. Mathematically,
boolean is a name for the set {true, false}. The type double consists of real
numbers, which can include a decimal point. Of course, on a computer, it’s
not possible to represent the entire infinite set of real numbers, so double rep-
resents some subset of the mathematical set of real numbers. There is also
a data type whose values are strings of characters, such as “Hello world” or
“xyz152QQZ”. The name for this data type in Java is string. All these types,
and many others, can be used in functions. For example, in Java, m % n is
the remainder when the integer m is divided by the integer n. We can define
a function to test whether an integer is even as follows:

1 boolean even(int k) {
return k % 2 == 0;

3 }

You don’t need to worry about all the details here, but you should under-
stand that the prototype, boolean even(int k), says that even is a function
from the set int to the set boolean. That is, even : int → boolean. Given an in-
teger N, even(N) has the value true if N is an even integer, and it has the
value false if N is an odd integer.

A function can have more than one parameter. For example, we might
define a functionwith prototype int index(string str, string sub). If
s and t are strings, then index(s, t) would be the int that is the value of the
function at the ordered pair (s, t). We see that the domain of index is the
cross product string× string, and we can write index : string× string → int
or, equivalently, index ∈ intstring×string.

Not every Java function is actually a function in the mathematical sense.
In mathematics, a function must associate a single value in its range to each
value in its domain. There are two things that can go wrong: the value of
the function might not be defined for every element of the domain, and the
function might associate several different values to the same element of the
domain. Both of these things can happen with Java functions.

In computer programming, it is very common for a ‘function’ to be un-
defined for some values of its parameter. In mathematics, a partial func-
tion from a set A to a set B is defined to be a function from a subset of A
to B. A partial function from A to B can be undefined for some elements
of A, but when it is defined for some a ∈ A, it associates just one element
of B to a. Many functions in computer programs are actually partial func-
tions. (When dealing with partial functions, an ordinary function, which
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is defined for every element of its domain, is sometimes referred to as a
total function. Note that—with the mind-bending logic that is typical of
mathematicians—a total function is a type of partial function, because a set
is a subset of itself.)

It’s also very common for a ‘function’ in a computer program to produce
a variety of values for the same value of its parameter. A common example
is a function with prototype int random(int N), which returns a random
integer between 1 and N. The value of random(5) could be 1, 2, 3, 4, or 5.
This is not the behaviour of a mathematical function—but it’s very useful
when programming!

Even thoughmany functions in computer programs are not really math-
ematical functions, we will continue to refer to them as functions in this
section. Mathematicians will just have to stretch their definitions a bit to
accommodate the realities of computer programming.

4.6.1 Functions as first-class objects
In most programming languages, functions are not first-class objects. That
is, a function cannot be treated as a data value in the same way as a string
or an int. However, newer versions of Java do take a step in this direction
with ‘lambda expressions’. In Java it is not yet possible for a function to be
a parameter to another function. For example, suppose in Java we could
write the function prototype

1 double sumten(Function<Integer,Double> f)

This is a prototype for a function named sumten whose parameter is a func-
tion. The parameter is specified by the prototype Function<Integer,Double> f.
This means that the parameter must be a function from int to double. The
parameter name, f , stands for an arbitrary such function. Mathematically,
f ∈ doubleint, and so sumten : doubleint → double.

My idea is that sumten( f ) would compute f (1) + f (2) + · · ·+ f (10). A
more useful function would be able to compute f (a) + f (a+ 1) + · · ·+ f (b)
for any integers a and b. This just means that a and b should be parameters
to the function. The prototype for the improved function would look like

1 double sum(Function<Integer,Double> f, int a, int b)

The parameters to sum form an ordered triple inwhich the first coordinate is
a function and the second and third coordinates are integers. So, we could
write

sum : doubleint × int× int → double
It’s interesting that computer programmers deal routinely with such com-
plex objects.
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Languageswhere functions are first-class objects are for example Python
and Scala. These languages support what is called functional program-
ming.

One of the most accessible languages that supports functional program-
ming is JavaScript, a language that is used on webpages. (Although the
names are similar, JavaScript and Java are only distantly related. You prob-
ably knew that.) In JavaScript, the function that computes the square of its
parameter could be defined as

1 function square(n) {
return n*n;

3 }

This is similar to the Java definition of the same function, but you’ll notice
that no type is specified for the parameter n or for the value computed by the
function. Given this definition of square, square(x) would be legal for any x
of any type. (Of course, the value of square(x) would be undefined for most
types, so square is a very partial function, like most functions in JavaScript.)
In effect, all possible data values in JavaScript are bundled together into one
set, which I will call data. We then have square : data → data.7

In JavaScript, a function really is a first-class object. We can begin to see
this by looking at an alternative definition of the function square:

1 square = function(n) { return n*n; }

Here, the notation function(n) { return n*n; } creates a function that
computes the square of its parameter, but it doesn’t give any name to this
function. This function object is then assigned to a variable named square.
The value of square can be changed later, with another assignment state-
ment, to a different function or even to a different type of value. This nota-
tion for creating function objects can be used in other places besides as-
signment statements. Suppose, for example, that a function with prototype
function sum(f,a,b)has been defined in a JavaScript program to compute
f (a) + f (a + 1) + · · ·+ f (b). Then we could compute 12 + 22 + · · ·+ 1002

by saying
1 sum(function(n) { return n*n; }, 1, 100)

Here, the first parameter is the function that computes squares. We have
created and used this function without ever giving it a name.

It is even possible in JavaScript for a function to return another function
as its value. For example,

7Not all functional programming languages lump data types together in this way. There is
a functional programming language, Haskell, for example, that is as strict about types as C++.
For information about Haskell, see www.haskell.org.

www.haskell.org


4.6. Application: Programming with Functions *

4

153

1 function monomial(a, n) {
return (function(x) { a*Math.pow(x,n); });

3 }

Here, Math.pow(x,n) computes xn, so for any numbers a and n, the value
of monomial(a,n) is a function that computes axn. Thus,

1 f = monomial(2,3);

would define f to be the function that satisfies f (x) = 2x3, and if sum is the
function described above, then

1 sum( monomial(8,4), 3, 6 )

would compute 8 ∗ 34 + 8 ∗ 44 + 8 ∗ 54 + 8 ∗ 64. In fact,monomial can be used
to create an unlimited number of new functions from scratch. It is even pos-
sible towritemonomial(2,3)(5) to indicate the result of applying the function
monomial(2,3) to the value 5. The value represented by monomial(2,3)(5) is
2 ∗ 53, or 250. This is real functional programming andmight give you some
idea of its power.

Exercises

1. For each of the following Java-like function prototypes, translate the prototype
into a standard mathematical function specification, such as func : float → int.

a) int strlen(string s)
b) double pythag(double x, double y)
c) int round(double x)
d) string sub(string s, int n, int m)
e) string unlikely(Function<String,Integer> f )
f) int h( Function<Integer,Integer> f, Function<Integer,Integer> g )

2. Write a Java-like function prototype for a function that belongs to each of the
following sets.

a) stringstring

b) booleanfloat×float

c) floatint
int

3. It is possible to define new types in Java by using classes. For example, the defin-
ition

1 Class point {
double x;

3 double y;
}
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defines a new type named point. A value of type point contains two values of
type double. What mathematical operation corresponds to the construction of
this data type? Why?

4. Let square, sum andmonomial be the JavaScript functions described in this section.
What is the value of each of the following?

a) sum(square, 2, 4)
b) sum(monomial(5,2), 1, 3)
c) monomial(square(2), 7)
d) sum(function(n) { return 2 ∗ n; }, 1, 5)
e) square(sum(monomial(2,3), 1, 2))

5. Write a JavaScript function named compose that computes the composition of
two functions. That is, compose( f ,g) is f ◦ g, where f and g are functions of one
parameter. Recall that f ◦ g is the function defined by ( f ◦ g)(x) = f (g(x)).

4.7 Counting Past Infinity

As children, we all learned to answer the question “How many?” by count-
ing with numbers: 1, 2, 3, 4, …. But the question of “How many?” was
asked and answered long before the abstract concept of number was inven-
ted. The answer can be given in terms of “as many as.” How many cousins
do you have? As many cousins as I have fingers on both hands. How many
sheep do you own? As many sheep as there are notches on this stick. How
many baskets of cheese must I pay in taxes? As many baskets as there are
stones in this box. The question of how many things are in one collection
of objects is answered by exhibiting another, more convenient, collection of
objects that has just as many members.

In set theory, the idea of one set having just as many members as an-
other set is expressed in terms of one-to-one correspondence. A one-to-one
correspondence between two sets A and B pairs each element of A with an
element of B in such a way that every element of B is paired with one and
only one element of A. The process of counting, as it is learned by children,
establishes a one-to-one correspondence between a set of n objects and the
set of numbers from 1 to n. The rules of counting are the rules of one-to-one
correspondence: Make sure you count every object, make sure you don’t
count the same object more than once. That is, make sure that each object
corresponds to one and only one number. Earlier in this chapter, we used the
fancy name ‘bijective function’ to refer to this idea, but we can now see it as
as an old, intuitive way of answering the question “How many?”
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4.7.1 Cardinality
In counting, as it is learned in childhood, the set {1, 2, 3, . . . , n} is used as a
typical set that contains n elements. In mathematics and computer science,
it has becomemore common to start countingwith zero instead of with one,
so we define the following sets to use as our basis for counting:

N0 = ∅, a set with 0 elements
N1 = {0}, a set with 1 element
N2 = {0, 1}, a set with 2 elements
N3 = {0, 1, 2}, a set with 3 elements
N4 = {0, 1, 2, 3}, a set with 4 elements

and so on. In general, Nn = {0, 1, 2, . . . , n − 1} for each n ∈ N. For each
natural number n, Nn is a set with n elements. Note that if n ̸= m, then there
is no one-to-one correspondence between Nn and Nm. This is obvious, but
like many obvious things is not all that easy to prove rigorously, and we
omit the argument here.

Theorem 4.6. For each n ∈ N, let Nn be the set Nn = {0, 1, . . . , n − 1}. If
n ̸= m, then there is no bijective function from Nm to Nn.

We can now make the following definitions:

Definition 4.3. A set A is said to be finite if there is a one-to-one corres-
pondence between A and Nn for some natural number n. We then say that
n is the cardinality of A. The notation |A| is used to indicate the cardinal-
ity of A. That is, if A is a finite set, then |A| is the natural number n such
that there is a one-to-one correspondence between A and Nn. In layman’s
terms: |A| is the number items in A. A set that is not finite is said to be
infinite. That is, a set B is infinite if for every n ∈ N, there is no one-to-one
correspondence between B and Nn.

Fortunately, we don’t always have to count every element in a set indi-
vidually to determine its cardinality. Consider, for example, the set A × B,
where A and B are finite sets. If we already know |A| and |B|, then we can
determine |A × B| by computation, without explicit counting of elements.
In fact, |A× B| = |A| · |B|. The cardinality of the cross product A× B can be
computed bymultiplying the cardinality of A by the cardinality of B. To see
why this is true, think of how you might count the elements of A × B. You
could put the elements into piles, where all the ordered pairs in a pile have
the same first coordinate. There are as many piles as there are elements of
A, and each pile contains as many ordered pairs as there are elements of B.
That is, there are |A| piles, with |B| items in each. By the definition of mul-
tiplication, the total number of items in all the piles is |A| · |B|. A similar
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result holds for the cross product of more that two finite sets. For example,
|A × B × C| = |A| · |B| · |C|.

It’s also easy to compute |A ∪ B| in the case where A and B are disjoint
finite sets. (Recall that two sets A and B are said to be disjoint if they have
no members in common, that is, if A ∩ B = ∅.) Suppose |A| = n and
|B| = m. If we wanted to count the elements of A ∪ B, we could use the
n numbers from 0 to n − 1 to count the elements of A and then use the m
numbers from n to n + m − 1 to count the elements of B. This amounts to
a one-to-one correspondence between A ∪ B and the set Nn+m. We see that
|A∪ B| = n+m. That is, for disjoint finite sets A and B, |A∪ B| = |A|+ |B|.

What about A∪ B, where A and B are not disjoint? We have to be careful
not to count the elements of A ∩ B twice. After counting the elements of A,
there are only |B| − |A ∩ B| new elements in B that still need to be counted.
So we see that for any two finite sets A and B, |A ∪ B| = |A|+ |B| − |A ∩ B|.

What about the number of subsets of a finite set A? What is the rela-
tionship between |A| and |P(A)|? The answer is provided by the following
theorem.

Theorem 4.7. A finite set with cardinality n has 2n subsets.

Proof. Let P(n) be the statement “Any set with cardinality n has 2n subsets”.
We will use induction to show that P(n) is true for all n ∈ N.

Base case: For n = 0, P(n) is the statement that a set with cardinality 0
has 20 subsets. The only set with 0 elements is the empty set. The empty set
has exactly 1 subset, namely itself. Since 20 = 1, P(0) is true.

Inductive case: Let k be an arbitrary element of N, and assume that P(k)
is true. That is, assume that any set with cardinality k has 2k elements. (This
is the induction hypothesis.) We must show that P(k + 1) follows from this
assumption. That is, using the assumption that any set with cardinality k
has 2k subsets, we must show that any set with cardinality k + 1 has 2k+1

subsets.
Let A be an arbitrary set with cardinality k + 1. We must show that

|P(A)| = 2k+1. Since |A| > 0, A contains at least one element. Let x be
some element of A, and let B = A∖ {x}. The cardinality of B is k, so we
have by the induction hypothesis that |P(B)| = 2k. Now, we can divide the
subsets of A into two classes: subsets of A that do not contain x and subsets
of A that do contain x. Let Y be the collection of subsets of A that do not
contain x, and let X be the collection of subsets of A that do contain x. X and
Y are disjoint, since it is impossible for a given subset of A both to contain
and to not contain x. It follows that |P(A)| = |X ∪ Y| = |X|+ |Y|.

Now, a member of Y is a subset of A that does not contain x. But that
is exactly the same as saying that a member of Y is a subset of B. So Y =
P(B), which we know contains 2k members. As for X, there is a one-to-one
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correspondence between P(B) and X. Namely, the function f : P(B) → X
defined by f (C) = C ∪ {x} is a bijective function. (The proof of this is left
as an exercise.) From this, it follows that |X| = |P(B)| = 2k. Putting these
facts together, we see that |P(A)| = |X| + |Y| = 2k + 2k = 2 · 2k = 2k+1.
This completes the proof that P(k) → P(k + 1).

