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ARTICLE OPEN

Electron–hole superfluidity in strained Si/Ge type II
heterojunctions
Sara Conti 1✉, Samira Saberi-Pouya 1, Andrea Perali 2, Michele Virgilio 3, François M. Peeters 1, Alexander R. Hamilton 4,
Giordano Scappucci 5✉ and David Neilson 1,4

Excitons are promising candidates for generating superfluidity and Bose–Einstein condensation (BEC) in solid-state devices, but an
enabling material platform with in-built band structure advantages and scaling compatibility with industrial semiconductor
technology is lacking. Here we predict that spatially indirect excitons in a lattice-matched strained Si/Ge bilayer embedded into a
germanium-rich SiGe crystal would lead to observable mass-imbalanced electron–hole superfluidity and BEC. Holes would be
confined in a compressively strained Ge quantum well and electrons in a lattice-matched tensile strained Si quantum well. We
envision a device architecture that does not require an insulating barrier at the Si/Ge interface, since this interface offers a type II
band alignment. Thus the electrons and holes can be kept very close but strictly separate, strengthening the electron–hole pairing
attraction while preventing fast electron–hole recombination. The band alignment also allows a one-step procedure for making
independent contacts to the electron and hole layers, overcoming a significant obstacle to device fabrication. We predict
superfluidity at experimentally accessible temperatures of a few Kelvin and carrier densities up to ~6 × 1010 cm−2, while the large
imbalance of the electron and hole effective masses can lead to exotic superfluid phases.

npj Quantum Materials            (2021) 6:41 ; https://doi.org/10.1038/s41535-021-00344-3

INTRODUCTION
Spatially indirect excitons in a semiconductor system are a highly
sought alternative for achieving quantum condensation and
superfluidity in solid-state devices at experimentally accessible
temperatures. Excitons are electrons and holes that bind into pairs
through their long-range Coulombic attraction. Spatially indirect
excitons have the electrons and holes confined in two separated
but closely adjacent quantum wells or quasi two-dimensional (2D)
layers1,2. In the spatially indirect configuration, the electron–hole
attraction can be very strong, while at the same time the electrons
and holes are prevented from mutually annihilating through
recombination.
From an application perspective, a supercurrent in the

electron–hole superfluid could carry an electric current if the
electron and hole layers are independently contacted in a
counterflow configuration, directly leading to applications in
dissipationless solid-state electronics3,4. Furthermore, the super-
fluid can be continuously tuned from the strongly coupled
Bose–Einstein condensation (BEC) bosonic regime to the BCS–BEC
crossover regime of less strongly coupled fermionic pairs, simply
by varying the carrier density using metal gates. In addition, when
the electron and hole masses in a semiconductor are different,
there are predictions of exotic superfluid phases5, including the
Fulde–Ferrell–Larkin–Ovchinnikov phase6 and the Sarma phase
with two Fermi surfaces7. These exotic phases are predicted to
occur at much higher temperatures than in mass-imbalanced
ultracold atomic gas Fermi mixtures8,9.
2D van der Waals systems show particular promise because

they offer the possibility of ultra-thin insulating barriers and
conducting layers, with very strong electron–hole pairing interac-
tions as a result. There have been predictions of quantum
condensation of spatially indirect excitons in double bilayer

graphene10 and double transition metal dichalcogenide (TMD)
monolayers11, and recent experiments have provided strong
evidence for quantum condensation in these systems12,13. One
aspect of graphene bilayers and TMD monolayers is that the
electron and hole effective masses are nearly equal, making
these systems unsuitable for generating exotic superfluid phases.
However, the most pressing limitation of the 2D van der Waals
systems lies in the rudimentary methods employed for device
fabrication. These entail a layer by layer assembly using pick and
transfer techniques which are prone to layer wrinkling, contam-
ination and misorientation14, leading to very poor device yield
with limited prospects for scalability.
A more scalable approach is based on spatially indirect excitons

