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Abstract

To allow structural designs with lower mass, it is necessary to have access to accurate failure
prediction theories for composite plates with holes subjected to arbitrary loading conditions.
For design purposes, however, the most accurate failure theories require a considerable amount
of computational resources which is often not available. Additionally, current theories allowing
less computational resources are unfortunately only valid for a specific load, material, hole or
specimen size and their reliability is still questioned [1].

The purpose of this work is to examine the existing methods to estimate stress and failure in
composite plates with holes and subsequently join or modify them to provide an analytic tool
for a quick and fairly accurate estimation of the static failure load. The plate is represented
as a two-dimensional structure containing arbitrary loaded/unloaded holes and edge force
boundary conditions. From a literature study, it is decided that an analytical model based
on the method by Xiong and Poon [2] is used for the determination of the stress field. A new
general failure criterion on the basis of Kweon [3] is constructed to determine failure. The
stress and failure theories are implemented in a software package, verified by hand calculation
and validated with finite element analysis and experimental data. The performance of the new
failure theory was also compared to the performance of the in-house Point Stress Criterion
at the company where the work was performed.

The stress field methodology is able to accurately determine the stress field in two-dimensional
plates with holes. The performance of the new failure criterion is better with respect to the
in-house criterion and has a maximum discrepancy of +20% which is acceptable for design
purposes. Unfortunatley, due to issues with the assumption of the stress boundary conditions
for loaded holes, the method is restricted to laminates with a directionality lower than 1.13.
Once these issues are resolved, the method will be generally applicable.
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Summary

The more accurate one can predict the failure load of an aircraft component, the lower safety
factor for the design is required. This results in a lower structural mass and translates into a
lower fuel consumption which is beneficial for the aircraft operator. Using metals, static failure
loads of components can relatively easy be determined by looking at the stress concentrations
in the design. For composites, because of their complexity, determining failure is not so
straightforward. This complexity and the lack of a reliable model [1] led to an abundance
in failure criteria for (un)notched laminated plates. Some quite accurate models exist but
they can require a significant amount of computational resources which is often not available.
Therefore many design organizations still use the basic, less accurate, criteria. Most of these
criteria, however, are only valid for a specific load, material, hole or specimen size. Often, for
more complicated scenarios, failure can not confidently be estimated.

The purpose of this work is to present the development of an analytic tool for the prediction
of failure in orthotropic plates with holes subjected to arbitrary loading which can be used
by Fokker Aerostructure B.V. in the design of aircraft components. First the state of the
art is determined with a literature survey on existing theories for stress evaluation and static
failure prediction in composite plates with holes. Next, the theories obtained from the survey
are evaluated for their applicability, joined and/or modified to form the analytic tool. The
tool is then verified by simple hand calculations and validated with finite element analysis
and experimental data.

The basic problem, which is shown in Figure 1, consists of a two-dimensional flat rectangular
orthotropic plate containing m holes. The edges of the plate and holes can be loaded or
unloaded as defined by the user. From the literature survey it is determined that, to estimate
the stress field for this type of problem, a complex stress analysis on the basis of Lekhnitskii [4]
and Xiong and Poon [2] is best to use. Advantages of this method for the determination of
the stress field is that it results in a single expression for the entire stress field and that
arbitrary boundary conditions can be used. For failure prediction, it is clear that, for both
notched and unnotched plates, there is no consensus on which failure criterion is best to
use. To predict unnotched ultimate failure in two-dimensional loading conditions, one needs
to construct an algorithm on the basis of a progressive failure model. This model consist
of an algorithm which takes the degradation of lamina properties due to matrix cracking
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Figure 1: A rectangular plate with multiple holes subjected to arbitrary loading

and the non-linearity of the material into account in conjunction with a failure model to
predict onset of failure. To predict failure onset, the phenomenological failure criteria by
Puck [5], LaRCO03 [6], LaRCO04 [7] and the Tsai-Wu [8] are the best criteria with an accuracy
of £10% [1]. An accuracy of £50% in 85% of the cases has been shown for Puck’s final
failure progressive model [5] which will be used. From the identified notched failure criteria,
the Linear Elastic Fracture Mechanics (LEFM) [9], Average Stress Criterion (ASC) [10] and
Point Stress Criterion (PSC) [10] were selected as most promising when taking into account
the intended use of the analytic tool. Eventually, because an analytic method to determine
the characteristic length is available from Kweon [3], the PSC [10] was selected to form the
basis for the notched failure criterion.

Following Lekhnitskii [4] an appropriate solution for the stress functions ¢;(z;), j = 1,2 to
determine the stresses, strains and displacement for arbitrary boundary conditions as shown
in Figure 1 is:

©i(z) = Co; + S0y Cry 20 + 33 1{C(k+kN In(&mj) + A= CltkN-4n); } )
j=172

In Eq. (1), &; is the mapping function of the m-th hole to the complex plane, Cy,;, j = 1,2 are
complex coefficients which must be determined through the problem boundary conditions.
These coeflicients are determined using the principle of minimum potential energy. This
principle states that the minimum total potential energy of the structure is reached given
the external loading conditions. Thus, the derivative of the total elastic strain energy in
the problem should be zero. Integrating for the elastic strain energy over the domain and
boundaries of the plate and taking its derivative, it is observed that, due to satisfaction of
the equilibrium equations by Eq. (1), the part related to the domain becomes zero and only
the boundary terms remain. Working out these boundaries with the stress function (1) and
solving for JIT = 0 eventually results in a linear system of equations which can easily be
solved.

For an accurate representation of the stress field, one now only has to define valid stress
boundary conditions. This is especially important when loaded holes need to be evaluated.
Many researchers assume that the pin-load on a hole edge can be represented by a radial cosine
shaped compression load on the hole edge [2,11,12]. Several studies [13,14], however, have
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Figure 2: Definition of the compressive characteristic distance by Kweon [3] and the CPSED

shown that this assumption is essentially wrong because of the effects of pin-hole clearance,
flexibility, friction, material orthotropy and magnitude of the total load. In an attempt to
resolve some of these issues the pin-hole contact load is replaced by a radial cosine distribution
scaled between two contact angles 01, and 6,,. These angles are subsequently determined
by an iterative procedure which takes into account the size of the pin.

As aforementioned, the PSC is used to predict notched failure in the plate. As input, the PSC
requires a characteristic distance away from the hole and an unnotched failure criterion. For
unnotched failure, because it is one of the recommended theories and the desire was expressed
to evaluate this criterion, the Puck criterion as described by Verein Deutsher Enginieure2014
(VDI2014) [5,15] is used. To determine the characteristic distance away from the hole, a
novel analytic methodology on the basis of Kweon [3] is constructed. The definition of Kweon
for the compressive characteristic distance in loaded holes is: “The distance from the front
hole edge to a point where the local compressive stress by the arbitrarily applied load is the
same as the mean bearing stress”. This is shown in Figure 2. The original definition for this
characteristic distance, however, reads [10]: “The distance over which the material around the
hole must be critically stressed in order to find a sufficient flaw size to initiate failure.”. Now,
this region contains a certain strain energy and, since it is critically stressed, one can call this
energy the Critical Potential Strain Energy Density (CPSED) for failure of the material. One
can use this critical energy density to establish a new definition for the characteristic distance
do: “The distance from the hole edge where the strain energy density over this distance equals
the CPSED.” and given by:

do
HCT:/ oedr (2)
0

Using Kweon’s analytic definition for the compressive characteristic distance, it is possible
to analytically determine the CPSED for compression (Il .). Furthermore, considering that
the characteristic distances for tension and compression are unequal, it is fair to consider
that the CPSED for the tension and compression cases are unequal. No analytic formulation
for the tensile characteristic distance exists, thus it is chosen to estimate the CPSED for
tension by scaling the CPSED for compression with the ratio of the strain energy density of
an unnotched plate subjected to uniaxial tension and compression at failure load respectively
as shown in Eq. (3)

II (O'un,t)

I (Uun,c) cr,c

In a multiaxial loading condition, however, it is required to have definitions for critical en-

Hcr,t = (3)
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ergies which are not only uniaxial tension or uniaxial compression. Therefore, in a similar
way as is for the CPSED for tension, the CPSED for transverse tension, transverse compres-
sion, tension-tension, tension-compression, compression-tension and compression-compression
loading is defined. The algorithm to predict failure of a notched plate is now given by:

1. Calculate the CPSED for compression by analysis of a pin-loaded joint
2. Calculate the CPSED for tension and the other multiaxial loading conditions
3. Calculate the stress field of the problem

4. Set an initial characteristic distance and determine the minimum Reserve Factor and
critical loading angle around each hole

5. At the critical angle, calculate the Potential Strain Energy Density (PSED) at failure
from the hole edge to the characteristic distance

6. When the CPSED equals the PSED, the ultimate failure load is obtained. Otherwise,
a new characteristic distance is chosen based on whether the PSED is higher or lower
than the CPSED and the procedure is repeated from step 4.

The algorithm above is implemented in a routine regulated by a Visual Basic Script and
calculated with MathCAD13.1(©). The functioning of the routing is verified by comparing the
stress for several configurations at the hole edge to analytic solutions from Lekhntiskii [4] and
simple hand calculations. The convergence behaviour of the algorithm is determined by inves-
tigating the influence of the numerical integration parameter TOL (internal MathCad13.1(©)
and the amount of summations N in the stress function (Eq. (1)). Finally, from this investi-
gation it is concluded that good working ranges for N and TOL, when less than 6 holes are
present, are:
N2>7
1072 >TOL >10"%v 10~ > TOL > 10716 @)

where V is the OR operator. The performance of the contact angle and stress field method-
ology are further investigated by comparing the results from these analysis to Finite Element
Analysis. More complicated configurations are analyzed and the ability of the tool to take into
account the finite size of the plate is determined. From these investigations it is determined
that, for an accurate representation of the stress field, the ratio of the hole edge distance and
diameter over panel width should be larger than 2.5 and 4 respectively. For design purposes,
an E/D > 2.5+ 1.3 [mm] [16] and W/D > 4.7 [17] is advised. These boundaries are thus
well within limits. Unfortunately, the validation of the contact angle algorithm, revealed
that, for the current assumptions for the pin-hole stress boundary condition, the estimation
is only conservative for laminates with a directionality lower than 1.13. It is recognized that
this restriction greatly affects the laminate design space for this tool. This issue was, during
the construction of this work, addressed by Gerhardt [18] but could unfortunately not be
implemented due to time constraints.

In preparation to validate the notched failure method with experimental data, the hole di-
ameter to determine the CPSED is determined by making predictions for a selection of the
experimental data points for multiple hole diameters. The selection of data contains both
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Figure 3: Predicted vs measured failure for unloaded hole configurations, screened

open hole tension and compression as well as pinned hole bearing experiments. Next, the re-
quirement that none of the predicted values should overestimate the measured values by 10%
and be as close as possible to the measured values, result in a hole diameter of 5[ mm]. Finally,
by screening a dataset of 151 experimental values to the tool boundaries, a total amount of
92 (38 measurement points unloaded and 54 measurement points loaded holes together) are
selected and predictions for these data points are made. The results are presented in Figure 3
and Figure 4 from which it can be seen that, for the unloaded experimental points, all but a
few data points are within £20% of the measured experimental value. For the loaded data-
points, the scatter is much larger but concentrates between —20% and —60%. The prediction
for loaded holes is thus almost always conservative. It is thought that, however no definite
proof can be delivered, the source of this conservatism is due the fact that, in literature, the
ultimate failure load after occurrence of significant damage is reported and not the onset of
failure. For unloaded holes the difference between onset and ultimate failure is often small
which is why the same conservatism is not seen in these predictions. For loaded holes, how-
ever, as observed by Crews [19], this difference can be significant due to interactions of failure
modes and strengthening effects. The algorithm is not able to take these interactions and
strengthening effects into account and therefore will always predict a lower failure load. It is
worthwile to investigate whether this PSC failure criterion actually predicts onset of failure
as indicated by the definition from Whitney and Nuismer [10].

Apart from the issues with the loaded hole predictions and the assumption for the pin-
hole edge stress distribution, it is emphasized that the new methodology is an improvement
over the current in-house failure criterion at Fokker Aerostructures B.V. For loaded hole
configurations, the majority of the predictions are moderately to highly conservative while
the unloaded predictions are situated in the +20% region. It is recognized that, initially, a
maximum discrepancy of +10% was set for the method, and although the internal parameters
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were scaled to obtain this result, the finally obtained 4+20% for the entire dataset is still
remarkably close. This overestimation can easily be eliminated by changing the hole size
for the determinion of the CPSED to a lower value. Additionally, the pin-hole edge stress
distribution should be improved to eliminate the directionality boundary of 1.13. When these
issues are resolved, the method will be available for design purposes in the entire design
envelope.
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Frequently Used Symbols and
Abbreviations

Symbol | Explanation

a Displacement angle

a; Real part of

Bj Imaginary part of p;

Vay Shear strain in the xy-plane

€ In-plane strain vector

o Normal strain in x-direction

Ey Normal strain in y-direction

O01m Start contact angle for hole m

Oom End contact angle for hole m

0p Contact angle

A Absolute difference between pin size and hole size

1 Material eigenvalue

Vij Poissons ratio in ij-plane

Emj Mapping function of the m-th hole to the complex plane

II Total potential strain energy

e Critical potential strain energy density compression

| P Critical potential strain energy density transverse compression

ey ce Critical potential strain energy density biaxial compression-compression
ey ot Critical potential strain energy density biaxial compression-tension
Ier s Critical potential strain energy density tension

e ¢ Critical potential strain energy density transverse tension

ey te Critical potential strain energy density biaxial tension-compression
Ier 4 Critical potential strain energy density biaxial tension-tension

o In-plane stress vector

op Tangential stress on the hole edge

019 Normal stress on plate edge 1-2
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023
034
041
Orm
Oun,t/c
Oy

Oy

Oz

T12
723
T34
T41

Trm

Normal stress on plate edge 2-3

Normal stress on plate edge 3-4

Normal stress on plate edge 4-1

Radial stress on the edge of hole m

Unnotched failure stress tension/compression
Bearing stress

Radial stress on the edge of a hole

Normal stress in x-direction

Normal stress in y-direction

Shear stress

Shear stress at plate edge 1-2

Shear stress at plate edge 2-3

Shear stress at plate edge 3-4

Shear stress at plate edge 4-1

Shear stress on the edge of hole m

Shear stress in the x-y plane

Complex stress function

Entry ¢, j in the laminate compliance matrix
Entry 4, 7 in the laminate stiffness matrix
Characteristic length for average stress criterion
Semi major axis of hole m

Material angularity

Semi minor axis of hole m

Elastic stiffness matrix

Complex coefficient of the stress function

Hole diameter

Compressive characteristic distance
Characteristic distance for point stress criterion
Hole center edge distance

Engineering Young’s modulus in ¢ direction
Stress exposure

Mode I fracture toughness

Mode II fracture touchness

Engineering shear modulus in ij-plane

Stress concentration factor

Stress concentration factor at infinity
Specimen length

Amount of summations in the stress function
Slope of the fracture curve to the left of oo =0
Slope of the fracture curve to the right of oo =0
Total bearing force

Fracture resistance of the action plane parallel to the fibre direction
Coefficient for the m-th hole

R.D.B. Sevenois UNCLASSIFIED



xix

ry, | Hole radius

rp | Pin radius

rr | Material directionality

S Elastic compliance

S12 | In-plane shear strength

S12 | Ply shear strength

t Laminate thickness

tmj | Coefficient for the m-th hole

tply | Lamina ply thickness

U Displacement in x-direction

uq | Displacement in x-direction at angle o on the hole edge
ug | Displacement in x-direction at 0° on the hole edge
v Displacement in y-direction

W | Specimen width

X¢ | Longitudinal compressive strength

X* | Longitudinal tensile strength

Zm | Center of hole m with respect to the x-coordinate
X, | External force component parallel to x

Y¢ | Transverse compressive strength

Y? | Transverse tensile strength

Ym | Center of hole m with respect to the y-coordinate
Y,, | External force component parallel to y

Zj Complex coordinate
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Abbreviation | Explanation

ASC Average Stress Criterion

CFRP Carbon Fibre Reinforced Plastics
CID Coordinate IDentified

CPSED Critical Potential Strain Energy Density
CpPU Central Processing Unit

DZM Damage Zone Model

ESDU Engineering Sciences Data Unit
FEA Finite Element Analysis

FEM Finite Element Method

FF Fibre Failure

FPF First Ply Failure

FRP Fibre Reinforced Plastics

GFRP Glass Fibre Reinforced Plastics
IFF Inter Fibre Failure

LaRC Langley Research Center

LEFM Linear Elastic Fracture Model
MCFE Most Conservative Fracture Envelope
PSC Point Stress Criterion

PSED Potential Strain Energy Density
QI Quasi-Isotropic

RF Reserve Factor

SCF Stress Concentration Factor

UD Uni-Directional

UF Ultimate Failure

VBScript Visual Basic Script

VDI Verein Deutscher Enginieure
WWFE World Wide Failure Exersice
XFEM eXtended Finite Element Method
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“ Theoretically, a model always matches reality. ”

“ Assumptions are at the basis of all problems in this world. ”






Chapter 1

Introduction

When introducing composite structures as a replacement for (metal) components engineers
are confronted with many issues. One of these issues is that the standard, isotropic, stress
and failure prediction methods for basic structural elements are unusable. To allow composite
structural design, each of these structural elements must therefore be reevaluated. One of
these structural elements is a rectangular plate with (un)loaded holes subjected to external
loads. Over the years, the complexity of these materials resulted in an abundance of fail-
ure prediction methods for this type of structures which often have a limited applicability
and questionable reliability [1]. In addition, the more accurate failure prediction models can
require significant computational resources which is often unavailable and renders them less
suitable for fast prediction of multiple scenarios. There is thus the need for a fast, straight-

forward, validated method to predict stress and failure in rectangular composite plates with
(un)loaded holes.

In this work the development of an analytic tool and its supporting theories for the determi-
nation of the stress and prediction of failure in a rectangular orthotropic plate with multiple
elliptical holes subjected to arbitrary in-plane loading conditions is described. The tool is
intended to be used by engineers at Fokker Aerostuctures B.V. for the design of aerospace
structural parts. Hence it is imperative that the analytic tool is easy to use, fool proof and
well documented. First, to establish the state-of-the art in stress analysis and failure predic-
tion for composite materials, a literature survey is performed. Next, flowing from the survey,
the most suitable methods for the purpose of the tool are selected to serve as a basis for the
development of the theory. Finally, the tool is implemented in a software package, verified by
hand calculations and validated with experimental data.

The structure of this report is as follows. In Chapter 2 the results of the literature are
presented. Next, the theory used to determine the stress field is given in Chapter 3. In
Chapter 4 a discussion is provided on the theory for failure prediction followed by verification
and validation of the model in Chapter 5 and 6 respectively. A discussion on the usability and
validity of the tool is provided in Chapter 7 as well as the conclusions and recommendations.
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Chapter 2

Literature Survey

An argumented choice for a suitable stress analysis and failure prediction methodolgy can
only be made if the state-of-the-art about these theories, their expansions, advantages and
disadvantages is known. For this purpose the scientific literature was investigated by the
author in a previous study [37]. The discussion below is a brief summary of this study.

2.1 Stress Analysis

The mathematical determination of stresses in any structure can be performed using two
methods: analytic analysis or Finite Element Analysis (FEA). In analytic stress analysis the
problem to be solved is reduced to solving a set of equations which represent the stress state
with respect to the boundary conditions. However, due to the complexity of some problems,
this process often involves assumptions and simplifications. Fueled by the need for solutions
of problems for which no analytic solution exist, FEA [20, 38] is currently one of the most
popular methods for the analysis of stress fields. While fairly easy to use, however, it can also
be dangerous in the hands of an unexperienced engineer/scientist. In the following sections
both methods are briefly discussed.

2.1.1 Analytic Stress Analysis

In literature three methods for analytic determination of the stress field exist: “Lekhnitskii
Formalism” [4,39], “Stroh Formalism” [40,41] and approximate analytical methods [42,43].

During the sixties and seventies Lekhnitskii [4] and Savin [39] provided the basis for what
is now called “Lekhnitskii Formalism”. This method essentially generalizes Muskhelivshili’s
approach for solving two-dimensional deformations of isotropic materials [44] with complex
stress analysis. Lekhnitskii [4] and Savin [39] obtained solutions for circular, elliptical, tri-
angular and square holes in, mainly, infinite orthotropic plates. Lekhnitskii’s approximate
solution for stresses around rectangular and square openings in orthotropic plates was further
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improved by De Jong [45] who used a Cauchy type integral instead of a series to approximate
the boundary conditions. Sufficient accuracy was obtained by using only the first three terms
of the series after which numerical values were obtained for six laminates under various loading
conditions. In a similar fashion Rajaiah [46] also obtained the solution for quasi-rectangular
holes in an infinite orthotropic plate by using the superposition principle but focused his work
on finding the configurations leading to minimum stress concentrations. In the meantime, the
“Lekhnitskii Formalism” became well known in the engineering community which led to the
release of ESDU85001 [47] in 1985 by the Engineering Sciences Data Unit (ESDU). This doc-
ument contains explicit equations for the stresses around circular holes in infinite orthotropic
plates. By 1995 a Fortran computer program (ESDUpac A8501) which performs the calcula-
tion automatically was added. Expanding the Formalism continued when Tung [48] provided
an approximate solution for the case when the material is close to isotropocy or displays
specially orthotropic behaviour. This case was initially ignored by Lekhnitskii because his
solution produced a singularity. Tung found that, by letting the roots of the material eigen-
values (complex constants which characterize the anisotropocy of a material) differ a small
amount, a solution can be obtained while the discrepancy between the results and actual
values is within one hundredth of a percent. In 1988, the concept of finite size composite
laminates was introduced in the Formalism by Lin and Ko [49]. They obtained solutions for
a single elliptical hole in a rectangular finite width plate by using a Laurent series in con-
junction with the least squares boundary collocation method. The hole is mapped using a
complex series and the square boundary is approached using a Taylor series. The stresses in
the doubly connected region are obtained by truncating the series to a finite series after which
suitable points on the inner and external boundary are chosen. The stresses are imposed at
these points to satisfy the boundary conditions by the “least-squares boundary collocation
method”.

Some time later Xu [50] recognized that the work provided by Lin and Ko [49] and Gerhardt
[51] is good but suffers from computational drawbacks as long CPU time and low accuracy.
In order to reduce these drawbacks, Xu used a Faber series for the stress function instead of
a Taylor series. Additionally, his solution allows for the introduction of any plate boundary
shape in contrast to the rectangular shape by Lin and Ko. Again the unknown coefficients are
determined using the “boundary collocation method” as also used by Lin and Ko [49]. In the
current solution the inner boundary can be satisfied accurately (error less than 10~°) while
the outer boundary can be well satisfied to ensure a relative error within 1%. In the same
year Xu [52] published an expansion of this work to account for multiple (unloaded) elliptical
holes in finite width plates. Xu claimed that the accuracy of this method is equal to this from
his previous research and that considerably less computation time is required. No comparison
to FEA was presented and therefore it is not proven that his results are accurate. By further
developing his work, Xu [12] expanded the formulation of the stress function to incorporate
multiple loaded holes. The stress function is extended with a logarithmic part and the same
method of solving is used. After the findings by Xu, developments with respect to a finite size
plate solution have only been presented by Hufenbach [53,54] who incorporated the effects of
hygrothermal loading and a layer by layer analysis for the determination of first ply failure.
This is obtained from the average strain by assuming that the strain in every layer is equal,
as is often done in classical lamination theory. His work has been validated with results from
FEA.