We have seen that the notation AB represents the set of all functions
from B to A. Suppose A and B are finite, and that |A| = n and |B| = m.
Then

∣∣AB
∣∣ = nm = |A||B|. (This fact is one of the reasons why the notation

AB is reasonable.) One way to see this is to note that there is a one-to-one
correspondence between AB and a cross product A × A × · · · A, where the
number of terms in the cross product is m. (This will be shown in one of the
exercises at the end of this section.) It follows that

∣∣AB
∣∣ = |A| · |A| · · · |A| =

n · n · · · n, where the factor n occurs m times in the product. This product
is, by definition, nm.

This discussion about computing cardinalities is summarized in the fol-
lowing theorem:

Theorem 4.8. Let A and B be finite sets. Then

• |A × B| = |A| · |B|.

• |A ∪ B| = |A|+ |B| − |A ∩ B|.

• If A and B are disjoint then |A ∪ B| = |A|+ |B|.

•
∣∣AB

∣∣ = |A||B|.

• |P(A)| = 2|A|.

When it comes to counting and computing cardinalities, this theorem is
only the beginning of the story. There is an entire large and deep branch of
mathematics known as combinatorics that is devotedmostly to the problem
of counting. But the theorem is already enough to answer many questions
about cardinalities.

For example, suppose that |A| = n and |B| = m. We can form the set
P(A× B), which consists of all subsets of A× B. Using the theorem, we can
compute that |P(A × B)| = 2|A×B| = 2|A|·|B| = 2nm. If we assume that A
and B are disjoint, then we can compute that

∣∣AA∪B
∣∣ = |A||A∪B| = nn+m.

To be more concrete, let X = {a, b, c, d, e} and let Y = {c, d, e, f }
where a, b, c, d, e, and f are distinct. Then |X × Y| = 5 · 4 = 20
while |X ∪ Y| = 5 + 4 − |{c, d, e}| = 6 and

∣∣XY
∣∣ = 54 = 625.
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We can also answer some simple practical questions. Suppose that in
a restaurant you can choose one starter and one main course. What is the
number of possible meals? If A is the set of possible appetisers and C is the
set of possible main courses, then your meal is an ordered pair belonging
to the set A × C. The number of possible meals is |A × C|, which is the
product of the number of appetisers and the number of main courses.

Or suppose that four different prizes are to be awarded, and that the set
of people who are eligible for the prizes is A. Suppose that |A| = n. How
many different ways are there to award the prizes? One way to answer this
question is to view a way of awarding the prizes as a function from the set
of prizes to the set of people. Then, if P is the set of prizes, the number of
differentways of awarding the prizes is

∣∣AP
∣∣. Since |P| = 4 and |A| = n, this

is n4. Another way to look at it is to note that the people who win the prizes
form an ordered tuple (a, b, c, d), which is an element of A × A × A × A. So
the number of different ways of awarding the prizes is |A × A × A × A|,
which is |A| · |A| · |A| · |A|. This is |A|4, or n4, the same answer we got
before.8

4.7.2 Counting to infinity
So far, we have only discussed finite sets. N, the set of natural numbers
{0, 1, 2, 3, . . . }, is an example of an infinite set. There is no one-to-one cor-
respondence between N and any of the finite sets Nn. Another example
of an infinite set is the set of even natural numbers, E = {0, 2, 4, 6, 8, . . . }.
There is a natural sense in which the sets N and E have the same number of
elements. That is, there is a one-to-one correspondence between them. The
function f : N → E defined by f (n) = 2n is bijective. We will say that N

and E have the same cardinality, even though that cardinality is not a finite
number. Note that E is a proper subset of N. That is, N has a proper subset
that has the same cardinality as N.

We will see that not all infinite sets have the same cardinality. When it
comes to infinite sets, intuition is not always a good guide. Most people
seem to be torn between two conflicting ideas. On the one hand, they think,
it seems that a proper subset of a set should have fewer elements than the set
itself. On the other hand, it seems that any two infinite sets should have the

8This discussion assumes that one person can receive any number of prizes. What if the
prizes have to go to four different people? This question takes us a little farther into combin-
atorics than we would like to go, but the answer is not hard. The first award can be given to
any of n people. The second prize goes to one of the remaining n − 1 people. There are n − 2
choices for the third prize and n − 3 for the fourth. The number of different ways of awarding
the prizes to four different people is the product n(n − 1)(n − 2)(n − 3). What about dividing
arbitrary objects between arbitrary numbers of people? That’s one topic of social choice theory.
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same number of elements. Neither of these is true, at least if we define hav-
ing the same number of elements in terms of one-to-one correspondence.

A set A is said to be countably infinite if there is a one-to-one corres-
pondence between N and A. A set is said to be countable if it is either finite
or countably infinite. An infinite set that is not countably infinite is said
to be uncountable. If X is an uncountable set, then there is no one-to-one
correspondence between N and X.

The idea of ‘countable infinity’ is that even though a countably infinite
set cannot be counted in a finite time, we can imagine counting all the ele-
ments of A, one-by-one, in an infinite process. A bijective function f : N →
A provides such an infinite listing: ( f (0), f (1), f (2), f (3), . . . ). Since f is
onto, this infinite list includes all the elements of A. In fact, making such a
list effectively shows that A is countably infinite, since the list amounts to a
bijective function from N to A. For an uncountable set, it is impossible to
make a list, even an infinite list, that contains all the elements of the set.

Before you start believing in uncountable sets, you should ask for an
example. In Chapter 3, we worked with the infinite sets Z (the integers), Q

(the rationals), R (the reals), and R∖Q (the irrationals). Intuitively, these
are all ‘bigger’ than N, but aswe have alreadymentioned, intuition is a poor
guide when it comes to infinite sets. Are any of Z, Q, R, and R∖Q in fact
uncountable?

It turns out that both Z and Q are only countably infinite. The proof that
Z is countable is left as an exercise; we will show here that the set of non-
negative rational numbers is countable. (The fact that Q itself is countable
follows easily from this.) The reason is that it’s possible to make an infinite
list containing all the non-negative rational numbers. Start the list with all
the non-negative rational numbers n/m such that n + m = 1. There is only
one such number, namely 0/1. Next come numbers with n + m = 2. They
are 0/2 and 1/1, but we leave out 0/2 since it’s just another way of writing
0/1, which is already in the list. Now, we add the numbers with n + m = 3,
namely 0/3, 1/2, and 2/1. Again, we leave out 0/3, since it’s equal to a
number already in the list. Next come numbers with n + m = 4. Leaving
out 0/4 and 2/2 since they are already in the list, we add 1/3 and 3/1 to
the list. We continue in this way, adding numbers with n + m = 5, then
numbers with n + m = 6, and so on. The list looks like:(

0
1

,
1
1

,
1
2

,
2
1

,
1
3

,
3
1

,
1
4

,
2
3

,
3
2

,
4
1

,
1
5

,
5
1

,
1
6

,
2
5

, . . .
)

This process can be continued indefinitely, and every non-negative rational
numberwill eventually showup in the list. Sowe get a complete, infinite list
of non-negative rational numbers. This shows that the set of non-negative
rational numbers is in fact countable.
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4.7.3 Uncountable sets
On the other hand, R is uncountable. It is not possible to make an infinite
list that contains every real number. It is not even possible to make a list
that contains every real number between zero and one. Another way of say-
ing this is that every infinite list of real numbers between zero and one, no
matter how it is constructed, leaves something out. To see why this is true,
imagine such a list, displayed in an infinitely long column. Each row con-
tains one number, which has an infinite number of digits after the decimal
point. Since it is a number between zero and one, the only digit before the
decimal point is zero. For example, the list might look like this:

0.999999999990398937249879561297927654857945…
0.122222222222349342094059875980239230834549…
0.224444444444400043298436234709323279989579…
0.500000000000000000000000000000000000000000…
0.777433333333333449234234876990120909480009…
0.777555555555555555588888889498888980000111…
0.123456777777777778888888888888888800000000…
0.348354400000000000009848712712123940320577…
0.934732444444444444447900498340999990948900…

...

This is only (a small part of) one possible list. How can we be certain
that every such list leaves out some real number between zero and one? The
trick is to look at the digits shown in bold face. We can use these digits to
build a number that is not in the list. Since the first number in the list has
a 9 in the first position after the decimal point, we know that this number
cannot equal any number of, for example, the form 0.4…. Since the second
number has a 2 in the second position after the decimal point, neither of the
first two numbers in the list is equal to any number that begins with 0.44….
Since the third number has a 4 in the third position after the decimal point,
none of the first three numbers in the list is equal to any number that begins
0.445…. We can continue to construct a number in this way, and we end
up with a number that is different from every number in the list. The nth

digit of the number we are building must differ from the nth digit of the
nth number in the list. These are the digits shown in bold face in the above
list. To be definite, we use a 5when the corresponding boldface number is 4,
and otherwise we use a 4. For the list shown above, this gives a number that
begins 0.44544445…. The number constructed in this way is not in the given
list, so the list is incomplete. The same construction clearlyworks for any list
of real numbers between zero and one. No such list can be a complete listing
of the real numbers between zero and one, and so there can be no complete
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listing of all real numbers. We conclude that the set R is uncountable.
The technique used in this argument is called diagonalization. It is

named after the fact that the bold face digits in the above list lie along a
diagonal line.

Proofs by diagonalisation are not a part ofReasoning& Logic. You
should be able to prove a set is countably infinite (by finding a
bijection from N to the set), but you will not be asked to prove
a set is uncountable. We leave that for the course Automata, Com-
putability and Complexity later in your curriculum.

This proof was discovered by a mathematician named Georg Cantor,
who caused quite a fuss in the nineteenth century when he came up with
the idea that there are different kinds of infinity. Since then, his notion of
using one-to-one correspondence to define the cardinalities of infinite sets
has been accepted. Mathematicians now consider it almost intuitive that N,
Z, and Q have the same cardinality while R has a strictly larger cardinality.

To say that George Cantor (1845–
1918) caused a fuss in mathemat-
ics is the least you can say. Can-
tor’s theory of transfinite num-
bers was originally regarded as so
counter-intuitive—even shocking—
that it encountered resistance from
mathematical contemporaries. Like
Frege, Cantor was a German math-
ematician contributing to logic and
set theory. Like Peirce, Cantor’s
ideas did not find acceptance until
later in his life. In 1904, the Royal
Society awarded Cantor its Sylvester Medal, the highest honour
it can confer for work in mathematics.
Source: en.wikipedia.org/wiki/Georg_Cantor.

Theorem 4.9. Suppose that X is an uncountable set, and that K is a countable
subset of X. Then the set X∖ K is uncountable.

en.wikipedia.org/wiki/Georg_Cantor
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Proof. Let X be an uncountable set. Let K ⊆ X, and suppose that K is count-
able. Let L = X∖ K. We want to show that L is uncountable. Suppose that
L is countable. We will show that this assumption leads to a contradiction.

Note that X = K ∪ (X ∖ K) = K ∪ L. You will show in Exercise 11 of
this section that the union of two countable sets is countable. Since X is
the union of the countable sets K and L, it follows that X is countable. But
this contradicts the fact that X is uncountable. This contradiction proves the
theorem.

In the proof, both q and ¬q are shown to follow from the assumptions,
where q is the statement ‘X is countable’. The statement q is shown to follow
from the assumption that X ∖ K is countable. The statement ¬q is true by
assumption. Since q and ¬q cannot both be true, at least one of the assump-
tions must be false. The only assumption that can be false is the assumption
that X∖ K is countable.

This theorem, by the way, has the following easy corollary. (A corollary
is a theorem that follows easily from another, previously proved theorem.)

Corollary 4.10. The set of irrational real numbers is uncountable.

Proof. Let I be the set of irrational real numbers. By definition, I = R∖Q.
We have already shown that R is uncountable and that Q is countable, so
the result follows immediately from the previous theorem.

Youmight still think that R is as big as things get, that is, that any infinite
set is in one-to-one correspondence with R or with some subset of R. In
fact, though, if X is any set then it’s possible to find a set that has strictly
larger cardinality than X. In fact, P(X) is such a set. A variation of the
diagonalization technique can be used to show that there is no one-to-one
correspondence between X and P(X). Note that this is obvious for finite
sets, since for a finite set X, |P(X)| = 2|X|, which is larger than |X|. The
point of the theorem is that it is true even for infinite sets.

Theorem 4.11. Let X be any set. Then there is no one-to-one correspondence
between X and P(X).

Proof. Given an arbitrary function f : X → P(X), we can show that f is not
onto. Since a one-to-one correspondence is both one-to-one and onto, this
shows that f is not a one-to-one correspondence.

Recall that P(X) is the set of subsets of X. So, for each x ∈ X, f (x) is a
subset of X. We have to show that no matter how f is defined, there is some
subset of X that is not in the image of f .

Given f , we define A to be the set A = {x ∈ X | x ̸∈ f (x)}. The test
‘x ̸∈ f (x)’ makes sense because f (x) is a set. Since A ⊆ X, we have that
A ∈ P(X). However, A is not in the image of f . That is, for every y ∈ X,
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A ̸= f (y).9 To see why this is true, let y be any element of X. There are two
cases to consider. Either y ∈ f (y) or y ̸∈ f (y). We show that whichever case
holds, A ̸= f (y). If it is true that y ∈ f (y), then by the definition of A, y ̸∈ A.
Since y ∈ f (y) but y ̸∈ A, f (y) and A do not have the same elements and
therefore are not equal. On the other hand, suppose that y ̸∈ f (y). Again,
by the definition of A, this implies that y ∈ A. Since y ̸∈ f (y) but y ∈ A,
f (y) and A do not have the same elements and therefore are not equal. In
either case, A ̸= f (y). Since this is true for any y ∈ X, we conclude that A is
not in the image of f and therefore f is not a one-to-one correspondence.

From this theorem, it follows that there is no one-to-one correspondence
between R and P(R). The cardinality of P(R) is strictly bigger than the
cardinality of R. But it doesn’t stop there. P(P(R)) has an even bigger car-
dinality, and the cardinality of P(P(P(R))) is bigger still. We could go on
like this forever, and still we won’t have exhausted all the possible cardin-
alities. If we let X be the infinite union R ∪ P(R) ∪ P(P(R)) ∪ · · · , then X

has larger cardinality than any of the sets in the union. And then there’s
P(X), P(P(X)), X ∪ P(X) ∪ P(P(X)) ∪ · · · . There is no end to this. There
is no upper limit on possible cardinalities, not even an infinite one! We have
counted past infinity.

4.7.4 A final note on infinities
We have seen that |R| is strictly larger than |N|. We end this section with
what might look like a simple question: Is there a subset of R that is neither
in one-to-one correspondence with N nor with R? That is, is the cardinality
of R the next largest cardinality after the cardinality of N, or are there other
cardinalities intermediate between them? This problem was unsolved for
quite a while, and the solution, when it was found, proved to be completely
unexpected. It was shown that both ‘yes’ and ‘no’ are consistent answers
to this question! That is, the logical structure built on the system of axioms
that had been accepted as the basis of set theory was not extensive enough
to answer the question. The question is ‘undecidable’ in that system. We
will come back to ‘undecidability’ in Chapter 5.