in conventional semiconductor heterostructures, such as electrons
and holes in GaAs double quantum wells (DQW). The system has
been studied both with capacitively induced carriers15,16 and
optically excited carriers17–19. However, despite promising indica-
tions of quantum condensation at very low temperatures, direct
evidence for equilibrium superfluidity remains elusive in this
rather mature material system. The intrinsic properties of the
GaAs/AlGaAs band structure constitute the major constraints for
excitonic condensation20, particularly superfluidity, and they also
pose severe challenges in device fabrication and operation21.
GaAs heterostructures are grown by molecular beam epitaxy. This
growth technique is not compatible with conventional comple-
mentary metal-oxide semiconductor technology, so that prospects
for advanced manufacturing and large scale device integration are
severely limited. In the case of transport measurements with
capacitively induced carriers, the type I GaAs/AlGaAs band
alignment makes it difficult to develop independent and selective
contacts to the electron and hole layers. In addition, the energy
separation between electron and hole states is ≈1.5 eV, requiring
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rather wide AlGaAs barriers to avoid interlayer leakage. As a
consequence, the electron–hole mutual Coulomb attraction is
relatively weak and exciton formation is greatly suppressed.
For these reasons, investigation of other solid-state systems that

may overcome some limitations of double layers in GaAs,
graphene and TMDs is of great interest. In this letter we propose
as a candidate for electron–hole superfluidity and BEC, an
alternative mass-imbalanced solid-state system: a lattice-
matched strained Si/Ge bilayer embedded into a germanium-
rich SiGe crystal. Holes are confined in a compressively strained Ge
quantum well and electrons in a tensile strained Si quantum well,
with no barrier in between. This is possible since the Si/Ge
interface offers a type II band alignment22–24, and thus electrons
and holes can be kept separate but very close together. This
enhances the strength of the electron–hole attraction while
preventing unwanted recombination.
This alternative route is promising since Si and Ge hetero-

structures have reached maturity in the past decade. Si and Ge
heterostructures have very low disorder, with carrier mobilities
exceeding one million in both constituents of the bilayer: the 2D
electron gas in Si/SiGe25 and the 2D hole gas in Ge/SiGe26.
Furthermore, the carrier density may be tuned over orders of
magnitude by leveraging on industrial gate-stack technology27,28.
This material system also integrates with advanced quantum
technologies29,30, including long-lived electron spin qubits in
Si31,32, hole spin qubit arrays in Ge33,34 and superconducting
contacts to holes35–37. Two major advantages of the Si/Ge bilayer
over the GaAs and TMD material systems are: (1) a quantum well
for holes does not exist in the Si layer, and a quantum well for
electrons is not energetically accessible in the Ge layer; this makes
it much easier to electrically contact one layer and not the other,
in contrast to the multi-stage processing required for independent
contacts in GaAs and TMD systems; (2) the much smaller energy
gap between electron and hole levels greatly facilitates the
formation of equilibrium electron–hole systems without the need
for large interlayer biases. Due to strain, there is a very large mass
imbalance between holes in Ge (≈0.05 me)

38 and electrons in Si
(≈0.19 me)

22,39, opening the door to exploration of exotic
superfluid phases. Finally, these Si/Ge heterostructures may be

grown on 300mm Si wafers using mainstream chemical vapour
deposition40, and may profit from advanced semiconductor
manufacturing for high device yield and integration.
Our calculations show that the envisaged Si/Ge bilayer supports

a superfluid condensate. Tuning the carrier density, continuously
sweeps the superfluid across the BEC and BCS–BEC regimes, with
an accompanying variation in the magnitude of the superfluid gap
and the transition temperature.

