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Abstract

Novel types of superconductivity is a very active area of research. Heterostructures
are a promising and recent avenue for finding these. This thesis explores a theoretical
model of a ferroelectric heterostructure to investigate whether dipole-mediated electron
interactions can induce superconductivity. Two models were analyzed: a static case
where the dipole aligns instantaneously with the net electric field and a dynamic case
where the dipole has inertia and oscillates. The static model showed that under small
lattice constants, dipole mediated interactions can overcome Coulomb repulsion between
electrons, though such conditions are challenging to achieve. The dynamic model,
analyzed using Floquet theory, revealed resonance effects that amplify electron motion.
While definitive superconductivity was not established, experimental validation through
pressure-tuned lattice constants and resonance conditions could validate the model’s
predictions. Future research could extend this framework to quantum mechanical dipoles
and more complex materials, enhancing the understanding of superconductivity in
engineered heterostructures.
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Nomenclature

An overview of atomic units, together with their standard symbol and value in SI units.
These are the units used most prevelantly in this thesis.

Defined Atomic Units
The defined atomic units all have value 1 in this unit system. The values in SI units are
given for reference.

Symbol Definition Value [SI]
ℏ Reduced Planck constant 1.054571... ×10−34 Js
e+ Elementary charge 1.602176... ×10−19 C
me Electron rest mass 9.109383... ×10−31 kg
4πϵ0 Vacuum permittivity 1.112650... ×10−10 Fm−1

Derived Atomic Units
These are the most commonly used derived atomic units in this thesis. Their definition
and SI value are given for reference.

Symbol Name Definition Value [SI]
a0 Bohr radius 4πϵ0ℏ2/me(e+)2 5.291772... ×10−11 m
Eh Hartree energy ℏ2/mea

2
0 4.359744... ×10−18 J

e− Electron charge −e+ −1.602176...× 10−19 C
ℏ/a0 Unit of momentum ℏ/a0 1.992851... ×10−24 kgms−1

ℏ/Eh Unit of time ℏ/Eh 2.418884... ×10−17 s

v



1
Introduction

The discovery of superconductivity in 1911 by Heike Kamerlingh Onnes marked a
breakthrough in condensed matter physics [1]. Superconducting materials can conduct
electricity without any resistance, making them ideal for electronic components. They
also exhibit a property called the Meissner effect, whereby magnetic fields are completely
expelled from these materials, allowing magnets to float above their surface. Unfortunately,
these materials are often complex metallic alloys, and only become superconducting
under extremely high pressures and low temperatures. A superconductor that works
at room temperature under atmospheric pressure is often called the "Holy Grail" of
superconductivity, and would revolutionize the field of electronics. This makes the search
for novel kinds of superconductors a very active area of research.

Figure 1.1: A schematic representation of a
heterostructure. We see the three materials

hexagonal boron nitride (hNB), graphene, and
Molybdenum disulfide (MoS2) positioned atop each

other, precise to the atom.

Historically, most superconductors are
described by Bardeen-Cooper-Schrieffer
(BCS) theory [2]. This framework describes
the formation of so-called Cooper pairs:
electrons bound through an attraction me-
diated by lattice vibrations. This attrac-
tion is key to superconductivity, and in-
spires the promising avenue of so-called
heterostructures. These are a recent de-
velopment in material science where two
materials are positioned very precisely on
top of each other, resulting in structures
that can exhibit unique properties quantum mechanical in nature. The interfaces between
these layers could cause hitherto unseen interactions, and could be the key to finding
new types of superconductors. An example of a heterostructure can be seen in figure 1.1.

Recent papers on superconducting heterostructures have proved promising. Hua et al.
discovered an interesting superconducting state in a heterostructure using a ferromagnetic
material [3]. Others have used a superconductor/ferromagnet interface to generate unique
phenomena [4]. These developments shows the great potential of heterostructures, and
highlights the importance of creating theoretical models to describe them.
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Figure 1.2: A schematic representation of the
setup studied in this thesis. We see two electrons
restricted to move along a single axis, interacting
with each other and with a dipole. An external

electric field is applied.

This thesis explores the theoretical back-
ground behind one such heterostructure,
a conductor positioned on top of a dielec-
tric material. The central model of this
heterostructure consists of two electrons
restricted to move in one dimension, inter-
acting with each other, and with a single
dipole restricted to only rotate, responding
to an external electric field and the electric
fields caused by the electrons. This setup
is shown schematically in figure 1.2. We
study two models of this heterostructure.
First, we consider a static model, where
the dipole responds instantaneously to the net electric field. This allows an exact com-
putation of the energy of the system. Second, we consider a dynamic model, where the
dipole oscillates due to an external electric field that dominates the electric field of the
electrons. Making an additional assumption on the relative position of the electrons, we
can use Floquet theory to explore this system.

This thesis is structured follows: Chapter 2 provides the theoretical background neces-
sary to understand superconducting heterostructures, covering heterostructure physics,
dielectric materials, and conventional and unconventional superconductors. Chapter 3
introduces the instant dipole response model, detailing the setup, interaction potentials,
and analytical methods used to determine bound states. The results of this model, in-
cluding parameter dependencies and transitions between different interaction regimes, are
discussed in depth. Chapter 4 extends this framework to the case of an oscillating dipole
with inertia. This chapter develops a time-dependent Schrödinger equation and employs
Floquet theory to analyze the resulting electron dynamics. The implications of these
results for superconductivity are explored. Finally, Chapter 5 presents the conclusions
of this study and suggests directions for future research, particularly in experimental
verification and the possible realization of dipole-mediated superconductivity in practical
materials.

By constructing and analyzing these models, this thesis aims to contribute to the
understanding of ferroelectric-superconducting heterostructures and their potential role in
discovering new superconducting states. The results provide insight into the mechanisms
by which dipole interactions might induce electron pairing, offering theoretical groundwork
for further investigations into the nature of this heterostructure.



2
Theoretical Background

Before analyzing the ferroelectric heterostructure, it is important give some theoretical
background on the materials involved and the standard model of superconductivity.
This chapter briefly explains how the standard model of superconductivity works, what
heterostructures and dielectrics are, and what electric-field screening is.

2.1. Superconductors
Superconductors are materials that, below a certain critical temperature, exhibit two
defining properties: zero electrical resistance and the expulsion of magnetic fields, known
as the Meissner effect. Superconductors can be classified into two types. Conventional
ones, and unconventional ones. Conventional superconductivity are described by the
standard theory of superconductivity, named BCS theory after Bardeen, Cooper, and
Schrieffer. BCS theory uses the same basic principles to explain superconductivity as
more advanced models. An understanding of BCS theory is therefore crucial for studying
more exotic superconductors.

2.1.1. Standard BCS Theory

Figure 2.1: Schematic representation of Cooper pairing. An electron induces a phonon in the lattice,
which in turns attracts a second electron, giving gives to a net attraction. This pairs the electrons into

so-called Cooper pairs

3



2.1. Superconductors 4

Figure 2.2: Electron-electron
interaction mediated by a

phonon with momentum q =
k-k’. One electron scatters

from momentum k to k’ and
emits a phonon of momentum
q, which is in turn absorbed by

the other electron.

In standard BCS theory, the theory for describing the forma-
tion of bound pairs assumes the following [5]. Two electrons,
assumed to be free electrons, are added to a Fermi sea at
T = 0K. These electrons interact with each other, through
both an electric repulsion from a screened Coulomb interac-
tion, and another interaction mediated by phonons through
the ions in the crystal lattice. This interaction can gives
rise to a net attractive interaction between the electrons,
leading to a bound state. This process is shown in figure 2.1.
These paired electrons are called Cooper pairs. They are
bosonic states, with an energy below the Fermi level. The
difference between their energy and the energy at the Fermi
level is called the superconducting energy gap 2∆. To break
a Cooper pair, an energy of at least this amount is required,
which is what gives rise to the critical temperature Tc. Below
this temperature, there isn’t enough energy to excite these Cooper pairs, allowing them
to flow without resistance through the lattice. Since these pairs form a bosonic state,
many of these pairs can form [6]. This is what gives rise to superconductivity. Now
that we understand the idea behind BCS theory, we can look at it more quantitatively.
First, we need to describe the phonon-mediated interaction. An electron scatters from a
momentum k to a momentum k’. This creates a phonon of momentum k - k’ = q, that is
carried through the atom core ions in the material. This process is shown schematically
in figure 2.2. It is shown by de Gennes [7] using the so-called jellium model that this
gives rise to an effective attractive interaction between the two electrons given by

V (q, ω) = 4π(e+)2

q2 + κ2

(
1 +

ω2
q

ω2 − ω2
q

)
(2.1)

Here 1
κ

is the screening length, the reciprocal of the screening constant κ. ωq is the
characteristic frequency of the phonon, and ω is the frequency of the electron, defined
using ℏω = ξk, with ξk being the energy of the electron with momentum k.