It is possible to extend the system of axioms underlying set theory in
various ways. In some extensions, the answer is yes. In others, the answer
is no. You might object, “Yes, but which answer is true for the real real
numbers?” Unfortunately, it’s not even clear whether this question makes
sense, since in the world of mathematics, the real numbers are just part of a
structure built from a system of axioms. And it’s not at all clear whether the

9In fact, we have constructed A so that the sets A and f (y) differ in at least one element,
namely y itself. This is where the ‘diagonalization’ comes in.
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‘real numbers’ exist in some sense in the real world. If all this sounds like
it’s a bit of a philosophical muddle, it is. That’s the state of things today at
the foundation of mathematics, and it has implications for the foundations
of computer science, as we’ll see in the next chapter.

Exercises
1. Suppose that A, B, and C are finite sets which are pairwise disjoint. (That is,

A ∩ B = A ∩ C = B ∩ C = ∅.) Express the cardinality of each of the following
sets in terms of |A|, |B|, and |C|. Which of your answers depend on the fact that
the sets are pairwise disjoint?

a) P(A ∪ B) b) A × (BC) c) P(A)× P(C)
d) AB×C e) (A × B)C f) P(AB)
g) (A ∪ B)C h) (A ∪ B)× A i) A × A × B × B

2. Suppose that A and B are finite sets which are not necessarily disjoint. What are
all the possible values for |A ∪ B| ?

3. Let’s say that an ‘identifier’ consists of one or two characters. The fist character is
one of the twenty-six letters (A, B, …, C). The second character, if there is one, is
either a letter or one of the ten digits (0, 1, …, 9). Howmany different identifiers
are there? Explain your answer in terms of unions and cross products.

4. Suppose that there are five books that you might bring along to read on your
vacation. In how many different ways can you decide which books to bring,
assuming that you want to bring at least one? Why?

5. Show that the cardinality of a finite set is well-defined. That is, show that if f is
a bijective function from a set A to Nn, and if g is a bijective function from A to
Nm, then n = m.

6. Finish the proof of Theorem 4.7 by proving the following statement: Let A be
a non-empty set, and let x ∈ A. Let B = A∖ {x}. Let X = {C ⊆ A | x ∈ C}.
Define f : P(B) → X by the formula f (C) = C ∪ {x}. Show that f is a bijective
function.

7. Use induction on the cardinality of B to show that for any finite sets A and B,∣∣AB
∣∣ = |A||B|. (Hint: For the case where B ̸= ∅, choose x ∈ B, and divide AB

into classes according to the value of f (x).)
8. Let A and B be finite sets with |A| = n and |B| = m. Let us list the elements of B

as B = {b0, b1, . . . , bm−1}. Define the function F : AB → A× A× · · · × A, where
A occurs m times in the cross product, by F( f ) =

(
f (b0), f (b1), . . . , f (bm−1)

)
.

Show that F is a one-to-one correspondence.
9. Show that Z, the set of integers, is countable by finding a one-to-one correspond-

ence between N and Z.
10. Show that the set N × N is countable.
11. Complete the proof of Theorem 2.9 as follows:

a) Suppose that A and B are countably infinite sets. Show that A∪ B is count-
ably infinite.
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b) Suppose that A and B are countable sets. Show that A ∪ B is countable.

12. Prove that each of the following statements is true. In each case, use a proof by
contradiction.

a) Let X be a countably infinite set, and let N be a finite subset of X. Then
X∖ N is countably infinite.

b) Let A be an infinite set, and let X be a subset of A. Then at least one of the
sets X and A∖ X is infinite.

c) Every subset of a finite set is finite.

13. Let A and B be sets and let ⊥ be an entity that is not a member of B. Show
that there is a one-to-one correspondence between the set of functions from A
to B ∪ {⊥} and the set of partial functions from A to B. (Partial functions were
defined in Section 4.6. The symbol ‘⊥’ is sometimes used in theoretical computer
science to represent the value ‘undefined.’)

4.8 Relations

In Section 4.5, we saw that ‘mother of’ is a functional relationship because,
for the purpose of the example, every person has one and only one (bio-
logical) mother, but that ‘child of’ is not a functional relationship, because
a person can have no children or more than one child. However, the rela-
tionship expressed by ‘child of’ is certainly one that we have a right to be
interested in and one that we should be able to deal with mathematically.
We already saw a (mathematical) notion of ‘child’ when we looked at trees.

There are many examples of relationships that are not functional rela-
tionships. The relationship that holds between two natural numbers n and
m when n ≤ m is an example in mathematics. The relationship between
a person and a book that that person has on loan from the library is an-
other. Some relationships involve more than two entities, such as the re-
lationship that associates a name, an address and a phone number in an
address book, or the relationship that holds among three real numbers x, y,
and z if x2 + y2 + z2 = 1. Each of these relationships can be represented
mathematically by what is called a ‘relation’.

A relation on two sets, A and B, is defined to be a subset of A × B. Since
a function from A to B is defined, formally, as a subset of A× B that satisfies
certain properties, a function is a relation. However, relations are more gen-
eral than functions, since any subset of A × B is a relation. We also define
a relation among three or more sets to be a subset of the cross product of
those sets. In particular, a relation on A, B, and C is a subset of A × B × C.
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For example, if P is the set of people and B is the set of books
owned by a library, then we can define a relation R on the sets P
and B to be the set R = {(p, b) ∈ P × B | p has b out on loan}.
The fact that a particular (p, b) ∈ R is a fact about the world that
the library will certainly want to keep track of. When a collection
of facts about the world is stored on a computer, it is called a
database. We’ll see in the next section that relations are the most
common means of representing data in databases.

If A is a set and R is a relation on the sets A and A (that is, on two
copies of A), then R is said to be a binary relation on A. That is, a binary
relation on the set A is a subset of A × A. The relation consisting of all
ordered pairs (c, p) of people such that c is a child of p is a binary relation
on the set of people. The set {(n, m) ∈ N × N | n ≤ m} is a binary relation
on N. Similarly, we define a ternary relation on a set A to be a subset of
A × A × A. The set {(x, y, z) ∈ R × R × R | x2 + y2 + z2 = 1} is a ternary
relation on R. For complete generality, we can define an n-ary relation on
A, for any positive integer n, to be a subset of A × A × · · · × A, where A
occurs n times in the cross product.

For the rest of this section, we will be working exclusively with binary
relations. Suppose that R ⊆ A × A. That is, suppose that R is a binary
relation on a set A. If (a, b) ∈ R, then we say that a is related to b by R.
Instead of writing ‘(a, b) ∈ R’, we will often write ‘aR b’. This notation is
used in analogy to the notation n ≤ m to express the relation that n is less
than or equal to m. Remember that aR b is just an alternative way of writing
(a, b) ∈ R. In fact, we could consider the relation ≤ to be a set of ordered
pairs and write (n, m) ∈≤ in place of the notation n ≤ m.

4.8.1 Properties of relations
In many applications, attention is restricted to relations that satisfy some
property or set of properties. (This is, of course, just what we do when we
study functions.) We begin our discussion of binary relations by consider-
ing several important properties. In this discussion, let A be a set and let R
be a binary relation on A, that is, a subset of A × A.

R is said to be reflexive if ∀a ∈ A (aR a). That is, a binary relation on a
set is reflexive if every element of the set is related to itself. This is true, for
example, for the relation ≤ on the set N, since n ≤ n for every n ∈ N. On
the other hand, it is not true for the relation< on N, since, for example, the
statement 17 < 17 is false.10

10Note that to show that the relation R is not reflexive, you only need to find one a such that
aR a is false. This follows from the fact that ¬

(
∀a ∈ A (aR a)

)
≡ ∃a ∈ A

(
¬(aR a)

)
. A similar
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R is called transitive if ∀a ∈ A, ∀b ∈ A, ∀c ∈ A
(
(aR b ∧ bR c) →

(aR c)
)
. Transitivity allows us to ‘chain together’ two true statements aR b

and bR c, which are ‘linked’ by the b that occurs in each statement, to de-
duce that aR c. For example, suppose P is the set of people, and define the
relation C on P such that x C y if and only if x is a child of y. The relation C

is not transitive because the child of a child of a person is not a child of that
person. Suppose, on the other hand, that we define a relation D on P such
that x D y if and only if x is a descendent of y. Then D is a transitive relation
on the set of people, since a descendent of a descendent of a person is a des-
cendent of that person. That is, from the facts that Elizabeth is a descendent
of Victoria and Victoria is a descendent of James, we can deduce that Eliza-
beth is a descendent of James. In the mathematical world, the relations ≤
and < on the set N are both transitive.

R is said to be symmetric if ∀a ∈ A, ∀b ∈ B (aR b → bR a). That is,
whenever a is related to b, it follows that b is related to a. The relation ‘is a
first cousin of’ on the set of people is symmetric, since whenever x is a first
cousin of y, we have automatically that y is a first cousin of x. On the other
hand, the ‘child of’ relation is certainly not symmetric. The relation≤ on N

is not symmetric. From the fact that n ≤ m, we cannot conclude that m ≤ n.
It is true for some n and m in N that n ≤ m → m ≤ n, but it is not true for
all n and m in N.

Finally, R is antisymmetric if ∀a ∈ A, ∀b ∈ B
(
(aR b ∧ bR a) → a = b

)
.

The relation R is antisymmetric if for any two distinct elements x and y of A,
we can’t have both x R y and yR x. The relation ≤ on N is antisymmetric
because from the facts that n ≤ m and m ≤ n, we can deduce that n =
m. The relation ‘child of’ on the set of people is antisymmetric since it’s
impossible to have both that x is a child of y and y is a child of x.

During lectures, we’ll think about how to draw relations graph-
ically. See the figure in Section 4.5.3 for one kind of graphical
depiction.

There are a few combinations of properties that define particularly use-
ful types of binary relations. The relation ≤ on the set N is reflexive, anti-
symmetric, and transitive. These properties define what is called a partial
order: a partial order on a set A is a binary relation on A that is reflexive,
antisymmetric, and transitive.

Another example of a partial order is the subset relation,⊆, on the power
set of any set. If X is a set, then of courseP(X) is a set in its own right, and⊆
can be considered to be a binary relation on this set. Two elements A and B

remark holds for each of the properties of relations that are discussed here.
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of P(X) are related by⊆ if and only if A ⊆ B. This relation is reflexive since
every set is a subset of itself. The fact that it is antisymmetric follows from
Theorem 4.1. The fact that it is transitive was Exercise 11 in Section 4.1.

The ordering imposed on N by ≤ has one important property that the
ordering of subsets by ⊆ does not share. If n and m are natural numbers,
then at least one of the statements n ≤ m and m ≤ n must be true. However,
if A and B are subsets of a set X, it is certainly possible that both A ⊆ B and
B ⊆ A are false. A binary relationR on a set A is said to be a total order if it
is a partial order and furthermore for any two elements a and b of A, either
aR b or bR a. The relation ≤ on the set N is a total order. The relation ⊆ on
P(X) is not. (Note once again the slightly odd mathematical language: A
total order is a kind of partial order—not, as youmight expect, the opposite
of a partial order.)

For another example of ordering, let L be the set of strings that can be
made from lowercase letters. L contains both English words and nonsense
strings such as “sxjja”. There is a commonly used total order on the set L,
namely alphabetical order.

4.8.2 Equivalence relations
We’ll approach another important kind of binary relation indirectly, through
what might at first appear to be an unrelated idea. Let A be a set. A parti-
tion of A is defined to be a collection of non-empty subsets of A such that
each pair of distinct subsets in the collection is disjoint and the union of all
the subsets in the collection is A. A partition of A is just a division of all the
elements of A into non-overlapping subsets. For example, the sets {1, 2, 6},
{3, 7}, {4, 5, 8, 10}, and {9} form a partition of the set {1, 2, . . . , 10}. Each
element of {1, 2, . . . , 10} occurs in exactly one of the sets that make up the
partition. As another example, biologists partition the set of all people into
two sets, the set of those with XY chromosomes and the set of those with XX
chromosomes. Biologists also try to partition the set of all organisms into
different species. Librarians try to partition books into various categories
such as fiction, biography, and poetry. In the real world, classifying things
into categories is an essential activity, although the boundaries between cat-
egories are not always well-defined. The abstract mathematical notion of a
partition of a set models the real-world notion of classification. In the math-
ematical world, though, the categories are sets and the boundary between
two categories is sharp.

In the real world, items are classified in the same category because they
are related in some way. This leads us from partitions back to relations.
Suppose that we have a partition of a set A. We can define a relation R on
A by declaring that for any a and b in A, aR b if and only if a and b are
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members of the same subset in the partition. That is, two elements of A are
related if they are in the same category. It is clear that the relation defined
in this way is reflexive, symmetric, and transitive.

An equivalence relation is defined to be a binary relation that is reflexive,
symmetric, and transitive. Any relation defined, as above, from a partition
is an equivalence relation. Conversely, we can show that any equivalence
relation defines a partition. Suppose that R is an equivalence relation on a
set A. Let a ∈ A. We define the equivalence class of a under the equivalence
relation R to be the subset [a]R defined as [a]R = {b ∈ A | bR a}. That is,
the equivalence class of a is the set of all elements of A that are related to a.
In most cases, we’ll assume that the relation in question is understood, and
we’ll write [a] instead of [a]R. Note that each equivalence class is a subset of
A. The following theorem shows that the collection of equivalence classes
form a partition of A.

Theorem 4.12. Let A be a set and let R be an equivalence relation on A. Then the
collection of all equivalence classes under R is a partition of A.

Proof. To show that a collection of subsets of A is a partition, we must show
that each subset is non-empty, that the intersection of two distinct subsets
is empty, and that the union of all the subsets is A.

If [a] is one of the equivalence classes, it is certainly non-empty, since
a ∈ [a]. (This follows from the fact that R is reflexive, and hence aR a.) To
show that A is the union of all the equivalence classes, we just have to show
that each element of A is a member of one of the equivalence classes. Again,
the fact that a ∈ [a] for each a ∈ A shows that this is true.

Finally, we have to show that the intersection of two distinct equivalence
classes is empty. Suppose that a and b are elements of A and consider the
equivalence classes [a] and [b]. We have to show that if [a] ̸= [b], then [a] ∩
[b] = ∅. Equivalently, we can show the contrapositive: If [a] ∩ [b] ̸= ∅ then
[a] = [b]. So, assume that [a] ∩ [b] ̸= ∅. Saying that a set is not empty just
means that the set contains some element, so there must be an x ∈ A such
that x ∈ [a] ∩ [b]. Since x ∈ [a], x R a. Since R is symmetric, we also have
aR x. Since x ∈ [b], x R b. Since R is transitive and since (aR x) ∧ (x R b), it
follows that aR b.