RESULTS
Material stack and device architecture
Figure 1a illustrates the concept of a lattice-matched Si/Ge bilayer.
A cubic (strain-relaxed) Ge-rich Si1−xGex substrate, with a Ge
concentration x= 0.8, sets the overall in-plane lattice parameter of
the stack. For layer thicknesses below the critical thickness for
onset of plastic relaxation, the Si/Ge epilayers will grow with the
same in-plane lattice constants as the underlying Si0.2Ge0.8

41,42.
Therefore, the Ge layer will be compressively strained in the in-
plane direction43 and, conversely, the Si layer will be under tensile
strain22. A thickness of 3 nm for each Ge and Si layer allows for
such strain engineering42, and is feasible experimentally given the
recent advances in low-temperature chemical vapour deposition
of SiGe heterostructures comprising Si and Ge quantum wells43,44.
Figure 1b shows the band structure of the proposed lattice-

matched Si/Ge bilayer, where the Ge and Si layers are strained in
opposite directions. The band structure was calculated in an
effective mass approach using deformation potential theory to
take into account the impact of the strain field on the relevant
band edges. We highlight three highly attractive features. First, as
already noted in the introduction, there is effectively only one
quantum well for electrons spatially separated from the single
quantum well for holes. There does exist a quantum well for
electrons in Ge24, but it is located so high in energy it would
remain inactive for the present phenomenon. Thus the Si/Ge
system is quite different from GaAs DQW21 and TMD hetero-
structures45, where each of the two layers has both electron and
hole wells, and also differs from GaAs/AlAs bilayers where
the GaAs layer hosts both electron and hole bound states46.

Fig. 1 Lattice-matched double Si/Ge bilayer, band structure, device architecture. a Below the critical thickness for plastic relaxation,
epitaxial Ge and Si layers are lattice matched to the underlying SiGe, with compressive and tensile strain, respectively. b Band structure of low-
lying bands resulting in a double quantum well structure. Due to the type II band alignment at the strained Si/Ge heterojunction, electrons
(Δ2 states) are confined in tensile strained Si and holes (HH states) in compressively strained Ge. c Material stack with embedded Si/Ge bilayer
and an envisaged device architecture, characterized by independent n++ and p++ contacts, and gate electrodes to tune independently the
electron and hole densities in the bilayer.
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The valence band profile shows that the wave function of the
fundamental heavy hole (HH) state is confined in the Ge quantum
well. The large energy splittings between the fundamental HH
state and the fundamental light hole (LH) state are the result of
the compressive strain and the larger confinement mass of the HH
with respect to the LH. The conduction band profile shows that
the wave function of the fundamental Δ2 state is confined in the Si
quantum well, with other states being higher up in energy. There
is no hole quantum well in the Si layer. The second feature is that
the energy difference between the bottom of the conduction
band and the top of the valence band is ≈0.18 eV. This is ~8 times
smaller than in GaAs quantum wells, meaning a small interlayer
bias should be sufficient for tuning of the electron and hole wave-
function shape and position in the quantum well. Finally, based on
previous theoretical predictions and experiments, such strained
Ge and Si quantum wells will result in a large imbalance of the
masses, with a very light in-plane effective mass for holes (≈0.05
me) and a much heavier in-plane effective mass for electrons
(≈0.19 me). This has important implications for the superfluid,
as detailed in the subsection “Screening polarizabilities in the
superfluid state”.
Figure 1c illustrates the entire material stack with the

embedded Si/Ge bilayer and an envisaged device architecture.
Starting from a Si(001) wafer and a thick strain-relaxed Ge layer
deposited on top, a high-quality Si0.2Ge0.8 strain-relaxed buffer is
obtained by reverse grading the Ge content in the alloy43,47.
Importantly, the strain-relaxed Si0.2Ge0.8 buffer can be heavily
p-type doped to serve as an epitaxial bottom gate. This bottom
gate can be biased negatively to populate only the undoped Ge
quantum well with holes. Following the deposition of the Si/Ge
bilayer, an additional Si0.2Ge0.8 barrier separates the Si quantum
well from a dielectric layer and top gate. The top gate may be
biased positively to populate only the undoped Si quantum well
with electrons. Separate and independent Ohmic contacts to the
capacitively induced 2D electron gas in Si and hole gas in Ge are
achieved by standard n++ and p++ ion implantation, respec-
tively23,40. Alternatively, the p++ contact may be substituted with
an aluminium layer or an in-diffused metallic germano-silicide, as
routinely done in Ge/SiGe heterostructure field effect transistors43.
By carefully designing the thickness of the Si0.2Ge0.8 barriers above
and below the Si/Ge bilayer, we envisage that the carrier density
may be tuned independently in the electron and hole layer in the
low-density regime, n < 1011 cm−2.
Independent electrical contact to the two layers is easily

