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PREFACE 
This master thesis research is the final part of my study Civil Engineering at the Delft University 

of Technology at the Faculty of Civil Engineering and Geosciences, where I followed both my 

Bachelor Civil Engineering and my Master Building Engineering-Structural Design Track. 

This research came about as a result of my interest in buildings and especially tall buildings, 

which I have had since I was a child. Never did I doubt about the path in education that I would 

take to eventually combine my interest and passion with the knowledge I had gained to do re-

search on this intriguing branch of the building industry. To this day, I do not understand why I 

combined high-rise building with a form of hydraulic engineering with many dynamic aspects, 

since this was much less of my interest. It is a result of the interest in parametric design and in-

novative projects in the world of sustainability that led me to investigate floating structures. By 

combining this with high-rise building, a research has been carried out which for many seems a 

utopia. But for me it seemed the opportunity to use my specific knowledge and learn many new 

skills about the aspects of Civil Engineering that are less known to me in order to make this uto-

pia a little more realistic. 

Using the knowledge I have gained would not have been possible without all the teachers who 

have helped me in the various subjects throughout my years of study to acquire this knowledge. 

Thanks to all of you.  Special thanks go to my committee members; Ir. H (Hussein) Alkisaei, Ir. 

P.H. (Pieter) Ham, Ir. P.A. (Paul) Korswagen Eguren and Dr.ir. H.R. (Roel) Schipper for all advice, 

feedback, suggestions and help but especially for your patience when I once again came up with 

a totally new subject for this research, and for kindly forcing me to choose this specific subject 

because it showed my passion best. Without you, I would still be wandering around looking for a 

new topic. And with all due respect, I hope I never have to see your living rooms or home offices 

in the background again as we can meet normally at the faculty. 

Apart from my committee members and teachers, I would like to thank my friends, fellow stu-

dents and housemates for all the support in these tough pandemic times to do a graduation pro-

ject. Thank you for listening to all my complaints about failed calculations and for listening care-

fully to the results I found, which sometimes went beyond your comprehension. And of course, 

thanks to my family who have always supported me throughout not only my studies but my 

whole life. Without you, I would never have got here. Thank you and I love you.  



SUMMARY 
Due to global warming and the subsequent rise of the sea level, scarcity of land to build on, the 

continues increase of the world’s population and a shift in population from rural areas to the 

city, there is a need for innovative projects to tackle or deal with the increase of needed liveable 

area. One of the solutions is life on the water. Something that has been done on a (very) small 

scale for hundreds of years, but which has been given a boost to be applied on a large scale by 

the problems faced today. So that not only houses, but entire cities will be built on floating plat-

forms on the seas or oceans. One component of a modern city is high-rise buildings. High-rise is 

an advantageous option to deal with the limited availability of ground surface on the floating 

platforms. The question is whether it is possible to realise these floating high-rise structures. 

This research investigates whether it is possible to realise high-rise buildings on floating plat-

forms with limited dimensions on the sea or ocean regarding stability. And if it is feasible, what 

the requirements are for the general dimensions of both the platform and the high-rise building. 

For this purpose, conditions were used from the following three representative locations: 

 North Sea 

 North of the Atlantic Ocean 

 Atlantic Ocean around the equator 

At these three locations, the floating high-rise is tested for four different wave situations: 

 Tsunami. 

 Growing waves. For example a developing storm. 

 Most extreme wave. A regular wave with the highest possible wave height. 

 Irregular wave field. A combination of waves with different frequencies and heights. 

The platform and building are tested whether the structure could meet the various requirements 

and regulations. These are divided into three forms of stability: 

 Buoyancy 

 Static stability 

 Dynamic stability 

The most important of the requirements are that: 

 The platform does not submerge 

 The entire structure is stable 

 The accelerations in the entire building are below the determined limits.  

In this study, for both the platform and the building a square cross-section is used and both are 

prismatic in the direction of the height. The platform and building can be seen in Figure 1. The 

platform and the core of the building are made of concrete. Apart from the four parameters: 

height of the building and width, height and depth of the platform all other parameters are based 

on these four parameters. No stability systems in the building were used (except the core), nor 

methods to keep the platform in place, such as mooring systems. 



 

Figure 1 - Render of the platform and building. 

For the buoyancy, mainly the relation between the mass and the depth of the platform is deter-

mined. This is a relationship that has been used extensively in static and dynamic stability. The 

mass of the building and platform pose few problems for staying afloat. In fact, extra ballast wa-

ter can easily be used to make the platform heavier in order to achieve the desired mass or 

depth. 

For the static stability a combination of hand calculations based on the GM-method and a model 

that can include deformations in the calculations as well is used. A linear relationship was found 

between the height of the building and the width of the platform for which the floating high-rise 

is stable. The floating high-rise is stable if the following inequality formula is fulfilled: 

 𝐻𝑒𝑖𝑔ℎ𝑡 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 ≤  2.3936 ∗ 𝑊𝑖𝑑𝑡ℎ 𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 − 44.817 (0.1) 
 
The model is used to determine the minimum platform depth and height, as well as the rotation 

for different building heights and platform widths. It follows that there are platform widths for 

which the vertical force is minimal. This is when the width of the platform is equal to the wave-

length of the wave or a multiple of it. In addition, there are platform widths for which the mo-

ment due to the wave force on the platform is minimal. These values are called "zero moment 

widths" because for these widths the wave moment, regard-

less of position or time, is approximately equal to 0 kNm. 

Therefore the rotation is minimal when these zero moment 

widths are used for the platform width. These widths are only 

optimal for the specific wavelength for which they are calcu-

lated. If the wavelength is different, the zero moment widths 

will be different. 

For the dynamic stability, a model consisting of three point 

masses distributed over the height connected with a beam 

was used. Figure 2 shows the schematization. The platform is 

included in the lower mass. The three point masses each have 

three degrees of freedom: vertical and horizontal translation 

and rotation.  With this model the accelerations of the three 

possible motions for different heights of the building, plat-

form widths and platform masses (this can be adjusted by 

Figure 2 - Multiple mass model of the 
dynamic stability. 



including ballast water) are calculated. It follows that: 

 The tsunami and the growing wave are not a problem and the most extreme wave or the 

irregular wave field is normative.  

 The vertical acceleration is minimal when the width of the platform is equal to the wave-

length or a multiple of it.  

 The vertical acceleration is only normative for small building heights and platform 

widths, whereas it is the biggest cause of seasickness.  

 The horizontal acceleration at the top of the building due to both the horizontal motion 

and the rotation is almost always normative. It is largely caused by the rotation of the 

platform.  

 If the zero moment widths are used for the width of the platform, the rotation and thus 

the horizontal acceleration is minimal. This does not mean that the accelerations are be-

low the limit. 

In order to avoid resonance in the motion, and thus extreme accelerations, of the floating high-

rise with an irregular wave field, graphs are made were the combination of the height of the 

building and the width of the platform that result in resonance are shaded. An example is shown 

in Figure 3. In addition to the frequency limits, the depth limit is shown as well. This is the limit 

for which the depth of 20 m is still possible. Finally, the previously obtained stability limit is 

shown. These graphs do not say anything about the accelerations and even if a combination of 

parameters is chosen outside the shaded area, the acceleration may be too high. 

 

Figure 3 – A graph of different limitations. The shaded areas are not usable. This graph is an example. It is 
applicable for the North Sea location, for a platform with a depth of 20m. Note: The shaded areas can overlap, 

this is not visible. 

Using the results of the static and dynamic analysis and a few case studies, it can be concluded 

that with the design choices and simplifications used, it is not possible to realise floating high-

rise buildings on platforms with limited dimension at the North Sea and the North of the Atlantic 

ocean due to too extreme condition causing too high accelerations, especially in the horizontal 



motion. The static stability and the buoyancy are less of a problem. If one of these locations is 

chosen, platforms over 600 m wide are required that are so stable that the rotation of the plat-

form is minimal and no resonance occurs in the rotation motion. In this case, the conditions are 

similar to those on land and the wind force becomes the governing factor. In those cases, the 

same approach and measures should be used as for high-rise buildings on land. Even with these 

sizes, it is advised to use the zero moment widths to limit the rotation as much as possible.  

The location on the Atlantic Ocean around the equator is the only location that is promising. The 

results show that several building heights are possible on different platform dimensions for the 

highest wave, as long as the platforms have the zero moment widths dimensions. However, it 

appears that the accelerations become too high when these sizes for the building and platform 

are tested with different wave frequencies with lower wave heights. Therefore, this option might 

not be suitable either, but it is not excluded in this research. One option is found that meets the 

regulations for all possible wave frequencies is a 50 m building on a platform 223 m wide (a zero 

moment width) and 22.7 m deep for the location around the equator. This proves that it is pos-

sible to construct high-rise buildings on platforms of limited size with the design choices used, 

but that it is very difficult and the options are limited. 

Despite the conclusion that it is almost impossible with the design choices, floating high-rise 

buildings on limited platforms are still expected to be possible as the design can be improved. 

The first next steps to investigate are other, better shapes for the platform and building to in-

crease stability and reduce overall forces. In addition, it is recommended that other methods of 

increasing stability and reducing motion, such as building stabilisation systems and tuned mass 

dampers, are investigated. With these improvements floating high-rise is more feasible than 

found in this research. 
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𝑘 Spring stiffness 
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𝐵 Centre of buoyancy 
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𝐸 Young’s modules (E-modules) 
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𝐹 Force 
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𝐻5% Wave height with 5% probability of 

exceedance 

𝐻𝑠 Significant wave height 

𝐻𝑤𝑎𝑣𝑒/𝐻𝑤 Wave height 

𝐼 Second moment of area  

𝐽 Mass moment of inertia 

𝐾 Keel position 

𝐿 Length between two point masses 

𝐿𝑤𝑎𝑣𝑒 Wave length 

𝑀 Meta centre 

𝑀 Moment 

𝑇𝑤 Either wave or wind period 

𝑇𝑤𝑎𝑣𝑒 Wave period  

𝑇𝑤𝑖𝑛𝑑 Wind period 

𝑉𝑠𝑢𝑏 Submerged volume 

𝑆 Energy density 

𝑊 Weight 

𝜁 Damping ratio 

𝜂 Vertical displacement of the water 



𝜃 Rotation 

𝜌
𝑤𝑎𝑡𝑒𝑟

 Density of water 

𝜑 Phase shift 

𝜙 Rotation 

𝜔 Frequency 

𝜔0 Eigenfrequency 

𝜔𝑒 Natural frequency 

𝜔𝑝 Peak frequency 

𝜔𝑤 Either wind or wave frequency 

𝜔𝑤𝑎𝑣𝑒 Wave frequency 
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1. INTRODUCTION 

1.1 BACKGROUND INFORMATION 

The building and construction industry is always changing. New challenges arise and new tech-

niques and designs are created to overcome them. A subject which could be a solution for many 

challenges is building on water, and although this has been done for decades, there is a renewed 

and increased interest. This is due to the current challenges such as global warming and the sub-

sequent rise of the sea level. A report by the IPCC predicts a rise of between 0.29m and 1.1m in 

the global mean sea level. Depending on the location, this rise could be up to 30% higher locally 

(Oppenheimer et al, 2019). Since most cities are located near the sea, this is a potentially disas-

trous increase. As this will result in much higher risk of flooding of land areas. 

A second challenge is scarcity of land to build on. The world's population continues to grow and 

more and more land is needed to live on, grow food on and extract raw materials of. Especially 

for the urban (build) environment, space is limited. In addition, there is a shift in population 

from rural areas to the city in many countries. This increases the pressure on cities that already 

have many inhabitants (Flikkema et al, 2021). Various functionalities, including infrastructure, 

compete for the limited space available (Jonkers, 2019). According to IPCC reports 70% of the 

global, ice-free land surface is already being used by mankind and this will only increase. 1% of 

this is used for infrastructure (Shukla et al, 2019). This value is even higher in densely populated 

countries such as the Netherlands where 69% of the land surface is used for agriculture and 

17% for infrastructure (Centraal Bureau voor de Statistiek, 2020). The decrease in natural areas 

has the effect of increasing global warming (natural areas convert greenhouse gases, act as a 

sink for greenhouse gases and increase the reflection and absorption of heat) and decreasing 

biodiversity. This decline in diversity results in declines in ecosystem functioning and ecosystem 

stability (Naeem, et al, 2009). The increase in human population and the struggle for land use 

results, among other things, in the challenge of housing shortages. Finally, there is a rise in off-

shore activities that is leading to an increase in life on the water (Flikkema et al, 2021). 

Another less pressing challenge has more to do with an urge for humanity to search for the limit. 

In construction, one of those limits is the possible height of a building. And thus the question is 

raised “How high can we go?” Answering this question is fuelled by the prestige gained when the 

height record is broken. Therefore, new research is done and new ingenious designs are being 

created to tackle the problems that accompany higher building heights. The highest building at 

the moment is the Burj Khalifa extending 828 m above the ground, increasing the record for 

highest tower with 62 % but even higher buildings are being planned.  

A possible solution to all of the before mentioned challenges is building on water. This is already 

being done in several countries and comes in many forms. One of these forms is the building of 

floating structures. These floating structures are not founded on piles, but are held up by the 

buoyant force. Often this involves a house that is moored at the quay of a river, but there are 

floating villages as well. For example the modern and sustainable floating district of Schoonschip 

in Amsterdam, but also older villages in poorer counties such as the floating villages in Tonle Sap 

Lake, Cambodia. If more and more people will live on the water, this will even lead to floating 

cities.  



Floating cities provide the possibility of new land to build on an thus offer the opportunity for 

housing, food production, producing energy and creating living environments (Rui, Boogaard & 

Sazonov, 2020) and have a lower total environmental and local impact as floating cities can be 

moved easily. (Flikkema et al, 2021). If the floating buildings are designed to withstand the con-

ditions on the water, the rise of the sea level will no longer be a problem for the city. The floating 

city will simply float higher. In addition, a floating city creates better possibilities for offshore 

workers, housing, tourism and the sea is a more effective location for generating wind energy 

(Flikkema et al, 2021). 

To make the floating villages and cities, buildings are placed on (multiple) floating platforms. 

This does give a different and perhaps more difficult set of boundary condition and challenges 

for the design of a building than on land. This means that other decisions will be made and dif-

ferent solutions need to be found in the design process. With the advent of cities come high-rise 

buildings. As on land, high-rise buildings on floating platforms have the advantage that they use 

little surface area and they house many people and provide many services. This can be advanta-

geous as the platform area can be smaller or it can be used for other functions such as agricul-

ture or leisure. As mentioned, the floating aspect poses potential problems, and the same applies 

to floating high-rise buildings. Therefore, high-rise buildings should be rethought and the influ-

ence of floating on high-rise buildings should be investigated. This changes the previously asked 

question about high-rise to "how high can we float?" 

When thinking in extremes the question can perhaps simply be answered. When the floating 

platform is extremely wide and deep it will result in the same conditions as on land and there-

fore the buildings can become just as high as on land. According to Flikkema et al. (2021) “The 

challenge for floating islands is in achieving a technical solution that resembles onshore conditions 

as much as possible.” There are several different ideas for floating cities, but they can be sorted 

into two groups: Cities on one big platform and cities on multiple smaller platforms. There are 

already some projects in the second group that have been investigated, designed and planned. 

This option seems the more likely option for the near future and the more problematic for the 

realisation of high-rise buildings. Therefore, the design aspects of high-rise buildings when 

placed on a platform of limited size should be studied. 

1.2 RESEARCH DESCRIPTION 

The research description consists of the research aim, which explains the direction of this re-

search. This is followed by the research questions. From these research questions, the research 

objectives are determined. For these objectives, sub-questions are formulated. The research de-

scription ends with the description of the research approach and the methodology. 

1.2.1 RESEARCH AIM 
This study attempts to form an understanding of the influences of floating on high-rise buildings 

placed on a floating platform of limited size. Platform of limited size are platforms with dimen-

sions for which floating has an impact on the requirements of the building. This will ultimately 

help to determine what is required in the design of the building and the platform to achieve a 

certain building height and to estimate the limits of this height. In this research, the stability of 

the building, and thus the entire floating high-rise, is examined as the stability is often normative 

in both high-rise structures and floating buildings. The stiffness is partly investigated, especially 

its influence on the stability. No research is being done into the strength of the building. 



In order to determine the influences of floating on stability the conditions at different locations 

where a floating city can be built, will be investigated. This will result in the forces acting on a 

floating platform and on the high-rise building. Calm and extreme locations will be used to de-

termine whether the floating high-rise can be realised in different conditions and to investigate 

the difference in requirements. Regulations and other limitations will be used to determine the 

possibility of floating high-rise and the maximum possible height of the building at these loca-

tions. 

To investigate the stability, three aspects will be examined. These are the buoyancy, the static 

stability and the dynamic stability. For all three, the influences are examined, the limitations are 

determined and the limits calculated, in order to compare and conclude what is normative. 

All this should lead to a determination of the requirements for the building and for the platform 

for certain building heights for different locations. This will determine whether the floating high-

rise is feasible from a standpoint of stability and what the possible heights of the building on a 

platform with a limited size are. 

1.2.2 RESEARCH QUESTION 
The following two research questions follow from this research aim: 

Research question 1: 

 Is it structurally feasible to construct high-rise buildings on floating platforms which are 

limited in size regarding stability? 

Research question 2: 

What are the requirements for both the platform and the building regarding the stability of 

a floating high-rise building for different building heights? 

1.2.3 RESEARCH OBJECTIVES AND SUB-QUESTIONS 
The two main research questions can be divided into five objectives. Each objective has its own 

set of sub-questions. These questions help to answer the main research questions. The research 

consists of the following five objects: 

1. Examining the various topics that form a basis for this research. These are the following 

topics: Floating buildings, floating cities, high-rise buildings, locations and conditions 

and regulations and limitations. These topics all have their own sub-question: 

 What are floating buildings? 

 What has been researched so far about floating cities? 

 What are high-rise buildings? 

 On which locations can floating high-rise be realised and what are the conditions on 

these locations? 

 What are the different extreme conditions to be investigated? 

 What are the different regulations and limitations for floating high-rise buildings? 

 What are the assumptions that have to be made for this research? 

 

2. Investigating the buoyancy of a floating high-rise building. 

 What is static buoyancy? 



 How is the buoyancy determined? 

 What parameters influence the buoyancy? 

 

3. Investigating the static stability of a floating high-rise building. 

 What is static stability? 

 How is static stability determined? 

 What are the influence parameters and what influence do they have? 

 What are the requirements for the platform and for the building for different build-

ing heights in terms of static stability at different locations? 

 

4. Investigating the dynamic stability of a floating high-rise building. 

 What is dynamic stability? 

 How is the dynamic stability determined? 

 What are the influence parameters and what influence do they have? 

 What are the requirements for the platform and for the building for different build-

ing heights when it comes to the dynamic stability at different locations? 

 

5. Testing, assessing and drawing conclusions about the results found with a case study.  

 How should the results found be used in a case study? 

 Are the results from the case study according to expectations when compared to the 

results and conclusions of the research? 

 What can be concluded about the research questions with the results of the case 

study? 

1.2.4 RESEARCH APPROACH AND METHODOLOGY 
The three phases of the research can be identified from the objectives: The context phase, in 

which research is carried out into floating construction. The exploration phase, in which re-

search is carried out into buoyancy, static stability and dynamic stability, and the testing phase, 

in which a case study is used to test and asses the found results and to draw conclusions about 

the research questions. 

Phase 1: The context phase. 

In the context phase, the floating of buildings and cities is investigated. This is done with a study 

of literature on floating and on high-rise buildings, researches done on floating buildings and 

cities and a study of different possible locations by determining the condition and thus the avail-

ability for the floating buildings and cities. The characteristics of waves and wind are investigat-

ed and the most extreme cases are determined to be used in the calculations in the next phase. In 

addition, using regulations and research, limits are set for buoyancy, static stability and dynamic 

stability. This will all be in chapter 2. Subsequently in chapter 3, the assumptions for this re-

search will be made and described together with the case parameters. This is a standard set of 

values for the different parameters that will be used in the next phase. 

Phase 2: The exploration phase. 

In this phase, both static and dynamic stability are investigated. To examine these two, it is nec-

essary to look at buoyancy as well. The study of buoyancy will then serve primarily as a form of 

input for static and dynamic stability at will be done in chapter 4. In this chapter no results will 



be shown or conclusion drawn, these will be incorporated in the results of the static stability as 

buoyancy is a form of static stability. Chapter 5 will consist of the static stability and chapter 6 of 

the dynamic stability. Because these stabilities differ substantially from each other, they have 

their own methodology. This is described below for both. 

Static stability 

For the static stability, it is determined, with the aid of literature, how stability can be deter-

mined. This involves researching and determining which calculations should be used. With the 

help of these calculations, it can be determined which parameters play a role and how they are 

related. Subsequently, the formulas that are necessary to calculate the parameters or to deter-

mine the relationship between the parameters are determined. 

Then the calculations can be done. For the static stability this is done with the help of Grasshop-

per/Rhino including the plugin Karamba. This programme is used because it works parametri-

cally. This means that the parameters can be used as input, the calculation can be done with the 

corresponding result and then the parameters can be changed. This has the advantage that the 

behaviour under different values of the important parameters; height of the building and width 

of the platform can be examined and optimised. 

Dynamic stability 

For the dynamics, first the different motions that the building can undergo are investigated and 

it is determined which are the most important to investigate. Then the calculations are done for 

these different motions to determine the behaviour of the motions and the accelerations. This is 

done by using different models/schematizations that build up in complexity. At first, one point 

mass with one degree of freedom is used, in this research it is called the single-mass model. This 

is to investigate how the individual motions work and which parameters play a role in this mo-

tion. To investigate the influence of these parameters, the calculations are carried out with a 

fixed set of "standard" parameters, except for one parameter, which will be variable. With these 

calculations, graphs are made from which the influence of the parameters can be described. In 

addition, the relations between the parameters will be used in order to leave only the height of 

the building and the width of the platform as changeable parameters, which are the two most 

important parameters. The relations will follow from the literature or assumptions that are 

made. This will allow a better investigation of the actual values of the parameters and the corre-

sponding motions and accelerations. 

After looking at the motions separately, the whole is schematized as one point mass with several 

degrees of freedom (and thus several motions). This gives the same results as when the motions 

are considered one by one, but it is a necessary step to extend the model to a multiple mass 

model with multiple degrees of freedom, in this research called the multi-mass model.  It is de-

termined how many point masses are needed and with this number of masses the investigation 

into the influence of parameters is repeated. Subsequently, the results of the single-mass model 

and the multi-mass model are compared. 

For the dynamic stability, manual calculations are used instead of modelling software. The rea-

son for this is that Grasshopper/Karamba does not have a dynamics component, which means 

that this software cannot be used. Also no other modelling software has been used because these 

lack the parametric aspect. If the parameters would change, the whole model would have to be 



modified. This is too much work to be advantageous. The calculations are done in the Maple 

software. This is a programming language that can be used to work symbolically, in addition to 

numerically. This helps in understanding the consequences of changing parameters. The pro-

gramme is useful for solving differential equations. Something that often has to be done in a dy-

namic analysis. However, the software DIANA is used as well. This is a Finite Element Analysis 

solver that, besides actual constructions, has a more conceptual aspect in the form of point 

masses as well. This software is used to validate the calculations and to investigate the number 

of masses that should be used. 

Phase 3: The test phase 

In the test phase, the results, advice and conclusions from the exploration phase are used to il-

lustrate what they mean in the situation of designing a floating high-rise structure. For this pur-

pose, in addition to the results of the exploration phase, the calculations described in this phase 

for the chosen/determined parameters in the case study are done as well. These are not only 

meant to illustrate how the results can be used but also to check how reliable they are. In addi-

tion, the case study is used to draw conclusions about the different possibilities of the floating 

high-rise.   



2. LITERATURE REVIEW 
In this literature review, the first three paragraphs discuss floating homes, floating cities and 

high-rise buildings. The fourth paragraph is about information needed for this research. This 

consists of the locations, properties of the waves and wind and the different possible forms of 

waves that the floating high-rise must be tested for. Finally, paragraph 5 discusses the regula-

tions and limits that the floating high-rise must comply with. 

2.1 FLOATING BUILDINGS 

The first villages and towns in history were built near rivers, lakes and seas. The water brings 

numerous advantages necessary for survival. It provides drinking water and food in the form of 

fish and other animals attracted by it. It also creates fertile land. It offers possibilities for trans-

portation and trade, natural protection, it moderates the climate and the land is often flat. The 

water is so important that in the course of the centuries houses were not only built next to the 

water but also on the water. 

Many centuries ago fishermen built their own floating village by the sea in southeast Fujian 

province of Luoyuan Bay, China. In South America on Lake Titicaca floating islands were created 

by the indigenous people of Peru and Bolivia (Lin, Spijkers & Van der Plank, 2020). In Cambodia 

on Tonle Sap Lake the Khmer civilization started building floating villages between the 11th and 

13th century (Lau-Bignon, A.W, 2015). Living on water is still done here to this day. 

  

Figure 4 – Floating homes in Luoyuan Bay, in south-eastern China's Fujian province (left). Image: Daily mail 
(Thornhill, 2022). Floating home on Tonle Sap Lake (right). Image: Angela Altus (Altus, 2022). 

Life on water in these examples is mainly due to the convenience of living close to the source of 

food or income. Many of the inhabitants are fishermen. But it is not only in these, poorer, parts of 

the world that people live on water. In the western world, too, there is a history of living on wa-

ter. There are examples of floating homes in the United States. For example in Seattle there is a 

big cluster of houseboats, a tradition that dates back over more than a hundred years. And there 

are many more examples all over Europe. One country that has a rich history, and present, in 

floating homes is The Netherlands.  



 

Figure 5 - Houseboat in Seattle, USA from 1905 (left). Image: Mohai (Blecha, 2010). Floating homes (woon-
schepen) Noorderkanaal, Rotterdam, Netherlands (right). Image: Gemeente Rotterdam. 

In addition to the long history of living on water, there are many modern and future projects in 

The Netherlands, such as the floating neighbourhood in IJburg, Amsterdam and the floating 

homes of the Nassauhaven in Rotterdam. See Figure 6. 

 

Figure 6 - Floating neighbourhood Ijburg, Amsterdam (left). Image: Marcel van der Burg. Floating lofts Nas-
sauhaven, Rotterdam (right). Image: Gemeente Rotterdam. 

Besides floating houses, there are projects of other floating constructions such as the floating 

pavilion and the floating office in the Rijnhaven, Rotterdam and the floating farm in the Merwe-

Vierhaven, Rotterdam. There are also bigger projects, for example Sebitseom in Seoul. This is an 

art gallery build on three floating islands. See Figure 7. 



 

Figure 7 - Floating office Rijnhaven, Rotterdam (left). image: Powerhouse Company. Sebitseom, Floating is-
land on the Han River in Seoul, South Korea (right). Image: Haeahn Architecture. 

2.2 FLOATING CITIES AND HIGH-RISE 

These floating projects are the introduction to a new form of floating where the floating struc-

tures do not only house people but can have different and multiple functions: Floating Cities. Ac-

cording to Blue 21 founder De Graaf, it is "time for a blue revolution" and cities must be built on 

water as it is a solution to the scarcity of space and reduces the vulnerability of floods and other 

extreme weather events (De Graaf, 2021).  In Figure 8 two of Blue 21’s plans are shown. With 

the blue revolution as a goal, Blue 21 aims to design floating cities that are fully self-sufficient. 

One might wonder why the cities have to float and why the ground is not raised to make it dry or 

why it is not founded on piles that reach to the bottom. This is not always a solution as it is not 

feasible to create artificial islands that are fixed to the bottom when the bottom is deeper than 

20 to 25 m (Flikkema et al, 2021). For deeper seas and oceans floating is a solution. 

 

Figure 8 - Blue revolution plan (left). Seasteading implementation plan (right). Images: Blue21. 

To achieve floating cities there are multiple projects investigating every aspect of it. For example 

the Space@sea project. The aim is to design a workspace at sea which is both sustainable and 

affordable. Four applications for the floating city have been investigated as they were deemed 

especially interesting; energy hub, transport and logistics, aquaculture and living. All with their 

own requirements (Czapiewska, K, 2021). In one of the deliverables of the project an exploration 

is done into the design of modular floating platforms. Initially, it was tried with triangular plat-

forms. It was concluded that this is possible but that square platforms are better for spatial dis-

tribution and usable space. Therefore, they switched to square platforms. Two designs were 

made: a platform with sides of 45 m, that needs a depth of approximately 10 to 11 m, and a plat-

form with sides of 90 m. The latter was better for the North Sea because of the conditions at this 

location (Zanon, et al, 2017). The platforms can be connected to form a city, see Figure 9 for one 

of the concepts. 



 

Figure 9 - Fortress concept of Space@sea. Image form Zanon, et al, 2017. 

Another project that is attracting a lot of attention is the "Oceanix city", see Figure 10. A collabo-

ration between the BIG-Bjarke Ingels Group, UN-Habitat's New Urban Agenda, Massachusetts 

Institute of Technology (MIT) and the Busan Metropolitan City in South Korea. A plan that is 

supported by the UN. The following info is obtained from Oceanix Ltd (2021): The city will be 

able to accommodate 10,000 people on 75 hectares of platform and will be self-sufficient in 

terms of energy, water, food and waste processing. Creating a blueprint for a modular maritime 

metropolis. The city is made up of neighbourhoods. These are communities of up to 300 people 

on a hexagon-shaped platform. Each district has a mixed-use space for living, working and lei-

sure. The buildings in the districts are kept below seven storeys to create a low centre of gravity. 

The neighbourhoods are clustered in groups of six to form a village with a central protected har-

bour, as shown in Figure 11. These villages can house up to 1,650 people. These villages can also 

be linked together to create a city with a protected harbour at its centre. The city is designed to 

withstand natural disasters such as floods, tsunamis and hurricanes (Myers, 2021). 

 

 

Figure 10 – Oceanix city. Image: OCEANIX/BIG-Bjarke Ingels Group 



 

Figure 11 - Plan view of the Oceanix city. Image: OCEANIX/BIG-Bjarke Ingels Group 

These are just a few examples of designs and research on floating cities. Often with modular 

platforms with buildings of a few floors high. However, the image on the right of Figure 8 shows 

a large tower in the floating city as well. The Space@sea project has not yet reached the subject 

of higher buildings, but there are other studies and projects on floating high-rise buildings. 

These will be discussed here. 

Ko (2015) investigated whether it was at all possible to realise a floating city. Hexagonal shaped 

platforms were used with sides of 60m and a depth of 6m, connected to each other. Each plat-

form was schematised as an infinite stiff block. The result was that it is technically feasible to 

realise floating cities with modular platforms. In his research a small study was done into higher 

buildings on the floating platforms. Ko (2015) investigated whether it was possible to realise 

high-rise buildings on these floating platforms. The starting point of the research was a rectan-

gular building with a height of 50 m centred on the hexagonal shaped platform. After calculating 

the stability the conclusion of the research was that the platform will ensure stability for a build-

ing of this height. Than calculations were made to investigate how high the building can become 

before it will result in instability. The findings are that a height of 141 m can be reached. It is 

noted in the research that simplifications are made in wind action and that the building cross-

section is constant over the height. When the building would become more slender with height, 

the centre of gravity would be lower and thus the floating module would be more stable. 

Another study on floating high-rise buildings is the paper "A study on stability of floating archi-

tecture and its design methodology" (Nakajima, Saito & Umeyama, 2020). It describes the calcula-

tions that need to be done to get a good estimate of the dimensions of the platform. These will be 

used as a guide for the static stability chapter. One of the cases used is the "Singapore Water 

City" where three 51-storey towers are built on a floating platform. The buoyancy and static sta-

bility is described and calculated for a floating high-rise.  The location is however not at the open 

sea or ocean but in a bay like area. 

There is even a study that has questioned how high we can float. In Van Winkelen's research 

“How high can we float?” a design was made for a floating hotel with calculations for buoyancy, 

static stability and dynamic stability (Van Winkelen, 2007). This was located in a protected area 

near the quay as well. 

This paragraph ends with a final, very ambitious plan. The "Green float". A collaboration with, 

among others, Blue 21. The design is for a circular platform with a diameter of 3 km. With a 1 km 

high tower in the middle, see Figure 12. Besides liveability, sustainability and other issues, the 



safety of the project was also considered. For example, the green float is balanced by 400 million 

tonnes of ballast water. The designers expect that with the dimensions of the whole, the normal 

sea, strong wind waves and tsunamis will have almost no influence on the structural safety. In-

side the building there are evacuation areas that are safer than other parts of the building, there 

is vibration-reduction equipment to counteract the strong wind forces and there is a wave buff-

ering mechanism to counteract high waves. The green float will not be held in place but will 

move with the tide around the equator (Shimizu corporation, 2020). However, this project is still 

in its infancy and much more calculation is needed on the actual possibilities, but the ideas and 

concepts can certainly be used in this research. 

 

Figure 12 - Green float. Image left from Takeuchi & Yoshida (2020). Image right from Shimizu corporation 
(2020). 

These studies and projects form the basis of this study. In this study, the static and dynamic sta-

bility is further examined for multiple building heights with a focus on the building. In the previ-

ous studies the focus was mainly on the platform and the input was either a specific size of the 

platform or a specific height of the building. In these previous studies infinitely stiff buildings are 

used and the dynamics are reduced to some simple formulas that belong to a simplified single-

mass model. In this study, the flexibility of the building and the platform will be included in the 

stability calculations and a dynamic calculation will be done with multiple masses to better ap-

proximate the dynamic behaviour of the building. In addition, other locations will be examined. 

In the two studies where high-rise buildings were designed, the locations have calm water and 

are near land. This research will focus on locations with much rougher conditions in the middle 

of the sea or ocean. 

2.3 HIGH-RISE 

High-rise can be described as a building with many floors. However, there is no specific bounda-

ry between low-rise and high-rise buildings. In the Dutch building code (NEN-EN 1990, 2021), 

high-rise is classified as a building higher than 70 m. However, high-rise buildings are often re-

ferred to as such when the height is above 25 m or when there is a lift. In this study, the mini-

mum height of the high-rise is 50 m. All heights above 50 m will be covered by the term high-rise 

in this research. 