On the subject of infinite plates Daoust and Hoa [55] investigated the analytical solution
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2.1 Stress Analysis 5

for triangular holes. By introducing a single parameter any shape of triangular hole can
be analysed. On this basis Ukadgaonker [56] investigated the stresses in laminated plates
subjected to uniaxial, biaxial and shear stresses. Already it was recognized that a similar
method can be applied for different hole shapes. In addition, similar to Daoust and Hoa,
by introducing a parameter which links tension/compression stress in = and y direction,
Gao [57] solved the problem for an infinite plate subjected to biaxial loads with an elliptical
hole without having to use the superposition principle. An explicit expression was obtained
by using an elliptic-hyperbolic coordinate system in contrast to the often used cartesian or
cylindrical system. Whitworth [58] used the solution from Lekhnitskii for anisotropic infinite
plates with holes to investigate the effect on the stress field when the fibre orientation is
changed. Early 2000, Ukadgaonker [59] adapted the “Lekhnistkii Formalism” with the aid
of the Schwarz-Christoffel formulation to obtain the stresses around arbitrarily shaped holes
in an infinite plate subjected to any combination of in-plane loads. Ukadgaonker proposed
a mapping function which, if provided with the right coefficients, can map any hole shape
to a unit circle. Subsequently, a very methodical approach to determine the stress function
was introduced which returns in all of his later work. Due to the superposition principle it is
possible to split the solutions of the stress functions into the sum of the solution for a pristine
plate subjected to in-plane loads and the solution of the hole shape when a negative of the
load is applied to its boundary. Ukadgaonker obtained the solutions for several hole shapes
and loading cases. In the same year Ukadgaonker [60] modified this work to accommodate in-
plane moments at infinity. In 2005 the results of the analyses were compared to FEA [61] from
which it was concluded that there is an excellent agreement between both. Since Ukadgaonker,
few developments for the “Lekhnitskii Formalism” and solving the stress-state problem itself
were presented. Most recent works focus more on the effect of changing fibre orientations
and looking for configurations which produce minimum stress concentrations in the plates.
Nageswara [62] does this for square and rectangular cut-outs while Sharma [63] investigates
circular, elliptical and triangular shapes.

Up to now this discussion mainly concerned problems with finite and infinite symmetrical
or orthotropic plates with one or multiple unloaded holes. Progress has also been made
with other configurations. The case of unsymmetric laminates has been investigated by
Becker, Chen and Ukadgaonker [64—66]. In these works several hole shapes in an infinite plate
are investigated with incorporation of the bending-extension coupling effect. Configurations
which involve loaded holes have also been investigated. Already mentioned was the work
by Xu [12] who derived expressions for finite width orthotropic plates with multiple loaded
holes. Xiong [2,67,68] derived expressions for multiple pin-loaded holes with biaxial loading
conditions. Using the minimum potential energy principle, Xiong avoids the issues originating
from the “least square boundary collocation” method which resulted in a versatile method
for stress analysis. Gruber [69] analytically performed a layer by layer analysis in conjunction
with a parameter study to determine the optimal laminate layout for fasteners. Solutions for
plates with holes containing a rigid/semi-rigid inclusion have also been obtained. Examples
are Berbinau and Soutis [70], Zheng [71] and Lin [72].

Next to the “Lekhnitskii Formalism” there also exists another method for the analysis of two-
dimensional deformation of an anisotropic linear elastic solid. This method is called “Stroh
Formalism”. The “Stroh Formalism” can be traced back to the work of Eshelby [73] and
Stroh [74,75]. Similar to the “Lekhnitskii Formalism”, an Airy stress function is used to
obtain the stresses in the plate. By assuming a suitable function which satisfies the boundary
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conditions, the stresses and strains of the problem can be obtained. The major contributors
to this method are Ting and Hwu [40,41] who both devoted a lot of studies and a book to
the subject. Ting started out by investigating the effect of change of reference coordinates on
the stress analyses of anisotropic elastic materials [76]; this to facilitate his further research
for the analysis of stress singularities in anisotropic wedges [77,78]. In later work Ting
investigated the role of the Barnett-Lothe tensors and the issues when the matrix NN in the
eigenrelation N = pé is non-semisimple [79,80]. In 1992 Ting proposed a generalized Stroh
formalism for generalized boundary conditions [81] which will eventually form the basis for
his book “Anisotropic Elasticity, Theory and Applications” [40] in 1996. In this book, next
to the explanation of basic theory, Ting bundled all his and the existing work from other
authors to provide a thorough investigation into Stroh Formalism and its defining parameters
(Barnett-Lothe tensors, material eigenvalues, etc...). In the book, Ting also presents some
applications of the Formalism for stress analysis. These are mainly applications in infinite
space, half-space, bimaterials, wedges and cracks in plates as well as applications to elliptic
holes, inclusions and surface waves. Additionally, an attempt is made to generalize the Stroh
Formalism for three-dimensional deformations. After publishing his book Ting continued to
investigate the formalism and provided more insight into the physical meaning of Barnett-
Lothe tensors [82]. In 1999 Ting presented a modification to the “Lekhnitskii Formalism”
which simplifies the classification of materials [83]. In 2000 Ting provided a summary of
developments since 1996 [84]. It appears that the “Stroh Formalism” is especially popular
in the analysis of wedges, cracks, inclusions and the characterization of surface waves and
piezoelectric materials. Some developments were made in the analysis of stresses around
holes but so far only elliptical holes were investigated. After 2000 the most of Tings works
were on the subject of surface waves [85-87].

Hwu started as a researcher in 1989 by presenting an analysis of the problem of an elliptic
inclusion in an anisotropic plate based on the “Stroh Formalism” [88]. In the following
years Hwu expanded his work to include any type of opening in an infinite plate [89], solve
thermal problems [90] and any type of inclusion [91,92]. In 1994 Hwu developed a special
boundary element for the numerical analysis of multi-hole regions [93]. Later on, besides
other publications, Hwu mainly focuses on the coupled stretching-bending problem [94-97].
His most important publication is, obviously, his book: “Anisotropic Elastic Plates” [41]. This
book can be seen as an extension to Tings book [40] with a focus on problem solving and
more recent developments. Next to the basic theories subjects as wedges, interfaces, cracks,
holes, inclusions, contact problems, piezoelectric materials, thermal stresses and boundary
element analysis are also discussed. Apart from Ting and Hwu also others have used the
“Stroh Formalism” in their research. Gao [98] studied the use of conformal mapping for
almost-circular holes. The topic of (acoustic) surface waves has been especially popular in
recent years [99-102]. Also, behavioural prediction of piezoelectric materials with or without
holes/inclusions has been reported [103-105]. Although the “Stroh Formalism” has been
applied to many subjects, no solutions have been presented for the analysis of finite width
anisotropic plates with multiple (un)loaded holes.

Next to the “Lekhnitskii Formalism” and “Stroh Formalism”, several authors have attempted
to find approximate, engineering wise easier, methods for the determination of stresses around
holes in (finite) width plates. Mostly, these methods are a derivation from the exact analytical
solutions and are often limited to the determination of stresses in specific problems. In
1975 Konish and Whitney [106] recognized that the methods used for isotropic materials to
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determine stress concentrations cannot simply be transferred to composites because the stress
in the laminate is very dependent on the chosen lay-up which shifts the location of the highest
stresses. Additionally, at that time, current techniques to determine the stress field around
holes in anisotropic plates were cumbersome to be used for engineering purposes. Therefore
Konish and Whitney identified two other approximate methods to determine the critical
stresses. A solution for the stress field can either be obtained by scaling the isotropic solution
with a measure for the anisotropy or extending the isotropic solution to account for anisotropic
materials. After comparing both methods to the exact solution it was concluded that scaling
the isotropic solution leads to unsatisfactory results while extending the isotropic solution
produced good agreement with results in cross-ply dominated laminates. The results are poor
when unidirectional material is used. The approximate solution of Konish and Whitney is
restricted to problems where uniaxial tensile loading in the x direction is applied in an infinite
plate with a central circular hole. Also, only the stresses in a radial direction perpendicular
to the loading can be obtained. For other hole shapes, apart from the exact solution, one
is left with the isotropic solution. For isotropic plates the way to (easily) determine stress
concentrations around holes is documented in Peterson’s Stress Concentration Factors [107].
This book contains fast methods to determine stress concentrations for a whole number of
cases. These cases range from isotropic plates with holes, notches, cracks, grooves, fillets,
etc..., each of which can be loaded or reinforced. Since the third edition a small section is also
dedicated to elliptical holes in infinite orthotropic plates in which the solutions from Tan [108]
are presented. Tan performed research to determine correction factors to incorporate the
effect of a finite width in anisotropic plates. In 1988 [42] this research was started to present
a closed-form solution for anisotropic plates with a central elliptic opening. Two finite width
correction factors are proposed for an ellipse size ratio a/b > 1 and a/b < 4. These correction
factors are only valid for the problem of uniaxial loading and a centered elliptical hole (the
origin of the hole is the origin of the coordinate system). They were compared to experimental
data in [109] from which it is concluded that a good comparison with reality is present. Later,
these findings have also been published in Tan’s book on stress concentrations [108].

Zhang [110] derived an approximate solution for stresses around pin-loaded holes in symmetric
composite laminates using the “Reissner variational principle”. In order to be able to use this
principle one first has to compute the stress and displacements on the hole edge from the
“Lekhnitskii Formalism”. Next, a power and exponential function is employed to estimate
the distribution around the hole. After comparing the results to experimental data it was
concluded that there is a good agreement between both. In the same year Soutis [111] devised
an improvement for the solution of Konish and Whitney by incorporating biaxial loading. His
solution has its limitations because it is only valid for infinite plates and only stresses along the
two principle axes can be obtained. Although in good agreement with the analytical solution,
the degree of accuracy of the approximate method is strongly influenced by the laminate
lay-up and the biaxiality ratio. For laminates with mainly 45°plies the agreement is excellent
while the analysis of unidirectional laminates can become inaccurate up to 32%. In 2007,
Russo [112] published a hybrid theoretical-numerical method for determining stresses in finite
width laminates containing a circular hole subjected to uniaxial tensile loading. The model
is based on a correction function for the stress distribution in a infinite width plate which
is determined by comparing the infinite analytical results to finite size results from FEA. A
comparison between numerical and experimental data resulted in an accuracy within 2-3% of
the experimental values. Addiitonally, in contrast to the model from Konish and Whitney [106],
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the model is not restricted to certain laminates and is therefore an improvement.

Although approximate methods greatly simplify the determination of the stress field around
holes, they are restricted to very specific problems. Because of this none of the existing ap-
proximate solutions can efficiently account for the case of a finite width plate with multiple
elliptical holes at random locations. The use of approximate methods for the problem at
hand is therefore excluded. Compared to the “Lekhnitskii Formalism”, “Stroh Formalism”
has remained in the background as a method of choice for many researchers which developed
solutions for problems with anisotropic plates. By inspecting both methods the following can
be concluded: solutions exist for the problem at hand which uses the “Lekhnitskii Formal-
ism” [2,50] while, although it is possible, no solution has yet been presented by the “Stroh
Formalism”. The “Stroh Formalism” is mathematically more elegant because of the use of
tensors and matrix notation which simplifies changing coordinate systems. For both meth-
ods, however, a mapping to the complex plane is required to be able to solve the problem.
Since this is regarded as the most difficult part of the solution algorithm, one can conclude
that the difference between the “Lekhnitskii Formalism” and “Stroh Formalism” is minimal.
Therefore, and because a solution based on the “Lekhnitskii Formalism” already exists, the
“Lekhnitskii Formalism” will be used in the eventual analytic tool.

Within the “Lekhnitskii Formalism” Lin [49] and Xu [50] presented a solution for the case of a
finite width plate with multiple (loaded) holes using the “least squares boundary collocation
method”. Xiong [2,67,68] presented a method for multi-fastener finite width plates using the
minimum potential energy principle. It is either one of these methods which will be used in
the analytic tool. The decision is argumented in Chapter 3.

2.1.2 Finite Element Analysis

Since the first use of FEA in 1960 [20] much progress has been made and a standard method-
ology for FEA has been formed. First the continuum to be analysed is divided in a finite
number of parts (elements). The behaviour of each element is defined by a number of pa-
rameters. Next the solution of the complete system is obtained by solving the mathematical
rules set for each element for the applied boundary conditions. The evolution of FEA and
the implementation of several methods for analysis is shown in Figure 2.1.

Due to the discretization approximation of the continuum, problems may arise during analysis.
First, it is not always easy to ensure that the chosen displacement functions will satisfy the
requirement of displacement continuity between adjacent elements. Second, by concentrating
the equivalent forces at nodes, equilibrium conditions are satisfied in the overall sense only.
Local violation of equilibrium conditions within each element and on its boundaries will thus
usually arise. Convergence problems may arise because the assumed element shape functions
limit the infinite degrees of freedom which may result in never reaching the true minimum
energy state of the continuum. In general, accuracy and singularity problems improve as the
amount of elements is increased. Other errors may occur due to the computation capabilities
of the used computer. As the computer uses finite (rounded-off) numbers for computation the
accuracy of the calculation is reduced every time an operation is performed. This reduction
of accuracy is mostly quite small as modern computers can carry a large number of significant
digits. Many of these possible errors can be avoided by appropriately modeling the problem
in the computer environment. To do this, the choice of element shape and mesh size is crucial.
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Figure 2.2: Discretizations of a grain boundary problem for (a) an XFEM/GFEM model with a
structured (Cartesian) mesh and (b) a FEM model [21]

There exists, however, a multitude of elements and infinite possibilities of meshing. Therefore:
“Although the finite element method can make a good engineer better, it can make a poor
engineer more dangerous” [38]. It takes skill and knowledge to obtain good results.

Examples of researchers who investigated the stress field around holes in composite laminates
are Gerhardt [51], who proposed a hybrid-finite element approach for stress analysis of notched
anisotropic plates, Shiau [113], who investigated the effect of variable fiber spacing on the
stress concentrations by defining a new triangular plane stress element and Ozbay [114] who
used FEA to analyse elastic and elasto-plastic stresses on the cross section of a composite
material with a circular hole subjected to in-plane loads. FEA has also successfully been
used to investigate (progressive) failure in notched composite laminates. For this the reader
is referred to Section 2.2.2.

One of the problems with FEA is that it is required for the elements to follow the physical
boundaries of the problem. This leads, amongst other effects, to the requirement of remeshing
the structure when evolution of damage is investigated. Additionally, at the crack tip, due
to this requirement, a singularity exists at the tip of, e.g. a crack. To avoid this, Belytschko
developed the eXtended Finite Element Method (X-FEM) [21,115,116]. X-FEM is a numerical
method to model internal (or external) boundaries such as holes, inclusions, or cracks, without
requiring the mesh to conform to these boundaries. This allows for faster and more reliable
analysis of dynamic stress fields including progressive analysis of damage because it is not
necessary to re-mesh the structure between loading steps which is illustrated in Figure 2.2. To
simulate the boundaries a method is derived to ’enrich’ the elements based on the Partition-
of-Unity Method (PUM). An advantage of X-FEM is that more accurate numerical results
can be obtained than with FEA. The rate of convergence, however, is not optimal with respect
to the mesh parameter “A”. The X-FEM method has mainly been used in the (progressive)
analysis of cracks but also in the modeling of solidification problems, fluid mechanics, biofilms,
piezoelectric materials and complex industrial structures.

For the purpose of this project, FEA will be used as a validation for the analytic tool. The
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2.2 Strength Prediction 11

choice for FEA has multiple reasons. Firstly, the analysis of a linear elastic stress field around
holes is well established in the engineering community using FEA methods. Secondly, X-FEM
was mainly developed to provide a better method for the prediction of damage growth. It is
recognized that one could propose not only to validate the stress field, but also validate the
ultimate failure prediction using finite elements. This would put X-FEM in the advantage
but it would also require to build a significantly complex progressive damage model. This
would require additional research and time which is out of the scope of this project. Hence
the ultimate failure prediction has to be validated with test data. At Fokker Aerostructures
B.V. the software in use for stress analysis is MSC Patran/Nastran(©). The MSC.Laminate
Modeler [117] is a readily usable tool to design and analyse composite plates. The solver
includes the use of QUAD4/8 and TRI3/6 laminate shell elements to account for bending
and extension deformation as well as HEX8/20 and WEDGEG6/15 elements to model the
flexibility of the laminate in all directions.

2.2 Strength Prediction

Next to the determination of the stress field, one has to be able to evaluate the field for the
estimation of failure. Several researchers have developed methods to do this such as the Point
Stress (PSC) and Average Stress Criteria (ASC) from Whitney and Nuismer [10] or the Linear
Elastic Fracture Model (LEFM) by Waddoups [9]. More advanced methods try to predict
the growth and development of damage which lead to failure in an area called progressive
damage modeling (e.g. [118,119]). Many, not to mention all, models determine the notched
strength of laminates by using the unnotched mechanical properties of a lamina or laminate
which are determined from micromechanics and strength fracture criteria. Therefore first an
overview of the existing strength criteria for an unnotched laminate in Section 2.2.1 is given
followed by a discussion on the determination of notched failure strength in Section 2.2.2.

2.2.1 Unnotched Strength

The existing failure criteria for unnotched laminated composites can be categorized in mul-
tiple ways. Interactive criteria [120,121] take into account the stresses and strengths from
multiple directions while non-interactive criteria are composed of multiple requirements for
each loading direction. Some criteria have to be evaluated on the ply level while others are
only valid for the entire laminate. In addition, criteria on a phenomenological [5,122] basis
exist. In the following the author is more interested in the performance and application of the
existing theories rather than their categorization. This has the consequence that the theories
presented are discussed in a more intuitive way.

The most widely used failure theories are included in composite textbooks as Daniel [123] or
Kassapoglou [16]. These are the “Maximum Stress or Strain”, “Tsai-Wu”, “Tsai-Hill” and
“Hashin-Rotem” criteria. According to the “Maximum Stress” criterion, failure occurs when
at least one stress component along the principal material axis of a lamina inside a laminate
exceeds the strength in that direction. The “Tsai-Hill” failure criterion is an energy based
interactive criterion similar to the Von-Mises criterion for isotropic materials. The “Tsai-Wu”
criterion, proposed by Tsai and Wu [120], was one of the first attempts to develop a general
theory for failure in anisotropic materials. An advantage of the “Tsai-Wu” criterion is that it
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is operationally simple for implementation in a computer environment and is expressed in a
single criterion in which all strengths are incorporated. The “Hashin-Rotem” criterion [122] is
a collection of phenomenological criteria, e.g. for each failure mode of the laminate a different
criterion is used which are evaluated simultaneously. The criterion consists of two separate
failure modes, one for fibre failure and one for interfibre failure. Next to the aforementioned,
an enormous amount of other criteria or expansions of existing ones were developed by other
researchers. Examples are Yamada and Sun [121] who proposed a failure criterion based
on the assumption that, upon ultimate failure, all transverse plies have already failed due
to microcracking which leaves only the plies in the loading direction. Whitworth [124], who
proposed a failure theorem based on the strain energy and Hart-Smith [125,126], who proposed
several adaptations of the maximum stress theory. By 1991, partly due to this uncontrolled
growth of failure criteria, it became clear that doubts existed about whether “failure criteria
in the current (1991) use were genuinely capable of accurate and meaningful prediction of
failure in composite components” [127]. In an effort to resolve this issue, it was decided
to attempt to establish the state-of-the-art of failure prediction in composite laminates by
launching a project which is now known as the “First World Wide Failure Exercise” (WWFE-
I) [1,128,129]. In this project, managed by Hinton, Kaddour and Soden, leading researchers
in the field were asked to predict failure in a predefined set of test cases [130] of several
composite laminates under various in-plane loading conditions. This using their favourite
failure theory. The exercise was divided in two parts: part A [128] in which the theoretical
results of the contributing theories were compared and part B [129] in which theoretical results
were compared to experimental results. Ultimately, the exercise was expanded with a part
C which included additional failure criteria which were developed during the course of the
exercise [131] and a recommendation to designers [1] of composite structures. In the end a
total of 19 different failure theories were evaluated from which it was concluded that 5 theories
had the most utility for designers. These are the theories provided by Zinoviev [132,133],
Tsai [134, 135],Bogetti [136, 137], Puck [5,138] and Cuntze [139,140]. No straightforward
conclusion was given on which theory was best to use. In predicting the final strength of
multidirectional laminates none of the failure theories were able to predict within +10% of
the measured strengths in more than 40% of the cases. Puck and Cuntze performed best being
able to predict within £50% in 85% of the test cases. For final failure it is recommended to
use Puck or Cuntze’s theory.

In an effort to improve the predictions from WWFE-I. Davila [6] proposed a set of six phe-
nomenological failure criteria denoted LaRCO03. A mix of methods ranging from fracture
mechanics to adaptations of the Mohr-Coulomb interaction criterion. Three criteria are pro-
posed for matrix cracking and three criteria are proposed for fibre failure. Using these criteria
and the definitions of the non-trivial parameters (e.g. 03", Teffs etc...), which are described
in [6], the following ply properties E1, By, G1a, v12, X©, X, YT, Y%, St G1.(L) and Gpre(L)
are required to determine failure. The properties oy and n* (angle of the fracture plane and
longitudinal coefficient of influence) can be assumed or experimentally obtained (additional
accuracy). A comparison of the use of these failure criteria with results from WWFE-I led
to the conclusion that LaRCO03 is a significant improvement over the commonly used Hashin
criteria. This statement should however be approached with caution. Only two test cases
from WWFE-I are compared and the description of how the results for the laminate final
failure results are obtained is missing (progressive failure model or first-ply-failure? (FPF)).
Nevertheless, LaRC03 must however be quite useful as in later years, Pinho, in cooperation
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with Davila, expanded LaRCO03 for shear non-linearity and general three-dimensional stress
to LaRCO04 [7]. Additionally, improvements for some criteria from LaRCO03 are presented. A
similar comparison to test data is provided as in LaRC03. This again adds to the uncertainty
in the correctness of LaRC04 but, as with LaRCO03, it can be noted that they were used for
the assessment of the damage tolerance of postbuckled hat-stiffened panels by Bisagni [141]
and to develop a continuum damage model by Maimi [142]. Also Vyas [143] (in cooperation
with Pinho) constructed from LaRC04 a constitutive damage model for multidirectional com-
posites incorporating the effects of hydrostatic pressure and softening due to matrix cracking
by using a finite element formulation. The use of LaRC04 in progressive models indicates
that the criteria are only capable of predicting the onset of damage. Las [144] attempted to
investigate the differences in the use of the LaRC04 and Puck criteria for progressive failure
analysis up to final rupture. In his progressive analysis, upon detection of failure, the ply
stiffnesses associated with a failure mode (matrix or fibre) are immediately reduced to zero.
Obviously, since this approach does not take into account the gradual stiffness degradation,
the results did not satisfactory match the experiments and no conclusion could be made.
Regardless of other theories, most recently, Satheesh [145] decided to return to the simpler
failure criteria (maximum stress, Tsai-Wu and Micromechanism failure) to construct a Most
Conservative Failure Envelope (MCFE). This most conservative envelope is subsequently used
in a genetic algorithm to construct minimum weight laminates.