Using a wavefunction ansatz of superpositions of plane waves, we try a wavefunction of
electrons with opposite momenta [5] [8]:

ψ0(r1, r2) =
∑

k
gke

ik·(r1−r2) (2.2)

Here, gk are coefficients to be determined. We fill this into the expectation value of the
energy:

E = p̂1
2

2m + p̂2
2

2m + V (q) (2.3)

Here, we find by the symmetry of the spatial part of the wavefunction that E = 2ϵk
with ϵk = p2

2m
eik(r1−r2). We need to find gk such that all terms in the following equation

match. ∑
k
Egke

ik·(r1−r2) = 2
∑

k

(
gke

ik·(r1−r2)
)(

ϵk +
∑
k′
gkgk′

)
(2.4)
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Here, we see that we need (E − 2ϵk) = ∑
k′>kF

Vkk′gk′ for the equation to hold. Since we
cannot solve this equation for complicated general V , V is approximated by

Vkk′ =

−V if |ϵk − ϵk′| < ℏωc

0 otherwise
(2.5)

Here ωc is a cutoff frequency. Although seemingly a crude approximation, it turns out to
give surprisingly accurate and insightful results. It now becomes possible to solve for gk.
We find

gk = V

∑
gk′

2ϵk − E
(2.6)

Summing over k and simplifying, we find the expression

1
V

=
∑

k>kF

(2ϵk − E)−1 (2.7)

We can extract an expression for E by turning our sum into an integral. Using the weak
coupling approximation results in

E ≈ 2EF − 2ℏωce
−2/N(0)V (2.8)

Here N(0) represents the density of states of electrons at the Fermi level. This result
allows us to conclude there exists a bound state with energy below the Fermi level, for
electrons with kinetic energy greater than the Fermi level. In fact, it is shown that
regardless of the strength of the attractive force between these electrons, such a bound
state exists. These bound states are what are called Cooper pairs in BCS theory, and
they are the critical component of the theory responsible for the superconducting state.

2.1.2. Unconventional superconductors
Unconventional superconductors work similar to standard superconductors, as they also
use Cooper pairing [9]. The difference is in the pairing mechanism for the electrons.
Instead of electron-phonon coupling as in the jellium model, the necessary attractive
interaction can be due to many different sources. This allows for superconductors with
higher critical temperatures [10]. Heterostructures are a promising avenue for finding
new types of superconductors, as the interfaces between the materials can give rise to
new types of interactions. The heterostructure studied in this thesis gives rise to an
interaction between electrons mediated by the dipole, with the hope of it being strong
enough to cause Cooper pairing, and thereby superconductivity.

2.2. Heterostructures
Heterostructures, also referred to as heterojunctions, are composite materials formed
by layering of two or more distinct materials, precise to the atom [11]. This enables
unique quantum mechanical properties that are not found in the individual components
alone. The interfaces between the layers are key to these emergent behaviors, as they
facilitate interactions between different physical phenomena, such as electron transport,
magnetism, and superconductivity.
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The materials used in heterostructures typically exhibit complementary properties that,
when combined, lead to novel functionalities. For example, semiconducting heterostruc-
tures have been extensively studied for their role in enabling high electron mobility
and quantum well effects, which are critical for the operation of modern electronic and
optoelectronic devices [12]. In this study, the focus is on ferroelectric-superconducting het-
erostructures, where the coupling between ferroelectric polarization and superconducting
electron pairs opens up possibilities for novel superconducting states.

2.3. Dielectric Materials
Dielectric materials, or dielectrics, are materials that become polarized in the presence of
an electric field. This polarization arises due to a displacement of positive and negative
charges within the material, leading to the formation of electric dipoles. The degree to
which a material can be polarized is quantified by its permittivity ϵ. Dielectrics consist
of many dipoles arranged periodically. The dipoles in dielectric materials will be key
to studying the heterostructure studied in this thesis. It is the interaction between
the dipoles and the electrons that are hoped to give rise to an attractive interaction
between the electrons themselves, which is important to superconductivity. To describe
the interaction between dipoles and electrons, we use the equation for the potential
between a dipole and an electron [13]

V = −p · r
4πϵ0|r|3

(2.9)

Here p is the dipole moment and r is the vector from pointing from the electron to the
dipole. It is important to note that the strength of this interaction goes as 1/r3, instead
of as 1/r2 as between two charges. This makes the distance from the electrons to the
dipole an important parameter, and plays an important role in getting a strong enough
interaction.

2.4. Screening
In conductors, electric fields behave differently than in a vacuum. The presence of
positively charged ions and negatively charged electrons cause electric potentials to drop
exponentially with distance, a phenomenon known as screening. Using the Thomas-Fermi
approximation [14], a dielectric function can be found that describes the screening of
electric fields in a conductor. This function is given by,

ϵ(r) = ϵ0e
κr (2.10)

Here κ is the screening constant equal to one divided by the screening length. In other
words, all electric potentials are multiplied by an e−κr term. This gives rise to the Yukawa
potential for the interaction of two charged particles [15]

V (r) = q1q2

r
e−κr (2.11)

Here q1 and q2 are the charges of the two interacting particles, and r is the distance
between them. The exponential decay of electric fields play an important role in creating
an accurate model of the studied heterostructure, and is an important mathematical fact
for studying this model by allowing certain approximations for large r.
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2.5. Schrödinger Equation
To describe the evolution of a quantum mechanical system, the time-dependent Schrödinger
equation [16] is used.

iℏ
∂

∂t
ψ = Ĥψ (2.12)

Here ψ is the wavefunction and Ĥ the total Hamiltonian. Solving the Schrödinger
equation tells us how a system evolves in time, and what energies the system can have.
Especially the latter is key showing whether a system can display superconductivity.
Often, solving the Schrödinger equation analytically is infeasible or even impossible. In
such cases, an ansatz for the wavefunction can be used. An ansatz is a trial wavefunction
ψ, often based on heuristic arguments, that can be analyzed to find bounds on energies
and explore how the system behaves.



3
Instantaneous dipole response

To analyse the dipole-mediated electron-electron interaction, we begin by analysing a
simplified model. We consider the dipole as a classical object that aligns instantaneously
with the net electric field. By using a wavefunction ansatz, the possibility of bound states
is investigated.

3.1. Model Setup
We consider a system of two localized interacting quantum-mechanical electrons and a
classical dipole. For simplicity, the electrons are constrained to move on the x-axis, a
fixed distance h apart from the dipole. By making this distance fixed, we can see how
important the distance of the electrons from the dipole is. Further, we assume a constant
electric field Eext at an angle θext to the x-axis. The dipole has a dipole moment of p,
pointing in the direction of the total electric field, that being the sum of the external
electric field and the electric field caused by the two electrons. Figure 3.1 provides a
schematic view of this system.

Figure 3.1: Diagram of a system of two interacting electrons and a dipole. The electrons are free to
move on the x-axis, and the dipole can freely rotate around the origin. The position of the dipole is
fixed at the origin, with the electrons at a constant lateral distance h from the dipole. An external

electric field is applied at an angle θ0 to the x-axis.

The key assumptions are as follows:

Electrons: The electrons are quantum-mechanical particles with a single degree of freedom,
constrained to move along the x-axis. They are separated laterally by a fixed distance h

8



3.1. Model Setup 9

from the dipole and interact directly through a screened Coulomb force.