Like all buildings, high-rise buildings must be tested for ultimate limit state and serviceability 

limit state. These consist of: Strength, stiffness, static stability and dynamic stability. Figure 13 

shows when which parts are normative (on land). In most high-rise buildings, it is the static sta-



bility, stiffness and dynamic stability (Nijsse, 2019). These problems are amplified by placing a 

high-rise building on a floating platform. Due to the rotation of the platform, the stability of both 

the platform and the building will be endangered. In addition, a rotation creates many 2nd order 

moments in the building, that can lead to severe deformations. Finally, the platform will rotate 

back and forth, which can cause a lot of motion. This also affects the requirements for the 

strength of the building. In this study, the strength of the building is not further investigated. 

 

Figure 13 – Critical failure of the growing tower. Image: Nijsse (2019) 

To ensure sufficient stiffness and stability and to reduce motion, stability systems are widely 

used in high-rise buildings. These ensure that the large horizontal forces caused by the wind can 

be transferred to the ground without the building deforming too much or falling over. There are 

different forms of stability systems, see Figure 14, that work for different heights. 

 

Figure 14 - Stability systems. Image from Ching (2014). 

2.4 LOCATION AND CONDITIONS 

This paragraph discusses the conditions at various selected locations where the floating high-

rise is tested for. The locations are discussed first. Then the characteristics of the waves and 

wind are discussed. This paragraph ends with the extreme cases. It discusses the various scenar-

ios that can be normative and for which the floating structure must be tested. 

2.4.1 LOCATIONS 



To determine the stability of a floating high-rise, the conditions on the water must first be de-

scribed. These conditions can vary greatly from location to location and not every location is 

equally suitable. Therefore, three locations were chosen for this research to test the floating 

high-rise; the North Sea in between the Netherlands and Great Britten, the middle of the North 

Atlantic at the latitude of Spain and the middle of the Atlantic Ocean around the equator, In Ap-

pendix I the locations are shown on a map. 

The three locations are chosen for different reasons. The location around the equator is the 

calmest area on the ocean and thus has the best conditions. The North Atlantic is a lot less calm 

as the wave height is substantial. It is however, a location closer to rich first world countries. As 

this project will be expensive and only needed when not enough space on land is available, it 

seems that only these countries will be interested in the near future. Also other parts of the 

world’s oceans have similar conditions and this location can thus serve as an example. The final 

location is the North Sea. This location is chosen as it is close to land and therefor easier to real-

ise. This location has limited depth giving different boundaries for the platform and it is known 

for its high wind speeds.  

The conditions for all three locations have been determined1 . These are Significant wave height 

(Hs), 5% wave height (𝐻5%), Wave (peak) period (Tw), wind speed at reference height of 10 m 

(u10) and the depth of the sea or ocean. The values are shown in Table 1 below. 

Table 1 - Conditions at the different locations. 

Location Hs [m] H5% [m] Tw [s] u10 [m/s] Depth [m] 
North Sea 7.95 9.73 9.8 50 30 

North Atlantic 16 19.58 14 40 -* 
Equator 4 4.90 10 20 -* 

* These depths are so large they have no influence. 

To describe the extreme wave heights, the significant wave height is often used. This is the 

height with a 13.5% probability of ever being exceeded. However, in the Eurocode forces have a 

probability of exceeding of only 5%. Therefore, the significant wave height is converted to the 

5% wave height (𝐻5%) using the formula for the probability of exceeding of Bezuyen, Stive, Vaes, 

Vrijling & Zitman (2011). The calculation is shown in Appendix I. 

2.4.2 CONDITIONS 

Wave 
To investigate the stability of a floating high-rise, waves will be described. Waves create large 

forces on the platform and it has a strong asymmetric and dynamic character. 

                                                             
1 Caires, Groeneweg, & Sterl, (2006). Holthuijsen et al., (1995). Young. (1999). Young,  Vinoth, Zieger & 
Babanin. (2012). 



 

Figure 15 - Sinusoidal wave. (Based on figure 3-28, Bezuyen, Stive, Vaes, Vrijling & Zitman (2011) 

A standard, most simple wave can be described as a sinusoid with the amplitude equal to half of 

the wave height. Figure 15 shows such a wave with the different parameters used in the formula 

to describe the wave. The height of the wave varies in both place and time. Therefor the formula 

is expressed in these two variables. The formula for the wave height is as follows: 

 𝜂(𝑥, 𝑡) =
𝐻𝑤
2
sin  (

2𝜋𝑥

𝐿𝑤𝑎𝑣𝑒
−
2𝜋𝑡

𝑇𝑤𝑎𝑣𝑒
)  2 (2.1) 

Where: 

𝜂 is the vertical displacement of the water level [m] 

𝐻𝑤 is the wave height [m] 

x is the distance in the direction of the wave propagation [m] 

𝐿𝑤𝑎𝑣𝑒 is the wave length [m] 

t is the time 

𝑇𝑤𝑎𝑣𝑒 is the wave period [s] 

Often in this research the variable x “distance in the direction of the wave propagation” part of 

the formula is either omitted as it does not matter what the exact locations of the platform is for 

the most extreme situation. If the platform would be 100m further the most extreme condition 

will simply occur earlier or later but will be the same. Or the variable is used to convert the 2D 

wave formula in a 1D force or moment.  

For the different locations the wave height and wave period are known. The wave length can 

then be calculated by the formula:  

 𝐿𝑤𝑎𝑣𝑒 = 
𝑔∗𝑇𝑤𝑎𝑣𝑒

2

2𝜋
tanh (

2𝜋𝑧

𝐿
)   2 

 
(2.2) 

Where: 

g is the gravitational constant (9.81 m/s2) 
                                                             
2 Bezuyen et al, 2011 



z is the depth of the water [m] 

As the wave length is both on the left and the right side of the equation it has to be solved with 

multiple iterations. However, the depth of the water in the ocean is so great that the tangent hy-

perbolic will approach 1 so that the wave length is only dependent on the wave period. Note, this 

doesn’t apply to the North sea where the depth is not that large. For the calculation of the wave-

length of the North Sea see Appendix I. 

To include the waves in a calculation, the wave height must be translated into a force. To do this, 

the wave height can be multiplied by the "force of the water" which is equal to the density of the 

water times the gravitational acceleration: 

 𝐹𝑤𝑎𝑣𝑒(𝑥, 𝑡) =
𝐻𝑤
2
sin  (

2𝜋𝑥

𝐿𝑤𝑎𝑣𝑒
−
2𝜋𝑡

𝑇𝑤𝑎𝑣𝑒
) ∗  𝜌

𝑤𝑎𝑡𝑒𝑟
∗ 𝑔 (2.3) 

 

Although the term “wave force” is used, this is the buoyancy force that is no longer equally dis-

tributed over the platform because the height of the water is no longer equal. The buoyancy 

force is described in detail in chapter 4. To model the wave, however, the “wave force” is used. 

The force is equal to the buoyancy force of the difference in water height of the wave with the 

still water. This means that the wave force can be negative (work downwards). Because of the 

still water buoyancy force that is always present the total force will not be negative. Appendix II 

shows the calculations that coverts the formula of the height of the wave to the distributed wave 

force and to the moment of the wave. 

In reality this sinus wave does not occur, waves are rather made up of multiple sinusoidal waves 

(Bezuyen et al, 2011). Which gives a rather irregular wave pattern as can be seen in the typical 

random wave time history of Figure 16. These random waves or irregular wave field can cause 

problems as it has multiple frequencies. However, it is a complicated collection of several sinus-

oids and there are an infinite number of possible combinations. It is therefore impossible to de-

scribe them all. Therefore, this research focuses on the possible frequencies that can occur in an 

irregular wave field. The irregular waves will be considered as an extreme case that can cause 

problems. This will be discussed in more detail later in the chapter. 

 

Figure 16 - Typical regular and random wave time histories, (Based on figure 4, Balaji, Sannasiraj, & Sundar. 
(2007)) 

Because of the huge influences the waves have on the building, floating breakwaters will have to 

be used. In the Floating Forest research by Wang et al. (2020) a floating breakwater was de-

signed and tested for a coastal zone in Australia. The resulting transmission of waves is below 

50% for a wave period lower than 30 s. The transmission is even lower for shorter wave peri-



ods. For this research a transmission factor of 0.5 is used for all locations. This changes the val-

ues of Table 1 to the values in Table 2. The wave height with breakwater is denoted as 𝐻𝑤 and is 

used in all the forthcoming calculations. 

Table 2 - Wave height with a breakwater with transmission of 0.5. Hw is the wave height with breakwaters 

Location Hs [m] H5% [m] Hw [m] 
North Sea 7.95 9.73 4.87 

North Atlantic 16 19.58 9.79 
Equator 4 4.90 2.45 

 

Wind 
For the calculation of the wind force on the building the NEN-EN 1991-1-4 code is used together 

with assumptions and simplifications. For the input for the wind force calculation, the wind 

speed at a reference height of 10 meters is used with a return period of 100 years. The wind will 

have the distribution as described in the code which can be seen in Figure 17. In Appendix I the 

calculation is shown to calculate the maximum wind speed (𝑢𝑚𝑎𝑥) based on the wind speed at a 

reference height of 10 m (𝑢10). The calculation of the wind force and the moment due to the wind 

can be seen in Appendix II. 

 

Figure 17 - Distribution of the wind force. 

To include the wind in the dynamic analysis, the dynamic behaviour of the wind will have to be 

studied and described. For the dynamics it is necessary to be able to describe the wind over a 

certain time period. Wind has a dynamic character as illustrated by a graph of wind speed meas-

urements for a mast in Figure 18. The wind speed, and thus the wind force, can vary greatly in a 

short time and is thus quite chaotic. Therefore, it is difficult to accurately describe the behaviour 

of the wind in one formula. To be able to include the dynamic aspect of the wind in the models 

for the motion, the wind is modelled as one sine function. 



 

Figure 18 - Record of wind speed at three heights on a 153 m mast in open terrain. From Solari, Carassale & 
Tubino (2007). 

 

Figure 19 - Wind spectrum. From Solari, Carassale & Tubino (2007) 

Figure 19 is used to determine the period of the wind. The graph in this figure shows the intensi-

ty of the wind for different periods. For the dynamic response of the structure, the peak on the 

right-hand side, between 3 seconds and 5 minutes, is particularly interesting. The biggest prob-

lem is when the waves and the wind have the same period. Then the two forces will reinforce 

each other. Therefore, for the calculations in this study, the wind period is equated with the 

wave period. This is always in the time range of 3 seconds and 5 minutes.  

The waves fluctuate between an equilibrium level of the still water. Since the buoyancy force is 

considered a separate force, the equilibrium position will therefore produce 0 kN of force. Figure 

18 shows that this does not apply to the wind. Therefore, an equilibrium position of 𝑢𝑚𝑎𝑥 − 5 m/s 

with an amplitude of 5 m/s is used, based on this figure. The formula for the wind speed will be 

as follows: 

 
𝑢𝑤𝑖𝑛𝑑(𝑡) = (𝑢𝑚𝑎𝑥 − 5) + 5 ∗ sin (

2𝜋

𝑇𝑤𝑖𝑛𝑑
∗ 𝑡) [𝑚] 

 
(2.4) 



Where 

𝑢𝑚𝑎𝑥 is the maximum wind speed 

𝑇𝑤𝑖𝑛𝑑 is the period of the wind 

This means that the speed fluctuates between with 5 m/s. This amplitude is the most important 

for dynamics, since the constant force does not cause any acceleration. The constant value of the 

force will not be taken into account when determining the motion. Therefore the function is the 

same for each location: 

 
𝑢𝑤𝑖𝑛𝑑(𝑡) = 5 ∗ sin (

2𝜋

𝑇𝑤𝑖𝑛𝑑
∗ 𝑡) [𝑚] 

 
(2.5) 

 

2.4.3 EXTREME CASES 
For the determination of whether the floating high-rise building is stable, it must meet the re-

quirement. To determine whether they meet the requirement, the most extreme cases must be 

taken into account. Previously, the maximum height of a wave is described. In a storm these 

highest waves do not suddenly start. The waves of maximum height will develop over time and 

not emerge from the calm water all at once. The emergence of a wave from calm water does exist 

and is caused by an earthquake and is called a tsunami. A third “case” is the irregular wave field. 

This in facts always is the case with waves but because of the difficulty in describing it, as it is 

complex and there are infinite many possibilities, it is seen as a separate case. These three cases 

are described below. The fourth case is the case of extreme waves. This is a wave with one fre-

quency as described previously with the most extreme wave height. 

Growing waves 
The waves on the ocean are so-called “wind waves” that are caused by the wind blowing small 

ridges in the water surface. These ridges then have a surface that the wind can push against, 

making the ridges grow. This eventually results in the large waves that the floating building 

must be able to withstand. The heights of the waves grow exponentially over time. For the wave 

heights used in this study, a time of 40 hours is needed to reach the maximum height (Curricu-

lum Research & Development Group, 2015). This growing of the waves has a great influence on 

the dynamic reaction of the floating high-rise building. The homogeneous solution of the equa-

tion of motion can be enormous and cause extreme accelerations. When the homogeneous solu-

tion already damp out after each small increase in time this part of the solution will be ne-

glectable. This ensures that only the particular solution has to be used for this situation. For the 

single-mass models in the chapter on dynamic stability, only the particular solution is used for 

the maximum acceleration at the maximum wave height. It is only proven in the paragraph 

about the multi-mass models that the homogeneous solution is indeed negligible. 

Tsunami 
The emergence of a wave of substantial height from a situation of calm sea does exist and is 

caused by an underwater earthquake. Such a wave is called a tsunami. They occur mainly in the 

Pacific Ocean and the Indian Ocean due to the presence of fault lines. None of the three locations 

used for this research lies in either of these oceans. Nevertheless, the research looks at the reac-

tion of the floating building to a tsunami in the open ocean as the two locations on the open 



ocean can be used as a guide for other locations with similar conditions where these tsunami can 

occur. For the location at the North Sea there the tsunami is not considered. There are location in 

the world with condition similar to the North Sea where there is a possibility of extreme tsuna-

mis. For these locations an extra study will have to be done. It is not done in this research as 

these locations are here for not deemed suitable. 

The wavelengths and periods of tsunamis vary. As the wave gets closer to the shore, it slows 

down. This makes the wavelength smaller and the height of the wave higher. The depth of the 

seabed has a great influence on the characteristics of the wave. For this research, a depth of 

2000 m is assumed. According to the International Tsunami Information Centre (2021), a tsu-

nami has a wavelength of 151 km at this depth. Using the formula to determine the wavelength, 

the period can be calculated. This is 1080 seconds. 

It is difficult to predict the exact extreme value of possible tsunamis. These are too dependent on 

the location and characteristics of the earthquake. In order to test the floating building, the am-

plitude of the tsunamis of December 24, 2004 in the Indian Ocean and March 11, 2011 in the Pa-

cific Ocean are examined. These two were chosen because they were extreme events with a big 

tsunami. The National Oceanic and Atmospheric Administration Center (2021) for Tsunami Re-

search (NOAA) has done research on the tsunami amplitude across the oceans. A maximum 

wave height of 50 cm was determined on the basis of mapped amplitudes. This is the highest 

amplitude at substantial distance from the earthquake and the coast. These earthquakes often 

take place near the coast, the floating high-rise will only be useful when placed at a distance 

from the coast, so it will never float near the centre of an earthquake. Earthquakes take place on 

fault lines which run under the oceans. However, these produce less severe tsunamis (Howe et 

al, 2019). This study assumes that the location of the floating high-rise is such a distance from 

these fault lines that the impact of the subsequent tsunami is comparable to that of a tsunami 

caused by an earthquake near the coast. If, in the future, the placing of floating high-rise build-

ings at specific locations is considered, more research will have to be done into the danger and 

behaviour of a tsunami at the location. 

A tsunami usually consists of a large wave followed by smaller waves. Sometimes there are small 

waves that precede the largest wave. This research only looks at the response to the largest 

wave as if from nowhere, this is the most disadvantageous as it causes the biggest response. This 

is equal to the first quarter of the standard wave's period. Furthermore, the wind load is ne-

glected in this case. According to the Eurocode this load should have a reduced value due to the 

tsunami being an accidental load but since the load is substantially lower than the wave load it is 

not considered at all. 

For the tsunami situation, an approximation of a sine function is used. The problem with the 

normal sine function is that the derivative is not equal to zero when time is equal to zero. In fact, 

the derivative is maximal at this time. For the normal sine, this means that the slope is maximum 

at this time. However, when the tsunami wave reaches the platform, this slope will not be maxi-

mum. There is a small "growth moment" from a calm ocean to the tsunami wave. This can be 

seen in Figure 20. This is a graph from the work of Song & Cho (2020) with measurements of 

wave height in time after an earthquake. The blue line shows the height of a tsunami at a loca-

tion far away from the epicentre. As can be seen, the very first wave has a smooth transition 

from water with height 0 m and speed of  0 m/s to a sine function. (The location of the meas-

urements is close to the coast, hence the higher waves than previously determined as maxi-



mum). To approximate this behaviour, curve fitting is performed in which a function is used to 

approximate the situation at time zero and the sine function as closely as possible. To do this, the 

first half of the sine is approximated by a Gaussian function. This has the following form: 

 𝑓(𝑥) =  𝑎𝑒−𝑏(𝑥−𝑐)
2
 

 
(2.6) 

The constant “a” is equal to the maximum wave height. The constant “b” is calculated so that the 

wave has a height of 0.1% at time zero. And the constant “c” is equal to a quarter of the wave-

length, this value ensures that the function is shifted so that the function is not maximum at time 

zero but at a quarter of the wave period, just like a sine. The result is the following formula: 

 𝐻𝑤𝑎𝑣𝑒(𝑡) =  0.5 ∗ 𝑒
−9.5∗10−5(𝑡−270)2 

 
(2.7) 

This formula has the advantage over the sine that it has a smooth transition, however, determin-

ing a suitable particular solution to the equation of motion (a differential equation) is required. 

Therefore, this function is again approximated, this time by a polynomial. This is again done with 

curve fitting. The function is approximated by calculating ten sets of coordinates and entering 

them in the curve fitting calculation. The sets of coordinates that are used occur before the func-

tion reaches its top, otherwise it cannot be approximated properly. The polynomial is of 3rd de-

gree and is has the following function: 

 
𝐻𝑤𝑎𝑣𝑒(𝑡) =  0.00101 ∗ 𝑡 −  2.3048 ∗ 10

−5 ∗ 𝑡2  +  4.4987 ∗ 10−7 ∗ 𝑡3 
 

(2.8) 

In Figure 21 the wave as a sine function is plotted together with the Gaussian approximation and 

the polynomial approximation. From the figure it can be seen that the polynomial approximation 

is only valid up to 100 s.   

 

Figure 20 - Time series of tsunami heights at epicenter and Jumunjin port by tsunami in 1993. (Song & Cho, 
2020) 



 

Figure 21 - The wave height as a sine function and the approximations. 

Irregular waves 
As mentioned, the waves that occur in reality cannot be described by a single sine wave function. 

One must use the so-called Fourier analysis of waves (Bezuyen et al, 2011). A Fourier analysis is 

an approximation of an irregular function or data set by means of the sum of several or infinitely 

many sine functions (Boyce & DiPrima, 2010). For waves, a data set of measurements of wave 

height is used. Since in this research not a data set of wave heights is used and not one situation 

is investigated but the most extreme out of several possible wave fields, the Pierson-Moskovitz 

spectrum is used which gives the energy density as a function of frequency (Bezuyen et al, 

2011).  

 𝑆(𝜔) =  
𝛼𝑔2

2𝜋𝜔5
𝑒
−
5
4
∗(

𝜔
𝜔𝑝
)−4

 (2.9) 

Where 

𝛼 equals 0.081 for storms 

𝜔 is the frequency 

𝜔𝑝 is the peak frequency 

The peak frequency can be calculated with the previously determined wave periods (Table 1). 

The wave with the peak frequency has the largest share in the total wave field. The other fre-

quencies will have a lesser share. If the floating high-rise building can handle this peak frequen-

cy (as is tested in the growing wave / most extreme wave), it can handle the other frequencies in 

terms of the total force acting on the structure. However, another problem may arise: resonance. 

When one of the motions of the floating high-rise is equal to the frequency of one of the sine 

waves that make up the total wave, the motion can cause the most extreme displacement even if 

the share of this wave is not that big relative to the peak wave. It must therefore be ensured that 

the floating high-rise does not have a single motion frequency that falls within the range that 

strong resonance can occur. Since this function is infinite, the limits of the wave frequency are 

chosen so that 5% of the wave energy lie above or below this limit. This 5% value is chosen be-



cause it is often used for the exceeding probability of a load (De Vries, Fennis & Pasterkamp, 

2013). The calculation of these limit frequencies and thus the frequency width of the wave is 

shown in Appendix I. The table below shows the wave frequency widths that can cause reso-

nance for the three different locations. 

Table 3 - Frequency width of the wave for the three locations. 

Location Frequency width [rad/s] 
North Sea 0.43 – 1.44 

North Atlantic 0.30 – 1.01 
Equator 0.42 – 1.42 

 

Since the energy for frequencies other than the peak frequencies is lower, so is the wave height. 

Normally, the energy is determined from an irregular wave field. From this, the significant wave 

height and the peak period are extracted. Since no wave field was investigated in this study, 

these two must be used as input to determine the energy density function. To translate this into 

a wave height, the relation between the energy and the height of the wave is used. This relation 

is 𝐸𝑤 = 𝑎 ∗ 𝐻𝑤
2  (where a is an unknown constant) (Bezuyen et al, 2011). With this relation the 

height of the wave is determined for the different frequencies. The calculation is shown in Ap-

pendix I. 

2.5 REGULATIONS AND LIMITATIONS 

This paragraph deals with the regulations and limits that floating high-rise buildings must meet. 

These are divided into regulations and limits for the buoyancy and static stability and for the 

dynamic stability. 

2.5.1 SERVICEABILITY LIMIT STATE – BUOYANCE AND STATIC STABILITY 
The most standard criteria that the floating high-rise has to meet, is that it must remain afloat. In 

the construction world, this can be seen as a serviceability limit state. Since floating construction 

is not often used, the Eurocode does not yet have a code for this. Therefore other codes must be 

looked at that can be used. One of these is the Dutch technical agreement NTA 8111 (2011) 

(Dutch code for floating structures). This code is mainly useful for small floating buildings. The 

code states that "floating structures to which the rules apply:  

 Have consequence class CC1 or CC2, according to the Eurocode; 

 Have up to 3 storeys above the waterline. 

For structures that do not meet the above characteristics, a safety assessment must be prepared." 

(NTA 8111, 2011). High-rise buildings fall into the CC3 class in the Eurocode and have more than 

3 floors. Therefore, the regulations are not applicable. Nevertheless, some regulations from the 

NTA 8111 (2011) used. 

The regulation regarding buoyancy from the NTA 8111 (2011) that is used is; 

 The minimum distance between the top of the platform and the water must be at least 

0.3 m. This is to prevent water from getting onto the platform. 



This regulation will be interpreted so that at all times and at all possible positions the height of 

the wave will be 0.3 m lower than the top of the platform. Thus the height of the wave and the 

translation and rotation of the platform are taken into account when determining if the platform 

meets this regulation. 

A second regulation, one that does not appear in the code but should be used to avoid unwanted 

results in this study, is that; 

 The depth of the platform must be large enough so that the trough of the wave is not 

lower than the platform.  

When this happens there is a "chasm" next to the platform and the platform will rotate substan-

tially. This must be avoided at all times as this produces large rotations in the platform. Howev-

er, this extra rotation will not follow from the modelling, due to the way of modelling. Therefore, 

it is considered as a regulation. 

To meet the requirements, additional ballast water can be used in the platform. This provides 

more depth. With more depth, a higher platform is required to meet the regulations. The two 

discussed regulations are more often used in this research as input than for controlling the out-

put. Often the two parameters; height of the building and width of the platform will be chosen. 

With the two regulations, together with the two parameters, a minimum depth and height of the 

platform can be determined. These can then be used as input. In this way they are input parame-

ters but they are also dependent on the two previously mentioned parameters. 

For static stability, the following regulations from NTA 8111 (2011) will be relevant: 

 The GM value (for explanation, see chapter static stability) must be at least 0.25 m. 

This regulation ensures that the floating high-rise is stable.  

A final regulation is that 

 The building has an angle of maximum 40. 

2.5.2 SERVICEABILITY LIMIT STATE - ACCELERATION 
As for the statics of a building, there is a serviceability limit state for the dynamics. Although 

these are not mandatory limits from the regulations, they are always taken into account for high 

buildings. There are two types of consequences of the motion of buildings. The first type is a de-

creased health, decreased comfort and a perception of the motion. These take place with mo-

tions between 0.5 Hz and 80 Hz. According to the ISO code 2631-1 (1997) “effects of long-term 

high-intensity whole-body vibration indicates an increased health risk to the lumbar spine and the 

connected nervous system of the segments affected” and “With a lower probability, the digestive 

system, the genital/urinary system, and the female reproductive organs are also assumed to be af-

fected.” The second consequence of motion is motion sickness. It occurs with motions between 

0.1 Hz and 0.5 Hz and the probability increases with longer duration of motion exposure (ISO - 

2631-1, 1997).   

There are various codes with guidelines for dynamic behaviour. These are often maximum per-

missible values for the acceleration. In the NTA 8111 (2011) reference is made to the SBR guide-

line B (“hinder voor personen in gebouwen”). In this guideline a limiting value of 0.4 m/s2  is 



used. For buildings, ISO standards are often used. There are, however, different standards in the 

ISO regarding dynamics. None of which seems directly applicable to floating high-rise. For the 

Space@Sea project an investigation was done into the limitations of the accelerations, based on 

the ISO standard and other research (Lin, Czapiewska, Iorga, Totolici & Koning, 2019). This re-

sulted in a table with the maximum acceleration for different return periods and different urban 

function. For both residential as Office/retail the maximum acceleration with a return period of 

once every 100 year is 0.4 m/s2. As the floating building can move in multiple ways, it can also 

move in multiple frequencies, but not every frequency is equally bad for human perception and 

motion sickness. Lin et al. (2019) states that "Human perception however is quite different to 

motions and vibrations. Motions with frequencies from 0.1 to 1 Hz, and in particular at frequen-

cies around 0.2 Hz, are likely to cause disorientation, nausea and result in motion- or seasick-

ness". Two graphs are used in their deliverables, see Figure 22. The first is for frequencies up to 

1 Hz and varies with the time a person is exposed to it. The second graph is for frequencies 

above 1 Hz and deals with continuous motions over a long period of time. For the second, the red 

line (Offices and Residences) is used. Note that the vertical axis is expressed as a percentage of 

gravity. To translate this into an acceleration, the value can be divided by 9.81. 

However, translation is not the only thing that can occur. The floating building can rotate as well. 

Rotation is mentioned in the ISO code as a possible contributor to motion sickness. However, 

there was not enough data to include it in the 1997 ISO code (ISO 2631-1, 1997). Part 2 from 

2003 does not address this either (ISO 2631-2, 1997). The fourth part of the ISO code 2631 does 

talk about rotation (roll and pitch) but this is about vehicles. “The frequency range of motions ex-

pected to impact ride comfort significantly in conventional rail vehicles includes 0,1 Hz to 2 Hz on 

curve transitions (roll) … roll (bank) angle and roll velocity (roll rate) should be considered in as-

sessing the effects of motion on comfort.” (ISO 2631-4, 1997). According to Wertheim, Bos & Bles 

(1998), rotations are not a cause of motion sickness when they occur without translation. How-

ever, when the rotation is accompanied by a small vertical translation, which in itself would not 

cause motion sickness, there is a 'sickness-inducing potential'. This goes against the studies that 

existed until then, which concluded that seasickness came from the vertical component of mo-

tion with little effect or no effects from rotation. For example O'Hanlon & McCauley (1973), and 

Lawther & Griffin (1987) which are often used in maritime environment. Since there is no limit-

ing value for angular acceleration in the codes and since it causes seasickness to a much lesser 

extent, the value will not be limited. However, the value is related to the accelerations of dis-

placements, which are limited.  

The figures show that acceptable acceleration varies with frequency. In order to keep the limita-

tion as simple as possible, a limitation of 0.55 m/s2 for offices and residences is used in this 

study. More research is needed into the specific limitations for the motion of the floating high-

rises and thus into the consequences of these motions. The 0.4 m/s2 mentioned above has not 

been used because measures can be taken specifically for these high-rise structures so that if a 

storm that occurs once every 100  years happens, the occupants are moved to a place within the 

building where the least acceleration occurs. In the study where the limit of 0.4 m/s2 was deter-

mined, there are only low-rise buildings and everything will move just about the same and 

therefore have the same acceleration. This is not the case with the floating high-rise buildings. 



  

Figure 22 - Acceleration limits for different frequencies of the motion of a building. Left image source: March 
& Palo, (1998). Right image source: ISO 2631-2 (1989). 

  



3. ASSUMPTIONS 
In this chapter the different assumptions are discussed used for the high-rise building and for 

the platform. First, the models are briefly discussed. This is because the modelling method is the 

reason why the assumptions are needed. The models are discussed in more detail in the relevant 

chapters. After the models, first the assumptions of the building are discussed and then those of 

the platform. This chapter is concluded with a paragraph in which a set of standard values are 

given. These will be used in example calculations. 

3.1 MODELS AND CALCULATIONS 

For both the static and the dynamic stability, a form of parametric design is used. According to 

Starink (2019) parametric design is “a design process in which a design can be generated on the 

basis of data and relationships between parts of a structure. […] Parametric design also offers pos-

sibilities to make changes in a responsive model until a late stage in the design process. This pro-

cess enables offices to generate models quickly and performance-driven, to test different interven-

tions and scenario and to make performance transparent.” Parametric design is thus the calcula-

tion of a structure based on a base of data. These are conditions and chosen variable parameters.  

These parameters are thus the input for the calculations. What makes it parametric is that the 

value of these input parameters can be changed at any time in the design process. Also when all 

the calculations are done. This ensures that, when all calculations have been made in the model, 

the input parameters can be changed and the results of the new parameters follow directly from 

the model.  

In this study, the advantage of being able to test many different possibilities is the reason for us-

ing parametric models. Because it is not only possible to test one possibility, but all possible 

combinations of the chosen input parameters.  The calculations are therefore all based on two 

parts; the basis of data and the relationship between parts of the structure. The basis of the data 

are the condition values discussed in Chapter 2. Besides these conditions, there are the basic pa-

rameters. These parameters will be the parameters investigated in this research. The more basic 

parameters are chosen, the heavier and longer the calculations become. Therefore it is decided 

to use two to four basic parameters. The two that are always variable are: 

 Building height 

 Width of the platform 

In addition to these two, it can be chosen use: 

 The depth of the platform; 

 the height of the platform; 

 the mass of the extra ballast; 

as variable input. Chapter 4 shows the relationship between the depth of the platform and the 

extra ballast. If one of the two is used as a variable input parameter, the other follows from that 

value. 

In addition to the basis of data, a parametric model uses the relationship between parts of the 

structure. These will be discussed in this chapter, and partly in chapter 4. These relationships 

are mostly assumptions. 



A parametric model will lead to too large calculations/models if it is a 3D model with elements 

as close to the real elements as possible. Therefore it was decided to keep the model 2D. This is 

often done in preliminary investigations as a first step and this will also suffice for this prelimi-

nary investigation. The building and the platform will be modelled as 1D elements. A 2D model 

with 1D elements is a lot smaller and can be used more easily in a parametric way. It is also often 

a good first estimate of reality. However, it does mean that various aspects are not taken into 

account. This will be explained later in the chapters on the various stabilities. Also, many as-

sumptions and relations are needed for different values of the building and platform. For exam-

ple, the stiffness of the building cannot be determined from the model but will have to be deter-

mined via a relation with the input parameters. These relations will be discussed further in this 

chapter. 

3.2 BUILDING 

The building will be modelled as a 1D element with only dimension "height 

building" as input. The building can be seen as a cantilever beam, clamped by 

the foundation (the foundation is the platform), see Figure 23. The stability 

will therefore only come from the core of the building and no stabilising ele-

ments such as outriggers have been used. This approach causes the following 

parameter to be determined based on the variable input parameters: 

 Building width 

 Building stiffness 

 Building mass 

 Mass moment of inertia 

All these parameters are discussed in this paragraph.  

This paragraph will only discuss what the parameters are based on and what 

the results are. The determinations and calculations are shown in Appendix 

III.  

3.2.1 BUILDING WIDTH 
For the cross-section of the building, a square shape is used in this study. This is a standard 

shape that is very useful in a 2D model with 1D elements because of its symmetry. So there is 

only one value for the width of the building. This parameter has an influence on results as a larg-

er width results in a larger total weight of and vertical load on the building and a larger wind 

load on the building.   

Normally, this is a freely chosen parameter, although it always depends to some extent on the 

height of the building. In this study it was decided to make this parameter completely dependent 

on the height of the building in order to eliminate it as a variable parameter. This requires an 

assumption for the relation between the width of the building and the height of the building. For 

the assumption, three reference buildings are used; the Twin Towers of the World Trade Centre 

(New York), Zalmhaven Tower (Rotterdam) and the New Orleans (Rotterdam). These are chosen 

as they have different heights and widths and a square cross-section. Curve fitting is used to cre-

ate a formula linking the two parameters, explained in more detail in Appendix III. The formula 

is as follows: 

Figure 23 - The 
building as 1D 

element. 
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Where 

𝑤𝑏 is the width of the building [m] 

ℎ𝑏 is the height of the building [m] 

3.2.2 CORE STIFFNESS 
In high-rise buildings, various stability systems can be used. To model the building as a 1D ele-

ment, only a core can be used as a stabilising element. However, a core will not be enough for 

buildings above 120m. Other stability system have to be used. These other methods are not used 

in this research to keep the problem simple. In order to include heights above 120 m, the deflec-

tion limit in the Eurocode is used as an input rather than a regulation to comply with. This code 

states that the deflection may not be greater than the height divided by 500. For the deflection of 

a cantilever, a forget-me-not can be used. Combining this with the deflection limit gives the fol-

lowing formula for the stiffness: 

 𝐸𝐼𝑐𝑜𝑟𝑒 =
500

8
∗ 𝑞 ∗ ℎ𝑏

3 [N/mm] (3.2) 

Where 

𝑞 is the distributed load over the height [N/mm]. 