After the conclusion of WWFE-I in 2004 it was clear that a lot of improvements in failure
prediction of composite laminates still had to be made. Additionally, the desire was expressed
to perform a similar exercise for laminates under general 3-dimensional loading (e.g. thick
laminates, etc...) and laminates with stress concentrations (e.g. notches, cracks, etc..). These
desires were eventually converted in the Second World Wide Failure exercise (WWFE-II) [146]
and the Third World Wide Failure exercise (WWFE-III) [147] . Originally it was envisioned
to have WWFE-II completed by the end of 2011 [148]. However, as often happens, delays
resulted in the recent release of Part B (March 2013) [149] in which the contributing theories
are compared to experiments. In WWFE-II a total of 12 models participated, some of which
also participated in WWFE-I (e.g. Bogetti [150], Chamis [151], Puck [152], etc...). The
models presented are increasingly complex with three of the twelve participants resolving to
FEA-codes for the analysis of the stresses [153]. Furthermore it is concluded that the better
theories are the ones from Pinho [154], Carrere [155] and Puck [156] producing estimations
within £10% of the experimental values in approximately 30% of the cases and estimations
between £10% and £50% in a further 50% of the cases.

From the discussion above it can be concluded that, for two-dimensional loading, the phe-
nomenological failure criteria by Puck [5], LaRCO03 [6], LaRCO04 [7] and the Tsai-Wu [8] are the
best criteria to determine the onset of failure (FPF) with an accuracy of £10%. To determine
ultimate failure using semi-analytical means one needs to construct an algorithm on the basis
of a progressive failure model in which one takes the degradation of lamina properties due
to matrix cracking and the non-linearity of the material into account. An accuracy of £50%
in 85% of the cases has been shown for Puck’s progressive model [5]. For this progressive
analysis, however, it should be noted that more test data needs to be available than the linear
lamina stiffnesses, strengths and fracture energies. Additionally, it is advised to include the
effect of thermal stresses and moisture absorption due to manufacturing into account. The
progressive analysis, although more accurate, will also lead to increased computing time.

The attentive reader may have noticed that the discussed failure criteria are only applicable
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to laminates constructed from unidirectional (UD) laminae. This has multiple reasons. First,
the available knowledge on failure in unidirectional laminae is much greater than for woven
laminae. Secondly, woven laminae are even more complicated than UD laminae because
of their three-dimensional internal structure making it difficult for researchers to define a
relatively simple description of their behaviour. Thirdly, in the aerospace industry, for plates,
shells and pressure vessels, it is preferred to use UD laminae because of their anisotropic
characteristics. This, however, does not imply that woven laminae are not useful. They are
especially suitable for the absorption of impact damage, crack stopping and improving the
residual strength after occurrence of damage. Examples of some failure models can be found
in [157-159]. For this thesis, it is not of interest to further investigate this topic since the
aerospace industry uses mostly UD laminae. Therefore, use of a failure model which includes
UD and fabric material will result in unnecessary complexity of the tool.

2.2.2 Notched Strength

In metals, one can reliably use the maximum stress in the structure to predict failure. In lam-
inates, this cannot freely be done (it is possible but one has to be careful) because a laminate
is a non-homogeneous material. Over the years several researchers have developed and ex-
panded several methods to predict failure of a composite laminate with stress concentrations
(e.g. mnotches). Some rely on the Point Stress Criterion (PSC) or Average Stress Criterion
(ASC) from Whitney and Nuismer [10]. Others follow a Linear Elastic Fracture Mechanics
(LEFM) approach [9] or apply a fictitious crack model [160] in conjunction with a progressive
damage approach. Many of these methods rely on the ability to accurately predict the stress
field around a (growing) damage and use FEA or a simplified analytical solution. Some also
require the unnotched strength oy, or the critical energy release rate G as input.

One of the earliest methods to predict failure was proposed by Waddoups et al [9]. Waddoups
model, which is currently known as the “inherent flaw model”, assumes that a characteristic
crack length a exists away from a notch. When the energy in the region of the “crack” is
higher than the critical energy, the plate is considered failed. The length a and critical energy
K7, are obtained from experimental data. Soutis et al [161] used LEFM as a starting point
to predict (progressive) failure in compression loaded open hole specimens. The notch is
modeled as a hole with two cracks with an applied stress on the surface. Then, using the
in-plane fracture toughness and remote stress, a model for the stable crack growth is derived.
Comparison to experimental data [31] resulted in the conclusion that for UD laminates, the
Soutis model is able to accurately predict the compressive strength, damage zone size at failure
and compressive strength for UD composites. In later work [111] the model is expanded to
account for biaxial compression tension load.

As an alternative to the LEFM method, Whitney and Nuismer developed the PSC and
ASC [10,162]. In the PSC it is assumed that a characteristic distance dp away from the hole
edge exists. When the stress at this distance reaches the unnotched material strength, the
notched plate is considered failed. In the ASC, if the average stress over some characteristic
distance ag from the edge of the hole reaches the unnotched strength, the notched plate failed.
This leads to two two-parameter criteria (o, and ag or dy) for which the parameters need to
be determined experimentally. The basic models were proposed in 1974. The ASC was further
elaborated upon by the authors for the uniaxial tension [163], compression and hole bearing
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strength [162] cases. Already it was found that the characteristic distances for compression
and tension were no material constants (which was initially proposed). Pipes [164], discovered
that the characteristic distance is dependent on the size of the hole and developed a three-
parameter strength model based on the stress concentration factor, an exponential parameter
and notch sensitivity factor which have to be determined experimentally. Using the increased
amounts of curve fitting parameters, it should come to no surprise that this model gave good
results with experimental data. In 1982 Garbo [165] recognized the power of the PSC as a
simple, effective, readily usable method and generalized it for general far field and bearing
loading. Garbo’s proposal is to evaluate the stress field in the laminate and evaluate ply-by-ply
failure at a characteristic distance R, from the hole boundary at all angles using an unnotched
failure criterion of choice. After FPF one can assume the panel to be broken or perform a
post-FPF analysis. Next to investigation of UD materials, Naik and Shembekar [166, 167]
used the PSC and ASC to predict the notched strength of fabric laminates. From their
investigation, it was concluded that the characteristic dimensions are no material parameters
(as was already suspected by earlier authors) and very much dependent on the hole size
and stacking sequence. In an attempt to solve this issue, Potti [168] proposed a polynomial
formulation for the characteristic length. Although Potti is able to work with changing
characteristic lengths, experimental data is still required for its execution. For the analytic
tool in this work, however, it is intended to use only the mechanical properties of a single ply
as input.

A possible solution for this problem has been proposed by Kweon [3] for the PSC. By assuming
new definitions for the characteristic lengths, Kweon was able to determine the distances for
the compression and tension case based on the stress field around the hole. There is therefore
no need for additional experimental data. Kweon’s definition for the compressive character-
istic length is: “The distance from the front hole-edge to a point where the local compressive
stress by the arbitrarily applied load is the same as the mean bearing stress when a bearing
load is applied to the hole edge”. Kweon’s definition for the tensile characteristic length is:
“The distance from the side edge of the fastener hole to a point where the tensile stress by
the failure load of the notched laminate is the same as the tensile strength of the notched
laminate”. In his work, Kweon shows that the new definition for the compressive characteris-
tic length is justified. The definition for the tensile characteristic length, however, is doubtful
since it implies that the mean stress in the cross-section should equal the unnotched strength.
A discussion on this topic is given in Appendix B. Apart from the issues with obtaining exper-
imental data and non-constant characteristics lengths, several authors have successfully used
the PSC and ASC for the prediction of ultimate failure. Xiong [2] used the PSC to (analyti-
cally) predict failure in composite joints with multiple fasteners. For tension and compression
two separate distances were used which were taken from other research. Xu [169], building on
his earlier work in stress analysis [12,50], obtained strength predictions for finite width lam-
inates with multiple elliptical holes using the PSC, the Yamada-Sun criterion [121] and the
characteristic distance from Garbo [165]. His results were within 10% accuracy for a range of
QI laminates. More recently, Green [170] re-evaluated the ASC against experimental data and
concluded that the ASC is quite accurate except for configurations which exhibit extensive
delamination prior to failure. Interest in Whitney and Nuismer’s model is also expressed to
be used in braided composite plates. Hwan [171] investigated this possibility and determined
new characteristic lengths for fabric composites with holes. Additionally, a modification for
the variation in strength due to the size of the hole is adapted from [172], which is similar to
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Pipes [164] formulation. A good correlation between experiments and results was shown.

Next to the LEFM, PSC and ASC some researchers have proposed other methods to predict
ultimate failure. Backlund [160] developed the damage zone model (DZM), which is also called
the fictitious crack model. In this model it is assumed that, in the intense energy region next
to the notch, a fictitious crack forms when the uniaxial tensile strength is exceeded. When
the crack forms, cohesive forces try to keep the crack closed until the crack has a certain
length and the crack becomes a real crack. Using the assumptions of a linear decrease in
stress from the notch edge and a crack opening for stable and unstable crack growth and a
finite element analysis, Backlund was able to predict crack growth and notched strength. In
later work with Carlsson [173], the results from the DZM were validated for graphite-epoxy
and graphite-PEEK composite laminates. Furthermore, Aronsson extended the model to
account for countersunk holes [174] and Hollman [175] used it to predict failure in bolted
composite joints. Advantages of the DZM over the aforementioned model are the fact that
only the unnotched strength and fracture energy are required. Therefore there is no need for
additional experiments. Also, the damage growth can be monitored. Downside is that thisis a
type of progressive failure model which requires FEA to monitor damage growth and ultimate
failure. In an attempt to join the advantages of the PSC (simple to apply) and the DZM
(higher accuracy), Eriksson [176] proposed the damage zone criterion (DZC). By assuming a
critical length of the damage zone d} and using the critical energy release rate G. Eriksson
was able to obtain a simple relation depending on the plate dimensions and dj. His method is
effective and has higher accuracy than PSC but one needs to perform additional experiments
to determine the characteristic length dj. A different model is proposed by Liu [177] to more
easily predict ultimate failure. Using the stress concentration at the edge the “damaged”
stress concentration is calculated by using a geometrical factor, stacking sequence factor and
a stress concentration factor from FEA.

Over the years, with the increase of cheap computing power, more methods have emerged
to predict progressive failure in notched composite laminates. One of the earliest were Lo et
al. [118] who constructed an analytical model on the basis of the PSC and complex stress
analysis to predict sequential failure in laminate with stress raisers. Chang [178] performs a
similar analysis but uses FEA to analyze the stress field. More recently, Shah [179] created
a full size ABAQUS constitutive model which uses the “Tsai-Wu” criterion as a damage ini-
tiation criterion to predict failure envelopes for open hole tension and open hole compression
specimens. The gradual degradation of the material properties is accounted for by using the
ply-discounting approach developed by Knight [180]. Satyanarayana [181] constructed a pro-
gressive failure model where the failure criterion is Hashin-Rotem and the degradation model
is instantaneous complete stress reduction. Flatscher [182] constructed a constitutive model
which incorporates material non-linearity (hardening and softening) and the accumulation of
plastic strains. The model is implemented in FEA code and, in subsequent work, compared
to experimental data [183] for open hole tension specimens. An excellent agreement with the
experimental results is shown.

In the last few years, a type of damage models called “damage mesomodels” have been given
more attention. The damage mesomodel is “a continuum mechanics approach which aims
to maintain a complete predictive description of the physics of a composite’s degradation
during the simulation of structural tests” [184]. On the assumptions that the behaviour of
any laminated structure can be reconstructed from the properties of its main constituents,
a micromechanical model is constructed which is able to describe the evolution of damage
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in a laminated composite. As such, it is able to predict all laminate failure modes and
subsequent growth. The model is incorporated in a finite element formulation. These models
(e.g. Abisset [184], Farrokhabadi [185], etc... ) generally have an excellent agreement with
experimental results.

As so much different models exist it would have been strange if no researchers attempted
to compare the prediction of existing models. Curtis [186] evaluated three stress criteria,
LEFM, ASC and PSC for Quasi-Isotropic (QI) carbon fibre laminates and concluded that the
ASC, closely followed however by the PSC and LEFM, performs best in predicting ultimate
strength under various loading conditions. The main deficiency of all methods is that they
cannot account for progressive failure and delaminations because they lack a micromechanics
approach. Toll [187] provided a similar comparison applied to injection moulded composites
and also concluded that the ASC gives most accurate predictions with a maximum error of
9%. For PSC the maximum error was 22%. Rao [188] compared and adapted the inherent flaw
model and PSC and ASC for the case of reinforced polyester composites. It was concluded that
all three criteria, when applied to the specific cases they were designed for (uniaxially loaded
laminates), correlate well with test results. Kannan [189] performed a similar evaluation
but also included weft-knitted and pultruded composites. In Kannan’s work a maximum
relative error of 3% and 8% is obtained for UD and QI carbon laminates built from UD
plies respectively. The maximum relative error for weft-knitted glass fibre laminates is 10%
and for pultruded glass fibre it is 17%. In further work Kannan [190] attempted to use the
stress concentration factor from FEA and the unnotched strength for failure prediction which
turned out to be highly conservative. Subsequently, modifications were made in the PSC
to incorporate the effect of hole size which resulted in a maximum relative error of 10% for
knitted glass fiber composite plates. Su [191] applied the PSC, ASC and DZC to graphite
aluminium composite plates with holes. Up to a certain hole size a good agreement with
experimental results was obtained. This is partly due to the fact that no hole size correction
for the characteristic lengths was used. Wang [192] compared predictions obtained from the
inherent flaw model and a continuum damage model. The continuum damage model provided
the best correlation and is most promising for more accurate predictions.

From the discussion above it is clear that numerous methods to predict ultimate (and pro-
gressive) failure in notched composite laminates exist and each one has its own advantages
and disadvantages. Keeping the goal of this project (development of an analytic tool for the
prediction of failure in anisotropic plates with holes) in mind it can, however, be immediately
determined that the methods which rely on some sort of Finite Element code have to be dis-
carded. Therefore the continuum damage models and progressive models are eliminated. This
leaves the choice between LEFM, ASC and PSC. A decision on these models is elaborated
upon in Chapter 4.
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Chapter 3

Determination of the Stress Field

In Chapter 2 it is concluded that two methods are suitable to analytically determine the stress
field in a finite size plate with holes subjected to in-plane loading conditions. Both methods use
the complex stress analysis principle known as the “Lekhnitskii Formalism”. Their application
of the boundary conditions, however, is different. The first method, developed by Xiong
[2,67,68], uses the principle of minimum potential energy while the second, Xu and others
( [49,52,193]), use the “least squares boundary collocation method”. Both methods are able
to accurately predict the stress field. The “least squares boundary collocation method”,
however, involves choosing a number of collocation points on the boundaries of the hole(s)
and plate-edge. These points have to be chosen wisely or the solution may become erroneous.
Therefore, if this method would be used in the analytic tool, it is required for the user to have
knowledge about choosing collocation points. Consequently, the tool would not be fool proof
which is one of the initial requirements, Chapter 1. Luckily, the method developed by Xiong
does not require any user input other than the problem definition and required accuracy of
the solution. Hence it is evident that Xiong’s method is the best choice for the analytic tool.

In Section 3.1 the theory by Kweon is expanded to account for multiple holes in a rectangular
plate with arbitrary boundary conditions. Arbitrary boundary conditions, however, imply
that also load boundary conditions can be placed on the edges of the hole. This can be used
to simulate a pin load. For this, it is required to have a good estimate of the stress a pin
exerts on the hole edge. This is elaborated upon in Section 3.2.

3.1 Expansion of Xiong's Method

The basic problem is shown in Figure 3.1. A rectangular plate with m elliptical holes is
subjected to distributed loads on the plate as well as the hole edges. These loads can be shear
and or normal stresses. The loads on the edges are constant distributed loads while the loads
on the holes is a function applied between angle 01,, and 6s,,. Consider a two-dimensional
anisotropic medium in a Cartesian coordinate system. Then the three-dimensional equilibrium
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Figure 3.1: A rectangular plate with multiple holes subjected to arbitrary loading
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Figure 3.2: Two-dimensional anisotropic body with two contours

equations can be reduced to:

do dTw’
dog 4 9Ty 4 ¥ —
i, , dr. } (3.1)

Aty .
dy + dxy+Y_0

where o,, o, and 7, are the normal and shear stress in the body and X and Y are the
external force components parallel to the x and y axis. When the body consists of n contours
on which forces act as shown in Figure 3.2, the forces on each contour can be expressed as:

Xy, = 05 co8(n, &) + Ty cos(n, y) (3.2)
Y, = o, cos(n,y) + Tyy cos(n, ) '

To be able to solve the equilibrium equation, Eq. (3.1), the strain compatibility equation is

used: ) ) )
d“e d“e d
c S Cw g (3.3)
dy dx dxdy
where €;, €, and ~;, are the normal and shear strains in the body. The relation between the
stresses and strains is given by Hooke’s law:

o=2Ce (3.4)

in which C is the material stiffness matrix, o is the stress and & the strain vector. Lekhnitskii
[4] derived, on the basis of a complex variational approach, that the solution of the equilibrium
and compatibility equation, Eq. (3.1) and Eq. (3.3), in any problem involving anisotropic
plates can be reduced to the sum of two stress functions ¢;(z;), 7 = 1,2. z; is a complex
coordinate variable given by:

zi=x+puy j=12 (3.5)

With these stress functions the stresses and displacements in the plate can be determined
using Eq. (3.6) and Eq. (3.7).

dp1(21) d902(22)}
_ 2 2
oy = 2Re {,ul i + 5 iz (3.6a)
dp1(21) d¢2(22)]
=9 .6b
oy = 2Re [ i + 2 (3.6b)
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22 Determination of the Stress Field

dpi1(z1) o dpa(22)

Tzy = —2%Re M1 le 2 dZQ (36C)
u = 2Re [p1p1(21) + p2ipa(22)] (3.7a)
v =2Re [q101(21) + q2p2(22)] (3.7b)

In Eq. (3.5) and Eq. (3.6) u;,j = 1,2 are complex coefficients called the material eigenvalues.
For orthotropic materials, they are defined by:

= ¥
= \/aa2rr+l\/aa T (3.8)

\/ﬁ aa —1— rr (3.8b)

where:
ao2
rr =,/ — 3.9a
- (3.92)
( + a33> = (3.9b)
aa = (a =) — )
12 5 ) an

and a;; are the entries in the compliance matrix of the material. For an orthotropic mate-
rial, the use of u; in the “Lekhnitskii Formalism” provides no problems. However, when an
isotropic material is used p; = ps = ¢, the solution cannot be solved due to a singularity.
This can be solved by, upon detection of a isotropic material, letting the roots differ a small
amount, see Chapter 2. In this work it is chosen to change to the roots when the layup
contains +44° plies instead of £45° degree plies. This results in the following values for py
and pa:

1 = 1.04i  pp = 0.98i (3.10)
The complex coefficients p;,q;, j = 1,2 in Eq. (3.7) are defined as:
pj = CL11,U,J2» + a12 — aigp; (311&)
a
qj = a12pt; + % — Q26 (3.11b)
J

From Hooke’s law, Eq. (3.4), the relation between the in-plane stress and displacement
components can be written as:

ou ov ou Ov
Oy = Allaf + A128 + A (8 + &v) (3.12a)
ou ov ou Ov
Oy = Ama + Agg— 8y + Aog (a + ax> (312b)
ou ov ou Ov
=A A A — 4+ — 12
165, + 268y+ 66 (8y+8x> (3.12¢)

in which A;; are the in-plane stiffness coefficients of the material. Following Lekhnitskii [4], an
appropriate solution for the stress functions ¢;(2;), j = 1,2 for arbitrary boundary conditions
is:

0j(z) = Co; + S0y Cny 2" + S5 1{ (o) 10 (Emg) + 300 C(k+kzv+n)j§;§}

. (3.13)
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3.1 Expansion of Xiong’s Method 23

where Cy,;, j = 1,2 are complex coeflicients to be determined through the boundary condi-
tions. &p; is the mapping function of the m-th hole to the complex plane given by:

_(ij - Zj($7y)) + S($,y7j7m)\/(2mj - Zj(«T, y))2 - 4R3n,jtmj
2R,

§(@,y)m; = (3.14)

where z,,; is the location of the centre of the m-th hole in the complex plane according to
Eq. (3.5). Ry and tp,; are given below:

A, — b

Ry = ="

(3.15a)
G+ by,

tmi = ; 3.15b
J Ay — Z/.L]bm ( )

in which a,, and b,, are the semi-major and minor axis of the m-the hole. The function
s(z,y,j,m) in Eq. (3.14) has either the value +1 or —1 depending on the z,y location in
the plate and the material eigenvalue p; to assure that the hole is mapped correctly to
the complex plane. This value is determined by a sign selection algorithm rather than a
simple equation. In this work the algorithm developed by Koussios [194] is used as a basis.
Adaptations were made to ensure its validity for unusual layups, such as [£45]4, and for the
case where holes have their centre unequal to the origin of the global coordinate system. The
resulting algorithm is presented below. For convenience, the derivation and adaptations made
are given in Appendix A. First some definitions are set. Since y; is a complex number, it can
be decomposed as:

pj = g +if; (3.16)

Next, the imaginary and real part of the expression inside the square root in Eq. (3.14) are
defined as ImR and ReR respectively. Additionally, the function S(x,y, m,7) is defined by :

T — T

@

Then, the sign selection algorithm is given by the following (V and A stand for OR and AND
respectively) :

IF oj = 0

5(-'L',y,j, m) = Slgn(y - ym) IFz=0
OTHERWISE s(z,y, j,m) = sign(z — z,)

IF B; > |ay]

IF o >0
IF{(y —ym <OAReER<OAImR <O0Az— 1z, >0)V
(S(z,y,m,7) >0AReR >0Az — 2, =0)V
(S(z,y,m,j) >0AImR > 0)V
(S(z,y,m,7) >0AReR < 0Az — 2,
(S(z,y,m,7) <OAReR >0Az — 2,

0)v
0)}
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24 Determination of the Stress Field

S(x7 y7j7 m) - +1
OTHERWISE s(z,y,j,m) = —1
IF a5 < 0

IF {(y — Yym <OAReER < OAIMR > 0 Az — 2, < 0)V
(S(z,y,m,j) >0AReR > 0Az — 2, <O0)V
(S(x,y,m,j) > 0AImR < 0) V (S(z,y,m,5) >0AReR < 0Az — x,, <0)V
(S(z,y,m,7) <OAReR >0Az — 2, <0)}
s(z,y,7,m) = —1
OTHERWISE s(z,y,j,n) = +1

OTHERWISE

IFOéj>0

IF {(y — ym <OAReR <OAIMR < 0 Az — z,, = 0) V

(S(z,y,m,j) >0AReR >0Az —xzy, = 0)V

(S(z,y,m,j) > 0AImR > 0)V

(S(x,y,m,j) >0AReR<O0Az —x, > 0)}
s(z,y,7,m) = +1

OTHERWISE s(z,y,j,m) = —1

IF a; <0

IF {(y — ym <OAReR < OAImR > 0 Az — 2, < 0) V

(S(z,y,m,5) >0AReR >0Az —x,, <O0)V (S(z,y,m,j) >0AImR < 0)V

(S(x,y,m,j) >0AReR<O0Az —x, <0)}
s(z,y,j,m) = —1

OTHERWISE s(z,y,j,n) = +1

With Eq. (3.6) through Eq. (3.17) one can find the stress function ¢;, j = 1,2 and subse-
quently the stress and strain distribution by determining the complex coefficients Cy,;,j = 1, 2.
First, as the coefficients C(yy ), are multiplied by a “In” term, the following additional
constraints are used to ensure single-valued displacements (“In (e*)” has infinitely many solu-
tions). In the case when hole k is unloaded:

