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Abstract—Stream processing in the last decade has seen broad
adoption in both commercial and research settings. One key
element for this success is the ability of modern stream processors
to handle failures while ensuring exactly-once processing guar-
antees. At the moment of writing, virtually all stream processors
that guarantee exactly-once processing implement a variant of
Apache Flink’s coordinated checkpoints – an extension of the
original Chandy-Lamport checkpoints from 1985. However, the
reasons behind this prevalence of the coordinated approach
remain anecdotal, as reported by practitioners of the stream
processing community. At the same time, common checkpointing
approaches, such as the uncoordinated and the communication-
induced ones, remain largely unexplored.

This paper is the first to address this gap by i) shedding
light on why practitioners have favored the coordinated approach
and ii) investigating whether there are viable alternatives. To
this end, we implement three checkpointing approaches that
we surveyed and adapted for the distinct needs of streaming
dataflows. Our analysis shows that the coordinated approach
outperforms the uncoordinated and communication-induced pro-
tocols under uniformly distributed workloads. To our surprise,
however, the uncoordinated approach is not only competitive to
the coordinated one in uniformly distributed workloads, but it
also outperforms the coordinated approach in skewed workloads.
We conclude that rather than blindly employing coordinated
checkpointing, research should focus on optimizing the very
promising uncoordinated approach, as it can address issues
with skew and support prevalent cyclic queries. We believe that
our findings can trigger further research into checkpointing
mechanisms.

I. INTRODUCTION

Streaming queries constitute a crucial component of cloud

applications, such as online advertising, fraud detection, real-

time analytics, and Internet of Things (IoT) use cases. Stream-

ing queries are commonly executed within multi-tenant dis-

tributed environments, subject to varying service level agree-

ments (SLAs) regarding fault-tolerance, processing guarantees

(e.g., at-least/exactly-once processing), and uptime.

The first generations of streaming engines delegated the

responsibility of correctness mechanisms to the application

programmers [6], [11], [22]. With the advent of cloud com-

puting, modern streaming engines, such as Apache Flink [19],

Google Millwheel [7], SEEP [28], IBM Streams [25], Hazel-

cast Jet [30], and Microsoft Trill [20] have adopted more

advanced fault tolerance mechanisms, that achieve exactly-

once processing guarantees [18], [44], without the need for

programmers to change the business logic to cater for failures.

At the moment of writing, there is consensus in the use

of the classic coordinated checkpointing protocol [23] and its

variants for rollback recovery across production-grade stream

processing engines, following its initial undertaking in Apache

Flink [18]. Coordinated checkpointing protocols leverage spe-

cial messages, known as markers, to capture a consistent

checkpoint of the distributed global state in a coordinated

fashion. Once a failure occurs, a streaming pipeline can

recover by rolling all operators back to their latest checkpoint

and resuming processing from an offset of the streaming input.

Despite its wide adoption, the coordinated approach has

been criticized for two main drawbacks. The first is that, in

large deployments, the coordination can block operators with

a large number of inputs (e.g., joins or aggregates) during the

marker alignment phase [2], [5]. The second issue is that in

case of backpressure [1], [4], the markers cannot travel through

the dataflow graph, and the checkpointing mechanism stalls,

eventually halting the processing of new messages.

At the same time, multiple approaches have been proposed

in the past, stemming from the original uncoordinated [15],

[47] and communication-induced [10], [16], [31] checkpoints

(CIC). Uncoordinated protocols allow processes to take check-

points independently, without coordination via markers, but

i) they require storing logs of in-flight messages, ii) they

need to execute a recovery-line algorithm before recovery, and

ii) the number of messages that need to be replayed upon

recovery can be substantially large (depending on the recovery

line found). To alleviate these issues, the communication-

induced family of protocols can limit the rollback propagation

during recovery by breaking the patterns that lead to invalid

checkpoints with forced checkpoints during normal execution.

Despite this convergence of the stream processing engines to

the coordinated checkpointing protocol, no substantial experi-

mental evidence currently supports this system design decision

against other options (e.g., uncoordinated and communication-

induced checkpoints). This lack of experimental evidence can

lead future streaming engines to adopt the predominant co-
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ordinated protocol along with its drawbacks, while alternative

options that could behave better are ignored. Therefore, further

investigation is crucial to facilitate both research and prac-

tice toward classifying checkpointing protocols and reasoning

about the protocol choices that meet the needs of different

workloads.

In addressing these gaps, this work is the first to revisit

checkpointing for stream processing from its first principles.

First, we present and analyze the theoretical cost of existing

approaches. We then experimentally evaluate the three promi-

nent checkpointing protocol families by implementing them in

a testbed system built for the needs of this evaluation. We push

the protocols to their limits on diverse workloads, resulting in

various topologies and processing needs, including a cyclic

query. Finally, we measure the performance and the impact of

the protocols both on failure-free execution as well as under

failure in both uniform and skewed workloads.

In summary, this paper makes the following contributions:

• A comprehensive survey of three families of checkpoint-

ing approaches and the conditions under which they can

guarantee exactly-once processing.

• A theoretical account of the advantages and drawbacks

of those three checkpointing approaches in streaming

dataflows.

• An open-source streaming dataflow testbed system that

enables accurate and isolated comparison of different

checkpointing protocols.

• The first experimental evaluation of three checkpoint-

ing approaches on different workloads using NexMark

queries [46] and a custom query that causes cycles in the

dataflow graph.

• The first experimental evidence showing that:

– Under uniformly distributed workloads, the coordi-

nated approach outperforms all other approaches;

– Under skewed workloads, the uncoordinated ap-

proach outperforms the coordinated one despite its

expensive in-flight message logging;

– The uncoordinated approach in practice does not

suffer from the (theoretical) domino effect [27] in

any of our experiments.

– The communication-induced approach is not com-

petitive in any scenario due to its large message

overhead that it requires to avoid the (improbable,

in our experiments) domino effect.

The rest of the paper is structured as follows. In Sec-

tion II, we summarise all the necessary background knowledge

required to understand checkpointing. Then we discuss in

detail the benchmarked protocols (Section III) and the system

used for the benchmarking (Section IV). In Section VII, we

describe the experimental setup and present and comment on

our results. In Section VIII, we discuss related existing works.

Section IX concludes this paper.