A class C60/75 concrete will be used for the core. This has an E-modulus of 39000 N/mm2. Be-

cause the stiffness of concrete decreases when it cracks, a stiffness of 1/3 times the initial stiff-

ness is used. 

The previous chapter discussed wind and wind load. Inserting the expression of the wind load 

into formula (3.2) yields the following formula for the bending stiffness of the building ex-

pressed in the height of the building, width of the building and the wind speed: 

 

𝐸𝐼𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 =  0.7132958138 ∗ 𝑣𝑏
2 ∗ 𝑤𝑏 ∗ ℎ𝑏

3  

∗ (148.8202864 +  18.61828598 ∗ 𝑙𝑛(ℎ𝑏) +  𝑙𝑛(ℎ𝑏)
2 +  18.61828598

∗ 𝑙𝑛(𝑤𝑏) +  𝑙𝑛(𝑤𝑏)
2) 

(3.3) 

Where 

𝑣𝑏 is the wind speed 

The formula consists of three different parameters. The previous paragraph showed how the 

width of the building can be expressed in terms of the height of the building. The wind speed is a 

constant based on the location. And so, as desired, only the height of the building remains as a 

variable parameter. In this study,  the moment of inertia of the building is used as well, without 

the E-modules. This can be calculated by dividing the expression of the bending stiffness of the 

building by the E-modules of the building. 

 

 



3.2.3 BUILDING MASS 
The mass of the building is difficult to approximate as it depends on many design choices. It was 

decided to use a standard weight per floor area. In the research of Nakajima, Saito & Umeyama 

(2020) a weight of 13.04 kN/m2 was used. This value will be used in this study.  

The number of floors will be equal to the height of the building divided by 4 m (approximately 

the height of a floor level) rounded to an integer. All together this gives the following formula for 

the weight of the building: 

 𝑊𝑏 = 13.04 ∗  𝑤𝑏
2 ∗ 𝑖𝑛𝑡(

ℎ𝑏

4
) [kN] (3.4) 

Where 

𝑊𝑏 is the weight of the building m]. 

This is a very rough approximation. When a 3D model of the floating high-rise is made in the fu-

ture, it will be possible to get a better approximation of the weight. In the chapter on dynamic 

stability, the influence of changing this weight on the behaviour will be examined. The mass of 

the building can be calculated by dividing the weight by 9.81. 

Since the floating high-rise is tested for stability the safety factors of a serviceability limit state 

apply. According to the building code on floating structure the safety factors are equal to 1 

(NTA8111, 2011). For the mass, no further research was done into live loads in the building. The 

assumption of a specific weight without live loads in the building is rather small. Therefore, in 

chapter 6 on the dynamic stability, the influence of changing the mass is investigated. 

3.2.4 MASS MOMENT OF INERTIA FOR THE BUILDING 
For the dynamic stability calculation the mass moment of inertia of the building must be used. 

The mass moment of inertia is a difficult value to determine for a building. All elements in the 

building influence this value. In this study, no specific research is done into this value. To be able 

to use values close to the truth, a reference project is used. In the numerical example of Liu, 

Chiang, Hwang & Chu (2008) it is calculated that in a building with a width and depth of 40 m 

and floors of 4 m high, each floor has a mass moment of inertia of 1.31 ∗ 108 kgm2. For this study, 

linear interpolation is used between no width and thus no mass moment of inertia and the 

1.31 ∗ 108 kgm.  

 𝐽𝑝𝑒𝑟 𝑓𝑙𝑜𝑜𝑟 = 
𝑤𝑏
40
∗ 1.31 ∗ 108 [𝑘𝑔𝑚2] (3.5) 

Where 

J is the mass moment of inertia. 

To calculate the total mass moment of inertia of (a part of) the building, the number of stories 

must be multiplied by the mass moment of inertia of one floor. 

3.3 PLATFORM 

In the calculations and models, the platform is modelled as a 0D (point mass) or a 1D element. 

Therefore, for the platform, as for the building, some assumptions and approximations have to 

be made. A square box platform is used (the length and width are the same but the height is dif-

ferent). This is not the most advantageous shape for the platform but it is the simplest one for 



the calculations. To improve the stability, other shapes for the platform can be considered in the 

future. 

 

 

3.3.1 PLATFORM STIFFNESS 
In order to approximate the stiffness of the platform an approximation is done using the pro-

gram Grasshopper with the plugin Karamba. Because there are no deformation limits for the 

platform as there are for the building. This model is used to translate the properties of a 3D plat-

form into a 1D beam. For this purpose, the platform is modelled in 3D. The material for the plat-

form will be concrete C60/75 and the platform will consist of cubes of 5 by 5 by 5 metres. In 

other words, the platform will not only have walls, a floor and a roof on the outside but also in-

ternal walls and floors. This can be seen in Appendix III. The stiffness was then calculated for 

different platform widths and heights. From this a formula was derived to determine the mo-

ment of inertia with the parameters height of the platform and width of the platform, this can 

also be seen in Appendix III. The formula is as follows: 

 𝐼𝑝 = (0.01198 ∗ ℎ𝑝
3  −  0.05448 ∗ ℎ𝑝

2  +  1.1877 ∗ ℎ𝑝  −  1.099) ∗ 𝑤𝑝 [𝑚
4] (3.6) 

Where 

𝐼𝑝  is the second moment of area of the platform. 

ℎ𝑝  is the height of the platform [m]. 

𝑤𝑝  is the width of the platform [m]. 

3.3.2 PLATFORM MASS 
For the weight, the same model is used as for the stiffness and the following formula is deter-

mined: 

 𝑊𝑝 =
ℎ𝑝

5
 ∗ (

𝑤𝑝
3

6000
+  2.45 ∗ 𝑤𝑝

2  +  43
1

3
∗ 𝑤𝑝  −  2000) [𝑘𝑁] (3.7) 

Where 

𝑊𝑝 is the weight of the platform. 

3.3.3 MOORING SYSTEM 
Due to the many horizontal forces on a floating high-rise, the platform can move a great distance 

in the course of time.  One solution could be to attach the building to the bottom with steel cables 

to keep it in place, a mooring system. According to Ko (2015), a mooring system does not help to 

prevent motion and displacement, even if the cable were very stiff. The only use of the cable is to 

hold the floating platform somewhat in place (so even with a cable, horizontal motions can oc-

cur). In addition, it follows from the study by Flikkema et al. (2021) that the conditions on the 

North Sea are already too rough for a mooring system. It is possible, however, in the Mediterra-

nean Sea. It is clear that a good solution is needed for keeping the platform in place, but this is 

not a challenge that will be tackled in this study. Using Ko's conclusion, the assumption is made 



that a mooring system can always be used without affecting the motion of the platform. There-

fore, a mooring system is not taken into account. 

3.4 STANDARD USED VALUES FOR THE PARAMETERS 

In the research into the influence of parameters, a standard set of values for the parameters is 

used. The parameter under investigation is variable and the others constant. Even if the parame-

ter would actually change. For example if the platform becomes wider, the depth would de-

crease. The standard parameters are given in Table 4. 

Table 4 - Set of standard values for the parameters of a floating high-rise. 

Parameter Symbol Value 
Building height ℎ𝑏 100 m 
Building width 𝑤𝑏 23.87 m 

Core width 𝑤𝑐 11.06 m 

Platform height ℎ𝑝 5.29 m 

Platform width 𝑤𝑏 100 m 
Platform depth 𝑑 2.49m 

GM value 𝐺𝑀 294 m 
Centre of gravity 𝐶𝑂𝐺 42 m 
Zeta (damping) 𝜁 0.1 [-] 

  



4. BUOYANCY 
This chapter discusses the buoyancy. This is a short chapter explaining what the buoyancy is and 

which formulas it involves. Then the limits are discussed and how the buoyancy is used in the 

coming chapters. 

The first thing a floating building must comply with is that it must remain afloat. To stay afloat, 

the platform needs to submerge enough in order for the displaced fluid to create an upwards 

buoyancy force equal to the gravity force on the structure (Journee & Massie, 2015). In Figure 24 

a sketch of the forces can be seen.  When these vertical forces are equal there is a vertical state of 

equilibrium and the object will not move up or down and it will thus float.  

 

 

Figure 24 - Buoyancy force (B) and gravity force (G) of a floating object. (Journee & Massie, 2015). 

The equality between the upward buoyancy force and the downward gravity force is known as 

Archimedes' law and has the following equation form: 

 𝑚 ∗ 𝑔 = 𝜌 ∗ 𝑔 ∗ 𝑉𝑠𝑢𝑏 (4.1) 
Where 

𝑚 is the mass of the object [kg] 

𝑔  is the acceleration of gravity (9.81 m/s). 

𝜌 is the density of water (1.025 kg/m3 for salt water). 

𝑉𝑠𝑢𝑏 is the submerged volume [m3]. 

Instead of the mass times the acceleration of gravity, the weight (𝑊 [N]) of the object can be 

used. As the platform used in this study is a square box, the submerged volume (𝑉𝑠𝑢𝑏) can be cal-

culated by the length times the width times the depth of the platform. And since a square has 

length equal to width the calculation can be simplified to: 

 𝑉𝑠𝑢𝑏 = 𝑤𝑝
2 ∗ 𝑑 [𝑚3] (4.2) 

Where 

𝑤𝑝 is the width of the platform. 

𝑑 is the depth of the platform under the water line. (Also known as draft in marine engi-

neering.) 



As mentioned in the paragraph on regulations and limits, there are two buoyancy requirements 

that the platform must meet. Firstly, the height of the platform should be such that the top of the 

platform should be 0.3 m higher than the height of the crest of the wave. And secondly the depth 

of the platform must be large enough so that the trough of the wave is not lower than the plat-

form. Because of these two requirements, the platform must have a minimum depth and a mini-

mum height. The height of the platform is a parameter that can be adjusted to meet the require-

ment. However, the depth follows from equation (4.1) and formula (4.2). When the mass of the 

object increases, and the dimensions of the object remain the same, the depth of the platform 

increases. Thus, an additional weight can be added to reach the desired depth. This extra weight 

comes in the form of ballast water that can be stored in the platform. 

In the static and dynamic stability calculations, depth is used both as an initial parameter and as 

a dependent parameter (meaning that either the value is choses or it follows from other parame-

ters and conditions). If it is used as a dependent parameter, the requirement is used to deter-

mine the depth. A calculation is then made as to how much additional ballast is required in order 

to achieve the desired depth. If the weight of the platform and the high-rise together is large 

enough to achieve the desired depth, no extra ballast is used. 

For the height of the platform the requirement is always used. The height of the platform will 

therefore follow from the depth of the platform and the height of the wave. As described in the 

paragraph assumptions and case parameters, the height of the platform changes the weight and 

thus the depth. Calculating the depth and height so that both conditions are met is an iterative 

process. 

 

 

  



5. STATIC STABILITY 
This chapter is about static stability. The first paragraph explains what static stability is. The 

second paragraph introduces the meta centre and metacentric height, along with other centres 

and standard distances used in the calculation of the stability. The metacentric height is abbrevi-

ated to GM and is used extensively in this study. The third paragraph discusses the Grasshopper 

model used for the static stability calculations. The results of the calculations are discussed in 

the fourth paragraph. This chapter ends with a conclusion on the static stability. 

5.1 STABILITY 

For the possibility of floating high-rise buildings, the static stability must be investigated. The 

dynamic aspect may also lead to instability, but only the static forces will be considered in this 

chapter. The static stability of a floating object is about the return of the object to equilibrium 

when it is brought out of balance by a force or moment (Nakajima, Saito & Umeyama, 2020). A 

moment causes the building to rotate around its centre of gravity. Figure 24 shows the two forc-

es; buoyancy force and gravity force. The buoyancy force passes through the centre of buoyancy 

which is equal to the centre of submerged volume (Journee & Massie, 2015). The gravity force 

goes through the centre of gravity of the whole object. If no other forces or moment are acting on 

the object, these two centres are located on the same vertical line and the object is in equilibri-

um. When the object starts to rotate because of an external moment (heeling moment), the ob-

ject will rotate and the submerged volume will be distributed differently (the total remains the 

same), shifting the centre of buoyancy, see Figure 25. Now the centre of buoyancy and gravity 

are no longer on one vertical line and thus the forces will provide a moment. This moment is 

called the righting moment. The object is stable when this righting moment cancels the heeling 

moment. In other words, it is equal to the heeling moment in the opposite direction. If this is the 

case, when the heeling moment disappears, the object will return to the equilibrium position. If 

the righting moment does not cancel out the heeling moment, the building will be unstable and 

will not return to equilibrium and so it will "fall over". 

 

Figure 25 - Shift of the centre of buoyancy due to a heeling moment. Source: (Journee & Massie, 2015). 

5.2 META CENTRE AND METACENTRIC HEIGHT (GM) 

The righting moment should thus be equal and opposite to the heeling moment. This is the case 

when the centre of gravity is positioned lower than the so-called meta centre. The rotation of the 

object not only causes the buoyancy and gravity centres to no longer be on the same vertical line, 



but also causes the direction of the forces to no longer be the same as the central axis of the ob-

ject. (The central axis is the vertical line on which both centres lie when there is no heeling mo-

ment acting on it), see Figure 26b. At the place where the direction of the buoyancy force inter-

sects the central axis, after a rotation, is the meta centre (denoted as 𝑀). The distance between 

the centre of gravity (denoted as 𝐺) and the meta centre is called the metacentric height and is 

noted as 𝐺𝑀̅̅ ̅̅  as seen in Figure 26a (Beyond this paragraph GM will be referred to without the 

dash that is used to indicate that it is a distance between two points.) If the 𝐺𝑀̅̅ ̅̅   value is greater 

than 0, the righting moment cancels out the heeling moment and therefore there is stability. In 

the chapter on regulations it is described that this 𝐺𝑀̅̅ ̅̅  value must be greater than 0.25 m ac-

cording to the code. 

   

Figure 26 – Different centres and distances used in the calculation of the static stability of a floating structure. 
a) Upright position. b) Heeling position.  

As explained, the metacentric height is the distance between the centre of gravity (G) and the 

meta centre (M) denoted as  𝐺𝑀̅̅ ̅̅ . Figure 26a shows a picture of the important centres covered in 

this paragraph and the distances between some of them.  The metacentric height can be calcu-

lated by using the distance between the keel (K) and the centre of gravity denoted as 𝐾𝐺̅̅ ̅, the 

distance between the keel and the centre of buoyancy (B) denoted as 𝐾𝐵̅̅ ̅ and the distance be-

tween the centre of buoyancy and the metacentre denoted as 𝐵𝑀̅̅ ̅̅ . Figure 26 shows that when 

𝐾𝐺̅̅ ̅ is subtracted from 𝐵𝑀̅̅ ̅̅  plus 𝐾𝐵̅̅ ̅ you obtain the value of 𝐺𝑀̅̅ ̅̅ : 

 𝐺𝑀̅̅ ̅̅ = 𝐵𝑀̅̅ ̅̅ + 𝐾𝐵̅̅ ̅ − 𝐾𝐺̅̅ ̅  [𝑚] 3 (5.1) 
 

𝐵𝑀̅̅ ̅̅   can be calculated with the Scribanti Formula. This formula is applicable for a wall-sided 

structure with a heeling angle of less than 100 (Journee & Massie, 2015). The platform is box-

shaped and thus is wall-sided. It must be checked whether the floating high-rise has a rotation of 

less than 100, since this is a considerable rotation, it is provisionally assumed that the rotation 

will be less and the formula is applied. The Scribanti Formula is as follows: 

 𝐵𝑀̅̅ ̅̅ =  
𝐼𝑖

𝑉𝑠𝑢𝑏
 [𝑚]  3 (5.2) 



 
Where 

𝐼𝑖  is the second moment of inertia of the cross-section of the waterline [m4] 

𝑉𝑠𝑢𝑏 is the submerged volume [m3] 

The second moment of inertia of the cross-section of the waterline 𝐼𝑖  can be calculated for this 

platform with the formula: 

 𝐼𝑖 =
1

12
∗ 𝑤𝑝
4 [𝑚4] (5.3) 

 

The distance between the keel and the centre of buoyancy 𝐾𝐵̅̅ ̅ can be calculated with the follow-

ing formula: 

 𝐾𝐵̅̅ ̅ =  𝑑 −
1

3
∗ (
𝑑

2
+
𝑉𝑠𝑢𝑏
𝐴𝑤
) [𝑚] 3 (5.4) 

Where 

𝑑 is the depth of the platform [m] 

𝐴𝑤 is the cross-section of the platform at the height of the water [m2] 

For the box-shaped platform used, the cross-section of the platform at the height of the water is 

equal to the width of the platform squared. When using the formulas for 𝑉𝑠𝑢𝑏 and 𝐴𝑤 the formula 

can be simplified for a box-shaped platform to: 

 𝐾𝐺̅̅ ̅ =
1

2
𝑑 [𝑚] (5.5) 

 

The distance between the keel 𝐾𝐺̅̅ ̅ can be calculated by calculating the position of the centre of 

gravity with the bottom of the platform as reference line. This will give the following formula: 

 𝐾𝐺 ̅̅ ̅̅ =
𝑚𝑏 ∗ (

1
2
∗ ℎ𝑏 + ℎ𝑝) + 𝑚𝑝 ∗ (

1
2
∗ ℎ𝑝)

𝑚𝑏 + 𝑚𝑝
 [𝑚] (5.6) 

Where 

ℎ𝑏 is the height of the building [m] 

ℎ𝑝 is the height of the platform [m] 

𝑚𝑏 Is the mass of the building [kg] 

𝑚𝑝 is the mass of the platform (with extra ballast) [kg] 
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The value of GM can not only be used to determine whether the object is stable, it can also be 

used to give the relationship between the heeling moment and the rotation. This relationship is 

used in the formula for the healing moment: 

 𝑀ℎ𝑒𝑒𝑙𝑖𝑛𝑔 = 𝑊𝑡𝑜𝑡𝑎𝑙 ∗ sin(𝜙) ∗ 𝐺𝑀̅̅ ̅̅
̅̅ ̅̅  [𝑘𝑁𝑚] 4 (5.7) 

Where 

𝑊𝑡𝑜𝑡𝑎𝑙 is the total weight, thus the weight of the platform and the weight of the building. 

𝜙 is the rotation of the floating high-rise as can be seen in Figure 26. 

5.3 THE MODEL 

Although the calculation of the GM value is very convenient and easy, the crucial assumption is 

made that the object is infinitely stiff. With ships, for example, this is a reasonable assumption 

due to their dimensions. However, with floating high-rise buildings, this cannot be assumed. 

Both the relatively thin platform and the relatively thin tower can deform substantially. This can 

cause a strong change in the calculation of the stability. To include this flexibility in the calcula-

tions, the total calculation must be started from the beginning. 

A model is used for the calculations. This will be created in the Rhino and Grasshopper pro-

gramme with the Karamba plugin. In this model the flexibility will be taken into account. The 

purpose of the model is to give a more realistic result than the GM method. To validate the mod-

el, the elements in the model can be made infinitely stiff. With these elements, the results of the 

model and the GM method should be the same. Then, with the realistic values for the stiffness’s 

(as described earlier in chapter 3) the new calculations can be done. 

How all parts of the model work is explained next. But before going into these details, the model 

will be discussed globally. 

The model has three goals: Firstly, to determine the minimum platform width for which the 

whole is stable for different building heights. The stability is not only determined by this width, 

but it is by far the largest influence factor. This goal is to understand the stability and to find 

minimum required values. The second goal is to determine the minimum height and depth of the 

platform for different heights of the building and for different platform widths. This second goal 

is to get a notion of the behaviour of the stability of the building. The last goal of the model is to 

compare the results with flexible elements with the manual calculations of the GM method. The 

GM method is thus used to validate the model when infinitely stiff elements are used and to de-

termine the difference when realistic stiffnesses are used. The latter goal is to determine wheth-

er "flexible" elements are needed for determining the stability and minimum dimensions. 

To achieve these goals, four input parameters were used in addition to the location conditions. 

These are: 

 Building height 

 Width of the platform 

 Height of the platform 

 Depth of the platform 
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By using the parametric programme, these parameters are variable and can be adjusted at any 

time. In this way, the parameters will be adjusted to meet the checks. Actually, there are three 

parameters that can be freely chosen. In addition to the height of the building and the width of 

the platform, this is the extra ballast that can be used to make the whole heavier and thus to cre-

ate more depth. Because this is not a convenient input parameter, it was decided to use the 

depth as input parameter. In the calculations, the extra ballast needed to reach this depth is cal-

culated and used. The height of the platform follows from the depth of the platform and the wave 

height. However, because, like the width, the minimum necessary value of the height is investi-

gated, it will also be used as input. 

The major difference with the manual calculations (GM method) are the flexible elements. These 

flexible elements ensure that an extra component is needed in the model compared to the hand 

calculations; multiple iterations for the second order moment. When a very tall building deforms 

as well as rotates, a large second order moment is created. This will cause a larger deformation 

and rotation. Because these can be substantial, the second order moment will increase again. In 

order to calculate the final deformation and rotation as good as possible, several iterations will 

be made. 

 

Figure 27 - Flow diagram of the static stability model. 

Now that the model has been globally described, we will now turn to the content. The diagram in 

Figure 27 was created for this purpose. This diagram shows the 8 steps that the model follows 

and which parts are included in these steps. The various steps are discussed one by one below 

with the exception of the first two: the input and the hand calculations. The contents of these are 

discussed in chapters 2 and 3. In these steps, it is mainly about the values that are going to be 

used, for example: The weight of the building. In the second step, besides calculating the proper-

ties and forces for the model, the calculations are done using the GM method as explained earli-

er. The calculated forces, depth of the platform and rotation of this GM method will be used to 

validate the model. 

5.3.1 ELEMENTS 
The third step is to create the elements for the model. The four parts in this step are: The geome-

try, the properties, the spring supports and the forces. These are described below. 

Geometry: The model in Rhino/ Grasshopper will be 2D with two 1D elements; platform and 

building. This choice for the model is explained in chapter 3. The main reason is to keep the 

amount of calculations limited in order to do a proper parametric analysis.  



The 1D elements are placed in the middle of the original object, see Figure 28. This causes the 

building to no longer be attached to the platform. Therefore an extra height of half the height of 

the platform has been added to the building element. This part has an infinite stiffness. The two 

elements are then divided into small elements. This creates nodes between these small elements 

where the supports and the forces can be attached. Both the platform and the building will be 

divided into 100 elements. This is enough to model both the forces and the supports accurately 

enough. 

 

Figure 28 - Schematisation of the model where de elements are modelled in 1D (shown as a line). a) With the 
contour of the building and platform. b) With the supports. 

Properties: Again, there is a heading "properties" (just as in step 2). This step is about applying 

the properties to the elements. These are values based on the variable input parameters, as de-

termined in chapter 3. In this step an option is added to make all elements infinitely stiff, or to 

give them the realistic stiffness. Making the elements infinitely stiff ensures that the model can 

be validated with the GM method. 

Spring supports: The platform is supported by springs with a spring stiffness of 10.055 kN/m3. 

This represent the upward buoyancy force in salt water. In the program Karamba, no spring 

supports are available, only spring elements. These spring elements are distributed over the 

length and at one side attached to the platform and on the other side clamped, in order for them 

to act as spring supports. This can be seen in Figure 28b. The spring forces are scaled, taking into 

account the distance between the springs and the length and width of the platform in order for 

the total spring force to be equal to 10.055 kN/m3. Although in reality the water can be seen as a 

continues spring, multiple springs distributed over the length gives the same results when 

enough spring elements are used. In this model 101 springs are used which is more than enough. 

This can also be concluded later when it is shown that the GM method gives the same results as 

the model. 

Forces: Four different forces have been modelled;  

 Dead weight 

 Wind force 



 Wave force 

 Second order moment.  

Figure 29 shows three of them (the dead weight speaks for itself). All forces are modelled as 

point loads. This is necessary because the distributed load of the wind and waves is not equally 

distributed but differs per position. To be able to apply this in Grasshopper, the forces have to be 

modelled as point loads with each point load having its specific value. There are 101 point loads 

for the wind and for the wave (the elements are split into 100 creating 101 nodes). The point 

loads represent a piece of distributed load, the point loads at the ends of the elements represent 

only half of what the other point loads represent. Therefore they are separately added with a 

reduced value. This is perhaps an exaggeration because the margin of error when this is not 

done is probably very small, but it is done anyway to be able to validate the model as well as 

possible. The same is done for the spring supports. How the wind and wave force is determined 

has already been described in chapter 2. A small addition must be made about the wave force. In 

the paragraph on location and conditions it can be seen that the wave is variable over the direc-

tion of the wave and in time. The latter causes the wave force and thus the moment through the 

wave to change in time. For the static stability the most extreme static situation has to be exam-

ined Therefore, an additional calculation has been added (in step 2) that calculates for each situ-

ation the time for which the moment of the wave is at its maximum, and therefore the most neg-

ative. This moment in time is used for the calculations. 

 

 

Figure 29 - Modelled forces. a) Wind force. b) Wave force. c) Second order bending moments. 

5.3.2 MODEL 1 AND THE REARRANGEMENT OF ELEMENTS 
The elements can now be used to create a model. There is only one crucial element missing, so 

that no equilibrium can be found when the calculations are made: a horizontal support. A fixed 

support does not exist in reality and the floating high-rise can move horizontally and is, just like 

vertically, held back by the water which can be modelled as springs. These springs are not added 

to this model because they have little added value and they are difficult to model correct with 

the 1D platform element. To prevent the horizontal displacement a horizontal support is added. 

To ensure that it does not influence the results, it should be applied at the height of the centre of 

gravity, see Figure 28b. To do this, the centre of gravity is determined in step "model 1". This 



centre of gravity is then added as a node in the next step "rearranging the elements". As this 

node was not yet present it has to be created in the elements. 

 

5.3.3 MODEL 2 AND THE CALCULATIONS 
With the horizontal support, the model can now be calculated. Two load cases are calculated. 

The first is with only the own weight. From this, the depth of the platform can be determined. 

This was an input parameter and so it can be checked here whether this depth is also achieved. 

The second load case is with the wind and wave forces but without the second order moment. 

With the resulting support forces and moments in the elements, the total wind and wave mo-

ments can be determined. These can be validated by the hand calculations of step 2 in order to 

check whether the forces are correctly modelled and applied. The rotation cannot yet be validat-

ed as the GM method includes a second order moment. This will therefore also have to be ap-

plied in the model. This can now be done with the results of the first calculation. 

For the second order moment the deformation of each point of the building, obtained from the 

first calculation, is determined and multiplied by its representing gravity force. This gives the 

bending moment due to the second order. These moments are added at the positions of the 

points in the model, see Figure 29c. A moment was used because the vertical force, due to its 

own weight, is already in the model and was otherwise taken into account twice. This method is 

used instead of only one bending moment at the centre of gravity as this method is more accu-

rate when taking into account the deformation of the building. 

When this second-order moment is applied, the calculation can again be done. When infinitely 

stiff elements are chosen, this second calculation can be used to validate the model, the rotation 

of the model must now be equal to the rotation of the GM method. When the elements are not 

infinitely stiff, the rotation will be different. 

As mentioned, several iterations are used to calculate the final displacement and rotation if flex-

ible elements are used. In the second calculation, the deformation of the first calculation will be 

used to determine the second order moment as just described. In the third calculation, the de-

formation of the second calculation will be used, etc. The calculation is done five times. In this 

chapter, the difference of these five calculations will not be discussed and the last calculation 

will be used as output. During the calculation, for each iteration it is determined how much the 

rotation varies with respect to the previous iteration in order to check whether the difference is 

small enough to use it as the final result. 

5.3.4 CHECKS 
The result of the last iteration is used to check whether the regulations are met. The first check is 

whether the floating high-rise is stable. This can be seen in the results, when it is not stable, the 

model will translate endlessly and therefore give no (normal) results. The second check is 

whether the depth of the platform is enough to ensure that the wave is not lower than the plat-

form, see Figure 30. This is checked for the situation without translation of the floating structure 

and for the situation with translation (Because these are static calculations, it is not known how 

much the floating structure has been translated at which moment in time. Therefore, these two 

extremes are taken. It is assumed here that if the checks complies with these two situations, it 

complies with all situations). To determine whether the check is satisfied, the wave, like the plat-



form, is divided into 101 nodes. Next, it is checked per node whether the node of the bottom of 

the platform is lower than the node of the wave. The third check is whether the top of the plat-

form is 0.3 m higher than the wave. This is done in the same way for the two situations. When 

one of the checks is not satisfied the input will have to be changed and the whole calculation is 

repeated. 

 

Figure 30 - Check whether the wave is within de top and the bottom of the platform. 

5.3.5 FLAW IN THE MODEL 
The validation of the model has revealed a flaw in the model. When the value of GM from the GM 

method is low or negative, the model gives incorrect result. This is due to the iterations that 

have to be done. The smaller the GM value, the larger the rotation. And the larger the rotation, 

the more iterations are required to arrive at the final equilibrium. When the rotation is very 

large, it takes too many iterations to calculate. Even after 30 iterations (usually 5 are enough) 

the difference per iteration is still more than 5% and the rotation is only half of what it should 

be. When the GM value is negative, and therefore there is no stability, the model does give re-

sults. This is to be expected because the lack of stability of the building means that very little 

equilibrium will be found when doing infinite iterations. However, it is not possible to see the 

difference in the model between needing many iterations to reach the equilibrium as necessary 

with a low GM value or not being able to find an equilibrium because the GM value is negative. 

For all results in the next paragraph, it is tested whether the model is accurate when rigid ele-

ments are used. Usually 5 iterations are used. If this is not sufficient, it can be scaled up to a max-

imum of 30 iterations. 

5.4 RESULTS 

In this paragraph, the results of the model are discussed and compared with the manual calcula-

tions based on the GM method. Many results have been obtained, but only a few are shown for 

illustrative purposes. Some results are used as input for the dynamic calculations. 

5.4.1 MINIMUM PLATFORM WIDTH 
Because of the flaw mentioned, the first goal of the model, the determination of the minimum 

width of the platform for stability, cannot be achieved with the model. In order to achieve this 

goal, the GM method is used. In theory, the flexibility of the elements should not make any differ-

ence to the stability of the whole and therefore the model should give the same stability limit as 

the GM method. The depth and height of the platform must comply with the two regulations ex-

plained above. However, this can only be determined correctly in the model and not in the GM 

method. Therefore, the depth used is the depth that the floating high-rise would have without 

additional ballast until the depth would be less than half the wave height. For those values, extra 

ballast was used to make the depth equal to half the wave height. This would also have been 

done if it had been assumed that the building could not move. In this way the depth is not a vari-

Top of the platform 

Bottom of the platform 



able parameter which ensures that the limiting values due to static stability is solely expressed 

in the height of the building and the width of the platform. 

Excel was used to determine the minimum possible width of the platform for different building 

heights. In Excel the following steps are made: 

 All the values required for calculating the GM value are determined or calculated accord-

ing to chapter 3, 4 and 5. 

 Than the GM value is calculate for platform widths of 50 m to 500 m for one specific 

building height.  

 From that list, the smallest platform width is extracted that provides stability. This is the 

width that has the lowest positive GM value for that specific height. 

 This process is repeated for multiple building heights between 100 m and 800 m with 

steps of 25 m. 

In Appendix IV an example is given of the spreadsheet of the calculations. The results for mini-

mum platform width are shown in Figure 31. The calculation does not take the location into ac-

count as the GM value is not dependent on the conditions at the location. So it does not (yet) 

consider how much the building rotates and whether it is partly submerged, but only whether it 

is stable.  

 

Figure 31 – Resulting graph of the static stability calculations. The line shows the value of the platform width 
that only just gives stability for a certain building height. Sets of parameters below the line give a stable struc-

ture, sets of parameters above the line give instable buildings. 

As can be seen, the graph is completely linear. The formula for minimum platform width is de-

termined by means of curve fitting and is  

 𝐻𝑒𝑖𝑔ℎ𝑡 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 =  2.3936 ∗ 𝑊𝑖𝑑𝑡ℎ 𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 − 44.817 (5.8) 
 

To determine whether a floating high-rise is stable, the following inequality formula must there-

fore be fulfilled: 

 𝐻𝑒𝑖𝑔ℎ𝑡 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 ≤  2.3936 ∗ 𝑊𝑖𝑑𝑡ℎ 𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 − 44.817 (5.9) 
 



This purely linear graph seems to be the result of very simple calculations, but this is not the 

case and the result is also somewhat surprising. It is probably due to the assumption of the dif-

ferent parameters. In the end, all parameters are based on the height of the building and the 

width of the platform. Apparently in such a way that a linear result comes out of the minimum 

required platform width. To show that the calculation of the value from GM is quite extensive 

and to show that the results are correct, the same calculation was done in Maple to determine 

the formula and to make the 3D plot with both the height of the building as the platform width as 

a variable. In this plot you can also see that there is a linear relationship. The formula and 3D 

plot can be seen in Appendix IV. In spite of the flaw in the model, the minimum required plat-

form width was also determined with the results of the model. These are not shown, because 

they are not exact, but the results were in the end little different from those of the GM method. 

5.4.2 MINIMUM PLATFORM HEIGHT AND DEPTH 
The second goal of the model is to calculate the minimum height and depth of the platform for 

different building heights and platform widths and to get a notion of the behaviour of the stabil-

ity of the building.  For this goal the Grasshopper model is used, and thus the flexibility of both 

the building and platform is taken into account.  

For different combinations of building height and platform width values, the minimum height 

and depth of the platform is calculated. In order not to get too many calculations and data, it was 

decided to take only heights of 100 m, 300 m and 500 m for the building and platform width 

ranging from the first platform width for which it is stable up to 600 m with steps of 25 m.  

After the height and depth of the platform are determined, the following results are obtained 

from the model: 

 Angle of rotation at the middle of the platform 

 2nd order moment 

 Wind and wave moment 

 Deflection at the top of the building 

 Ratio between the model and the GM method 

 Change in the angle at the fifth iteration of the model 

The results for all three location can be seen in Appendix IV. The rotation in the centre of the 

platform from the model is compared with the expected rotation of the GM-method. This shows 

how different the rotation is. Also when the infinite stiff elements are used the rotation should 

be the same. The wind and wave moments of the model and of the GM model are compared in 

order to check if they are the same and thus correct. 