Our goal is to deduce that [a] = [b]. Since [a] and [b] are sets, they are
equal if and only if [a] ⊆ [b] and [b] ⊆ [a]. To show that [a] ⊆ [b], let c
be an arbitrary element of [a]. We must show that c ∈ [b]. Since c ∈ [a],
we have that cR a. And we have already shown that aR b. From these two
facts and the transitivity of R, it follows that cR b. By definition, this means
that c ∈ [b]. We have shown that any member of [a] is a member of [b] and
therefore that [a] ⊆ [b]. The fact that [b] ⊆ [a] can be shown in the same
way. We deduce that [a] = [b], which proves the theorem.
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The point of this theorem is that if we can find a binary relation that
satisfies certain properties, namely the properties of an equivalence rela-
tion, then we can classify things into categories, where the categories are
the equivalence classes.

For example, suppose that U is a possibly infinite set. Define a binary
relation ∼ on P(U) as follows: For X and Y in P(U), X ∼ Y if and only
if there is a bijective function from the set X to the set Y. In other words,
X ∼ Y means that X and Y have the same cardinality. Then∼ is an equival-
ence relation on P(U). (The symbol ∼ is often used to denote equivalence
relations. It is usually read ‘is equivalent to’.) If X ∈ P(U), then the equival-
ence class [X]∼ consists of all the subsets of U that have the same cardinality
as X. We have classified all the subsets of U according to their cardinality—
even though we have never said what an infinite cardinality is. (We have
only said what it means to have the same cardinality.)

You might know the popular puzzle called Rubik’s Cube11,

a cube made of smaller cubes with coloured sides
that could be manipulated by twisting layers of
little cubes. The object was to manipulate the cube
so that the colours of the little cubes formed a cer-
tain configuration. Define two configurations of
the cube to be equivalent if it’s possible to manipu-
late one configuration into the other by a sequence
of twists. This is, in fact, an equivalence relation
on the set of possible configurations. (Symmetry
follows from the fact that each move is reversible.)
It has been shown that this equivalence relation has exactly twelve equival-
ence classes. The interesting fact is that it has more than one equivalence
class: If the configuration that the cube is in and the configuration that you
want to achieve are not in the same equivalence class, then you are doomed
to failure.

11Image: commons.wikimedia.org/wiki/File:Rubiks_cube_scrambled.jpg.

commons.wikimedia.org/wiki/File:Rubiks_cube_scrambled.jpg
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Fortunately if you buy the cube in the configuration you want it
to be in (i.e., with 6 faces all having just one colour), you can still
be successful. Since all configurations you can get to using legal
moves are in the same class, you can only move to another class
of configurations with an illegal move. So it is only by taking the
cube apart and incorrectly putting it back together that you can
really change this puzzle from difficult to impossible.
Since we’re talking about solving the Rubik’s Cube, could you
write a computer program to solve it? Given a cube in some
initial state, what is the shortest sequence of moves to get to
the solved state—or to prove it cannot be done? See Agostinelli,
McAleer, Shmakov & Baldi, Solving the Rubik’s cube with deep rein-
forcement learning and search, NatureMachine Intelligence (2019).

Suppose that R is a binary relation on a set A. Even though R might
not be transitive, it is always possible to construct a transitive relation from
R in a natural way. If we think of aR b as meaning that a is related by R

to b ‘in one step’, then we consider the relationship that holds between two
elements x and y when x is related by R to y ‘in one or more steps’. This
relationship defines a binary relation on A that is called the transitive clos-
ure of R. The transitive closure of R is denoted R∗. Formally, R∗ is defined
as follows: For a and b in A, aR∗ b if there is a sequence x0, x1, . . . xn of ele-
ments of A, where n > 0 and x0 = a and xn = b, such that x0 R x1, x1 R x2,
…, and xn−1 R xn.

You will revisit the notion of transitive closures in the course
Automata, Computability and Complexity.

For example, if aR c, cR d, and dR b, then we would have that aR∗ b. Of
course, we would also have that aR∗ c, and aR∗ d.

For a practical example, suppose that C is the set of all cities and
let A be the binary relation on C such that for x and y in C, x A y
if there is a regularly scheduled airline flight from x to y. Then
the transitive closureA∗ has a natural interpretation: x A∗ y if it’s
possible to get from x to y by a sequence of one ormore regularly-
scheduled airline flights. You’ll find a few more examples of
transitive closures in the exercises.

Exercises
1. For a finite set, it is possible to define a binary relation on the set by listing the
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elements of the relation, considered as a set of ordered pairs. Let A be the set
{a, b, c, d}, where a, b, c, and d are distinct. Consider each of the following binary
relations on A. Is the relation reflexive? Symmetric? Antisymmetric? Transit-
ive? Is it a partial order? An equivalence relation?

a) R = {(a, b), (a, c), (a, d)}.
b) S = {(a, a), (b, b), (c, c), (d, d), (a, b), (b, a)}.
c) T = {(b, b), (c, c), (d, d)}.
d) C = {(a, b), (b, c), (a, c), (d, d)}.
e) D = {(a, b), (b, a), (c, d), (d, c)}.

2. Let A be the set {1, 2, 3, 4, 5, 6}. Consider the partition of A into the subsets
{1, 4, 5}, {3}, and {2, 6}. Write out the associated equivalence relation on A
as a set of ordered pairs.

3. Consider each of the following relations on the set of people. Is the relation
reflexive? Symmetric? Transitive? Is it an equivalence relation?

a) x is related to y if x and y have the same biological parents.
b) x is related to y if x and y have at least one biological parent in common.
c) x is related to y if x and y were born in the same year.
d) x is related to y if x is taller than y.
e) x is related to y if x and y have both visited Indonesia.
f) x is related to y if x and y have both contracted the same disease.

4. It is possible for a relation to be both symmetric and antisymmetric. For example,
the equality relation, =, is a relation on any set which is both symmetric and
antisymmetric. Suppose that A is a set and R is a relation on A that is both
symmetric and antisymmetric. Show thatR is a subset of= (when both relations
are considered as sets of ordered pairs). That is, show that for any a and b in A,
(aR b) → (a = b).

5. Let ∼ be the relation on R, the set of real numbers, such that for x and y in R,
x ∼ y if and only if x − y ∈ Z. For example,

√
2 − 1 ∼

√
2 + 17 because the

difference, (
√

2 − 1)− (
√

2 + 17), is −18, which is an integer. Show that ∼ is
an equivalence relation. Show that each equivalence class [x]∼ contains exactly
one number a which satisfies 0 ≤ a < 1. (Thus, the set of equivalence classes
under ∼ is in one-to-one correspondence with the half-open interval [0, 1).)

6. Let A and B be any sets, and suppose f : A → B. Define a relation ∼ on A such
that for any x and y in A, x ∼ y if and only if f (x) = f (y). Show that ∼ is an
equivalence relation on A.

7. Let Z+ be the set of positive integers {1, 2, 3, . . . }. Define a binary relation D

on Z+ such that for n and m in Z+, nDm if n divides evenly into m, with no
remainder. Equivalently, nDm if n is a factor of m, that is, if there is a k in Z+

such that m = nk. Show that D is a partial order.
8. Consider the set N × N, which consists of all ordered pairs of natural numbers.

Since N × N is a set, it is possible to have binary relations on N × N. Such a
relation would be a subset of (N × N)× (N × N). Define a binary relation ⪯
on N × N such that for (m, n) and (k, ℓ) in N × N, (m, n) ⪯ (k, ℓ) if and only if
either m < k or ((m = k) ∧ (n ≤ ℓ)). Which of the following are true?
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a) (2, 7) ⪯ (5, 1) b) (8, 5) ⪯ (8, 0)
c) (0, 1) ⪯ (0, 2) d) (17, 17) ⪯ (17, 17)

Show that ⪯ is a total order on N × N.
9. Let ∼ be the relation defined on N × N such that (n, m) ∼ (k, ℓ) if and only if

n + ℓ = m + k. Show that ∼ is an equivalence relation.
10. Let P be the set of people and let C be the ‘child of’ relation. That is x C y means

that x is a child of y. What is the meaning of the transitive closure C∗? Explain
your answer.

11. LetR be the binary relation on N such that x R y if and only if y = x+ 1. Identify
the transitive closure R∗. (It is a well-known relation.) Explain your answer.

12. Suppose that R is a reflexive, symmetric binary relation on a set A. Show that
the transitive closure R∗ is an equivalence relation.

4.9 Application: Relational Databases
One of the major uses of computer systems is to store and manipulate col-
lections of data. A database is a collection of data that has been organized
so that it is possible to add and delete information, to update the data that
it contains, and to retrieve specified parts of the data. A Database Manage-
ment System, or DBMS, is a computer program that makes it possible to
create and manipulate databases. A DBMS must be able to accept and pro-
cess commands that manipulate the data in the databases that it manages.
These commands are called queries, and the languages in which they are
written are called query languages. A query language is a kind of special-
ized programming language.

There are many different ways that the data in a database could be rep-
resented. Different DBMS’s use various data representations and various
query languages. However, data is most commonly stored in relations. A
relation in a database is a relation in the mathematical sense. That is, it is a
subset of a cross product of sets. A database that stores its data in relations is
called a relational database. The query language for most relational data-
base management systems is some form of the language known as Struc-
tured Query Language, or SQL. In this section, we’ll take a very brief look
at SQL, relational databases, and how they use relations.

You’ll learn more about databases in the courses Web & Database
Technology and Information & Data Management.

A relation is just a subset of a cross product of sets. Since we are dis-
cussing computer representation of data, the sets are data types. As in Sec-
tion 4.6, we’ll use data type names such as int and string to refer to these
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sets. A relation that is a subset of the cross product int× int× string would
consist of ordered 3-tuples such as (17, 42, “hike”). In a relational database,
the data is stored in the form of one or more such relations. The relations
are called tables, and the tuples that they contain are called rows or records.

As an example, consider a lending library that wants to store data about
its members, the books that it owns, and which books the members have
out on loan. This data could be represented in three tables, as illustrated in
Figure 4.8. The relations are shown as tables rather than as sets of ordered
tuples, but each table is, in fact, a relation. The rows of the table are the
tuples. The Members table, for example, is a subset of int× string× string×
string, and one of the tuples is (1782, “Smit, Johan”, “107 Main St”, “New
York, NY”). A table does have one thing that ordinary relations in mathem-
atics do not have. Each column in the table has a name. These names are
used in the query language to manipulate the data in the tables.

The data in the Members table is the basic information that the library
needs in order to keep track of its members, namely the name and address
of each member. A member also has a MemberID number, which is presum-
ably assigned by the library. Two different members can’t have the same
MemberID, even though theymight have the same name or the same address.
The MemberID acts as a primary key for the Members table. A given value
of the primary key uniquely identifies one of the rows of the table. Simil-
arly, the BookID in the Books table is a primary key for that table. In the
Loans table, which holds information about which books are out on loan
to which members, a MemberID unambiguously identifies the member who
has a given book on loan, and the BookID says unambiguously which book
that is. Every table has a primary key, but the key can consist of more than
one column. The DBMS enforces the uniqueness of primary keys. That is,
it won’t let users make a modification to the table if it would result in two
rows having the same primary key.

The fact that a relation is a set—a set of tuples—means that it can’t con-
tain the same tuple more than once. In terms of tables, this means that a
table shouldn’t contain two identical rows. But since no two rows can con-
tain the same primary key, it’s impossible for two rows to be identical. So
tables are in fact relations in the mathematical sense.

The library must have a way to add and delete members and books and
to make a record when a book is borrowed or returned. It should also have
a way to change the address of a member or the due date of a borrowed
book. Operations such as these are performed using the DBMS’s query lan-
guage. SQLhas commands named INSERT, DELETE, and UPDATE for perform-
ing these operations. The command for adding Barack Obama as a member
of the library with MemberID 999 would be

INSERT INTO Members
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VALUES (999, "Barack Obama",
"1600 Pennsylvania Ave", "Washington, DC")

When it comes to deleting and modifying rows, things become more inter-
esting because it’s necessary to specify which row or rows will be affected.
This is done by specifying a condition that the rows must fulfill. For ex-
ample, this command will delete the member with ID 4277:

DELETE FROM Members
WHERE MemberID = 4277

It’s possible for a command to affect multiple rows. For example,
DELETE FROM Members
WHERE Name = "Smit, Johan"

would delete every row in which the name is “Smit, Johan”. The update
command also specifies what changes are to be made to the row:

UPDATE Members
SET Address="19 South St", City="Hartford, CT"
WHERE MemberID = 4277

Of course, the library also needs a way of retrieving information from
the database. SQL provides the SELECT command for this purpose. For
example, the query

SELECT Name, Address
FROM Members
WHERE City = "New York, NY"

asks for the name and address of every member who lives in New York
City. The last line of the query is a condition that picks out certain rows
of the “Members” relation, namely all the rows in which the City is “New
York, NY”. The first line specifies which data from those rows should be
retrieved. The data is actually returned in the form of a table. For example,
given the data in Figure 4.8, the query would return this table:

Smit, Johan 107 Main St
Jones, Mary 1515 Center Ave
Lee, Joseph 90 Park Ave
De Jong, Sally 89 Main St

The table returned by a SELECT query can even be used to construct more
complex queries. For example, if the table returned by SELECT has only one
column, then it can be used with the IN operator to specify any value listed
in that column. The following query will find the BookID of every book that
is out on loan to a member who lives in New York City:
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SELECT BookID
FROM Loans
WHERE MemberID IN (SELECT MemberID

FROM Members
WHERE City = "New York, NY")

More than one table can be listed in the FROM part of a query. The tables
that are listed are joined into one large table, which is then used for the
query. The large table is essentially the cross product of the joined tables,
when the tables are understood as sets of tuples. For example, suppose that
we want the titles of all the books that are out on loan to members who live
in New York City. The titles are in the Books table, while information about
loans is in the Loans table. To get the desired data, we can join the tables
and extract the answer from the joined table:

SELECT Title
FROM Books, Loans
WHERE MemberID IN (SELECT MemberID

FROM Members
WHERE City = "New York, NY")

In fact, we can do the same query without using the nested SELECT. We
need one more bit of notation: If two tables have columns that have the
same name, the columns can be named unambiguously by combining the
table name with the column name. For example, if the Members table and
Loans table are both under discussion, then the MemberID columns in the
two tables can be referred to as Members.MemberID and Loans.MemberID. So,
we can say:

SELECT Title
FROM Books, Loans
WHERE City ="New York, NY"