achieved thanks to the remarkable and exceptional band structure
of the material stack, with only one quantum well for electrons in
the strained Si and only one accessible quantum well for holes in
the strained Ge. Crucially, the prospect to make independent
contacts to the electron–hole bilayer with a simple and robust
process, in contrast to the challenging processing required for
selective contacts in III–V and TMD materials, bodes well for
superfluidity measurements in counterflow configurations3,21.

Superfluid properties
In Fig. 2, we report superfluid properties of the system, calculated
including self-consistent screening of the electron–hole pairing
interaction. Self-consistent treatment of the long-ranged Coulom-
bic pairing interaction48 is a key element for determining
electron–hole superfluid properties, in contrast to other super-
conductors and superfluids with short-range pairing interactions.
Figure 2a shows the maximum of the zero-temperature super-

fluid gap Δmax as a function of the electron and hole densities,
assumed equal. As the density n increases, Δmax first increases,
passes through a maximum and then decreases. Above an onset
density, n0 ~ 5.9 × 1010 cm−2, Δmax very rapidly drops to negligible
values, ≲1 μeV. The behaviour of Δmax is a consequence of the self-
consistency included in the screening10. This has radically different

effects in the different regimes of the superfluidity49,50. (1) At low
carrier densities, the binding energy of the electron–hole pairs is
large relative to the Fermi energy, and the excitons are strongly
bound and compact. They resemble weakly interacting, approxi-
mately neutral, bosons and screening is negligible. (2) With
increasing density, the number of pairs increases and the gap gets
stronger. However, relative to the Fermi energy the gap gets
weaker, and the superfluid moves from the BEC regime of bosons
to the less strongly coupled BCS–BEC crossover regime of coupled
fermionic pairs. (3) When the density is further increased above the
onset density, n > n0, strong screening overcomes the weak
electron–hole pair coupling in what would be the BCS regime,
and the superfluidity is suppressed.
The density ranges for the BEC and BCS–BEC crossover regimes

are indicated in Fig. 2a by the blue and yellow shaded areas.
We characterize the regimes by the condensate fraction
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parameter c, the fraction of carriers bound in pairs51,52. The
boundary between the BEC and BCS–BEC crossover regimes is
determined by c= 0.8. The BCS–BEC crossover to BCS boundary
would be located at c= 0.2, but at the onset density n0 the
condensate fraction has only dropped to c ~ 0.5, implying the
absence of a BCS regime.
Figure 2b shows the momentum dependence of the superfluid

gap Δk at three densities n. Near the onset density n0= 5.9 × 1010

cm−2, which is in the BCS–BEC crossover regime, Δk has a broad
peak centred close to k= kF, indicating proximity of the BCS
regime. At density n= 3.0 × 1010 cm−2 corresponding to the
maximum of Δmax, which is near the boundary separating the
BCS–BEC crossover and BEC regimes, the peak in Δk has moved
back to k= 0. At n= 0.5 × 1010 cm−2, which is in the deep BEC
regime, Δk extends out to large k/kF.
Figure 2c shows Δmax scaled to the electron and hole Fermi

energies. At the onset density, while Δmax<EF;h, it is surprising
that Δmax � EF;e. This result significantly differs from the equal
mass case, for which the onset density occurs around
Δmax=EF;h ¼ Δmax=EF;e � 1. We recall the physical argument that
a sufficiently strong energy gap Δmax relative to the Fermi energy
will exclude from the screening low-lying excited states that
otherwise would very significantly weaken the electron–hole
attraction49. But it is puzzling why Δmax must become so much
larger than EF,e before the screening is suppressed by the
superfluidity. To explain this, we must look at the self-consistent
screening polarizabilities in the superfluid state when the electron
and hole masses are unequal.

