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Abstract

Oil-in-water emulsions are very common in industrial processes, and understanding the fac-
tors governing emulsification and de-emulsification is crucial. A mechanism through which
de-emulsification commonly takes place is coalescence, being the act of two dispersed-phase
droplets coming together to create a single larger droplet. Due to density differences, it is
common for dispersed phase droplets to form a creaming layer at the top of the emulsion, in-
creasing the likelihood of coalescence and therefore de-emulsification. The goal of this thesis
is to use the lattice Boltzmann method to simulate the rising of a dispersed phase oil droplet
towards a creaming layer due to buoyancy effects and to quantify the effect of the viscosities
of both phases on the velocity with which aforementioned droplet rises. This is done using the
Shan-Chen psuedopotential method.

After introducing gravity into the simulation the the droplet is allowed to reach a terminal
velocity v;. This is done for independently varying viscosities for both the dispersed phase and
continuous phase (v4 and v, respectively). A weakly inverse relation was found between v,
and v.. An estimation for the terminal velocity of a droplet rising due to creaming behavior is
found by cancelling drag force found from Stokes’ law against the buoyancy force [1]. Found
results were not in agreement with said estimation. Different explanations for this discrepancy
are varying droplet diameters, varying droplet densities, droplet deformation and high velocity
fluctuations. The terminal velocities were also compared to the ratio between the viscosity of
both phases, but no correlation was found.
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1 Introduction

Coalescence is defined as the event of two or more elements coming together to create a single
larger entity. In the context of emulsions, being defined as the mixture of two or more immis-
cible fluids, the coalescence of two droplets of the same phase gives rise to a larger degree of
separation between the two phases that the emulsion consists of. Two-phase systems such as
oil-in-water emulsions are very common in industrial processes. Therefore knowledge of the
mechanisms that influence such phases is crucial. To illustrate this point, we will compare the
seemingly very different techniques of processing crude oil and making mayonnaise. For the
former, the goal is to separate oil from the water that is present inside crude oil [2]. To achieve
this, the droplets in the oil-phase are made to coalesce as much as possible, as to create a single
entity of oil and a single entity of water that can be separated from each other. In the case of
mayonnaise however, the goal is mix the two phases as evenly as possible, as to make an even
mixture of oil and water to serve as a basis for the mayonnaise, as opposed to water filled with
concentrated clumps of oil [3]. As illustrated by these two examples, both emulsification and
demulsification, and therefore the degree in which coalescence takes place, is crucial in many
processes that span a wide range of industries and use-cases.

Dispersed
phase (oil)

Continios
phase (water)

Figure 1.0.1: A schematic view of an oil-in-water emulsion [4].



Research has been done on the subject of emulsification, in particularly in the context of food
processing. The mechanisms of demulsification however, have seen somewhat less research
[5]. As early as 1978, D.T. Wasan et al. observed a direct link between coalescence rate and
viscositiy in crude oil [6]. In 2021, B. Bera et al. observed a positive correlation between
temperature and coalescence rate, attributing this correlation to the temperature dependency of
the fluid viscosity [5].

For coalescence to take place, two or more droplets of the dispersed phase have to come
into close proximity. One method in which this can occur is due to creaming. Creaming
occurs due to a lower density of the dispersed layer, causing the droplets to rise to the top
and form a creaming layer [7]. This mechanism is explained further in 2.1.2. In recent years,
much research has been done towards characterising creaming layers. In terms of experimental
research, ultrasonic techniques have been used to measure oil concentration in creaming layers
[8]. In more recent years, both NMR and MRI have emerged as experimental methods to
characterise creaming emulsions [7]. However, due to the increasing cost and complexity of
said experiments, computational methods have proven to be a powerful and efficient tool in
this field. Since there is, as of yet, no single unifying theory to perfectly describe all forms of
creaming behavior, it is of great importance to perform simulations using different approaches
[7]. To this end, this thesis will seek to simulate the behavior of dispersed phase droplets rising
towards the creaming layer. Due to previous research observing a correlation between fluid
viscosity and coalescence rate, the influence of viscosity is of especial interest. As such, the
main goal of this thesis will be to determine the effects of viscosity on the rate at which
creaming occurs. To this end, this thesis will simulate the rising of an oil droplet towards a
creaming layer. This is done by using the lattice Boltzmann method, which is further described
in 2.2. In as early as 1993, X. Shan and H. Chen, have proposed a model within the lattice
Boltzmann method to simulate the interaction force between different phases, which gives form
to phase separation. This method, commonly referred to as the Shan-Chen Psuedopotential
method, is further explained in 2.2.4, and will be used in this work to simulate the mechanism
of creaming. To this end, S. Anwar (2013) has already made steps to simulate the rising of
a gas bubble in a fluid using a similar method. This thesis seeks perform a similar research,
instead focused on multicomponent systems.

This report is structured as follows: First in Chapter 2, we will explore the fundamental
mechanisms of emulsions, coalescence and creaming, followed by a overview of the lattice
Boltzmann method. Then in Chapter 3, the setup for the simulation will be described, along
with an explanation and corresponding results of the model verification. In Chapter 4, the
results yielded by the simulation will be shown and analysed. Lastly, Chapter 5 will contain
a brief conclusion of the obtained results and implications, along with recommendations for
future research on this topic.