5.4.3 INFLUENCES OF THE PARAMETERS 
In this subparagraph the influences of the different parameters are discussed. These are based 

on the results of the determination of the minimum depth and height of the platform. For illus-

trative purposes some results are shown. Other results can be seen in Appendix IV. 

The height and depth of the platform depends on several factors. Therefore, it is difficult to say 

why a certain set of parameters gives a certain height and depth. The minimum height and depth 

depend strongly on the width of the platform. Widening of the platform can have both positive 

and negative effects on the minimum dimensions. The different ways in which an increase in the 

width of the platform affects these dimensions are as follows:  



 The rotation of the platform becomes less because the GM value increases. This is a posi-

tive effect as the maximum tilt will be less. In addition, the ends of the platform will 

translate less vertically due to rotation from the centre of the platform. This reduces the 

risk of the end of the platform being flooded. This last advantage can also be a disad-

vantage. Due to more stability, the platform moves less with the waves. Figure 32 shows 

that this can lead to problems. 

 Secondly, the total forces on the platform will increase. This may cause more rotation. 

With more rotation there is more chance that the end of the platform will submerge and 

thus a change in the necessary platform height and depth will be needed. 

 Thirdly, the value of the moment due to the wave fluctuates with wider platforms. This 

means that a narrower platform may cause less rotation than a wider platform because it 

has substantially less moment. This will be discussed later in this subparagraph. 

 Lastly, the stiffness of the platform will increase. It is to be noted that the increase in 

forces is (relatively) larger than the increase in stiffness and thus a wider platform de-

forms more. This deformation can be favourable or unfavourable. The building in the 

centre of the platform gives the platform a banana shape where the ends are pushed up 

relative to the centre, see Figure 33a. This can reduce the needed height of the platform. 

However, the sagging in the middle of the platform can result in a need for more depth, 

see Figure 33b. If more depth is required, the height of the platform will also need to be 

increased. It must be said that if the platform is very wide and the height is not very high, 

the platform also deforms a lot due to the wave force or the weight of the building and it 

will have less of a banana shape. In this case the local deformation can cause problems to 

the amount of rotation of the building but not for the minimum needed height and depth 

of the platform. 

 

Figure 32 – An example of the possible negative influence of more platform width. The bigger platform rotates 
less which can cause it to be below the wave. 



 

Figure 33 - Positive and negative influence of the deformation of the platform into a banana shape. In the left 
figure the deformation is positive as the outer edges rise above the wave. In the right figure the influence is 

negative as the middle of the platform sinks below the water. 

In addition to the width of the platform, the height of the building also affects the minimum plat-

form height and depth. As the height of the building increases, so does its weight. This increases 

the deformation in the middle of the platform. This in turn can have a positive or negative effect 

on the minimum depth and height of the platform as explained before and shown in Figure 33. 

Although it is difficult to determine why there are certain results as they are very complicated, 

patterns can be discovered. The graph for the height of the platform and the depth of the plat-

form are very similar and both can be divided into three phases. To illustrate, the graph of the 

platform depth for a building with height of 100 m at the location of the equator is given in Fig-

ure 34. In the first phase the minimum platform width decreases sharply until the width of the 

platform has a certain value. What this value represents is unknown. It is always lower than the 

wave length. In the second phase, the minimum depth increases slightly and then decreases 

again until it has a second local minimum. This minimum happens when the platform width is 

equal to a multiple of the wavelength. There may be several of these minima in the graphs. In 

this case, there are two. The third phase is the phase in which the platform is so wide that it 

hardly rotates. As a result, the depth of the platform should be approximately equal to half the 

wave height for all platform widths. The graph will therefore be constant. This third phase will 

occur at bigger platform width values if there is a higher and thus heavier building. This is  be-

cause of the sagging of the platform. 



 

Figure 34 – Minimum needed platform depth for a floating high-rise building with a height of 100m at the lo-
cation of the equator. The graph is divided in three phases. Phase 1 were the needed depth decreases with 

increasing platform width. The second phase were the needed depth increases and decreases again. And the 
third phase were the platform is so stable that there is no rotation anymore and the minimum depth of the 

platform is equal to half the height of the wave. 

For the rotation, a graph was made for both the model and the results of the GM method calcula-

tions (which is equal to an infinite stiff building in the model). In Figure 35 the results are shown 

for a building of 100m and 300 m for the North Sea location,  

 

Figure 35 - Angle of rotation in the middle of the platform for different widths of the platform from the model 
and calculated with the GM method. The left graph is for a building height of 100 m. The black lines indicate 

the minimums. Right graph is for a building height of 300 m. Both graphs are for the North Sea location 

The rotation calculated with the GM method shows minimum values for certain platform widths. 

Research into these platform widths shows that these are platform widths for which the total 

moment due to the waves is minimal. In Figure 36 the moment due to the wave is shown for the 

North Sea location. Earlier in this chapter it was mentioned that for these static calculations a 

calculation is done for the most "negative" time. That is the time for which the moment through 

the waves is at its maximum. For these platform widths the wave moment is minimal regardless 

of the time. These are clearly important widths as there is substantially less rotation. That is why 

these widths have been given a name in this study. The so-called "zero moment widths". In Ap-

pendix V a more extensive study and explanation of these zero moment widths can be found. 

 

Phase 3 Phase 2 Phase 1 



The zero moment widths depend on the wavelength and are therefore different for each loca-

tion. 

Figure 35 also shows that the rotation for these zero moment widths decreases when the zero 

moment widths become larger with the GM method. (In the case of the 100m building, you can 

see that the rotation is still 0.2 degrees at the first black line from the left and almost 0 degrees 

at the third black line). This is a logical consequence of a combination of minimal moment due to 

the wave and increasing stability due to a larger platform. 

Looking at the results of the model in Figure 35, these minimums on the zero moment widths 

are less clear. There are local decreases in the rotation but not as extreme as in the GM method.  

The local minimums are not much lower than the maximums. Especially with larger platform 

widths, the difference is minimal. This difference can be explained by the flexibility of the ele-

ments. In the GM method, the platform and building rotate as a whole. If the building causes ex-

tra rotation, the whole platform rotates a bit. With more flexible elements as in the model, with 

larger values of the width of the platform, there will be larger differences in the local rotations. 

When the building causes a rotation, the middle of the platform rotates a lot and the ends almost 

not. This is illustrated in Figure 37. This causes a big difference between the two methods. This 

difference can also be seen when you look at the ratio between the rotation of the model and the 

rotation of the GM method in Figure 38. Especially at the zero moment widths, the model has a 

much higher rotation than the GM method. It can be concluded that using infinite stiff properties 

for the platform results in inaccurate rotations. Especially when using the seemingly promising 

zero moment widths. These zero moment width are still promising when flexible elements are 

used, just not as promising as with infinitely stiff elements. For the dynamic analysis a platform 

with accurate stiffness should be used. 

The rotation increases between two minimums but for the GM method, the wider the platform 

the less this increase. This is as expected as wider platforms give more stability. This is different 

in the results of the model. The model behaves less predictably. For the building of 100m, the 

rotation even increases. For higher buildings, the rotation follows the same pattern as the GM 

method, only it gives higher values. Again this can be explained by the local deformation as seen 

in Figure 37. The deviation from the GM-method is unpredictable. For the calm equator location 

this deviation is less, for the extreme waves of the Atlantic ocean the deviation is extreme. The 

GM method is thus not accurately usable when designing floating high-rise.  



 

Figure 36 - Moment on the middle of the platform due to the force of the wave. The values are obtained from 
the model. The conditions of the North Sea are used for this graph. 

 

Figure 37 - Difference in rotation of a stiff platform and a flexible platform. 

 

Figure 38 – Graph of the ratio between the results of the model and the GM method for the angle of rotation in 
the middle of the platform. These are shown for thee building heights: 100, 300 and 500 m. For this graph the 

conditions at the North Sea are used. 



The graphs for the rotation already showed a difference in infinitely stiff elements (GM method) 

and flexible elements of the model. The rotation of the building causes a translation of the build-

ing. In addition, there is an extra translation in the building due to second order moments. The 

deflection can be determined with the model. It is compared in Figure 39 with the deflection of 

the building when all elements are infinitely stiff. The latter corresponds to the GM method 

where the rotation is multiplied by the height of the building. 

Again, the local minimums can be seen. Since the displacement depends on the rotation, this is 

also in line with expectations. Furthermore, the same deviation from the GM method that was 

also seen in the rotation can be seen. The deviation from the GM method is also increasing. This 

is to be expected as the deformation of the platform will play an increasing role. In the dynamic 

analysis, this deflection is also determined. It may be that the displacement becomes more due 

to the dynamic aspect. This graph, together with the graph of the rotation, shows that using infi-

nitely stiff elements gives different results than when the flexibility is taken into account. The 

GM method is often a too positive estimate. This is to be expected as the deformation of the 

building creates more second order moments. It also happens that the model gives more positive 

results. This can be due to the positive deformations as explained before. 

 

Figure 39 – Horizontal deflection at the top of the building for a building height of 100m and 300m. Calculated 
with flexible elements (model) and infinite stiff element (GM method). 

5.5 CONCLUSION 

A model was created to calculate the minimum platform width required for stability of the float-

ing high-rise and to calculate the minimum depth and height of the platform using non-infinite 

rigid elements. Furthermore the model is used to investigate the influences of different parame-

ters and to predict the static behaviour of floating high-rise. 

For the minimum platform widths, the model cannot be used because it becomes less accurate 

with larger rotations. Using manual calculations in Excel based on the GM method, a linear rela-

tionship between the minimum width of the platform and the height of the building was found. 

𝐻𝑒𝑖𝑔ℎ𝑡 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 =  2.3936 ∗ 𝑊𝑖𝑑𝑡ℎ 𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 − 44.817. The fact that this relationship is linear 

is most likely because of the way the many parameters are defined. These are designed to de-

pend only on the width of the platform and the height of the building. If other values are taken 

for these parameters, the relationship will deviate. However, it is a good estimate. 

The minimum depth and height of the platform varies with the width of the platform. The re-

quired depth and height decrease for higher platform width in the lower platform width region, 



up until a certain value (it is unknown why it is at this value and thus it cannot be determined 

beforehand. This value differs from locations and building heights.). Thereafter, the required 

depth and height increases and decreases several times until the platform is so big and thus sta-

ble that the required depth is equal to half the wave height and the height of the platform is 

equal to the height of the platform.  

The rotation of the platform and the deflection of the top of the building calculated by the model 

is very different from the results from the GM method. It does follow the same pattern, there are 

minimum values for the rotation of the platform. These occur at the platform widths for which 

there is a minimum in the total moment on the platform due to the wave. These platform widths 

have been called the “zero moment widths”. For wider platform widths, the total rotation of the 

platform plays less of a role and the local rotation plays a bigger role. Therefore, the rotation 

does not decrease for larger platform widths as it does for the GM method. Increasing the height 

of the platform will result in less local rotation and thus a more stable building.  

All in all, it can be concluded that the GM method is not adequate for the study of floating high-

rise buildings and that an analysis should be done with flexible elements. Looking at the rota-

tion, it is best to choose the width of the platform such that the moment due to the wave on it is 

minimal, called zero moment widths. These are certain values that depend on the wavelength of 

the wave. The height of the platform and the depth will also have to be determined with an anal-

ysis. No prediction can be made as to what the exact dimensions should be. Since the model with 

flexible elements differs so much from the GM method with infinitely stiff elements, for the dy-

namic stability elements with accurate stiffness should be used. 

  



6. DYNAMIC STABILITY 
This chapter deals with dynamic stability. The first paragraph discusses the different motions 

that exist for floating objects and for floating high-rise buildings. In the second to fourth para-

graphs, the three motions vertical translation, horizontal translation and rotation are discussed. 

This will be done using a dynamic model consisting of one point mass, the so called single-mass 

model. The formulas and values are determined to determine the motion and acceleration of the 

motions. Next, the parameters that influence the motion are investigated. Finally, it is investigat-

ed whether a tsunami can cause problems for the motions of the floating high-rise.  

In the fifth paragraph, the three motions are discussed in a single-mass model. This gives the 

same results as when they are considered separately but is an important stepping stone to para-

graph six. 

In paragraph six, multiple point masses are used to determine the dynamic behaviour. Called the 

multiple-mass model. In this paragraph, first the model is discussed together with the values and 

matrices that appear in the equation of motion. Then, using a model in Diana, it is examined 

whether the calculations for the eigenfrequency are correct and whether more than three point 

masses are necessary. Subparagraph 2 discusses the particular solution. Subparagraph 3 deals 

with the inclusion of the deformation of the platform in the model. Then the influence of a grow-

ing wave is examined in subparagraph 4. After this, again the influence of the parameters on the 

motions are examined and then the calculations are done with all assumptions available. This 

results in accelerations for different locations, building heights and platform widths. Finally, in 

this paragraph, limits are in the parameters are investigated to prevent resonance. 

6.1 MOTIONS 

One of the most important aspects of floating buildings is their dynamic behaviour. Although all 

buildings have motion, the displacement and acceleration of land-based buildings is many times 

lower than for buildings on water. This is due to the foundation being a liquid in motion instead 

of a (mostly static) solid. Both types of foundations can be modelled as a spring, in which water 

has a much lower spring stiffness than soil and can therefore be compressed much further with 

the same amount of force. In addition to wind loads, floating buildings are also subject to the var-

iable force of waves, which causes motions. 

Another big difference is the number of degrees of freedom. Buildings on land do not move in a 

vertical direction while buildings on water do. When the floating buildings are built on water 

with low depth, the degrees of freedom can be limited by using piles, for example. This is not 

possible on the open sea. The only possible support is a mooring line. However, this does not 

reduce the number of degrees of freedom, but rather reduces the amount of motion. So there is 

no restriction of motion and the building will have six degrees of freedom, three translations and 

three rotations. These six motion can be seen for a floating object in Figure 40. In maritime engi-

neering, all six motions have their own name5: 

 Surge (translation on the x-axis) 

                                                             
5 Here the simplification is made to consider the boat as a rigid body, so without any internal deformation. 
For large vessels (high length to cross-sectional dimension proportion) internal deformation also needs to 
be taken into account. The same goes for floating platforms or tall buildings. 



 Sway (translation on the y-axis) 

 Heave (translation on the z-axis) 

 Roll (rotation around the x-axis, denoted as 𝜙) 

 Pitch (rotation around the y-axis, denoted as 𝜃) 

 Yaw (rotation around the z-axis, denoted as Ψ) 

 

Figure 40 - Six different motions of a floating object. (Journee & Massie, 2015) 

For boats, these six motions are different due to the non (rotationally) symmetrical shape. Build-

ings and platforms do not necessarily have this symmetry either. In this research, it is assumed 

that the building and the platform do have this symmetry. This will reduce the different motions 

from six to four. It ensures that the translations and rotations are the same in both the x and y 

direction. Leaving only four different motions.  

Due to the simplifications used in this chapter, no research can be done on the Yaw motion. For 

this, a 3D model is required. This motion will be of less importance for comfort since the hori-

zontal forces are less than the vertical forces and the uncomfortable feeling comes mainly from 

the vertical displacement in combination with horizontal displacement and roll and pitch rota-

tion. The three motion left that are investigated in this study are thus: 

 Vertical translation (heave) denoted as “w” 

 Horizontal translation (surge and sway) denoted as “u” 

 Vertical rotation (roll and pitch) denoted as 𝜃  

This chapter will discuss the behaviour of a floating building regarding the remaining three mo-

tions. The motions are described one by one and modelled with a mass-spring system with one 

mass and one degree of freedom. With this, the frequency and the motion in time of the whole 

structure is determined for the three different motions. The calculations and the values needed 

for this are described in this chapter as well. Then the motions are combined in a mass spring 

system with one mass. This helps in understanding the calculations of multiple motions in one 

mass. Finally, the model is extended with several masses over the height of the structure, each 

with three degrees of freedom. 

6.2 VERTICAL TRANSLATION (HEAVE) 

The vertical translation in a floating building occurs solely as a result of the wave force.  The 

crest of a wave pushes the building upwards and a trough of the wave allows the building to 



sink, see Figure 41. The latter can also be seen as the wave “pushing the floating building down” 

as the buoyancy force is reduced compared to the still water level buoyancy.  

   

Figure 41 - Heave motion (vertical translation) 

The vertical motion is determined with a mass-spring system. The mass-spring system can be 

seen in Figure 42. As with static stability, the structure is supported by springs to simulate wa-

ter. With one mass, this also means one spring. In addition to providing spring support, the wa-

ter also dampens the motion. Therefore, in addition to a spring, the mass is also supported by a 

damper. The mass is excited by an external force. This force is the wave that pushes the mass up 

and down. The spring, the damper and the force have a vertical direction, just like the motion.  

 

Figure 42 - Mass spring system for vertical translation. 

6.2.1 EQUATION OF MOTION AND ITS VALUES 
In chapter 2 the limits of the motion are determined. These are limitations in the acceleration. To 

determine the acceleration of the mass, the motion must first be found. The motion can be de-

termined with the equation of motion. In the case of a floating structure, the equation is as fol-

lows: 

 



 (𝑚 + 𝑎)�̈� + 𝑐�̇� + 𝑘𝑤 = 𝐹𝑣 (6.1) 
 

Where 

𝑤 is the vertical displacement [m] 

𝑚 is the mass of the structure [kg] 

𝑎 is the hydrodynamic mass coefficient (added mass) [kg] 

𝑐 is the hydrodynamic damping coefficient [Ns/m] 

𝑘 is the spring stiffness [N/m] 

𝐹𝑣 is the exerted vertical force [N] 

The mass depends on the sizes of the building and the platform. In chapter 4 a relation is shown 

between the mass and the buoyancy force. The mass can thus be expressed in terms of water 

density, gravity acceleration and the immersed volume of the platform as done in the chapter on 

buoyancy in formula (4.1): 

 𝑚 ∗ 𝑔 = 𝜌𝑤𝑎𝑡𝑒𝑟 ∗ 𝑔 ∗ 𝑉𝑠𝑢𝑏 (6.2) 
Where 

𝑔  is the acceleration of gravity, 9.81 𝑚/𝑠2 

𝜌𝑤𝑎𝑡𝑒𝑟 is the density of salt water, 1025 kg/m3 

𝑉𝑠𝑢𝑏 is the submerged volume [m3] 

The determination of the vertical spring stiffness has already been described in the chapter on 

static stability. This is equal to the density of water times the gravity acceleration. To model this 

as one spring, this value must be multiplied by the cross-sectional area of the platform at the 

height of the water. In the case of a square platform this is equal to the width of the platform 

squared. This results in the following formula for the spring stiffness: 

 𝑘 = 𝜌𝑤𝑎𝑡𝑒𝑟 ∗ 𝑔 ∗ 𝑤𝑝
2 [𝑁/𝑚] (6.3) 

Where: 

𝑤𝑝 is the width of the platform [m]  

The added mass (𝑎) and damping (𝑐) are caused by the hydrodynamic reaction of the water due 

to the displacement of the platform in relation to the water. Both are explained below. 

Damping exist of two types; potential and viscous damping. Potential damping is the damping 

by creating waves. An oscillating object in water creates waves that cause the motion to dissi-

pate energy and therefore dampen it. The amount of dissipation and thus damping is propor-

tional to the speed of the motion (Journee & Massie, 2015). This damping can be evaluated nu-

merically. This evaluation is however very time consuming as it involves many factors, difficult 

calculations and the damping will also be different for each motion as is showed by experiments. 



For example for a hybrid floating platform for offshore wind turbines (Clement, Kosleck & Lie, 

2021). 

The viscous damping is damping due to friction between the platform and the viscous fluid that 

is water. According to Malta et al. (2010) the viscous damping can be evaluated through experi-

ments. The common test for the viscous damping is a free oscillation test of a scale model in 

which the decay signal is analysed or an irregular wave test. According to Journee & Massie 

(2015) this damping is small for large floating structures. Although it can influence the damping 

and result in nonlinear damping coefficients especially in roll motions. Journee & Massie (2015) 

do show that the damping of vertical oscillation depends on the density of the water, the gravita-

tional acceleration, the displacement of the platform itself, the frequency of the motion and the 

amplitude of the wave created.  

As explained, determining the damping is very difficult and time-consuming. Although it is a 

very important parameter, the damping is not calculated or determined by experiments. A 

standard value of 0.1 is used for the damping ratio (not the damping constant) as this is the val-

ue usually used for ships. It is investigated what the change of this value means for the motions, 

but not how the conditions and the changes of the parameters influence the damping constant. 

For a more extensive determination of the motion of floating high-rise buildings, more research 

will have to be done into the damping. 

The damping constant can be calculated using the formula: 

 𝑐 = 2𝜁(𝑚 + 𝑎)𝑘 [Ns/m] (6.4) 
Where 

𝜁 is the damping ratio. 

The added mass coefficient (𝑎) is the added mass or the effective mass of the fluid that sur-

rounds the body which must accelerate along with the body. This is due to the effect of distor-

tion of  the flow pattern of the water created by a body floating in flowing water or an accelerat-

ing body in still water. Although the water particles surrounding the body will accelerate to var-

ying degrees, depending on their position relative to the body, the added mass can be approxi-

mated by the weighted integration of the entire mass of accelerating fluid particles (Newman, 

1977). Barltrop  (1998) states that it is a complex effect which is dependent on the motion direc-

tion, oscillation frequency and the geometry of the submerged body but that it can be approxi-

mated by adding the mass coefficient to the total mass of the body in the equation of motion as 

can be seen in equation (6.1). In his book, Barltrop shows rough estimations for this added mass 

of a rectangular floating body for heave, sway and roll motions.  These estimations can be seen in 

Figure 43. 



 

Figure 43 - Rough estimate of added mass (per unit length of hull). Source: Barltrop (1998). 

As can be seen the added mass for the vertical translation is equal to: 

 𝑎 =
1

2
∗ 𝜌
𝑤𝑎𝑡𝑒𝑟

∗ 𝜋 ∗ (
𝑤𝑝

2
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 (6.5) 

6.2.2 HOMOGENEOUS SOLUTION 
To solve the equation of motion, the eigenfrequency of both the damped and the undamped sys-

tem must be found. For the undamped system this can be done by means of the homogeneous 

solution. To find this homogeneous solution the equation of motion (6.1) must be solved where 

the force (𝐹𝑣) is equal to zero and the damping (𝑐) is zero. This changes the equation of motion 

into: 

 (𝑚 + 𝑎)�̈� + 𝑘𝑤 = 0 (6.6) 
 

To solve the equation, the following formula is used for the displacement: 

 𝑤(𝑡) = 𝐴𝑐𝑜𝑠(𝜔0𝑡 + 𝜑) [𝑚] (6.7) 
 

Where 

𝜔0 is the eigenfrequency 

𝜑 is the phase shift 

Using equation (6.7) in (6.6) and solve for 𝜔0  gives: 

 𝜔0 =  
√

𝑘

𝑚 + 𝑎
 [𝐻𝑧] (6.8) 

As the damping value (𝜁) is below 1, the system is of the under-damped type. The natural fre-

quency of the damped system can then be calculated with: 



 𝜔𝑒 = 𝜔0√1 − 𝜁2  [𝐻𝑧]
6  (6.9) 

When using all the values and relationships from chapter 2, 3 and 4 for the parameters in the 

formula’s in this paragraph, the eigenfrequency can be expressed into just two parameters; the 

height of the building and the width of the platform, for a specific depth of the platform. The re-

sult for a platform with as depth of 20m for a floating high-rise building at the North Sea is 

shown in the figure below as an example. Note that three parameters are used as variables in the 

calculation of the eigenfrequency: The height of the building, the width of the building and the 

depth of the platform. From the depth of the platform follows the necessary additional ballast to 

reach this depth as shown in chapter 4. The choice to take the depth as a variable and not as the 

minimum depth is because adjusting the mass gives a different eigenfrequency and the mass is 

adjustable freely. 

 

Figure 44 – 3D graph of the frequency of the vertical motion for different platform widths and building 
heights. For a platform with a depth of 20m at the North Sea. 

6.2.3 VERTICAL WAVE FORCE 
In chapter 2 the condition of the wave is described. For this research the waves are simplified to 

a sine function (2.1). In that same chapter is shown how to calculate the vertical wave force in 

equation (2.3). This force is a load distributed across the width of the platform. Because a point 

mass is used here, this must be converted to a point load. How this is done can be seen in Ap-

pendix II. It result in a extensive formula for the wave force which can be simplified into: 

 𝐹𝑣(𝑡) = �̂�𝑤 ∗ sin(𝜔𝑤𝑡 +  𝜑𝑤) [𝑁] (6.10) 

With: 

 �̂�𝑤 =
𝐿 ∗ 𝐻 ∗ 𝐹𝑤𝑎𝑡𝑒𝑟 ∗ 𝑤𝑝 ∗ sin (

𝑤𝑝 ∗ 𝜋

𝐿
)

2𝜋
  [𝑁] (6.11) 

and 
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 𝜔𝑤 = 
2𝜋

𝑇
 [𝐻𝑧] (6.12) 

 

Since it does not matter for the result where and when the wave starts, in order to simplify 

(6.12), the phase shift (𝜑𝑤) is taken as zero. This results in: 

 𝐹𝑣(𝑡) = �̂�𝑤 ∗ sin(𝜔𝑤𝑡) [𝑁] (6.13) 

 

6.2.4 PARTICULAR SOLUTION 
For the particular solution the equation of motion in (6.1) needs to be solved where 𝐹𝑣 (𝑡) is as 

show in (6.13). To solve the equation, the following formula is used for the displacement: 

 𝑤(𝑡) = 𝐶1 ∗ 𝑠𝑖𝑛(𝜔𝑤𝑡) + 𝐶2 ∗ 𝑐𝑜𝑠(𝜔𝑤𝑡) [𝑚] (6.14) 
 

Substitution of (6.13) and (6.14) in (6.1) gives: 

 

𝑚 ∗ (−𝐶1𝜔𝑤
2 sin(𝜔𝑤𝑡) − 𝐶2 ∗ 𝜔𝑤

2 cos(𝜔𝑤𝑡))

+ 𝑐(𝐶1𝜔𝑤 cos(𝜔𝑤𝑡) − 𝐶2𝜔𝑤 sin(𝜔𝑤𝑡)) + 𝑘(𝐶1 sin(𝜔𝑤𝑡) + 𝐶2𝑐𝑜𝑠(𝜔𝑤𝑡))

= �̂�𝑣,𝑤 ∗ sin(𝜔𝑤𝑡)  

 

(6.15) 

This can be solved by separating the sine and cosine parts: 

 𝑚 ∗ −𝐶1𝜔𝑤
2 sin(𝜔𝑤𝑡) + 𝑐 ∗ 𝐶2𝜔𝑤 sin(𝜔𝑤𝑡) + 𝑘 ∗ 𝐶1 sin(𝜔𝑤𝑡) = �̂�𝑣,𝑤 ∗ sin(𝜔𝑤𝑡) (6.16) 

   
 𝑚 ∗ −𝐶2𝜔𝑤

2 cos(𝜔𝑤𝑡) + 𝑐 ∗ 𝐶1𝜔𝑤 cos(𝜔𝑤𝑡) + 𝑘 ∗ 𝐶2 cos(𝜔𝑤𝑡) = 0 (6.17) 
 

Solving for C1 and C2 gives: 

 𝐶1 =  
−(𝑚𝜔𝑤

2 + 𝑘)�̂�𝑣,𝑤
𝑚2𝜔𝑤

4 + 𝑐2𝜔𝑤
2 − 2𝑘𝑚𝜔𝑤

2 + 𝑘2
 

 

(6.18) 

 𝐶1 =  
�̂�𝑣,𝑤𝑐𝜔𝑤

𝑚2𝜔𝑤
4 + 𝑐2𝜔𝑤

2 − 2𝑘𝑚𝜔𝑤
2 + 𝑘2

 

 

(6.19) 

6.2.5 DISPLACEMENT AND ACCELERATION FOR HEAVE 
For the total solution of the equation of motion, the homogeneous and particular solution needs 

to be combined and solved for the initial conditions: 

 𝑤(0) = 0 𝑚 (6.20) 
   
 �̇�(0) = 0 𝑚/𝑠 (6.21) 

 

The displacement function (total solution) will have the following form: 

 𝑤(𝑡) =  𝐴𝑒−𝜁𝜔0𝑡 ∗ cos(𝜔𝑒𝑡 + 𝜑) +  𝐶1 ∗ 𝑠𝑖𝑛(𝜔𝑤𝑡) + 𝐶2 ∗ 𝑐𝑜𝑠(𝜔𝑤𝑡) [𝑚]  
7 (6.22) 
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With A and 𝜑 unknown. Solving (6.22) for the initial conditions (6.20) and (6.21) gives the 

solved equation of displacement. The vertical acceleration in time can now be determined by 

taking the double derivative of the displacement. The maximum acceleration can then be deter-

mined from the acceleration function. This is the value that is most interesting because of its lim-

its. 

6.2.6 INFLUENCING PARAMETERS 
In this subparagraph, the influence of various parameters on the vertical motion are examined. 

This is done by taking one of the parameters as variable and leaving the rest constant (They will 

have the values as shown in Table 4 in chapter 3). In this way, the influence of only that parame-

ter can be investigated. There are several parameters and factors that influence the vertical mo-

tion of the platform. The factors are mainly location related such as wave height and wave peri-

od. These factors cannot be changed by choices in the design (but by choosing another location) 

and are kept constant in this subparagraph. In addition to the factors, there are parameters of 

the floating high-rise building that influence the motion. For the vertical motion these are as fol-

lows: 

 Platform width (𝑤𝑝) 

 Height of the platform (ℎ𝑝) 

 Depth of the platform (𝑑) 

 Building height (ℎ𝑏) 

 Damping ratio (𝜁, also referred to as “zeta”) 

As explained in chapter 3, these are parameters for which the value can be freely chosen. (One 

can also choose to have the depth and height of the platform depend on the height of the build-

ing and the width of the platform. This has not been chosen here). The damping actually follows 

from the other parameters. Since the choice was made to assign a value to it and not to calculate 

it, the damping is examined as a free parameter.  

The height of the building only influences the vertical motion because the mass changes with 

different heights. Because the mass can be changed by the extra ballast, the influence of the 

height is not discussed for the vertical motion. However, the influence of the mass is discussed.  

The height of the platform has the only effect of changing the mass of the platform (it also pro-

vides more rigidity, but the flexibility of the platform is not included in the single-mass model). 

Since the mass is already being investigated and the change in mass is low, the height of the plat-

form will not be investigated further. 

For this investigation, we make use of the previous assumption, done in chapter 2, that the total 

solution of the equation of motion consists only of the particular solution at the most extreme 

wave height. (The case of a tsunami is discussed in the next subparagraph). For the total solu-

tion, the maximum acceleration is calculated and plotted against the variable parameter. The 

other parameters are constant (even though they would change. For example; if the platform 

widens the depth would decrease, but in these calculation the depth remains the same). This 

gives an indication of the influence of and sensitivity for each of these parameters in relation to 

the predicted acceleration. Of all the parameters above only the mass is not kept constant. 



Platform width: In Figure 45, the maximum vertical acceleration is plotted against various val-

ues of the width of the platform for the condition of the North sea. The points in the graph are 

the calculated values. As can be seen the acceleration drops rapidly for the lower platform 

widths. It has a local minimum for a platform width of 133m. Then it goes up slightly until the 

next local minimum of 266m. (These two minimums are indicated with a triangle in the graph 

with its platform width value). These local minimums are where the width of the platform is 

equal to the wavelength (=133 m) or a multiple of the wavelength. 

 

Figure 45 - Maximum vertical acceleration for different platform width for a building of 100m high at the 
North Sea. Single-mass model. 

Damping ratio: Figure 46 shows the maximum acceleration for different values of zeta for a 

building of 100m for the conditions at the North sea. The value of the damping has a great influ-

ence on the maximum acceleration. The graph decreases approximately linearly, with a value of 

0.5 having only half the maximum acceleration compared to no damping. Also, the homogeneous 

solution will be dampened faster with a higher damping value. However, it will not be easy to 

create a higher damping. 

 

Figure 46 - Maximum vertical acceleration for different values of zeta for a building of 100m high for the con-
ditions of the North sea. Single-mass model. 



Platform depth: The depth of the platform does not affect the maximum acceleration for verti-

cal motion in the single-mass model. This can also be seen from the formulas where the parame-

ter “d” does not occur. 

Mass: Figure 47 shows the maximum acceleration plotted against the total weight of the floating 

high-rise for a 100 m building at the North sea. The horizontal axis has a logarithmic scale. The 

graph makes an S-curve where the limit of the weight to infinity is equal to no acceleration. In 

other words, increasing the weight reduces the maximum vertical acceleration. The reduction in 

acceleration does differ for the different weight domains. In Figure 48 the graph is made without 

a logarithmic scale and only up to a total mass of 5 ∗ 108 kg. It can be seen that the decrease in 

acceleration decreases.  

 

Figure 47 - Maximum vertical acceleration for different total mass for a building of 100m high. Single-mass 
model. The horizontal axis has a logarithmic scale 

 

Figure 48 - Maximum vertical acceleration for different total mass for a building of 100m high with limited 
used values. Single-mass model. 

Changing parameters: Until now, the different parameters determining the motion have been 

used as if they were independent of each other. Throughout this report it is explained how the 

different parameters depend on each other. This has been done in such a way that when all  the 

relations are applied, there are only two parameters that remain variable; the height of the 



building and the width of the platform. The others follow from these two parameters in combi-

nation with regulations (e.g. minimum 0.3 m height difference between the top of the platform 

and the crest of the highest wave). 

Using all these relations, a more realistic graph of the maximum acceleration for different plat-

form widths can be made. The resulting graph is shown in Figure 49. In addition to this graph 

with changing parameters, the previous graph is also included where the parameters were still 

independent. 