Dipole: The dipole is a classical object with a dipole moment p and no inertia. It aligns
instantaneously with the total electric field, which is the vector sum of the external field
and the fields produced by the electrons. It has a single degree of freedom, defined by its
angle to the x-axis.

Electric Fields: All electric fields in the system are screened with screening constant κ.
The screening effect is modeled using the Yukawa potential. The external electric field is
assumed to be strong, constant, and oriented at an angle θext to the x-axis.

System Configuration: The dipole is fixed at the origin, and the electrons are positioned
at a constant lateral distance h from it. The electrons interact indirectly via the dipole
and directly through the Coulomb force.

These assumptions allow for a tractable analysis of the system, and provides a basis for
studying how these interactions can lead to bound states.

3.1.1. Electron and dipole interactions
From this setup, we can derive the interaction between the electrons. This interaction
consists of two parts. First, the electrons interact directly through the Coulomb force.
This interaction is screened and given by the Yukawa potential

VC = e−

4πϵ0|r1 − r2|
e−κ|r1−r2| (3.1)

Here r1 and r2 are the positions of the electrons and κ is the screening constant. Since
the electrons are restricted to move on the x-axis at a lateral distance of h, we can write
their position as follows:

ri =

xi

h
0

 (3.2)

Here xi is the position of electron i ∈ {1, 2} on the x-axis. The second part of the
interaction is an interaction mediated by the dipole. We assume a constant external
electric field

Eext =

Eext cos(θext)
Eext sin(θext)

0

 (3.3)

As well as an electric field caused by the electrons, again given by the Yukawa potential.

Vκ(ri) = e−

4πϵ0ri

e−κri (3.4)

Here, ri =
√
x2

i + h2 is the distance between electron i and the dipole, and ri is the vector
pointing from the dipole to electron i. This allows us to calculate the electric field at the
dipole. The electric field at the dipole due to an electron at position ri is given by

Ei = −∇Vκ(ri) = e−

4πϵ0

e−κri

ri

(
κ+ 1

ri

)
r̂i (3.5)
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Since we assume the dipole has no inertia, the dipole will align with the electric field
instantaneously. This gives the direction of the dipole moment

p̂ = Ê = Eext +E1 + E2

|Eext +E1 + E2|
(3.6)

Here Eext is the externally applied electric field, E1 is the electric field due to the first
electron, and E2 is the electric field due to the second electron. This gives a dipole
moment of

p = pp̂ (3.7)

Here p = qℓ is the magnitude of the dipole moment, q being the charge of the constituents
of the dipole, and ℓ the distance between them. Then we can calculate the potential of
the electrons due to the dipole:

Vdp,i = −p · ri

4πϵ0|ri|3
(3.8)

Here the minus sign is due to the negative charge of the electrons. Finally, including
screening, we find

Vdp,i = −p · ri

4πϵ0|ri|3
e−κ|ri| (3.9)

This completes the equations for the interaction between the electrons. All that is left
is adding the kinetic energy terms. The kinetic energy operator for an electron in one
dimension is given by

Ĥkin = − ℏ2

2m
∂2

∂x2 (3.10)

We are now ready to write down the Hamiltonian of the system.

3.1.2. Model Hamiltonian
Now that we have the interaction between electrons mediated by the dipole, we can give
the Hamiltonian of the system. This Hamiltonian consists of four parts: The kinetic
energies of the electrons, the interaction of the electrons through the Coulomb force,
and the interaction mediated by the dipole respectively. This leads to a Hamiltonian
Ĥ = Ĥe1 + Ĥe2 + ĤC + Ĥdp. This gives rise to the Schrödinger equation 2.12 with

Ĥψ =
[
− ℏ2

2m
∂2

∂x2
1

− ℏ2

2m
∂2

∂x2
2

+ 1
x1
e−κx1 + 1

x2
e−κx2 − dÊ(x1, x2)

x2
1

− dÊ(x1, x2)
x2

2

]
ψ (3.11)

To get a bound state which is interesting for superconductivity, we want a state with
electrons that have a net attraction. For maximal interaction between electrons, the
dipole should be perpendicular to the axis of movement of the electrons. Because the
dipole responds instantaneously to the electric field, the electron velocities do not affect
the potential. As a result, only static bound states can be analyzed in this model.
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3.1.3. Wavefunction Ansatz
Now that we have the Hamiltonian, we can try to find wavefunctions that have a negative
energy. First, we note that we have a time-independent Hamiltonian, so the Schrödinger
equation becomes separable. This means finding any state with a negative energy
expectation value implies there being an eigenstate with a negative energy. This results
from the fact that any wavefunction can be written as a weighted sum of eigenstates:

ψ(x1, x2) =
∞∑

n=1
cnψn(x1, x2) (3.12)

Here ψn(x1, x2) are the eigenstates of the Hamiltonian with eigenvalues En. That means
that for any wavefunction with negative energy

⟨ψ|Ĥ|ψ⟩ < 0 =⇒
∞∑

n=1
|cn|2En < 0 (3.13)

This shows ∃n ∈ N : En < 0. Therefore, there would exist an eigenstate with negative
energy, which would also be a bound state. We are now ready to find such a state with
negative energy. Due to the Coulomb interaction between electrons, which diverges when
the electrons are at the same place, product states of overlapping wavefunctions do not
give solutions. Therefore, we try the entangled state

ψ(x1, x2) = e
−(x1−µ1)2−(x2−µ2)2

b (x1 − x2)
1
N

(3.14)

This does not allow for both electrons to be at the same place. This wavefunction has
normalization constant

N = π

4 b(2(µ1 − µ2)2 + b) (3.15)

. It is shown in figure 3.2b, where it can be see that it indeed does not allow for both
electrons to be at the same place. Note that the electrons aren’t most likely to be at µ1
and µ2 as would be expected with an unmodified product of Gaussians. The (x1 − x2)
factor makes the expression for the expected location of the electrons slightly more
complicated. The expected value of xi is given by

∫ ∞

−∞

∫ ∞

−∞
xi|ψ(x1, x2)|2dx1dx2 =


π
4 (2µ1(µ1 − µ2)2 − µ2) if i = 1
π
4 (2µ2(µ2 − µ1)2 − µ1) if i = 2

(3.16)

This can also be observed in figure 3.2b. This is an important property, as it allows for
µ1 and µ2 to be equal, despite the electrons having zero probability of being at the same
place.

Relative coordinates
To look at this wavefunction from a different perspective, we express the wavefunction in
relative coordinates. This transformation will also turn out to be useful in analyzing this
system mathematically. Here, we define

r = r2 − r1

R = r1 + r2

2
(3.17)
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Using this transformation, we also get new momentum variables. Defining q = −iℏ ∂
∂r

and p = −iℏ ∂
∂R

, we find q = p1−p2
2 and p = p1 + p2, where p1 = −iℏ ∂

∂r1
and p2 = −iℏ ∂

∂r2
.

Performing this transformation, we find a wavefunction in terms of relative coordinates

ϕ(r, R) = exp
{−2
b

(R − 1
2(µ1 + µ2))2 + −1

2b (r + (µ1 − µ2))2 + −1
b

(µ1 + µ2)2
}
r (3.18)

This equation becomes separable into a product of relative and centre-of-mass wavefunc-
tions

f(r)g(R) = exp
{−1

2b (r + (µ1 − µ2))2
}
r exp

{−2
b

(R − 1
2(µ1 + µ2))2

}
(3.19)

With normalization constant
1
4(2(µ2 − µ1)2 + b)πb (3.20)

Relative coordinates also change the interaction terms: VC = e−

4πϵ0r
e−κr. This results in

a wavefunction that can be seen in figure 3.2a. Here it can be clearly seen that at two
electrons can’t be at a relative distance of zero.