2 Theory

2.1. Emulsions

A colloid is a type of mixture in which one substance consists of microscopically dispersed
particles that are suspended throughout another substance. These two phases are dubbed the
dispersed phase and the continuous phase respectively [9]. An emulsion in turn is defined as
a colloid in which the dispersed phase and the continuous phase are both liquids [10]. In this
work, we will limit ourselves to emulsions, specifically oil-in-water emulsions, where the oil
takes up the role of the dispersed phase and water that of the continuous phase.

We define two ways in which an emulsion can cease to be an emulsion. The first is called
Ostwald Ripening, in which molecules of the dispersed phase present in smaller droplets slowly
diffuse through the continuous phase into larger droplets. In this mechanism, the smaller oil-
droplets will slowly become smaller and eventually cease to be, while the larger droplets will
grow. This results in a larger average droplet size alongside a smaller total droplet count. The
second method, coalescence, consists of two or more droplets of the dispersed phase coming
into contact and merging, creating a single larger droplet [9]. This second mechanism will be
explained in greater detail in section 2.1.1.

For coalescence to take place, oil droplets have to come into close proximity of each other.
This typically happens either by creaming or aggregation [11]. In aggregation, the droplets
come together due to diffusion and therefore depends on the random act of two droplets coming
into contact without the presence of any attraction force. Creaming however, is the phenomenon
of droplets of the dispersed phase rising to the top of the emulsion due to buoyancy effects.
Since this phenomenon is the main focus of this report, it will be expanded on in section 2.1.2.

2.1.1. Coalescence

Coalescence can occur when two droplets of the dispersed phase come into close contact. Co-
alescence takes place in two distinct steps. The first step is a rapid thinning of the continuous
phase between the two droplets, in which the continuous phase present between the two droplets
is forced out due to the presence of a capillary pressure caused by the spherical shapes of the
droplets. This process causes the distance between the droplets to decrease up until the system
reaches a quasi-equilibrium, in which the capillary pressure has reached zero. The second step
consists of a slow rupture in which the continuous phase layer still present between the droplets
slowly flows out as a results of diffusion. At the end of these two steps, the droplets will come
in contact, from which point coalescence can take place [12].



2.1.2. Creaming and Sedimentation

Creaming is a process in which the dispersed phase accumulates at the top of the emulsion due
to buoyancy effects caused by the dispersed phase having a lower density than the continuous
phase. Due to the congregation of many dispersed phase particles in a single location, particles
form a creaming layer at the top of the emulsion. When a droplet comes into contact with this
creaming layer, coalescence has a relatively high chance to occur due to staying in extended
contact with this layer [11]. The exact composition of this creaming layer can take many
different forms, including but not limited to individual droplets, partially coalesced droplets
and a gel-like structure [7]. As such, there is as of yet no single theory that can predict the
distribution of droplets in all types of creaming processes [7].

Since the dimensions of a given dispersed phase droplet is typically many orders of mag-
nitude smaller than that of the distance to the creaming layer at the top of the emulsion, it can
be assumed that said droplets are given enough time to reach a given "terminal velocity" vy,
for which the frictional forces Fy; are equal to the buoyancy forces F,. . Due to the typically
very low Reynolds number governing creaming behavior, the drag force on a dispersed phase
droplet can be described by Stokes’ law, which is shown in the equation below [1].

Fy =6mp.Ru 2.1

In which R and v are the radius and velocity of the droplet respectively and /. is the viscosity
of the continuous phase. Assuming a low enough Re, we can assume that Stokes’ law is valid
for a dispersed phase droplet. The buoyancy force on the droplet is given by equation (2.2).

4
Fg = g(ﬂc - /)d)gﬂ'RS (2.2)

In which p. and p, are the density of the continuous phase and the dispersed phase respectively.
The terminal velocity is reached when both forces equal each other, resulting in the following
equation for vy.

2 (pc - Pd) g R2
9 e
Since the time it takes for a given droplet to reach its terminal velocity is typically very small
compared to the total time it takes to reach the creaming layer, it can be assumed that the
droplet’s average velocity can be approximated as the terminal velocity found by applying of
Stokes’ law.

The process of sedimentation is the opposite of creaming in that the dispersed phase is now
subjected to a higher effective buoyancy force than the continuous phase, causing the dispersed
phase to sink to the bottom of the emulsion [7].

(2.3)

Vs =

2.1.3. Fluid Viscosity

The dynamic viscosity p, generally referred to simply as "viscosity", of a liquid is a measure
of its resistance to deformation. This resistance is caused by internal friction between adjacent
layers of fluid that are in motion relative to each other [13]. A fluid is considered Newtonian if
its viscosity is unaffected by the amount of shear stress F'/A applied. In this work, we assume
that all relevant components, being water and oil, are Newtonian fluids [13]. The equation for



the viscosity of a Newtonian liquid in terms of shear stress and the velocity gradient Ou/0y
(also known as the strain rate) is given by equation (2.4).

_ F/A
H=0u /0y
Another form in which the viscosity can be denoted is the kinematic viscosity v, which is

defined as the ratio of the dynamic viscosity over the density of the fluid, as shown in equation
(2.5) [14].