Clrrrny; =0 (3.18)

In the case when hole & is loaded:
Jm (plc(k+kN)1 + pQC(k+kN)2) =0 (3.19a)
Jm (Q1C(k+kN)1 + qzC(HkN)Q) =0 (3.19b)

The remaining coefficients are determined by applying the principle of minimum potential
energy. This fundamental concept asserts that a body will deform in a way such that the
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3.1 Expansion of Xiong’s Method 25

minimum total potential energy of the structure is reached given the external loading condi-
tions. The total potential energy in the plate is given by:

1 ou\ 2 ou Ov v\ 2
—2/9{1411((%> +2A12<8 3 )+A22<8y>

ou ou\ (Ou  Ov ou  Ov\? (3.20)
<A168 A268 ) (8y+8x>+AGﬁ ((%4‘%) }dl’dy

+Boundary terms

where () is the domain of the plate. Using integration by parts, the first order variation of
the energy with respect to u and v can be written as:

do or, or, Oo
I = x Yy - xy Yoy
0 / { (837 Oy >8u ( oz dy )8v}dwdy (3.21)

+Boundary terms

Eq. (3.21) consists of one area integration and boundary terms. The stress functions ¢,
j = 1,2 already comply to the equilibrium equations, Eq. (3.1), and therefore the area
integration in Eq. (3.21) is zero. Thus only the boundary terms remain which are, in expanded
form:

o=~ [ {[ov (=) 7] o0+ [ (5 ) -] o}

Sy oo () - on i () s}

Sl ) oo () o
Lol o)l (5r) roforfer 0

m 2T
- Z {/ {Uf(ak, 0)our + 5 (ay., by, 9)8u'§} \/ai sin?(0) + b2 cos?(6)df
0

k=1

+/ ak, U,,k(ﬁ)} auf

+ [ng(ak, bi, 0) — Tror(0 )} 8u9} \/ak sin?(0) + b2 cosQ(G)dH}

In Eq. (3.22) it is observed that the boundary conditions, which are the loads at the edges,
are incorporated in the equation. Hence, satisfaction of the minimal potential energy theorem
can be seen as satisfaction of the boundary conditions of the problem. The minimal potential
energy theorem requires that:

ol =0 (3.23)

Next, since the stress and displacement resultants o, 0y, 7y, v and v are a linear combination
of the stress functions ¢;, j = 1,2 (Eq. (3.6)) and the stress functions are a linear combination
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of the complex coefficients C;

as:

(Eq. (3.13)) the variational energy formulation can be rewritten

o= |- J, ()] e+ [ (=5 i
= ; oy (5 9C, Tay (75 5 ac, x
e (o o0 e+ [ (50)] i )
% O-{L' 27y 8an Twy 27y | aCn] y
Ll )] e [ (5 i )
P\ T2 ) e, T\ T2 ) ac,, [
LAl Gl s + [ (50)] e
_w (17 \2°Y) ] e w\2Y)]ac, (VY
21 k
{ /0 Haﬂak,e) aag + 75 (ag, b, 0) 559 ] Va2 sin2(9) + b7 cos2(e)}de}
d E 9
712] OCU +[-7 }d$+/ 2{ —T23] Ou +[—?23]acv }dy
5} 0 0
[—034]acv +[ 734]60 }dw—i—/Q { U41]6Cu.+[_741]an.}dy
5 ouk oul
{“—J’S(@)} en { } 9 \/aksm b7 cos?(0) p df ¢ | DC,,
k=1,2.,m n=12 .. (m+1)(N+1) j=1,2
(3.24)

Since Eq. (3.24) should equate to 0, the multiplication by dC,,; can be omitted. Additionally,
using the following definitions:

R.D.B. Sevenois

Lo {le-(59)

mn 2m Auk
— oF(ag,0) =5 + 75 (ap, bi, )
S tenies

([ (%)
([ (-59)]
{5

ak
|V

] ov
OCy,;
ou
oC,, ;

ov
0Cy,

ou
oc,

)
()
)

o (50
Y]

622 } da
i )
a(zf; } dr  (3.252)
agij } dy

ak S11

2sin%(0) + b7 0082(9)} d@}
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3.1 Expansion of Xiong’s Method 27

b__/—é[_}auﬂ | O dx+/2 | ou
n; = L 012 8an T12 3C’nJ —023 (9an T23 8Cn

L

/1{[034]821'“] n}d“/ {041 j. acn}dy
d@}

B ] 2 )

(3.25b)

dy

J

The variational energy formulation can be rewritten as:

0=an; + bn;

n=12,..,(m+1)(N+1) j=1,2 (3.26)

Note that by, is a function of the boundary stresses only and will therefore result in a complex
number for each n. ayp; is a linear function of the complex coefficients Cy,;. Since the following
property exists between the sum of the product of a constant with a function:

(0.9)
da
Z(I@fl — 61.]('2 ] (327)
=1
an; can be decomposed into the product of two vectors:
an; = an;C (3.28)
where: -
C= [Col Co, C1, Ch, . C(NH)(mH)Q} (3.292)
Oan . Oan, . Oan . Oan . Oan .
%y = [80031 oCo, 9C:, aCi, v 3C<N+1><]m+1>2] (3.25b)

Recall that this operation needs to be performed for every coefficient C),,. Hence one will
obtain 2(m + 1)(IN + 1) equations which form a linear system of equations given by:

AC+B=0 (3.30)
where: T
A:[aol ag, ai; Al ... a(n+1)(m+1)2} (3.31&)
T
= [bo, bo, By b bpninymes] (3.31b)

Solving for Eq. (3.30) now results in a solution vector containing all the constants Cy,; j = 1,2.
Once these constants are determined, the stress and displacement field are obtained using
Eq. (3.6) and Eq. (3.7).

The above theory is transformed into an algorithm for MathCAD13.1 (©). The structure of
the algorithm is as shown in Figure 3.3. The algorithm starts with the definition of the nec-
essary input parameters. Most of these input parameters shown in Figure 3.3 do not require
explanation except for “Summation” and “Tolerance”. “Summation” is the amount of the
summation terms N that are taken in the stress function ¢;, Eq. (3.13). The higher NN, the
higher the accuracy of the solution but the higher computation time. “Tolerance”, TOL, rep-
resents the accuracy of the numerical integrator provided by MathCAD13.1(©). Normally this
value is between 10™* and 10™°. The optimal values for these two parameters are determined
in Section 6.1.
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28 Determination of the Stress Field

: INPUT :
| |
| |
| Plate Size Holes Location Summation /' Plate Layup |
: Plate Load Holes Load Tolerance / Plate Material :
| |
| |
| |
/,,/ "\\\
> Start <
" 4
——
\ 4
Material Hole DThe B
abd-Matrix —» eigenvalues —» Parameters .- Calculate B
and v
K, pandq Randt

Least Squares
Calculate A —» Solution of: —» Constructqp —— »/ OUTPUT: @
Ax =-B

Figure 3.3: Computation algorithm for stress field determination. The subscript ; is dropped for
convenience

3.2 Pin Contact Angle

With the theory provided in the previous section it is possible to determine the stress field in
plates with loaded holes provided that the load boundary condition due to the pin is known.
Often it is assumed that the pin-load can be represented by a radial cosine shaped compression
load on the hole edge [2,11,12] represented by Eq. (3.32) and shown in Figure 3.4.

4P s s
o= Preos(f) —5 <0< 2} (3.32)
o =0 5 LO0< 35

Several studies [13,14], however, have shown that this assumption is essentially wrong because
it neglects the effects of pin-hole clearance, flexibility, friction, material orthotropy and applied
load. Tomlinson [13] attempted to incorporate the effect of clearance by assuming that the
hole deforms in an elliptical fashion under the influence of the pin. With this assumption
and the assumption that the pin is rigid, the pin-hole contact angle can be computed using
goniometry as shown in Figure 3.5 and Eq. (3.33).

0= {(A+u0) cos(Bs) + /2 — (A + )2 (1 - cos?(95)) }

(3.33)
* {r% cos?(0p) + (1 — 0052(93)) (A +up + rp)Q} — 72X +ug + 1p)?

where A = 1, — 1, is the hole clearance, ug the horizontal displacement of the hole edge at
0°, r, is the pin radius, rj is the hole radius and 0p is the pin contact angle. The function
for the applied stress on the hole edge is modified to a cosine distribution between 6y, and
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Figure 3.4: A hole loaded by a distributed cosine distributed radial load

T contact point between

pin and hole initiaily pin and hole

centered at A4 P e

hole boundary
after loading

................

=D pin centered at C
after deformation

rigid pin i u,

Figure 3.5: Exaggerated view of deformed hole by rigid pin
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30 Determination of the Stress Field

0o, Figure 3.1, and an elliptical hole shape.

1 0 — 01 7r> 1
+ =) 5 3.34
m/a2, cos(6)2 + b2, sin(0)2 o8 (92m — 01m7r 2 ] S (3.34)

orm(0) = P [

where P is the total load in the direction W and Sy, is defined by:

S, /GQm ! cos ( —m W)
m = 77'(' J—
1 | T/a2, cos(0)2 + b2, sin(6)2 02 — O1m 2

*\/agn cos(6)? + b2, sin()? cos (9 — W)] o

(3.35)

The displacement ug in Eq. (3.34) is not only dependent on the magnitude of the load but also
on the contact angles 61, and 0s,,,. Therefore, the contact angles for a certain load can only be
determined with an iterative procedure. This procedure is shown schematically in Figure 3.6.
Normally, convergence is obtained within approximately 5 iterations. Sometimes, however, it
occurs that using the new contact angle results in the contact angle of the previous iteration
which leads to a never converging state. Fortunately, when this happens, both the old and
new contact angle are close (in the order of 0.1 [deg]) and using the one or the other does
not significantly change the final solution. To avoid this state, in the procedure, a counter
X is embedded which breaks the loop as soon as more than 20 iterations have been executed
without reaching convergence.

At first, having confidence in Tomlinson’s model, his model was used to estimate the contact
angle of pin-loaded holes. However, during validation, Section 6.1.2, it was discovered that
this model does not perform well when compared to FEA simulations. Eventually, in the
search for a better model to estimate pin-hole contact angle it was found that, instead of
assuming that the hole deforms in an elliptical fashion, it is better to assume that the pin
locally deforms the hole as shown in Figure 3.7. In the Figure, angle 6p is the contact angle
of the pin and the hole while u, is the horizontal displacement of the hole at an angle «
with respect to the x-axis. Using the horizontal displacement at an angle instead of 0° is
more advantageous than using the horizontal displacement at 0° since it allows, by varying
this angle, “tuning” of the results. Again assuming a rigid pin, the hole and pin can be
represented by Eq. (3.36) and Eq. (3.37).

22yt =1y (3.36)

(@ — (A +ua)?+9* =r; (3.37)

Solving for the intersection of both functions results in the following for the x-coordinate:

i =124 (A + ua)

= 3.38
v 2()\ + Ua) ( )
From which 6p is determined using Eq. (3.39).
Lo
0 = arccos () (3.39)
Th

One now only has to determine the horizontal displacement angle o to be able to solve for
0p. The optimal value for this angle is determined in Section 6.1.2.
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Plate Size Holes Location
Plate Load

Summation
Holes Load Tolerance

Plate Layup
Plate Material

Initial Contact Angle:
(60,01) = (-90,90) degree
Iteration Counter:
X=0

i

Calculate Stress
Field

l

Calculate
displacement ug

! I

Calculate 65

X=X+1

from Eqn 3.40 (80,81) = (-85,85)
False
X>20? —rFalse—» 6= 6g?
Trde T‘rue
(80,81) = (-B%,68) y

Figure 3.6: Iterative procedure for the determination of the contact angle 65
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Figure 3.7: Schematic of pin locally deforming the hole shape
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32 Determination of the Stress Field

Together, the estimation of the contact angle, pin-hole edge stress distribution and stress
determination method allow the determination of the stress field in a rectangular orthotropic
plate with multiple (un)loaded holes subjected to arbitrary in-plane loads. The method
described here is verified in Chapter 5 and its performance assessed in Section 6.1. To be
able to predict failure, a failure criterion on the basis of this stress method is required which
is discussed in the next Chapter.
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Chapter 4

Failure Prediction

From Chapter 2, it is evident that currently, there is no consensus on which failure criterion is
best to use for the determination of unnotched/notched laminate failure. None of the existing,
engineering wise feasible, criteria perform well in all quadrants of the failure envelope and
therefore it is as choosing between the lesser of evils. Nevertheless, an attempt is made for
an argumented choice.

In Section 2.2.2 the choice is left between LEFM, ASC and PSC for the prediction of notched
strength of a laminated plate. A major disadvantage of all three techniques is that one has to
experimentally determine a characteristic distance for accurate predictions. For the analytic
tool, however, as a more general approach is required, this experimental information is not
available . Therefore this characteristic distance will either have to be assumed or, in some
way, analytically determined. Because of the diversity of composites, however, a consequence
of assuming a characteristic distance is that the use of the tool would be limited to a particular
type of composite laminate configuration (e.g. graphite-epoxy, glass fibre-epoxy, etc..) and
loading conditions (uniaxial, biaxial, etc..) . This is, however, not desired and therefore it
is required to analytically estimate the characteristic distance. An analytic expression for
the characteristic distance has been identified for only one method, the PSC, by Kweon [3].
Thus, use of the PSC in conjunction with an analytic expression for the characteristic lengths
is preferred. Caution is expressed since Kweons formulation for the characteristic lengths is
proven to be flawed for the tensile case (Appendix B). In Section 4.2 this issue is further
addressed.

For the PSC, an unnotched strength criterion is also required. In Section 2.2.1 the progressive
phenomenological failure criterion as Puck [5] is one of the favourites. At Fokker Aerostruc-
tures B.V., a Puck-like failure criterion is currently in use. The desire exists, however, to
replace this criterion with a more recent version of Puck described in VDI2014 [15]. VDI2014
is a guideline for engineering purposes of fibre-reinforced plastics (FRP) by the German As-
sociation of Engineers (Verein Deutscher Ingenieure) which is essentially a contraption of the
phenomenological theories by Puck, Flemming, Schiirmann and Knops [195-198]. The cri-
terion is meant for FRP’s with thermoset matrices and UD laminae but can restrictedly be
extended to thermoplastic matrix and woven reinforcements. In this work, it is chosen to use
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Mode B Mode A

—a=|0 %00 /__. - [oofoe]Z
n.oloo-/// o_o-n,//

Figure 4.1: IFF failure modes [15]

the VDI2014 [15] to predict unnotched failure as it is expected to give better predictions than
the current Fokker criterion. Whether this expectations are true is shown in Section 6.2. The
criterion is explained in Section 4.1.

4.1 Unnotched Failure Prediction

When one desires to follow VDI2014 [15] to the letter, it is necessary to perform a non-
linear analysis which requires detailed knowledge about the stress-strain behaviour of the
used material (complete stress-strain curves in all quadrants of the in-plane loading). Other
parameters, like the slopes of the (o2,721) fracture curve at several locations, also need to
be known. At Fokker Aerostructures B.V., however, for basic analysis, no other material
parameters than the standard strengths and stiffnesses of the lamina are known rendering
these advanced analysis methods virtually unusable. Thus, the method in VDI2014 needs
to be adapted for efficient use at the company. Therefore it is chosen to neglect non-linear
material behaviour, 3D effects such as interlaminar stresses, residual stress in the laminate
due to manufacturing process and the effect of high o1 on IFF criteria. Not neglected are the
material properties when a ply is loaded in tension or compression.

The determination of failure is based on a layer by layer analysis of the laminate. From
the laminate loads, the strains and stresses for every ply are determined and passed through
several failure criteria to assess failure. VDI2014 distinguishes between two types of failure:
Fibre Failure (FF) and Inter Fibre Failure (IFF). FF occurs in a ply when:

01

i =1ifo1>0 (4.1a)
_U;(C =1ifoy <0 (4.1b)

in Eq. (4.1), X and X¢ (values have to be positive) are the tensile and compressive lamina

strength in the direction parallel to the fibres. IFF can occur in three ways due to the possible
fracture planes on the load as shown in Figure 4.1. They are defined as Mode A, B and C. For
each mode there is a separate criterion based on the so-called action-plane related fracture
criteria. For Mode A (o2 > 0) the stress exposure fg is calculated using:

1
fElo;,=0deg = 5

S12 2
(52— o242 b (4.2
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Modus/mode B

Modus/mode C ‘ c ‘»1721
Modus/mode A
/ pfu pi”
Toio=R, A/ 14205 « RA
21c¢= My +2p, * AL/ Ry
' -
5 -
|<—- RA  —» O,

Figure 4.2: IFF o9, 791 fracture plane [15]

Whether failure Mode B or Mode C (o2 < 0) occurs is dependent on the ratio (721, 02) denoted
by point C in Figure 4.2. For Mode B the stress exposure fg is:

1
fElo;,=0deg = 5 ( 3 + (p5,02)° +p§10’2> (4.3)

and for Mode C:
7'221 -Y¢ 09

_I_
2
4(S12 + p§ Rsy)” 02 —Ye

fE|6fp:crit. = (44)

In Equation (4.2) through Eq. (4.4) Si2, Y and Y¢ are the lamina shear, transverse tensile
and transverse compressive strength respectively. R‘242 is the fracture resistance of an action
plane parallel to the fibre direction against fracture due to 792. This is calculated using:

S12 Ye
Ry = J1+2p5 — — 1 4.5

phy and p§; are the slopes of the (o2, 791) fracture curve (Figure 4.2) at the location o9 = 0.
Ideally, these values must be obtained from material tests. If no experimentally determined
value is available, the values shown in Table 4.1 can be used for Glass Fibre Reinforce Plastics
(GFRP) and Carbon Fibre Reinforced Plastics (CFRP).

Table 4.1: Recommended values for slope parameters pS; and p&, [36]

P51 Pgl
GFRP | 0.25 | 0.30
CFRP | 0.30 | 0.35

Since VDI2014 is a progressive criterion, there is a roadmap for the determination of final
failure. First, when given an initial load vector, the minimum Reserve Factor (RF) for all
plies of the laminate for FF and IFF is calculated. When the minimum RF is coincident
with IFF, that ply is considered as IFF failed but the laminate is still able to carry load.
When Mode A occurs the secant modulus of that ply, the shear modulus and the Poisson’s
ratio are reduced to 1/10th of their original value. When mode B or C occur no reduction in
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modulus is applied because matrix failure due to compression is expected to have no effect
on the compressive properties of the ply. After marking a ply as IFF and/or performing the
necessary reduction in properties, the minimum RF is again determined until it is coincident
with FF or, in the case of UD or angle plied laminates, when all plies have IFF. Then the
laminate is considered failed. The aforementioned procedure translates into the algorithm
shown in Figure 4.3 and Figure 4.4.
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Figure 4.3: Unnotched failure algorithm, continued in Figure 4.4
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4.2 Notched Failure

As determined in the introduction of this chapter, it is chosen to use the PSC as a basis to
predict notched failure. The PSC, originally formulated by Whitney and Nuismer, assumes
that failure occurs when the stress over some distance away from the hole is equal to or
greater than the strength of the unnotched material. This distance, dg, represents “the
distance over which the material around the hole must be critically stressed in order to
find a sufficient flaw size to initiate failure” [10]. Initially it was assumed that dy would be
a material constant but this was quickly proven wrong [164]. Nonetheless, with sufficient
reliable test data, the PSC is still in use as a good method to quickly estimate failure in
notched plates. Ideally, dy is determined with experimental data which is expensive and
results in characteristic lengths only valid for uniaxially loaded specimens. Therefore, in this
work, a new definition of the characteristic length is proposed which allows for an analytic
estimate. It is recognized that the new formulation for characteristic distances has not been
tried in other research. The only alternative however is to assume a constant characteristic
distance, which was already proven wrong [164,165], or use one of the empirically calibrated
expansions by other researchers [164,165,168] . Hence, attempting to analytically formulate
a characteristic distance in an effort to get rid of empirical calibration is not a waste of
resources. To evaluate the new formulation, its performance will be compared to the constant
characteristic distance approach, which is currently in use at Fokker Aerostructures B.V., and
experimental data in Section 6.2.3.

A possible solution to analytically determining dy is provided by Kweon [3] who proposed
two analytic definitions for the tensile and compressive characteristic length in pinned lugs.
Kweon’s definition for the compressive characteristic length is: “The distance from the front
hole edge to a point where the local compressive stress by the arbitrarily applied load is the
same as the mean bearing stress”, Figure 4.5. The definition for the tensile characteristic
length is: “The distance from the side edge of the fastener hole to a point where the tensile
stress by the failure load of the notched laminate is the same as the tensile strength of the
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4.2 Notched Failure 39

notched laminate”. Upon inspection of Kweon’s method for the compressive characteristic
distance, it was noticed that the presented results are reproducible. The definition of the
tensile characteristic distance, however, results in different values than for the standard char-
acteristic distance approach. Taking a closer look, it is discovered that it actually implies
that the mean stress in the cross section can be used as the failure stress, Appendix B. This
is, obviously, nonsense and the tensile definition should be discarded.

The establishment of an analytical method to determine the compressive characteristic length
for pin-loaded lugs grew a curiosity. Would it be possible to use this analytical definition to
determine characteristic lengths for general loading conditions? Consider the aforementioned
definition of Whitney and Nuismer [10] for dy: “The distance over which the material around
the hole must be critically stressed in order to find a sufficient flaw size to initiate failure”.
Assuming a linear material behaviour, one can compute the potential strain energy density
in this region. Since the material in this region is critically stressed, one can call this strain
energy the Critical Potential Strain Energy Density (Il...) (CPSED) for the failure of the
material due to the compressive bearing load of the pin. The definition of the CPSED for
compression is given by Eq. (4.6) and shown in Figure 4.5.

dOc
e = / oedx (4.6)
0

This critical energy density can now be used to establish a new definition for the characteristic
distance dg. This distance is then defined as: “The distance from the hole edge where the
strain energy density over this distance equals the CPSED”. Furthermore, considering that
the characteristic distances for tension and compression are unequal, it is fair to consider that
the CPSED for the tension and compression case are unequal. A CPSED for compression is
already obtained but what is the CPSED for tension? As no analytic solution for the tensile
characteristic distance exists, it is chosen to estimate the CPSED for tension by scaling the
CPSED for compression with the ratio of the strain energy density of an unnotched plate
subjected to uniaxial tension and compression at failure load respectively. This is given by
Eq. (4.7).

II (Uun,t)
II (Uun,c)

In a multiaxial loading condition, however, it can be required to have definitions for critical
energies which are not only uniaxial tension or uniaxial compression. Therefore, in a similar
way as for the CPSED for tension, the CPSED for transverse tension, transverse compres-
sion, tension-tension, tension-compression, compression-tension and compression-compression
loading are defined as:

Hcr,t == Hcr,c (47)

Mep— = mﬂcr,c (4.8a)
er —c = mﬂm (4.8b)
Uer e = mncr,c (4.8¢)
er e = ré((‘;f::)) e, (4.8d)

UNCLASSIFIED R.D.B. Sevenois



40 Failure Prediction

(Uun cc)

1I

HCT,CC - II (Jun,c) Hcr,c (486)
II (o

Meret = (<af:f>) Here (4.8)

Note that a CPSED for shear is not defined. This is not necessary as no shear load will be
present on the hole edge since the pin is assumed to be frictionless.