(a) Probability density of one electron being at x1 and
the other at x2

(b) Probability density of the mean position of the
electrons being at R, and their relative position being r

Figure 3.2: Wavefunction squared of two electrons as a function of their positions in figure a), and as
a function of their mean position R and their relative position r in figure b), given by the product of two
normal distributions and the relative position, with the normal distributions centered at x1 = 0 and

x2 = 0.5. It can be seen that the electrons cannot be at the same location

Momentum space
To calculate the kinetic energy terms, as well as gain further insight into the behaviour of
the electrons, we look at the wavefunction in momentum space. This is done by taking
the Fourier transform of the wavefunction, and using the kinetic energy operator in
momentum space. The kinetic energy operator in momentum space is given by Ĥe1 = p2

1
2m

and Ĥe2 = p2
2

2m
. To transform ψ(x1, x2) into a function of momenta, ϕ(p1, p2), we use the

Fourier transform:

F{ψ(x1, x2)}(p1, p2) =
∫ ∞

−∞

∫ ∞

−∞
ψ(x1, x2)e

−i
ℏ (p1x1+p2x2) dx1 dx2 (3.21)
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Figure 3.3: Wavefunction squared of two electrons as a function of their momenta, given by the
Fourier transform of the wavefunction ansatz. It can be seen the electrons are most likely to have

opposite momenta, and thus move away from each other.

Here pi = ℏki is the quantum mechanical momentum. Filling our wavefunction ansatz
into this equation, we find

ϕ(p1, p2) =
∫ ∞

−∞
x1e

− 1
b

x2
1+( 2µ1

b
− ip1

ℏ )x1−
µ2

1
b dx1

∫ ∞

−∞
e− 1

b
x2

2+( 2µ2
b

− ip2
ℏ )x2−

µ2
2

b dx2

−
∫ ∞

−∞
x2e

− 1
b

x2
2+( 2µ2

b
− ip2

ℏ )x2−
µ2

2
b dx2

∫ ∞

−∞
e− 1

b
x2

1+( 2µ1
b

− ip1
ℏ )x1−

µ2
1

b dx1

(3.22)

This evaluates to an expression similar to the wavefunction ansatz, being in the form of
the product of two Gaussians and a term linear in p1 and p2. This wavefunction is given
by

ϕ(p1, p2) = 1
4b (2µ1 − 2µ2 + ib(p1 − p2)) eiµ1p1+iµ2p2− b

4 (p2
1+p2

2) (3.23)

Now, to use this to calculate the potential energy, we need to take its absolute value
squared to get the probability density. We find

|ϕ(p1, p2)|2 = e− b
2 (p2

1+p2
2)(4(µ1 − µ2)2 + b2(p1 − p2)2) 1

N
(3.24)

This has the following normalization constant:

N = 4(2(µ1 − µ2)2 + b)
b

π (3.25)

This function is shown in figure 3.3 for µ1 = µ2 = 0. It can be seen that the electrons
are most likely to have opposite momenta, and thus move away from each other. This is
a result of the (x1 − x2) term in the wavefunction ansatz.
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Other wavefunctions
Other wavefunctions of the form

ψ(x1, x2) = e
−(x1−µ1)2−(x2−µ2)2

b (x1 − x2)n (3.26)

For n ∈ N have been considered. For non-integer values of n, the wavefunction becomes
discontinuous at 0, causing problems for finding their energy. For values of n > 1, the
two electrons are more distinctly separate, as can be seen in figure 3.4. This causes a
higher energy, and therefore gives no information on the ground-state energy.

(a) Case where the polynomial factor is given by
(x1 − x2)2.

(b) Case where the polynomial factor is given by
(x1 − x2)3.

Figure 3.4: Wavefunction squared of two electrons as a function of their positions, given by the
product of two normal distributions and a polynomial factor.
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3.2. Results
Now that we have an ansatz for the wavefunction to try, it is possible to see how the
system reacts to these wavefunctions. First, in order to get an intuition for how the
particles interact near a freely rotating dipole, the Hamiltonian described by equation
3.11 has been evaluated as a classical potential. Furthermore, the wavefunction ansatz
given by equation 3.14 has been evaluated for many values of µ1 and µ2, to explore the
possibility of a bound state.

3.2.1. Attractive interaction
Now it is possible to look for situations in which the electrons feel a net attractive
interaction. With the dipole pointing down, that is, the negative side closer to the
electrons, we find there is a small region in which the dipole-mediated force gives rise
to an attractive interaction, as shown in figure 3.5a. On the line x1 = x2, we see the
repulsion between the two electrons, and on the lines x1 = 0 and x2 = 0 we see the
dipole’s repulsion. At x1 ≈ −2, x2 ≈ 2, as well as at x1 ≈ 2, x2 ≈ −2, a strong attractive
potential appears. At this point, the electric field of the electrons overcomes the external
electric field and flips the dipole the other way around. The dipole can just barely
overcome the repulsion of the electrons, leading to an attractive potential, and giving rise
to the possibility of a bound state. With the dipole pointing up, the region of attractive
interaction is a lot larger, as shown in figure 3.5b. This is because the dipole will now
always be attracting the electrons. This larger region of attractive interaction makes it
more likely to find a bound state.

(a) External electric field pointing from the axis of
movement of the electrons to the dipole

(b) External electric field pointing from the dipole
towards the axis of movement of the electrons

Figure 3.5: The sum of the potentials given by the Coulombic repulsion and a dipole-mediated
interaction between two electrons as a function of the positions of the electrons. The dipole has its

positive side towards the electrons, with the electrons always at least a lateral distance of 5
8 Bohr radii

removed from the dipole. It can be seen that at very specific positions, the electrons experience an
attractive interaction mediated by the dipole. In this figure, the electrons are considered classical.

3.2.2. States with high lattice constant
Now that there is an understanding of the attractive interaction, we can look for bound
states. Using the wavefunction ansatz it is possible to try find a bounded state, that is,
one with a negative energy. First, we need some estimates for the parameters in the model.
Typical screening lengths are on the order of about 1/20a0. Further, a dipole moment of
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2 × 10−31Cm ≈ 2e+a0 is common for dielectrics. For the lateral distance h between the
dipole and electrons, we can expect this to be on the order of a lattice constant in metals,
which for cobalt is around 4.72a0 [17]. Numerically trying out wavefunctions of this
form and calculating ⟨ψ|Ĥ|ψ⟩, we find bound states are impossible. Since the Coulombic
repulsion between the electrons falls of as 1/r2, while the field from the dipole decreases
as 1/r3, at large distances it becomes impossible for the dipole-mediated interaction to
overcome the Coulombic repulsion, as can be seen in figure 3.6

Figure 3.6: Sum of kinetic and potential energy of a system of two electrons interacting directly
through the Coulombic force, and indirectly through a dipole, as a function of the parameters µ1 and µ2

in the wavefunction given by equation 3.14. Here, the dipole has a dipole moment of 2e+a0, the
electrons are at a lateral distance of 4.72a0 from the dipole, the external electric field is 3.5Eh, and the

screening constant is 0.05.

3.2.3. States with low lattice constant
The most important parameter in this model is the distance of the axis of movement of the
electrons to the dipole. Since a dipole’s electric field decreases as 1/r3, and the repulsion
between electrons only as 1/r2, having this distance small is crucial for overcoming the
Coulombic repulsion. Under extremely high pressures, it becomes possible to attain
lattice constants on the order of 0.4a0. We take this distance h = 0.625a0, Eext = 3.5Eh,
κ = 0.05a0, d = 2e+a0. To find a bound state, first the width of the Gaussians given
by equation 3.14 was optimized numerically. A value of b = 0.552a2

0 was found. Then,
the energy of states was calculated for parameters µ1 ∈ [−2, 2] and µ2 ∈ [−2, 2] using
the Hamiltonian in equation 3.11. The energy of the states was calculated using the
Hamiltonian, and the results are shown in figure 3.7a. We see the energy has two different
local minima with the electrons slightly off-center. This shows it is theoretically possible
to get bound states.

An example of such a bound state is given in figure 3.7b.
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(a) Sum of kinetic and potential energy of a system of
two electrons interacting directly through the

Coulombic force, and indirectly through a dipole, as a
function of the parameters µ1 and µ2.

(b) A bound state of a system of two electrons
interacting directly through the coulombic force, and

indirectly through a dipole. It can be seen the
electrons prefer to be on opposite sides of the dipole

Figure 3.7: Wavefunction given by equation 3.14 of two electrons, illustrating how the potential of the
system changes with the parameters µ1 and µ2 in figure a), and showing a bound state in figure b).