(2.4)

V== (2.5)
p

In the lattice Boltzmann method, this dynamic viscosity is closely related to other parameters
of the simulation, and as such is typically used over the dynamic viscosity in this work. This
relation is further explored in 2.2.
For a two-phase system, we also introduce a viscosity ratio 7 in this work, which is defined
as the ratio of the kinematic viscosities of both phases as shown in equation (2.6).
v
n=— (2.6)
Vq
In which v, and v, represent the kinematic viscosities of the continuous and dispersed phase
respectively.

2.1.4. Interfacial Tension and Droplet Shape

Due to the strong cohesive forces between water molecules, it is more thermodynamically
favorable for water molecules to neighbour each other as opposed to oil molecules. Because
of this, oil molecules are effectively repelled by neighboring water molecules in a mixture
that contains oil and water [15]. Due to this effective repellent force, spherical droplets are
typically formed, as to decrease the contact area between the water- and oil phases, which in
turn minimises the total interfacial tension between the two phases. This interfacial tension
can be defined following the Young—Laplace equation, which is shown below for the case of a
spherical (dispersed phase) droplet of radius R.

v =2ApR 2.7

In which Ap denotes the pressure difference inside and outside of the droplet. Contrary to this
phenomenon, droplets can take different shapes in the presence of external forces like gravity,
or when its velocity is high enough. This shape can be described by a set of dimensionless
numbers, being the Reynolds number (Re), the Bond number (Bo) and the Morton number
(Mo).

The Reynolds number is the ratio of internal forces to viscous forces within a fluid and is
shown in equation (2.8) for the given system. Typically, high Reynolds numbers (Re > 1000)
are associated with turbulent flow, while low Reynolds numbers (Re < 1000) are associated
with laminar flow [16].

ul B 2uR

Ve Ve

Re =

(2.8)



In which w is the flow velocity, v, is the kinematic viscosity for the continuous phase, and L is
the characteristic linear dimension of the system, which is taken as 2R for this work [17].

The Bond number, also called the E6tvos number, characterises the relative strength of gravity
and surface tension [18] and is shown in equation (2.9).

_ 9R%(pc — pa)
Y

In which g is the acceleration due to gravity. A high Bond number designates that the grav-

ity forces are dominating over the surface tension, typically resulting in a deformation of the

droplet. The Bond number is used to describe the overall shape of the droplet together with the

Morton number, which is shown in equation (2.10).

Bo (2.9

_ g p(pe — pa)

~3
Similar to the Bond number, the Morton number is used to characterise the deformation for a
droplet rising in a liquid due to buoyancy effects. Contrary to the Bond number, the Morton
number is not dependent on R, and is therefore consistent for droplets that vary in size. A high
Morton number is associated with a high degree of deformation of the droplet.

Mo (2.10)

2.2. The Lattice Boltzmann Method

The lattice Boltzmann method is a Computational fluid dynamics (CFD) method, used in the
simulation of fluid behavior. Contrary to other many other CFD methods, the lattice Boltzmann
method does not solve the Navier Stokes Equations directly [18]. Instead, a lattice is simulated,
for which each node is assigned a fluid density function which contains information about the
density and overall velocities of particles at the given node. For every time step in the simu-
lation, the overall velocity at each node is re-evaluated using a collision operator, simulating
collisions of particles in addition to other applied forces. Afterwards, a streaming step is per-
formed in accordance with the assigned velocities. Both steps in this process are described in
greater detail in their corresponding sections.

2.2.1. The Particle Distribution Function

The most integral variable in the lattice Boltzmann method is the particle distribution function
f(z, E, t), which designates for a given point & how many particles (in terms of mass density)
will have velocity 5 at time ¢. To simplify this variable, the velocity space is discretised. This
is done by declaring that for f: only a finite number of values ¢; are possible. Since this work is
exclusively simulating a 2D system, we will limit ourselves to the use of the D2Q09 velocity set,
in which the 2 designates the number of dimensions and 9 represents the amount of possible
values for ¢; [18]. Each of the velocities ¢; have a weighting coefficient w; associated with
them, which directly influences the chance for a given particle to have said velocity. The Oth
term represents the rest velocity, in which a particle does not move and hence ¢) = 0. It has
wy = %. Terms 1 to 4 represent movement along a Cartesian axis and have w; = %. Terms 5 to
8 represent movement with a 45° angle with either of the Cartesian axes and have w; = %. The
magnitude of said velocities are defined such that in a given time step At, the corresponding



populations move either a single node in the case of € 1,2, 3,4 or diagonally in the case of
i €5,6,7,8 for a total magnitude of |¢;| = v/2. This discretisation scheme is also shown in the
figure below.

v
4

D2Q9

Figure 2.2.1: Here the possible directions are shown for the D2Q9 discretisation scheme.
Velocities with length |¢;| = 1 and /2 are shown in black and grey, respectively. Note that the
rest velocity ¢y = 0 is not shown [18].

With this discretised velocity scheme, we can redefine the particle distribution function as
fi(Z,t), where ¢ designates the corresponding velocity in accordance with the D2Q9 scheme.
Using this scheme, we can calculate the following quantities on each given node.