Having established the new definitions for the tensile and compressive characteristic distances,
the following method is used to determine failure of a laminate with stress concentrations.
First, the stress field in a uniaxial joint is used to determine the CPSED for uniaxial com-
pression. Next, using the unnotched failure criterion, Eq. (4.7) and Eq. (4.8), the CPSED’s
for tensile, transverse tensile, transverse compression and biaxial tension-tension, tension-
compression, compression-tension and compression-compression loading are obtained. Third,
an initial characteristic distance is chosen and for every location around the shape of the holes
in the stress field of the actual problem (this stress field is obtained earlier) a minimum RF
and critical angle are obtained. At that critical angle, the Potential Strain Energy Density
(PSED) from the hole edge to the characteristic distance is calculated and compared to the
CPSED at that angle. When the CPSED equals the PSED, the ultimate failure load is found.
Otherwise, a new characteristic distance is chosen based on whether the PSED is higher or
lower than the CPSED and the procedure is repeated. The procedure is schematically shown
in Figure 4.7 and Figure 4.8. Note that, in this procedure, as with the contact angle algo-
rithm, an iteration counter X is present to protect against infinite loops (although this has
never been encountered during validation).

4.3 General Program Layout

Having determined a methodology for stress analysis and failure prediction of notched plates
with general stress boundary conditions, the layout of the complete analytic tool is con-
structed. Eventually, the code consists of one VBScript and 7 MathCAD13.1(c)calculation
sheets. Each calculation sheet calculates a specific part of the complete solution. Their tasks
are:

e Sanity Check: symmetric and balanced laminate, input loads are static equilibrium

Calculate CPSED’s

Calculate unnotched failure RF

Calculate pin contact angle

e Calculate the plate stress field coefficients

e Show the plate stress field for approval by user
e Calculate plate ultimate failure

The VBScript interprets a problem input file, handles input and output from each calculation
sheet and writes the results file. By only requiring an input file and providing a results file,
the analytic tool can be used by Fokker Engineers to estimate failure of a notched plate with
arbitrary stress boundary conditions. The assembly is shown in Figure 4.6.
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Figure 4.6: Main program assembly algorithm
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Chapter 5

Tool Verification

Although verifying whether the analytic tool functions as intended does not contribute to the
scientific value of this report, it is required for use in a design environment. For verification,
every code block in the analytic tool was tested individually by providing a suitable input,
calculating the expected output by hand and comparing this to the value from the tool. The
tested code blocks are listed below. For convenience, the numerical results are not shown here
but located in Appendix D.

Stress Algorithm:
Failure Algorithm:
e Sanity check
e Ply property selection compresson/ten-

e Laminate compliance-matrix sion

e Material eigenvalues e Laminate strains

e Complex parameters p;, q; R;, t; o Ply stresses

° z;?, {f and their derivatives e FF and IFF exposures

e Sign selection e Change of material properties upon IFF
e Matrices B and A e Calculation and selection of CPSED

e Contact angle

From the unit tests it is concluded that there is a maximum difference in the order of 0.1%
between the hand calculation and analytic tool. This difference is attributed to round-off
errors. Next to unit tests, system tests were performed to assure overall functionality of
the analytic tool. The system tests are divided into tests for stress determination, failure
prediction and a general tool test. For stress determination, the results from the tool are
compared to the analytical, infinite plate, solution obtained by Lekhntiskii [4]. The following
configurations are used:
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o Infinite plate with elliptical hole and uniform pressure at the opening contour

e Infinite plate with elliptical hole and uniaxial tension at the plate edge

When a uniform pressure ¢ is applied at the edge of an elliptical hole, the closed form solution
for the tangential stress around the hole is [4]:

0
_ Ay ie
70 = 2 { (asin® — pibcos @) (asin® — pobcosh)

X [(,uluga —ipb — ipob) a®sin® @ + i (i o — 2) a®b? sin® @ cos 0 (5.1)
+ (2u1p2 — 1) a®b? sin 6§ cos® O + (p1a + poa — ib) b3 cos® 6’} }
where a is the semi major axis and b is the semi minor axis of the hole. [ is defined as:
1 = a®sin” O + b% cos? 0 (5.2)

In the case where a uniaxial load p is present at the plate edges and the hole is unloaded the
closed form solution for the tangential stress around the hole is given by [4]:

= aj sin?(6) + p—b%e e "
70 =P 2 (asinf — pibcosh) (asin @ — usbcosh)

{(,ul + p2) a® sin® 0
+ (2 — p1p2) a®bsin® 6 cos 6 + b3 cos® 9} }

The closed form solutions for infinite plates cannot simply be reproduced by the analytic
tool. This because the analytic tool has, as input, finite size plate edges and holes. As
such, to simulate infinite boundary conditions, a large plate (1m by 1m) with small hole
(a = 5 [mm], b = 2 [mm]) is modeled. The material for the plate is a layup of UD carbon-
epoxy laminates with a symmetric layup and varying amounts of 0°, 45° and 90° plies. The
presence of each of these three angles is varied between 0% and 100% which resulted in a
total of 10 configurations. For precision parameters; N = 6 and TOL = 1072 are used. To
illustrate the results from both comparisons, the tangential stress concentration factor when
a UD, £45° and [0/90]s layup is used are shown in Figure 5.1 to Figure 5.3 for the case
of uniform pressure at the hole edge and Figure 5.4 and Figure 5.6 for the case of uniform
tension. The complete results of the comparisons between the tangential stress concentration
factor around the hole with different materials is given in Appendix D. From the comparisons
it is concluded that a maximum discrepancy of £0.5% exists between the analytic tool and
theoretical solution which is attributed to round-off errors in the computation and errors due
to numerical integration. The discrepancy is small enough to conclude that the algorithm for
stress determination is verified.

For failure prediction, the system tests are divided into one for unnotched failure and one
for notched failure. The system test for the unnotched failure criterion is done by supplying
uniaxial loading conditions in compression, tension and shear to some laminates. By hand,
the failure load is estimated by considering only the fibres in the direction of the load and
their respective strengths. The result from the tool should be in the same order of magnitude.
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Figure 5.1: Stress concentration factor at hole edge and difference between tool and Lekhnitskii.
100% UD uniform pressure at hole edge, a = 5 [mm], b = 2 [mm)]
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Figure 5.2: Stress concentration factor at hole edge and difference between tool and Lekhnitskii.
100% +45° uniform pressure at hole edge, a = 5 [mm], b = 2 [mm|]
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Figure 5.3: Stress concentration factor at hole edge and difference between tool and Lekhnitskii.
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Figure 5.4: Stress concentration factor at hole edge and difference between tool and Lekhnitskii.
100% UD, uniaxial tension at 0°, @ = 5 [mm)], b = 2 [mm]
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Figure 5.5: Stress concentration factor at hole edge and difference between tool and Lekhnitskii.
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Table 5.1: System test results unnotched failure criterion

Layup Load Vector | Tool (MPa) | Hand (MPa)
42% 0°, 42% +45°, 16% 90° | (1,0,0) 816 826
42% 0°, 42% +45°, 16% 90° | (-1,0,0) -629 -629
100% 0° (1,0,0) 1575 1575
100% 0° (0,1,0) 60 60
100% 0° (0,0,1) 113 113
50% 0°, 50% 90° (1,0,0) 792 787.5
50% 0°, 50% 90° (0,1,0) 792 787.5

They are shown in Table 5.1 where it can be seen that they are as expected. The algorithm
for unnotched failure prediction is considered verified.

For notched failure prediction, the algorithm is verified by looking at the change in character-
istic distance d, Reserve factor and CPSED ratio with every new iteration. This is illustrated
in Figure 5.7 where it can be seen that, after a few iterations, all values converge to a steady
value which is as expected. The notched failure algorithm is considered verified.
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Figure 5.7: Change of load reserve factor, r and critical energy ratio throughout iterations

Verification of the stress analysis and failure prediction assembly is done using three config-
urations. In configuration one, a uniaxial load in the longitudinal direction is applied to a
rectangular plate with an open circular hole in a quasi-isotropic sheet. The expected angle of
failure is £90°.The failure load must, at least, be higher than one third of, and lower than,
the unnotched failure strength since a stress concentration factor of three is present at the
hole edge. In the second configuration, a uniaxial load in transverse direction is applied to
the same setup. Since the layup is quasi-isotropic, the expected failure load is equal to the
failure load of configuration 1 while the failure angle should either be 0° or 180°. In the third
configuration, the hole is loaded with a cosine distributed radial load between +90°. The
load is balanced by a distributed edge load on the opposite edge. In this case it is expected
to have (bearing) failure at 0° at a load which is lower than the compressive strength of the
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Figure 5.8: Configuration 1,2 and 3 (left to right) used for assembly verification.

Table 5.2: Verification result of assembly tests

Angle of failure (deg) | Failure Load (MPa)
Case | Tool Hand | Tool Hand
1 270 90° Vv 270° | 610 | 372 < X <1115
2 0 0°Vv180° | 611 | 372 < X <1115
3 358 0° | 834 0 <X <905

laminate. The configurations are shown in Figure 5.8. The results from the analysis are
given in Table 5.2 where it can be seen that all three test cases produce results which are
within expected bounds. Note, however, that the failure load for case one and two differs
slightly while it is expected to be equal since, virtually, the same case is investigated twice
(only rotated by 90°). This discrepancy is attributed to round-off errors in the calculation.
Additionally, it is observed that a failure angle of 358° was predicted for case three while it
is expected to have a failure angle of 0°. This does not raise any concern as it is sufficiently
close to 0°. It only indicates that failure occurs at a different angle than expected because of
the complex two-dimensional stress state in front of the pin.

By passing the units, systems and assembly verification tests it is confirmed that the analytic
tool produces results as intended. The tool can now be used to compare against experimental
data for validation which is done in Chapter 6.
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Chapter 6

Validation, Comparison to FEA and
Experimental Data

Before the tool is ready to be used in a design environment, it’s performance and operational
boundaries must be assessed. First, however, optimal values for the remaining “free” pa-
rameters need to be determined. These “free” parameters are required for the algorithm but
not directly related to the problem configuration. Since they are not directly related to the
problem, the future user of the tool will have no physical connection to these parameters and
will, if inexperienced, not be able to choose suitable values. Hence it is necessary to provide
a guideline for these parameters. For stress analysis, the “free” parameters are:

e MathCAD13.1(©integration tolerance TOL
e The summation parameter N

e The horizontal displacement angle «
For failure prediction these parameters are:

e The pin-hole clearance A

e The hole size for determination of the CPSED

In this chapter, the optimal values for these parameters are determined by investigating their
influence on the results. Next, the results from the stress field analysis and failure prediction
are compared to, respectively, FEA and experimental data to validate the analytic tool and
determine the operational boundaries and performance of the new criterion.
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6.1 Stress Analysis

Since FEA is also a model instead of reality itself, it can be argued that it should not be
used for validation. Over the years, however, FEA, when well constructed, has been generally
accepted to provide an accurate representation of reality. Additionally, data from experiments
where the entire stress field is measured are very hard to get by and limited to specific cases
only. For this reason and the fact that FEA can provide an accurate representation of the
stress field, FEA is used as validation for the stress field method. Before a comparison to
FEA can be made, the “free” parameters: MathCAD13.1(©)integration tolerance T'OL, the
summation parameter N and the the pin-hole contact angle a; need to be determined. This
is done in Section 6.1.1 and Section 6.1.2. Next, in Section 6.1.3 the comparison to FEA is
provided.

6.1.1 Influence of accuracy parameters TOL and N

It is difficult to determine the exact influence of TOL and N because they interact with
the specific configuration of a problem. For example, the impact of these parameters will
be different for problems with one hole or multiple holes. Also the type and amount of
loading as well as the size and material of the plate has an influence. For this work it is not
intended, nor required to perform a complete parametric study on the influence of TOL and
N. Therefore, five configurations, representative for the intended use of the tool are chosen
for this evaluation. The configurations are:

1. Circular hole, diameter D, in square sheet size 4D subjected to uniaxial tension

2. Circular hole, diameter D, in a square sheet size 4D subjected to multiaxial tension-
tension

3. Circular hole, diameter D, in a square sheet 2D subjected to uniaxial tension

4. Serie of 5 circular holes, diameter D, in a quasi-infinite length sheet with width 4D
subjected to uniaxial tension

5. 4 circular holes, diameter D, in a rectangular pattern subjected to uniaxial tension

In the configurations, circular holes are chosen because these are the most common in aircraft
structures. Configuration 1 is used as baseline. To provide an indication on whether an
increase in boundary conditions influences the behaviour of the algorithm, an additional
tension load is added which results in configuration 2. Next, to test whether the size of
the plate has an influence, the plate size is halved (increasing edge effects) which results in
configuration 3. The effect of multiple holes and their location is investigated by adding
more holes and changing patterns which results in configuration 4 and 5. The material used
is representative for a carbon fibre reinforced lamina (material 2, Table D.1) with layup
[—45/45/ — 45/45/90/0/0/0]s. From practical experience with the tool it is noticed that N
has the largest influence on the results. Therefore this parameter is investigated first.

N represents the amount of summations, thus the accuracy, of the solution given by Eq.
(3.13). By increasing N, it is expected that the solution will converge to a steady value.
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Figure 6.1: Influence of N for a centered single hole subjected to uniaxial tension (left) and
multiaxial tension-tension (right) in a 4D size square plate

If the solution converges to a steady value, increasing N might return the same stress field
because convergence is reached. Increasing N, however, will always result in an increase in
computation time because the size of the solution vector increases. To minimize computational
time, it thus needs to be determined which minimum value of IV results in a converged solution.

For the five aforementioned configurations, the difference between the maximum stress con-
centration factor with the current solution (V) and the first solution (N = 1), the difference
between the maximum stress concentration factor with the current solution (N) and the pre-
vious solution (N = N — 1) and the increase in computation time is plotted while varying
N from 1 to 10. The value of TOL is set to 1072, The results are shown in Figure 6.1
to Figure 6.3. Note that in the figures only relative calculation time is given because it
will differ depending on the performance capabilities of the computer used. For convenience,
computation time for a single hole in a rectangular sheet 4D, N = 1 and TOL = 1072 is
approximately 7 seconds.

The configurations with a single hole in a rectangular sheet subjected to uniaxial tension
and the same configuration with multiaxial tension-tension are shown in Figure 6.1. From
the Figure it is observed that, as expected, computation time increases exponentially when
increasing the accuracy of the solution. Additionally, one can see that, for both cases, the
solution does not change significantly when the amount of summations is larger than or equal
than 5. Increasing the amount of boundary conditions thus does not have a significant effect
on the convergence behaviour of the algorithm. To investigate whether the size of the plate
influences this behaviour, the same uniaxial problem is taken but the size of the plate is
reduced to 2D which induces significant edge effects. The results are shown in Figure 6.2.
Comparing both figures one can see an increase in required summations (N > 6) before a
stable solution is obtained.

The results from a serie of 5 circular holes in a quasi-infinite length sheet with width 4D
and 4 holes in a rectangular pattern subjected to uniaxial tension is shown in Figure 6.3.
Comparing Figure 6.3 with Figure 6.1 it is observed that, because more holes are present,
the amount of summations required for a convergent solution is higher (N > 7). Again, the
computational time increases exponentially with each increase in summations. It is concluded
that, providing that the amount of holes is lower than 6, it is sufficient to use N = 7 for a
convergent solution of the stress field.
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Figure 6.3: Influence of N for a serie of 5 (left) and a rectangular pattern of 4 (right) circular
holes in a finite width sheet subjected to uniaxial tension.

TOL regulates the convergence of the numerical integration in MathCAD13.1(©). Generally,
the lower T'OL, the more accurate the solution should be. The lower this tolerance, however,
the longer computation time and the higher the chance that the solution may not converge.
This can happen when the function to be integrated is discontinuous, very sharp or has
singular endpoints. Then it is possible that the differences between discretization steps does
not decrease, resulting in a non-convergent solution. Using N = 7, and varying TOL between
1073 and 107! (ultimate boundaries by MathCAD13.1©) for the same configurations, the
results shown in Figure 6.4 through 6.6 are obtained. In general, one would expect that, as
the integration tolerance decreases, the solution becomes more accurate, hence converge to
a steady value. This is however not the case which can be seen in the fluctuations when
107 > TOL > 107'3. Outside this range the solution does, except for a single hole in
a 2D rectangular plate (Figure 6.5), not significantly change. In search for an explanation
of this behaviour, MathCAD13.1(©key users were contacted from which it was concluded
that the behaviour is a product of the MathCAD@©numerical integration algorithm (based
on Gaussian-Quadrature integration) and cannot be avoided easily. A possible solution is to
construct a Monte-Carlo integration, which was attempted, but discarded due to a significant
penalty in computational time when requiring the same accuracy. Despite this drawback, it
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Figure 6.5: Influence of TOL for a centered single hole subjected to uniaxial tension in a 2D
size square plate

is concluded that a safe working range for the analysis of a general problem is 1072 > TOL >
107V 10713 > TOL > 10716

The attentive reader might have noticed that, due to this conclusion, the investigations per-
formed for stress verification, Chapter 5, and to determine a good value for N are invalid
because a value TOL = 10~'2 was used for the analysis. Contradictory, despite that this “un-
reliable” value was used for stress verification, the difference between Lekthnitskii’s solutions
were negligible which points towards a correct solution. Both statements can only be true if,
for the case of a quasi-infinite plate, the influence of TOL on the results is negligible. This is
shown in Figure 6.7 where additional results are presented for a single elliptical and circular
hole in a quasi-infinite sheet with N = 7. One can see that in these cases the solution, when
varying TOL, does not differ significantly. Also, these experiments differ only from the previ-
ous experiments in the size of the plate. Hence the plate size plays a role in the convergence
of the solution. Consequently, one might conclude that the results obtained to determine N
have to be recalculated using a proper value of TOL because, in the used configurations, there
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Figure 6.7: Influence of TOL for a single elliptical (right) and circular hole in a quasi-infinite
sheet

is a significant edge effect. This, however, does not necessarily need to be true if it can be
shown that the same behaviour for changing N exists when using another value for TOL. The
reason being that, if one does a calculation with an initial error (e.g. using “unreliable” value
for TOL), and compares the outcome to an outcome where the same error is incorporated,
the errors will cancel each other out. This is illustrated by Figure 6.8 where the configuration
with a single hole subjected to multiaxial tension-tension is recalculated for TOL = 1075,
Comparing the outcome to the earlier results in Figure 6.1 (TOL = 107'2) shows that the
behaviour of both graphs is the same. Thus, the earlier obtained results are valid.

Finally, from this investigation on the effect of the accuracy parameters TOL and N on the
obtained solution, it is concluded that good working ranges for N and TOL, when maximum
6 holes are present, are:

N=T7

1073 >TOL >10"5v 10713 > TOL > 1016 (6.1)
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6.1.2 Influence of contact angle estimation

A satisfactory estimation of the contact angle for a pin-loaded hole is essential for a reliable
estimation of the stress field. In Section 3.2 two models based on an iterative process were
explained. A model developed by Tomlinson [13] and a model developed by the author. In
this section the performance of both models is compared to results from FEA after which
the most suitable model is chosen. FEA for this subsection were performed by Gerhardt [18]
and comprise of a two-dimensional simulation of a rigid pin in a circular hole. Friction of
the pin and hole edge is neglected. The results from the FEA analysis were validated with
results obtained from an earlier study on bearing bypass loads in pin loaded composite joints
by Crews [14].

Before proceeding to the discussion of the configurations and results, an explanation on results
being (not) conservative is required. The graphs produced in this subsection are constructed
by applying a bearing load o, = P,/(Dt) on a pinned hole and letting the algorithm determine
the accompanying contact angle. Therefore, if for a given load oy, the contact angle is smaller
than in the real (FEA) case, the stress concentration factor at the hole edge will be larger
than in reality. Since the opposite is true when the contact angle is larger than the real
case, one might say that the smaller contact angle estimation is more conservative as it will
result in a lower ultimate failure load. This is true when one is focussing on the stress
concentration factor on the hole edge. However, the model described in this work does not
use the highest stress concentration factor at the hole edge but uses the CPSED to determine
a characteristic distance away from the hole at which failure is evaluated, Section 4.1. The
CPSED is calculated using a pinned hole configuration and Kweon’s definition of compressive
characteristic distance. Recall the aforementioned definition: “The distance from the front
hole-edge to a point where the local compressive stress by the arbitrarily applied load is the
same as the mean bearing stress when a bearing load is applied to the hole edge”. When a
small contact angle is used, the location where the local compressive stress is the same as the
mean bearing stress will be further away from the hole edge compared to a larger contact
angle due to the higher stresses, Figure 6.9. The CPSED is calculated as the sum of the
strain energy density along d. Hence for the smaller contact angle a higher CPSED will be
obtained than for the larger contact angle. In turn, the CPSED is a measure for the ability
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Figure 6.9: Schematic representation for the calculation of the CPSED whith a higher or lower
contact angle

of the material to absorb energy. Therefore, if the material is able to absorb more energy, the
estimated failure load of the plate will be higher with respect to a lower CPSED. Since the
lower CPSED is associated with a higher contact angle, in this work, a higher contact angle
is considered conservative as it results in a lower predicted failure load.

An initial comparison between the model by Tomlinson and Sevenois model (author) is shown
in Figure 6.10. In the Figure the contact angle associated with a fixed bearing load o} is shown.
The configuration used is a rectangular plate size 125 [mm] x25 [mm)] containing one circular
hole with a diameter of 5 [mm] and a QI layup. Clearance between the pin and the hole is
1.5% and «, Figure 3.7, equals half of the contact angle. In the Figure it is observed that the
contact angle from Tomlinson’s model remains 0° at low bearing stress levels. At higher stress
levels the model converges rapidly towards FEA data but stays in the non-conservative region
(smaller contact angle than expected). The contact angle being zero at low bearing stress
levels has to do with the assumption of an elliptical deformation of the hole. At a lower load
level, thus lower horizontal displacement, the elliptical curve, Eq. (3.33), only intersects the
pin shape at 0°. Therefore the result is also 0°. Compared to Tomlinsons model, Sevenois’
model approaches the curve from FEA much better and the contact angle is, in all cases,
conservative. Furthermore no unexpected behaviour is observed. From this first investigation
it is clear that the performance of Sevenois’s model is better, therefore it chosen to be used
in the analytic tool.