The code of CheckMate can be found online:

https://github.com/delftdata/checkmate

O1

O2

m1

O3

m2
2

3

m22

RL1 RL2 RL3

Fig. 1: Examples of valid recovery lines when in-flight mes-

sages are included in the global state.

II. PRELIMINARIES

In what follows, we discuss all the necessary concepts to

understand better and evaluate the checkpointing protocols,

particularly processing semantics and consistency in the face

of failures.

A. Processing Semantics

Different applications have different processing needs.

Stream processing engines and their fault tolerance mecha-

nisms provide specific processing semantics to accommodate

these needs even when a failure occurs. A recent survey [29]

identifies three predominant semantics with regard to process-

ing: at-most-once, at-least-once, and exactly-once.

For data analytics, monitoring, or other applications that

can tolerate incomplete data, a stream processing engine that

provides at-most-once semantics is sufficient. We define at-
most-once semantics as follows:

Definition 1 (At-most-once). A stream processing engine

provides at-most-once processing semantics when it ensures

that each streaming operator will process each ingested record

once or not at all.

At-most-once semantics are the weakest guarantees a stream

processing engine can provide. This processing guarantee has

been termed gap recovery in the past [32]. In case of a

failure, in-flight records can be lost and never be processed

by downstream operators.

To accommodate applications that are intolerant of losing

messages, streaming engines support at-least-once semantics.

Definition 2 (At-least-once). At-least-once processing seman-

tics are provided when each ingested message is processed one

or more times by each streaming operator.

By providing at-least-once semantics, a streaming engine

can avoid data loss, but at the same time, it is amenable to

accounting for the same message more than once. For sensitive

applications, such as bank transaction handling or aggrega-

tions, duplicate processing can cause serious anomalies. In

such cases, exactly-once semantics are necessary.

Definition 3 (Exactly-once). Exactly-once semantics guaran-

tee that each ingested message is processed exactly once in

each operator, i.e., any state changes that occur from process-

ing a message are reflected exactly-once on the checkpointed

state.
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Exactly-once semantics define strict guarantees, and they

can ensure that processing under failures is identical to

failure-free processing. Note that there is a distinction [29]

between exactly-once processing and exactly-once output [26].

In exactly-once processing, an external system consuming the

output can still observe duplicates. For instance, in case of

fault recovery, the streaming system will resume processing

after the latest checkpoint and produce some output that it had

already produced (but not yet checkpointed the corresponding

state) prior to the failure.

In the rest of the paper, we only consider exactly-once
processing guarantees.

B. Consistency of Global State

Data stream execution is data-driven, where processing is

orchestrated by messages being sent and received between

tasks, triggering local computation. Without loss of generality,

a distributed stream execution consists solely of send and

receive operations corresponding to each message.

Modern distributed stream processing engines refer to the

global state as the collection of the states of all operators

of a streaming pipeline. We refer to an operation (send or

receive) being part of the global state if it occurred before

the respective state acquisition. Furthermore, the state of the

communication channels can also be included in the global

state. These messages are also known as in-flight messages or

channel state. The consistency [23] of the global state is of

major importance here. In order to define what a consistent

state entails, we first define the concept of orphan messages:

Definition 4 (Orphan message). Given a global state check-

point G, an orphan message has been received prior to the

receiver’s local checkpoint S in G, but it was not sent prior to

the sender’s checkpoint S’ in G.

The global state of a streaming pipeline becomes inconsis-

tent in the presence of a dropped or an orphan message [17],

[27], [45]. Following the seminal processing model of Chandy-

Lamport [23], we define consistent global state as follows:

Definition 5 (Consistent global state). The global state G of

a streaming pipeline is consistent if for each message m :

• No Orphans: if receive(m) happened before the

checkpoint acquisition, the corresponding send(m) op-

eration should also happen before the checkpoint.

• No Dropping: if send(m) happened before the check-

point acquisition then either receive(m) happens be-

fore the checkpoint or m is added in the checkpoint as

an in-flight message.

In principle, consistency is straightforward to maintain and

reason about under the normal operation of a streaming sys-

tem. In the face of failures, however, a streaming system ought

to roll back to a previously consistent global state in order to

resume its operation and regain consistency. At that point, the

recovery mechanism attempts to recover such a global state

from the collection of existing operator checkpoints.

O1

O2

m1

O3

m2m2

RL

(a) Consistent state after recovery

O1

O2

m1

O3

m2

3

m2

RL

(b) Inconsistent state after recovery

O1

O2

m1

O3

m2

3

m2

RL

(c) Inconsistent state without capturing in-flight messages

O1

O2

m1

O3

m2

3

m2

RL

(d) Consistent state by capturing in-flight messages

Fig. 2: Cases of inconsistent and consistent state after recovery

for stateful operators O1, O2 and O3.

Recovery line. A recovery line consists of a collection of

operator checkpoints that can be used to recover the global

state (Figure 1). Since not all candidate recovery lines lead

to a consistent state, the recovery mechanism must find the

most recent recovery line corresponding to a consistent state.

Checkpoints that cannot belong to a consistent recovery line

are considered invalid.

In Figure 2, we provide example cases that illustrate when

a recovery line and its corresponding global state are con-

sistent. Figure 2a showcases a consistent global state since

all messages are sent and received before the checkpoints

that compose the recovery line. In Figure 2b, message m2

is an orphan message since its side-effects are reflected in

the checkpoint of O3 but not in the checkpoint of the sender

operator O2. Therefore, the global state corresponding to this

recovery line is inconsistent, and the recovery line is unsuitable

for recovering from a failure.
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Blocking
(markers)

In-flight
Logging

Deduplication
Required

Message
Overhead

Independent
Checkpoints

Straggler
Stalls

Unused
Checkpoints

Forced
Checkpoints

Coordinated – – – – – –

Uncoordinated – – – –

Communication-induced – –

TABLE I: Summary of the features of the checkpointing protocols explored in Section III

If in-flight messages (i.e., channel state) are not captured,

then a different type of global state inconsistency appears. In

Figure 2c, operation send(m2) occurs before O2 acquires its

checkpoint, whereas, receive(m2) occurs after O3 takes

its checkpoint. Using this recovery line without a captured

channel state will result in never processing m2 at operator

O3 and, therefore, dropping messages. In this case, to achieve

a consistent global state, capturing the channel state and re-

playing in-flight messages is necessary (Figure 2d). To ensure

exactly-once semantics when in-flight messages are replayed,

some form of message deduplication must be employed.