The graphs hardly differ from each other. Only below 100m width there is a lower acceleration 

for the changing parameters. If the width of the platform is greater, the height and depth are 

constant because they have the minimum required values and thus this graph is as good as the 

same. When the same calculation, with changing parameters, is done for a building of 300m and 

500m, it can be seen that for higher buildings the maximum acceleration decreases, see Figure 

50. This is due to the increase of the weight at higher buildings, which causes less motion and 

less acceleration in the case of the vertical translation. The shape of the graphs are the same, 

however, there are minima at the platform width equal to the wavelength or a multiple thereof. 

 

Figure 49 – Maximum vertical acceleration for different platform widths for a building of 100m high for both 
the constant parameter as the changing parameters. Single-mass model . 

 

Figure 50 - Maximum vertical acceleration for different platform widths for a building of 100m, 300m and 
500m high for changing parameters. Single-mass model . 



6.2.7 TSUNAMI 
The polynomial function (2.8) as described in the paragraph on location and conditions was 

used in the equation of motion to determine the motion of the floating high-rise building for the 

case of a tsunami. The result for the acceleration of only the homogenous part of the motion of 

the mass is shown in Figure 51. Only the homogeneous solution is interesting here. The particu-

lar solution will not be relevant because of the low wave height. This homogeneous solution is 

calculated by subtracting the acceleration of the particular solution from the acceleration of the 

total solution. The acceleration is negligible as can be seen in the figure. Since the maximum 

height of the tsunami is much lower than in a storm, it is concluded that a tsunami wave is not a 

problem for the vertical dynamic stability.  

 

Figure 51 - Acceleration of the vertical motion for only the homogeneous part of the motion due to a tsunami. 

6.3 HORIZONTAL TRANSLATION (SURGE AND SWAY) 

The second motion discussed is horizontal displacement, see Figure 52. This displacement is 

caused by four things; The difference in water level at both ends of the platform, the impulse of 

the wave on the side of the platform, the wind on the structure and the flow of water. For the 

determination of the motion, not all four of these causes are taken into account. The current of 

the water will have a constant character and therefore the acceleration of the building due to the 

current will be negligible. Since acceleration is the cause of discomfort for people, this motion is 

not included. In addition to the flow, the impulse of the wave is not taken into account. The im-

pulse of a wave can be significant if the wave breaks (Kortenhaus et al, 1999). This only happens 

in shallow waters. The floating high-rise will be built on open water where the depth of the bed 

is great enough not to cause breaking waves. This leaves the difference in water level and the 

wind force. 

The mass-spring system again uses one mass with a displacement, spring, damper and force in 

the same direction; the horizontal direction, see Figure 53. 



 

Figure 52. Horizontal translation (surge and sway). 

 

Figure 53 - Mass-spring system for the horizontal translation. 

6.3.1 EQUATION OF MOTION AND ITS VALUES 
For the motion the same equation of motion will be used as for the vertical translation only this 

time with the horizontal displacement u: 

 (𝑚 + 𝑎)�̈� + 𝑐�̇� + 𝑘𝑢 = 𝐹ℎ (6.23) 
Where 

𝑢 is the vertical displacement 

According to Barltrop (1998), the added mass is as follows for the surge and sway (Figure 43): 

 𝑎 =  
1

2
𝜌𝑤𝑎𝑡𝑒𝑟 ∗ 𝜋 ∗ 𝑑

2 ∗ 𝑤𝑝 [𝑘𝑔] (6.24) 

 

The spring stiffness is again determined by the area where the water and the platform meet, 

multiplied by the density and the gravitational acceleration. For the horizontal motion, the sur-

face area is the height of the water in relation to the bottom of the platform times the width of 

the platform. The height of the water constantly changes due to the waves, so the spring stiffness 

varies with time. This is not taken into account in this study as this makes it very difficult to find 

a solution to the equation of motion. This is because the height of the wave at the end of the plat-



form has a different phase shift than the resulting force acting on the platform. As a result, the 

formula of the solution to the equation of motion cannot be estimated properly. This is partly 

due to the presence of the spring stiffness in the root of the damping expression. To give the 

spring stiffness the desired constant value, the average of changing spring stiffness is taken. The 

average of a wave is its equilibrium position and thus the spring stiffness is multiplied by the 

depth of the platform. It has to be noted that this is a strong simplification and that for a more 

accurate model this change in spring stiffness should be taken into account. How much this sim-

plification affects the results is unknown. The spring stiffness can then be calculated using: 

 𝑘 =  𝜌𝑤𝑎𝑡𝑒𝑟 ∗ 𝑔 ∗ 𝑤𝑝 ∗ 𝑑[𝑁/𝑚] (6.25) 
 

The same calculation for the damping is used: 

 𝑐 = 2𝜁(𝑚 + 𝑎)𝑘 [Ns/m]  (6.26) 
 

Again, the homogeneous solution can be used to find the eigenfrequency. The calculations are 

identical to those of the vertical motion, only the values used are different. The formula for the 

eigenfrequency of horizontal translating is as follows: 

 𝜔0 =
√

𝑘

𝑚+ 𝑎
 [𝐻𝑧] (6.27) 

When using all the values and relationships from chapter 2, 3 and 4, the eigenfrequency can be 

expressed into the height of the building and the width of the platform for a specific depth of the 

platform. The result for a platform depth of 20m for a floating high-rise building at the North Sea 

is shown in the figure below as an example. 

 

Figure 54-  3D graph of the frequency of the horizontal motion for different platform widths and building 
heights. For a platform with a depth of 20m at the North Sea. 



6.3.2 HORIZONTAL WAVE AND WIND FORCES 
Like the spring stiffness, the horizontal force depends on the water level. It is the difference in 

force between the two ends as shown in the figure below. 

 

Figure 55 - Horizontal wave force on the platform. 

If the wave is high at one end and low at the other, the force at one end is greater and the sum of 

forces is not zero. This resulting force can be calculated by: 

 
𝐹ℎ,𝑤𝑎𝑣𝑒(𝑡) =  

1

2
∗ (𝑑 + 𝐻𝑤,1(𝑡))

2
𝜌𝑤𝑎𝑡𝑒𝑟 ∗ 𝑔 − 

1

2
∗ (𝑑 + 𝐻𝑤,2(𝑡))

2
𝜌𝑤𝑎𝑡𝑒𝑟 ∗ 𝑔 

 
(6.28) 

Where 𝐻𝑤,1 and 𝐻𝑤,2 are the heights of the wave at the different ends of the platform. As said, 

these values are variable in time. The formulas are as follows: 

 𝐻𝑤,1(𝑡) =  
𝐻𝑤
2
cos (

2𝜋𝑡

𝑇𝑤𝑎𝑣𝑒
) [𝑚] (6.29) 

 

 𝐻𝑤,2(𝑡) =  
𝐻𝑤
2
cos (

2𝜋 ∗ 𝑤𝑝

𝐿𝑤
−
2𝜋𝑡

𝑇𝑤𝑎𝑣𝑒
) [𝑚] (6.30) 

Where 

𝐻𝑤 is the maximum height of the wave 

𝐿𝑤 is the wave length 

𝑇𝑤𝑎𝑣𝑒 is the wave period 

Since the time of the start of the motion does not matter for the calculations, the entire wave 

force can be written as one sinusoid. 

 𝐹ℎ,𝑤𝑎𝑣𝑒(𝑡) = �̂�ℎ,𝑤𝑎𝑣𝑒 ∗ sin(𝜔𝑤𝑎𝑣𝑒𝑡) [𝑁] (6.31) 

 

The expression for �̂�ℎ,𝑤𝑎𝑣𝑒 is not shown as it is extensive. To include the wind in the dynamic 

analysis, the dynamic behaviour as described in chapter 2 is used. The function for the wind 

speed is shown in (2.5). The calculations for the wind forces is shown in Appendix II The only 

difference with the wind load in the static stability is that the reference speed is not constant but 

variable in time.  And thus the wind force is variable in time. This results in a sine function: 



 𝐹ℎ,𝑤𝑖𝑛𝑑(𝑡) = �̂�ℎ,𝑤𝑖𝑛𝑑 ∗ sin(𝜔𝑤𝑖𝑛𝑑𝑡) [𝑁] 
 

(6.32) 

Where 

 𝜔𝑤𝑖𝑛𝑑 = 
2𝜋

𝑇𝑤𝑖𝑛𝑑
 (6.33) 

 

6.3.3 PARTICULAR SOLUTION 
Again, a sine function is used for the displacement to find the particular solution. For the reac-

tion to the wave force this is: 

 
𝑢(𝑡) = 𝐶1 ∗ 𝑠𝑖𝑛(𝜔𝑤𝑎𝑣𝑒𝑡) + 𝐶2 ∗ 𝑐𝑜𝑠(𝜔𝑤𝑎𝑣𝑒𝑡) [𝑚] 

 
(6.34) 

And for the reaction to the wind: 

 
𝑢(𝑡) = 𝐶3 ∗ 𝑠𝑖𝑛(𝜔𝑤𝑖𝑛𝑑𝑡) + 𝐶4 ∗ 𝑐𝑜𝑠(𝜔𝑤𝑖𝑛𝑑𝑡) [𝑚] 

 
(6.35) 

Different particular solutions have been used as the period of the wave and the wind can be dif-

ferent. This makes the total solution for horizontal displacement as follows: 

 
𝑢(𝑡) =  𝐴𝑒−𝜁𝜔0𝑡 ∗ cos(𝜔𝑒𝑡 + 𝜑) +  𝐶1 ∗ 𝑠𝑖𝑛(𝜔𝑤𝑎𝑣𝑒𝑡) + 𝐶2 ∗ 𝑐𝑜𝑠(𝜔𝑤𝑎𝑣𝑒𝑡) + 𝐶3

∗ 𝑠𝑖𝑛(𝜔𝑤𝑖𝑛𝑑𝑡) + 𝐶4 ∗ 𝑐𝑜𝑠(𝜔𝑤𝑖𝑛𝑑𝑡) [𝑚] 
 

(6.36) 

6.3.4 INFLUENCING PARAMETERS 
For the horizontal translation, the influence of various parameters was investigated, which is 

very similar to that for the vertical translation. Again, the important parameters were deter-

mined and investigated by fixing the other parameters. The difference lies in the parameters that 

have an influence. For the horizontal displacement, these are the following: 

 Platform width 

 Platform depth 

 Total mass 

 Damping ratio 

Note: The parameters platform height, building height and building width again have an influ-

ence but were not investigated for the same reason as for the vertical translation. 

The result of the examination of the parameters of the rotation is as follows: 

Platform width: The result for the maximum horizontal acceleration for different platform 

widths is shown in Figure 56. The maximum horizontal acceleration for different platform 

widths is somewhat similar to that of the vertical translation, for small platform widths the max-

imum acceleration drops quickly to a local minimum. Then it goes up and down again until the 

next local minimum. Both minima are, as for the vertical translation, when the width of the plat-

form is equal to the wavelength or a multitude of it. For the horizontal motion this is as expected 

as the height of the wave will be the same at both end at all times with these widths. The main 

difference is the much lower value of the maximum acceleration and the first local minimum is 

substantially higher than the second local minimum. That the maximum acceleration is less may 

be because the horizontal force is much less, but the spring constant is also less. Since the width 



of the platform does not change its eigenfrequency, it could also be that with this set of parame-

ters the eigenfrequency and the wave frequency are far apart and that this was less the case for 

the vertical translation. 

 

Figure 56 - Maximum horizontal acceleration for different platform width for a building of 100m high. Single-
mass model. 

Platform depth: The result for different depths of the platform can be seen in Figure 57. For 

shallower depths, an increase in depth also means an increase in maximum horizontal accelera-

tion until a maximum is reached. Thereafter, the acceleration decreases exponentially at higher 

depth values. This result can be explained by the eigenfrequency. The formula for spring stiff-

ness contains the term depth. If the depth changes, the spring stiffness changes too. As we have 

seen before with the equation of motion, the eigenfrequency is determined, among others things, 

by the value of the spring stiffness. So, changing the depth changes the eigenfrequency. 

There is a certain value for which the eigenfrequency of the floating high-rise is equal to or close 

to the frequency of the excitation. When the response of the floating high-rise by the excitation is 

close to its eigenfrequency, resonance occurs. Resonance means that even small excitations can 

cause a large amplitude in the motion. This is illustrated in Figure 58, where the deflection is 

plotted against the ratio between the excitation frequency and the eigenfrequency. When this 

ratio approaches 1, the deflection increases dramatically. In a purely mathematical view of reso-

nance, the deflection is even infinite when the ratio is equal to 1. In reality, this will not happen 

because there is always some form of damping, imperfection or other factor which causes it to 

have a limited deflection. It is always better to prevent resonance. The further away from this 

critical depth value, the less maximum acceleration. This type of influence of a parameter has not 

been seen for vertical acceleration. 

The depth at which resonance occurs depends on several factors. For example, the mass  plays a 

role in determining the eigenfrequency as can be seen from the formulas. Therefore, nothing can 

be said about what this critical value exactly is in different situations and Figure 57 serves only 

as an example. 



 

Figure 57 - Maximum horizontal acceleration for different platform depth for a building of 100m high. Single-
mass model. 

 

 

Figure 58 – Response of a system for different ratio’s between the eigenfrequency and the excitation frequen-
cy. Source: J. Blaauwendraad. (2016) Dynamica van Systemen. 

Total mass: Figure 59 shows the graph with the results for different total mass of floating high-

rise buildings, the horizontal axis has a logarithmic scale. The maximum horizontal acceleration 

decreases rapidly as the total mass increases until the acceleration is negligible. This is different 

from the vertical translation where the graph had a s curve. 



 

Figure 59 - Maximum horizontal acceleration for different total weight for a building of 100m high. Single-
mass model. 

Damping value: Figure 60 shows the maximum acceleration for different zeta values. This is 

approximately equal to the vertical acceleration, the acceleration decreases approximately line-

arly with increasing value of zeta. 

 

Figure 60 - Maximum horizontal acceleration for different damping values (zeta) for a building of 100m high. 
Single-mass model. 

Changing parameters: Again, all relationships between the parameters were used to calculate 

the maximum acceleration to see what effect widening the platform has. The result is shown in 

Figure 61. With the changing parameters, a lower maximum acceleration is found. Furthermore, 

the graph resembles that of the constant parameters, only the local extreme values are less far 

apart. Still the minima are found at platform widths equal to the wavelength. When the same cal-

culation, with changing parameters, is done for a 300m and 500m building, the results are quite 

different as can be seen in Figure 62. For the higher buildings, for small platform width, the max-

imum acceleration is less. This is due to the greater depth caused by the bigger weight. This 

causes more spring stiffness. The average decrease is less for higher buildings. Whereas the 

maximum acceleration between the first and second minima of a 100m building is still about 

80%, it is only 23% for the 500m building. The graphs also do not go to zero acceleration for 

wider platforms, so for the larger platform widths, the acceleration is greater for taller buildings. 

This is because the effect of the deeper platform is no longer there as they all need extra ballast 



to reach the minimum depth and because the taller buildings are wider so the wind load in-

creases and so the maximum acceleration. 

 

Figure 61 - Maximum horizontal acceleration for different platform weights with both the changing and the 
constant parameters for a building of 100m high. Single-mass model. 

 

Figure 62 - Maximum horizontal acceleration for different platform widths for a building of 100m, 300m and 
500m high for changing parameters. Single-mass model . 

6.3.5 TSUNAMI 
The calculations for the motion and acceleration of the mass were done for the situation of a 

tsunami. As with the vertical translation, the tsunami causes small accelerations which can be 

ignored, as can be seen in Figure 63. 



 

Figure 63 – Horizontal acceleration of the homogenous part of the solution due to a tsunami 

6.4 VERTICAL ROTATION (ROLL AND PITCH) 

In addition to the vertical and horizontal translation, the waves also cause a rotation. This is be-

cause the forces by the waves on the platform are not equally distributed. The wind causes a ro-

tation as well. This is because the centre of gravity and the centre of rotation are lower than the 

centre of the distributed wind load. This creates a moment and thus a rotation. This is the same 

rotation as treated in the static stability. Figure 64 shows the motion in the waves.  

Like the vertical and horizontal motion, the rotation is determined by means of a mass-spring 

system. With the difference that the motion, the spring and the damper are in the direction of the 

rotation. And instead of an external force there is an external moment which causes the excita-

tion. This moment is the combination of the moment due to the waves and the moment due to 

the wind. Figure 65 shows the mass-spring system. The rotation is denoted with a 𝜃. (𝜃 is the 

standard letter for the pitch. The roll has 𝜙 as its default letter. To avoid confusion with the 𝜑 

which stands for phase shift in a sine function, 𝜃 is chosen for all vertical rotations.) 

  

Figure 64 - Rotation due to the waves. 



 

Figure 65 - Mass spring system with damping for the rotation. 

6.4.1 EQUATION OF MOTION AND ITS VALUES 
The equation of motion for the rotation of a one mass spring system is as follows: 

 (𝐽 + 𝑎)�̈� + 𝑐�̇� + 𝑘𝜃 = 𝑀 (6.37) 
Where: 

𝜃 is the rotation [rad] 

𝐽 is the mass moment of inertia [kgm2] 

𝑀 is the external moment [N/m] 

As can be seen, the equation of motion does not use the mass but the mass moment of inertia for 

rotation. This mass moment of inertia can be calculated by multiplying the mass and the radius 

of gyration: 

 
𝐽 = 𝑚 ∗ 𝐾2 [𝑘𝑔/𝑚2] 

 
(6.38) 

Where: 

𝐾 is the radius of gyration also known as the polar inertia radius [m] 

The radius of gyration can be calculated as follows: 

 𝐾 = 
√

𝐼𝑝𝑜𝑙

𝐴𝑤
 [𝑚] 

 

(6.39) 

The polar moment of inertia can be calculated by summing the moments of inertia in x and y di-

rection. (x is in direction of the wave and y is perpendicular to the water). For a floating struc-

ture, this is about the dimensions of the platform underwater. 

 
𝐼𝑝𝑜𝑙 = 𝐼𝑥 + 𝐼𝑦 = 

1

12
∗ (𝑑 ∗ 𝑤𝑝

3 + 𝑤𝑝 ∗ 𝑑
3) [𝑚4] 

 
(6.40) 



The area in (6.39) is the area of water (in x and y direction) 

 
𝐴𝑤 = 𝑑 ∗ 𝑤𝑝  [𝑚

2] 

 
(6.41) 

Using (6.39),(6.40) and (6.41), (6.38) becomes: 

 𝐽 =  
𝜌 ∗ 𝑤𝑝

2 ∗ 𝑑(𝑤𝑝
2 + 𝑑2)

12
 [𝑘𝑔/𝑚2] 

 

(6.42) 

The spring stiffness of the rotation can be determined with one formula using the GM value. The 

rotation spring stiffness is as follows: 

 𝑘 =  𝜌𝑔𝑉𝑠𝑢𝑏 ∗ 𝐺𝑀̅̅ ̅̅   [𝑁/𝑚]
8 (6.43) 

Where 

𝐺𝑀̅̅ ̅̅  is the metacentric height as described in chapter 5 on Static stability. 

The added mass for the rotational motion can be obtained from Figure 43 as well: 

 
𝑎 =  𝜌𝜋 ((

𝑤𝑝

4
)
2

∗ (
𝑤𝑝

4
)
2

+ (
𝑑

2
)
2

∗ (
𝑑

2
+ 𝑟)

2

) [𝑘𝑔] 

 

(6.44) 

Where 

r is the distance between the centre of gravity and the surface of the water [m]. This can 

be calculated with: 

 𝑟 =  COG –  d [m] (6.45) 
Where 

COG is the height of the centre of gravity [m] 

The same calculation for the damping is used as for the vertical translation: 

 𝑐 = 2𝜁(𝐽 + 𝑎)𝑘 [Ns/m]  (6.46) 
 

Again, the homogeneous solution can be used to find the eigenfrequency. The calculations are 

identical to those of the vertical motion, only the values used are different. The formula for the 

eigenfrequency of rotation is as follows: 

 𝜔0 =
√

𝑘

𝐽 + 𝑎
 [𝐻𝑧] 

 

(6.47) 
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When using all the values and relationships from chapter 2, 3 and 4, the eigenfrequency can be 

expressed into the height of the building and the width of the platform for a specific depth of the 

platform. The result for a platform depth of 20m for a floating high-rise building at the North Sea 

is shown in the figure below as an example. 

 

Figure 66 - 3D graph of the frequency of the rotational motion for different platform widths and building 
heights. For a platform with a depth of 20m at the North Sea. 

6.4.2 WAVE AND WIND MOMENT 
The calculation of the moment on the platform due to the waves is less straightforward than the 

calculation for the vertical or horizontal force. For the determination of the moment only the 

vertical force of the wave is taken into account. If the horizontal force of the wave was taken into 

account the calculation would have been substantially more difficult as the these forces do have 

the same period but a different phase shift. The horizontal force due to the wave is also substan-

tially lower than the vertical force. 

The distributed vertical force of the wave along the length of the platform is used. With some 

effort, the centre of the surface enclosed by this formula and the line y = 0 (symbolising the plat-

form) can be determined. This point is where the resulting force of the wave passes through. 

With this point, the lever arm can be determined between the resulting force and the centre of 

the platform. The length of this arm is then multiplied by the enclosed surface itself (which is 

equal to the total vertical force). This gives the moment at the centre of the platform. The entire 

calculation can be found in Appendix II. The function, like that for the vertical force, can be sim-

plified to a sine function with an amplitude and a frequency: 

 𝑀𝑤𝑎𝑣𝑒(𝑡) = �̂�𝑤𝑎𝑣𝑒 ∗ sin(𝜔𝑤𝑎𝑣𝑒𝑡) [𝑁] 
 

(6.48) 

 

As said, not only the wave causes a rotation but also the wind. The calculation for the moment 

due to the wind is also shown in Appendix II and can be simplified to a sine function: 



 𝑀𝑤𝑖𝑛𝑑(𝑡) = �̂�𝑤𝑖𝑛𝑑 ∗ sin(𝜔𝑤𝑖𝑛𝑑𝑡) [𝑁] 
 

(6.49) 

 

6.4.3 PARTICULAR AND TOTAL SOLUTION 
The same steps were used as for the vertical translation, to find the particular solution. The re-

sulting expressions are larger and will not be shown here. All that is shown here are the formu-

las used to find the solutions. To start with, the formula for the rotation. It consists of two parts, 

one to determine the reaction to the wave load (6.48) and one for the reaction to the wind load 

(6.49). 

 
𝜃(𝑡) = 𝐶1 ∗ 𝑠𝑖𝑛(𝜔𝑤𝑎𝑣𝑒𝑡) + 𝐶2 ∗ 𝑐𝑜𝑠(𝜔𝑤𝑎𝑣𝑒𝑡) [𝑟𝑎𝑑] 

 
(6.50) 

 

 
𝜃(𝑡) = 𝐶3 ∗ 𝑠𝑖𝑛(𝜔𝑤𝑖𝑛𝑑𝑡) + 𝐶4 ∗ 𝑐𝑜𝑠(𝜔𝑤𝑖𝑛𝑑𝑡) [𝑟𝑎𝑑] 

 
(6.51) 

The formula for the rotation to find the reaction to the wind has an additional constant com-

pared to that for the waves. This is because the waves have an equilibrium position at zero and 

the wind does not. Therefore an extra constant must be used to get the correct reaction. 

For the total solution, the same term can be used for the homogeneous part as was used for the 

vertical translation, and the two different particular solutions can be added to this: 

 
𝜃(𝑡) =  𝐴𝑒−𝜁𝜔0𝑡 ∗ cos(𝜔𝑒𝑡 + 𝜑) +  𝐶1 ∗ 𝑠𝑖𝑛(𝜔𝑤𝑎𝑣𝑒𝑡) + 𝐶2 ∗ 𝑐𝑜𝑠(𝜔𝑤𝑎𝑣𝑒𝑡) +  𝐶3

∗ 𝑠𝑖𝑛(𝜔𝑤𝑖𝑛𝑑𝑡) + 𝐶4 ∗ 𝑐𝑜𝑠(𝜔𝑤𝑖𝑛𝑑𝑡) [𝑟𝑎𝑑] 
 

(6.52) 

6.4.4 INFLUENCING PARAMETERS 
As for the translations, a parameter study was done for the influencing parameters. For the rota-

tion, these are the following: 

 Platform width 

 Platform depth 

 GM value 

 Height of the centre of gravity 

 Total mass 

 Damping ratio 

Platform width: For the maximum angular acceleration for different platform widths, see Fig-

ure 67. The rotational acceleration has the same pattern as the vertical and horizontal accelera-

tions. With local minimums. Different from the translations is that the minimums occur at the 

zero moment widths. These are the platform widths for which the moment on the platform due 

to the wave is minimal regardless of time. These widths were also found in the rotation of the 

static stability model. These zero moment widths are further explained in Appendix V. The rota-

tional acceleration decreases with increasing width. So the peaks between the zero moment 

widths become lower and lower. 



 

Figure 67 - Maximum angular acceleration for different platform width for a building of 100m high. Single-
mass model. 

Platform depth: Figure 68 shows the maximum angular acceleration for different depths of the 

platform. This has a similarity to the results of the horizontal acceleration. There is a certain val-

ue at which resonance occur and thus the acceleration is maximum and the further you are from 

this value, both lower and higher, the lower the maximum angular acceleration. So there is a val-

ue for depth such that the eigenfrequency is close to the excitation frequency. As with the hori-

zontal displacement. The critical value for depth is not easy to determine for different situations 

as it depends on the other factors. 

 

Figure 68 - Maximum angular acceleration for different platform depth for a building of 100m high. Single-
mass model. 

GM value: In the chapter on static stability it was shown that the value of GM was important for 

the rotation. The higher the value, the lesser the rotation. This value is also important for dy-

namics. Figure 69 shows the maximum angular acceleration for different values of GM. It can be 

seen that for the GM value, just as for the depth, resonance can occur at a certain critical value. 

This value therefore causes a peak in maximum acceleration. This is due to the presence of the 

GM value in the determination of the spring stiffness. If a value higher or lower than this critical 

value is chosen, the maximum acceleration will be less. In contrast to static stability, it is there-



fore not always more advantageous to increase the GM value for dynamic stability. As with the 

depth, the critical value for the GM value depends on other factors. 

 

Figure 69 - Maximum angular acceleration for different GM values for a building of 100m high. Single-mass 
model. 

Height of the centre of gravity: Another new parameter is the height of the centre of gravity 

(COG height). Since the GM value strongly depends on the height of the COG, they can hardly be 

seen separately. Nevertheless, the parameter is seen separately in order to draw certain conclu-

sions. Figure 70 shows the result in maximum angular acceleration for different COG heights. 

The maximum angular acceleration decreases exponentially for higher values, however, the dif-

ference in maximum acceleration is very small for the first 100 m. Therefore, it can be concluded 

that the change of the COG does not have much influence on the acceleration. This also means 

that if it turns out that the building needs more mass at the bottom or top, this will not have a 

large negative effect due to the change in COG height. Of course, the change in COG height does 

cause a change in GM value that can have an huge influence. 

 

Figure 70 - Maximum angular acceleration for different Centre of gravity heights for a building of 100m high. 
Single-mass model. 

Total mass:  Figure 71 shows the maximum angular acceleration for the total mass of the float-

ing high-rise building. This also contains resonance.  This is not remarkable when looking at the 



formulas, since the mass is included in the determination of the eigenfrequency, but this did not 

occur in the translations. The rotation is apparently more sensitive to the occurrence of reso-

nance. 

 

Figure 71 - Maximum angular acceleration for different total weights for a building of 100m high. Single-mass 
model. 

Damping value (zeta): The damping graph, as shown in Figure 72, has the same pattern as for 

the translations. However, the difference in maximum acceleration is much less. Increasing the 

damping will therefore not be as positive on the maximum angular acceleration as it is for the 

maximum translational acceleration. 

 

Figure 72 - Maximum angular acceleration for different damping values (zeta) for a building of 100m high. 
Single-mass model. 

Changing parameters: Finally, the relation between the parameters was used to determine the 

maximum angular acceleration.  The result is shown in Figure 73. At first glance, it looks identi-

cal to the results of the constant parameters. However, in Figure 74 it can be seen that the pat-

tern is the same, but the value is much lower for the changing parameters. 

The fact that the shape of the graphs do not differ much despite the resonance peaks in the 

graphs for depth, GM value and total mass may be due to the chosen height of 100 m for the 



building. At this height the total mass is too little to achieve the necessary depth. An extra ballast 

is added to reach this depth and therefore the depth does not change with the different width of 

the platform (the wider the less depth the platform, so the depth will not increase) and the GM 

value is soon much higher than the resonance peak, for a platform of 100 m width and a building 

of 100m height, the GM value is already 287 m. To see if the resonance in these parameters still 

have an influence, the maximum angular acceleration is also calculated with changing parame-

ters for a building of 200m, 300m, 400m and 500m. The results are shown in Figure 75. The ab-

sence of accelerations for certain widths is due to the fact that the GM value is negative, so there 

is no stability. With increasing height, a resonance peak appears in the graph. This is particularly 

noticeable in the case of the 500 m high building. Apparently, the influence of the three parame-

ters with resonance (or at least one of the three) increases as the height of the building increas-

es. It can be concluded from the graph that; The higher the building is, the more resonance oc-

curs for the rotation. 

 

Figure 73 - Maximum angular acceleration for different platform width with all the other parameters depend-
ed on the width of the platform and the height of the building for a building of 100m high. Single-mass model. 

 

Figure 74 - Maximum angular acceleration for different platform width with both the constant as the changing 
parameters for a building of 100m high. Single-mass model. 



 

Figure 75 - Maximum angular acceleration for different platform width with all the other parameters depend-
ed on the width of the platform and the height of the building for a building of 100m, 200m, 300m, 400m and 

500m high. Single-mass model. 

6.4.5 TSUNAMI 
The calculations for the motion and acceleration of the mass were done for the situation of a 

tsunami. As with the vertical and horizontal translation, the tsunami causes small accelerations 

which can be neglected as shown in Figure 76. Since for all three possible motions this reaction 

is negligible, no calculation will be done for the situation of a tsunami in the multi-mass model 

either. 

 

Figure 76 - Angular acceleration of the homogenous part of the solution due to a tsunami 

6.5 MULTIPLE MOTIONS 
The different motions are up until now all considered separately. In reality, all motions will oc-

cur simultaneously. This can cause the maximum acceleration to increase. Therefore, the differ-



ent motions are determined together. This means that the point mass has not one but several 

degrees of freedom (DOF’s). Again the one mass spring system is used. This time with vertical 

and horizontal displacement and rotation, three DOFs, see Figure 77.  

 

Figure 77 - Single-mass model with three DOF's. 

Because these are three different motions, there are also three different equations of motion. 

The equation of motion of the vertical displacement (6.1) horizontal displacement (6.23) and the 

equation of motion of the rotation (6.32)) For this 3 mass spring system, the equation of motion 

changes from a single equation to a set of equations. This can be written as matrices. 

 (𝑴 + 𝑨) ∗ 𝒎𝒗̈ + 𝑪 ∗ 𝒎𝒗̇ + 𝑲 ∗ 𝒎𝒗 = 𝑭𝒆𝒙𝒕 (6.53) 
Where: 

𝒎𝒗 is the motion vector 

𝑴  is the mass matrix 

𝑨 is the added mass matrix 

𝑪 is the damping matrix 

𝑲  is the spring stiffness matrix 

𝑭𝒆𝒙𝒕 is the external force matrix 

The motion vector with the three degrees of freedom is as follows: 

 𝑴𝒐𝒕𝒊𝒐𝒏 𝒗𝒆𝒄𝒕𝒐𝒓 =  [
𝑤
𝑢
𝜃
] (6.54) 

All matrices are, in a model with one mass, diagonal matrices. The mass matrix is as follows: 

 𝐌 = [  
   
 𝑚1 0 0
0 𝑚2 0
0 0 𝐼3

]  
   
 

 (6.55) 

The first and second mass are the masses that correspond to the vertical and horizontal motion. 

This is the same mass. The third “mass” is the mass moment of inertia corresponding to the rota-

tion. 



The added mass matrix contains the three different added masses of the three motions. These 

are the same as described for the individual motions. The same holds for the damping matrix 

and the spring stiffness matrix: 

 𝐀 = [  
   
 𝑎1 0 0
0 𝑎2 0
0 0 𝑎3

]  
   
 

 (6.56) 

 

 𝐂 = [  
   
 𝑐1 0 0
0 𝑐2 0
0 0 𝑐3

]  
   
 

 (6.57) 

 

 𝐊 = [  
   
 
 
𝑘1 0 0
0 𝑘2 0
0 0 𝑘3

]  
   
 
 

 (6.58) 

The forces, like the motions, can be described by a vector: 

 
𝑭 =  [

𝐹𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙
𝐹ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙
𝑀

] 

 

(6.59) 

The equation of motion with matrices is as follows: 

 

(  
   
 

[  
   
 𝑚1 0 0
0 𝑚2 0
0 0 𝐼3

]  
   
 

+ [  
   
 𝑎1 0 0
0 𝑎2 0
0 0 𝑎3

]  
   
 

)  
   
 

∗ [
�̈�
�̈�
�̈�
] + [  
   
 𝑐1 0 0
0 𝑐2 0
0 0 𝑐3

]  
   
 

∗ [
�̇�
�̇�
�̇�
] + [  
   
 
 
𝑘1 0 0
0 𝑘2 0
0 0 𝑘3

]  
   
 
 

∗ [
𝑤
𝑢
𝜃
]

=  [
𝐹𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙
𝐹ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙
𝑀

] 

 

(6.60) 

6.5.1 EIGENFREQUENCY AND HOMOGENEOUS SOLUTION 
Just as in the calculation of the single-mass model, the eigenfrequency can be calculated. This is 

done with the equation of motion without the damping and the external force. 

 
𝑴 ∗𝒎�̈� + 𝑲 ∗ 𝒎𝒗 = 𝟎 

 
(6.61) 

For the displacement a cosine function is used: 

 
𝑚𝑣𝑖 = �̂�𝑖 cos(𝜔𝑡) 

 
(6.62) 

To find the eigenfrequency the determinant has to be found of −𝜔2 ∗ 𝑴 + 𝑲  . The solution for 

the eigenfrequency is the solution for which the determinant is equal to zero. As there are multi-

ple equations this will lead to multiple eigenfrequencies and eigenmodes. The number of  eigen-

frequencies and eigenmodes is equal to the number of degrees of freedom. In the example used, 

there is one mass with 3 degrees of freedom and thus 3 eigenfrequencies and 3 eigenmodes.  