To produce the results in Figure 6.10, a value for the displacement angle o was chosen to
be half of the contact angle. Noting that there is a discrepancy with respect to FEA, it is
further investigated if changing « would be beneficial for the prediction. Additionally, different

laminate directionalities (= ,iEm /Eyy) and pin hole clearances might also have an influence
on the predictions and this should also be investigated. For this purpose a parametric study
is set up where a total of 10 different layups with 6 different clearances for a typical CFRP
laminate are investigated resulting in 24 analysis. Graphs of bearing load vs contact angle
are produced from FEA and Sevenois’ model. For Sevenois’ model a value for a equal to the
contact angle, half the contact angle and 0° is investigated. The ply properties, layups and
clearances are shown in Table 6.1.
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Table 6.1: Analysis parameters for optimal « determination

Layups - in % 0/ £ 45/90 degrees

20,/70/10 25/50/25
50,/40/10 30,/40,/30
20,/20/60 60,/20,/20
20,/60,/20 40/30/30
0/0,/100 100/0/0

Clearances (%)

2.0,1.5,1.0,0.5,0.1,0.01

Material Properties

Dimensions

E11(GPa): 133.5
E22(GPa): 8.3
G12(GPa): 40.5
v12(GPa): 0.3

Laminate thickness: 1 [mm)]
Plate length: 125 [mm]
Plate width: 25 [mm]

Hole diameter: 5 [mm]
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Figure 6.11: Effect of directionality on contact angle prediction (FEA) [18]

The directionality of each laminate was computed and associated with the results. For conve-
nience, in this subsection only the most important result of the analyses are shown. All results
are given in Appendix E. First the effects of laminate directionality and pin-hole clearance
are investigated. As is illustrated in Figure 6.11 the higher the directionality, the higher the
contact angle given a certain bearing load. Furthermore, from Figure 6.12 it is concluded
that a lower pin-hole clearance results in a higher contact angle. This is as expected since
a smaller clearance implies a bigger pin for the same hole size. Thus the contact angle will
automatically increase. A comparison between FEA and Sevenois’s model for different values
of a (equal to the contact angle, half the contact angle and 0° denoted by 1.0, 0.5 and 0.0
respectively) is shown in Figure 6.13. In the figure results for a QI layup and a clearance of
2.0% are presented. From the figure it is observed that increasing a results in a lower contact
angle when given a certain load. This results in non-conservative predictions when « is equal
to the contact angle. Therefore this value for « is excluded for analysis. Furthermore it can
be seen that when « is equal to half the contact angle, the prediction is conservative but less
conservative than when « is taken equal to 0°. This conclusion is valid for the tested layups
where the directionality is smaller than 1.11. For directionalities between 1.11 and 1.13, the
prediction is within 5% of the value from FEA. For higher directionalities the contact angle
prediction is conservative for o = 0° up to a directionality of 1.13.

It is recognized that a better approximation of the pin-hole contact problem might be achieved
when using displacement boundary conditions. Time constraints however did not allow for
adaptation of the model and therefore the validity of the tool has to be restricted to laminates
with a directionality lower than 1.13. As to which value of o should be used, it is recommended

to use a equal to half the contact angle because it results in the least discrepancy with respect
to FEA.
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Figure 6.12: Effect of clearance on contact angle prediction (FEA) - QI layup [18]

Coding: Model - Directionality - a factor; S = Sevenois; @ = (a factor)*Contact Angle
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Figure 6.13: Effect of o on contact angle prediction (Sevenois's model) and comparison to FEA.
Clearance 2% - QI layup in codperation with [18]
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Figure 6.14: Example of the FEM mesh around a hole

6.1.3 Comparison to FEA

In Section 6.1.1 and Section 6.1.2 optimal parameters for TOL, N and « are established. In
Chapter 5 it was demonstrated that the model can accurately produce stress distributions for
infinite plates and a single hole. Now, it remains to determine how well the tool is capable of
incorporating the effect of edges and multiple holes. For this purpose one needs to know the
accuracy of the stress field when:

e a hole is close to a plate edge
e a hole is loaded in the presence of edges

e multiple (loaded/unloaded) holes are present

From these goals suitable test cases are derived which are shown in Table 6.2. In the table
it can be seen that, to determine the accuracy of the tool when the hole is close to a plate
edge, the configuration of a single hole in a plate subjected to uniaxial tension is used. In
configuration 1 the distance to the loaded edge (E/D) and in configuration 2 the diameter
to width ratio (W/D) is varied. To determine the accuracy when a hole is loaded, a hole
with a radial cos-distributed load, Eq. (3.32) , at its edge is modeled in a finite size plate as
shown in configuration 3. Lastly, with configuration 4, the ability of the tool to account for a
combination of loaded and unloaded holes close to each other is investigated. Four holes with
diameter D are placed 3D apart in a square pattern. The holes to the right(2) are loaded
with a radial cos-distributed load, Eq. (3.32). The remaining holes are unloaded. The loads
are balanced with an edge load to one side of the plate.

The configurations in Table 6.2 are modeled in a FEA environment using MSC PATRAN/-
NASTRAN(@). Since the tool is only capable of calculating the stress field for a 2D-plate use
of CQUAD4 shell elements is justified. A mesh refinement is applied around the holes to
capture stress concentrations which resulted in 240 elements around each hole. Additionally,
in accordance with the Fokker FEM manual [199], it is made certain that the aspect ratio of
the elements is lower than 4, the skew is higher than 60 degrees and taper lower than 0.5 in
the vicinity of the hole. An example of the mesh is shown in Figure 6.14. A 2D orthotropic
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Table 6.2: Test cases for comparison between FEA and analytic tool

I

O

VIVTHITTLTT

Layup: [0/ 445/ — 45/ 4+ 45/ — 45],
Cases: E/D =1.0,1.5,2.0,2.5

Hole diameter: 10 [mm]

Plate length: 90 [mm)]

Plate width: 100 [mm)]

Trerere

VILILTT

Layup: [0/ 445/ — 45/ 4+ 45/ — 45],
Cases: W/D = 2.0,2.5,3.0,4.0

Hole diameter: 10 [mm]

Plate length: 100 [mm]

VIVTVIRETTLT

Layup: [0/ 4+ 45/ — 45/ 4+ 45/ — 45]s

Cases: E/D =1.5,2.5

Hole loaded with edge pressure load radially distributed
Hole diameter: 10 [mm]|

Plate length: 100 [mm]

Plate width: 100 [mm)]

3D

I

A

DN

M

Layup: [0/ 445/ — 45/ 4+ 45/ — 45,

Cases: two holes unloaded, two holes loaded
Hole diameter: 10 [mm]

Plate length: 200 [mm]

Plate width: 200 [mm)]
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Figure 6.15: Boundary condition

homogeneous material type is used. The engineering properties of the layup are calculated
beforehand and inserted as scalars.

Load and boundary conditions are handled in different ways depending on the configuration.
For configuration 1 and 2, the load on the plate edge furthest away from the hole is replaced by
a displacement restriction in the direction of the load. Additionally, to avoid unnecessary pivot
ratios (out-of-plane movements), the central node on that edge is restricted to move or rotate.
This is illustrated in Figure 6.15. For configuration 3 and 4 the hole edge load is represented
by a CID distributed radial edge load while the edge is replaced by the same displacement
boundary condition as described for configuration 1 and 2. Modelling the configurations in the
analytic tool is much simpler. The software tool takes edge loads, material properties, plate
and hole(s) dimensions as direct input. Therefore it is completely parametric and provides
worry-free (no need to check the validity of the mesh) batch processing which is one of the
major strengths of this tool. One however does need to check whether the solution is stable
with respect to the amount of summations (N) used for the solution. However, as has been
shown in Section 6.1.1, using N = 7 suffices for problems up to 5 holes where no excessive edge
or hole to hole effects are present. Therefore, for all problem cases N = 7 and TOL = 1076
is used as accuracy parameters.

The comparison between FEA and the tool is performed by qualitatively and quantitatively
assessing the SCF of the tangential stress around each hole. Furthermore, the change of max-
imum SCF along the length or width of the plate is assessed qualitatively. For convenience,
only the most important results from the analyses are shown in this section. All results are
presented in Appendix F. The analyses of configuration 1 when E/D = 2.5 and E/D = 1 are
shown in Figure 6.16 and Figure 6.17 respectively. In both figures it is observed that the
general behaviour of the SCF when revolving around the hole is the same for FEA and the
analytic tool. Four stress peaks in a symmetric fashion are present of which two are higher
than the other. For E/D = 2.5 there is no apparent difference between both solutions. For
E/D = 1.0, however, a discrepancy is present between the higher stress peaks. Looking at the
change of 0,/0¢ along « while y = 0 reveals that in the vicinity of the hole the SCF follows
the same trend. At the plate edges a discrepancy is also present. The tool predicts a stress
value of approximately zero while FEA, especially when E/D = 1, expects much higher stress
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1 ay.

The analyses of configuration 2 for W/D = 4 and W/D = 2 are shown in Figure 6.18 and
Figure 6.19 respectively. Comparing both figures to the figures from configuration 1 it is
observed that a similar conclusion can be drawn. For the case where W/D = 4, there is a
negligible discrepancy between FEA and results from the analytic tool. For W/D = 2 there
is a larger, but with respect to configuration 1 smaller, discrepancy between both. The
analyses for configuration 3, a loaded hole with E/D = 2.5 and E/D = 1.5 are shown in
Figure 6.20 and Figure 6.21 respectively. Just as with configuration 1 and 2 it is seen here
that, for the configuration with the hole furthest from the edge, the difference between both
methods is smaller compared to the configuration where the hole is closer to the edge.
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As from all three configurations a similar conclusion is drawn, it can be investigated how
a different E/D or W/D affects the magnitude of the discrepancy between FEA and the
analytic tool.From all three configurations the discrepancy in maximum tangential stress
concentration factor was calculated and plotted in Figure 6.22. In the figure the general
trend, a closer hole distance means a higher discrepancy, can quite clearly be observed. In
the search of why these discrepancies exist the following are noted. Investigating the FEA
models themselves did not result in convergence errors. All elements were small enough
to lead to stable results. Investigating the parameters used for the analytic analysis itself
revealed the following. For all analyses a summation parameter N = 7 and integration
tolerance parameter TOL = 1075 are used. Since N controls the accuracy of the solution, it is
expected that increasing this parameter would result in a better approximation of the problem.
However, upon increasing this parameter it was found that the analytic solutions were already
converged. This brought the attention to the integration tolerance parameter T'OL. Since this
parameter controls the accuracy of the numerical integration it is suspected that, for settings
with close edges, the convergence criterium for the numerical integration is too high and thus
it was attempted whether decreasing this parameter improved the results. Ultimately, this
also prove unsuccessful since here also convergence was found. Further testing whether the
numerical integration routine could be at the basis of the discrepancies at close hole edges
configuration 3 for £/D = 1.5 was analyzed with a Mathematica(©algorithm developed by
Bakker [200]. This algorithm is founded on the same theory but constructed as application
for single lap joints. It was expected that the results from the Mathematica(©algorithm are
closer to FEA because of the better numerical integration procedures in Mathematica(c). The
opposite turned out to be true for which the cause was found in the initial assumption that:

dp(21) dipa(22)
_ 2 9
or = 2Re {M i i i } (6.2a)
dp1(21) d<P2(Z2)]
= 2R — 6.2b
Jy ¢ [ dzl dZQ ( )
dp1(21) dﬂp2(z2)}
=9 - 2
Ty Re {Ul i He =g (6.2c)

where it can be seen that the initial summation between the stress functions is replaced

by substraction. Omne cause for the discrepancies between FEA and the tool remain. The
initial assumed shape function, Eq. (3.13), is less suitable of accurately representing the
stress field when holes are very close to the edge leading to a less accurate minimum energy
solution. Solving this requires trying the assumption of a different shape function which was
not attempted due to time constraints.

Nevertheless this drawback, the discrepancy between FEA and the analytic tool vanishes when
E/D > 2.5 and W/D > 4. Since, for design purposes, an E/D > 2.5+ 1.3 [mm] [16] and
W/D > 4.7 [17] is advised, the analytic tool can confidently be used for common engineering
practice. Finally, the ability of the tool to account for multiple holes which are loaded or
unloaded is tested using configuration 4. A rectangular plate size 20D is modeled with 4
holes, each 3D apart. Two holes are loaded while the other two are unloaded. The total load
is balanced with an equivalent edge load. For comparison, the tangential stress concentration
factor with respect to the hole angle for the FEA model and the analytic tool is plotted in
Figure 6.23. It is observed that there is an excellent agreement between both.
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Figure 6.24: Biaxial failure envelope for QI AS4-3501 [22]

6.2 Failure Prediction - Comparison to Test Results

Having determined the validity of the stress field method, the performance of the failure
prediction method can be assessed. This is done by comparing the unnotched and notched
failure prediction to experimental data from literature. Comparison of the unnotched failure
prediction can be done without any adaptations to the algorithm. For notched failure pre-
diction, however, as mentioned in the beginning of this Chapter, the optimal values for the
“free” parameters; the pin-hole clearance A and hole size for determination of the CPSED
need to be determined first.

6.2.1 Unnotched Failure Criterion

Using the unnotched failure criterion described in Section 4.1, uniaxial, biaxial and uniaxial-
shear failure envelopes are produced to compare to experimental data from various researchers
[22-26] and Fokker Aerostructures B.V. [201].

Biaxial failure experimental data and predicted failure envelopes for CFRP material AS4-
3501 [22], IM7-8551 [23,24] and IM7-9772 [25] are shown in Figure 6.24 to Figure 6.29. In
Figure 6.24 and Figure 6.25 it can be seen that, for QI layups, the Fokker criterion has a
better correlation with experimental data than the modified Puck criterion. This is espe-
cially true in the second and third quadrant of the failure envelope where the modified Puck
criterion significantly overestimates the strength of the laminate. The Fokker criterion also
overestimates the laminate strength in the compression compression quadrant. In the first
quadrant both criteria have a good agreement with experimental data. The fourth quadrant is
not investigated since an orthotropic laminate results in a symmetric failure envelope around
the axis 0, = 0,. Biaxial failure envelopes for compression-compression loaded angle plied
[£a]s laminates are shown in Figure 6.26 to Figure 6.28. Observe that the performance of the
Fokker criterion in the compression-compression quadrant is better than the Modified Puck
criterion but nonetheless significantly overestimates the laminate strength. In the remaining
quadrants, no experimental data was obtained but note the apparent infinite strengths pre-
dicted by the current Fokker criterion in Figure 6.27 and Figure 6.28. Because the modified
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Puck criterion does not contain this region, it is concluded that its performance is better
than the Fokker criterion. A biaxial failure envelope for a [0]s IM7-977-2 laminate is shown
in Figure 6.29. Comparing the performance of both failure criteria it is observed that the
modified Puck criterion provides a better fit to the test data than the Fokker criterion. This
especially in the first quadrant where the experimental data in the upper right corner matches
exceptionally well. Furthermore the Fokker criterion is more conservative. Different from the
biaxial failure envelopes, a uniaxial-shear failure envelope for a [0]so IM7-8552 laminate is
shown in Figure 6.30. Here the Modified Puck criterion has a better fit than the Fokker
criterion.

Both criteria were also used to provide a comparison to experimental data from Fokker
Aerostructures B.V. [201] Predictions for the uniaxial compressive and tensile strength of
a soft, hard and QI laminate made from material TH5.698/6 are shown in Figure 6.31. In
the Figure it can be seen that there is virtually no difference between both criteria. A very
good correlation with the experimental data is obtained.
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From the comparisons between the experimental data and both criteria it is difficult to point
out which criterion performs best. The Fokker criterion performs better (although not dras-
tical) for QI laminates subjected to biaxial loads while the modified puck criterion is superior
in the case of a UD laminate. For angle plied laminates performance of both criteria is ques-
tionable because of the apparent lack of test data. Sometimes the Fokker criterion predicts
apparent infinite strengths in the first quadrant. It is clear that in this investigation the con-
clusion from the literature survey, Section 2.2, is encountered again. The current (unnotched)
failure models for composite laminates are all but perfect and still require much development.
As such the question which criterion in this investigation performs better seems redundant.
Both criteria have their advantages and disadvantages and therefore they perform equally
good (or bad for the pessimists). In the remainder of this thesis it is decided to use the
Modified Puck criterion as a basis for the unnotched laminate strength because the Fokker
criterion contains curve fitting elements while in this work a universally applicable failure
criterion is sought. Thus, the less curve fitting elements present, the better.

6.2.2 Notched Failure Criterion - Clearance and Hole Size for CPSED

Before the performance of the notched failure criterion can be determined, optimal values for
the remaining “free” parameters need to be determined. As aforementioned, these parameters
are the pin-hole clearance A and hole size for determination of the CPSED. The pin-hole
clearance is the percentage difference between the size of the pin and the size of the hole
with respect to the hole. Usually, there is a measurable clearance between the pin and a
hole, however, this is only so for loaded hole experiments where, in the documentation, the
pin-hole clearance is reported. Therefore, to be able to estimate hole strengths when pin-hole
clearance is unknown, it is necessary to have a recommended value for the pin-hole clearance.
By inspection of datasheets with clearance fit allowables [202] it is noted that a hole clearance
can be as small as 0.5% for a hole diameter of 10 [mm] (the largest most occuring hole diameter
in the experimental dataset) while it can be as large as 11.3% for a hole diameter of 3 [mm]. It
is recognised that this is a large range. However, since conservative predictions are preferred,
and a smaller clearance results in more conservative predictions ,a hole clearance of 0.5% is
used as recommended value.

Since the compressive characteristic distance, used to calculate the CPSED (Kweon’s def-
inition Section 4.2), is dependent on the stress field around the hole and the stress field
around the hole is dependent on the hole size, the hole size for determination of the CPSED
is crucial for the prediction of notched failure. In his research, Kweon [3] uses a hole di-
ameter of 6.35 [mm|. However, since the hole size for CPSED has such a significant effect
on the predicted failure strength, it is decided to determine an optimal value by calibration
with experimental data. For this purpose, using the aformentioned clearance value of 0.5%,
predictions are made using several hole diameters ranging between 2 [mm] to 10 [mm)] for
experimental configurations from [27,28]. [27] describes open (small and large) hole uniaxial
compression and tension experiments on CFRP-epoxy laminates with a soft, hard and quasi-
isotropic layup. [28] outlines both open hole and pinned-hole tensile tests on the same type
of laminates. Together, both datasets contain 12 experiments which are considered represen-
tative for the other experimental data used in Section 6.2.3. Therefore, if conclusions from
these limited number of configuratons for the hole size for CPSED are drawn, the conclusions
should be applicable to the other experimental data. Plotting the discrepancy in percent be-
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Figure 6.32: Discrepancy with experiments from [27] (right) and [28] (left) when the hole size
for the determination of the CPSED is varied. OHT = Open Hole Tension, OHC = Open Hole
Compression, PHT = Pinned Hole Tension, S = Soft, H = Hard, QI = Quasi-Isotropic, N =
Narrow W/D, W = Wide W/D, L = Large hole

Table 6.3: Least square error for hole sizes below 6 [mm] based on Figure 6.32

Hole diameter for CPSED (mm) | Least square error
2 10694
3 8481
4 7352
) 0918

tween the predicted failure and measured failure for every hole size for CPSED against every
configuration results in Figure 6.32. In the figure it can be seen that there exists a general
trend in prediction vs hole size. Namely, the predictions from larger hole sizes lie above the
predictions from lower hole sizes. This is expected since a higher hole size for CPSED results
in a higher CPSED which in turn results in a higher failure load. Additionally, it is observed
that the discrepancy for pin-loaded holes is highly conservative.

The recommended value for the hole size of the CPSED is now determined in the following
manner. From discussions with supervisors at Fokker Aerostructures B.V. it is concluded
that, for the new criterion to be immediately applicable in industry, the discrepancy be-
tween predicted and measured value should be lower than +10%. When this restriction is
respected, the discrepancy should be as close to 0% as possible. The +10% threshold is drawn
in Figure 6.32 from which it is concluded that the hole sizes above 5 [mm]| are excluded for
consideration. Next, the sum of the least square errors of the remaining hole sizes are cal-
culated to assess which curve is closest to 0% discrepancy. The calculated values are shown
in Table 6.3 from which it can be seen that the lowest value, thus the graph closest to 0%,
occurs when a hole diameter for CPSED of 5 [mm)] is used.
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Figure 6.33: Uniaxial tensile (left) and compressive (right) failure for AS4/3501-6 [29], QI CFRP
layup, fixed specimen size

Concluding, the recommended values for the remaining free parameters, pin-hole clearance
and hole diameter for CPSED are 0.5% and 5 [mm] respectively. The value for the pin-hole
clearance is determined based on a logical reasoning while the value for the hole diameter is
determined by calibration with a representative selection of test data.

6.2.3 Notched Failure Criterion - Comparison to Experimental Data

With the determination of all “free” parameters, the performance of the notched failure cri-
terion can be assessed. Experimental results from 9 sources [19,27,29-35] are obtained and
compared to predicted failure loads from the analytic tool and the current criterion in use at
Fokker Aerostructures B.V. In the first paragraphs, no distinction is made between configu-
rations which comply and configurations which violate the tool directionality boundary (less
then 1.13) determined in Section 6.1.2. This is done on purpose such that a quantitative dis-
cussion on results with and without this distinction is possible at a later stage. All predictions
in this section are calculated using the “optimal” settings for the “free” parameters.

The obtained datasets are divided in four categories: uniaxial, biaxial, bearing and bearing-
bypass tests. In the uniaxial category Wang [29] and Bos [27] performed tensile and compres-
sive failure tests on laminates from UD AS4/3501-6 and TH5.698/601 respectively. Wang
used a QI layup and varied the hole size while keeping a fixed specimen size. Bos tested a QI,
soft and hard layup while keeping a fixed hole size. The results from both investigations are
shown in Figure 6.33 and Figure 6.34 respectively. From the Figures, it is observed that here
is a good, although sometimes unconservative, agreement between prediction and experiment
in the tensile configurations for both the Fokker and Sevenois criterion. Additionally, it ap-
pears that, for hole sizes larger than 3 [mm]|, Sevenois’ criterion is more conservative than the
Fokker criterion. For lower hole sizes the opposite is true. In the compression experiments, it
is observed that the Fokker method has a better fit for Wang’s experiments while it overesti-
mates three of the four (compressive)experimental failure loads by Bos. The Sevenois model
is always conservative but in one datapoint from Wang.

Two other datasets for uniaxial compressive failure where obtained from Hodge [30] and
Soutis [31]. Both authors investigated the effect of increasing the hole size on the compressive
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Figure 6.35: Uniaxial compressive failure for IM7/8552-1 [30] when changing hole size, fixed
specimen size

failure strength. Hodge used IM7/8552-1 UD prepreg while Soutis used T800/924C prepreg
and investigated multiple layups. The results are shown in Figure 6.35, Figure 6.36 and
Figure 6.37 where it can be seen that, in contrast to the conclusions from the previous results,
the discrepancies between prediction and measurement are much larger. This for layup nr.
1 in Figure 6.35, and nr. 1,3,4, 5 in Figure 6.36 and Figure 6.37. In 60% of the cases the
Sevenois criterion predicts a lower failure load than the Fokker criterion. Both criteria do
follow the trend (decreasing strength with increasing hole size) of the data .

Experimental data from biaxial load experiments is obtained from 3 sources. Daniel, [32,33]
performed biaxial tension-tension experiments on QI and [0/ & 455 laminates from UD SP-
286T300 CFRP. For all experiments Daniel tested several hole sizes for the same loading
ratio. For the QI layup, the loading o, — o, was 1/1 while for the [0/ & 45]; laminate
the loading ratio was 2/1. In contrast to other researchers, the hole sizes from Daniel were
rather large, in to order of some [cm|’s rather than the more common [mm] size. The results,
shown in Figure 6.38, indicate that their is only a minor difference between the new criterion
and the Fokker criterion where the Fokker criterion in all but one case predicts a higher
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Figure 6.39: Biaxial failure envelope for QI laminate of IM7/8552 with 10 [mm] hole [34] and
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failure strength with regard to the Sevenois criterion. Furthermore, the discrepancies with
the measurements are small with the QI-layup while they are rather high (but conservative)
in case of the [02/£45]; layup. Huang [34] used a QI layup of IM7/8552 to construct a biaxial
failure envelope. This is shown in Figure 6.39 where it can be seen that, here too, both criteria
produce conservative predictions where the Fokker criterion is closer to the experimental data.