Here, the dipole has a dipole moment of 2e+a0, the electrons are at a lateral distance of 0.625a0 from
the dipole, the external electric field is 3.5Eh, and the screening constant is 0.05a0.

3.2.4. Transition between states
To experimentally test for these bound states, it is important to find at what lattice
constants the systems transition from bound to unbound states. To this end, we show the
energy landscape for values of h = 0.8, 1, 1.5, and 2a0, shown in figure 3.8. We see that
the attractive dipole-mediated gradually decreases in strength, making the bound state
disappear, and creating a saddle point in the energy landscape, where the coulombic
repulsion and the dipole-mediated attraction oppose each other. By observing this
heterostructure under varying pressures, which changes the lattice constants, this effect
should be experimentally observable. Such an observation would support the validity of
this model.
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(a) Distance of dipole to the electron’s axis of
movement h = 0.8a0

(b) Distance of dipole to the electron’s axis of
movement h = 1a0

(c) Distance of dipole to the electron’s axis of
movement h = 1.5a0

(d) Distance of dipole to the electron’s axis of
movement h = 2a0

Figure 3.8: Sum of kinetic and potential energy of a system of two electrons interacting directly
through the Coulombic force, and indirectly through a dipole, as a function of the parameters µ1 and µ2
in the wavefunction given by equation 3.14. Here, the dipole has a dipole moment of 2e+a0, the external

electric field is 3.5Eh, and the screening constant is 0.05a0.



4
Electric dipole with inertia

4.1. Setup
We have found bound states, but as current is a non-static phenomenon, we want free
electrons to describe (super)conductivity. To have a dynamic description solutions, we
need to allow the dipole to oscillate. To get this working, we need to consider the inertia
of the dipole. This changes the Schrödinger equation by adding time-dependence, and
adds equations for the motion of the dipole. We will first consider the motion of the
dipole. We still restrict the electrons to move along the x-axis at a fixed lateral distance
h from the dipole. This means the positions of the electrons, r1 and r2, are of the form

r1 = x1x̂+ hŷ

r2 = x2x̂+ hŷ
(4.1)

Here x1 and x2 are the positions of the electrons along the axis, with the dipole being at
x = 0. Furthermore, we give the dipole an inertia I = mℓ2

2 , which allows it to oscillate.
This is in contrast with the model of chapter 3, where the dipole follows the electric field
without delay. Next, the externally applied electric field is assumed to dominate the
electric field of the electrons, allowing a simplified treatment of the dipole’s movement.
The electrons are also assumed to be a lateral distance h ≫ xi from the dipole. We are
now ready to treat a dipole with inertia.

4.1.1. Dipole Motion
Consider the dipole as two oppositely charged point charges with mass m = me and
charge magnitude q = e+, separated by a vector d centered at the origin, with |d| = ℓ.
We define p = qd. Since the moment of inertia of an object is given by I = ∑N

i=1 miri
2

the dipole has a moment of inertia

I = m

2 |d|2 (4.2)

To find how the dipole reacts to the electric field, we first need the torque. The force on
the positively charged particle is given by qE, and the force on the negatively charged
particle is −qE. This gives a torque of qE × d

2 caused by the positive charge, and a

19
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torque of −qE × −d
2 caused by the negative charge. This amounts to a total torque of

[13]
τ = p × E (4.3)

Next, we consider the angular momentum J = m(d × ḋ). We know J̇ = τ [18]. From
this, we find an equation of motion for the dipole in terms of the electric field.

J̇ = m(d × d̈) = qd × E (4.4)

The external electric field is composed of an external electric field Eext and the electric
fields caused by two electrons described by the wavefunction ψ(r1, r2, t). Filling this out,
the total electric field at the dipole (r = 0) is given by

E(r) = Eext +
∫∫

dr1 dr2|ψ(r1, r2, t)|2
(

r − r1

|r − r1|3
e−κ|r−r1| + r − r2

|r − r2|3
e−κ|r−r2|

)
e− (4.5)

Here we average the electric field over the probability density of the electrons since we
consider the dipole to behave classically. This leads to

md × d̈ = qd ×
[
Eext + 2

∫∫∫
dr1dr2|ψ(r1, r2, t)|2

−r1

|r1|3
e−κ|r1|e−

]
(4.6)

Here we have used the fact that electrons have antisymmetric wavefunctions to find
|ψ(r1, r2, t)|2 = |ψ(r2, r1, t)|2 to eliminate r−r2

|r−r2|3 from the integral. Together with the
restriction that d

dt
(d · d) = 0, so ḋ · d = 0, since the two particles in a dipole are assumed

to be at a fixed distance, we can find the equations of motion for the dipole. First, we
calculate J × d = m(d×ḋ) × d = mḋ(d · d) = Iḋ, where we have used the vector triple
products

a × (b × c) = (a · c)b − (a · b)c
(a × b) × c = (a · c)b − (b · c)a

(4.7)

For any three vectors a,b, c ∈ R3. This leads to the equations of motion

J̇ = qd × E
Iḋ = J × d

(4.8)

Taking the time derivative of the second equation and using the vector triple product
4.7, we find the non-coupled equation of motion

Id̈ = −q(E · d)d + qℓ2E −m(ḋ · ḋ)d (4.9)

Using I = mℓ2

2 , we rewrite above equation as

mℓ2

2 d̈ = −q(E · d)d + qℓ2E −m(ḋ · ḋ)d (4.10)

By using small angle approximations, we show that |d̈| ∝ sin(ωt). We first write
d = d0 + sin(θ)d⊥, where d0 ∥ Eext with |d0| = ℓ, and d⊥ ⊥ Eext, with |d⊥| = 1. Then
d̈ = [− sin(θ)θ̇2 + cos(θ)θ̈]d⊥. For the three terms on the right of equation 4.10 we get

[−qEℓ sin(θ) − 2mθ̇2 cos2(θ) sin(θ)]d⊥ (4.11)
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for the perpendicular part, and

[−qEℓ2 + qEℓ2 − 2mθ̇2 cos2(θ)]d∥ (4.12)

for the parallel part. Using the small angle approximations sin(θ) ≈ θ and cos(θ) ≈ 1, as
well as dropping all terms quadratic in θ and θ̇, we find

mℓ2

2 d̈⊥ = −qEℓθ

mℓ2

2 d̈∥ = 0
(4.13)

So we find θ̈ = −2 qE
ml
θ, which is a simple harmonic oscillator with ω =

√
2qE
mℓ

. This gives
us the solution

θ(t) = θ0 sin(ωt) (4.14)

Here θ0 is the initial angle between d and E, and ω is the characteristic frequency of the
dipole, given by

ω =
√

2qE
mℓ

(4.15)

Assuming the electrons move parallel to the x-axis, and the external electric field points
parallel to the y-axis, we find that r = xx̂ + hŷ and Eext = Eextŷ. We then find
r · d = xθ0 sin(ωt) + hℓ

4.1.2. Time-dependent Schrödinger equation
We are now ready to write down the Schrödinger equation for this system. We use the
potential for a dipole interacting with an electron given by equation 3.9 and the Yukawa
potential given by equation 3.1. Furthermore, we use ℏ

2m
∂2

∂x2
i

as the kinetic energy of
electron i. This leads to the following time-dependent Schrödinger equation

i
∂

∂t
ψ(r1, r2, t) =


−p · r1

|r1|3
e−κ|r1| + −p · r2

|r2|3
e−κ|r2|

+ 1
|r1 − r2|

e−κ|r1−r2| − ℏ2

2m∇2
1 − ℏ2

2m∇2
2

ψ(r1, r2, t) (4.16)

Here we leave out e+

4πϵ0
terms, to keep the notation compact. Equation 4.16 and 4.8 are

a set of coupled differential equations that describe this system. To find a solution to
these equations, we assume a strong external electric field, making the contributions of
the electrons negligible. This leads to small oscillations of the dipole with respect to the
applied electric field. This can be described by d = d0 + sin(ωt)d⊥ using equation 4.14.
To simplify the Hamiltonian in equation 4.16, we assume h ≫ xi for i = 1, 2. This allows
for the approximation |ri| =