AND Members.MemberID = Loans.MemberID

This is just a sample of what can be done with SQL and relational data-
bases. The conditions in WHERE clauses can get very complicated, and there
are other operations besides the cross product for combining tables. The
database operations that are needed to complete a given query can be com-
plex and time-consuming. Before carrying out a query, the DBMS tries to
optimize it. That is, it manipulates the query into a form that can be carried
out most efficiently. The rules for manipulating and simplifying queries
form an algebra of relations, and the theoretical study of relational databases
is in large part the study of the algebra of relations.
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Exercises
1. Using the library database from Figure 4.8, what is the result of each of the fol-

lowing SQL commands?

a) SELECT Name, Address
FROM Members
WHERE Name = "Smit, Johan"

b) DELETE FROM Books
WHERE Author = "Isaac Asimov"

c) UPDATE Loans
SET DueDate = "20 November"
WHERE BookID = 221

d) SELECT Title
FROM Books, Loans
WHERE Books.BookID = Loans.BookID

e) DELETE FROM Loans
WHERE MemberID IN (SELECT MemberID

FROM Members
WHERE Name = "Lee, Joseph")

2. Using the library database from Figure 4.8, write an SQL command to do each
of the following database manipulations:

a) Find the BookID of every book that is due on 1 November 2010.
b) Change the DueDate of the book with BookID 221 to 15 November 2010.
c) Change the DueDate of the book with title “Summer Lightning” to 14

November 2010. Use a nested SELECT.
d) Find the name of every member who has a book out on loan. Use joined

tables in the FROM clause of a SELECT command.
3. Suppose that a university colleges wants to use a database to store information

about its students, the courses that are offered in a given term, and which stu-
dents are taking which courses. Design tables that could be used in a relational
database for representing this data. Then write SQL commands to do each of
the following database manipulations. (You should design your tables so that
they can support all these commands.)

a) Enroll the student with ID number 1928882900 in “English 260”.
b) Remove “Johan Smit” from “Biology 110”.
c) Remove the student with ID number 2099299001 from every course in

which that student is enrolled.
d) Find the names and addresses of the students who are taking “Computer

Science 229”.
e) Cancel the course “History 101”.
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Members
MemberID Name Address City
1782 Smit, Johan 107 Main St New York, NY
2889 Jones, Mary 1515 Center Ave New York, NY
378 Lee, Joseph 90 Park Ave New York, NY
4277 Smit, Johan 2390 River St Newark, NJ
5704 De Jong, Sally 89 Main St New York, NY

Books
BookID Title Author
182 I, Robot Isaac Asimov
221 The Sound and the Fury William Faulkner
38 Summer Lightning P.G. Wodehouse
437 Pride and Prejudice Jane Austen
598 Left Hand of Darkness Ursula LeGuin
629 Foundation Trilogy Isaac Asimov
720 The Amber Spyglass Philip Pullman

Loans
MemberID BookID DueDate
378 221 8 October 2010
2889 182 1 November 2010
4277 221 1 November 2010
1782 38 30 October 2010

Figure 4.8: Tables that could be part of a relational database. Each table
has a name, shown above the table. Each column in the table also has a
name, shown in the top row of the table. The remaining rows hold the data.



Chapter 5

Looking Beyond

C OMING TO THE RIGHT CONCLUSION has been the theme of this book. We
learned how to represent statements formally in Chapter 2, and how to

prove or disprove statements in Chapter 3. We looked at more important
foundational parts of computer science in Chapter 4: sets, functions and
relations.

Last chapter, we said that the foundations of mathematics are in “a bit
of a philosophical muddle”. That was at the end of our discussion about
counting past infinity (Section 4.7). The questions from the work of Cantor,
Russell and others becamemore profound in the 1930s thanks toKurtGödel,
whom we mentioned briefly in Chapter 3. All this just before practical com-
puterswere invented—yes, the theoretical study of computing began before
digital computers existed!

Since this book is about the foundations of computation, let’s say a little
more about Gõdel and his contemporary, Alan Turing.

Gödel published his two incompleteness theorems in 1931. The first in-
completeness theorem states that for any self-consistent recursive axiomatic
system powerful enough to describe the arithmetic of the natural numbers1,
there are true propositions about the naturals that cannot be proved from
the axioms. In other words, in any formal system of logic, there will always
be statements that you can never prove nor disprove: you don’t know.

These two theorems ended a half-century of attempts, beginning with
the work of Frege and culminating in the work of Russell and others, to
find a set of axioms sufficient for all mathematics. Game over: all axiomatic
systems are signposts in a void.

1For example, Peano arithmetic, which is a recursive definition of N: see en.wikipedia.
org/wiki/Peano_axioms.
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John von Neumann, one of the pioneers of
the first computers, wrote “Kurt Gödel’s
achievement in modern logic is singular
and monumental—indeed it is more than
amonument, it is a landmark which will re-
main visible far in space and time.” John
von Neumann was a brilliant Hungarian-
American mathematician, physicist and
computer scientist. Among many other
things, he invented the von Neumann architecture (familiar
from Computer Organisation?) and is called the ‘midwife’ of the
modern computer.
Source: en.wikipedia.org/wiki/Kurt_Gödel and
en.wikipedia.org/wiki/John_von_Neumann.

Around the same time, one of the early models of computation was de-
veloped by the British mathematician, Alan Turing. Turing was interested
in studying the theoretical abilities and limitations of computation. (This
still before the first computers! Von Neumann knew Turing and emphas-
ized that “the fundamental conception [of the modern computer] is owing
to Turing” and not to himself.2) Turing’s model for computation is a very
simple, abstract computing machine which has come to be known as a Tur-
ing machine. While Turing machines are not very practical, their use as a
fundamental model for computation means that every computer scientist
should be familiar with them, at least in a general way.3 You’ll learn about
them in Automata, Computability and Complexity.

We can also use Turing machines to define ‘computable languages’. The
idea is that anything that is possible to compute, you can compute using a
Turing machine (just very slowly). Turing, with American mathematician
Alonzo Church, made a hypothesis about the nature of computable func-
tions.4 It states that a function on the natural numbers is computable by a
human being following an algorithm (ignoring resource limitations), if and

2A quote from von Neumann’s colleague Frankel. See en.wikipedia.org/wiki/Von_
Neumann_architecture.

3In fact, the Brainf*ck programming language we mentioned earlier is not much more than
a Turing machine.

4It’s not a theorem because it is not proved, but all theoretical computer scientists believe it
to be true. Between them, Church and Turing did prove that a function is λ-computable if and
only if it is Turing computable if and only if it is general recursive. Another thesis that is widely
believed but not proved is: for the things we can compute, there is a difference between those
that need only polynomial time (in the size of the input) for the computation and those that
need more than polynomial time. More about that in Automata, Computability and Complexity.

en.wikipedia.org/wiki/Kurt_Gödel
en.wikipedia.org/wiki/John_von_Neumann
en.wikipedia.org/wiki/Von_Neumann_architecture
en.wikipedia.org/wiki/Von_Neumann_architecture


5

181

only if it is computable by a Turing machine.
SoGödel established that there are some thingswe cannever tellwhether

they are true or false, and Turing established a computationalmodel for that
the things we can compute.

Is there a link between these results? The halting problem is to determ-
ine, given a program and an input to the program, whether the program
will eventually halt when run with that input. Turing proved in 1936 that
a general algorithm to solve the halting problem for all possible program-
input pairs cannot exist.

We end the book with the idea of the proof:

Proof. Consider a model of computation, such a Turing machine. For any
program f that might determine if programs halt, construct a ‘pathological’
program g as follows. When called with an input, g passes its own source
and its input to f , and when f returns an output (halt/not), g then spe-
cifically does the opposite of what f predicts g will do. No f can exist that
handles this case.





Selected Solutions

Attempt the exercise first before looking at the solution!

Solutions 2.1

1.

p q p ∨ q

0 0 0
0 1 1
1 0 1
1 1 1

p q p ∧ q

0 0 0
0 1 0
1 0 0
1 1 1

p ¬p

0 1
1 0

2.

a)

p q
A︷ ︸︸ ︷

p → q

B︷ ︸︸ ︷
p ∧ (A) (B) → q

0 0 1 0 1
0 1 1 0 1
1 0 0 0 1
1 1 1 1 1

Since the proposition is always true, the proposition is a tautology.

183
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b)

p q r
A︷ ︸︸ ︷

p → q
B︷ ︸︸ ︷

q → r

C︷ ︸︸ ︷
(A) ∧ (B)

D︷ ︸︸ ︷
p → r (C) → (D)

0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 0 0 1 1
0 1 1 1 1 1 1 1
1 0 0 0 1 0 0 1
1 0 1 0 1 0 1 1
1 1 0 1 0 0 0 1
1 1 1 1 1 1 1 1

Since the proposition is always true, the proposition is a tautology.

c)
p p ∧ ¬p

0 0
1 0

Since the proposition is always false, the proposition is a contradiction.

d)

p q
A︷ ︸︸ ︷

p ∨ q
B︷ ︸︸ ︷

p ∧ q (A) → (B)

0 0 0 0 1
0 1 1 0 0
1 0 1 0 0
1 1 1 1 1

Since the proposition is sometimes true and sometimes false, the proposition is a
contingency.

e)
p p ∨ ¬p

0 1
1 1

Since the proposition is always true, the proposition is a tautology.

f)

p q
A︷ ︸︸ ︷

p ∧ q
B︷ ︸︸ ︷

p ∨ q (A) → (B)

0 0 0 0 1
0 1 0 1 1
1 0 0 1 1
1 1 1 1 1

Since the proposition is always true, the proposition is a tautology.
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3. Wewill compare the truth tables of the subquestions to that of p ↔ q:

p ↔ q

0 0 1
0 1 0
1 0 0
1 1 1

a)

p q
A︷ ︸︸ ︷

p → q
B︷ ︸︸ ︷

q → p A ∧ B

0 0 1 1 1
0 1 1 0 0
1 0 0 1 0
1 1 1 1 1

b)

p q
A︷︸︸︷
¬p

B︷︸︸︷
¬q A ↔ B

0 0 1 1 1
0 1 1 0 0
1 0 0 1 0
1 1 0 0 1

c)

p q
A︷ ︸︸ ︷

p → q
B︷︸︸︷
¬p

C︷︸︸︷
¬q

D︷ ︸︸ ︷
B → C A ∧ D

0 0 1 1 1 1 1
0 1 1 1 0 0 0
1 0 0 0 1 1 0
1 1 1 0 0 1 1

d)

p q
A︷ ︸︸ ︷

p ⊕ q ¬A

0 0 0 1
0 1 1 0
1 0 1 0
1 1 0 1
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4.

p q r
A︷ ︸︸ ︷

p → q
B︷ ︸︸ ︷

A → r
C︷ ︸︸ ︷

q → r
D︷ ︸︸ ︷

p → C

0 0 0 1 0 1 1
0 0 1 1 1 1 1
0 1 0 1 0 0 1
0 1 1 1 1 1 1
1 0 0 0 1 1 1
1 0 1 0 1 1 1
1 1 0 1 0 0 0
1 1 1 1 1 1 1

Since the truth tables for the expressions (columns B and D) are different, they are
not equivalent. As our counterexample take for instance: p = q = r = 0. Thus → is
not associative.
What about ↔?
5.

a) p ∨ q
b) ¬p → q

6. The four propositions are:
a) Galileo was not falsely accused and the Earth is the centre of the universe.
b) If the Earth moves then the Earth is not the centre of the universe.
c) The Earth moves if and only if the Earth is not the centre of the universe.
d) If the Earthmoves theGalileowas falsely accused, but if the Earth is the centre

of the universe then Galileo was not falsely accused.

7.
a)

Converse If Sinterklaas brings you toys, you are good.
Contrapositive If Sinterklaas does not bring you toys, you are not good.

b)
Converse If you need extra postage, then the package weighs more than one kilo.
Contrapositive If you do not need extra postage, then the package does not weigh

more than one kilo.
c)

Converse If I don’t eat courgette, I have a choice.
Contrapositive If I eat courgette, I don’t have a choice.

8.
a) The only card that satisfies this is the ten of hearts.
b) An ordinary deck has 4 cards that satisfy the condition of being a ten,

and 13 cards that satisfy the condition of being a heart, the ten of hearts
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has been counted twice. So the total the amount of cards that satisfy all
conditions is 16.

c) All cards that are not a ten will satisfy this condition, as well as the cards
that are a ten and a heart, which is only the ten of hearts. So only three
cards do not satisfy this condition, which are the ten of diamonds, ten of
spades, and ten of clubs.

d) It’s easier to reason about the cards that do not satisfy the condition. All
cards that are a ten and not a heart do not satisfy the condition, as well as
all cards that are a heart and not a ten. There are 3 cards that are a ten and
not a heart (ten of diamonds, ten of spades, and ten of clubs). There are
12 cards that are a heart and not a ten. So the total amount of cards that do
not satisfy this condition is 15, which means that there are 37 cards that
satisfy the condition.

9. A ∗ is used to indicate the step at which we can stop rewriting, as the equation
will use ↓ or other operators shown previously.
1.

¬p ≡ (¬p ∧ ¬p)
≡ ¬(p ∨ p)
≡ p ↓ p

2.

p ∧ q ≡ ¬(¬p ∨ ¬q)
≡ ¬p ↓ ¬q (∗)
≡ (p ↓ p) ↓ (q ↓ q)

3.

p ∨ q ≡ ¬¬(p ∨ q)
≡ ¬(p ↓ q) (∗)
≡ (p ↓ q) ↓ (p ↓ q)

4.

p → q ≡ ¬p ∨ q (∗)
≡ (¬p ↓ q) ↓ (¬p ↓ q)
≡ ((p ↓ p) ↓ q) ↓ ((p ↓ p) ↓ q)

5.

p ↔ q ≡ (p → q) ∧ (q → p) (∗)
≡ (((p ↓ p) ↓ q) ↓ ((p ↓ p) ↓ q)) ∧ (((q ↓ q) ↓ p) ↓ ((q ↓ q) ↓ q))
≡ (((((p ↓ p) ↓ q) ↓ ((p ↓ p) ↓ q)) ↓ (((p ↓ p) ↓ q) ↓ ((p ↓ p) ↓ q)))
↓ ((((q ↓ q) ↓ p) ↓ ((q ↓ q) ↓ p)) ↓ (((q ↓ q) ↓ p) ↓ ((q ↓ q) ↓ p))))
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6.

p ⊕ q ≡ (p ∧ ¬q) ∨ (¬p ∧ q) (∗)
≡ (p ∧ (q ↓ q)) ∨ ((p ↓ p) ∧ q)
≡ ((p ↓ p) ↓ ((q ↓ q) ↓ (q ↓ q))) ∨ (((p ↓ p) ↓ (p ↓ p)) ↓ (q ↓ q))
≡ ((((p ↓ p) ↓ ((q ↓ q) ↓ (q ↓ q))) ↓ (((p ↓ p) ↓ (p ↓ p)) ↓ (q ↓ q)))
↓ (((p ↓ p) ↓ ((q ↓ q) ↓ (q ↓ q))) ↓ (((p ↓ p) ↓ (p ↓ p)) ↓ (q ↓ q))))

10.
a) A truth table for a formula containing two unique atoms will have 4 rows.