Density: p(7,t) = Y  fi(&,1) (2.11)
TR — = o C_foi(_; t)
Velocity: @i(7,t) = » T (2.12)

2.2.2. Collision Step

At every time step, the populations at each node are reconfigured, as to come closer to a equi-
librium population f (%, ¢). This equilibrium population is calculated using the following
equation:

- 5\2 o -

AU 1) = wip(Z,t)(1 — 2.13
In which c¢; is the speed of sound, which gives a measure of how fast information can propagate
through the system. In the lattice Boltzmann method, the speed of sound equals ¢, = \%%, in



which [u and tu (commonly referred to as lattice units) are the resolutions of the grid in terms
of space and time respectively [19]. Another lattice unit is mu, which denotes mass. Using this
equilibrium population, we define an operation to determine how much closer the population
at the given node will be to this equilibrium population after a given time step At. This is done
by using the Bhatnagar-Gross-Krook (BGK) operator, §2;, which is calculated using equation
(2.14).

fz(fv t) — fieq(fv t)

(7, 1) = — (2.14)

In which the relaxation time 7 is a variable which directly influences the how quickly a popu-
lation will reach its corresponding equilibrium population. In terms of physical properties, 7 is
directly related to the kinematic viscosity v as shown in equation (2.15).
At
v=c1— 7) (2.15)
Using the BGK-operator, the population for every time step is restructured as follows.

fi(@, t+ At) = fi(@,t) + U(Z, 1) (2.16)

2.2.3. Streaming Step and Boundary Conditions

The second step in the process is the streaming step, in which populations with velocity ¢; will
propagate from a position ' to & + ¢;. This process can be seen in the equation below.

Since this simulation will take place in a finite grid, boundary conditions have to be defined,
as to conserve mass for the system. The two boundary conditions that will be considered in
this work are periodic boundary conditions and bounce-back boundary conditions. Periodic
boundary conditions rest on the key assumption that the system, both in terms of flow and
geometry, are periodic, in the sense that each grid of identical size will be the same in terms of
flow and component density. The application of this boundary condition in the simulation rest
on that if a population is about to exit the grid on one side, they will re-enter from the other
side. In a 2D N, x N, grid with periodic boundaries at x = 0 and = N,, we attain the
following equations.

With 2 denoting the unit vector in the x-direction. Not to be confused with the position Z.



When using bounce-back boundary conditions on the other hand, we define both sides of
a grid as solid walls, through which no population can propagate. When implemented in the
Lattice Boltzmann method, it results in a population that is about to exit the grid to invert their
respective velocity, resulting in an elastic collision. For a bounce-back boundary condition for
y = 0and y = N, + 1, the resulting velocity shift of populations approaching the y = N, + 1
boundary is shown in the equations below.

f4($2>Nyat + At) = f2($17 Ny7t)
f7(.7)2, Ny, t + At) = f5(ZE17 N ,t) (220)
fs(wa, Ny, t + At) = fo(x1, Ny, )

<

For populations approaching the y = 0 boundary, the below equations are given.

fg(ﬂfg, 1, t + At) = f4($1, 1, t)
fS(anlat_‘_At) :f7($1717t) (221)
fG(JZQ, ]_, t+ At) = fs([)’}l, 1, t)

2.2.4. Multi-component Systems & Shan Chen forcing

Introducing forces to the simulation in this work is done by the velocity shifting method, pro-
posed in the original works of Shan and Chen (1993), in which a forcing term is added to the
velocity used in calculating the equilibrium population in equation (2.13) [20]. To implement
this, a new variable, denoted by the equilibrium velocity, is introduced, which is shown in the
equation below.

TE(Z, 1) At?

p(Z,t)

In the case of multiple components (for example water and oil) being simulated, all popu-
lations have to be labeled by a superscript o, which denotes said component'. For this case, we
define a weighted average of velocities, which we denote the common velocity «’, for which
the following relation holds.

-1
(&, t)a) (7, t) P9 (%, 1)

TGRS : : 2.23

@' (Z,1) Z e Z ) (2.23)

This newly defined common velocity is used instead of the single-component velocity in the
calculation of @®Y(Z, t) in equation (2.22).

TU(Z, 1) = A(T,t) + (2.22)

'Note that when talking in Lattice Boltzmann terms, the term "phase" usually refers to a state of matter (i.e.
gas or liquid), whereas in this work and emulsion science in general, "phase" also refers to different immiscible
components (i.e. water and oil). To avoid confusion, in this subchapter the word "component" is used when
referring to a substance. Since an emulsion by definition consists of multiple components and a single state of
matter (liquid), in this work the term "phase" is reserved for components unless otherwise mentioned.

9



The gravity force in this work is introduced following equation (2.24).

R @)

gL (o
= gzgp(a)(p Po) (2.24)

In which pg is a reference density equal to the density of water, which is taken at unity. For
this work, to simulate a system where the dispersed phase has a constant density, a Boussinesq
approximation is applied in which the density for the oil component is taken as its base density
in the second term. This approximation ensures that despite unwanted density variations inside
the simulation, the buoyancy force works as if the oil phase has a fixed density [18].