√
x2

i + h2 ≈ h + x2

2h
, which allows us to write the dipole

electron interaction as

−q
(
xiθ0 sin(ωt)

h3 + ℓ

h2

)
e−κhe−κ

x2
i

2h2 (4.17)
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Furthermore, |r1 − r2| = |x1 − x2|. This allows us to write the Hamiltonian in equation
4.16 as

Ĥ(t) ≈ − q

(
x1θ0 sin(ωt)

h3 + ℓ

h2

)
e−κhe−κ

x2
1

2h − q

(
x2θ0 sin(ωt)

h3 + ℓ

h2

)
e−κhe−κ

x2
2

2h

+ 1
|x1 − x2|

e−κ|x1−x2| − ℏ2

2m∇2
1 − ℏ2

2m∇2
2

(4.18)

Using a Taylor approximation of the exponential function, we can reduce this to an
equation quadratic in x1, x2. We take a first-order approximation and assume xi ≪

√
h/κ

to find
e−κ

x2
i

2h ≈ 1 − κ
x2

i

2h (4.19)

By discarding terms higher than second order, we can write the Hamiltonian in equation
4.18 as

Ĥ(t) ≈ qe−κh

(
ℓκ(x2

1 + x2
2)

2h3 − 2ℓ
h2 − (x1 + x2)θ0 sin(ωt)

h3

)

+ 1
|x1 − x2|

e−κ|x1−x2| − ℏ2

2m(∇2
1 + ∇2

2)
(4.20)

Now, using relative coordinates r = x1 − x2 and R = x1+x2
2 , we can rewrite this

Hamiltonian using x2
1 + x2

2 = 2R2 + r2

2 . This gives us a Hamiltonian with separate centre
of mass and relative position terms

Ĥ(t) ≈ qe−κh

(
ℓκR2

h3 − 2Rθ0 sin(ωt)
h3

)
− ℏ2

4m
∂2

∂R2

+ qℓκr2

4h3 + 1
|r|
e−κ|r| − ℏ2

m

∂2

∂r2 − 2ℓ
h3 e

−κh

(4.21)

This gives us a separable equation! Here we have used

∇2
1 + ∇2

2 = 1
2∇2

R + 2∇2
r (4.22)

This we can see from the fact that

∂2

∂2x1
f(x1, x2) + ∂2

∂2x2
f(x1, x2)

= ∂

∂x1

(
∂R

∂x1

∂

∂R
f(R, r) + ∂r

∂x1

∂

∂r
f(R, r)

)
+ ∂

∂x2

(
∂R

∂x2

∂

∂R
f(R, r) + ∂r

∂x2

∂

∂r
f(R, r)

)

= 1
2
∂2

∂R2f(R, r) + 2 ∂
2

∂r2f(R, r)
(4.23)

We can neglect the constant term in the Hamiltonian, since this at most introduces
a phase shift. This can be seen as follows. Let Ĥ ′ = Ĥ + c. Here c ∈ C. Then the
Schrödinger equation becomes

iℏψ̇ = Ĥ ′ψ = (Ĥ + c)ψ = Ĥψ + cψ (4.24)
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Letting ϕ = ψe
ict
ℏ we see

iℏϕ̇ = iℏψ̇e
ict
ℏ + iℏψ

c

ℏ
e

ict
ℏ = Ĥψe

ict
ℏ + cψe

ict
ℏ = Ĥ ′ϕ (4.25)

So when the Hamiltonian is shifted by a constant, the solutions remain unchanged up to
an overall phase factor. This leaves us with the Schrödinger equation for this system:

i
∂

∂t
ψ =


qe−κh

(
ℓκR2

h3 − 2Rθ0 sin(ωt)
h3

)
− ℏ2

4m
∂2

∂R2

+ qℓκr2

4h3 + 1
|r|
e−κ|r| − ℏ2

m

∂2

∂r2 − 2ℓ
h3 e

−κh

ψ (4.26)

4.2. Floquet Theory
The dynamics of quantum mechanical systems with time-periodic Hamiltonians can be
analyzed using Floquet theory [19]. It will allow us to see how the electrons behave
under the influence of the oscillating dipole. Floquet theory deals with a given periodic
Hamiltonian Ĥ(t) = Ĥ(t+ T ) and the linear first-order differential equation ϕ̇ = Ĥϕ. It
states that for all fundamental matrix solutions Ψ(t), that is, a matrix whose columns
are linearly independent solutions of the differential equation, we have [20]

Ψ(t+ T ) = Ψ(t)Ψ−1(0)Ψ(T ) (4.27)

Here Ψ−1(0)Ψ(T ) is called the monodromy matrix, denoted as M(t0). This means that
the solution to the differential equation is periodic with period T up to a complex,
time-dependent phase factor. This is useful for solving the time-dependent Schrödinger
equation, since we can write the solution as a linear combination of Floquet modes. We
write Ψ(t, t0) for the principal matrix solution at t0. Floquet’s theorem states that

Ψ(t, t0) = Φ(t, t0)e(t−t0)Q(t0) (4.28)

Here Φ(t, t0) is periodic with period T , Φ(t0, t0) = I, and Q(t0) is a matrix such that
M(t0) = exp {TQ(t0)} and Q(t0 + T ) = Q(t0) [20]. This means that for any solution
Ψα(t)

Ψα(t+ T ) = Ψα(t)e−iϵαT (4.29)
Here Φα is a function periodic in time with period T called a Floquet mode, ϵα is a
real parameter called the quasi-energy, and α an index labelling the solutions. These
quasi-energy are analogous to the quasi-momenta k in Bloch theory.

4.2.1. Unitary Transformations
An important step in solving this quantum system is performing a unitary transformation
on the Hamiltonian. A unitary transformation is a transformation of the statevector ψ by
a so-called unitary operator U(t), given by ψ → Uψ. A unitary operator is an operator
which satisfies UU † = U †U = I. If we let ψ′ = Uψ, where iℏψ̇ = Hψ, then iℏψ̇′ = H ′ψ′,
where H ′ = UHU † + iℏU̇U † [21]. Below is a derivation of this property.
Starting with the Schrödinger equation

iℏψ̇ = H(t)ψ (4.30)
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We multiply by U on both sides, and insert UU † to find

iℏUψ̇ = UHU †Uψ (4.31)

Next, using the product rule on the time derivative of Uψ, we find

d

dt
(Uψ) = Uψ̇ + U̇ψ (4.32)

Combining the two equations above, we find

iℏ
d

dt
(Uψ) = UHU †Uψ + iℏU̇ψ (4.33)

This finally leads to
iℏ
d

dt
(Uψ) = (UHU † + iℏU̇U †)(Uψ) (4.34)

So the evolution of the new state ψ′ = Uψ is governed by the new Hamiltonian

H ′ = UHU † + iℏU̇U † (4.35)

These unitary transformations will be useful for solving our Schrödinger equation 4.36.

4.2.2. Solution to the Schrödinger equation
We solve equation 4.26 in two parts. Since its Hamiltonian H(R, r, t) = HR(R, t) +Hr(r),
we have a separable differential equation. Letting the solution ψ(R, r, t) = ξ(R, t)χ(r),
we first solve for ξ(R, t).

Time-dependent part
We solve for ξ using Floquet theory. We have the time-dependent Schrödinger equation,
shown in figure 4.1.

Figure 4.1: The potential for the centre of mass of two electrons interacting with a dipole. It can be
seen that the potential oscillates with a time corresponding to the characteristic frequency of the dipole.

iℏξ̇(R, t) =
[
qe−κh

(
ℓκR2

h3 − 2Rθ0 sin(ωt)
h3

)
− ℏ2

4m∇2
R

]
ξ(R, t) (4.36)
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This system is actually exactly solvable, as shown by Hänggi [22]. To solve it, we start
with the coordinate transformation

R → y = R − ζ(t) (4.37)

Here, ζ(t) is a function that will be determined later. First, we apply this transformation
to our equation by noting that

ξ̇(R, t) = ∂

∂t
ξ(y, t) + dy

dt
∂

∂y
ξ(y, t) = ξ̇(y, t) − ζ̇

∂

∂y
ξ(y, t) (4.38)

This allows to find the transformed equation

iℏξ̇(y, t) =
[
iℏζ̇

∂ξ

∂y
+ qe−κh

(
ℓκ(y + ζ)2

h3 − 2(y + ζ)θ0 sin(ωt)
h3

)
− ℏ2

4m
∂2

∂y2

]
ξ(y, t) (4.39)

We now apply the unitary transformation using equation 4.34

ϕ(y, t) = e−2imζ̇y/ℏξ(y, t) (4.40)

Approaching each term in the Hamiltonian separately, we find

iℏζ̇
∂ξ

∂y
→
(
iℏζ̇

∂

∂y
− 2mζ̇2

)
ϕ (4.41)

The next terms remains unchanged, since functions commute with other functions.