Each of these 4 rows could have either a 0 or a 1 as result. Which means
that there will be 24 unique truth tables for a formula containing 2 unique
atoms.

b)

p q p ∧ ¬p p ∧ q p ∧ ¬q p ¬p ∧ q q ¬(p ↔ q) p ∨ q

0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1

p q ¬p ∧ ¬q p ↔ q ¬q q → p ¬p p → q ¬p ∨ ¬q p ∨ ¬p

0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1

c) Given that we can create a formula for each of the possible truth table
using these 5 operators. Furthermore, we know that there are only 22n

possible truth tables, where n is the number of unique atoms. Given that
every one of these truth tables has a corresponding formula using only
the 5 operators, which we denote as fi, where 1 ≤ i ≤ 22n − 1. Now take
a formula, f ′, that uses the same unique atoms, but not necessarily the
same operators from the set of 5 operators stated in the description. The
truth table for the formula f ′ will be equal to one of the 22n possible truth
tables, which also means that there is a fi that is equivalent to f ′, so we
can rewrite f ′

Solutions 2.2

4. It is not. Take for example p = q = 0. In this case ¬(p ↔ q) is false, but
(¬p) ↔ (¬q) is true. Try to see if you can find a more simplified expression that
(¬p) ↔ (¬q) is equivalent to.

10. Verify the following answers with truth tables yourself!
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a) q → p b) F c) ¬p
d) ¬p ∧ q e) T f) q

11. When translating try make the English sentences flow a bit without adding in
more constraints. For example by using the word ‘but’ rather than ‘and’ in two
of the examples below.

a) It is not sunny or it is not cold.
b) I will have neither stroopwafels nor appeltaart.
c) It is Tuesday today, but this is not Belgium.
d) You passed the final exam, but you did not pass the course.

Solutions 2.4

1.
a) ∃x(P(x)) b) ∀x(¬P(x) ∨ ¬Q(x))
c) ∃z(P(z) ∧ ¬Q(z)) d) (∃x(¬P(x))) ∨ (∃y(¬Q(y)))
e) ∃x∀y¬P(x, y) f) ∀x(¬R(x) ∨ ∃y¬S(x, y))
g) ∀y((¬P(y) ∧ Q(y)) ∨ (P(y) ∧ ¬Q(y))) h) ∃x(P(x) ∧ (∀y¬Q(x, y)))

8. We use the predicates Ball(x) for x is a ball andHave(x, y) for x must have y. We
also use a constant you to represent you.

∃x(Ball(x) ∧ ∀y(x ̸= y → ¬Ball(y)) ∧Have(you, x))

13. Using the predicates Person(x) for x is a person, Question(x) for x is a question,
Answer(x) for x is an answer, and Has(x, y) for x has y. Two different interpret-
ations are:

∃x(Person(x) ∧ ∀y(Question(y) → (∃z(Answer(z) ∧Has(x, z)))))

In other words, there is a single person who has the answers to all questions.

∀x(Question(x) → ∃y∃z(Person(y) ∧Answer(z) ∧Has(y, z)))

In other words, every question has an answer and some person knows it (but differ-
ent people might know the answer to different questions).

Solutions 2.5

1. In order to verify the validity of modus tollens, we need to verify that ((p →
q) ∧ ¬q) → ¬p is a tautology. This can be done by constructing the following
truth table. The truth table shows that the conclusion is always true, and thus
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verifies that the modus tollens is valid.

p q
A︷ ︸︸ ︷

p → q
B︷ ︸︸ ︷

A ∧ ¬q B → ¬p

0 0 1 1 1
0 1 1 0 1
1 0 0 0 1
1 1 1 0 1

To verify the validity of the Law of Syllogism, construct another truth table to
show that ((p → q) ∧ (q → r)) → (p → r) is also a tautology.

2. Note that the following answers are example arguments, and that there exist
many other valid answers.

• Since it isn’t day, it must be night.

• I have bread and I have cheese on top, so I have a cheese sandwich.

• I have a cheese sandwich, so I have cheese.

• Since I sing all the time, I am always singing or talking.

3. For both arguments when p is false and q is true the premises hold but the con-
clusion does not.

• When it rains the ground is wet. The ground is wet. Therefore it rains.

• When I am on a boat i am not on land. I am not on a boat. Therefore I am on
land.

4. For this set of solutions, remember that you a slightly less formal method would
be to use a truth table to prove the validity of arguments in propositional logic.
If you can show that in all rows where all premises are true, the conclusion is
also true, then the argument must be valid!

a) Invalid. A counterexample for this argument is when p and q are false
and s is true.

b) Valid.

p ∧ q (premise) (5.1)
q (from 1) (5.2)

q → (r ∨ s) (premise) (5.3)
r ∨ s (from 2 and 3 by modus ponens) (5.4)
¬r (premise) (5.5)

s (from 4 and 5) (5.6)
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c) Valid.

p ∨ q (premise) (5.1)
¬p (premise) (5.2)

q (from 1 and 2) (5.3)
q → (r ∧ s) (premise) (5.4)

r ∧ s (from 3 and 4 by modus ponens) (5.5)
s (from 5) (5.6)

d) Valid.

¬(q ∨ t) (premise) (5.1)
¬q ∧ ¬t (from 1 by De Morgan) (5.2)

¬t (from 2) (5.3)
(¬p) → t (premise) (5.4)

¬(¬p) (from 3 and 4 by modus tollens) (5.5)
p (from 5) (5.6)

e) Invalid. A counterexample for this argument is when p, r and s are true
and q is false.

f) Valid.

p (premise) (5.1)
p → (t → s) (premise) (5.2)

t → s (from 1 and 2 by modus ponens) (5.3)
q → t (premise) (5.4)
q → s (from 3 and 4 by Law of Syllogism) (5.5)

5.
a) Let s = ”today is a Sunday”, r = ”it rains today” and s = ”it snows today”.

s → (r ∨ s)
s
¬r
∴ s

This argument is valid.
b) Let h = ”there is herring on the pizza”, n = ”Jack doesn’t eat pizza”, a =

”Jack is angry”.
h → n
n → a
a
∴ h

The argument is invalid since we can’t deduce anything from the fact that
Jack is angry, there might be many more reasons for Jack to get angry.
Note that this exercise becomes harder when we translate to predicate



5

192 Selected Solutions

logic instead of propositional logic. For predicate logic, ”a” pizza is trans-
lated differently than ”the” pizza.
This exercise in predicate logic would become:
Let P(x) mean that x is a pizza, let H(x) mean that x is a herring, let
On(x, y) mean that x is on y, let E(x, y) mean x eats y and finally let A(x)
mean that x is angry. Let j = Jack.

P(a)
∀x((H(x) ∧ On(x, a)) → ¬E(j, a))
¬∃x((P(x) ∧ E(j, x)) → A(j))
A(j)
∴ ∃x(H(x) ∧ On(x, a))

As an exercise for yourself, try to translate part c to predicate logic as well
as propositional logic.

c) Let a = ”it is 8:00”, l = ”Jane studies at the library” and h = ”Jane works
at home”.

a → (l ∨ h)
a
¬l
∴ h

This argument is valid.

Solutions 3.2

5. The claim is: (r | s) ∧ (s | t) → r | t.

Proof. We need to show something is true for all integers r, s, t, so take arbitrary
integers k, m, n such that: k | m, m | n.
Now we need to prove that k | n holds.
Since k | m, we know that m = ak for some integer a. Similarly n = bm for some
integer b.
Thus n = bm = bak = ck with integer c = ba.
Thus k | n.
Since k, m, n were arbitrary, this holds for all integers.

Solutions 3.3

1.

Proof. Assume that all of the numbers ai are smaller than or equal to 10. Since the
maximum value of each ai is 10, the maximum value of a1 + a2 + ... + a10 is now
100. However we asssumed that the summation was strictly larger than 100. This
contradiction means our assumption that all numbers are smaller than or equal to
10 must have been false and so at least one ai must be greater than 10.
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2.
• a)

Proof. Assume that there exists an integer that is odd whose square is even,
i.e. ∃n ∈ Z((2 | n2) ∧ (2 ∤ n)) ≡ ∃n ∈ Z((2 ∤ n) ∧ (2 | n2)). Take an arbitrary
odd integer m = 2p − 1, p ∈ Z. By taking its square, we get

m2 = (2k − 1)2 = 4k2 − 4k + 1 = 2(2k2 − 2k) + 1 = 2a + 1, a ∈ Z

This means that the square is again odd. Because the integer we have taken
was arbitrary, this is the case for all odd integers. From this follows a contra-
diction: in our assumptions, we stated that there must exist an integer that
is odd whose square is even, which can never happen. For this reason, the
assumption is false, and the original claim must be valid.

• b)

Proof. Assume
√

2 to be rational. This means that
√

2 can be written as
√

2 =
a
b

, a, b ∈ Z

where a and b do not have any common divisors (= the fraction cannot be
simplified). Then:

2 =
a2

b2 (5.6)

2b2 = a2 (5.7)

This implies that a2 is even. From a), we know that if a2 is even, then a is also
even.
A can now be written as a = 2k, k ∈ Z.

2b2 = a2 = (2k)2 = 4k2 (5.8)
2b2 = 4k2 (5.9)

b2 = 2k2 (5.10)

Consequently, b2 is even so b is even. However, because a
b was supposed to

not have any common divisors and a and b are both even (must have 2 as a
common divisor), we derived a contradiction. This disproves our assumption
and as a consequence,

√
2 must be irrational.

Note: in this case, doing the proof by contradiction and taking the inverse of the state-
ment helped, because we switched fromworking with an irrational number to working
with fractions of integers.

• c)
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Proof. Assume that the sum of a rational and an irrational number is rational.
Then:

r =
a
b

, a, b ∈ Z, b ̸= 0 (5.11)

r + x =
c
d

, c, d ∈ Z, d ̸= 0 (5.12)

Where x ∈ R − Z (i.e., is irrational). These fractions cannot be simplified.
Now:

a
b
+ x =

c
d

(5.13)

x =
c
d
− a

b
(5.14)

=
cb − ad

db
, db ̸= 0 (5.15)

The term cd − ab is an integer, and so is db. This would mean that x is a frac-
tion of 2 integers - in other words, x is rational. Because we assumed x to be
irrational, this is a contradiction. We can therefore conclude that the sum of a
rational and irrational number must be irrational.

Note: in this case, doing the proof by contradiction and taking the inverse of the state-
ment helped, because we switched fromworking with an irrational number to working
with fractions of integers.

• d)

Proof. Assume that rx is rational. Then:

r =
a
b

, a, b ∈ Z, a, b ̸= 0 (5.16)

rx =
c
d

, c, d ∈ Z, c, d ̸= 0 (5.17)

Where x ∈ R − Z (i.e., is irrational). These fractions cannot be simplified.
Then:

rx =
c
d
=

xa
b

(5.18)

cb = xad (5.19)

x =
cb
ad

, a, b, c, d ̸= 0 (5.20)

The term cd is a nonzero integer, and so is ad. This wouldmean that x is a frac-
tion of 2 integers - in other words, x is rational. Because we assumed x to be
irrational, this is a contradiction. We can therefore conclude that the product
of a rational and irrational number must be irrational.

Note: in this case, doing the proof by contradiction and taking the inverse of the state-
ment helped, because we switched fromworking with an irrational number to working
with fractions of integers.
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• e)

Proof. Assume that r and r + x are rational and x is irrational. Then:

r =
a
b

, a, b ∈ Z, a, b ̸= 0 (5.21)

r + x =
c
d

, c, d ∈ Z, c, d ̸= 0 (5.22)

Where x ∈ R − Z (i.e., is irrational). Now, it is important to realise that x
cannot be expressed as a rational number, i.e. ¬∃i, j such that (x = i

j ). Now:

a
b
+ x =

c
d

(5.23)

x =
c
d
− a

b
(5.24)

x =
cb − ad

db
(5.25)

The term cb − ad is a nonzero integer, and so is db. This would mean that x is
a fraction of 2 integers - in other words, x is rational. Because we assumed x
to be irrational, this is a contradiction. We can therefore conclude that if r and
r + x are both rational, then x is rational.

Note: here, the proof by contradiction did not help as much. Going from rational to
irrational does not bring any improvement, because we only know how not to write
an irrational number.

3.

Proof. Assume that every hole has at most one pigeon in it. This means that there
are < k pigeons in total. Since n > k this forms a contradiction. Therefore our
assumption that every hole has at most one pigeon is incorrect and there must be at
least one hole that has two or more pigeons.

(Take care to flip the quantifiers correctly when doing a proof by contradic-
tion! ¬∀x(. . . ) becomes ∃x(¬ . . . ).)

Solutions 3.7

1.
Proof: We prove this once again by induction.

• Base Case: When n = 0 and when n = 1, the statement is clearly true, since
f0 = 0 < 1 = 20 and f1 = 1 < 2 = 21, so f0 < 20 and f1 < 21.
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• Inductive Case: If we now take an arbitrary k such that k ≥ 2, we assume that
fn < 2n for n = k − 1 and n = k − 2 holds. To complete the induction, we
need to show that fk < 2k is also true:

fk = fk−1 + fk−2

< 2k−1 + 2k−2 (inductive hypothesis)

=
2k

2
+

2k

4

=
3
4
· 2k

< 2k

This shows that fk < 2k is true, which completes the induction.
2.

Proof: We prove the equation using induction.
• Base Case: When n = 1, a1 = 1 · 21−1 is true since both sides are equal to 1.
• Inductive Case: Let k ≥ 1 be an arbitrary integer. We asssume that an = n2n−1

holds for n = k − 1. To complete the induction, we need to show that the
equation also holds for n = k.

ak = 2ak−1 + 2k−1

= 2(k − 1)2k−1−1 + 2k−1 (inductive hypothesis)
= (k − 1)2k−1 + 2k−1

= ((k − 1) + 1)2k−1

= k2k−1

Which proves that the equation also holds for n = k. Thereby the induction is
completed.

Solutions 4.1

1. The possibilities are 2,3,4 and 5 different elements.
• 2: In the case that a = b = c. Then the set can be written as:

{a, a, {a}, {a, a}, {a, a, a}} = {a, {a}}

• 3: In the case that a = b ̸= c. Then the set can be written as:

{a, a, {a}, {a, c}, {a, c}} = {a, {a}, {a, c}}
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• 4: In the case that a ̸= b and a = c. Then the set can be written as:

{a, b, {a}, {a, a}, {a, b, a}} = {a, b, {a}, {a, b}}

• 5: In the case that a ̸= b ̸= c. Then the set can be written as:

{a, b, {a}, {a, c}, {a, b, c}}

.