To simulate interfacial tension, the Shan-Chen Pseudopotential Method is used. This method,
proposed by X. Shan and H. Chen (1993), rests on the assumption that for every node, a force
acts on the populations of component ¢ that is dependent on the population of all components
& in adjacent nodes. This force is dependant on pseudopotential ¢/(?). Due to this work using
relatively low density ratios between components, the pseudopotential is taken simply as p, as
shown in equation (2.25).

¢(U) — IO(U) (2.25)

In other works, particularly those with with high density ratios such as multiphase systems,
other, more elaborate definitions for 1) are used [18]. The Shan-Chen force on the population
of a component ¢ on a given node 7 is calculated using equation (2.26).

FSCO () = —p(7) 3 Gor Y w7 + GAGAL (2.26)

In which G, denotes a coefficient which denotes the interaction strength between liquids
o and 0, refered to as the interaction parameter. For a positive value, the two components
will repel each other, and for a negative value the two components will attract each other. The
equation of state for the multicomponent SC model as used in this work is given by equation
(2.27) [21].

2 (o) cs* At (0),/,(5)
p= e’ P+ =) Gt (2.27)

In this work, we always assume that G, is only nonzero for ¢ # 7, resulting in the Shan-Chen
force only being applied between different components. Since there are only two components,
we will refer to the interaction strength between water and oil simply as G.
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2.3. Literature Review

In the past years, the lattice Boltzmann method has been a popular research tool for multiphase
and multicomponent systems like emulsions. In 1993, X, Shan and H. Chen devised a method
for simulating flows with multiple phases and components, colloquially known as the Shan-
Chen model. This method is still popular for lattice Boltzmann simulations that rest on phase
or component separation due to its simplicity and mesoscopic nature [18]. In 2012, S. Gong
and P. Cheng have used multiple forms of the Shan-Chen method to simulate a liquid droplet
in a vapor. These results were compared against theoretical values and yielded satisfactory
results. In the same work, the coalescence of two droplets along a solid surface in a 3D space
is simulated for which the results are shown in figure 2.3.1.

r=10320 z 1=10580 1 =10660 1=10820

<,
o0 b 6 6

(a) Three dimensional droplet(s) shape

OO|ICDID

(b) Top view of the droplet(s)

Figure 2.3.1: Coalescence of two droplets on the bottom surface with wettability gradients in a
microchannel, as simulated by S. Gong and P. Cheng. Both a side-view and top-down view is
given in the first and second set of images respectively. Each set of images is linked to a
different time value ¢ and represents a corresponding step in the coalescence progress [22].

From their results, Gong and Chenq concluded that their application of the lattice Boltzmann
method is "an effective tool for simulations of phase transitions and multiphase flows" and that
more complex fluid problems can also be analysed using this method [22].
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In 2013, S. Anwar used a modified version of Gunstensen’s binary color model in the lattice
Boltzmann method to simulate gas bubbles rising in a liquid due to buoyancy effects. By
varying the viscosity of the present phases, he found that the terminal velocity is positively
correlated to the viscosity ratio 7 for values of 17 < 500, as shown in Figure 2.3.2.

0.3
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= | -+ n=100
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II n=1000
0.00 B

non-dimensional time, T

Figure 2.3.2: S. Anwar’s results for the terminal velocity of a gas bubble rising in a liquid due
to buoyancy effects for various viscosity ratios. On the y-axis the terminal velocity of the
droplet is shown, and on the x-axis the corresponding non-dimensionalised time
T = At/g/2R is shown. This plot contains graphs for multiple viscosity ratios ranging from
n = 1ton = 1000 [19].

S. Anwar also observed that for a lower viscosity ratio, the bubble suffers less deformation. In
the same work, he also observed that a high Bond number relates to a lower surface tension,
which in turn causes higher bubble deformation. Lastly, Anwar compared the shape of the
resulting bubbles for varying values for Bo and Mo to experimental data provided by Bhaga
and Weber [23]. He concluded that the resulting shapes are in agreement with said experimental
data and his results serve as a verification of an LBM-based buoyant multiphase flow model to
simulate density dependent flow of a binary mixture of fluids.
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3 Numerical Method

In this work the research question has been addressed using the lattice Boltzmann method with
the help of a newly written Python script. This simulation will take place on a 2D N, x N, grid
and will use the D2Q9 velocity scheme, as explained in 2.2.1. The simulated system mimics an
oil-in-water emulsion, where the two components are given by oil as the dispersed phase with
a density of 0.8 mu/lu® and water as the continuous phase with a density of 1mu/lu?. In this
work, the Shan-Chen method is used with an interaction parameter of G = 2.5, which is found
to cause less diffusion for higher values of 7, while still ensuring stability of the system.

A limitation of the Lattice Boltzmann method lies in the choice for the relaxation time 7,
and therefore the kinematic viscosity v. In general, a low relaxation time (7 < 0.6At) will
often result in instabilities [18], whereas a high relaxation time (7 >> 1At), will result in a
lower accuracy for the results [24]. In this work we will limit ourselves to 0.7At < 7. < 3At
and 0.8At < 7; < 1.4At for the relaxation parameters for the continuous phase and dispersed
phase respectively.