III. CHECKPOINTING PROTOCOLS

In what follows, we describe the three main checkpointing

protocols and discuss their core ideas and some possible draw-

backs. In table I, we summarise the necessary mechanisms

employed for each protocol to ensure exactly-once processing

and the main side effects and features of each protocol.

A. Coordinated Aligned Checkpointing (COOR)
To the best of our knowledge, virtually every stream pro-

cessing engine in production that guarantees exactly-once

processing, implements a variation of the coordinated check-

pointing protocol [18], [20], [25], [30]. Typically, in stream

processing engines that implement a coordinated checkpoint-

ing protocol, the operators will block processing to allow the

alignment of a checkpoint across the system. The checkpoint

can be used to create a recovery line in case of a failure.

The most adopted version of such a protocol is the Chandy-

Lamport marker-based algorithm [23] and its adaptation for

acyclic dataflow graphs [18]. In what follows, we describe

the core ideas of the protocol, and we illustrate its core

functionality with an example.
At its core, the coordinated aligned checkpointing protocol

works as follows:

• A checkpoint round initiates at source operators by taking

a checkpoint. After taking its checkpoint, each source

operator forwards a marker to all its outgoing channels

and continues processing.

• When an operator (excluding source operators) receives a

marker from an incoming channel, it blocks that channel

and buffers the channel’s traffic.

• When an operator receives a marker from all its incoming

channels, it takes a checkpoint, unblocks processing in

all incoming channels, and forwards a marker to all its

outgoing channels.

• When the markers reach the end of the pipeline, and the

checkpoints are stored in durable storage, the coordinated

checkpoint round finishes.

By blocking processing until all markers are received from

the upstream operators, we achieve the alignment of the

checkpoints. This alignment guarantees exactly-once process-

ing without the need to capture in-flight messages and the

channel state, as it creates a frontier of processed messages

through the use of markers.

Figure 3 illustrates an example protocol execution. The

execution graph presented consists of only the first couple

operators of the pipeline. Operators S{1−3} are parallel source

operators, operators J1 and J2 are parallel stateful join opera-

tors, and operator A1 is a stateful aggregation operator. A coor-

dinated checkpoint round is initiated at the source operators by

taking a checkpoint. When a parallel source operator finishes

with its own checkpoint, it sends a checkpointing marker to

all its outgoing channels (fig. 3(a)) and continues processing.

In fig. 3(b), operator J1 has received the marker from its sole

incoming channel and takes a checkpoint. On the other hand,

operator J2 has received a marker from source operator S3
and blocks processing in that channel while it waits for the

marker from S2. J2 takes a checkpoint when it has received

all markers, while J1, after taking the checkpoint, forwards a

marker to its downstream operator and unblocks processing in

all the incoming channels (fig. 3(c)). Finally, J2 also forwards

a marker and continues processing after taking a checkpoint

(fig. 3(d)). The markers will then be received by A1, and the

checkpointing process will continue in the same way until it

reaches the end of the pipeline.

Strengths. Compared to the in-flight message logging required

in uncoordinated approaches (Section III-B), the markers

used by the coordinated protocol are lightweight and are

not affected by the message size. Additionally, since aligned

checkpoints compose a consistent global state, an algorithm

that identifies the recovery line is not required.

Drawbacks. One important downside of marker circulation

surfaces in cases of stragglers, e.g., due to skewed workloads

and/or backpressure. For example, if most of the load falls on a

single operator, its downstream operators would have to block

the other channels, wait for the straggler to finish processing,

and then forward a checkpoint marker. Additionally, in case

of shuffling, the protocol needs to transfer as many markers as

the parallel instances of the receiving operators (one to each

parallel instance). In essence, coordinated checkpoints could

take a substantial amount of time in complex topologies due to

the markers having to pass through the entire dataflow graph

to be completed.

Another drawback of the coordinated protocol is that it

does not support cyclic streaming workloads out of the box.
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Fig. 3: Example execution of the coordinated aligned checkpointing protocol. Messages are represented as circles, and markers

are squares. Different colors denote different coordinated rounds.

Cycles are an integral aspect of iterative computations such as

fixpoint calculations, which are common in graph queries [37].

Accounting for cycles in the coordinated checkpointing pro-

tocol entails a) special handling of markers in order to avoid

deadlocks owed to the blocking of the cyclic input channel by

a marker and b) additional progress tracking mechanisms.

B. Uncoordinated Checkpointing (UNC)

The uncoordinated checkpointing (UNC) [47] protocol al-

lows each operator to decide individually when to take a

checkpoint. In contrast to the coordinated approach, there are

no markers since there is no need for coordination, and the

protocol can only provide at-most-once processing semantics

since the checkpoints only contain the operator state. Thus,

capturing the channel state between operators is necessary

to provide stronger guarantees. To do so, log-based recovery

and upstream backup [13], [24] need to be implemented.

Pairing uncoordinated checkpointing with a log for keeping

track of the channel state allows the replay of messages after

recovery, achieving at-least-once semantics. For the protocol to

achieve exactly-once semantics, message deduplication must

be employed when replaying messages from the message log.

Algorithm 1 Rollback propagation algorithm [47]

Require: all available checkpoints CP ordered by freshness

for each operator, a checkpoints graph

Ensure: a consistent recovery line

1: include in root set the latest CP of each operator;

2: mark all CPs in the root set that are strictly reachable

from any other CP in the root set;
3: while ∃CP.marked ∈ root set do
4: ∀CP.marked ∈ root set replace by the next unmarked

CP from the same operator;

5: mark all CPs in the root set that are strictly reachable

from any other CP in the root set;
6: end while
7: return root set

Finding Recovery Lines. The freedom of taking checkpoints

independently per operator comes with a cost when recovering

after a failure. Since the checkpoints are not coordinated, we

cannot simply use the most recent operator checkpoints as

a recovery line, as it might not correspond to a consistent

global state. Therefore, we need to employ a recovery line

algorithm to find a suitable recovery line, i.e., one that pro-

vides a consistent global state and has the minimum rollback

distance. The algorithm for finding such a recovery line is

the rollback propagation algorithm [47], which requires a

checkpoint dependency graph. There are two approaches to

creating such a graph, the rollback dependency graph [14] and

the checkpoint graph [47]. Both of these approaches result

in the same recovery line, and in this work, we opt for the

checkpoint-graph [47] since it is more intuitive.