2.
a) A ∪ B = {a, b, c}; A ∩ B = ∅; A∖ B = {a, b, c}
b) A ∪ B = {1, 2, 3, 4, 5, 6, 8, 10}; A ∩ B = {2, 4}; A∖ B = {1, 3, 5}
c) A ∪ B = {a, b, c, d}; A ∩ B = {a, b}; A∖ B = ∅
d) A ∪ B = {a, b, {a}, {a, b}}; A ∩ B = {{a, b}}; A∖ B = {a, b}

3.

a)

A B

a

b

c

b)

A B

5

3

1

2

4

10

8

6

c)

A B
a

b

d

c
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d)

A B

a

b

{a,b} {a}

4.
a) X ∩ Y = {5, 6, 7, 8, 9, 10}
b) X ∪ Y = N

c) X∖Y = {11, 12, 13, ...}
d) N∖ Z = {1, 3, 5, ...}
e) X ∩ Z = {6, 8, 10, ...}
f) Y ∩ Z = {0, 2, 4, 6, 8, 10}
g) Y ∪ Z = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16...}
h) Z∖N = ∅

5. P({1, 2, 3}) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
6.

a) False. Although b is part of the two sets that are elements of A, namely
{b} and {a, b}, the element b itself is not a part of A.

b) False. In order for {a, b} to be a subset of A, both a and b should be ele-
ments of A. Like we specified in a), b /∈ A, hence {a, b}¬ ⊆ A.

c) True. In order for {a, b} to be a subset of A, both a and b should be ele-
ments of A, which they are.

d) False. Although a and b are both individual elements of B, the combined
set {a, b} is not.

e) False. Although a and {b} are both individual elements of B, the com-
bined set {a, {b}} is not.

f) True. {a, {b}} is an element of B.
7. Yes, this is possible.

P(P(∅)) = P({∅}) = {∅, {∅}}

P(P({a, b})) =P({∅, {a}, {b}, {a, b}})
={∅,

{∅}, {{a}}, {{b}}, {{a, b}},

{∅, {a}}, {∅, {b}}, {∅, {a, b}}, {{a}, {b}}, {{a}, {a, b}}, {{b}, {a, b}},

{∅, {a}, {b}}, {∅, {a}, {a, b}}, {∅, {b}, {a, b}}, {{a}, {b}, {a, b}},

{∅, {a}, {b}, {a, b}}}
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8. The sentence ”“She likes dogs that are small, cuddly, and cute” talks about dogs
that are both small, and cuddly, and cute. Hence, the dogs she likes has to be in
the set of small dogs, the set of cuddly dogs and the set of cute dogs. Therefore,
the set of dogs she likes is the intersection of the three sets.
On the other hand, the sentence ”She likes dogs that are small, dogs that are
cuddly, and dogs that are cute” talks about dogs that are either small, cuddly, or
cute. Hence, the set of liked dogs is the union of these three sets.

9. A ∪ A = A (remember that sets have no duplicates)
A ∩ A = A (after all everything in A that is also in A, is everything)
A∖ A = ∅ (removing from A everything that is in A leaves us nothing)

10. We know that A ⊆ B. This means that each element of A is in B as well. There-
fore, if we take A ∪ B we have a set which is equal to B, as all elements of A are
in B. With the same reasoning, A ∩ B is equal to A, as all elements of A are in B.
Moreover, because of this, A∖ B renders the empty set, as no elements are left
when removing all elements from A which are in B as well.

11.

Proof. In order to prove that C ⊆ A ∩ B ↔ (C ⊆ A ∧ C ⊆ B), we have to show that
C ⊆ A ∩ B → (C ⊆ A ∧ C ⊆ B) and (C ⊆ A ∧ C ⊆ B) → C ⊆ A ∩ B.

• C ⊆ A ∩ B → (C ⊆ A ∧ C ⊆ B):
We assume that C ⊆ A ∩ B. Take an arbitrary element x in C. Because C ⊆
A ∩ B, x is in the intersection of A and B. Because this is the case, x is in both
A and in B. Because this holds for an arbitrary element in C, it holds for all
elements in C. Therefore, all elements of C are an element of both A and B,
and hence C ⊆ A ∧ C ⊆ B.

• (C ⊆ A ∧ C ⊆ B) → C ⊆ A ∩ B:
We assume that C ⊆ A and C ⊆ B.Take an arbitrary element x in C. Because
C ⊆ A and C ⊆ B, x is both in A and in B. Because of this, x is in the intersec-
tion of A and B (A ∩ B) as well. Because this holds for an arbitrary element
in C, it holds for all elements in C. Therefore, all elements of C are in A ∩ B
and hence C ⊆ A ∩ B.

12.

Proof. Assume that A ⊆ B and B ⊆ C, i.e. that ∀x(x ∈ A → x ∈ B) and ∀x(x ∈
B → x ∈ C). Take an arbitrary element x in A. Because A ⊆ B, x is in B as well.
Moreover, because B ⊆ C, we have that x is in C as well. Because x is an arbitrary
element of A, it holds for all elements of A that they are in C as well. Therefore,
A ⊆ C.

13.
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Proof. Let us assume that A ⊆ B. Let us take an arbitrary element a in P(A). Since
a is in the power set of A, it is a subset of A. From a ⊆ A, A ⊆ B and the previous
question, we know that a ⊆ B. Because of this, a ∈ P(B). Because a is an arbitrary
element fromP(A), this is true for all elements inP(A) andhence,P(A) ⊆ P(B).

14.

Proof. We proof this by proof by contradiction. Therefore, assume that P(M) and
P(k) → P(k + 1). We assume that P(n) is not true for all n ≥ M. Then there exists
at least one number s ≥ n for which P(s) is false. Let us take the smallest number
s∗ ≥ n such that P(s∗) is false. Now, because s∗ is the smallest number, we have that
s∗ − 1 is true. However we know that P(k) → P(k+ 1) holds for all k ≥ M, thus also
for s∗ − 1. Thus P(s∗ − 1) → P(s∗) holds, we now have that P(s∗) is true, leading
to a contradiction. Therefore, P(n) must be true for all n ≥ M.

15.

Proof. Let C(ϕ) denote the number of connectives in ϕ, and V(ϕ) denote the number
of propositional variables. Let P(ϕ) be the statement that V(ϕ) ≤ C(ϕ) + 1, i.e. the
number of propositional variables is at most one more than the number of connect-
ives.
Base Case: V(x) = 1
By the Atoms rule by the definition of PROP, C(ϕ) = 0. Therefore, the number
of variables (1) is obviously at most one more than the number of connectives (0).
Therefore, P(ϕ) holds.
Inductive Case:
Assume that we have two formulas x, y ∈ PROP, for which P(x) and P(y) are true,
i.e. V(x) ≤ C(x)+ 1 and V(y) ≤ C(y)+ 1. Wewant to show that P(¬x) and P(x ∗ y)
for ∗ ∈ {→,∧,∨} holds as well. We will split the prove into a proof for the negation
and the other connectives:

• ¬:
We want to show that P(¬x) holds.

V(¬x) = V(x)
IH
≤ C(x) + 1 ≤ C(x) + 2 = C(¬x) + 1

. From this, we see that V(¬x) ≤ C(¬x) + 1, hence P(¬x) holds.
• →,∧,∨:

In this case, we want to show that P(x ∗ y) holds for ∗ ∈ {→,∧,∨}.

V(x ∗ y) = V(x)+V(y)
IH
≤ C(x)+ 1+C(y)+ 1 = C(x)+C(y)+ 2 = C(x ∗ y)+ 1

This shows that V(x ∗ y) ≤ C(x ∗ y) + 1, and hence, P(x ∗ y) is true for ∗ ∈
{→,∧,∨}.

Altogether, we have shown that P(x) holds for an atom x and that for all x, y ∈
PROP and ∗ ∈ {→,∧,∨,¬}, P(x) ∧ P(y) → P(¬x) ∧ P(x ∗ y). Therefore, by the
principle of structural induction, P(ϕ) is true for all ϕ ∈ PROP, so for all proposi-
tional formula the number of propositional variables is at most one more than the
number of connectives. This completes the proof by structural induction.
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Solutions 4.2

1.

x ∈ A ∪ (B ∪ C) ↔ x ∈ A ∨ (x ∈ B ∨ x ∈ C) (definition of ∪)
↔ (x ∈ A ∨ x ∈ B) ∨ x ∈ C (associativity of ∨)
↔ x ∈ (A ∪ B) ∪ C (definition of ∪)

x ∈ A ∩ (B ∩ C) ↔ x ∈ A ∧ (x ∈ B ∧ x ∈ C) (definition of ∩)
↔ (x ∈ A ∧ x ∈ B) ∧ x ∈ C (associativity of ∧)
↔ x ∈ (A ∩ B) ∩ C (definition of ∩)

2.

x ∈ A → x ∈ A ∨ x ∈ B
↔ x ∈ A ∪ B (definition of ∪)

x ∈ A ∩ B ↔ x ∈ A ∧ x ∈ B (definition of ∩)
→ x ∈ A

3.

A △ B ↔ {x | (x ∈ A)⊕ (x ∈ B)} (definition of △)
↔ {x | (x ∈ A ∧ ¬(x ∈ B)) ∨ (¬(x ∈ A) ∧ x ∈ B)} (definition of ⊕)
↔ {x | (x ∈ A ∧ x ̸∈ B) ∨ (x ̸∈ A ∧ x ∈ B)} (definition of ̸∈)
↔ {x | (x ∈ A∖ B) ∨ (x ∈ B∖ A)} (definition of ∖)
↔ (A∖ B) ∪ (B∖ A) (definition of ∪)

4.

A B

C
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5.

A ↔ {x ∈ U | x ̸∈ A} (definition of complement)
↔ {x ∈ U | ¬(x ∈ A)} (definition of ̸∈)
↔ {x ∈ U | ¬(x ̸∈ A)} (definition of complement)
↔ {x ∈ U | ¬¬(x ∈ A)} (definition of ̸∈)
↔ {x ∈ U | x ∈ A} (definition of double negation)
↔ A

A ∪ A ↔ {x ∈ U | x ∈ A ∨ x ∈ A} (definition of ∪)
↔ {x ∈ U | x ∈ A ∨ x ̸∈ A} (definition of complement)
↔ {x ∈ U | x ∈ A ∨ ¬(x ∈ A)} (definition of ̸∈)
↔ {x ∈ U |T} (excluded middle (p ∨ ¬p ≡ T))
↔ U

6.

A ∩ B ↔ {x ∈ U | x ̸∈ A ∩ B} (definition of complement)
↔ {x ∈ U | ¬(x ∈ A ∩ B)} (definition of ̸∈)
↔ {x ∈ U | ¬(x ∈ A ∧ x ∈ B)} (definition of ∩)
↔ {x ∈ U | (¬(x ∈ A)) ∨ (¬(x ∈ B))} (DeMorgan’s Law for logic)
↔ {x ∈ U | (x ̸∈ A) ∨ (x ̸∈ B)} (definition of ̸∈)
↔ {x ∈ U | (x ∈ A) ∨ (x ∈ B)} (definition of complement)
↔ A ∪ B (definition of ∪)

7.
a)

(p ∧ q) ↔ p ≡ ((p ∧ q) → p) ∧ (p → (p ∧ q)) (definition of ↔)
≡ (¬(p ∧ q) ∨ p) ∧ (¬p ∨ (p ∧ q)) (definition of →)
≡ (¬p ∨ ¬q ∨ p) ∧ ((¬p ∨ p) ∧ (¬p ∨ q)) (DeMorgan’s law and Distributive law)
≡ T ∧ (¬p ∨ q) (p ∨ ¬p ≡ T)
≡ p → q (definition of →)

(p ∨ q) ↔ q ≡ ((p ∨ q) → q) ∧ (q → (p ∨ q)) (definition of ↔)
≡ (¬(p ∨ q) ∨ q) ∧ (¬q ∨ (p ∨ q)) (definition of →)
≡ (¬p ∨ q) ∧ T (DeMorgan’s law and Distributive law)
≡ p → q

b) In order to show that these three statements are equivalent, we show that
A ⊆ B → A∩ B = A, A∩ B = A → A∪ B = B, and A∪ B = B → A ⊆ B:
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• A ⊆ B → A ∩ B = A:
We show this by contradiction, and therefore assume that A ⊆ B and that
A∩ B ̸= A. Because of the latter, we know that there is an element in A which
is not in B. However, this contradicts our assumption that A ⊆ B, hence we
know that the original implication is true.

• A ∩ B = A → A ∪ B = B:
We show this by contradiction, and therefore we assume that A ∩ B = A and
A ∪ B ̸= B. From the latter, we know that there now exists an element in
A which is not in B, lets say x. However, this means that x should also be
excluded from A ∩ B, and hence A ∩ B ̸= A, contradicting our assumption.
Therefore, the original implication is true.

• A ∪ B = B → A ⊆ B:
We show this by contradiction, and therefore assume that A ∪ B = B and that
¬(A ⊆ B). Because of the latter, there exists at least one element, let say x,
such that x ∈ A and x ̸∈ B. This means that C = A ∖ B ̸= ∅. However,
this means that A ∪ B = B ∪ C. This contradicts our other assumption that
A ∪ B = B, which states that A ∪ B only contains elements of B, whereas
we have derived that this is not possible. Because of this contradiction, we
conclude that A ∪ B = B → A ⊆ B.

Because we have shown that all three implications hold, we have now
shown that the three statements are logically equivalent.
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8.

A ↔ {x ∈ U | x ̸∈ A} (definition of A)
↔ {x | x ∈ U ∧ x ̸∈ A}
↔ U∖ A (definition of ∖)

C∖ (A ∪ B) ↔ {x | x ∈ C ∧ x ̸∈ (A ∪ B)} (definition of ∖)
↔ {x | x ∈ C ∧ ¬(x ∈ (A ∪ B))} (definition of ̸∈)
↔ {x | x ∈ C ∧ ¬(x ∈ A ∨ x ∈ B)} (definition of ∪)
↔ {x | x ∈ C ∧ (x ̸∈ A ∧ x ̸∈ B)} (DeMorgan’s law)
↔ {x | (x ∈ C ∧ x ̸∈ A) ∧ (x ∈ C ∧ x ̸∈ B)} (Distributive law)
↔ {x | (x ∈ C∖ A) ∧ (x ∈ C∖ B)} (definition of ∖)
↔ {x | x ∈ (C∖ A) ∩ (C∖ B)} (definition of ∩)
↔ (C∖ A) ∩ (C∖ B)

C∖ (A ∩ B) ↔ {x | x ∈ C ∧ x ̸∈ (A ∩ B)} (definition of ∖)
↔ {x | x ∈ C ∧ ¬(x ∈ (A ∩ B))} (definition of ̸∈)
↔ {x | x ∈ C ∧ ¬(x ∈ A ∧ x ∈ B)} (definition of ∩)
↔ {x | x ∈ C ∧ (x ̸∈ A ∨ x ̸∈ B)} (DeMorgan’s law)
↔ {x | (x ∈ C ∧ x ̸∈ A) ∨ (x ∈ C ∧ x ̸∈ B)} (Distributive law)
↔ {x | (x ∈ C∖ A) ∨ (x ∈ C∖ B)} (definition of ∖)
↔ {x | x ∈ (C∖ A) ∪ (C∖ B)} (definition of ∪)
↔ (C∖ A) ∪ (C∖ B)

9.