3.1. Model Validation

To validate the proposed model, a test is performed to see if the system follows the Laplace law,
given by equation (2.7). To test this, this work will follow similar steps as S. Nekoeian et al.
(2018), in which oil-phase square of width dj is placed in the center of a 100 lu by 100 [ grid
[25]. The rest of the grid is filled with water-phase. The relaxation time for both components is
set at 1At. Afterwards, the system is set to equilibriate for 5000 A¢. This is done for multiple
values of dy, ranging from dy = 8lu to dy = 40 [u. As seen in the figure below, in accordance
with the theory explored in 2.1.4, the oil-phase will gradually take the shape of a circle, as to
minimize interfacial tension.
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Figure 3.1.1: Here the oil phase for the droplet test for dy = 40 [u is visualised. The x- and y-
axes denote the respective coordinates and the color represents the density of the oil phase.
The water phase is not visualised in this figure. The three figures show the oil phase at
t = 0At, t =200 At and t = 5000 At respectively. Note that as ¢ increases, the oil phase
approaches the shape of a circle.

According to Laplace’s Law shown in equation (2.7), the pressure difference at the interface of
a given droplet is inversely proportional to its radius for a given . By using equation (2.27), this
pressure is calculated for each of the given starting diameters. This is done by letting the system
equilibriate for 5000 At, after which the pressure p is calculated for every x for y = %N y = 20.
Next p is compared between the center of the droplet (given as © = %N x = 50) and just outside
of the droplet. Since the radius R of the droplet varies with d, this value for z (and in the same
sense the value for R) has to be picked by hand. In the figure below, the pressure difference Ap
is plotted against %.
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Figure 3.1.2: The value of }% is plotted against Ap. All values are in Lattice Boltzmann Units.

The dots represent the measurements, whereas the line is curve fit with values 0.152 and
—0.0017 for the slope and starting y-value respectively.
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As can be seen from the results of this validation, Ap is indeed linear with %. Following
Laplace’s Law, this indicates that -y is constant for all values of R for a constant G. Using the

values of the curve fit, 7 is found at 0.152 mu lu tu 2.

3.2. Buoyancy Effects

A circular oil droplet with radius Ry = 12 [u, is initialized in the center of a grid with dimen-
sions of 8 7y and 12 R, for the x- and y axes respectively. This grid is defined as to minimize
wall effects and improved accuracy in accordance with the steps taken by S. Anwar (2013).
The rest of the grid is populated with water. A time 7| after initializing, a gravitational con-
stant of ¢ = 0.005 is introduced as shown in equation (2.24). This waiting period is taken
at Ty = 1000At, as to give the initial system time to equilibrate [26]. Next, after initialising
the gravitational force, the average y-velocity of the oil population is tracked as a function of
time. The system is given another 500 tu for the droplet to reach its terminal velocity. Next, to
minimize the effects of fluctuations in the obtained terminal velocity, it is taken as an average
over another 300 tu. This value is denoted by the terminal velocity v,. This process is done for
7. €{0.7,0.8,1,1.4,2.5,3} and 75 € {0.8,1, 1.4}. The results are presented in chapter 4.
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4 Results and Discussion

In this chapter, the results for the lattice Boltzmann method simulation for buoyancy effects in
an emulsion proposed in chapter 3 will be presented and discussed.

4.1. Buoyancy Driven Creaming Behavior

The rising of a dispersed phase droplet in an oil-in-water emulsion due to buoyancy effects was
simulated. This rising is quantified by v, for which the found values are shown in Figure 4.1.1
for each combination of relaxation parameters 7; and 7.

0.115 - ® T1,=0.8At
T4 =1.0At
0.110 A ® Ty=14At
0.105 A
!—’\.\‘
IE 0.100 A
3
< 0.095 A
0.090 A
0.085 A
0.080 A
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Ty [tu]

Figure 4.1.1: The results for the described measurements. The calculated terminal velocities
v, are shown on the y-axis in [utu~! and plotted against the relaxation parameter of the
continuous phase 7. in tu. This is done for three values of 74, as presented by the legend found
in the upper right corner of the figure.

As can be seen from Figure 4.1.1, the terminal velocity decreases as the relaxation pa-
rameter increases for the given ranges. Since the relaxation parameter of a given component
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is linearly related to said component’s viscosity, this confirms a negative correlation between

terminal velocity and viscosity for the given system.

Equation (2.3) gives an estimation for the relation between v; and .. To see whether this
relation holds for the given simulations, in Figure 4.1.2 the obtained terminal velocities are
plotted against the corresponding continuous phase kinematic viscosity.
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Figure 4.1.2: The results for the given measurements. The calculated terminal velocities v; are
shown on the y-axis in [u tu~! and plotted against the kinematic viscosity of the continuous
phase v, which is shown on the x-axis. Plot (a), (b) and (c) respectively show results for a
dispersed phase relaxation parameter of 7, = 0.8At, 7, = 1At and 7; = 1.4At. The blue dots
represent calculated simulation results. The red curve represents an inverse curve fit for each
of the given values for 7,4, for which the value is shown in the upper right corner of the
respective graph.