For a single-mass model the eigenmode is simple as it only has one frequency and one 

eigenmode. When there are several natural frequencies, the eigenmode can only be expressed as 

a ratio between the displacements. To do this, one of the motion is set equal to one (for example 

the vertical motion is 1). Then the remaining motion can be calculated with this set motion. With 

these results the ratio between the displacement for a certain eigenfrequency is known. This is 



called the eigenmode.  This eigenmode can be determined for all frequencies and can be de-

scribed using a vector: 

 
𝐸𝑀𝜔𝑖  =  [

𝑤𝜔𝑖
𝑢𝜔𝑖
𝜃𝜔𝑖
] 

 

(6.63) 

To find the homogeneous solution this eigenmode will be multiplied by the standard form of the 

homogeneous solution. For the first eigenfrequency this will look as follows: 

 
𝑢 ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠1 (𝑡) = [

𝑤𝜔1
𝑢𝜔1
𝜃𝜔1
]  𝐴1 ∗ 𝑒

−𝜁𝜔1𝑡 ∗ cos(𝜔𝑒,1𝑡 + 𝜑1) 

 

(6.64) 

For the total homogeneous solution this is done for all eigenfrequencies. This gives the following 

formula for the motions: 

 𝑀𝑜𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 = ∑ 𝐸𝑀𝜔𝑖 𝐴𝑖𝑒
−𝜁𝜔𝑖𝑡 ∗ cos(𝜔𝑒𝑖𝑡 + 𝜑𝑖)

𝐷𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚

𝑖=1

  

 

(6.65) 

Where 

i is the index of the frequency. 

The unknown 𝐴𝑖 and 𝜑𝑖 values can be solved by using an initial displacement and rotation and 

an initial velocity of zero at t=0 for each motion, giving six equation to solve the six unknowns. 

When this all is done for the single-mass model it turns out that there is no relation between the 

three motions. This could already be seen in the equation of motion as all matrices are diagonal 

matrices. So the motions will not influence each other. This is called ‘uncoupled’. In reality this is 

not the case and the different motions dependent on each other. To find a relationship between 

the motions, several masses must be used. 

6.6 MULTIPLE-MASS MODEL 
To model the entire structure as a single point mass is too simplistic. In reality, the rotation in 

the platform causes a translation in the building and platform. Furthermore both the platform 

and the building will deform and therefore influence the forces and motion of the structure. 

Therefore, it is more accurate to divide the structure into several masses in order to take this 

deformation into account. However, it is chosen to model the platform again as only one point 

mass. This is because each point mass has three degrees of freedom in a 2D plane. Because of 

this, each point mass creates three rows and columns in the matrices in the equation of motion 

(as seen in the previous paragraph). With more point masses the work to create the calculations 

exponentially grows. By keeping the platform as one point mass, the calculation work is limited. 

Besides the calculation work, it is also simpler to apply the values of the added mass, the mass 

moment of inertia and the rotational spring stiffness. These are difficult to divide correctly into 

different point masses over the platform width as these are not linear distributed. As one point 

mass for the platform does not include the flexibility of the platform, in this paragraph a subpar-

agraph is dedicated to the inclusion of the deformation of the platform in the determination of 

the rotational stiffness of the spring. 



Initially, the building is divided into three point masses with the mass of the platform in the low-

er point mass and the mass of the tower distributed over the three point masses, see Figure 78a. 

As mentioned, each point mass has three degrees of freedom (Figure 78b). The lower point mass 

is supported by springs in the directions of the three degrees of freedom, just like in the model 

with one point mass. In this model the point masses are connected to each other with a beam. 

The beam has the same properties as the tower. 

  

Figure 78 - Multiple mass model with 3 masses. 

The three point masses together have nine different motions. These motions can be written in 

one motion vector: 

 𝑚𝑜𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 =  

[  
   
   
   
   
   
   
   
   
   
   
 
 𝑤1
𝑤2
𝑤3
𝑢1
𝑢2
𝑢3
𝜃1
𝜃2
𝜃3
]  
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The formulas for the motions are again sinusoidal, in the form: 

 𝐴 ∗ cos(𝜔𝑡) (6.67) 
 

The motions can again be determined with the equation of motion. For the multiple mass model, 

this is as follows: 

 (𝑴 + 𝑨) ∗ 𝒎�̈� + 𝑪 ∗ 𝒎�̇� + (𝑲𝒔𝒑𝒓𝒊𝒏𝒈 + 𝑲𝒃𝒆𝒂𝒎) ∗ 𝒎𝒗 = 𝑭  (6.68) 
Where: 



𝑲𝒔𝒑𝒓𝒊𝒏𝒈   is the spring stiffness matrix 

𝑲𝒃𝒆𝒂𝒎  is the beam matrix 

The matrices of the mass, added mass and spring stiffness are nine by nine, diagonal matrices. In 

the added mass and spring stiffness matrices, there are only values for the motions of point mass 

one, since this point mass is the only one that is supported by springs and has extra mass due to 

the motion in water. The matrices are as follows: 

 
𝑴 = 

[  
   
   
   
   
   
   
   
   
   
   
   
 𝑚1 0 0 0 0 0 0 0 0
0 𝑚2 0 0 0 0 0 0 0
0 0 𝑚3 0 0 0 0 0 0
0 0 0 𝑚4 0 0 0 0 0
0 0 0 0 𝑚5 0 0 0 0
0 0 0 0 0 𝑚6 0 0 0
0 0 0 0 0 0 𝐼7 0 0
0 0 0 0 0 0 0 𝐼8 0
0 0 0 0 0 0 0 0 𝐼9

]  
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𝑨 = 

[  
   
   
   
   
   
   
   
   
   
   
 
 𝑎1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 𝑎4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 𝑎7 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

]  
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𝑲𝑠𝑝𝑟𝑖𝑛𝑔 = 

[  
   
   
   
   
   
   
   
   
   
   
 
 
𝑘1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 𝑘4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 𝑘7 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

]  
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The values for the added mass and the spring stiffness are the same as described earlier for the 

individual displacements. In the mass matrix, the masses 𝑚4, 𝑚5 and 𝑚6 are equal to 𝑚1, 𝑚2 and 

𝑚3 respectively as these are the same masses. The first mass is equal to the mass of the platform 

plus one fifth of the mass of the building. The second and third masses are equal to two fifths of 

the mass of the building. The mass moment of inertia of mass 2 and 3 are substantially smaller 

than the mass moment of inertia of mass 1 due to the influence of the water on that mass. 

The connection of the point masses creates another matrix in the equation of motion, the beam 

stiffness matrix. This is determined by the stiffness and lengths of the beams. The length be-

tween the masses is denoted by L. Appendix VI shows how this matrix was determined. The 

beam matrix is as follows for the model with three masses: 



 
𝑲𝒃𝒆𝒂𝒎 =

[  
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
 
 𝐸𝐴

𝐿
−
𝐸𝐴

𝐿
0 0 0 0 0 0 0

−
𝐸𝐴

𝐿

2𝐸𝐴

𝐿
−
𝐸𝐴

𝐿
0 0 0 0 0 0

0 −
𝐸𝐴

𝐿

𝐸𝐴

𝐿
0 0 0 0 0 0

0 0 0
12𝐸𝐼

𝐿3
−
12𝐸𝐼

𝐿3
0

6𝐸𝐼

𝐿2
6𝐸𝐼

𝐿2
0

0 0 0 −
12𝐸𝐼

𝐿3
24𝐸𝐼

𝐿3
−
12𝐸𝐼

𝐿3
−
6𝐸𝐼

𝐿2
0

6𝐸𝐼

𝐿2

0 0 0 0 −
12𝐸𝐼

𝐿3
12𝐸𝐼

𝐿3
0 −

6𝐸𝐼

𝐿2
−
6𝐸𝐼

𝐿2

0 0 0
6𝐸𝐼

𝐿2
−
6𝐸𝐼

𝐿2
0

4𝐸𝐼

𝐿

2𝐸𝐼

𝐿
0

0 0 0
6𝐸𝐼

𝐿2
0 −

6𝐸𝐼

𝐿2
2𝐸𝐼

𝐿

8𝐸𝐼

𝐿

2𝐸𝐼

𝐿

0 0 0 0
6𝐸𝐼

𝐿2
−
6𝐸𝐼

𝐿2
0

2𝐸𝐼

𝐿

4𝐸𝐼

𝐿
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Where 

𝐿 is the length between the masses 

𝐸 is the Young’s-modules of the material used for the tower 

𝐼 is the second moment of area of the tower 

𝐴 is the cross-sectional area of the tower 

This matrix can be used to calculate the force required to move the masses in the direction of the 

degrees of freedom. This can be done by multiplying the beam matrix by the motion vector. In 

formula form: 

 𝑭 = 𝑲𝒃𝒆𝒂𝒎 ∗ 𝒎𝒐𝒕𝒊𝒐𝒏 𝒗𝒆𝒄𝒕𝒐𝒓  (6.73) 
 

Just like the forces of the springs, the forces in the beam are dependent on the motions. There-

fore, the spring stiffness and beam matrixes are added together in the equation of motion. 

Now that all the matrices are known, the eigenfrequency can be calculated as explained in the 

previous paragraph. 

6.6.1 EIGENFREQUENCIES AND MODES 
So far, the analytical approach has been used. To see if the calculations work and are correct, the 

eigenfrequencies and modes are calculated for the standard set of values for the parameters as 

an example. Then, these are compared with the results of a model in Diana. Diana is a Finite El-

ement Analysis solver which can work well with schematic models with point masses. The re-

sults from this model are used to check whether the calculations are correct. This is done using 

one set of parameters. The model in Diana can then also be used to find out what the influence is 

of dividing the model into more point masses and how many masses are needed to model the 

structure accurately. This can then be used in the analytical approach. Finally a comparison is 

made between the frequencies from the single-mass model and the multiple-mass model. 



Calculations of the eigenfrequencies of the standard set 
For the calculation of one set of parameters to compare to the Diana model, the values given in 

Table 4 in chapter 3 are used. Since the Diana programme cannot assign a different value to the 

point masses in the horizontal and vertical directions, the same value is used in both the manual 

calculations and the Diana model. This is later on explained further. For the beam (core) element 

the following values are used: 

Table 5 - Values for the beam used in the example. 

L (length between 
masses) 

E - modules EI (building) EA 

40 m *1.3 ∗ 1010 𝑁/𝑚2 1.38 ∗ 1013 𝑁𝑚2 1.68 ∗ 1011 𝑁 

* This is the reduced E-modules of a core. 

Using these values result in the following values used in the matrixes: 

Table 6 - Masses of the example. 

𝒎𝟏, 𝒎𝟒 𝒎𝟐, 𝒎𝟑, 𝒎𝟓, 𝒎𝟔 𝑱𝟕 𝑱𝟖, 𝑱𝟗 
1.04 ∗ 107 kg 7.58 ∗ 106 kg 8.68 ∗ 109 kgm2/rad 7.82 ∗ 108 kgm2/rad 

 

Table 7 - Spring stiffness’s of the example. 

𝒌𝟏 𝒌𝟒 𝒌𝟕 
1.01 ∗ 108 𝑁/𝑚 2.51 ∗ 106 𝑁/𝑚 6.71 ∗ 1010 𝑁/𝑚 

 

Table 8 - Added mass values of the example. 

𝒂𝟏 𝒂𝟒 𝒂𝟕 

4.03 ∗ 108 kg 
1.00 ∗ 106 kg 
4.03 ∗ 108 kg* 

1.27 ∗ 109 kgm2/rad 

* For the added mass is horizontal direction the same value is used as for the vertical direction for this example. This 

is due to the limits in modelling in Diana which is explained later. 

Now that all the values of the matrices are known, the eigenfrequencies can be calculated by set-

ting the determinant of −𝜔2 ∗ 𝑴 + 𝑲  to zero and solving for 𝜔. The eigenfrequencies are given 

in the table below.  

Table 9 - Eigenfrequencies of the example. 

Number 1 2 3 4 5 6 7 8 9 
Frequency 

[rad/s] 
0.0765 0.485 0.938 7.779 14.806 19.611 38.144 43.354 64.505 

Frequency 
[Hz] 

0.0121 0.0771 0.149 1.238 2.357 3.121 6.071 6.900 10.267 

 

The calculation gives 18 eigenfrequencies for these matrices. This is the expected number, since 

the number of eigenfrequencies is normally twice the number of DOFs. The 10th to 18th fre-

quencies give the same frequencies as the first nine, only negative. Therefore only the first nine 

eigenfrequencies are given. 



Diana model 
The same model, as used in the analytical model, was created in the pro-

gramme Diana. There are three point masses connected with two line ele-

ments. In the program, a point can be either a translation mass or a rotation 

mass. Since the masses can both translate and rotate, two points are used at 

each position. These two points are attached to each other and to the end of 

the line element (also a point) by the 'unite' option. This ensures that the mo-

tions of the points are the same. There is no option in Diana to divide the 

translation mass into two different masses, one for the vertical motion and one 

for the horizontal motion. Often these are the same and thus there is no differ-

ence, however, due to the influence of the added mass, the bottom mass is dif-

ferent in the horizontal direction and vertical direction since the added mass 

of the vertical motion is greater than that of the horizontal motion. It was de-

cided to give this point the added mass of the vertical motion for both motions. 

Therefore, the results of this Diana model are not completely accurate and 

hand calculations are better. For the comparison with the model, the same 

mass is used in the hand calculations as in the model. After this subparagraph, 

the correct mass is used. Therefore, some frequencies may deviate. The results 

of the Diana model are not used as results, but purely as a check on the calcula-

tion. 

The values used in Diana are those given in Table 5, Table 6, Table 7 and Table 8. Where the 

mass and the added mass are added together and m4 has the same added mass as m1. Next, a 

structural eigenvalue analysis was done with the implicitly restarted Arnoldi method. The num-

ber of eigenfrequencies is set to 20 and a shift frequency of 0.01 Hz is used in order for the pro-

gram to find the eigenvalues. 

The resulting eigenfrequencies from the programme are shown in Table 10. The analysis in Di-

ana gives the same nine eigenfrequencies as the hand calculations. Therefor it can be concluded 

that the hand calculations are correct when calculating the eigenfrequencies. Diana also gives 

eigenfrequencies higher than a million. These have not been included. The eigenmodes of this 

model are shown in Appendix VIII. These were used to determine the DOF at the frequencies and 

to check the results. 

The building has so far been divided into three point masses. Now it is being investigated 

whether more point masses are needed to describe the motions. Diana is used for this purpose. 

The same values are used but they are now divided into 3, 5 and 9 point masses distributed over 

the height. The mass of the platform is still entirely in the bottom point mass. Also only the 

bottom point mass is supported by springs. Since the dimensions do not change, the spring 

constants and added masses do not change either. The mass and mass moment of inertia are 

changed accordingly. 

The resulting eigenfrequencies of the Diana models are shown in Table 10. In addition, the table 

also shows the DOF of the frequency. 

 

Figure 79 - Diana model. 



Table 10 - Eigenfrequencies of models with 3, 5, and 9 masses obtained from Diana. Including the DOF. 

Number of 
masses 

3 5 9 

Frequency 
Number: 

Frequency 
[Hz] 

DOF 
Frequency 

[Hz] 
DOF 

Frequency 
[Hz] 

DOF 

1 0.0122 𝑢1 0.0122 𝑢1 0.0122 𝑢1 

2 0.0771 𝑤1 0.0771 𝑤1 0.0771 𝑤1 

3 0.149 𝜃1 0.109 𝜃1 0.0149 𝜃1 

4 1.238 𝑢3 1.288 𝑢5 1.291 𝑢9 

5 2.357 𝑤3 2.385 𝑤5 2.395 𝑤9 

6 3.121 𝑢2 2.989 𝑢3 2.964 𝑢5 

7 6.071 𝑤2 6.501 𝑤3 6.429 𝑤5 

8 6.9 𝜃3 6.759 𝜃5 6.991 𝜃9 

9 10.266 𝜃2 10.169 𝜃3 10.477 𝜃5 

 

The table shows that there is little difference between the eigenfrequencies of the models. There 

is some difference, but this can be caused by different rounding or by the fact that the masses are 

not at the same heights (see Appendix VIII). The only frequency that deviates somewhat is the 

3rd (rotation of the lower mass) of the model with 5 point masses. The reason for this deviation 

is unknown. In the 9 point mass model this deviation is not there. It may be that it is a small 

modelling error. The larger deviations are in the eigenfrequencies higher than 2 Hz. These are 

far away from the eigenfrequencies limits and will therefore have no influence on the further 

calculations. It can be concluded that three point masses are enough to model the floating high-

rise accurately and therefore, in the analytical method the use of three point masses can be con-

tinued and no more are used. 

The table also shows that it is always the same DOF of the same mass that determine the eigen-

frequency. These are always at the bottom, top or middle of the tower. (Appendix VIII shows 

that the frequencies corresponding to the extra point masses of the 5 and 9 point mass model 

are always higher than the three from the three point mass model.) In Table 11 the subscript 

indicates the DOF and location. Also the value in the matrix the motion is most depending on, 

excluding the mass, is show in the table. If this value changes, the eigenfrequency changes. 

Table 11 – Eigenfrequencies and the location of the leading motion. 

Frequency [Hz] 0.012 0.077 0.149 1.24 2.36 3.12 6.07 6.90 10.26 

DOF 𝑢𝑏𝑜𝑡𝑡𝑒𝑚 𝑤𝑏𝑜𝑡𝑡𝑒𝑚 𝜃𝑏𝑜𝑡𝑡𝑒𝑚 𝑢𝑡𝑜𝑝 𝑤𝑡𝑜𝑝 𝑢𝑚𝑖𝑑𝑑𝑙𝑒 𝑤𝑚𝑖𝑑𝑑𝑙𝑒 𝜃𝑡𝑜𝑝 𝜃𝑚𝑖𝑑𝑑𝑙𝑒 

Most depending 
on (excluding 

the mass) 
𝑘ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑘𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑘𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐸𝐼𝑡𝑜𝑤𝑒𝑟 𝐸𝐴𝑡𝑜𝑤𝑒𝑟 𝐸𝐼𝑡𝑜𝑤𝑒𝑟 𝐸𝐴𝑡𝑜𝑤𝑒𝑟 𝐸𝐼𝑡𝑜𝑤𝑒𝑟 𝐸𝐼𝑡𝑜𝑤𝑒𝑟 

 

As already mentioned, the model has so far used the same added mass for the vertical and hori-

zontal displacement of the lower mass. However, this is not correct. The calculations have been 

done again with the correct added mass. This, together with the results obtained earlier, can be 

seen in Table 12. The biggest change is in the first eigenfrequency. This is logical, because that is 

the eigenfrequency at the horizontal displacement of the bottom point mass. Also the eigenfre-



quency of the rotation of the bottom point mass changes reasonably. Furthermore, all eigenfre-

quencies of the horizontal and rotational motion change a little. It is clear that the Diana model is 

not accurate enough and cannot be used further for the calculations. 

Table 12 - Eigenfrequencies with equal vertical and horizontal mass (Diana) and with correct added mass. 

Number 1 2 3 4 5 6 7 8 9 
Frequency  

(Diana) [rad/s] 
0.0765 0.485 0.938 7.779 14.806 19.611 38.144 43.354 64.505 

Frequency 
(correct added 
mass) [rad/s] 

0.300 0.485 1.264 7.828 14.806 21.596 38.144 44.332 64.907 

Limiting values have been set for the eigenfrequencies. These are between 0.3 and 1.44 rad/s. In 

order to determine which DOF must be examined to ensure that no resonance can occur, the ei-

genfrequencies are calculated for different values of the platform width and building height. This 

involves platform widths of 100, 300 and 500 m and building heights of 100, 300 and 500 m. The 

result and the analysis can be seen in Appendix VIII. From the results it is concluded that only 

the eigenfrequencies of the three motions of the bottom point mass are close to the limiting fre-

quencies. These will therefore have to be investigated further in order to prevent resonance oc-

curring in one of these motions. This is done in subparagraph 6.6.7. 

Comparison single-mass model and the multiple mass model. 
Now that it is known that the three mass model is sufficient and the frequencies of the different 

DOFs have been determined, the comparison can be made between the single-mass model and 

the multi-mass model. To do this, a 3D graph was made for the eigenfrequency of the vertical 

motion of the bottom point mass, as shown in Figure 80. The figure shows a blue and a red sur-

face. The red surface is the result of the single-mass model and the blue surface the result of the 

multi-mass model. This graph is calculated differently from the previous one in paragraph 6.2. 

Before, the minimum platform depth was calculated and the additional ballast was adjusted ac-

cordingly. In the upcoming calculations and graphs a standard depth of 20 m is used. This makes 

the calculations less complicated and therefore possible to calculate analytically in Maple. Be-

cause of this method it deviates from the previously calculated eigenfrequencies as the depth 

and mass differs. 

 

Figure 80 - 3D graph for the vertical frequencies single-mass model (red) and multi-mass model (blue). 



For this vertical motion, there is almost no difference between the single-mass model and the 

multi-mass model. This is as expected since the three point masses act as one in the vertical di-

rection (at this frequency, the frequency in which they move "apart" has an eigenfrequency 

which is much higher than the wave frequency and is thus not of interest). Therefore, it gives the 

same results as when only one point mass is used. 

The frequency of vertical motion was relatively easy to express in the two variable parameters. 

This is more difficult for the horizontal motion and rotation. Therefore 2D graphs were made. 

For the horizontal motion, graphs have been made for a depth of 20 m with a building height of 

100, 200 m and 500 m. These are shown in the following figures. 

 

 

Figure 81 - Frequencies of the horizontal motion for the single and multi-mass model for a platform depth of 
20m at the North Sea for a building height of a) 100 m, b) 300 m and c) 500 m 

For the horizontal motion, the results of the multi-mass model are different from the single-mass 

model. Particularly for low platform widths and large building heights. Especially striking is the 

sudden drop in the graph of the multi-mass model. In order to investigate where this drop comes 



from, graphs were made for all parameters used (e.g. spring stiffness, mass, building stiffness, 

etc.). None of the input parameters show the same valley, peak or other deviation. The drop is 

therefore a consequence of the expression of the frequency that follows from the matrix. Be-

cause it concerns a drop, the single-mass model estimates the frequency conservatively because 

the frequencies in question are below the limit frequencies drawn up in chapter 3. Before this 

drop, the estimation of the horizontal frequency of the single-mass model is lower than for the 

multi-mass model. Therefore, the single-mass model is not as accurate. This should be taken into 

account when using the single-mass model. After the drop, the two models are equal. 

For the vertical and horizontal motion, the eigenfrequency was first expressed in the various 

parameters from the matrices (by solving the eigenfrequency analytically using the matrices). 

Then these parameters are expressed in the two parameters; height of the building and platform 

width. However, this analytical way of solving the problem gives only 8 results, where 18 were 

expected. These 8 results are from the three different vertical DOF and from the horizontal DOF 

of the bottom point mass. And the negative of these four. The other horizontal motion frequen-

cies and those of the rotation do not result from this analytical calculation (for unknown rea-

sons). They do arise from the numerical calculation. Because Maple cannot be used numerically 

in the right way, this programme is not an option to make the comparison between the single-

mass model and the multi-mass model. And because the expression cannot be expressed in the 

parameters, no other programme can be used either. Therefore, it was not possible to make the 

comparison. Because the rotation and the horizontal displacement "work together", it is as-

sumed that also for the rotation the single-mass model and the multi-mass model can strongly 

differ. 

6.6.2 PARTICULAR SOLUTION AND TOTAL SOLUTION 
As with individual motions, there are two components in the solution of the equation of motion. 

In a previous subparagraph, the requirements for the homogeneous solution were discussed. In 

this subparagraph, the particular solution will be dealt with. To start with the force matrix. This 

is a column matrix with, in the case of three point masses and three DOFs, 9 rows. three vertical 

forces (𝐹𝑣𝑒𝑟) , 3 horizontal forces (𝐹ℎ𝑜𝑟)  and 3 rotational moments (𝑀𝑟𝑜𝑡). 

 
𝑭 = 

[  
   
   
   
   
   
   
   
   
   
   
   
   
 
 𝐹𝑣𝑒𝑟,1
𝐹𝑣𝑒𝑟,2
𝐹𝑣𝑒𝑟,3
𝐹ℎ𝑜𝑟,1
𝐹ℎ𝑜𝑟,2
𝐹ℎ𝑜𝑟,3
𝑀𝑟𝑜𝑡,1
𝑀𝑟𝑜𝑡,2
𝑀𝑟𝑜𝑡,3

]  
   
   
   
   
   
   
   
   
   
   
   
   
 
 

 

 

(6.74) 

The forces on the platform (wave forces) have already been described earlier when dealing with 

the different motions. These forces all act on the lower mass (𝑚1) in this model. The other two 

masses (𝑚2and 𝑚3) have no vertical harmonic forces and so these forces are zero. However, they 

do have horizontal forces acting on them, namely the wind force. All the formulas for the forces 

have been converted to a sine form. Using the previously defined formulas for the forces in the 

forces matrix, the matrix will be as follows: 



 
𝑭 =  

[  
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
 

�̂�𝑣𝑒𝑟,1,𝑤𝑎𝑣𝑒 ∗ sin (𝜔𝑤𝑎𝑣𝑒𝑡)
0
0

�̂�ℎ𝑜𝑟,1,𝑤𝑎𝑣𝑒 ∗ sin(𝜔𝑤𝑎𝑣𝑒𝑡) + �̂�ℎ𝑜𝑟,1,𝑤𝑖𝑛𝑑 ∗ sin(𝜔𝑤𝑖𝑛𝑑𝑡)

�̂�ℎ𝑜𝑟,2,𝑤𝑖𝑛𝑑 ∗ sin(𝜔𝑤𝑖𝑛𝑑𝑡)

�̂�ℎ𝑜𝑟,3,𝑤𝑖𝑛𝑑 ∗ sin(𝜔𝑤𝑖𝑛𝑑𝑡)

�̂�𝑟𝑜𝑡,1,𝑤𝑎𝑣𝑒 ∗ sin(𝜔𝑤𝑎𝑣𝑒𝑡) + �̂�𝑟𝑜𝑡,1,𝑤𝑖𝑛𝑑 ∗ sin(𝜔𝑤𝑖𝑛𝑑𝑡)

�̂�𝑟𝑜𝑡,2,𝑤𝑖𝑛𝑑 ∗ sin(𝜔𝑤𝑖𝑛𝑑𝑡)

�̂�𝑟𝑜𝑡,3,𝑤𝑖𝑛𝑑 ∗ sin(𝜔𝑤𝑖𝑛𝑑𝑡)
]  
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
 

 

 

(6.75) 

Note that the terms in front of the sine are factors in this matrix. This is indicated by the circum-

flex above the letter. 

To solve the particular part of the equation of motion, a standard formula for the motion with 

unknown factors is used, as before. These look like the following: 

 
𝑤𝑖(𝑡) = 𝐶𝑖,1 ∗ 𝑠𝑖𝑛(𝜔𝑤𝑎𝑣𝑒𝑡) + 𝐶𝑖,2 ∗ 𝑐𝑜𝑠(𝜔𝑤𝑎𝑣𝑒𝑡) + 𝐶𝑖,3 ∗ 𝑠𝑖𝑛(𝜔𝑤𝑖𝑛𝑑𝑡) + 𝐶𝑖,4

∗ 𝑐𝑜𝑠(𝜔𝑤𝑖𝑛𝑑𝑡) [𝑚] 
(6.76) 

 

The unknown factors 𝐶𝑖,𝑗 can be solved by using the equation of motion with the formulas as 

seen above in the motion matrix. 

The total solution is again the summation of the homogeneous solution and the particular solu-

tion. The form of the solution is as in (6.65) .This time with the eigenmodes as a column matrix 

with nine rows. This also means that each of the nine motions, has nine homogeneous terms plus 

a particular term. All the unknowns (nine factors and nine phase shifts) can be solved by setting 

the total motion and the total acceleration (derivative of the motion) equal to 0 at t = 0. 

By doing this, you calculate the situation where there is an ocean without waves, and all at once 

the highest possible wave makes the platform move. This causes an enormous reaction. This re-

action is in the homogenous part. The structure is displaced and rotated a lot in a small period of 

time. This causes a big acceleration. The structure has not yet “found its rhythm” in the waves. 

Finding the rhythm will be when the homogeneous solution is damped out and the total motion 

will be equal to the particular solution (only if the homogeneous solution is damped out). As ex-

plained in the paragraph on extreme cases in chapter 2, the biggest wave does not arise out of 

nowhere. Therefore, the two cases that have been described are used. For the growing wave an 

additional investigation is done into neglecting the homogeneous part of the solution. 

With the single-mass models, it has already been concluded that the tsunami does not cause any 

problems. Therefore, this case is not further investigated in the multi-mass models. And so only 

the growing waves and the irregular waves remain. The growing wave is used as the most ex-

treme situation as it uses the highest possible wave height. The irregular waves will later be 

used when analysing the possible eigenfrequencies. These irregular waves are fully described in 

chapter 2. The growing wave is missing a part about ignoring the homogeneous part of the solu-

tion. This is done in the next subparagraph. 

 



6.6.3 DEFORMING PLATFORM 
As explained earlier, the deformation of the platform is not included in the calculations due to 

using only one point mass to model the platform. To include the deformation, the formula of the 

rotational stiffness as described in the paragraph on rotation can no longer be used, as it does 

not include deformation. This method is based on the GM value. As described earlier, using the 

GM value simplifies the calculation of the moment balance of the support springs, the moment 

due to the weight and an external moment. To calculate the rotational stiffness, this balance is 

used. Appendix X contains the complete explanation and all the calculations for the determina-

tion of the rotational stiffness Here a summarized explanation is given. 

 

Figure 82 - Model of the platform supported by spring to calculate the rotational stiffness. 

To find the rotational stiffness, the relationship between the rotation and the moment that caus-

es the rotation must be found. Figure 82 shows the model of the rotation of the platform sup-

ported by three springs. The moment created by the forces in the springs is equal to: 

 
𝑀𝑠𝑝𝑟𝑖𝑛𝑔𝑠 = 2𝑘𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 ∗ 𝐿

2 ∗ 𝜃 [𝑁𝑚] 

 
(6.77) 

Where 

𝑘𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 is the vertical spring stiffness of each spring (all springs are equal) [N/m] 

L is the distance between the springs [m] 

𝜃 is the rotation [rad] 

The rotational stiffness is the factor that is multiplied with the rotation: 

 
𝑘𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 = 2𝑘 ∗ 𝐿

2 [𝑁/𝑚] 
 

(6.78) 

Instead of three springs, the water actually forms a line-spring-support. In order to achieve this 

support, an infinite number of springs must be used. To calculate this, the number of springs is 

set equal to n. Next, the lengths between the springs and the spring stiffness’s can be determined 

in terms of n: 

 
𝐿 =  

𝑤𝑝

𝑛
 [𝑚] 

 
(6.79) 

 



 
𝑘𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 =

𝜌𝑤𝑎𝑡𝑒𝑟 ∗ 𝑔 ∗ 𝑤𝑝

𝑛
 [𝑁/𝑚] 

 
(6.80) 

The rotational rigidity can also be described in terms of n using a summation: 

 𝑘𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛,𝑠𝑝𝑟𝑖𝑛𝑔 =  2𝑘 ∗ 𝐿
2 ∗∑𝑥2

𝑛−1
2

𝑥=1

 [𝑁/𝑚] 

 

(6.81) 

Combining (6.79), (6.80) and (6.81) and using unlimited springs 𝑛 → ∞. The formula for the ro-

tational spring will be: 

 
𝑘𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛,𝑠𝑝𝑟𝑖𝑛𝑔 =

1

12
∗ 𝜌𝑤𝑎𝑡𝑒𝑟 ∗ 𝑔 ∗ 𝑤𝑝

4 [𝑁/𝑚] 

 
(6.82) 

In the GM method, the moment by weight is also included. This can also be written as a stiffness: 

 
𝑘𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑑 ∗ 𝑤𝑝

2 ∗ 𝜌𝑤𝑎𝑡𝑒𝑟 ∗ 𝑔 ∗ (𝐶𝑂𝐺̅̅ ̅̅ ̅ −
1

2
𝑑) [𝑁/𝑚] 

 
(6.83) 

When these two stiffness’s are added together, the formula is exactly the same as the formula 

with the GM value. This shows that with this spring moment method the correct stiffness can be 

calculated. To include the deformation, the same spring model will be used, but Ordinary Differ-

ential Equations (ODEs) will be used. With these ODEs the relation can be found between the 

rotation and the moment in the centre of the platform with a deforming platform. An investiga-

tion, shown in Appendix X, shows that supporting the platform with nine springs is accurate 

enough to approach a line-spring support. Using the ODEs, the following formula is determined 

for the rotational stiffness: 

 

𝑘𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

=
0.0329 ∗ 𝑤𝑝

4
∗ 𝑟ℎ𝑜 ∗ 𝑔 ∗ (9.91 ∗ 10−11 ∗ 𝑔3 ∗ 𝑟ℎ𝑜3 ∗ 𝑤𝑝15 +  2.28 ∗ 10−5 ∗ 𝐸𝐼 ∗ 𝑔2 ∗ 𝑟ℎ𝑜2 ∗ 𝑤𝑝10 +  0.889 ∗ 𝐸𝐼2 ∗ 𝑔 ∗ 𝑟ℎ𝑜 ∗ 𝑤𝑝5 +  3240.∗ 𝐸𝐼3) ∗ 𝐸𝐼

5.23 ∗ 10−14 ∗ 𝑔4 ∗ 𝑟ℎ𝑜4 ∗ 𝑤𝑝20 +  1.53 ∗ 10−8 ∗ 𝐸𝐼 ∗ 𝑔3 ∗ 𝑟ℎ𝑜3 ∗ 𝑤𝑝15 +  8.91 ∗ 10−4 ∗ 𝐸𝐼2 ∗ 𝑔2 ∗ 𝑟ℎ𝑜2 ∗ 𝑤𝑝10 +  6.58 ∗ 𝐸𝐼3 ∗ 𝑔 ∗ 𝑟ℎ𝑜 ∗ 𝑤𝑝5 +  1300.∗ 𝐸𝐼4

−  𝑑 ∗ 𝑤𝑝
2
∗ 𝜌

𝑤𝑎𝑡𝑒𝑟
∗ 𝑔 ∗ (𝐶𝑂𝐺̅̅ ̅ −

1

2
𝑑) 

 

(6.84) 

Where 

EI is the stiffness of the platform 

Using the standard values from the example, the new rotation stiffness can be calculated. Figure 

83 shows the ratio between the spring stiffnesses of the rotating spring for a flexible platform 

(as determined by the formula above) and an infinitely stiff platform (as described in formula 

(6.43)) for different values of the stiffness of the platform. When the stiffness goes to infinity, the 

ratio goes to 1. This is in accordance with the expectation, since formula (6.43) assumed an infi-

nite stiffness. The graph is made using the standard values. When these values change, the value 

for the stiffness at which the platform can be seen as infinite stiffness also changes. This value 

can therefore not be determined from this graph for other sets of parameters. 