Screening polarizabilities in the superfluid state
We now examine the effect of the different masses on the
polarizabilities that control the self-consistent screening. Figure 3
shows the normal polarizabilities for electrons and holes in the
presence of the superfluid, Πe(q) and Πh(q) (Eqs. (8) and (9)), and
the anomalous polarizability for the superfluid electron–hole pairs,
Πa(q) (Eq. (10)). The panels are for two densities, the first close to
the onset density in the BCS–BEC crossover regime and the
second in the BEC regime.
If the effect of the superfluidity on the screening is not taken

into account, the polarizabilities in the normal state would be
much larger than Πe(q) and Πh(q). In 2D, they would be given in
the momentum transfer range relevant for screening q/kF ≤ 2, by
their respective densities of states:

Π
ðNSÞ
e ðqÞ ¼ m?

e

π_2
’ 8:0 ´ 1010 cm�2meV�1;

Π
ðNSÞ
h ðqÞ ¼ m?

h

π_2
’ 2:1 ´ 1010 cm�2meV�1:

(1)

Such large polarizabilities would lead to very strong screening of the
electron–hole interaction, resulting in extremely weak-coupled super-
fluidity and very low transition temperatures in the mK range49. The
suppression of the normal polarizabilities in the superfluid state arises
from the blocking by the superfluid gap of low-lying states in the
energy spectrum (Eqs. (8) and (9)). There is even more suppression of
screening that comes from cancellation with the anomalous
polarizability in the screened interaction (Eq. (11)). To highlight these
cancellations, in Fig. 3 we introduce effective polarizabilities, Πeff

e ðqÞ ¼
ΠeðqÞ þ ΠaðqÞ and Πeff

h ðqÞ ¼ ΠhðqÞ þ ΠaðqÞ.
At q= 0 and for all densities, there is the property Πe(q= 0)=

Πh(q= 0)=− Πa(q= 0), so that Πeff
e ðq ¼ 0Þ ¼ Πeff

h ðq ¼ 0Þ ¼ 0,
reflecting the absence of long distance screening for any non-zero
superfluid gap. For non-zero q, however, the cancellation of
polarizabilities and the suppression of screening are very sensitive
to which regime the superfluidity lies in. Δk becomes narrower as
we move from the BEC regime, across the BCS–BEC crossover
regime, and towards the BCS regime (Fig. 2b), narrowing both the
momentum range for blocked excitations and the momentum
range for which the cancellations are significant.

Figure 3a is in the BCS–BEC crossover regime, where we see that
the behaviour of Πe(q) for non-zero q is strikingly different from
Πh(q). Further details of their differences in functional behaviour can
be found in the Supplementary Discussion of Supplementary Fig. 1.
We also note the approximate cancellation of Πa(q) with Πh(q) but
not with Πe(q). This is because Πa(q) depends on the strength of the
pairing, and so scales with the reduced mass m?

r , which for this
system is approximately equal to m?

h. In contrastm?
r � m?

e, so |Πe(q)|
is larger than Πa(q) and does not cancel with it. We conclude for
intermediate values of k/kF, that Δk strongly suppresses the effective
polarization for holes, Πeff

h ðqÞ, but does not suppress the effective
polarization for electrons, Πeff

e ðqÞ. This explains the puzzling result
we noted in Fig. 2c, that the screening is only suppressed when the
gap reaches very large values of Δmax=EF;e � 1.
In contrast, Fig. 3b shows in the deep BEC regime for q/kF≲ 2 that

Πe(q) and Πh(q) are very similar and now both scale with the
reduced mass m?

r , like Πa(q). This is because in this regime the
electrons and holes are in strongly bound pairs that have lost their
single-particle character. As a result, Πeff

e ðqÞ and Πeff
h ðqÞ are very

small over the momentum transfer range important for screening,
reflecting near complete cancellation. Physically, the electron–hole
pairs in the deep BEC are compact compared with the inter-particle
spacing and approximately neutral, and this makes screening
unimportant.