A ∪ (A ∩ B) ↔ (A ∪ A) ∩ (A ∪ B) (Distributive law)
↔ A ∩ (A ∪ B) (Idempotent law)
↔ A (A ⊆ A ∪ B (see 2))

10.
a)

X ∪ (Y ∪ X) ↔ (X ∪ (X ∪ Y)) (Commutative law)
↔ (X ∪ X) ∪ Y (Associative law)
↔ X ∪ Y (Idempotent law)
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b)

(X ∩ Y) ∩ X ↔ (Y ∩ X) ∩ X (Commutative law)
↔ Y ∩ (X ∩ X) (Associative law)
↔ Y ∩ ∅ (Miscellaneous law A ∩ A = ∅)
↔ ∅ (Miscellaneous law A ∩ ∅ = ∅)

c)

(X ∪ Y) ∩ Y ↔ (X ∩ Y) ∪ (Y ∩ Y) (Distribution law)
↔ (X ∩ Y) ∪ ∅ (Miscellaneous law A ∩ A = ∅)
↔ X ∩ Y (Miscellaneous law A ∪ ∅ = A)

d)

(X ∪ Y) ∪ (X ∩ Y) ↔ (X ∪ (X ∩ Y) ∪ (Y ∪ (X ∩ Y)) (Distributive law)
↔ ((X ∩ X) ∪ (X ∩ Y)) ∪ ((Y ∩ X) ∪ (Y ∩ Y)) (Distributive law)
↔ (X ∪ (X ∩ Y)) ∪ ((Y ∩ X) ∪ Y) (Idempotent law)
↔ X ∪ Y (A ⊆ A ∪ B (see 2))

11.
a)

A ∪ B ∪ C ↔ A ∩ B ∩ C (Theorem 4.5)

b)

A ∪ (B ∩ C) ↔ A ∩ B ∩ C (DeMorgan’s law)
↔ A ∩ (B ∪ C) (DeMorgan’s law)

c)

A ∪ B ↔ A ∩ B (DeMorgan’s law)
↔ A ∪ B (DeMorgan’s law)

d)

B ∩ C ↔ B ∪ C (DeMorgan’s law)

e)

A ∩ B ∩ C ↔ A ∩ B ∪ C (DeMorgan’s law)

↔ A ∩ B ∩ C (DeMorgan’s law)
↔ (A ∪ B) ∩ C
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f)

A ∩ A ∪ B ↔ A ∩ A ∩ B (DeMorgan’s law)
↔ ∅ ∩ B (Miscellaneous law A ∩ A = ∅)
↔ ∅ (Miscellaneous law A ∩ ∅ = ∅)

12.

Proof. We give a proof by induction. In the base case, n = 2, the statement is that
X1 ∩ X2 = X1 ∪ Xn. This is true since it is just an application of DeMorgan’s law for
two sets.

For the inductive case, suppose that the statement is true for n = k. Hence, we
assume the induction hypothesis: X1 ∩ X2 ∩ · · · ∩ Xk = X1 ∪ X2 ∪ · · · ∪ Xk, for X1,
X2, …, Xk+1 being any k + 1 sets. Then we have:

X1 ∩ X2 ∩ · · · ∩ Xk+1 = (X1 ∩ X2 ∩ · · · ∩ Xk) ∩ Xk+1

= (X1 ∩ X2 ∩ · · · ∩ Xk) ∪ Xk+1

= (X1 ∪ X2 ∪ · · · ∪ Xk) ∪ Xk+1 (IH)
= X1 ∪ X2 ∪ · · · ∪ Xk+1

In this computation, the second step follows by DeMorgan’s Law for two sets, while
the third step follows from the induction hypothesis. Therefore by the principle of
induction we have proven the theorem.

13.
• For any natural number n ≥ 2 and any sets Q, P1, P2, . . . , Pn: Q ∩ (P1 ∪ P2 ∪

. . . ∪ Pn) = (Q ∩ P1) ∪ (Q ∩ P2) ∪ . . . ∪ (Q ∩ Pn)

Proof. Weproof this by using induction. In the base case, n = 2, the statement
is that Q ∩ (P1 ∪ P2) = (Q ∩ P1) ∪ (Q ∩ P2). This is true since this is just an
application of the Distributive law for three sets.
For the inductive case, suppose that the statement is true for n = k, where k
is an arbitrary integer bigger or equal to 2. Hence, we assume the induction
hypothesis: Q ∩ (P1 ∪ P2 ∪ . . . ∪ Pk) = (Q ∩ P1) ∪ (Q ∩ P2) ∪ . . . ∪ (Q ∩ Pk),
for Q, P1, P2, . . . Pk+1 being any k + 2 sets. Then we have:

Q ∩ (P1 ∪ P2 ∪ . . . ∪ Pk+1) = (Q ∩ (P1 ∪ P2 ∪ . . . ∪ Pk)) ∪ (Q ∩ Pk+1)

= ((Q ∩ P1) ∪ (Q ∩ P2) ∪ . . . ∪ (Q ∩ Pk)) ∪ (Q ∩ Pk+1) (IH)
= (Q ∩ P1) ∪ (Q ∩ P2) ∪ . . . ∪ (Q ∩ Pk+1)

In this computation, the second step follows by Distributive law for three sets,
while the third step follows from the induction hypothesis. Therefore by the
principle of induction we have proven the theorem.

• For any natural number n ≥ 2 and any sets Q, P1, P2, . . . , Pn: Q ∪ (P1 ∩ P2 ∩
. . . ∩ Pn) = (Q ∪ P1) ∩ (Q ∪ P2) ∩ . . . ∩ (Q ∪ Pn)
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Proof. Weproof this by using induction. In the base case, n = 2, the statement
is that Q ∪ (P1 ∩ P2) = (Q ∪ P1) ∩ (Q ∪ P2). This is true since this is just an
application of the Distributive law for three sets.
For the inductive case, suppose that the statement is true for n = k, where k is
an arbitrary integer bigger or equal to 2. Q ∪ (P1 ∩ P2 ∩ . . . ∩ Pk) = (Q ∪ P1)∩
(Q ∪ P2) ∩ . . . ∩ (Q ∪ Pk), for Q, P1, P2, . . . Pk+1 being any k + 2 sets. Then we
have:

Q ∪ (P1 ∩ P2 ∩ . . . ∩ Pk+1) = (Q ∪ (P1 ∩ P2 ∩ . . . ∩ Pk)) ∩ (Q ∪ Pk+1)

= ((Q ∪ P1) ∩ (Q ∪ P2) ∩ . . . ∩ (Q ∪ Pk)) ∩ (Q ∪ Pk+1) (IH)
= (Q ∪ P1) ∩ (Q ∪ P2) ∩ . . . ∩ (Q ∪ Pk+1)

In this computation, the second step follows by Distributive law for three sets,
while the third step follows from the induction hypothesis. Therefore by the
principle of induction we have proven the theorem.

Solutions 4.4

1.

A × B = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c), (3, a), (3, b), (3, c), (4, a), (4, b), (4, c)}
B × A = {(a, 1), (a, 2), (a, 3), (a, 4), (b, 1), (b, 2), (b, 3), (b, 4), (c, 1), (c, 2), (c, 3), (c, 4)}

2.

g ◦ f = {(a, c), (b, c), (c, b), (d, d)}

3.

BA ={{(a, 0), (b, 0), (c, 0)}, {(a, 0), (b, 0), (c, 1)}, {(a, 0), (b, 1), (c, 0)}, {(a, 0), (b, 1), (c, 1)},

{(a, 1), (b, 0), (c, 0)}, {(a, 1), (b, 0), (c, 1)}, {(a, 1), (b, 1), (c, 0)}, {(a, 1), (b, 1), (c, 1)}}

4.
a) f is not onto, as there exists no element x in Z such that f (x) = 2x = 3,

because this means that x = 1.5, which is not an integer. However, it is
one-to-one. Take two arbitrary a and b such that f (a) = f (b). Hence,
2a = 2b, which can only be true if a = b.

b) g is onto; take an arbitrary y in Z. Then there exists an x for which g(x) =
y, namely x = y − 1 (g(x) = g(y − 1) = y − 1 + 1 = y), which is integer
and thus in Z. Moreover, g is one-to-one as well. Take two arbitrary a and
b such that g(a) = g(b). Hence a + 1 = b + 1, which can only be true
when a = b.

c) h is not onto, as there exists no element x in Z such that h(x) = x2 + x +

1 = 4. This is because x2 + x + 1 = 4 ↔ x = ±
√

13−1
2 , which is not an
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integer. It is not one-to-one either, as solving x2 + x + 1 = a gives two
solutions for every a. Let us take a = 3, then both x = −2 and y = 1 give
h(x) = h(y) = 3, however, x ̸= y.

d) s is onto; take an arbitrary y ∈ Z. Then there exists an x forwhich s(x) = y,
namely x = 2y (s(x) = s(2y) =

2y
2 = y). However, it is not one-to-one.

Take an arbitrary even integer a and b = a− 1. s(a) = a
2 = (a−1)+1

2 = s(b),
however, a ̸= b.

5. For any x ∈ A:

((h ◦ g) ◦ f )(x) = (h ◦ g)( f (x)) = (h(g( f (x)))) = h((g ◦ f )(x)) = (h ◦ (g ◦ f ))(x)

6.
a) To prove: g ◦ f is one-to-one → f is one-to-one

Proof. Weuse proof by contradiction. We assume that g ◦ f is one-to-one, but f is not.
Because f is not one-to-one, so there exists an a, b ∈ A such that f (a) = y = f (b),
but a ̸= b. However, since g : B → C, we have an element x ∈ C such that g(y) =
x. However, this would mean that for both a and b, (g ◦ f )(a) = (g ◦ f )(b) = x,
showing that g ◦ f is not one-to-one. However, this contradicts our assumption that
g ◦ f is one-to-one, which mean that it cannot hold that g ◦ f is one-to-one, but f is
not. Hence, the statement that has to be proven is true.

b) Let A = {1}, B = {a, b}, C = {c}, f (1) = a, g(a) = g(b) = c. Although
g is not one-to-one, as both g(a) = g(b) = c, we have that g ◦ f (1) = c,
which is one-to-one.

7.
a) To prove: g ◦ f is onto → g is onto

Proof. We use proof by contradiction. We assume that g ◦ f is onto, but g is not.
Because g is not onto, this means that there is an element c ∈ C such that for all
elements in b ∈ B : g(b) ̸= c. However, this would mean that g ◦ f cannot be onto,
as there is no element in B that f can map to such that g ◦ f (x) = c. However, this
contradicts our assumption that g ◦ f is onto, which mean that it cannot hold that
g ◦ f is onto, but g is not. Hence, the statement that has to be proven is true.

b) Let A = {a}, B = {b, c}, C = {d}, f (a) = b, g(b) = d. Although f is not onto, as
there is no x ∈ A such that f (x) = c, we have that for all elements in C, namely d,
that there exists an element in A, namely a, such that (g ◦ f )(a) = d. Hence g ◦ f is
onto.

Couldn’t find your answer here? Feel free to submit your own for
future editions of the book here: https://gitlab.ewi.tudelft.
nl/reasoning_and_logic/book_solutions. We will add your
name to the list of contributors for the book if we accept your
answers!

https://gitlab.ewi.tudelft.nl/reasoning_and_logic/book_solutions
https://gitlab.ewi.tudelft.nl/reasoning_and_logic/book_solutions
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Further Reading

The books by Christian & Griffiths, Hofstadter and Smullyan are on recre-
ationalmaths. Hofstadter’s is awinner of the Pulitzer Prize. BesidesDowek,
the other titles are textbooks; Hammack’s book is an Open Textbook, just
like this book is.
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logical equivalence, 11, 16, 19, 22, 23

and logical deduction, 55
in predicate logic, 49, 50

logical operator, 8
bitwise, 135

logically implies, 53
loop invariant, see invariant
Lucas, Édouard, 89
Luyben, Karel, 13

Machine Learning, 2
main connective, 10
mapping, 140
mathematical generality, 7
mathematical induction, 77
mathematical structure, see formal struc-
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odd, 70
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onto function, 143
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or (logical operator), 8, 121
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OR gate, 29
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Python, 152
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query, database, 173
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real numbers, 69
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132, 149, 161

recursion, 86
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reflexive relation, 166
relation, 165, 173
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right subtree, 97
root, 94, 97
round brackets, see parentheses
Rubik’s Cube, 170
Russell’s Paradox, 62, 112
Russell, Bertrand, 62, 112, 179

search tree, 99
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set, 103
of functions from A to B, 147

set difference, 108
set theory, 103
set-builder notation, 107
sets, 103
simple term, 33
Sinterklaas, 14, 17
situation, 10
Socrates, 5
SQL, see StructuredQuery Language
strong induction, see induction, second

form
structural induction, 115
Structured Query Language, 173
subroutine, 86
subset, 106
substitution law, 22
subtree, 94
sufficiency, see sufficient
sufficient, 12
summation notation, 81
surjective, 143
syllogism, 54
symmetric difference, 129
symmetric relation, 167

Tarski’s world, 47
Tarski, Alfred, 26, 47
tautology, 16, 22, 24, 50
ternary relation, 166
topological ordering, 131
total function, 151
total order, 168
Towers of Hanoi, 88
transitive closure, 171
transitive relation, 167
tree, 93, 116, 118, 130
trees, 93
true (logical value), 19
truth table, 10, 20, 23

and logic circuits, 33
of a tautology, 16

TU Delft, 1, 13, 51
tuple, 48, 114
tuples, 48
Turing machine, 180
Turing, Alan, 179, 180

uncountable set, 159
unicorn, 17, 28, 52
union, 108, 121
universal quantifier, 43
universal set, 122

valid argument, 54, 56
value (of a function), 140
variable, 43, 50

propositional, 7
Venn diagram, 104, 109
vertex, 130
vertices, 130
von Neumann, John, 180

Web & Database Technology, 173
wires in computers, 29

Zadeh, Lotfi, 26
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