The checkpoint graph has checkpoints as nodes and directed

edges between two checkpoints ci,x and cj,y if:

• i �= j, i.e., the checkpoints belong to different operators,

and there is at least one orphan message that was sent

from operator i after checkpoint ci,x was captured and

was processed from operator j before checkpoint cj,y was

taken.

• i = j and y = x + 1, i.e., ci,x and cj,y are consecutive

checkpoints of the same operator.

In Figure 4, we provide an example of a checkpoint graph

and showcase step by step how the rollback propagation

algorithm uses the checkpoint graph to find a suitable recovery

line. To create the checkpoint graph, we include the IDs from

channel state logs for the last received and last sent messages

alongside the checkpoints. We can identify orphan messages

using these IDs and add directed edges in the checkpoint

graph (Figure 4(a)). The rollback propagation algorithm uses

this graph to find the recovery line. First, the algorithm will

include the last checkpoints of all operators in a set called the

root set (Figure 4(b) - step 1). The next step is to identify

the nodes in the root set that are strictly reachable from other

nodes in the root set and mark them (Figure 4(b) - step 2).

Then, each marked checkpoint in the root set is replaced by

the next most fresh checkpoint for the same operator, and the

newly added checkpoints are checked and marked if applicable

(Figure 4(b) - step 3). When the algorithm reaches a root set

that does not include any marked checkpoint, it returns this

root set as the desired recovery line.

Strengths. The primary strength of any coordination-free

protocol is that it does not block waiting for markers from

a coordinator node or its upstream operators, leading to lower
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(a) Execution timeline and recovery line (b) Checkpoint Graph (execution example of Algorithm 1)

(step 2) (step 3)(step 1)

: Local Checkpoint

C⟨1,1⟩ C⟨1,2⟩ C⟨1,3⟩

Local Checkpoint : Recovery Line : Failure  root set∈  reachable∈  invalid∈: orphan message indication

Fig. 4: Example overview of Rollback propagation algorithm on a given execution timeline

Fig. 5: Domino effect of invalid checkpoints on a cyclic query.

latency in the event of a skewed workload. Another benefit yet

to be explored by literature is the configurability of such an

approach. For instance, the stateless, non-source operators in

the uncoordinated approach do not need to participate in the

checkpointing pipeline, which is not the case in the coordi-

nated approach because they still would have to propagate the

markers. Furthermore, different operators can have different

checkpoint intervals, making them adaptive to the current

system’s needs (e.g., a windowed aggregation operator can

checkpoint right after the aggregate is calculated in order to

avoid storing the large window’s contents).

Drawbacks. To provide exactly-once semantics, message log-

ging is required. However, message logging is costly and

can considerably impact the system’s performance. Moreover,

since checkpoints are not aligned, some captured checkpoints

may be rendered invalid when looking for the appropriate

recovery line (an invalid checkpoint cannot take part in any

recovery line). As seen in Figure 5, this problem could be

aggravated when dealing with cyclic queries, leading to a

phenomenon known in the literature as the unbounded domino
effect [27], where during recovery, one checkpoint after the

other is rendered invalid leading to a considerable rollback

distance or even starting from scratch. In Figure 5, the first

option would be a recovery line consisting of the checkpoints

C<1,3>, C<2,3>, and C<3,2>; however, this is invalid due

to the orphan message m6. The next option is the recovery

line consisting of C<1,2>, C<2,3>, and C<3,2> with again

m4 making this invalid. m5 makes the C<1,2>, C<2,2>, and

C<3,2> invalid. The domino effect continues with the rest of

m3,2,1 leading to C<1,1>, C<2,1>, and C<3,1> being the only

available recovery line option.

C. Communication-induced Checkpointing (CIC)

The communication-induced checkpointing (CIC) protocol

is built on top of UNC and provides a loose coordination

of the checkpoints in order to tackle the problem of the

unbounded domino effect. This loose coordination happens

through encapsulating information related to the protocol in

the messages containing records across the pipeline. This

protocol recognizes two different types of checkpoints: a)

local checkpoints (equivalent to uncoordinated checkpoints),

and b) forced checkpoints, which are inserted by the protocol

to prevent the domino effect.

Communication-induced protocols are tightly connected to

Z-paths and Z-cycles [27] based on the fact that a given

checkpoint is invalid if and only if it is part of a Z-cycle.

A CIC protocol tries to detect Z-cycles and break them by

forcing checkpoints before processing messages that will lead

to a cycle. Alvisi et al. [10] have shown that a CIC protocol

can handle cyclic communication patterns without the risk of

a domino effect, but they may introduce significant overhead.

The most complete and well-documented CIC protocols

are BCS [16] and HMNR [31]. Initial tests indicate that the

HMNR has better performance than BCS. Therefore, in this

paper, we adopt HMNR as our CIC protocol. In short, in

HMNR each operator keeps a Lamport clock and a vector

clock plus three boolean vectors with a length equal to the

number of operators participating in the pipeline. Every oper-

ator updates his Lamport clock by increasing its value when

it takes a new checkpoint. The vector clock ckpt stores how

many checkpoints have been taken by each operator from the

perspective of the current operator. A boolean vector sent to
keeps information about messages sent to other operators since

the last checkpoint of the current operator. Another boolean

vector taken stores the existence of Z-paths since the last

known checkpoint. The last boolean vector greater stores the

information whether the operator’s clock is greater or not from

each other operator’s clock. The operator’s Lamport clock, the

vector clock ckpt, the boolean vector taken, and the boolean

vector greater are piggybacked to every message. The protocol

uses all these structures to detect cycles and decide when to

force a checkpoint. When an operator receives a message, it

checks if there is a message previously sent from it to the

sender and the sender’s clock is larger than its own or if there

is a Z-path detected in the current checkpoint interval of the
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sender operator. More details on the cycle detection and the

forced checkpoints can be found in the original paper [31].