Superfluid phase diagram
The superfluid transition for a 2D system is a Berezinskii–
Kosterlitz–Thouless (BKT) transition53. For parabolic bands, the
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Fig. 3 Polarizabilities. The green (blue) solid lines are the normal
electron (hole) polarizabilities in the presence of the superfluid
Πe(q) (Πh(q)). The red solid lines are the anomalous polarizabilities
Πa(q) for the superfluid electron–hole pairs. Dashed green and
blue lines are the corresponding effective polarizabilities
Πeff
e;hðqÞ � Πe;hðqÞ þ ΠaðqÞ. a For density n ≃ n0 = 5.9 × 1010 cm−2

in the BCS–BEC crossover regime. b For density n= 0.5 ×
1010 cm−2 in the BEC regime.

S. Conti et al.

4

npj Quantum Materials (2021)    41 Published in partnership with Nanjing University



transition temperature TBKT
c becomes linearly proportional to the

carrier density n (Eq. (14)). The highest transition temperature
occurs at the onset density. The complete phase diagram is shown
in Fig. 4. Despite the large dielectric constant and the small hole
mass, we see that the transition temperatures are readily
experimentally accessible, up to TBKT

c ¼ 2:5 K.
At TBKT

c , there is a thermally driven transition to a degenerate
exciton gas, in which the system has lost its macroscopic
coherence but local pockets of superfluidity remain. These pockets
persist up to a characteristic degeneracy temperature Td

54. At Td,
the excitons lose degeneracy and the system becomes a classical
exciton gas.
When the density is increased to an onset density n0= 5.9 ×

1010 cm−2, the superfluid gap drops nearly discontinuously to
exponentially small values (Fig. 2a), and TBKT

c drops to the sub-mK
range. The drop in the gap is similar to a first-order transition, and
is caused by the sudden collapse of three solutions to the gap
equation (Eq. (6)) into a single very low-energy solution48. This is
caused by strong screening of the electron–hole pairing attraction.

DISCUSSION
In summary, we predict superfluidity in experimentally accessible
samples, densities and temperatures, with a superfluid gap of up to
3meV and a transition temperature up to 2.5 K. At carrier densities
higher than 6 × 1010 cm−2, the relatively weak superfluidity is
unable to suppress the increasingly strong screening, with a result
that screening suppresses superfluidity. The nature of this self-
consistent screening process is sensitive to the system property
that the electron and hole masses are markedly different. Since the
existence of exotic superfluid phases is dependent on unequal
masses, and because the effect of unequal masses does not
manifest itself in the BEC regime (n ≤ 2 × 1010 cm−2), the experi-
mental search for these exotic phases should focus on inter-
mediate densities in the BCS–BEC crossover regime (2 × 1010 < n <
6 × 1010 cm−2).
In a realistic implementation of the proposed Si/Ge bilayer

material stack, the Si/Ge interface will have a finite width due to
segregation, diffusion and intermixing associated with the
chemical vapour deposition. However, by depositing the Si/Ge
layers at sufficiently low temperatures (≤500 °C as in Refs. 43,44), we
foresee a distance for transitioning between the strained Ge and Si

layer of much less of 1 nm. The details of such Si/Ge transition
region do not influence the main findings of the band structure
calculations nor the superfluid properties, since the principle
parameter affecting these is the distance separating the centres of
the two wells.
The superfluid gap shown in Fig. 2a reaches 35 K (3 meV), and

the transition temperature could be increased up to a significant
fraction of this value by implementing variations of the proposed
Si/Ge material stack, for example, by including a finite stack of
bilayers that eliminates the limitations of a 2D system55. Such Si/
Ge material stacks with up to five bilayers are within reach,
considering the recent experimental progress in the deposition of
multi-quantum wells on Ge-rich SiGe virtual substrates56. In this
way, the transition temperature would allow for the design and
development of an entire original class of dissipationless logic
devices and electronics57 for CMOS-based cryogenic control of
silicon quantum circuits58.