Chang [35] performed an extensive experimental investigation on the pinned strength of
T300/1034C laminates. Three basic specimen designs: single hole, two holes in parallel
and two holes in series, were tested up to failure with 7 different layups (Figure 6.41). Ad-
ditionally, the basic dimensions of the specimens were varied to investigate edge effects. The
measured strengths and the predictions are shown in Figure 6.40 to Figure 6.42. In each
figure, the specimen dimensions are indicated. For almost all layups and configurations both
the Fokker and Sevenois criterion underestimate the strength of the joint. Furthermore, with
the single hole specimens the magnitude of the discrepancy between measurement and pre-
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diction seems to be dependent on the specimen size. Compare, for example Figure 6.40(a)
with Figure 6.40(c) and (d) where it is observed that, overall, the disrepancy with (d) is
much smaller with regard to the other two cases. With the two hole series this observation
can not be made with confidence. It seems, however, that the predictions for the two hole
specimens in series are closer to the measured failure strengths. Especially, when comparing
Figure 6.40(a), Figure 6.41(b) and Figure 6.40(b), Figure 6.41(c).

Crews [19] performed bearing bypass experiments on QI graphite epoxy laminates in an
attempt to generate the complete bearing bypass curve. Crews measured both initial failure
and final failure of the specimens. The comparison to Sevenois and Fokker is shown in
Figure 6.43 where it can be seen that both criteria underestimate the ultimate failure strength
significantly. Instead, the predicted failure loads seems to coincide with the onset of failure
with the Sevenois criterion being the most conservative. Additionally, it is noted that the
curve does not coincide well in the compressive bearing bypass region. This is attributed to
the contact angle algorithm which was not designed for this purpose.

Qualitatively, it seems that the performance of the new criterion is an improvement over the
current Fokker criterion since it provides better predictions which are almost always conser-
vative or close to the measured values for open hole configurations. Qualitative observations,
however, are somewhat sensitive to subjectivity and in the following an attempt is made to
quantify the predictions. Two graphs, one for unloaded and one for loaded configurations,
are constructed where prediction is set out against measurement for all 151 datapoints. The
boundaries for 60%, 40%, 20% and 0% discrepancy are indicated in the graphs which are
shown in Figure 6.44 and Figure 6.45. In Figure 6.44 it immediately stands out that there
is more compressive than tensile data. In the tensile case, all predicted values are within
+20% and —40% of the measured failure load. In the compressive case, however, scatter is
much larger. Here the Fokker criterion overestimates some experiments by over 40% while
the Sevenois criterion produces predictions between +20% and —40% of the measured value.
Most predictions, however are located in the boundary —20%, +20%. Looking at the graph
for the loaded experiments, Figure 6.45, scatter is much larger. Most predictions are conserva-
tive concentrating in the —20% to —60% region. A great deal are, more Sevenois than Fokker,
overestimations. This is quite worrying since, this way, it appears that one cannot determine
confidence bounds for the loaded hole experiments. Up to now, the boundaries of the tool,
determined in the previous sections, were not taking into account. Applying these boundaries
and eliminating the measurements where [0/90]; laminates (early microbuckling occured [31]
which is not taken into account by te failure criterion) are used, resulted in the exclusion
of 39% of the datapoints to a total amount of 92 (38 measurement points unloaded and 54
measurement points loaded holes together). Replotting the graphs results in Figure 6.46 and
Figure 6.47.

As expected, one can see that now, with the inclusion of the tool boundaries, the results
have significantly improved. For the Sevenois criterion in the unloaded configurations all
predictions are within +20% and —40% of the measured value. The Fokker criterion has
some overestimations in the +20%, +40% region. For unloaded holes, the Sevenois criterion
performs thus better than the Fokker criterion. In the loaded case, Figure 6.47, the great deal
of conservative predictions between —20% and —60% is still present. The overestimations by
the Sevenois criterion, however, have reduced to lower than +20% while the Fokker criterion
still has some predictions above +20% discrepancy. Remarkable is that there are 5 datapoints
where the prediction is lower than 60% of the measured value. Also, for these datapoints, the
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predicted failure value from the Fokker and Sevenois criterion is almost equal. Upon detailed
inspection of these specific configurations, it was found out that, in these cases, the stress
algorithm was unable to converge to a steady solution resulting in an unrealistic stress field
which again resulted in an unrealistic failure load. They should thus be neglected.

One cannot say that the performance of the current criterion for notched holes at Fokker,
which is based on a constant characteristic distance approach, is unusable. In most of the
cases it predicts a value which is within £40% of the measured value which is acceptable
considering the rudimentary approach taken. However, in the discussion above it is shown
that the new criterion, with an equally fast and simple set-up, provides a better estimation
of the failure strength of notched laminated plates. Additionally, it is able to cope with
multiaxial stress conditions which the Fokker criterion was never designed for and provides
fast linear stress field analysis. For unloaded holes, all predictions are within +20% and -40%
of the measured value. For loaded holes the predictions are within +20% and -60%.
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Chapter 7

Discussion, Conclusions and
Recommendations

The determination of the stress field and evaluation of failure in orthotropic plates with holes
subjected to arbitrary boundary conditions is one of the key challenges during the design of
composite structures. Up to now, no relatively simple methodology for general configurations
existed but has now been resolved.

The goal of this project was to construct an analytic tool for the determination of the stress
field and prediction of failure of rectangular orthotropic plates with holes subjected to arbi-
trary boundary conditions. Initially, it was envisioned to validate the tool only for unloaded
holes but during the construction of the new criterion it was recognized that also loaded holes
could be analyzed. Hence, the criterion was also validated for this type of holes. Because the
analytic tool will be used in a design environment by a general engineer, the tool had to be
fast, simple to use and its functioning easy enough to understand. Additionally, the failure
criterion had to be valid for multiaxial load scenarios.

First it was investigated which theories already existed for the analysis of stresses in or-
thotropic notched plates and the prediction of failure based on these stress fields. From this
investigation it was concluded that simplicity had to go to the wall for a performant stress
analysis and a complex stress analysis on the basis of Lekhnitskii [4] in conjunction with the
theory from Xiong and Poon [2] was constructed. Their research was expanded to account
for multiple (loaded) holes and shear loading on the hole and plate edges. The sign selection
method by Koussios [194] was also expanded to account for all types of orthotropic laminates.
For failure prediction no definite conclusion on which failure criterion would be best to use
could be drawn. Considerations on the basis of the intended use and required speed of the
tool led to the birth of the modified critical energy point-stress criterion for failure prediction.
A novel criterion which has its roots in the PSC by Whitney and Nuismer [10] in conjunction
with Kweon [3].

Both stress and failure prediction algorithms were verified thoroughly to ensure a correct
functioning of the tool. Comparisons to analytic stress fields from other authors resulted
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in a very good agreement. The effects of changing the amount of summations N and the
integration tolerance TOL were investigated from which it followed that the recommended
minimum values for these parameters are:

e N>T7

e 1023 >TOL>10%Vv10713>TOL > 10716

Validation of the stress field methodology with FEA revealed that, when the holes are very
close to a plate edge, the solution becomes less accurate. Therefore the following restrictions
with regard to the location of holes and plate edges are identified:

e E/D>25

o« W/D>1

Additionally, validation of the method to determine the contact angle in pin-loaded holes
restricted the tool usage for a laminate directionality lower than 1.13. Optimal values for
the load displacement angle o and hole diameter for the computation of the CPSED were
determined to be:

e « = half the contact angle

e Hole diameter for computation of the CPSED = 5 [mm]

Validation of the failure prediction methodology was done by comparing the predictions from
the tool to experimental data and the current failure prediction methods at Fokker Aerostruc-
tures B.V. A total of 151 experimental datapoints, mainly from single hole compression, tensile
and bearing tests, were used of which 87 were for unloaded and 64 for loaded hole config-
urations with biaxial and bearing bypass loading configurations. Eventually, 59 of these
experimental points were neglected due to the tool boundaries and preliminary ply buckling.
92 experimental datapoints remained from which it was concluded that, for unloaded holes,
the prediction lies between +20% and —40% of the measured value with all but a few in the
+20% region. For loaded holes this is between +20% and —60%. The new criterion is an
improvement over the current design methodology.

Strikingly, the unloaded hole predictions are better than the loaded hole predictions. This
while it was expected that the loaded hole predictions would be better than the unloaded hole
predictions because Kweon'’s failure criterion is based on a failure for loaded holes. During the
course of validation, several causes for this phenomenon were put forward. It is known, for
example, that the assumed stress distribution of the pin on the hole edge does not adequately
represent the actual contact problem at other angles than 0° and the contact angle. This
causes a high tangential stress at the location of the contact angle which sometimes causes
the prediction of early failure. Another possible reason is the use of a fixed hole size to
determine the CPSED. It is true that, using the actual hole size to determine the CPSED
is beneficial for the prediction of loaded holes (it increases the failure load between 0% and
10%). Using a fixed hole size, however, is one of the cornerstones of the criterion and changing
this would negatively affect the unloaded hole predictions. Because of the entanglement of
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unnotched and notched failure it is impossible to find a cause related to the tool which does
not affect the unloaded hole predictions. Since these predictions are acceptable, and in fact,
quite good, the cause of the discrepancy is sought elsewere. Namely, the test data itself. As
already indicated in Section 6.2.3, Figure 6.43, it is possible that the notched failure criterion
actually predicts the onset of failure instead of final failure. For unloaded holes this should
not be of significant concern as onset is usually quite close to final failure. For loaded holes,
however, final failure and onset can be far apart due to several strengthening and interlocking
mechnisms in the joint. Unfortunately, no details on the failure mechanisms leading up to
failure was found from the literature. It is thus quite hard to determine whether this statement
is true. It is however, the most plausible cause.

Unfortunately, due to the directionality boundary condition, the design space where the tool
can confidently be used does not cover all possible laminates. To allow usage in the com-
plete design space, the directionality restriction due to the contact angle estimation procedure
needs to be resolved. This ultimately means that the contact angle and pin-hole stress distri-
bution need to be improved which can be done using Gerhardt’s model [18]. This model was
developed during the construction of this thesis but was, when finalizing this work, not yet
ready for implementation. Other recommended improvements to the tool are:

e Include compression bearing-bypass loading in the pin-hole boundary condition

e Include additional effects in the unnotched failure method such as ply buckling and
delamination

e Investigate other/better numerical integration routines for the determination of the
stress field

When these challenges are resolved and validated, the tool can easily be used in the Fokker
design environment.

Apart from these issues with the loaded predictions, it is emphasized that the majority of the
predictions are moderately to highly conservative while the unloaded predictions are situated
in the +20%, —40% region. Although it was mentioned in Section 6.2.2 that a maximum
discrepancy of +10% is viable for industry, and the “free” parameters were scaled to obtain this
result, the finally obtained +20% for the entire dataset is a remarkably close value. It proofs
that, with a select number of experimental measurements, the basic conclusions from a failure
criterion can be made when one is careful with experimental data. The structural element:
orthotropic rectangular plate with multiple (un)loaded holes subjected to arbitrary boundary
conditions can be evaluated with confidence when keeping to the determined boundaries.
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Appendix A

Derivation of the Sign Selection
Algorithm

In this Chapter the derivation of the sign selection algorithm is given. For this algorithm the
algorithm provided by Koussios [194] was taken as a basis. This algorithm is given by:
IFa=0
s =sign(y — ym) IF 2 =0
s = sign(x — z,,) OTHERWISE
IFa>0

IF (y—ym SOAR<OAM<O)V(S>0AR>0)V(S>0AM>0)
s=+1
OTHERWISE s = —1

IF a <0

IF (y —ym SOAR<OAMZ0)V(S>0AR>0)V(S>0AM<0)
s=—1

OTHERWISE s = +1

and is based on the fact that the sign s before the square root of Eq. (A.1) should change
when the sign of the imaginary part inside the square root changes sign.

25(w,y) + 5/25(2, 9)2 = ARZ, jtm,

(g = S (A1)

UNCLASSIFIED R.D.B. Sevenois



106 Derivation of the Sign Selection Algorithm

....................

10

Green area: M>0
Red area: R<0
Brown: M>0
Dashed area: S$>0

-10E n n n
-10 -5 0 5 10

Figure A.1: Basis of the algorithm by Koussios [194]

R and M are the real respectively imaginary part of the equation inside the square root. S is
the asymptote of the region bounded by M = 0. They can be represented in equation form
using:

R=((z—am)* —a®) + ((y — ym)? — H))(@® = %)(a® = 5%) + 2a(z — 2m)(y — ym) (A.22)

M =26 (a (v —ym)* = 1?) + (@ = 2)(w — ym)) (A.2b)

T — Ty,

S=y—ym)+ (A.2¢)

where a and b are the ellipse semi major and minor axes. « is the real and § the imaginary
part of the material eigenvalue u. A sign plot of these three functions which is shown in
Figure A.1 is used. For each region in this plot it was identified which parameters should
result in a positive or negative sign and on this basis the algorithm was constructed. The plot,
however, is not valid for every combination of  and . More specifically, the region R < 0
does not always consist of two parts but sometimes also forms one region. This happens when
B < |a|. As shown in Figure A.2 this induces additional regions which are not captured by
the algorithm. Also when 8 = 2|a| additional regions are invoked as shown in Figure A.3. To
incorporate these regions in the sign selection algorithm an additional distinction is made for
the case when < || and the original requirements for "+"or "-" sign adapted. This results
in the algorithm below:

R.D.B. Sevenois UNCLASSIFIED



107

UNCLASSIFIED

Additional Regions

0.0075

~

R<0

0.003

S>0

S<0 \

0.0037 0.0075

Figure A.2: Sign regions for 5 < |a]

Additional Regions
0.0075+
0
R<(0
R<0
\
0.0037
< >
. S<0 \J\ S>0
-0.003
o ———
-0.007
-0.003 -0.0015 0 0.0015 0.003

Figure A.3: Sign regions for 5 = 2|q|
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Derivation of the Sign Selection Algorithm

IF a=0

S(x;?%ja m) = Slgl’l(y - ym) IFx=0
s(z,y,j,m) = sign(z — z,,) OTHERWISE
IF 3 > |of

IF >0

IF (y—ym SOAR<OAM<OA —zp, 2 0)V
(S>0ANR>0ANz -2, 20)V
(S>0AM=0)V
(S>0AR<O0AZ—xp, >
(S<OAR>0ANZT — 20, >
s=+1
OTHERWISE s = —1

)V

0
0)

IFa<0

IF (y —ym SOAR<OAM > 0AT — 2, < 0)V
(S>0ANR>0Az—x, <0)V
(S>0ANM<0)V(S>0AR<O0AZ -2 <0)V
(S<OAR>0AZ— 1z, <0)

s(z,y,7,m) = —1
OTHERWISE s(z,y,j,n) = +1

OTHERWISE

IF >0

IF (y—ym SOAR<OAM<OAZ — 2, 20)V
(S>0AR>0Az—xy =0)V
(S>0AMZ=0)V
(S>0ANR<O0AZ -z > 0)

s(z,y,j,m) =+1
OTHERWISE s(z,y,j,m) = —1

IF a <0

IF (y — ym <OAR <OAM > 0z — z,, <0)V
(S>0AR> 0z — 2, <O)V(S>0AM<O)V
(S>0ANR<O0Az—x, <0)

s=—1
OTHERWISE s = +1

The algorithm above is tested for multiple layups and hole shapes as shown in Figure A.4 to
Figure A.19 from which it is concluded that the algorithm now does choose the correct sign
for all possible cases (the red line is the line where the sign changes from + to -).

R.D.B. Sevenois

UNCLASSIFIED



109

.01

0.00:

R<0

UNCLASSIFIED

S<0

0
R<0
S>0

Figure A.4: Layup: [0];

0.01

0.005

-0.01
0.01 -0.01

Figure A.5: Layup: [90]s

0.005 0.01
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0.01 0.01
R<0 )
R<0 g
0.00 0.00
S>0 ; S<0
0 AN 0
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S<0 S>0
-0.005 -0.005 =4
0
001 O 001 !
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Figure A.6: Layup: [+45],
0.01
0
\ R<O R<(
0.00. \v_
<
S<0 $>0
0
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001 -0.005 0 0.005 0.01
Figure A.7: Layup: [£15],
001 0.01
> R<0
0.00 0.00 WA '
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0 < o B S>O
S<0 \
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Figure A.8: Layup: [+30]s
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0.01

0.00.

S<0

S>0

-0.005

-0.01

N

0.005

Figure A.9:

Figure A.10: Layup: [£75],
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N

N

0.005

0.01

Figure A.11: Layup: 0%0°, 50% =+ 45°, 50%90°
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0.01 \
R<0 !
\ R<0
0.00
S<O S>O
0
\\ -0.005 /\\
0,01 \
0.005 0.01 001 0,005 0 0.005 0.01

Figure A.12: Layup: 20%0°, 40% =+ 45°, 40%90°

0.01

R<0 J R<0 X

0.01

0.00

0.00:

S<0 S>0

0.005 0.01 0.005 0.01
Figure A.13: Layup: 25%0°, 25% =+ 45°, 50%90°
0.01 0.01
R<0 0
R<()
0.00
5<01/s>0
0
\\ 0,005 _— |
0,01
0:005 001 2001 0,005 0 0.005 0.01

Figure A.14: Layup: 25%0°, 50% =+ 45°, 25%90°
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0.01

0.00

R<0

0.005 0.01

Figure A.15: Layup: 33%0°, 33% =+ 45°, 33%90°
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-0.005.

-0.01
-0.01

D
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0 0.005 0.01
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0.01
\ R<0 0
N Rt
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Figure A.16: Layup: 40%0°, 40% =+ 45°, 20%90°
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Figure A.17: Layup: 50%0°, 0% = 45°, 50%90°

_/

0.005 0.01

R.D.B. Sevenois



114 Derivation of the Sign Selection Algorithm

0.01 0.01

R<0
\ -

$<0 1/ s>0

\ -0.005 /\

N \

-0.01 -0.005 ] 0.005 0.01

\

0 0.005 0.01

Figure A.18: Layup: 50%0°, 25% =+ 45°, 25%90°
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0 R<0 0
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0 0
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Figure A.19: Layup: 50%0°, 50% + 45°, 0%90°
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Appendix B

Discussion on Kweon’s Tensile
Characteristic Length

In this chapter a discussion is provided on the definition of the tensile characteristic length
for the PSC by Kweon [3]. This definition is: "The distance from the side edge of the fastener
hole to a point where the tensile stress by the failure load of the notched laminate is the same
as the tensile strength of the notched laminate" and it implies that when the mean stress in
the cross-section equals the unnotched strength, the plate is considered failed.

Following the derivation by Kweon [3], to determine the tensile characteristic length according
to his definition, one applies an arbitrary far-field load o, as shown in Figure B.1. Next, the
mean stress in the cross section is calculated with:

Om = Ooo (1 - fj) (B.1)

Subsequently, from the analysis of the stress field, the distance from the edge to the point
where the stress equals o, is determined and taken as the characteristic distance. Now,

t oo

Figure B.1: Specimen with center hole and uniaxial tensile load
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116 Discussion on Kweon’s Tensile Characteristic Length

when the stress at this characteristic distance equals the unnotched strength, the specimen
is considered failed. However, since the stress at this point equals the mean stress in the
specimen due to the far-field load, this is the same as evaluating the mean stress due to
the cross-section against the unnotched strength. Any composite strength engineer, when
presented with this conclusion, will judge that this approach is incorrect. Hence Kweon’s
definition of the tensile characteristic length is incorrect.
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Appendix C

Flow Charts of Individual Code
Segments

. INPUT :
| |
| |
: Plate Size Holes Location Summation Plate Layup |
| Plate Load Holes Load Tolerance Plate Material :
| |
| |
| [
> Start <
| ~
Unnotched Strain Critical
Sanity Check ——— Energy Density Tension ——» Compressive and Stress Field
and Compression Tensile Energy
End Write Data to Calculate Plate Display Stress
y File Failure Field for Check

Figure C.1: Main program assembly algorithm
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Flow Charts of Individual Code Segments

Plate Load

Summation

Holes Location
Tolerance

|
|
|
|
: Plate Size
|
|
|
I

» Holenr:i=0 |«

R.D.B. Sevenois

Plate Material

|
|
|
I
Plate Layup :
|
I
I
|

Reset Analysis Parameters:
Plate Length = 100*2*a3;
Plate Width = 2.8*2*b;
—> Hole Location (x,y) = (0,0)
Hole Load Appl. Angles (8,,8;) = (-90,90)
Total Hole Radial Load = 1
Plate Edge Load = Balance Hole Load

A 4

Calculate Stress

Field

Angle 6=0

A 4

Displacement in
x-direction at 8
= Up

X=X+1

f

Figure C.2: Critical Energies algorithm, partl
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i=i+l

v

Contact Angle due to
Rigid Pin Assumption
and Clearance = CA

(65,81) = (-CA,CA)

?

False
X > 20? False—»
True True
h 4
Characteristic
Distancer=0
A
>
Stress atrand 8 True—»| r=r+1005

ean Bearing Loa

False

¥

M = Strain
Energy in

RF = Unnotched
Reserve Factor

Region from
hole edge to r

Y

atr

MF = My, /My |

Ht:rit,it =M F*nCrit,iC

«False

True

v

t c
Return Mege , Mer

Mer© = RF*M

Figure C.3: Critical Energies algorithm, part 2
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|
| INPUT |
I |
I |
|
| Plate Edge Plate Layup :
| Load Plate Material I
| |
! |
! |
s a
A\ 4
abd-matrix <
\ 4
Ply Principal Lami
y r|r.1C|pa amlr.1ate
Strains Strains
Assign compressive
properties to plies in —»  abd-matrix
compression
\ 4
Ply Principal Laminate
. — ;
Strains Strains
A\ 4
Ply Principal =0
Stresses

Figure C.4: Unnotched failure algorithm, part 1
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Tr

v

Fiber Failure

Reserve Factor for <«
Plyi=FFeq

Ply already

Calculate “Mode B”, “Mode C”

failed in IFF?

seperation angle | False
False
czi >0
True
¢ i=i+1
ue , . N . Inter Fiber Failure
Inter Fiber Failure Inter Fiber Failure A
R F R E Reserve Factor
eserve Factor eserve Factor “Mode A”
“Mode B” “Mode C”
\ 4
\ 4 \ 4
i i IFFerc'= IFFa
IFFqit = IFFg IFFeic = IFFc
FALSE Failed Ply:
Mark Failed IFF
A
True
J False

Critical Reserve Factor,

RFit = min(lFFcrit:FFcrit)

All Plies IFF? ><True—_ oV

Angle ply?
False
PN Failed Ply:
" IFF== E22""=1/10%E22
False True)wﬂue V12"¥=1/10*v12
G12""=1/10*G12
False
True l
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Failure Load =

RF.it*Edge Load

Figure C.5: Unnotched failure algorithm, part 2
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INPUT
Pl i .
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at r = RFlocal; o

I
Figure C.6: Notched failure algorithm, part 1
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'

0=6+1 <4——False——— 0 =359 deg?