Strengths. The primary strength of the CIC protocol is the

forced checkpoints mechanism, leading to a smaller rollback

distance and, most importantly, eliminating the domino effect.

Drawbacks. The main drawback of a CIC protocol is the

overhead it introduces. For big and complex pipelines, the

vector clocks and the boolean vectors can be rather large and

greatly impact the size of the messages flowing throughout the

system.

IV. TESTBED SYSTEM

We compared the checkpointing protocols in Styx [40], the

backend of Stateflow [39]. For the requirements of our experi-

ments, we developed all necessary protocol mechanisms (e.g.,

message logging and coordination) and streaming operators

(i.e., map, filter, window, join, aggregates).

The Stateflow cluster consists of the typical architecture.

A coordinator node is responsible for scheduling/deploying

the dataflow graph to workers and running the coordination

logic of the checkpointing protocols. Worker nodes execute the

dataflow logic and take checkpoints asynchronously based on

the checkpointing algorithm. Finally, Stateflow uses Apache

Kafka as a replayable fault-tolerant source and Minio as a

persistent state store for the operator state checkpoints.

We choose Stateflow for the following reasons: i) unlike

other streaming dataflow systems such as ApacheFlink, State-

flow allows for cycles in the dataflow graph; ii) Stateflow

provides a sandboxed environment, where we can evaluate the

different protocols in isolation, without additional overhead;

iii) Other systems (e.g., Apache Flink) base their entire design

on coordinated checkpoints – when implementing uncoordi-

nated protocols on Apache Flink, we realized that we needed

to virtually rewrite the complete system itself.

V. METRICS

Although there is a significant body of work in bench-

marking and evaluating stream processing systems and fault

tolerance (Section VIII), no metrics are established to measure

the performance of a checkpointing protocol meaningfully. In

this work, we argue that the following metrics should be used

to evaluate the performance of such a protocol.

End-to-end Latency. A standard metric to evaluate the perfor-

mance of stream processing systems is the end-to-end latency,

i.e., the time it takes for a record to result into output in

the sink from the moment it is available in the input queue.

Although latency is mainly related to the deployed query and

the underlying system rather than the checkpointing protocol

itself, it allows us to measure the impact of each protocol on

normal execution, as the overhead it introduces in terms of

latency. We opt to measure the 50th and 99th percentiles.

Sustainable Throughput. Another common metric in stream

processing literature is the maximum sustainable throughput
[34]. The maximum sustainable throughput indicates the max-

imum throughput that the system can handle for a long period

of time without provoking backpressure. Backpressure leads

to constantly increasing latencies and an average processing

throughput that is lower than the rate of incoming messages.

Similarly to end-to-end latency, it allows us to assess the im-

pact of the checkpointing protocol on the overall performance.

Average Checkpointing Time. In this work, we measure the

average checkpointing time, i.e., the average time it takes for

each protocol to take a checkpoint. The fundamental differ-

ences between the protocols lie in checkpoint triggering and

the additional information that needs to be captured apart from

the internal state. Therefore, measuring how these differences

affect the time it takes to capture a checkpoint is crucial. Also,

as the checkpointing time rises, a significant impact on the

processing performance is expected.

Restart & Recovery Time. Restart time consists of all the

time the system spends to reload all the needed states and be

ready to process data. The recovery time, on the other hand,

informs us how long it takes to recover from a failure. The

measurement starts when the failure is detected and finishes

when the system has managed to return to normal execution.

The higher the recovery time, the bigger the impact of a

failure. Recovery time also encompasses restart time.

Invalid Checkpoints. Depending on the checkpointing pro-

tocol, invalid checkpoints may exist, i.e., checkpoints that

cannot be part of a consistent recovery line and, thus, cannot

be used for recovering after failure. The existence of invalid

checkpoints can be problematic as the state grows since a lot

of expensive storage space is occupied by information that

will never be used. Moreover, invalid checkpoints can lead

to significant rollback distance, which will result in replaying

and reprocessing a significant number of messages. Therefore,

the number of invalid checkpoints is a good indicator of the

performance of a checkpointing protocol. The fewer invalid

checkpoints exist, the better a protocol is performing.

Message Overhead. Each protocol introduces messages and

requires specific information to be exchanged between workers

or sent to the coordinator. Measuring the size of protocol-

related information that circulates the system during execution

allows us to capture the overhead that the protocol introduces

in network usage. A higher percentage of protocol-related

information means that a significant portion of our network

is used, and additional serialization/deserialization CPU time

is spent on information unrelated to processing.

VI. STREAMING QUERY WORKLOAD

To evaluate the checkpointing protocols, we employ four

distinct queries from NexMark [46] and our adaptation of the

cyclic query introduced in [21].

NexMark Queries. NexMark benchmark [46] simulates an

e-commerce application and provides streaming queries with

different properties and needs. We selected the following four

queries, which allow us to measure the performance and the

impact of the checkpointing protocols in different conditions:

• Query 1 is a stateless map query that transforms the bid

values. There is no shuffling.
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Fig. 6: Execution graph of the reachability query.

• Query 3 implements an incremental stateful join, which

joins persons with auctions. It involves a complex topol-

ogy and shuffling between operators.

• Query 8 employs a windowed join between users and

auctions. We opt for a processing time tumbling window;

however, the type of the time window does not affect

the checkpointing protocol’s performance. It employs a

complex topology, shuffling, and the complexity of the

windowing. To meaningfully measure the impact of the

protocols on the latency during execution, we implement

a running window, i.e., the processing is triggered on

record arrival, and the window is cleaned when it expires.

• Query 12 employs a windowed count over bids. Similarly

to query 8, we choose the running version of a processing

time tumbling window. The query performs aggregation

over time windows and includes minor shuffling.

Fundamental processing operators in modern stream pro-

cessing engines [8], [19], [30] include maps, joins, win-

dows, and aggregates. The queries we choose represent those

fundamental operations and sufficiently cover the operations

appearing in the NexMark suite.

Cyclic Query. Most stream processing engines do not support

cyclic queries. However, there is existing research on cyclic

or recursive queries in stream processing [21], [37], [38]. To

further enable research on cyclic streaming queries and to

encourage stream processing engines to support such queries,

it is essential to evaluate existing checkpointing protocols with

cyclic queries. For our evaluation, we adapt the reachability

query employed by FFP [21]. Given a static set of nodes,

the goal of the query is to identify all reachable nodes from

the available source nodes based on the available directed

links between the nodes and provide the corresponding paths.