METHODS
For calculations of the superfluid properties, we take a structure with hole
effective mass m?

h ¼ 0:05 me in the compressively strained Ge layer, and
electron effective mass m?

e ¼ 0:19 me in the tensile strained Si layer. We
use a uniform dielectric constant determined for Si and Ge quantum wells
of equal width in contact, ϵ ¼ 2 1=ϵGe þ 1=ϵSið Þ�1 ¼ 13:7 ϵ0, with ϵGe=
16.2 ϵ0 and ϵSi= 11.9 ϵ0. Lengths are expressed in units of the effective
Bohr radius, a?B ¼ _24πϵ=ðm?

r e
2Þ ¼ 18:3 nm, and energies in effective

Rydbergs, Ry? ¼ e2=ð2a?BÞ ¼ 33 K. m?
r is the reduced effective mass.

Mean-field equations
Because of the different masses, there are distinct electron and hole
normal Matsubara Green functions:

Geðk; τÞ ¼ � T τ cðk; τÞcyðk; 0Þ
� �

;

Ghðk; τÞ ¼ � T τ dðk; τÞdyðk; 0Þ
� �

:
(2)

Tτ is the ordering operator in imaginary time τ. c† and c (d† and d) are the
creation and destruction operators for electrons (holes) in their respective
quantum wells. The corresponding anomalous Green function is as follows:

Fðk; τÞ ¼ � T τ cðk; τÞdðk; 0Þh i : (3)

In the weak-coupling BCS limit, Eqs. (2) and (3) reduce to:

Geðiωn; kÞ ¼ u2k
ðiωn � E�k Þ þ

v2k
ðiωn þ Eþk Þ

;

Ghðiωn; kÞ ¼ v2k
ðiωn þ E�k Þ þ

u2k
ðiωn � Eþk Þ

;

Fðiωn; kÞ ¼ ukvk
ðiωn � E�k Þ �

ukvk
ðiωn þ Eþk Þ

;

(4)

where ωn (n= 1, 2, 3… ) are the fermionic Matsubara frequencies and

E ±
k ¼ Ek ± δξk ; Ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2k þ Δ2

k

q
; δξk ¼ 1

2
ξhk � ξek

� �
; ξk ¼ 1

2
ξek þ ξhk

� �
:

(5)

ξek ¼ k2

2m?
e
� μ (ξhk ¼ k2

2m?
h
� μ) is the electron (hole) single-particle energy

band dispersion in the normal state, with μ the chemical potential. Δk is

the superfluid energy gap. The Bogoliubov amplitudes are u2k ¼ 1
2 1þ ξk

Ek

� �

and v2k ¼ 1
2 1� ξk

Ek

� �
.

We consider only equal electron and hole densities n. At zero
temperature, the superfluid energy gap can be determined from the
usual mean-field equation of BCS theory, even in the strongly interacting
BCS–BEC crossover and BEC regimes:

Δk ¼ 1

L2
X
k0 ;ωn

Vsc
k�k0Fðiωn; k

0Þ ¼ � 1

L2
X
k0

Vsc
k�k0

Δk0

2Ek0
; (6)

where Vsc
k�k0 ¼ Vsc

q is the attractive screened electron–hole interaction. As
expected, the only mass parameter entering in Eq. (6) is the reduced mass
m?

r . Equation (6) is self-consistently solved coupled to the density equation:

n ¼ 2

L2
X
k;ωn

Gℓðiωn; kÞ ¼ 2

L2
X
k

v2k ℓ ¼ e; h: (7)

For given density n, Eq. (7) determines the chemical potential μ.