− ℏ2

4m
∂2ξ

∂y2 → − ℏ2

4m

(
∂2

∂y2 + 4imζ̇
ℏ

∂

∂y
− m2ζ̇2

ℏ2

)
ϕ (4.42)

This, when collecting terms, gives us

− ℏ2

4m
∂2

∂y2 −mζ̇2 (4.43)

Next, we look at the LHS of equation 4.39. The time-derivative becomes

d
dt(e

2imζ̇y/ℏϕ(y, t)) = e2imζ̇y/ℏ
[

2im
ℏ
ζ̈y + d

dt

]
ϕ(y, t) (4.44)

We are left with the transformed equation

iℏ
d
dtϕ(y, t) =


2mζ̈y − ℏ2

4m
∂2

∂y2 −mζ̇2 + e−κh 2ℓκ
h3 yζ + e−κh ℓκ

h3 y
2

+ qe−κh

(
ℓκ

h3 ζ
2 − 2θ0 sin(ωt)

h3 y − 2θ0 sin(ωt)
h3 ζ

)
ϕ(y, t) (4.45)

We let ζ obey the equation of motion

2mζ̈ + qe−κh 2ℓκ
h3 ζ = qe−κh 2θ0 sin(ωt)

h3 (4.46)
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This is the equation of motion for a classical harmonic oscillator. We fill this into the
Schrödinger equation, and are left with

iℏ
d
dtϕ(y, t) =

[
− ℏ2

4m
∂2

∂y2 −mζ̇2 + qe−κh

(
ℓκ

h3 y
2 + ℓκ

h3 ζ
2 − 2θ0 sin(ωt)

h3 ζ

)]
ϕ(y, t) (4.47)

Now we define the Lagrangian similar to the Lagrangian for a classical harmonic oscillator.

L(ζ, ζ̇, t) = −mζ̇2 + qe−κh

(
ℓκ

h3 ζ
2 − 2θ0 sin(ωt)

h3 ζ

)
(4.48)

Using the Lagrangian to simplify equation 4.47, our differential equation reduces to

iℏ
d
dtϕ(y, t) =

[
− ℏ2

4m
∂2

∂y2 + qe−κh ℓκ

h3 y
2 + L(ζ, ζ̇, t)

]
ϕ(y, t) (4.49)

Now we apply one more unitary transformation

χ(y, t) = ei
∫ t

0 L(ζ,ζ̇,t′)dt′
ϕ(y, t) (4.50)

Since this transformation is independent of y, we end up with the Schrödinger equation
for a quantum-mechanical harmonic oscillator!

iℏ
d
dtχ(y, t) =

[
− ℏ2

4m
∂2

∂y2 + qe−κh ℓκ

h3 y
2
]
χ(y, t) (4.51)

The solutions are well-known. They are the Hermite polynomials times an exponential
factor. The Hermite polynomials are an orthogonal set of functions on R [16]. They are
given by

Hn(x) = (−1)nex2 dn

dxn
e−x2 (4.52)

This makes our solution to the harmonic oscillator

ϕn(R − ζ(t)) = Hn

(
2
√
mωR

ℏ
[R − ζ(t)]

)
exp

{
−2mωR[R − ζ(t)]2/ℏ

}
(4.53)

The eigenvalues of the harmonic oscillator given by equation 4.51 are given by

En = ℏωR(n+ 1
2) (4.54)

Here

ωR = 2
√
qe−κh

κℓ

mh3 (4.55)

Is the characteristic frequency of the centre of mass of the electrons. Now we need to
solve for ζ(t). We had ζ satisfy equation 4.46. We find solutions of the form

ζφ(t) = θ0qe
−κh

mh3(ω2
R − ω2) sin(ωt+ φ) (4.56)
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This is a solution ∀φ ∈ R. Now all that rests is calculating the integral over the
Lagrangian.

∫ t

0
L(ζ, ζ̇, t′)dt′ =

∫ t

0

[
−m

4 ζ̇
2 + qe−κh

(
ℓκ

h3 ζ
2 − 2θ0 sin(ωt′)

h3 ζ

)]
dt′

=
∫ t

0

3θ2
0q

2e−2κh

mh6(ω2
R − ω2)2

(
3ω2 sin2(ωt′) − ω2 + ωR sin2(ωt)

)
dt′

= 3θ2
0q

2e−2κh

4mh6(ω2
R − ω2)

(
2t− 3ω2 + ωR sin(2ωt)

ω(ω2
R − ω2)

) (4.57)

Here T = 2π
ω

is the period of the oscillation of the dipole. We can now read off our quasi-
energies to be ϵα = ℏωR(α+ 1

2) − 3θ2
0q2e−2κh

4mh6(ω2
R−ω2) . Reversing all the unitary transformations,

we finally get the wavefunction that solves our Schrödinger equation.

ξ(R, t)n = Hn(R − ζ(t)) exp
{
i

ℏ

[
mζ̇(t)(R − ζ(t)) +

(∫ t

0
Ldt′ − t

T

∫ T

0
Ldt′

)]}
(4.58)

The magnitude squared of the wavefunction can be seen in figure 4.2. It is important
to note that, while ωR is an important frequency in determining the amplitude of the
oscillation of the electrons, the electrons still oscillate with the characteristic frequency
of the dipole ω.

(a) Close-up view of the wavefunction on a timescale
smaller than a single dipole oscillation

(b) View of the wavefunction on a timescale on the
order of several dipole oscillations

Figure 4.2: Wavefunction of the centre of mass of two electrons interacting with a dipole. The
wavefunction oscillates with the dipole, and the amplitude of the oscillations increases with time.
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Relative electron motion
The spatial part χ(r) can be treated as a perturbed harmonic oscillator. For χ(r) we
have the differential equation(

ℓκr2

4h3 + 1
|r|
e−κ|r| − ℏ2

m

∂2

∂r2χ(r)
)

= Eχ(r) (4.59)

The potential term in this equation is shown in figure 4.3

Figure 4.3: The potential for a particle in a harmonic oscillator potential with a Coulombic repulsion.
This is equivalent to the 1-dimensional Hydrogen atom in a harmonic oscillator. It can be seen the

repulsion dominates for small r, and the harmonic oscillator potential dominates for large r.

For small r, the 1
|r| term dominates. For large r, the ℓκr2

4h3 term dominates. To find a
solution to this equation, we consider the limits r → 0 and r → ∞. For r → 0, we find
the equation (

1
|r|

− ℏ2

m

∂2

∂r2

)
χ(r) = Eχ(r) (4.60)

This is equivalent to the model of the 1-Dimensional Hydrogen atom, and can be solved

(a) For large r, the harmonic oscillator term
dominates, leading to the wavefunction displayed here (b) r small

Figure 4.4: For small r, the Coulombic repulsion dominates, leading to the wavefunction displayed
here, where it is impossible for the electrons to have the same position.
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exactly, as shown by Loudon [23]. This leads to wavefunctions of the form

exp
(

−|r|
na0

)
L1

n

(
2|r|
na0

)
|r| (4.61)

Here L1
n are the generalized Laguerre polynomials. For an explanation of these polyno-

mials, see appendix A For r → ∞, we find the equation(
ℓκr2

4h3 − ℏ2

m

∂2

∂r2

)
χ(r) = Eχ(r) (4.62)

Which is a simple harmonic oscillator again. The solutions to this are the Hermite
polynomials times an exponential decay factor. This gives

χ(r) = Hn

(
r

√
mωr

ℏ

)
e−mωrr2/2ℏ (4.63)

This wavefunction is displayed in figure 4.4.Here the characteristic frequency ωr is given
by the following expression:

ωr =
√

ℓκ

mh3 (4.64)

This completes the picture of the relative position of the electrons. The most important
takeaway is the in this situation, the electrons still can’t be at the same place, and their
relative position is time-independent.