The available source nodes and the directed links between the

nodes are not known a priori, but they are processed on the fly

and are temporal. Figure 6 illustrates the execution graph of

the query. The query ingests two streams, the directed links

between the nodes and the source nodes. Directed links are

joined with sources that contain the starting node of the link

as a reachable node. In the select operator, we check if the

end node of the directed link of a joined pair is contained in

the path of the source of the pair, and we discard such pairs.

In the project operator, we discard unnecessary information

and create a new source with the same source node, the end

node of the link as a reachable node, and the path augmented

by the pair’s link. The new source is provided as output

and recursively as input to the join operator. Finally, the join

operator can receive direct messages when a specific link or

source node is unavailable. In that case, it will remove every

link or source affected from its state.

VII. EXPERIMENTAL EVALUATION

A. Evaluation setup

The experiments are conducted on a local cluster with AMD

EPYC 7H12 2.60GHz CPUs and 512GBs of memory. We

deploy our benchmarking system using docker and docker-

compose. Each worker uses 1 CPU for processing and handles

a single parallel instance of each of the operators of the

deployed pipeline. We do not use any limits on memory usage.

Apache Kafka is used as the source and the sink of our system.

Minio is used as a persistent storage for the checkpoints. We

extend the NexMark generator from [33], [43] to provide the

input in the required format of the system, and we provide a

generator that creates source nodes and corresponding links

for our cyclic query. We evaluate the three checkpointing

protocols using the NexMark queries and our cyclic query. We

implement and compare the vanilla versions of the protocols as

described in Section III in order to ensure a fair comparison

of their core concepts that is not affected by optimizations

tailored to specific system properties.

B. Results

In what follows, we present the results of our experimental

evaluation of the three checkpointing protocols concerning

the metrics for benchmarking checkpointing protocols that we

previously discussed in Section V. For the NexMark queries,

we distinguish two settings: a balanced setting where the

distribution of our input follows the uniform distribution and

a skewed setting where we leverage NexMark’s generator to

provide different percentages of hot items.

NexMark Queries. In practice, streaming systems are over-

provisioned, ensuring a stable execution that does not cause

backpressure in case of input rate fluctuations or transient

system issues (e.g., garbage collection). In our experiments, we

run all queries at 80% of the maximum sustainable throughput

that each protocol achieves for each query and parallelism. We

found 80% to be the most stable configuration. Each run lasts

for 60 seconds with 30 seconds of warmup. We introduce a

failure on the 18th second of a 60-second run.

– Maximum Sustainable Throughput (MST). In Figure 7, we

present the maximum sustainable throughput (MST) each

protocol achieved normalized by the MST of the checkpoint-

free execution for each query. For Q1, Q8, and Q12, the

coordinated approach outperforms the rest and reaches the

same MST as the checkpoint-free execution until we reach 70

workers. For 70 and 100 workers, we observe a slight decrease

in MST for Q1 and Q12, which results in approximately 90%

of the checkpoint-free MST. The impact of the increase in

parallelism is more significant for Q8, which employs a join.

The uncoordinated protocol follows closely, achieving an MST

around 10% lower than the coordinated approach in all cases.

On the other hand, the communication-induced protocol fails

to keep up and, in higher parallelism, can reach an MST

lower than 50% of the checkpoint-free MST. None of the

protocols can keep up with the checkpoint-free execution for

Q3. However, the coordinated and uncoordinated protocols
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Fig. 7: Normalized maximum sustainable throughput per query

achieved by each protocol for different parallelism.

TABLE II: Ratio of message overhead with respect to an

execution without checkpoints.

10 workers 50 workers
Protocol Q1 Q3 Q8 Q12 Q1 Q3 Q8 Q12
COOR 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x
UNC 1.00x 1.00x 1.00x 1.00x 1.00x 1.01x 1.01x 1.00
CIC 2.10x 1.82x 1.74x 1.79x 2.53x 2.58x 2.49x 2.58x

achieve an MST higher than 70% of the optimal for Q3

in most cases while maintaining an MST of 50% of the

optimal for the edge case of 100 workers. On the contrary,

the communication-induced protocol fails to achieve an MST

higher than 50% for Q3 primarily due to the high message

overhead it introduces. In terms of MST, the coordinated

approach outperforms the others, while only the uncoordinated

can remain competitive.

– Message Overhead. The overhead of the protocol-related

information transferred throughout the system can either be

in the form of additional protocol messages and/or piggy-

backed information to process messages. The only protocol-

related overhead for the coordinated approach is the mes-

sages between workers and the coordinator when starting and

concluding a coordinated round, and the markers forwarded

from the sources to the pipeline sinks. The uncoordinated

protocol requires the operators to send the metadata of every

checkpoint they take to the coordinator. Table II shows that the

overhead that the coordinated and the uncoordinated introduce

is insignificant in all cases. On the contrary, as explained in

Section III, additionally to the information required by the

uncoordinated protocol, the communication-induced protocol

piggybacks to the process messages all the information re-

quired to decide on forcing a checkpoint. The size of this

information depends on the number of total instances of

the operators employed. As Table II indicates, even for a

parallelism of 10, the overhead can double the size of the

messages that are communicated between the workers and the

coordinator, while for 50 workers, the message size can reach

up to 2.58x the size of messages of a checkpoint-free execu-

tion. Increased message size does not only result in the need

for higher network bandwidth but also cripples the processing

power of our system as it has to serialize and deserialize

much larger messages. Therefore, it significantly affects the

maximum sustainable throughput we can achieve using the

communication-induced protocol, as shown in Figure 7.

Fig. 8: Average checkpointing time on different parallelisms.

– Average Checkpointing Time. We showcase the average

checkpointing time for each protocol for all settings in Fig-

ure 8. The uncoordinated and communication-induced proto-

cols have an average checkpointing time of a few milliseconds

for all settings. The coordinated approach requires a full

checkpointing round to be completed to consider its check-

points as valid. Therefore, in contrast to the other protocols, it

incurs an average checkpointing time of up to two magnitudes

higher for Q3, Q8, and Q12, which involve shuffling. This is

especially the case for Q3, which employs a complex topology

and has a high computational complexity, as well as for the

higher parallelisms that result in a higher degree of shuffling.