As seen in figure 4.1.2, the terminal velocities for the given parameters tend to decrease as
the viscosity of the continuous phase increases. The obtained results do not follow an inverse
relation, which contradicts results expected from equation (2.3). The results seem to follow an
inverse proportionality more closely for lower values of 7;, which can possibly be attributed to
a lesser amount of droplet radius fluctuations, as can be seen in Figure 4.2.1 and Figure 4.2.2.
Equation (2.3) however predicts a direct inverse proportionality between v, and v;, which is not
present in the obtained results.
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To test whether the terminal velocity is dependant on the viscosity ratio, the figure below shows
said terminal velocities plotted against 77 as opposed to v,
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0 1 2 3 4 5 6 7 8

n

Figure 4.1.3: The obtained values for v; are plotted on the y-axis in [u tu~' against 7 on the
x-axis. The three colours represent results for different values for 7,4, as can be seen from the

label in the top right of the graph.

Results obtained from a similar simulation performed by S. Anwar (2013), presented in Figure
4.1.4, show a positive correlation between viscosity ratio 77 and the terminal velocity v;. As
can be seen from Figure 4.1.3, no correlation can be found between said variables. Multiple
obtained values for v, for the same value of 7 indicate that v, is not solely dependant on 7.
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Figure 4.1.4: S. Anwar’s results for the terminal velocity of a gas bubble rising in a liquid due
to buoyancy effects for various viscosity ratios. On the y-axis the terminal velocity of the
droplet is shown, and on the x-axis the corresponding non-dimensionalised time
T = At\/g/2R is shown. This plot contains graphs for multiple viscosity ratios ranging from

n=1ton=1000[19].
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4.2. Discussion

The calculated values for v; do not directly follow the inverse proportionality predicted by
equation (2.3). Multiple explanations are given for this discrepancy. The first explanation is
that Stokes’ law is only applicable to flow governed by a low Reynolds number (Re < 1). An
estimation for the Reynolds number in the given simulation is found to vary between 3 and 30,
depending on v,. As a result, the simulated flow is not adequately described by Stokes’ law. A
possible solution for further simulations for describing creaming behavior is to use use lower
values of g, as to better describe the low speed, and therefore Reynolds number, governing
creaming behavior.

Another likely factor that attributes to v; and v, not following an inverse proportionality is
the dependency on R? in Stokes’ law. While the initial diameter of the droplet in each simula-
tion is fixed, the variations in viscosity yield slightly different diameters for the droplets after
equilibrating. This can be attributed to two factors, being dispersion and density fluctuations.
Dispersion of the droplet is caused by an insufficient value for the surface tension . As can
be seen in Figure (4.2.1), diffusion can be found to be especially prevalent for high values of
T4, and prevents the model used in this work from being used for values of 7; > 1.4 as the
droplet diameter reaches values too close to the grid resolution, resulting in inaccurate results.
Fluctuations of density in the oil-phase present in the droplet are caused by an excess or lack of
surface tension. A known limitation for the velocity shift forcing approach used in this work is
a 7-dependant surface tension, which is an non-physical effect [18]. As can be seen in Figure
(4.2.1), the density inside the droplet can be found to increase with 7, and decrease with 7.
In further works on this subject, another force implementation method should be used as to
attain a fixed value for ~y for all values of 7. A multiple-relaxation-time lattice model proposed
by Z. Chai and T. Zhao (2012) has shown to yield accurate results with differing viscosity
values between components. Another possible solution for the unwanted density fluctuation
would be to vary the initial diameter or density distribution of the initialised droplet, as to find
a combination of initial parameters for each set of viscosities that results in the desired droplet
composition after equilibrating. This method however can prove to be very resource intensive,
as these parameters have to be found for each set of viscosities. Since this approach is beyond
the scope of this work, a Boussinesq approximation has been used for the gravity force applied
to the oil phase, which accounts for the variation in density, but not for the variation in droplet
radius. The droplet shape and densities right before applying gravity forces are shown in Figure
4.2.1).
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Figure 4.2.1: Here the oil phase right before applying gravity is visualised. As can be seen on
the bar on the right of the figure, brighter colours represent higher densities, whereas darker
colours represent lower densities. From left to right, the droplets correspond to simulations

with increasing values of 7. and from top to bottom with increasing values of 7;. Note that as

T4 increases, the droplet diameter decreases despite no visual increase in density, indicating a
loss of mass due to diffusion. Also note that as 7, increases, the droplet diameter increases

whereas the density inside the droplet decreases.