The reduction in rotational stiffness means an change of the eigenfrequency which depends on 

the rotation stiffness. The lower the bending stiffness of the platform, the lower the rotational 

stiffness and thus the higher the eigenfrequency.  



 

Figure 83 – Ration between the spring stiffnesses of the rotating spring for a flexible platform and an infinite-
ly stiff platform for different values of the stiffness of the platform. 

6.6.4 GROWING WAVES 
For the response of the floating high-rise, only the particular solution was considered in the sin-

gle-mass models because it was assumed that, even when the wave grows, the homogeneous 

solution is negligible. This is proved in this subparagraph. 

A study was made into the total solution of the motion and thus the motion of the floating high-

rise. To investigate this with a growing wave, a growth factor must be added to the formula of 

the wave. A normal exponential function was not used for this growth because this would mean 

that after reaching the full height (growth factor = 1), the wave would continue to grow. Instead, 

a formula for the growth factor was sought that starts "slowly" and does not exceed 1. In math-

ematical terms, the function must have a limit of lim𝑡→−∞(𝑔(𝑡))  = 0 and lim𝑡→∞(𝑔(𝑡))  = 1 This 

can be achieved with a so-called "S" curve. The standard formula for an S curve is as follows  

 
1

1 + 𝑒−𝑡
 (6.85) 

 

However, a typical S curve has a value of 0.5 at t = 0. The growth factor at t = 0 should actually be 

0. In addition, the value 1 is approached very quickly. Therefore, a few adjustments have been 

made to the formula. The formula has been shifted and a factor has been added so that the for-

mula has a value of 0.001 (=0.1%) at t = 0 and a value of 0.999 (=99.9%) at t = develop time. In 

this case, the develop time is equal to 40 hours * 60 * 60 = 144000 seconds. This is the develop 

time determined in chapter 2. The formula becomes:  

 
𝑔𝑟𝑜𝑤𝑡ℎ 𝑓𝑎𝑐𝑡𝑜𝑟 (𝑡) =  

1

1 + 𝑒
−0.0000959271∗(𝑡−

1
2
∗144000)

 

 

(6.86) 

The growth factor in time looks as follows: 



 

Figure 84 - Growth factor of the growing wave. 

This growth factor is added to sine and cosine part of both the wave load (6.75) and to the 

standard formula used to solve the particular part of the equation of motion (6.76). Then the to-

tal solution can be determined. As an example, this is again done for an extreme situation: A 

building with a height of 500m and a platform with a width of 500 m at the Atlantic Ocean. Fig-

ure 85 shows the displacement of solely the vertical motion. There are two figures. The first fig-

ure is from t = 0 to t = develop time and thus concerns the growth of the reaction. The second 

figure is from t = develop time to t = develop time + 300 and is about the motion after the wave 

has reached its full height. The graphs of the horizontal motion and rotation are similar and can 

be seen in Appendix X. 

In the graph from the develop time to the develop time +300, it can be seen that the peaks and 

troughs have the same period and that the deviation is the same. So there is no influence of the 

homogenous part anymore. No graphs are show here of only the homogenous parts as these are 

zero. These can also be found in Appendix X.  

As the floating high-rise may not only be caught in a storm starting from a calm ocean, but may 

also sail into a storm, the same calculations were done with a develop time of 1 hour. Also for 

this develop time, the homogeneous part of the solution is negligible. The graphs for the motions 

with this develop time are shown in Appendix X. 

From the graphs it is concluded that in a storm with maximum wave height, the homogeneous 

solution does not matter and the total solution is equal to the particular solution. Therefore, in 

the continuation of the study, the homogenous solution is no longer calculated for the situation 

with maximum wave height and the particular solution is considered to be the total solution. 

This saves a considerable amount of calculation time. (Please note that this was also done in the 

previous calculations of the single-mass models.) 



 

Figure 85 – Total vertical motion of the three point masses due to a growing wave. 

6.6.5 INFLUENCING PARAMETERS 
In subparagraph 6.6.4 it was shown that the total motion of the floating high-rise consists only of 

the particular solution of the equation of motion. In subparagraph 6.6.2 it was discussed how 

this particular solution can be found. However, it is not the motion, but the acceleration that is 

limited. Whereby the maximum possible acceleration is of interest. The maximum acceleration is 

influenced by several parameters as discussed earlier in the single-mass models. In this subpar-

agraph, these parameters are examined in the multi-mass-model. This is done by calculating the 

maximum acceleration for different values of the parameters under investigation and plotting it 

in a graph. The parameters investigated are as follows: 

 Width of the platform (𝑤𝑝) 

 Depth of the platform(𝑑) 

 GM value (𝐺𝑀) 

 Width of the building (𝑤𝑏) 

 Stiffness of the building/core (𝐸𝐼𝑏) 

 Mass (of the different point masses) (𝑚) 

These are the main parameters that can be changed. There are some other parameters which are 

not investigated such as the height of the building. This will be used as the "most important" and 

first parameter to be chosen, after which the rest will follow. Also the height of the platform will 

not be investigated, the height of the platform will follow from the required height above the 

waves and will mainly influence the depth of the platform, which will be investigated. The pa-

rameters "centre of gravity height" and "damping value" are not included in this chapter as they 

are not interesting. The height of the centre of gravity has a negligible influence when it does not 

change the GM value and the damping value has not been extensively investigated in this study. 

The influences of these are shown in Appendix XI. 

Again, the relations between these parameters will not be used in this subchapter. This means 

that all values of the parameters remain the same, except for the parameter under investigation. 

For example, in the investigation of the influence of the width of the platform, the depth will re-



main constant. In reality, the depth will decrease with increasing width. This is done to study the 

influence of just the parameter. Later in the research, all relationships between the parameters 

will be used. The only parameter that does remain changing is the mass. For example, when the 

width of the building increases, the mass of the building also increases. The standard values used 

are as described in the chapter on assumptions. 

For each parameter the results will be presented in graphs together with an explanation. In ad-

dition, a comparison will be made with the results from the single-mass models. 

Please note that all graphs are created for the default value used, shown in chapter 3. Caution is 

taken in drawing conclusions about standard forms of the graphs and about values, as these can 

change greatly as the parameters change. The graphs are intended to extract the obvious fea-

tures and see why the results are as they are. As the results do not give a realistic value for the 

acceleration and are only a form of ratios (for example, a platform of 100 m gives twice as much 

acceleration as one of 150 m). Therefore, for each graph, the vertical axis representing the accel-

eration is not provided with numbers. 

Width of the platform 
First, a difference in the width of the platform 

is considered. The width of the platform is 

perhaps the most important parameter as it 

appears in many parts of the calculations and 

also affects many other parameters. There-

fore, it is difficult to determine in advance 

how changing the width would affect the ac-

celerations. This has to be determined with 

the help of the model. The results of the model 

for the maximum accelerations for different 

widths of the platform are shown in Figure 

87. These are the maximum vertical, horizontal and angular acceleration of all three masses. 

In Figure 87a the result for the vertical acceleration is shown. In this graph the results of all 

three masses are included but the three masses have (almost) the same results. At the left side 

the graph decreases sharply with increasing platform width until it reaches a local minimum. 

This is, as with the single-mass model, the value for which the width of the platform is equal to 

the wavelength. As the platform widens, the acceleration first increases and then decreases 

again until it reaches the second local minimum. This is when the platform has twice the width 

of the wavelength. When the results of the single-mass model with only vertical motion are 

compared with those of the multi-mass model, it can be seen that the vertical acceleration is the 

same. 

The results for the horizontal acceleration are shown in Figure 87b. In contrast to the single-

mass model, where the minimum was equal to the wavelength, just like the vertical motion, the 

minimum in the multi-mass model is equal to the zero moment width just like the rotation. This 

can be explained by the fact that there is a lot of horizontal displacement due to the rotation. In 

the single-mass models these motions were still independent of each other. Until the first mini-

mum, the acceleration in the lower mass is normative, after the first minimum it does not in-

crease so much anymore and the acceleration of the upper mass becomes normative. In these 

Figure 86 - Changing the platform width. 



platform widths, the rotation plays a greater role in the horizontal displacement of the upper 

point mass than the horizontal displacement of the lower point mass does. It is expected that the 

upper mass will be normative when the building is higher as the rotation arm will be longer. 

Point mass 2 has much less acceleration than the lowest and highest point mass. This will not be 

the case in all cases and has among other things to do with the height of the building and the val-

ue of the mass of the point masses. The latter will be investigated when different values for the 

masses are examined. 

For the angular acceleration, shown in Figure 87c, the results show the same pattern as the sin-

gle-mass models. The three point masses have the same results and, like the horizontal motion, 

have a minimum at the zero moment widths. 

Changing the platform width changes the spring stiffness and mass of the floating high-rise. 

Therefore, it could also have a value for which resonance occurs. It may be that this resonance 

occurs at extremely low or high values for the width. Nevertheless, it must be taken into account 

that the choice of the platform width can cause resonance. 

The conclusion of these results is that the most important thing that the width of the platform 

determines is how much force is acting on the platform. When the platform has the same width 

as the wavelength, the vertical acceleration will be minimal because the vertical force is minimal. 

When the platform has the width for which the wave moment is minimal, the horizontal acceler-

ation and angular acceleration are minimal. For the best choice for the width of the platform it 

will have to be found out whether the value should be chosen so that either the vertical or hori-

zontal acceleration is minimal, or whether a value in between is better to keep both accelera-

tions low. 

 

Figure 87 - Maximum accelerations for different platform widths. a) Vertical acceleration. b) Horizontal ac-
celeration. c) Angular acceleration. 



Depth of the platform:  
The second parameter investigated is the 

depth of the platform. The depth of the plat-

form will influence the horizontal acceleration 

because it changes the spring stiffness and the 

added mass in the horizontal direction. The 

excitation force depends only on the wave 

height, so it will remain constant. The change 

in depth will not affect the vertical accelera-

tion as it does not appear in the calculations. 

It should be mentioned here that the change 

in depth is a consequence of changing the 

width of the platform or the mass. These 

changes are not included. So the mass remains constant. The influence of the mass will be exam-

ined later. 

The results for the maximum accelerations for different depths of the platform are shown in Fig-

ure 89. These are the horizontal and angular acceleration of all three masses.  As expected the 

depth has no direct influence on the vertical acceleration and this graph is thus not included. 

In Figure 89a the horizontal acceleration is shown. The acceleration of the lower and middle 

point mass initially increases up to a maximum, and then decreases again. This is similar to the 

result of the single-mass model where it was concluded that there is a certain value for the depth 

at which resonance occurs. However, the value of the depth at which the resonance peak occurs 

is slightly lower in the multi-mass model. The acceleration of the upper point mass continues to 

increase with increasing depth. 

The results for the rotation of the three point masses, see Figure 89b, are again very similar. 

They also have a resonation peak. The resonance peak of the horizontal acceleration and the an-

gular acceleration occur at the same value for depth. 

These results show the influence of depth on spring stiffness and added mass. The frequency 

that belongs to the horizontal motion is also determined by these two factors. There is a certain 

value for depth for which these factors are such that the frequency is equal to the excitation fre-

quency which causes resonance. As the frequency of the platform is also determined by its mass, 

the depth at which resonance occurs is not easy to determine in advance and will vary with dif-

ferent choices of parameters. This possible resonance should be taken into account when look-

ing for the best parameters. 

Figure 88 - Changing the depth of the platform. 



 

Figure 89 - Maximum accelerations for different  depths of the platform. a) Horizontal acceleration. b) Angu-
lar acceleration. 

GM value 
The next parameter to be examined is the value of GM. To examine this parameter, the value is 

increased or decreased. In the chapter on static stability it is described that the GM value is the 

difference in vertical direction between the centre of gravity and the metacentre. Since the cen-

tre of gravity is kept constant, a change in the GM value can be seen as a shift of the meta centre 

as shown in Figure 90a. With formula (5.7) from the chapter on static stability it can be seen that 

a change in the GM value results in a change of the rotation under a certain moment. The higher 

the GM value, the less rotation, Figure 90b. The GM value thus determines the amount of the ro-

tation. In this chapter, this is translated into a certain spring stiffness for the rotation. Changing 

the GM value will therefore influence the results of the rotation. And since the rotation and hori-

zontal displacement are linked, the change will also influence the horizontal acceleration. 

 

Figure 90 - Change in the meta centre and rotation due to a change in GM value. 

The results for the maximum accelerations for different GM values of the floating high-rise are 

shown in Figure 91. These are the horizontal and angular acceleration of all three masses.  The 

GM value has no direct influence on the vertical acceleration as expected and this graph is thus 

not included.  

The graph shows that the GM value has a very large influence on the horizontal acceleration of 

all three point masses. The three point masses have a resonance peak at the same GM value, 

something that does not follow from the single-mass model as this motion was not linked to the 



rotation yet. It can be seen that the resonance occurs in the rotation motion as the three masses 

have the resonance peak at the same GM value, in contrast to the "depth" parameter. 

The angular acceleration of the three masses are equal and have the same shape as the horizon-

tal acceleration. 

There is a value for GM for which resonance occurs in all masses. As with the parameter "depth 

of the platform", there is a value for GM that provides a certain value of spring stiffness that 

makes the eigenfrequency of the platform equal to the wave frequency. Again it is not easy to 

determine in advance what GM value results in resonance. Increasing the GM value is thus not 

always positive from the dynamic aspect. This is an important result since for the static stability 

increasing the GM value is mostly positive. 

 

Figure 91 - Maximum accelerations for different GM values. a) Horizontal acceleration. b) Angular accelera-
tion. 

Width of the building 
The parameters of the building were also con-

sidered. Starting with the width of the build-

ing. In the way this research has been done, 

the width has no influence on the stiffness of 

the building. The stiffness will be investigated 

next. What the width of the building does in-

fluence is the amount of wind force on the 

building, the mass of the building and the 

mass moment or inertia of the building. 

The results for the maximum accelerations for 

different widths of the building of the floating 

high-rise are shown in Figure 93. These are 

the vertical, horizontal and angular accelera-

tion of all three masses.  

The vertical acceleration decreases with in-

creasing building width for all point masses. This is because the weight of the building increases. 

The horizontal acceleration also decreases with increasing building width for all masses, except 

for the lowest point mass which first peaks before decreasing. This is due to the influence on the 

mass moment of inertia. This will cause a change in the eigenfrequency of motion and can there-

Figure 92 - Changing the building width. 



fore lead to resonance. The acceleration decreases when for a larger building width. The in-

crease in wind force does not outweigh the decrease in acceleration due to increasing mass. 

The angular acceleration shows the same peak for all point masses at the same building width. 

 

Figure 93 - Maximum accelerations for different widths of the building. a) Vertical acceleration. b) Horizontal 
acceleration. c) Angular acceleration. 

Stiffness of the building 
As mentioned, different stiffnesses of the 

building were also considered. These stiff-

nesses have a great influence on the values of 

the beam stiffness matrix regarding horizon-

tal and rotational motion and thus on the 

spring stiffness of these two motion. 

The results for the maximum accelerations for 

different stiffness’s of the building (EI value) 

of the floating high-rise are shown in Figure 

95. These are the horizontal and angular ac-

celeration of all three masses.  The building 

stiffness has no direct influence on the vertical 

acceleration and this acceleration is thus not 

included. 

The graph for the horizontal acceleration gives a remarkable result. For very low stiffness, the 

acceleration of the lower point mass increases and the acceleration of point masses 2 and 3 de-

creases. Up to the stiffness of about 1012 N/m2, from where the acceleration remains constant. 

Figure 94 - Changing the stiffness of the building. 



With a higher stiffness than 1015 N/m2 the results start to oscillate where the acceleration of 

point mass 1 first increases and then falls to zero and finally increases again. Point mass 2 has 

the same shape only its top and bottom differs much less from its average. Point mass 3 has a 

maximum when the other two have a minimum. This makes it difficult to determine an ideal 

stiffness. It must be said that the value for the stiffness is most likely in the flat part of the graph 

(with the standard value the stiffness is ~ 2 ∗ 1013 N/m2). Only for very high buildings the stiff-

ness will be in the fluctuating part. The lower stiffness’s are of interest because of the loss of 

stiffness of concrete when it cracks. This means that the maximum acceleration of the floating 

high-rise can change over time as more cracks are formed. It is important to take this into ac-

count when designing floating high-rise buildings. 

The graph for the angular acceleration also shows a flat section with deviations at lower or much 

higher stiffness’s. 

 

Figure 95 - Maximum accelerations for different stiffness’s of the building. a) Horizontal acceleration. b) An-
gular acceleration. 

Mass of the point masses 
The last parameter to be examined, mass, is a 

more special case. The mass is normally a re-

sult of selected parameters. However, as ex-

plained before, ballast water can be used to 

make the platform heavier. This makes the 

mass a parameter which can be chosen. Since 

the mass of the building also has a large influ-

ence on the motion, other values for the pa-

rameters can be chosen with the final mass in 

mind. Other materials can be used to make the 

building lighter or heavier, or an additional 

mass can be used. An example of this is the 

Taipei 101 tower. This tower is located in an 

area where very violent typhoons and earth-

quakes occur and is thus vulnerable of high accelerations. As a measure to suppress induced vi-

brations a tuned mass damper is placed in Floors 87–91. This is a ball made of steel with a diam-

eter of 6 m and weighing 660 ton. (Li et al, 2011). However, the mass is only a very small per-

centage of the total mass and the effect of the tuned mass damper comes mainly from moving in 

Figure 96 - Changing the masses of the point masses. 



the resonance frequency of the building but in the opposite direction. This is a very interesting 

option for floating high-rise buildings, but was not investigated in this study. 

The influence of the mass can be derived directly from the equation of motion. The mass there-

fore has a direct influence on the motion itself. When the mass becomes infinite, the acceleration 

becomes zero. Because of its presence in the equation of motion, the mass also affects the fre-

quency of the motion of the point masses, so a change in the mass can cause resonance to occur. 

Modelling the whole structure as three point masses also ensures that the parameter mass is in 

three different forms. (The mass of point mass 1, 2 and of 3). Therefore, all three masses of the 

point masses are examined. 

For each point mass, the three acceleration graphs are made for different masses of the point 

mass in question. The graphs are shown in Figure 98, Figure 99 and Figure 100.  The graphs for 

the vertical acceleration are identical for the three different masses because the masses act as 

one in this direction. (This is because the masses can move little apart due to axial stiffness). 

This is why this graph is only shown in the first figure. 

In all three cases, an increase in mass at one of the point masses causes a decrease in vertical 

acceleration of all point masses. Just like the result of the single-mass model. So increasing the 

mass will lead to a reduction in vertical acceleration regardless of the position of the additional 

mass. It must be said that mass is one of the parameters in the calculation of the eigenfrequency 

and can therefore cause resonance. Apparently the mass, calculated with the value from the 

graph, does not cause resonance but this can be the case in other cases. 

The horizontal accelerations show that the acceleration does indeed go to zero when the mass 

becomes infinitely high. However, this is not true for the other two point masses (the point 

masses of which the mass does not change). In fact, the accelerations of these can even become 

larger. Figure 97 shows schematically how the other two point masses theoretically would move 

if one of the point masses has a lot of mass (displacement by vertical forces not included). This 

heavier mass will then move much less and the other two will move "around" it. 

 

Figure 97 - Motion of the point masses if one point mass is very heavy. 



When the mass of the lower point mass is increased, the horizontal acceleration of point masses 

1 and 3 increases first to a maximum. This mass therefore causes resonance as was expected 

that could happen. With a mass greater than the mass causing resonance, the horizontal acceler-

ations decrease as the mass increases. This is contrary to the theoretical scheme of Figure 97. 

This is because the forces due to the waves are many times greater than those due to the wind. 

When the mass of the lowest point mass is very large, it "absorbs" all these forces since these 

forces only act on this point mass. The other masses will therefore move much less. 

When the mass of the middle point mass increases, the horizontal acceleration of the lower and 

middle point mass decreases similarly but the acceleration of the upper point mass increases. Up 

to a certain value after which the horizontal accelerations no longer changes. After this point, it 

makes no sense to increase the mass. The upper mass behaves differently because it is not re-

strained by a large mass like the middle mass or by springs like the lower mass. 

If the mass of the upper point mass increases, the horizontal acceleration of the lower mass also 

decreases and the horizontal acceleration of the middle mass increases. Again, up to a certain 

mass, after which the horizontal accelerations remain constant. 

For the angular acceleration, as with every parameter so far, the resulting acceleration of the 

three masses is the same. For the changing mass of the lowest point mass, a resonance peak 

takes place in the angular acceleration at the same value of the mass as for the horizontal accel-

eration. When the mass of the middle point mass changes, there also appears to be a kind of res-

onance peak in the graph, but it is less steep than with the changing mass of the bottom point 

mass. This resonation peak can also not be found in the horizontal acceleration results. When 

the mass of the highest point mass changes, all angular accelerations decrease until the previ-

ously found mass, after which the results remain the same. 

 

Figure 98 - Maximum accelerations for different masses of the bottom mass (point mass 1). a) Vertical accel-
eration. b) Horizontal acceleration. c) Angular acceleration. 



 

 

Figure 99 - Maximum accelerations for different masses of the middle point mass (mass 2). a) Vertical accel-
eration. b) Horizontal acceleration. c) Angular acceleration. 

 

Figure 100 - Maximum accelerations for different masses of the upper mass (point mass 3). a) Vertical accel-
eration. b) Horizontal acceleration. c) Angular acceleration. 

Now that the different parameters have been investigated for the standard parameters as de-

scribed in chapter 2, it is clear that due to many different choices for the parameters, resonance 

can occur in one of the three motions. For the width of the platform, no resonance can be seen in 

the results but it is certainly possible when other input values are used. For example, a higher 

building. The depth of the platform, the GM value and the width of the building can cause reso-

nance in the horizontal and rotational motion. The greater the depth, after the resonance value, 

the less acceleration in the lower point mass, this is not the case for the other two point masses. 

The greater the GM value and the width of the building, after the resonance value, the lower the 

acceleration. It does not seem that the stiffness of the building leads to resonance. However, it 

does change how the masses interact and so it can greatly change the acceleration in the masses.  

The position of the weight can also cause resonance. The differences in acceleration are various 

for the increase of the different masses. 

It can be concluded that it is important to further investigate the possibility of resonance. In this 

subparagraph the parameters without dependence on each other and only one wave frequency 

have been considered. For a more realistic approach and to reduce the amount of parameters, 

the relations as described in chapter 3 can be used to reduce the parameters to the two most 

important ones; height of the building and width of the platform. This is done in subparagraph 

6.6.6. for the most extreme wave. In addition, the limiting frequencies described in chapter 2 

should be used to investigate the resonance. This is done in subparagraph 6.6.7. 



6.6.6 TOTAL CALCULATIONS 
In the previous paragraph, the various parameters were examined as independent. This is to de-

termine what influence these parameters have on the results. In this paragraph, the relations 

determined between the parameters are used to base the total calculation, and the calculation of 

the maximum acceleration, on only two or three parameters. These are again the parameters; 

height of the building and width of the platform. The third is the extra ballast. At first the mini-

mum required depth will be calculated, and with that the extra ballast to reach this depth will be 

calculated. In this way it is no longer an input parameter. Later in this paragraph the depth will 

also be an input parameter, from which the independent parameter, extra ballast, will follow di-

rectly. With the depth as input, the building can be intentionally made heavier than necessary for 

the regulations, because this can change the eigenfrequency and thus the results for the maxi-

mum acceleration. The three parameters are called the independent parameters. The other pa-

rameters follow from these two/three parameters in combination with regulations (e.g. mini-

mum 0.3 m height difference between the top of the platform and the crest of the highest wave), 

these are called the dependent parameters. 

For the waves, it has already been determined that both the tsunami and the growing waves do 

not cause any problems. Therefore, the most extreme waves are used. In chapter 2 it was deter-

mined that an acceleration of 0.55 𝑚/𝑠2 is the limit. The limit will be shown in the results. 

Since the height of the building is often chosen and the width of the platform is adjusted accord-

ingly, a parameter study of the width of the platform for a constant height will follow. For this 

purpose, a height of 100 m, 300 m and 500 m will be taken for the building. For all heights the 

other parameters will be calculated together with the maximum acceleration for the three pos-

sible motions.  All with the width of the platform as a variable. Initially, the calculations were 

done for the North Sea. Conclusions are drawn on this. Later in the paragraph, the results from 

the other locations will be used to determine whether these conclusions are correct and/or also 

apply to the other locations. Not all figures are included in this subparagraph. The other graph 

together with larger version of  the graphs shown here can be seen in Appendix XIII. 

Results for a 100 m high building 
Using all the relations for the dependent parameters, the maximum accelerations of the three 

masses for different widths of the platform can now be calculated. The results are shown in Fig-

ure 101. Due to the modelling method, the top mass is not the top of the building. However, this 

top side is often normative and so the motion and acceleration at the top side must be deter-

mined. This is done using the results of the three masses and is only done for the horizontal dis-

placement. The horizontal displacement of the three masses and the rotation of the top mass are 

used to determine the horizontal displacement at the top of the building. This can be described 

by a third degree polyhedral. The entire calculation is shown in Appendix XII. 



 

 

Figure 101 - Maximum vertical, horizontal and angular acceleration of all three masses with different plat-
form widths for a building height of 100m. 

For the vertical acceleration, the graph resembles Figure 87a where the influence of the platform 

was examined without using the relationships. The graph has local minimums at a platform 

width equal to the wavelength. The peaks between the local minimums decrease as the platform 

widens. The resonance takes place below 100 m width. The limit line in the graph shows that all 

platform widths that give a positive GM value have a lower maximum acceleration than is ac-

ceptable, apart from the 75 m which causes resonance. 

The graph for the horizontal acceleration is somewhat less consistent compared to the vertical 

motion. However, it is clear that this motion also has local minimums. These minimums are 

equal to the zero moment widths as previously found. The graph seems to have three resonance 

peaks, but in fact there are two. One for low platform widths (<100m) and one between 300 and 

400 m. The zero moment width at ~332 m, however, causes a huge dip in this resonance peak. It 

will therefore be very beneficial to use these zero moment widths to limit the horizontal acceler-

ation. Especially since, looking at the acceleration limit, the horizontal acceleration is much more 

problematic than the vertical acceleration, even with a 100 m high building. This will only get 

worse with taller buildings. The two resonance peaks can be explained by the fact that both the 

horizontal and the rotation "work together" and thus the resonance in one of the two causes 

high acceleration in the horizontal motion. After the resonance peak, the maximum acceleration 

seems to decrease for larger platform widths. This will be because the eigenfrequencies will be 

further and further away from the resonant frequency and the rotation will decrease due to a 

higher GM value. It can be seen in the graph that the bottom mass is normative for very low plat-

form widths and the top of the building for all other widths. This is due to the resonance in de 

horizontal motion of the bottom mass at low platform widths. Therefore it is necessary to look at 



all the horizontal motions and not only the, seeming most problematic, horizontal motion of the 

top of the building. 

The horizontal motion is thus normative for this building height. The maximum acceleration can 

be reduced by changing the spring stiffness of the rotation (this was a conclusion from the eigen-

frequency analysis). This spring stiffness is determined by the width of the platform, the depth, 

the GM value and the stiffness of the platform. The latter can be changed, for instance by choos-

ing a higher platform. The mass can also be adjusted. This will be examined later in this para-

graph. The results of the rotation are very similar to the results of the horizontal motion as ex-

pected. 

It can be concluded that the horizontal acceleration is normative for a building of 100 m. And 

since the vertical acceleration under any choice is lower than the limit, a value close to one of the 

minimum of the horizontal acceleration can be sought for the optimal platform width. From 

these results, the expectation can be drawn that the vertical acceleration for taller buildings will 

not be normative either, except if resonance can occur. The largest change for the vertical accel-

eration with a taller building will be the mass and from the graph in Figure 98a it can be seen 

that an increase in the mass only causes a reduction in the acceleration. The horizontal accelera-

tion is expected to worsen with a taller building due to the greater arm. 

Maximum accelerations for a 300 m high building 
The same calculations were done for a 300 m high building. The results for the three motions are 

shown in Figure 102. Just like for a 100 m building, the vertical acceleration is much lower than 

the limit. Because the platform has to be wider for stability, the initial peak is also no longer 

there. For the horizontal motion, the graph seems even more problematic than for a 100 m 

building. This was partly expected but is mainly due to the resonance that occurs between 200 

and 300 m width. In this case, the local minimums are also not below the limit. However, it can 

be seen again that with larger platform widths, the horizontal acceleration decreases. An in-

crease in mass in this case would be necessary to shift the resonance peak. 

 

Figure 102 - Maximum vertical, horizontal and angular acceleration of all three masses with different plat-
form widths for a building height of 300m.  



Maximum accelerations for a 500 m high building 
Finally, the calculation was also done for a building of 500 m. The results are shown in Figure 

103. The result for the vertical motion is as expected, but for the horizontal motion it is surpris-

ing. There is no extreme peak. This will be because the weight has increased so much that reso-

nance no longer takes place. More problematic is the fact that the horizontal acceleration does 

not seem to decrease with a larger platform width and the local minimums are nowhere below 

the limit. Therefore, going for the minimum depth with this height is not an option. 

 

Figure 103 - Maximum vertical and horizontal acceleration and angular acceleration of all three masses with 
different platform widths for a building height of 500m. Note: The three graphs can be on top of each other. 

Extra mass 
As mentioned, additional mass can be added in the form of extra ballast. This is done by taking 

the depth as input. Then the extra ballast needed to reach this depth is calculated and used. The 

results for a building of 100 m on the North Sea with a depth of 20 m are shown in Figure 104. 

For comparison, the previous calculations with depth as a dependent parameter result in a 

depth of about 2.5 m. 



 

Figure 104 - Maximum vertical and horizontal acceleration of all three masses with different platform widths 
for a building height of 100m and a depth of 20m. 

For the vertical motion, the accelerations are much lower than in Figure 101. For the horizontal 

motion, the resonance peak has shifted to a smaller platform width. Also, the maximum accelera-

tion decreases strongly for larger platform widths.  For the maximum horizontal acceleration, 

there is mainly a shift in the platform width that causes resonance. Whereas in Figure 101 this 

was around 350 m, for this option it is around 125 m. This causes the acceleration for wider plat-

forms to drop below the limit more quickly. Therefore, this seems to be a very promising solu-

tion. 

Different locations 
In addition to the different heights, there are also the different locations that provide different 

results. To illustrate this, a building height of 100 m is taken and the acceleration is calculated 

for the vertical and horizontal motions (as the rotation results are similar to the horizontal re-

sults these are omitted) for the three different locations. The results are shown in two sets of 

three graphs in Figure 105 and Figure 106. The first three graphs deal with vertical acceleration, 

the second three with horizontal acceleration. Each time, the first graph is about the North Sea, 

the second about the Atlantic Ocean and the third about the Equator. 

For the vertical motion, the graphs are similar. As expected, the more extreme conditions of the 

Atlantic Ocean give larger maximum accelerations and the moderate condition of the equator 

gives lower maximum accelerations. All with local minimums equal to the wavelengths of the 

locations. 

For the maximum horizontal acceleration, the resonance peaks can be seen at other platform 

widths. This is because the wave frequency is different at the location. For this set of parameters, 

the acceleration is most extreme at the equator, despite less high waves and less wind. So it can 

happen that there is a set of parameters which causes the eigenfrequency to be exactly equal to 

the wave frequency. In that case the height of the waves does not matter anymore. The graphs 

also show the zero moment width for each location. In general, the Atlantic Ocean gives the 

highest accelerations, as is to be expected, and it is also the location that needs the highest zero 

moment width to ensure that the accelerations are below the limit. (around 750 m compared to 

the 200 m of the North Sea and the 225 m of the equator).  



 

Figure 105 - Maximum vertical acceleration for all three masses for the location: a) North Sea, b) Atlantic 
ocean and c) Equator. 

 

Figure 106 - Maximum horizontal acceleration for all three masses for the location: a) North Sea, b) Atlantic 
ocean and c) Equator. 



From both the results of the previous subparagraph on the different parameters, and this sub-

paragraph using the relationships, it follows that the best value for the platform width is either 

equal to the wavelength for a minimum vertical acceleration or equal to the zero moment width 

for a minimum horizontal acceleration and angular acceleration. Because the horizontal motion 

gives larger accelerations and is more often above the limit, the best option seems to be to limit 

this acceleration as much as possible. It follows from both subparagraphs that the resonance can 

be caused by various parameters and is difficult to predict. To ensure that resonance does not 

occur at the chosen zero moment width chosen, additional ballast can be added to change the 

total mass. This shifts the resonance peak and reduces the acceleration.  

6.6.7 FREQUENCY LIMITS 
So far, one period, and thus frequency, has been used for the waves. As explained in chapter 2, 

the wave field contains several frequencies, all with different wave heights. In the same chapter, 

with the help of the distribution of the frequency of the wave field, a frequency interval is de-

termined in which no eigenfrequency of the motion may fall. Because these can lead to reso-

nance. Now that all the motions have been determined and described, these eigenfrequency  lim-

its can be translated into limits in parameters. 