The latency overhead caused by the increased checkpointing

time in Q3 is also visible in Figure 9 for 10 workers.

– Impact on the 50th and 99th percentile of latency. In Figure 9

and Figure 10, we present the 50th and 99th percentiles per

second for each protocol and query for different parallelisms.

Due to space limitations, we include 10, 30, and 50 workers

in our discussion. However, the other settings follow a similar

trend. The 50th percentile latency allows us to evaluate the

mean performance of the protocols, while the 99th percentile

highlights the stragglers and the outliers. For the settings of

10 and 30 workers, the 50th percentile for all protocols for the

simpler queries Q1, Q8, and Q12 is similar before the failure

occurred and after the system recovered to a stable execution.

However, for the 50-worker case, the communication-induced

protocol requires piggybacking additional protocol informa-

tion of significant size at every message. This results in a slight

increase observed in the 50th percentile, which is considerably

higher in Q8 because it employs a costly join. As for Q3, the

coordinated approach suffers from latency spikes every time a

checkpoint is taken, which is more evident as the state grows

and for the 10-worker case. The 99th percentile follows the

same patterns as the 50th percentile for the execution period

prior to the failure. Q3 employs an incremental join; the spikes

and the increasing instability in latency that we observe are

expected and attributed to a combination of the query’s nature

and checkpointing.

– Recovery & Restart Time. Recovery time is the time passed

from detecting the failure until the system returns to normal

and stable execution. Looking at the 50th percentile (Figure 9),

all protocols require around 10 seconds to recover to normal

execution for Q1 for a parallelism of 10, while very small

differences are also observed for Q1 for 30 workers. For 50
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Fig. 9: 50th percentile latency. The black dashed vertical line indicates the moment of failure.

Fig. 10: 99th percentile latency. The black dashed vertical line indicates the moment of failure.

workers, the communication-induced protocol requires around

10 more seconds to recover due to the significant message

overhead it introduces. For Q8 and Q12, the communication-

induced protocol performs marginally better than the unco-

ordinated protocol for 10 workers, but it falls behind when

the parallelism increases as it requires around 10 more addi-

tional seconds to recover. In Q3, the communication-induced

protocol has a smaller recovery time than uncoordinated by

up to 20 seconds for 10 and 30 workers, resulting from

replaying fewer messages due to forced checkpoints closer

to the failure. On the other hand, it requires 10 additional

seconds for 50 workers. On average, the coordinated protocol

greatly outperforms the other protocols regarding recovery

time, mostly because the uncoordinated and communication-

induced protocols have to replay many messages.

The restart time (Figure 11) is part of the recovery time

and reflects the time passed from detecting the failure until

TABLE III: Total checkpoints and percentage of invalid check-

points.
10 workers 50 workers

Total(Invalid) Total(Invalid)
Query UNC CIC COOR UNC CIC COOR

Q1 303(0%) 285(0%) 240(0%) 1437(0%) 1428(0%) 1200(0%)
Q3 455(4%) 471(3%) 400(0%) 2399(3%) 2517(4%) 2000(0%)
Q8 384(2%) 386(3%) 360(0%) 1924(2%) 1920(3%) 1800(0%)
Q12 282(3%) 282(4%) 240(0%) 1446(3%) 1451(3%) 1200(0%)

the system is ready to restart processing. On average, the co-

ordinated protocol restarts faster than the other two protocols.

This is especially evident for a larger number of workers.

For example, the restart process for the uncoordinated and

communication-induced protocols can take up to 10 times

longer than the coordinated for 100 workers. The UNC and

CIC protocols need to fetch and prepare the messages to replay

and, therefore, take more time to restart. On the other hand,

finding the recovery line has an insignificant cost.

– Invalid checkpoints. The percentage of invalid checkpoints
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Fig. 11: Restart time after failure per query for each protocol

on different levels of parallelism.

over the total checkpoints indicates how much the system

rolled back. Low percentages show no domino effect and

better utilization of the checkpointed state. The coordinated

approach does not introduce any invalid checkpoints. Table III

shows that for all the acyclic queries, the uncoordinated and

communication-induced protocols introduce very few invalid

checkpoints and result in similar total checkpoints. Overall, the

uncoordinated and communication-induced protocols result in

more checkpoints than the coordinated protocol since every

operator independently decides when to take a checkpoint

based on its worker’s clock.

Skewed NexMark. Operating under a skewed workload usu-

ally results in workers straggling to process the excessive

load they are responsible for. Although operating under such

conditions is not preferable, avoiding it is not always feasible.

Therefore, it is important to investigate how the different pro-

tocols perform under skew. To measure the impact of skew on

the protocols’ performance, we employ Q3, Q8, and Q12 under

different hot item ratios provided by the NexMark generator.

Q1 is not affected by skew as it involves non-keyed operations.

Therefore, we omit it. We run Q3, Q8, and Q12 on 10 workers

at 50% and 80% of the maximum sustainable throughput of the

non-skewed execution of every protocol without introducing

any failure. Both throughputs result in straggling workers.

However, the latter stresses significantly more the system,

resulting in fewer checkpoints taken and higher sensitivity to

skew. We consider these settings representative of a real-world

deployment, where overprovisioning is employed to handle

spikes and unexpected skews. We employed three different

hot item ratios to increase the skew gradually, from 10% to

30%. The straggling workers heavily affect the 99th percentile

of latency, so we focus on the 50th percentile. We also report

the average checkpointing time, as it is also heavily affected

by the skew and can significantly affect the latency.

Unlike the non-skewed experiments, as illustrated in Fig-

ure 12, the coordinated protocol performs the worst regarding

50th percentile latency and average checkpointing time in

both throughputs. With every increase in the hot items ratio,

latency and checkpointing time increase by at least an order

of magnitude for the lower throughput, while for the higher

throughput, even the lowest skew ratio has a significant impact

on Q3. The coordinated protocol is so heavily impacted by

skew because not only are the straggling operators slow to take

(a) 50% of the MST of the non-skewed execution.

(b) 80% of the MST of the non-skewed execution.

Fig. 12: 50th percentile latency & average checkpointing time

under different hot items percentages.