Full solution
We end up with a full wavefunction ψ(R, r, t) = ξ(R, t)χ(r). Here ξ(R, t) is a Floquet
mode, and χ(r) is a perturbed harmonic oscillator. We see that under our assumptions,
the centre of mass of the electrons change through time, while the relative position of
the electrons is static.

In our solution, we have two important characteristic frequencies. ω, the characteristic
frequency of the dipole, represents how quickly the dipole oscillates back and forth due
to the external electric field. It depends on the strength of the external electric field as
well as the dipole’s properties. ωR is the natural frequency of the centre of mass of the
electrons. This represents at what frequencies we would expect effects characteristic of
resonance to occur, and depends on properties of the solid the electrons are in, such as
the screening constant κ and the lateral distance to the dipole h, as well as the dipole’s
properties. From equation 4.57, it can be seen that the closer these frequencies, the
stronger they resonate and the stronger the effect of the dipole is on the electrons. To get
an idea of the timescales of these frequencies, and to see whether they can be brought
close to each other, we fill in some common values for the parameters. We take h = 10a0,
Eext = 10−9Eh/e

+a0, κ = 1a−1
0 , ℓ = 0.5a0, and m = me. We find

ωR ≈ 3.013 · 10−4Ehℏ−1 = 12.46THz
ω ≈ 6.325 · 10−5Ehℏ−1 = 2.615THz

(4.65)

The large difference in these values shows we don’t expect resonance between to occur
under these conditions. However, upon inspection of equations 4.15 and 4.55, it is
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apparent that the dipole’s frequency has a dependence on the strength of the external
electric field that does not appear in that of the electrons. This would mean that by
using an electric field strength of approximately 2.271̇0−8Eh/e

+a0, resonance would occur.
In general, resonance should occur when

ωR = ω =⇒ Eext = 2e−κhκℓ
2

h3 (4.66)

This should be experimentally verifiable, as it has a significant effect on the behaviour of
the electrons.

4.3. Discussion
We have found a solution to the Schrödinger equation for a system of two electrons
interacting near a dipole. We have made the assumptions that the electrons are far from
the dipole relative to their distance from each other. Furthermore, we have assumed that
the influence of the electron’s electric field on the dipole is negligible, except for causing
a tiny perturbation resulting in the dipole oscillating. Under these assumptions, we can
see that the electrons don’t move relative to each other, and their centre of mass follows
a Floquet state, oscillating around the dipole. This is interesting behaviour, but further
research is needed to determine whether this could lead to superconductivity.

Experimental research into the response to an electric field applied to this structure could
be used to verify this theory and show whether the assumptions made are valid. Further
theoretical research could be done to determine the behaviour of the electrons under
different conditions. Dropping the restriction of movement along one axis could lead to
interesting results. To more accurately describe the environment the electrons would be
in in practice, a model of a periodic lattice of dipoles could be used.

Another important note to make is that despite the assumption that h ≫ xi, the resulting
wavefunctions has the electrons most commonly at places with xi ≫ h. This might point
to a flaw in the model, and should be explored further. This could be done by dropping
this assumption. By experimentally testing what happens at electric field strengths
matching resonance, it should be possible to check the validity of this model.



5
Conclusion

This thesis set out to explore whether ferroelectric heterostructures can mediate an
electron-electron interaction strong enough to induce superconductivity. A theoretical
model was constructed to describe such a heterostructure, focusing on the interactions
between two electrons and a dipole. Two different approaches were analyzed: a static
model in which the dipole responds instantaneously to the local electric field, and a
dynamic model where the dipole exhibits inertia and oscillates in response to an external
driving field.

In the static case, it was found that the dipole-mediated interaction can, under specific
conditions, generate an attractive force between electrons. However, achieving bound
states required the electrons to be sufficiently close to the dipole, necessitating small
lattice constants that are typically only attainable under extreme pressures. These results
suggest that dipole interactions alone may be insufficient to induce superconductivity
under standard conditions but could play a role in exotic condensed matter systems.

The dynamic model introduced a time-dependent Schrödinger equation, which was
solved using Floquet theory. The analysis demonstrated that electron motion in such a
system follows a Floquet state, where the center of mass oscillates due to the dipole’s
periodic motion. Importantly, it was shown that resonance effects can amplify these
oscillations when the dipole’s natural frequency matches that of the electron system.
This suggests a possible mechanism by which dipole interactions could influence electron
pairing dynamics, though further work is needed to establish whether this effect could
lead to superconducting behavior.

The findings of this thesis open several avenues for future research. Experimentally,
direct observation of the predicted dipole-mediated interactions and their dependence
on lattice constants would be crucial to validating the model. Additionally, extending
the theoretical framework to include more complex many-body interactions and realistic
material parameters could provide a clearer picture of whether these interactions can
contribute to unconventional superconductivity. Another promising direction is the
exploration of heterostructures where the dipole itself is quantum mechanical rather than
classical, potentially leading to enhanced coupling effects.
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While the results do not provide definitive evidence for superconductivity in these
systems, they contribute to the broader understanding of how ferroelectric and su-
perconducting properties can interplay. As material synthesis techniques continue to
advance, heterostructures with tunable dipole-electron interactions could become an
important platform for engineering novel quantum phases, including possible new routes
to superconductivity.



A
Appendix: Orthogonal polynomials

In this appendix, a summary of orthogonal sets of polynomials is given. Orthogonal
polynomials are a special class of polynomials that form a basis for function spaces and
have the property of being mutually perpendicular under a given inner product. This
property makes them useful in many areas of mathematical physics, numerical analysis,
and engineering. They occur in many quantum mechanical problems as solutions for
wave equations.

A.1. Definition and Key Properties
A set of polynomials {Pn(x)} is said to be orthogonal with respect to a weight function
w(x) over an interval [a, b] if they satisfy the condition∫ b

a
Pn(x)Pm(x)w(x)dx = δnm (A.1)

Here δnm is the Kronecker delta function. These polynomials often appear as solutions to
simple quantum mechanical systems, and are useful in solving more complicated systems.

A.2. Examples
The best-known sets of orthogonal polynomials are the Legendre, Hermite, Laguerre,
and Chebyshev polynomials. In this thesis, the Laguerre and Hermite polynomials are of
particular importance.

A.2.1. Hermite polynomials
The Hermite polynomials, denoted Hn(x) are an important as of orthogonal polynomials,
as they appear in the solution of one of the most fundamental quantum mechanical
systems, the quantum harmonic oscillator [16]. They are orthogonal with respect to
the weight function w(x) = e−x2 over the interval (−∞,∞). The first few Hermite
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polynomials are.

H0(x) = 1 (A.2)
H1(x) = 2x (A.3)
H2(x) = 4x2 − 2 (A.4)
H3(x) = 8x3 − 12x (A.5)

They are used to define Hermite functions, which are the solutions to the quantum
harmonic oscillator. These are given by

ϕn(x) = (2nn!
√
π)−1/2e−x2/2Hn(x) (A.6)

These also appear in the solution for the electron-dipole system discussed in this thesis,
as Floquet theory was used to reduce that system to a quantum harmonic oscillator.

A.2.2. Laguerre polynomials
The Laguerre polynomials, denoted Ln(x) are another important set of orthogonal
polynomials. They are orthogonal with respect to the weight function w(x) = e−x over
the interval [0,∞). They are defined recursively from L0(x) = 1 and L1(x) = 1 − x. The
Laguerre polynomials can be generalized by defining Lα

1 (x) = 1 + α− x . The first few
generalized Laguerre polynomials are

Lα
0 (x) = 1 (A.7)

Lα
1 (x) = 1 + α− x (A.8)

Lα
2 (x) = 1

2(x2 − 2(α + 2)x+ (α + 1)(α + 2)) (A.9)

(A.10)

The generalized Laguerre polynomials appear as a solution to the one-dimensional
Hydrogen atom [23], with α = 1. This solution appears in this thesis for the behaviour
of the relative motion of the electron in chapter 4.
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