Reserve Factor
True—» Hole i, RF=
min(RFlocal;)

\ 4
Location of
Failure © =

Location(RF;)

\ 4
Energy at Failure in
Regio Around Hole,

1= (RF) .6

A4

Energy Ratio, RE;
= / merity g

‘ rupper = 2r-rlower r = (rlower+r)/2 <«—True—_
r = (rupper+r)/2 €«—True: < REp1? >
False
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r=r+1lmm
False v
X=X+1 ~_|rlower/r-1] <0.01? —Tru
Tru
\ 4
False i=i+l

Plate Reserve
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Figure C.7: Notched failure algorithm, part 2
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Plate Load Holes Load Tolerance Plate Material

| |
| I
| |
| |
: Plate Size / Holes Location Summation Plate Layup |

|
| |
| |
| |
| |

/ Initial Contact Angle:\

(80,61) = (-90,90) degree |

(
Iteration Counter:
e

\ 4

Calculate Stress |
Field

I -

Calculate
displacement u,

X=X+1

»
>

\ 4

Calculate 6g
from Egn 3.40

(80,81) = (-6,858)

True

e
[ (80,81) = ('95,95)\,
-

o

Figure C.8: Contact angle determination algorithm
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Appendix D

Results from Verification

In this chapter the results from the verification process of the stress field algorithm and failure
prediction algorithm is presented. For every verification step the input to the (sub)part of the
algorithm is provided and the output is given. Also the expected output by hand calculation

is provided for comparison.

abd-matrix

Table D.1: Material properties used for verification. Stiffnesses (GPa), strengths (MPa)

Nr. Ei | Ex | Gig | via(—) X! XY Y| S| tpy(mm)
0 151.0 | 10.6 | 6.6 0.31 | 1401 | 1132 | 54 | 211 | 72 0.13
1 148.0 86| 5.9 0.27 | 2760 | 1620 | 75 | 185 | 85 0.13
2 142.0 | 10.3 | 7.2 0.27 | 2280 | 1440 | 57 | 228 | 71 0.13

Table D.2: Verification input abd-matrix

Input

2

Layup | [90/0/0/90,/0/0/90/0/0/90,/0/0/90/0/0/90]

[90/45 /-45/90 /0 /0/90/-45/45,/90]

UNCLASSIFIED

Material All Material 2 [0/2/2/2/2/2/2/2/2/0]
Result tool input 1:

[ 5.0895 %1079  —2.3714 % 10710 0 0 0 0 ]
—2.3714% 10719 7.8971 %« 107? 0 0 0 0
0 0 6.5722 % 108 0 0 0
0 0 0 1.5628 x 1072 —6.0988 x 10~* 0
0 0 0 —6.0088 x 10~ 1.7772 % 1072 0

i 0 0 0 0 0 1.7659 * 107! |

(D.1)
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Result KolibriV2@©input 1:

[ 5.0888 x 1072  —2.3710 % 1010 0 0 0 0 ]
—2.3710 % 10719 7.8959 « 10~? 0 0 0 0
bd — 0 0 6.5712 % 1078 0 0 0 N.m
- 0 0 0 1.5621 x« 1072 —6.0960 « 10~* 0 ’
0 0 0 —6.0960 « 10~%  1.7764 x 102 0
i 0 0 0 0 0 1.7651 % 107! |
(D.2)
Result tool with input 2:
[ 1.5538 %1078  —2.8921 % 1079 0 0 0 0 ]
—2.8921 %1079  1.0086 % 108 0 0 0 0
b — 0 0 3.9993 % 1078 0 0 0 N
avd = 0 0 0 2.1333%10°1  —3.2164 %102 4.2873x1072| ™
0 0 0 —3.2164% 1072 5.6564 %1072 5.7742% 1073
i 0 0 0 4.2873% 1072  5.7742%1073  2.7008 % 107! |
(D.3)
Result KolibriV2@©with input 2:
[ 1.5536 %« 1078  —2.8919 % 10~ 0 0 0 0 ]
—2.8919% 1079  1.0085 % 108 0 0 0 0
b — 0 0 3.9988 % 1078 0 0 0 N.m
abd = 0 0 0 21325 x 1071 —3.2155% 1072 4.2856 % 10~2| ~
0 0 0 —3.2155% 1072  5.6547 %1072 5.7725% 1073
i 0 0 0 4.2856 % 1072 5.7725 %1073 2.6997 x 107! |
(D.4)
material eigenvalues
Input 1:
[ 1.5538 1078  —2.8921 % 10~? 0 0 0 0 ]
—2.8921 %1079  1.0086 % 108 0 0 0 0
abd — 0 0 3.9993 * 1078 0 0 0 N.m
- 0 0 0 2.1333%x 1071 —3.2164 %1072 4.2873 % 1072| * "
0 0 0 —3.2164 %1072  5.6564 %102 5.7742% 1073
i 0 0 0 4.2873% 1072  5.7742%1073  2.7008 % 107! |
(D.5)
Input 2:
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[ 1.5538%107°% —2.8921 %« 10~* 0 0 0
—2.8921 %1072  1.5538 x 1078 0 0 0
0 0 3.9993 % 1078 0 0
0 0 0 2.1333 % 107!
0 0 0 —3.2164 x 1072
0 0 0 4.2873 % 1072

Result from Input 1:

—3.2164 % 102
5.6564 % 102
5.7742 % 103

0
0
0
4.2873 % 1072
5.7742 % 1073

2.7008 % 10~

(D.6)

Table D.3: Hand calculation and tool result material eigenvalues from input 1

Hand Tool | Difference (%)
pn1 | 0+1.3617 | 0+ 1.361%
w2 | 040.59217 | 0+ 0.5927 0

Result from Input 2:

Complex parameters p; and ¢;

Input:

Result:

Table D.4: Hand calculation and tool result material eigenvalues from input 2

Hand Tool | Difference (%)
1 | 0+ 1.04i | 0+ 1.04 0
pe | 040.987 | 0+ 0.987 0

1.1274 x 1078
—6.9481 % 107?
0

a =

—6.9481 % 1077 0
3.7359 % 108 0
0 4.294 %108

_ 0.5158 + 1.2467:
~ \—0.5158 + 1.2467:

Table D.5: Results from hand calculation and tool for p; and g;

(D.7a)

(D.7b)

Hand

Tool

Difference (%)

b1

—2.147 %1078 +1.45% 1073}

—2.147% 1078 +1.45%x1078;

D2

—2.147% 1078 — 1.45% 1078

—2.147%107% — 1.45% 1078

q1

q2

i
7.002 %« 1079 — 3.43 % 10785
—7.002% 1079 — 3.43 % 10754

i
7.002 %1079 — 3.43% 10785
—7.002 %1079 —3.43 % 107%;

0
0
0
0

UNCLASSIFIED
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Results from Verification

Complex parameters R7;, t;

Input:

Results:

Table D.6: Input for verification of R; and ¢;

Hole | x(m) | y(m) a(m) b(m)
0 —0.03| 0.00 | 5%x103 | 5%x1073
1 0.03] 0.01]2%103]3%103

(

Table D.7: Results from hand calculation and tool for R,,;

0.5158 + 1.24674

—0.5158 + 1.24671')

(D.8)

and tm]’

Hand Tool | Difference (%)
Ror | 5.62%107° —1.29%1073% | 5621073 —1.29 % 10~>5 0
Roo | 5.62%102+1.29%107% | 5621073+ 1.29% 10735 0
to1 —0.154 4 0.1944 —0.154 + 0.1944 0
to2 —0.154 — 0.1944 —0.154 — 0.1944 0
Ri1 | 2871073 —7.738%107% | 2.87 %1072 — 7.738 x 10~ %; 0
Ry | 2.87% 1034+ 7.738 %10 % | 2.87 % 1073 + 7.738 x 10~ %; 0
t11 —0.3540.175¢ —0.35 4+ 0.1754 0
tio —0.35 —0.175¢ —0.35—0.1754 0

Sign Selection Algorithm

See Appendix A

Verification of zf, f and their derivatives

Verification of z; and ¢;, input:

Table D.8: Input values for verification of z; and §;

x(m) | y(m)

Hj

R

tm;

Zmj Sign

0.5 0.02 | 1.23 — 2.544

2.56 — 0.25¢

2.35 + 51

02+03: | +1

Output:

R.D.B. Sevenois
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Table D.9: Results from tool and hand calculation for z; and §;

Hand

Tool

zj | 0.5246 — 0.05081¢

0.5246 — 0.0508:

& | 2.0499 — 1.3213¢

2.0549 — 1.32311

Verification of coefficient matrix ;, input:

Table D.10: Input for verification of & matrix

Hole x(m) | y(m) a(m) b(m)
0 —0.03 | 0.00 5%1073 [ 5% 1073
1 0.03 | 0.01 2%1072 [ 3% 1073
n 2 | x(m) -0.02
2 —0.02 + 1.247-4i | y(m) 0.0001
& 1.7627 + 0.2901¢ & | —16.8311 — 8.81803
Result:
Table D.11: Results from verification of £ matrix
Hand Tool
1 1 1
z —0.0199 + 1.2467 « 10~ % —0.0199 + 1.2467 « 10~ %
22 3.9792 % 10~* — 4.9739 % 10~% | 3.9792 % 10~* — 4.9739 % 10~
In(&1) 0.5802 4 0.1631i 0.5802 + 0.1631i
&t 0.5524 — 0.0909: 0.5523 — 0.0909:
T 0.2968 — 0.10044 0.2968 — 0.1004%
In(&y) 2.9445 — 2.6590: 2.9445 — 2.659:
&1t —0.0466 + 0.02441 —0.0466 + 0.0244
&7 0.0016 — 0.0023¢ | 1.5767 % 1073 — 2.2772 % 103}
1 —1.2467 % 10~* — 0.0199¢ —1.2467 % 10~* — 0.0199:
iz 4.9739 % 1070 +3.9792 % 10~%i | 4.9739 % 1070 + 3.9792 %+ 10~ %
22 4.9739 % 1070 +3.9792 % 10~%i | 4.9739 % 1070 + 3.9792 %« 10~ %
i1n(&;) —0.1631 + 0.5802i —0.1631 + 0.5802i
i€ " 0.0909 + 0.55241 0.0909 + 0.55241
i€ 2 0.1004 + 0.2968i 0.1004 + 0.2968i
iIn(&2) 2.6590 + 2.9445: 2.659 + 2.9445¢
i€y —0.0244 + 0.0466: —0.0244 — 0.0466:
3% 0.0023 + 0.0016¢ | 2.2772 % 1073 4+ 1.5767 = 1034

UNCLASSIFIED
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Results from Verification

A similar calculation as performed for the coefficientmatrix of the derivative of z; and £;. The

same input was used (Table D.10). The result is:

Table D.12: Results from verification of derivate £ matrix

Hand Tool
0 0 0
Z 1 1
dz —0.0399 + 2.493  10~% | —0.0399 + 2.4934 + 104
dIn(61) 93.5623 + 12.5865 93.5604 + 12.5838i
&y —52.8234 + 1.5531i —52.8205 + 1.5548i
e, ” —58.0717 + 11.3194i —58.0664 + 11.321;
dIn(zs) ~17.2829 + 3.8318i 17.2828 + 3.8318i
dey —0.7121 + 0.60074 ~0.7121 + 0.6007
dey” 0.0370 — 0.0908i 0.0370 — 0.0908;
0 0 0
df —2.4934 % 107* — 0.0399i | —2.4934 x 10~* — 0.0399
diln(61) —12.5838 + 93.5604i —12.5838 + 93.56044
dic, —1.553 — 52.8234i —1.5548 — 52.8205i
dit,” ~11.3194 + 58.0717 ~11.321 — 58.0664i
diln(Es) —3.8318 — 17.2829; 3.8318 — 17.2828i
ity —0.6007 — 0.7121i 0.6007 — 0.7121i
dity” 0.0908 + 0.0370i 0.0908 + 0.037i

Stress System Test

Input:

Layups used:
33/33/33
100/0/0
0/100/0
0/0/100
50/50/0
0/50/50
50/0/50
50/25/25
25/50/25
25/25/50

Material used: material 2

R.D.B. Sevenois

Hole | x(m) | y(m) a(m) b(m)
0 0.00 | 0.00 51073 |2%1073
Width | Length || n | TOL

1.00 1.00 || 6| 1072
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Uniform uniaxial tension at the plate edge
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0 157 3.14 471 6.28 0 157 3.14 471 6.28
Angle (rad) Angle (rad)
Figure D.1: Stress concentration factor at hole edge and difference between tool and Lekhnitskii.
33% +0°, 33% +45°,33% £90° uniaxial tension at 0°,a = 5 [mm)], b = 2 [mm]
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Figure D.2: Stress concentration factor at hole edge and difference between tool and Lekhnitskii.
100% UD, uniaxial tension at 0°, @ = 5 [mm]|, b = 2 [mm|]
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Figure D.3: Stress concentration factor at hole edge and difference between tool and Lekhnitskii.
100% =+45°, uniaxial tension at 0°,¢ = 5 [mm|, b = 2 [mm]
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Figure D.4: Stress concentration factor at hole edge and difference between tool and Lekhnitskii.
100% 90°, uniaxial tension at 0°,a = 5 [mm], b = 2 [mm]
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Figure D.5: Stress concentration factor at hole edge and difference between tool and Lekhnitskii.
50% 0°, 50% £45° uniaxial tension at 0°,a = 5 [mm]|, b = 2 [mm)]
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Figure D.6: Stress concentration factor at hole edge and difference between tool and Lekhnitskii.
50% 90°, 50% =+45° uniaxial tension at 0°,a = 5 [mm)], b = 2 [mm]
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Figure D.7: Stress concentration factor at hole edge and difference between tool and Lekhnitskii.
50% 0°, 50% 90° uniaxial tension at 0°,a = 5 [mm], b = 2 [mm]
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Figure D.8: Stress concentration factor at hole edge and difference between tool and Lekhnitskii.
50% =£0°, 25% £45°,25% £90° uniaxial tension at 0°,a = 5 [mm]|, b = 2 [mm|]
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Figure D.9: Stress concentration factor at hole edge and difference between tool and Lekhnitskii.
25% £0°, 50% +45°,25% +90° uniaxial tension at 0°,a = 5 [mm], b = 2 [mm]
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Figure D.10: Stress concentration factor at hole edge and difference between tool and Lekhnitskii.
25% +0°, 25% +45°,50% £90° uniaxial tension at 0°,a = 5 [mm)], b = 2 [mm]
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System test, uniform pressure at the hole edge
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Figure D.11: Stress concentration factor at hole edge and difference between tool and Lekhnitskii.
33% +0°, 33% +45°,33% £90° uniform pressure at hole edge,a = 5 [mm], b = 2 [mm]
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Figure D.12: Stress concentration factor at hole edge and difference between tool and Lekhnitskii.
100% UD uniform pressure at hole edge,a = 5 [mm], b = 2 [mm]
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Results from Verification
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Figure D.13: Stress concentration factor at hole edge and difference between tool and Lekhnitskii.
100% +45° uniform pressure at hole edge,a = 5mm, b = 2 [mm)]
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Figure D.14: Stress concentration factor at hole edge and difference between tool and Lekhnitskii.
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Figure D.15: Stress concentration factor at hole edge and difference between tool and Lekhnitskii.
50% 0°, 50% £45° uniform pressure at hole edge,a = 5 [mm], b = 2 [mm)]
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Figure D.16: Stress concentration factor at hole edge and difference between tool and Lekhnitskii.
50% 90°, 50% +45° uniform pressure at hole edge,a = 5 [mm)], b = 2 [mm]
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Figure D.17: Stress concentration factor at hole edge and difference between tool and Lekhnitskii.
50% 0°, 50% £90° uniform pressure at hole edge,a = 5 [mm], b = 2 [mm)]
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Figure D.18: Stress concentration factor at hole edge and difference between tool and Lekhnitskii.
50% 0°, 25% +45° ,25% +90° uniform pressure at hole edge,a = 5 [mm]|, b = 2 [mm|
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Figure D.19: Stress concentration factor at hole edge and difference between tool and Lekhnitskii.
25% 0°, 50% £45° ,25% £90° uniform pressure at hole edge,a = 5 [mm], b = 2 [mm)]
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Figure D.20: Stress concentration factor at hole edge and difference between tool and Lekhnitskii.
25% 0°, 25% +45° ,50% £90° uniform pressure at hole edge,a = 5 [mm)], b = 2 [mm]
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Unnotched Failure Algorithm

Table D.13: Verification of ply strain calculation

Laminate Strain Odeg 90 deg
Tool Hand Tool Hand
Ex 5.562e-009 | 5.562e-009 | 5.562e-009 | -1.96e-009 | -1.96e-009
Ey -1.96e-009 | -1.96e-009 | -1.96e-009 | 5.562e-009 | 5.562e-009
Yy 7.307e-025 | 7.307e-025 | 7.307e-025 | -1.652e-024 | -1.652e-24
Laminate Strain 45 deg
Tool Hand
Ex 5.562e-009 | 1.801e-009 | 1.801e-009
Ey -1.96e-009 | 1.801e-009 | 1.801e-009
Yoy 7.307e-025 | -7.522e-009 | -7.522e-009
Table D.14: Laminate properties used for unnotched failure verification
Type EH E22 G12 1/12<—) Xt X Yt Ye¢ S tply(mm)
Tens. | 142.0 | 8.1 | 4.5 0.3 | 2335 | 1635 | 80 | 215 | 120 0.184
Comp. | 125.0 | 85| 4.5 0.3 | 2335 | 1635 | 80 | 215 | 120 0.184

Table D.15: Laminate properties selected for unnotched failure verification. Stiffnesses (GPa),

Strengths (MPa)
Ply E11 E22 G12 V19 (—) Xt Xc¢ Yt Ye¢ S tply (mm)
0° | 142.0 | 85| 4.5 0.3 ] 2335 | 1635 | 80 | 215 | 120 0.184
45° | 142.0 | 8.1 | 4.5 0.3 | 2335 | 1635 | 80 | 215 | 120 0.184
90° | 125.0 | 8.1 | 4.5 0.3 | 2335 | 1635 | 80 | 215 | 120 0.184
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Results from Verification

Table D.16: Verification of the ply stress calculation. Stiffnesses (GPa), Strengths (MPa)

Direction Strain (-) Stress (Pa)

Tool Hand
longitudinal || 4.25E-09 603.2 | 6.03E402
transverse -1.42E-09 -1.24 | -1.24E4-00
shear 1.02E-25 | 4.60E-16 4.60E-16

Table D.17: Verification of FF and IFF exposure

Ply RFF (-) FF (-)

Tool | Hand Tool Hand
0° | 2.02e6 | 2.02e6 | 9.60e7 | 9.616e7
45° | 6.11e6 | 6.11e6 | 2.106e6 | 2.106e6
90° | 4.57¢6 | 4.57e6 1.5e6 1.5e6

Table D.18: Changing of material properties upon IFF failure

Failure mode | Initial properties | Mode A | Mode B | Mode C
Eyy (Pa) 140.0e9 | 140.0e9 | 140.0e9 | 140.0e9
Ey (Pa) 8.0e8 8.0e7 8.0e8 8.0e8
G12 (Pa) 5.0e8 5.0e7 5.0e8 5.0e8
vi2 (-) 0.03 0.02 0.03 0.03
tpry (M) 1.29e-4 | 1.29e-4 | 1.29e-4 | 1.29e-4

Table D.19: System test results unnotched failure criterion

Layup Load Vector | Tool (MPa) | Hand (MPa)
42% 0°, 42% +45°, 16% 90° | (1,0,0) 816 826
2% 0°, 42% +45°, 16% 90° | (-1,0,0) 2629 2629
100% 0° (1,0,0) 1575 1575
100% 0° (0,1,0) 60 60
100% 0° (0,0,1) 113 113
50% 0°, 50% 90° (1,0,0) 792 7875
50% 0°, 50% 90° (0,1,0) 792 787.5

R.D.B. Sevenois
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Contact Angle Calculation

Table D.20: Verification of contact angle calculation.

Tool Hand
Clearance (%) 1.0 1.0
Yo () 9.457c-5 | 2.457e-5
77 (m) 3.175¢-3 | 3.1750-3
rp(m) 3.143¢-3 | 3.143¢-3
Contact Angle (°) 55.265 | 55.265

Critical Potential Strain Energy Density Calculation and Selection

Table D.21: Verification of CPSED

Scalefactor(-) | CPSED (Pa/m?)

Tool | Hand Tool Hand
Long. Compr. 1.00 1.00 | 26.7156 | 26.7156
Long. Tens. 1.542 | 1.542 | 41.1914 | 41.1914
Biax Tens. 0.678 | 0.678 | 18.122 | 18.122
Biax Compr. 0.633 | 0.633 | 16.9168 | 16.9168
Biax Tens.-Comp. | 0.518 | 0.518 | 13.8367 | 13.8367
Biax Compr.-Tens. | 0.518 | 0.518 | 13.8367 | 13.8367
Trans. Compr. 0.411 | 0.411 | 10.9873 | 10.9873
Trans. Tens. 0.432 | 0.432 | 11.5395 | 11.5395

Table D.22: Verification of the calculation of the critical energy ratio

Input
d(m) | Load Reserve Factor at r | Energy from edge to d (Pa/m?) | (Pa/m?)
0.001 293363 9.53e-12 214.10
Output
Energy at failure (Pa/m?) CPSED ratio (-)
Tool Hand Tool Hand
82.04 82.04 2.61 2.61

In Figure D.21 the selection of the CPSED around a hole subjected to uniaxial tension is
given. As explained in the thesis, the CPSED at a certain hole angle is chosen depending on
the loading condition at that location. In the Figure it is shown that this is done correctly
because of the transverse compression region around 0° and 180° and the longitudinal tensile
region at 90° and 270°.
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& Trans. Compr.
# Biax. Compr
Long. Compr.
& Trans. Tens.
# Biax. Tens.
® | ong. Tens.

Figure D.21: Selection of the CPSED on a unit circle subjected to uniaxial tension in the
horizontal direction
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Notched Failure Algorithm

The behaviour of the notched failure algorithm is verified by looking at the change in char-
acteristic distance, reserve factor and critical energy ratio over the amount of iteration steps.
As one can see, they all converge to a steady value.
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1200000

T 1150000

Figure D.22: Change of load reserve factor, r and critical energy ratio throughout the iteration

process

Assembly Verification

Table D.23: Verification result of assembly tests

Angle of failure (deg) | Failure Load (MPa)
Case | Tool Hand | Tool Hand
1 270 90° v 270° | 610 | 372 < X <1115
2 0 0°Vv180° | 611 | 372 < X <1115
3 358 0°| 834 0< X <905
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Appendix E

Contact Angle Comparisons FEA

In this Chapter, the results of the comparison of the contact angle algorithm to FEA are shown
here. The figures show the result when the hole contact angle « is varied in the analytic tool
and the result from FEA analysis. The title of each figure give the clearance used. In the
figure legends, “S” denotes, Sevenois, “FEA” denotes Finite Element Analysis. The layup
and corresponding directionality is also given according to the coding system below.

Coding: Model - Directionality - a factor; S = Sevenois; a = (a factor)*Contact Angle

UNCLASSIFIED R.D.B. Sevenois
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Contact Angle Comparisons FEA
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Figure E.1: Clearance = 2.0%
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Figure E.2: Clearance = 1.0%
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Figure E.3: Clearance = 0.1%
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Figure E.4: Clearance = 1.5%
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Figure E.6: Clearance = 0.01%

UNCLASSIFIED



Bearing Stres (MPa)

Bearing Stres (MPa)

Bearing Stres (MPa)

147

20 30 40 50 60

Contact Angle (deg)
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Figure E.9: Clearance = 0.1%
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Figure E.11: Clearance = 0.5%
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Figure E.12: Clearance = 0.01%
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Contact Angle Comparisons FEA

—— 5-1.13-05
- - -51.13-00

10 20 30 40 50 60 70 80 90

Contact Angle (deg)
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Appendix F

Results from Stress Validation

In this chapter, the results from the validation of the stress field theory by comparing them
to FEA are presented.

The effect of varying E/D for an unloaded hole
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Figure F.1: SCF of oy at the hole edge (left) and SCF of o, at y = 0 (right) when E/D = 2.5
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The effect of varying W/D for an unloaded hole
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The effect of varying E/D for a loaded hole
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The effects of having multiple loaded/unloaded holes
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