The second factor for the droplet not following equation (2.3) is that Stokes’ law assumes a
perfectly spherical droplet. As is confirmed by both experimental and numerical research, a
large Bond number causes droplet deformation, resulting in a non-round shape [23] [19]. An
estimate value for the Bond number in the given simulations is found as 1, varying with +.
Since the Morton number is highly dependant on -, which is not known, a reasonable estimate
cannot be given. As can be seen in Figure 4.2.2, droplet deformation is especially prevalent for
higher values of 7.. This result indicates that Stokes’ law is not applicable to creaming behavior
governed by a high Bond number. Future research could be done with lower values for g, as to
see if the corresponding results follow equation (2.3) more closely.
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Figure 4.2.2: Here the oil phase at 800 tu after initialising the gravity forces is visualised. As
can be seen on the bar on the right of the figure, brighter colours represent higher densities,
whereas darker colours represent lower densities. From left to right, the droplets correspond to
simulations with increasing values of 7. and from top to bottom with increasing values of 7.
Note that as 7. increases and 7, decreases, droplet deformation starts to occur, resulting in
deviations from the original round droplet. Note that, as in Figure 4.2.1 diffusion and density
fluctuations can be observed for varying values for 7, and 7.
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Lastly, the terminal velocity of a given droplet has to be estimated as an average over a limited
period of 300 tu. Despite the droplet theoretically achieving a fixed velocity, the tracked veloc-
ity in practice tends to oscillate as seen in Figure 4.2.3. These fluctuations can be attributed to
many effects including but not limited to spurious currents, wall effects, density fluctuations,
gradual shape deformation and dispersion.
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Figure 4.2.3: The obtained overall velocity of the dispersed phase in the y-direction for
different sets of 7. On the y-axis, the average y-velocity of the dispersed phase is shown in
lutu~!. On the x-axis, the total time that has passed since the beginning of the simulation is
shown. At time ¢ = 1000 tu, the gravitational force is introduced. v, is taken as an average
from ¢t = 1500 tu to ¢ = 1800 tu.

As can be seen from Figure 4.2.3, the velocity fluctuations vary in scale and frequency for
different viscosity values, seemingly becoming more stable for higher values for 7;. Note that
for higher values for ¢, the velocity starts to decrease, as this is when the droplet starts to come
close to the top of the grid, and starts being affected by wall effects, limiting the time range
over which v; can be averaged to a 300 tu. In future research, the time over which the terminal
velocity is averaged can be extended by either increasing the grid size in the y-direction or
lowering the terminal velocity by using a lower value for g.

No correlation was found between the terminal velocity v; and the viscosity ratio 7. Similar
simulations done by S. Anwar (2013) have however shown a positive correlation between said
variables. This discrepancy is most easily explained by the difference in subject matter being
simulated. Since S. Anwar’s model simulates a multiphase system with high density density
ratio, as opposed to a multicomponent system with a low density ratio, the two cases can yield
different results, despite being based on the same principle.

22



5 Conclusion

In this work, the creaming behavior of an oil-in-water emulsion has been simulated using
the lattice Boltzmann method. This is done by implementing the Shan-Chen pseudopoten-
tial method for a multicomponent system. Gravity forces were applied on a dispersed phase
droplet with an initial radius 2, after which a terminal velocity v; is found, which is used to
quantify the rate at which creaming occurs for the given parameters. This is done for inde-
pendently varied viscosities for both the dispersed phase and continuous phase, denoted by 1/,
and v, respectively. A negative correlation was observed between v; and 1., which becomes
stronger for higher values for ;. The results were compared to theoretical predictions for v,
based on Stokes’ law and were found not to follow an inverse relation between v; and v, as
expected for creaming behavior [1]. A high Reynolds number, variations in droplet diameter,
variations in density, droplet deformation and velocity fluctuations are factors that can attribute
to this discrepancy. The terminal velocity v; was also compared to viscosity ratio 7, but no
direct dependency between the two variables was found. This contradicts results for similar
multiphase simulations performed by S. Anwar (2013), although this discrepancy can be ex-
plained by differences in simulation parameters like density ratio.
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5.1. Recommendations

This work can be used as a baseline towards future simulations of creaming behavior using
the lattice Boltzmann method. Since the obtained results are not fully in line with theoretical
predictions, the primary focus of future simulations should be to attain results that better reflect
actual creaming behavior, for which recommendations are listed below.

* It is recommended to lower the gravity constant g as to better reflect the slow movement
associated with creaming and lowering the turbulence, yielding results more in line with
predictions based on Stokes’ law. This lowering of overall velocity also lowers the di-
mensionless Bond number and Morton number, which both quantify the deformation of
said droplet due to gravity, resulting in a lower degree of droplet deformation.

* It it also recommended for the averaging of v; to take place over a large time range. To
achieve this however, a larger grid must be used as to lessen the wall effects present when
the droplet approaches the upper boundary of the grid, increasing computation time.

* A limitation present in the current simulation is that the surface tension is dependent on
the chosen relaxation parameters, and are therefore directly linked to the viscosities. To
eliminate this dependency, another forcing scheme will have to be used as opposed to the
velocity shift method, for which multiple have been proposed [26] [27].

* Droplet density fluctuations will have to be lessened as to attain a stable value for 2. This
can possibly done by initialising each droplet with a set of initial parameters that ensure
stability for the simulated droplet.

In addition to obtaining better results, future simulations can also be done extending the scope
of this work. Some recommendations are listed below.

* Future simulations can be done on larger ranges of v, and v, to see whether an inverse
relation for v; and v, is found for lower or higher viscosity values of either phase. Using
a different forcing scheme which yields stable results for high viscosities will expand the
range of simulations that can be performed using this method [27].

* Droplet deformation under buoyancy effects can also be further quantified using dimen-
sionless numbers Bo and Mo and a relation between said numbers and the terminal ve-
locity can be studied in depth.

* The rising of multiple droplets in close proximity could be simulated to see whether a
higher dispersed-phase concentration affects the rate at which creaming occurs.
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