Fig. 13: Restart time after failure per query in the presence of

skew.

their checkpoints, but they also delay propagating their mark-

ers to downstream operators that block processing in other

channels to wait for the delayed markers. Meanwhile, both

UNC and CIC keep both metrics relatively low. In summary,

the uncoordinated and communication-induced protocols can

handle skew more effectively in every case.

Similar to the non-skewed experiments, we perform another

run using the 50% MST, introducing a failure. Figure 13 shows

the time needed to restart processing. Unlike the non-skewed

experiments, where the coordinated outperformed the other

approaches, the differences are mitigated under skew, and

all protocols perform similarly. This is an immediate result

of the coordination under skew with the stragglers. Invalid

checkpoints remain the same under skewed and non-skewed

conditions. We do not report recovery time since none of the

protocols managed to recover within the time frame for 20%

and 30% skew, while for 10% skew, the performance is similar

to the non-skewed experiments.

Cyclic query. For the cyclic query, we only evaluate the

uncoordinated and the communication-induced checkpointing

protocols. The aligned version of the coordinated protocol

cannot handle cyclic queries. That is because at least one

operator would be waiting for a marker that originates from

itself, thus leading to a deadlock.
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TABLE IV: Average checkpointing time (CT), restart time

(RT), and invalid checkpoints (IC) for the cyclic query.

Uncoordinated Communication-induced
#Workers CT RT IC CT RT IC

5 0.01 ms 620 ms 1.4% 2.73 ms 347 ms 1.7%
10 1.38 ms 344 ms 1.4% 8.39 ms 399 ms 1.6%

We evaluate the protocols with two parallelisms, 5 and

10 workers. We refrain from using higher parallelisms since

CIC is greatly affected by complex topologies and higher

parallelism, as shown in Figure 7. For both deployments, we

use the same configuration for our generator. It creates events

with the following probabilities: 60% chance of creating a new

link, 15% of creating a source node, 20% chance of deleting an

existing link, and 5% of deleting an existing source node. The

generator also assumes a static set of 1M nodes. We evaluate

the two protocols with an input rate of 75% - 80% of their

MST for the query. We run the experiments for 60 seconds

and introduce a failure at the 48th second.

Regarding latency and maximum sustainable throughput,

both protocols perform similarly to a checkpoint-free execu-

tion; therefore, we omit these metrics. We present the average

checkpointing time, the recovery time, and the number of

invalid checkpoints in table IV. Regarding average check-

pointing time, the uncoordinated protocol is faster than the

communication-induced protocol since the communication-

induced protocol requires checkpointing additional protocol-

related information apart from an operator’s state. However,

the difference between the two measurements is practically in-

significant. The communication-induced protocol required less

time to restart after a failure for a parallelism of 5 workers, as it

forced checkpoints that led to fewer messages being prepared

to be replayed. For 10 parallel workers, the uncoordinated pro-

tocol restarts slightly faster than the communication-induced

protocol, although the difference is insignificant. Based on the

literature and the core characteristics of both protocols, the un-

coordinated protocol was expected to introduce many invalid

checkpoints and lead to a domino effect. Although this might

still hold in some extreme cases, our experiments show that

both protocols unexpectedly share very similar percentages

of invalid checkpoints for both parallelisms. Neither protocol

outperforms the other when employed on top of cyclic queries

in any meaningful aspect, and the uncoordinated protocol does

not introduce a domino effect.

Summary. In our experiments, we explore three different

cases: the NexMark queries with a uniformly distributed

workload, the three more complex NexMark queries, i.e., Q3,

Q8, and Q12 for a skewed input, and a cyclic query. In the first

case, the coordinated approach outperforms the rest regarding

latency, recovery time, and maximum sustainable throughput

but has a significantly higher checkpointing time. Surprisingly,

in contrast to the theoretical analysis, although parallelism and

shuffling impact the checkpointing time of the coordinated

protocol, they hardly affect the overall performance and only

result in mild spikes in latency when a checkpoint is taken.

Additionally, the uncoordinated protocol remains competitive

in all queries and parallelisms. However, under skewed inputs,

the uncoordinated greatly outperforms the coordinated one,

which suffers both in terms of latency and checkpointing

time. For the cyclic query, surprisingly, the uncoordinated

does not showcase an increased number of invalid checkpoints

(e.g., a domino effect) and performs slightly better than the

communication-induced.

VIII. RELATED WORK

This section presents the related work regarding benchmark-
ing for stream processing systems and experimental evaluation
of fault tolerance in stream processing.

Benchmarking for stream processing. Linear Road [12] is

one of the first benchmarks proposed for stream processing

that simulates a traffic monitoring application and evaluates

the benchmarked solution in terms of latency, throughput,

and accuracy. CityBench [9] and RioTBench [42] are real-

time analytics benchmarks that employ real-world Internet of

Things (IoT) data and extend the evaluation using metrics

such as memory and CPU utilization and completeness of

query results. SparkBench [35] is tailored to Apache Spark and

targets CPU and memory utilization, network and disk I/O, job

execution time, and throughput. NEXMark [46] is a widely

adopted benchmark, also extended by Apache Beam [3],

represents an e-commerce application, and provides streaming

queries that cover all the fundamental processing workloads.

Experimental evaluation of fault tolerance. Stream-

Bench [36] employs seven workloads on Spark and Storm and

performs an evaluation focusing on throughput and latency.

Qian et al. [41] evaluate fault tolerance, including additionally

Samza and Kafka. However, their evaluation lacks representa-

tive workloads as they only consider a simple workload that

consumes input and performs no operations.

IX. CONCLUSIONS

In this paper, we surveyed the three checkpoint protocol

families for fault-tolerance in stream processing and discussed

the theoretical advantages and drawbacks of each one of

them. We developed an open-source testbed system that allows

for isolated comparison of the approaches and performed a

thorough experimental evaluation. While our experiments em-

pirically confirmed the reasons behind the universal adoption

of the coordinated approach, they also highlighted cases (e.g.,

skewed input) where the uncoordinated approach shows more

robustness and better performance. Based on these results, we

urge the research community to further research the uncoordi-

nated approach since even a ”vanilla” implementation of it was

proven to perform well in uniformly distributed workloads, and

it is the only viable solution for skewed workloads.
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