Fig. 4 Phase diagram. TBKTc is the superfluid transition temperature.
n is the density of the electrons and holes. Td is the degeneracy
temperature for the exciton gas. The superfluid BEC and BCS–BEC
crossover regimes are indicated. Above n ~ 6 × 1010 cm−2, the
superfluid transition temperature is in the mK range.
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Self-consistent screening
Because the electron–hole interaction is Coulombic and long ranged, it is
essential to include screening in Vsc

q . To determine the screening in the
presence of a superfluid, we evaluate the density response functions
within the random-phase approximation for the DQW system in which the
electrons and holes have different masses20. For the polarization loops, we
use the normal and anomalous Green functions, Eq. (4). Then the normal
polarizabilities in the presence of the superfluid are as follows:

ΠeðqÞ ¼ 2
L2
P
k

P
ωn

Geðiωn; kÞGeðiωn; k � qÞ

¼ � 2
L2
P
k

u2kv
2
k�q

Eþk�q þ E�k
þ v2ku

2
k�q

E�k�q þ Eþk

� �
;

(8)

ΠhðqÞ ¼ 2
L2
P
k

P
ωn

Ghðiωn; kÞGhðiωn; k � qÞ

¼ � 2
L2
P
k

u2kv
2
k�q

E�k�q þ Eþk
þ v2ku

2
k�q

Eþk�q þ E�k

� �
:

(9)

The anomalous polarizability for the density response of the superfluid
electron–hole pairs is as follows:

ΠaðqÞ ¼ 2
L2
P
k

P
ωn

Fðiωn; kÞFðiωn; k � qÞ

¼ 2
L2

P
k

Δk
2Ek

Δk�q

2Ek�q

1
E�k�q þ Eþk

þ 1
Eþk�q þ E�k

� �
:

(10)

For Δk≡ 0, the Πe(q) and Πh(q) reduce to the usual Lindhard functions of
the normal state, and Πa(q) vanishes.
The expression for the static screened electron–hole interaction for

unequal masses is as follows:

V sc
q ¼ Veh

q

1� ½ΠeðqÞVee
q þ ΠhðqÞVhh

q � þ 2Veh
q ΠaðqÞ þ ½Vee

q Vhh
q � ðVeh

q Þ2�½ΠeðqÞΠhðqÞ � Π2
aðqÞ�

:

(11)

Vee
q (Vhh

q ) is the bare electron (hole) Coulomb repulsion within one
quantum well, and Veh

q is the bare attraction between the electrons and
holes in opposite quantum wells:

Vee
q ¼ 2πe2

ϵ

1
jqj F

ee
q ; Vhh

q ¼ 2πe2

ϵ

1
jqj F

hh
q ; Veh

q ¼ � 2πe2

ϵ

e�dc jqj

jqj F eh
q :

(12)

We take for the separation parameter dc the distance between the centre
of the two wells. The form-factors Fq account for the density distribution
of the electrons and holes within their respective finite-width wells59.
We self-consistently solve the superfluid gap equation (Eq. (6)), the

density equation (Eq. (7)) and the screened interaction in the presence of
the superfluid (Eq. (11)) iteratively, calculating the polarizabilities (Eqs. (8)–
(10)) using the superfluid gaps determined in the preceding iteration.

Transition temperature
The superfluid transition temperature in this quasi-2D system is
determined as a BKT transition53. For parabolic bands the transition
temperature TBKTc is well approximated by60:

TBKTc ¼ π

2
ρsðTBKTc Þ: (13)

Within mean-field theory the superfluid stiffness at zero temperature
ρsð0Þ ¼ _2n=8m?

r depends only on the carrier density n, independent of
the pair coupling strength. We are able to neglect the temperature
dependence of ρs(T) in Eq. (13) since ρs(T) is approximately constant for
temperatures T � Δmax. Thus the transition temperature is linearly
proportional to the carrier density:

TBKTc ¼ _2

16m?
r
πn: (14)
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