To calculate this limit relation, it has again been attempted to use all the relationships described 

in chapter 3. This includes a relationship between the wave height, platform depth, platform 

height and the additional ballast. What the script does is calculate the minimum extra ballast for 

which the depth and height of the platform meet the requirements. This is the minimum extra 

ballast that is required. In this part of the research, however, it is desirable to increase the extra 

ballast. This changes the total mass and thus the eigenfrequency. Therefore, the same calculation 

cannot be used. For this reason, the depth of the platform is also taken as an independent varia-

ble (just like the height of the building and the width of the platform). From this depth, the extra 

ballast, which is actually the parameter to be chosen, will follow automatically. For the height of 

the platform it is assumed to be half a wave height higher than the depth of the platform. Not all 

depths are possible for the different sets of parameters. When the platform is small and the 

building high, the minimum depth (depth without additional ballast) will already be greater than 

the depth used as input. (For example: a building of 300 m high with a platform of 150 m wide 

already has a depth of 20 m without additional ballast.) These incorrect values should not be 

included. Therefore there is an additional limit; the depth limit 

Starting with the vertical motion. This is the simplest one since the three masses move as one in 

the vertical direction, as seen in this chapter,  and therefore there is only one eigenfrequency of 

this motion that matters (the eigenfrequency of the motion in which the point masses “move 

apart” are much higher than the limiting frequencies). For the vertical motion the single-mass 

model expression can be used as this is accurate enough. That eigenfrequency can thus be de-

termined with the mass, added mass and the spring stiffness as explained in the single-mass 

model paragraph. When all relations are used for the different parameters, the eigenfrequency 

can be expressed in the width of the platform and the height of the building. With the limits of 

the frequency, it can now be determined which width of the platform has to be avoided for cer-

tain heights.  

. 



As for the vertical motion, the eigenfrequencies of the horizontal and rotational motion also give 

a limit in parameters. However, here the three masses, into which the whole building is divided, 

provide three different eigenfrequencies for each motion. These are determined with the 9x9 

matrix. In the paragraph about the frequencies in this chapter it was concluded that the frequen-

cies of the horizontal motion and the rotation of the multi-mass model cannot be expressed in 

the two parameters. Therefore, the single-mass model calculations are used. This is dangerous 

territory because in the same paragraph it was concluded that this is actually not accurate 

enough for these motions. Nevertheless, it is used here to try to determine a result. Afterwards, a 

conclusion will be drawn about the reliability of these results. 

In the program Maple, the eigenfrequency is thus expressed in the two independent parameters; 

height of the building and width of the platform for a predetermined depth and height of the 

platform. With this expression, a 3D graph can be made. This is used to visualise what is done 

and to check whether the following steps taken are correct. These figures were already shown in 

the paragraphs of the single-mass models. Figure 107 shows the frequencies of the vertical mo-

tion and the rotational motion with a depth of 20 m for the North Sea. The red surface is the lim-

iting frequency of 0.43 rad/s. The horizontal motion is omitted as it is similar to the vertical mo-

tion. The graph for the horizontal motion can be seen in Appendix XIV together with the 3D 

graphs and results of the other two locations. The eigenfrequency is set equal to the two outer-

most frequencies of the frequency interval. Then these equations are solved to obtain the limit in 

which the height of the building is expressed in the width of the platform. In Figure 108 the re-

sult is shown for the vertical and rotational motions lower limit with a depth of 20 m for the 

North Sea. The upper limit is omitted because the eigenfrequencies will always remain lower 

than this limit (This can be seen in the 3D graph, they do not go as high as 1.43 rad/s). This is 

most often the case and so the upper limit is not always visible. 

For the rotation, the expression for the eigenfrequency is too large/complex for Maple to solve 

the equation. Therefore, it is chosen to solve it in a numerical way. Since Maple is not useful for 

numerical solution, the expression of eigenfrequency is copied to a Python script. In this script, 

for each platform width (with steps of 5) it is determined for which height of the building the 

eigenfrequency is closest to the limit. When for all platform widths a matching height has been 

determined, a formula is determined with the help of curve fitting. This is a polynomial formula 

of degree 10. This formula is then transferred to Maple to create the graphs. 

 

Figure 107 - 3D graph of the eigenfrequency of a) the vertical motion and b) rotational motion with a depth of 
20 m for the conditions at the North Sea. 



 

 

Figure 108 - Limitation for a) the vertical motion and b) rotational motion with a depth of 20 m for the North 
Sea. 

The two graphs look quite different. For the vertical motion, the limit goes up to a certain plat-

form width, in this case to 84 m. After that, the graph goes straight to zero. This can be explained 

by the parameters in the eigenfrequency formula. Both the spring stiffness and the added mass 

depend only on the width of the platform and not on the height of the building. This is also the 

case for the mass. Theoretically this would not be the case, a higher building gives a higher mass, 

however, by assuming a certain depth, the extra ballast is determined in such a way that togeth-

er with the mass of the building and the platform, it results in that certain depth. If a higher, and 

therefore heavier, building is chosen, the extra ballast will be less but the total mass will be the 

same to reach the same depth.  This continues until the building has a mass for which the extra 

ballast should be equal to zero to reach the depth. This is the line up until it drops to zero which 

can be seen in the graph. Since the three parameters which determine the eigenfrequency 

(spring stiffness, mass and added mass) all depend only on the width of the platform, the height 

of the building no longer has any influence on the eigenfrequency. So there is one platform width 

which, for every height of the building, gives an eigenfrequency equal to the limit frequency. This 

is in all cases the case for the vertical and also for the horizontal motion. This is not the case for 

the rotation motion. The height of the building does have an influence on this eigenfrequency. 

The graphs for the vertical and rotational motion show that the eigenfrequency of rotation caus-

es the biggest problems. The eigenfrequency limit of the horizontal motion is lower than that of 

the vertical one. 

Now that the limits of the three motions are known, they can be combined in one graph. This is 

shown in Figure 109. This figure shows the graph of only the limits and a graph with shaded ar-

ea. The sets of parameters in this shaded area cannot be used. In addition to these limits, the lim-

it of the depth is determined. This curve are the set of parameters for which the depth is possible 

without any ballast water. The sets below the curve need extra ballast water to achieve the 

wanted depth. The sets above the curve are not possible as the mass of the building and platform 

are such that the depth is more than 20 m. Finally the limit of the static stability (from chapter 5) 



is added. In the graph with shaded areas the area with the sets that are not possible due to in-

stability or not enough depth are also shaded. The same calculations are one for the Atlantic 

ocean and the equator. For the Atlantic ocean the result can be seen In Figure 110. As the limit-

ing frequencies is about the same for the North Sea and the equator these graphs are the same 

and thus the graph of the North Sea can be used for the equator.  

 

Figure 109 – A graph of different limitations for the building height and the platform width. This graph is ap-
plicable for the North Sea location, for a platform with a depth of 20m. a) Shows only the limit lines. b) The 

shaded areas are not usable. Note: The shaded areas can overlap, this is not visible. 

 

Figure 110 - A graph of different limitations for the building height and the platform width. This graph is ap-
plicable for the Atlantic ocean location, for a platform with a depth of 20m. a) Shows only the limit lines. b) 

The shaded areas are not usable. Note: The shaded areas can overlap, this is not visible. 

As can be seen, many combinations of the two parameters cause resonance in at least one of the 

motions. This is very problematic. The only combinations that seem promising lie in the area 

above the limit of rotation, below the limit of depth and stability and to the right of the vertical 

motion. When the combination of the two parameters have to be determined, the formula for the 

depth limit and the stability limit can be used. The one that gives the biggest platform width is 

governing. The limit of the vertical motion can be used as a minimum value for the platform. To 

illustrate: for a building of 500m high with a depth of 20m on the North Sea, the stability limit is 



equal to 228 m and the depth limit gives 217 m. As 228 m is bigger this is the governing size. 

This is also bigger than the limit of 84 m of the vertical limit therefore this would therefore be 

the platform width to choose. 

However, these are the results for one particular depth. This depth can be selected differently. 

This changes the depth limit. A different depth means actually a different mass which causes a 

change in the eigenfrequencies. The graphs therefor change when changing the depth. Since the 

rotation seems to be the normative motion, a graph has been made for the rotation frequency 

limit for different depths. This is shown in Figure 111. The graph of the limit seems to increase 

and shift to the right for greater depths. In this graph, it might seem that a shallower depth is a 

better option, however the depth limits are also different. In Fout! Verwijzingsbron niet ge-

vonden., both the rotation limit and the depth limit are plotted for three depths. It can be seen 

that for a depth of 5 m there is no option "left or above" the rotation limit. And so this is not an 

advantageous option. Only at a depth of 15 m (for the North Sea) is there this space between the 

two limits. The more depth the more space there is between these two limits. Note that the other 

eigenfrequencies and the stability limit are excluded but do restrict more possibilities. 

 

Figure 111 – Graph of the Rotation limit for different depth. This graph applies to the North Sea. 



 

 

Figure 112 - Graphs for the limitation in parameters due to the depth limit and the rotation resonance for a) a 
platform depth of 5m. b) a platform depth of 15m and c) a platform depth of 30m. All graphs apply to the 

North Sea location. 

In the previous paragraph the acceleration was calculated for the different motions for different 

building heights and platform widths. In these calculations the eigenfrequencies are calculated 

as well with the single-mass model formulas and the multi-mass model method. The results can 

be seen in Appendix XIV. In those graphs it can be seen that the eigenfrequency of the horizontal 

motion and the rotation of the single-mass model is different from the multi-mass model. The 

higher the building the more these differ. For the lower building the multi-mass model gives 

lower eigenfrequencies. For higher building heights it can be either higher or lower. The devia-

tion is bigger in the eigenfrequencies of the rotation than for the horizontal motion. It can be 

concluded that the eigenfrequency limits for the rotation and de horizontal motion, determined 

in this subparagraph, are not accurate enough. 

In this frequency limit analysis it can be seen that many combinations of the parameters, build-

ing height and platform width, lead to resonance because one of the frequencies of the different 

motions is equal to one of the possible frequencies of the wave. The best option is to choose a 

minimum depth of 15 m for the North Sea and the Equator and a depth of 20 m for the Atlantic. 

In those cases, there is a small range of options for the platform widths for different heights that 

do not lead to resonance. To determine these widths, the limit of possible depth and the limit of 

stability can be used. The limit that gives the largest platform width is leading and should be 

chosen. These limits can be used until the vertical motion limit is reached. The limit of stability is 

the same for all options, the limit of depth differs per chosen depth and the limit of vertical mo-

tion depends on depth and location. 

When these minimum advised depths are compared with the minimum depths in the static sta-

bility analysis, it can be seen that the depth of the frequency limit is by far the most normative. 

For the platform width, the stability relation of the static stability can be used, as long as the de-

sired depth can be reached. 

  



7. CASE STUDY 
Now that the analyses of static stability and dynamic stability have been done, they can be used 

for practical purposes. In this chapter, a few case studies are used to apply the results and to see 

what the results really mean. These have three different starting situations. For the first case, a 

building height of 500 m is used as input.  For this height, with all the results found, the other 

parameters are determined and it is determined whether it can meet the regulations. For the 

second case, a value for the width of the platform is used. This will be taken equal to the zero 

moment widths because these result in the least amount of rotation. For the last situation, the 

height of 50 m for the building is used. This gives a different situation than 500 m because it 

turned out that with this height, resonance cannot be avoided. However, the height is much less 

and so the top has less horizontal displacement and acceleration. 

To determine whether the acceleration is acceptable, it is considered whether the accelerations 

of the vertical and horizontal motions are below the 0.55 m/s2 determined in chapter 2. 

7.1 BUILDING OF 500 M 

For the first case study, the building height is taken as 500 m. This is the only input. For the three 

different locations, it is determined what the other parameters (can) be and how much accelera-

tion this provides. 

7.1.1 NORTH SEA 
For the 500 m building, a platform depth of 15 m is used because the frequency limit prescribes 

this as the minimum depth for this location (subparagraph 6.6.7). The figure for this depth can 

be seen in Figure 113. 

 

Figure 113 - Limits for a building of 500 m, a depth of 15 m at the North Sea. 

From Figure 113 it can be determined that the height of 500 m and 15 m depth gives the follow-

ing limits expressed in the platform width: 

 Stability limit: platform width = 227.6 m (min.) (chapter 5) 



 Depth limit: platform width = 250.7 m(min.) (chapter 6) 

 Rotation frequency limit: platform width = 268.2 m (max.) (chapter 6) 

The depth limit is normative in comparison to the static stability as the lower limit of the width. 

The width of the platform may therefore be between 250.7 m and 268.2m. To make things easi-

er, these have been rounded off to 251 m and 268 m. From the graph for the minimum depth at 

the North Sea for a 500 m building (from the results of the static stability, see Appendix IV), it 

follows that the depth of the platform for a platform width of 251 m should be about 15 m and 

for a width of 268 m about 13 m. The chosen depth of 15 m is therefore above this. The static 

stability model was used to check that the 251 m width with 15 m depth can indeed meet the 

requirements. (The graph cannot be read very accurately.) In addition, the model was used to 

determine that the height of the platform for a width of 251 m should be 20.8 m and for a width 

of 268 m the platform should have a height of 20.3 m. In Table 13 below an overview is given 

together with other results obtained with the static stability model. The sizes can also be seen in 

Figure 114. 

 

Figure 114 - Dimensions of the building and platform in case study 1. 

Table 13 – Results of the static stability analysis for a building of 500 m and a depth of 15 m at the North Sea. 

Parameter/ result Width platform = 251 m Width platform = 268 m 
Min. Depth platform [m] ~15 ~13 

Depth platform [m] 15 15 
Height platform [m] 20.8 20.3 

GM value [m] 110.0 188.6 
Angle of rotation [deg] 3.75 2.66 

Deflection at the top [m] 35.5 25.6 
 

Now that the parameters have been determined, the dynamic calculation can be carried out. The 

platform width of 268 m is the rotation frequency limit. This frequency limit was equal to 0.43 

rad/s (in subparagraph 6.6.7). So the rotation of the single-mass model will have to have this 

value if this platform width is used. As this was determined with the formulas of the single-mass 

model, it can deviate in the multiple mass model. The eigenfrequencies are calculated for all de-

grees of freedom (DOF’s) with both the single-mass model and the multiple mass model.  The 

results are shown in Table 14 below. For the horizontal and rotational DOF of the middle and top 



mass it is not determined which eigenfrequency corresponds to which mass as this is difficult 

and not needed. 

Table 14 - Eigenfrequencies with a building height of 500m. 

Eigenfrequencies 
[rad/s] 

Width platform = 251 m Width platform = 268 m 

DOF 
Single-mass 

model 
Multiple mass 

model 
Single-mass 

model 
Multiple mass 

model 
𝑢𝑏𝑜𝑡𝑡𝑒𝑚 0.189 0.081 0.183 0.112 
𝑤𝑏𝑜𝑡𝑡𝑒𝑚 0.294 0.294 0.286 0.285 
𝜃𝑏𝑜𝑡𝑡𝑒𝑚 0.329 0.318 0.433 0.304 
𝑤𝑡𝑜𝑝 - 2.114 - 2.095 
𝑤𝑚𝑖𝑑𝑑𝑙𝑒 - 3.891 - 3.519 
𝑢? - 5.281 - 5.278 
𝑢? - 10.891 - 9.069 
𝜃? - 93.320 - 93.304 
𝜃? - 155.465 - 155.444 

 

The eigenfrequency of the rotation in the single-mass model for a platform width of 268 m is in-

deed around 0.44 rad/s. It is slightly lower. This is due to the rounding off. So there is a small 

margin of error in it. The same eigenfrequency is in the multi-mass model a lot lower, 0.304 

rad/s. The limit therefore overestimates the limit by using the single-mass model and is there-

fore too conservative. The eigenfrequency of the horizontal motion of the bottom mass is lower 

than the single-mass model. Both are not close to the frequency width of the wave (all the possi-

ble frequency the wave can have). This deviation is expected as it was concluded in the frequen-

cy analysis of chapter 6 that the single-mass model is not as accurate as the multi-mass models. 

As expected, the eigenfrequencies of the vertical motion are equal in the single-mass model and 

the multiple mass model. Also this is not in the frequency width of the wave. 

Now that it is known that the eigenfrequencies are not within the range of the wave frequencies, 

we can look at the actual accelerations. The fact that no resonance occurs does not necessarily 

mean that the accelerations are low enough. The accelerations have been calculated for the two 

specific platform widths. These are shown in Table 15. 

Table 15 - Maximum accelerations of the vertical and horizontal motion for the three point masses for a build-
ing of 500 m and a depth of 15 m at the North Sea. 

Motion Point mass 
Max. acceleration [m/s2] 

Width platform = 251 m Width platform = 268 m 

Vertical 

1 0.016 0.001 

2 0.017 0.002 

3 0.018 0.002 

Horizontal 

1 1.422 1.061 

2 0.184 0.351 

3 1.976 1.953 

Top of the 
building 

2.890 2.771 



The maximum accelerations of the horizontal motion are way too high. Despite the fact that no 

resonance occurs. In Chapter 6, where the calculations for the maximum acceleration were 

shown, it can be seen that there are local minimum values for specific widths of the platform 

(See Figure 102 for an example). Only these specific values for the width have accelerations be-

low the limit. These were called the “zero moment widths”. These are the platform width for 

which the moment due to the waves is minimum. The parameters chosen here are not close to 

these zero moment widths and are therefore not optimal. Also when a depth of 20 m or 30 m is 

used, the accelerations are too high, see Table 16 below. (it was concluded in subparagraph 6.6.6 

that changing the depth changes the extra ballast needed and thus the mass. This change in mass 

causes a change in eigenfrequency.) The acceleration do not even necessarily decrease with in-

creasing depth. So it seems to be a fruitless attempt to simply choose a height of a building and 

then determine the platform width. 

Table 16 - Maximum accelerations of the vertical and horizontal motion for the three point masses for a build-
ing of 500 m and different widths and depth of the platform at the North Sea. 

  Max. acceleration [m/s2] 

Motion 
Point 
mass 

Width plat-
form = 251 m 
Depth = 20 m 

Width plat-
form = 251 m 
Depth = 30 m 

Width plat-
form = 268 m 
Depth = 20 m 

Width plat-
form = 268 m 
Depth = 30 m 

Vertical 
 

1 0.015 0.014 0.001 0.001 
2 0.016 0.015 0.001 0.001 
3 0.017 0.015 0.002 0.001 

Horizontal 

1 0.642 0.277 0.530 0.238 
2 0.486 0.610 0.549 0.634 
3 1.777 1.640 1.795 1.652 

Top of 
the 

building 
2.436 2.167 2.433 2.173 

 

To see what happens to the displacement, the maximum horizontal displacement of the top of 

the building and the maximum rotation of the lower mass were calculated for both platform 

widths. The results are shown in table 1 below. 

Table 17 - Displacement and rotation from the dynamic model, 

Motion Width platform = 251 m Width platform = 268 m 
Horizontal displacement [m] 7.03 1.25 

Rotation [deg] 1.02 0.034 
 

The results are much smaller than in the static stability model. Therefore, the floating high-rise 

is not able to achieve the most extreme rotation in these waves. The code for floating buildings 

has a limit of 4 degrees. This is not exceeded in this case 

The platform widths that have been determined do not meet the acceleration requirements. 

However, more platform widths are possible. Namely the widths larger than the rotation limit. 

(For illustration, the "right side" of the rotation limit in Figure 109.) These are much larger 

widths. In Chapter 6, the conclusion was drawn that with larger platform widths the accelera-

tions would be less. This was partly due to the fact that the eigenfrequencies was further away 

from the excitation frequency. For a building of 500 m, the rotation limit gives a width of 508 m 



at the “right side” border. For this width the same calculations were done as for the previous 

platform widths. Since the depth was already possible for a platform width of 251 m, it is cer-

tainly possible for this platform width. The static stability model gives a necessary platform 

height of 20.5 m at a depth of 15 m. From the zero moment width analysis (see Appendix V) it is 

concluded that the best platform width to choose, higher than 508 m is the zero moment width 

of 597 m. The calculations are therefore also done for this width. This width also needs a plat-

form height of 20.5 m. The resulting accelerations are shown in Table 18. 

Table 18 - Maximum accelerations of the vertical and horizontal motion for the three point masses for a build-
ing of 500 m, a platform width of 508 m and 597 m and a depth of 15 m at the North Sea. 

Motion Point mass 
Max. acceleration [m/s2] 
Width platform = 508 m 

Max. acceleration [m/s2] 
Width platform = 597 m 

Vertical 
 

1 0.006 0.007 
2 0.006 0.008 
3 0.007 0.008 

Horizontal 

1 0.112 0.027 
2 0.648 0.306 
3 1.531 0.515 

Top of the 
building 

1.984 0.621 

 

Even these widths do not result in accelerations below the maximum permissible acceleration. 

However, the accelerations are less than before. The platform width of 597 m does result in a 

minimum acceleration caused by the wave. However, at this location the wind speed is very high 

and this wind is normative. Therefore there is still too much acceleration. In this study, the focus 

was mainly on the waves, and the frequency of the wind was taken to be equal to that of the 

waves. For lower buildings and smaller platform widths the waves are also normative. With this 

large platform width, the platform is so stable that the building behaves roughly in the same way 

as a building on land. Buildings of these heights already have great problems with motion and 

acceleration due to the wind. It is therefore logical that they also have this problem on these 

platforms. Even if the waves are not included in the calculations, the wind still causes an acceler-

ation just above the permissible limit. It is obvious that a building of 500 metres on land will al-

ready experience too many problems under the wind load without additional measures. This 

research focuses on platforms with a limited width. These are widths for which floating has 

(great) influence on the design of the whole. With these results, and the results of subparagraph 

6.6.6 it can be concluded that when the widths are larger than 600, the motion will be closer to 

the condition for a building on land and wind will be governing. The same measures can then be 

taken as for buildings on land to reduce the acceleration. 

Since the wind is a big problem, The same determination and calculations are done for the loca-

tion around the equator. There the wind speed is more than twice as low. The determination Is 

not done for the Atlantic ocean as this will be even worse than the North Sea. 

7.1.2 EQUATOR 
As for the North Sea location, the parameters are determined using the static stability calcula-

tions. And then the maximum accelerations are determined. The stability limit, depth limit and 

frequency limits are almost the same for the equator as for the North Sea. Therefore, the same 



platform widths are used as found for the North Sea. Except for the zero moment width. This is 

552 m instead of 597 m. The results can be seen in Table 19 and Table 20 

Table 19 -  Results of the static stability  analysis for a building of 500 m and a depth of 15 m at the Equator. 

Equator Width platform 
Parameter/ result 251 m 268 m 508 m 552 m 

Depth platform [m] 15 15 15 15 
Height platform [m] 18.6 19.5 19.3 19.3 

GM value [m] 112 189 1374 1642 
 

Table 20 - Maximum accelerations of the vertical and horizontal motion for the three point masses for a build-
ing of 500 m and a depth of 15 m at the Equator. 

  Width platform 
Motion Point mass 251 m 268 m 508 m 552 m 

Max. vertical ac-
celeration [m/s2] 

1 0.025 0.018 0.004 0.005 

2 0.027 0.019 0.005 0.006 

3 0.028 0.020 0.005 0.006 

Max. horizontal 
acceleration 

[m/s2] 

1 0.227 0.197 0.172 0.005 

2 0.043 0.031 0.202 0.075 

3 0.385 0.427 1.596 0.072 

Top of the 
building 

0.622 0.681 2.607 0.074 

 

Again, the accelerations for the platform widths 251 m and 268 m are too high. And again, they 

do not come close to the zero moment width. For the width of 508 m the horizontal acceleration 

is even worse. This is either because it is close to the value in the middle between two zero mo-

ment widths, where there is a local maximum in the acceleration or because the eigenfrequency 

is close to the wave frequency. For the widths 552 m, the accelerations are low enough. So it is 

possible to reach this height at this location with less wind. It can be concluded that when the 

"right side" of the rotation frequency limit is chosen, resonance is no longer a problem and the 

platform is so wide that the waves have little influence anymore and the wind is the main prob-

lem. In order to determine whether a certain height can be achieved for the building, one can 

check whether it can be achieved on land with the same wind speeds.  If so, it may well be possi-

ble on a large platform. 

With these results, it seems better to use the zero moment width as a starting point, and then see 

which building heights are possible. This will be done in the next paragraph. 

7.2 ZERO MOMENT WIDTH 

7.2.1 NORTH SEA 
In this paragraph, not the height of the building but the width of the platform is taken as the 

starting point. And specifically the zero moment widths. These ensure the least moment due to 

the waves and thus less rotation and horizontal displacement. The motion that is almost always 

normative. Again, the North Sea is taken. The zero moment widths for this location are 191 m, 

328 m, 462 m, 597 m and 730 m. The depth of the platform is again 15 m. With the results of the 



eigenfrequency limits and other restrictions, the possible heights are determined for these 

widths. 

Table 21 shows the minimum and maximum possible heights for the various widths. The stabil-

ity and depth limits are maximum and the rotation limit is minimum. The depth limit is always 

normative in comparison to the stability. Thus, more depth can be chosen. For the time being, 

the depth remains 15 m. For both the minimum and maximum heights of the different platform 

widths, the maximum accelerations of vertical and horizontal motions have been calculated. 

These are shown in Table 22. For these calculations, the minimum heights have been taken as at 

least 100 m and the maximum heights as up to 800 m. 

Table 21 - Limits in possible height with a platform depth of 15 m at the North Sea. The stability limit and 
depth limits are maximums and the rotational frequency limit is a minimum. 

Platform width [m] 191 328 462 597 730 
Stability limit height [m] 412 740 1061 1384 1703 

Depth limit height [m] 408 608 776 929 1067 
Rotational frequency height [m] 361 574 542 0 0 

 

Table 22 - Maximum accelerations of the vertical and horizontal motion for the three point masses for a depth 
of 15 m at the North Sea. 

Accelerations [m/s2] 

Width platform [m] 

191 328 462 597 730 

Building height [m] 

Motion 
Point 
mass 

361 408 574 608 542 776 100 800 100 800 

Max. vertical 
acceleration 

[m/s2] 

1 0.078 0.077 0.025 0.025 0.013 0.012 0.008 0.007 0.005 0.005 

2 0.081 0.082 0.028 0.028 0.014 0.015 0.008 0.009 0.005 0.006 

3 0.083 0.084 0.029 0.030 0.014 0.016 0.008 0.010 0.005 0.007 

Max. horizon-
tal accelera-
tion [m/s2] 

1 0.671 1.219 0.689 0.985 0.127 0.748 0.004 0.244 0.003 0.085 

2 0.618 0.290 0.334 0.176 0.520 0.130 0.028 0.308 0.030 0.332 

3 2.001 1.905 1.519 1.517 1.260 1.227 0.095 1.031 0.099 0.845 

Top of 
the 

building 
2.702 2.725 2.128 2.206 1.640 1.798 0.130 1.410 0.134 1.115 

 

Even with the use of the most optimal platform widths and other parameters so that the eigen-

frequencies are not equal to those of the wave, the acceleration in the top of the building is too 

high for most heights in the situation of the highest waves. Only for a width of 462 m and a 

height of 542 m is the acceleration below the limit. Also for the buildings of 100 m height at the 

platform widths 597 and 730 the accelerations are low enough. There will be a limit somewhere 

between 100m and 800m building height for which there is too much acceleration even for these 

platform widths.  

Chapter 6 has shown that changing the depth of the platform can reduce the maximum accelera-

tion. Therefore, for a depth of 30 m, the same determinations and calculations were made. The 

zero moment widths remain the same. The depth limit and the rotation limit are different. The 

results of the limits are shown in Table 23. The resulting accelerations are shown in Table 24. 



Table 23 - Limits in possible height with a platform depth of 30 m at the North Sea for the zero moment 
widths. The stability limit and depth limits are maximums and the rotational frequency limit is a minimum. 

Platform width [m] 191 328 462 597 730 
Stability limit height [m] 412 740 1061 1384 1703 

Depth limit height [m] 530 781 992 1182 1354 
Rotational frequency height [m] 314 547 641 0 0 

 

Table 24 - Maximum accelerations of the vertical and horizontal motion for the three point masses for a depth 
of 30 m at the North Sea for the zero moment widths. 

Accelerations [m/s2] 

Width platform [m] 

191 328 462 597 730 

Building height [m] 

Motion 
Point 
mass 

314 412 547 740 641 800 100 800 100 800 

Max. vertical 
acceleration 

[m/s2] 

1 0.064 0.063 0.023 0.022 0.012 0.011 0.007 0.007 0.005 0.005 

2 0.066 0.067 0.025 0.026 0.013 0.014 0.007 0.008 0.005 0.006 

3 0.067 0.069 0.026 0.028 0.014 0.015 0.007 0.009 0.005 0.006 

Max. horizon-
tal accelera-
tion [m/s2] 

1 0.097 0.236 0.138 0.448 0.079 0.186 0.002 0.072 0.001 0.008 

2 0.813 0.650 0.545 0.277 0.463 0.347 0.031 0.363 0.032 0.300 

3 1.773 1.618 1.341 1.190 1.117 1.069 0.099 0.930 0.101 0.600 

Top of 
the 

building 
2.258 2.110 1.751 1.666 1.455 1.448 0.134 1.229 0.137 0.757 

 

The results do not differ much for a depth of 30m compared to 15m. So this is not an option for 

the North Sea either. 

The conclusion can be drawn that, with the design choices as they have been made in this study, 

the horizontal accelerations for this type of extremely tall building are almost always too high in 

the North Sea. But there can be a perfect combination, were the zero moment width can be used 

together with other parameters without causing a form of resonance. 

No example calculation is made for the Atlantic Ocean. Chapter 6 has already shown that this 

location is more problematic than the North Sea, so it too is not suitable for high-rise buildings 

on platforms with limited dimensions. 

Because of the milder conditions, the equator is a better location than the North Sea. This is also 

reflected in the results of the previous paragraph. Since the North Sea is not an option, we will 

look into the possibility of floating high-rise buildings around the equator with the zero moment 

widths. 

7.2.2 EQUATOR 
The zero moment widths for the equator are shown in Table 25. Together with the results of the 

limits. Table 26 gives the results of the static stability analysis and Table 27 the accelerations for 

the minimum and maximum heights of the different zero moment widths. 



Table 25 - Limits in possible height with a platform depth of 15 m at the Equator for the zero moment widths. 
The stability limit and depth limits are maximums and the rotational frequency limit is a minimum. 

Platform width [m] 223 384 542 699 
Stability limit height [m] 489 874 1252 1628 

Depth limit height [m] 458 681 868 1036 
Rotational frequency height [m] 423 604 0 0 

 

Table 26 - Results of the static stability analysis for a depth of 15 m at the Equator for the zero moment 
widths. 

 

Width platform [m] 

223 384 542 699 

Building height [m] 
Parameter/ result 423 458 604 681 100 800 100 800 

Depth platform [m] 15 15 15 15 15 15 15 15 
Height platform [m] 17.5 17.7 20.3 21.4 16.6 24.2 16.6 24.1 

 

Table 27 - Maximum accelerations of the vertical and horizontal motion for the three point masses for a depth 
of 15 m at the equator for the zero moment widths. 

Accelerations [m/s2] 

Width platform [m] 

223 384 542 699 

Building height [m] 

Motion 
Point 
mass 

423 458 604 681 100 800 100 800 

Max. vertical ac-
celeration [m/s2] 

1 0.033 0.033 0.011 0.011 0.005 0.005 0.003 0.003 

2 0.035 0.035 0.012 0.012 0.005 0.006 0.003 0.004 

3 0.036 0.037 0.013 0.013 0.005 0.007 0.003 0.004 

Max. horizontal 
acceleration 

[m/s2] 

1 0.108 0.167 0.055 0.097 0.001 0.043 0.001 0.007 

2 0.042 0.004 0.008 0.039 0.040 0.062 0.041 0.120 

3 0.312 0.311 0.253 0.254 0.127 0.253 0.128 0.020 

Top of 
the 

building 
0.459 0.480 0.394 0.425 0.172 0.446 0.173 0.096 

 

These results are much more promising. All accelerations are below the limit and so all these 

combinations (and most probably the building heights between the minimum and maximum 

heights) are possible. The location around the equator is thus the only location where high-rise 

buildings are possible on limited platforms. 

There is however a but, these zero moment widths are optimal for a wave with the frequency 

equal to the peak frequency mentioned in chapter 2. This is the frequency at which the highest 

wave occurs. It is therefore a logical choice to match the platform widths to the zero moment 

widths of this frequency. It is now necessary to look at another frequency to see whether the ac-

celerations at these frequency are also low enough. As an example the frequency of 11 rad/s is 

used (10 rad/s is the peak frequency). The wave height for this frequency is less than for the 

peak frequency. The calculation of the wave height for different frequencies is explained in chap-



ter 2 . The result for the horizontal acceleration at the top of the building (the normative acceler-

ation) is shown in Table 28 below. 

Table 28 - Maximum acceleration at the top of the building for a depth of 15 m and a wave frequency of 11 
rad/s. At the equator for the zero moment widths. 

 

Width platform [m] 

223 384 542 699 

Building height [m] 
Motion 423 458 604 681 100 800 100 800 

Max. horizontal accelera-
tion at the top of the build-

ing [m/s2] 
2.84 2.86 2.20 2.24 0.17 1.68 0.06 1.32 

 

This wave frequency is causing problems. The limit of 0.55 m/s2 is already exceeded by the low-

er platform widths. Therefore, the parameters used do not necessarily have low enough horizon-

tal acceleration for all frequencies. 

The equator is the only location that has not yet been completely written off for high-rise build-

ings on limited platforms in this study. However, a problem has already been discovered that has 

not yet been further investigated in this study. In order to determine whether floating high-rise 

is possible on the equator, with the design choices used, this will require further research. 

7.3 BUILDING OF 50M 

Starting with an height of 500 m also seems to be an excessive height. This height was chosen 

because the graphs from subparagraph 6.6.7 indicated that for this height there are possibilities. 

For more logical heights, between 50 m and 100 m, there are none because of resonance in the 

rotation or vertical motion. However, there is one major difference between the two options, at a 

height of 500 m the rotation has much more influence on the horizontal displacement at the top 

of the building than at a height of 50 m. It is clear that at 500 m there should be absolutely no 

resonance. But perhaps this is less of a problem with a low building. To test this, the calculations 

are done with a building height of 50 m and a depth of 15 m.  

7.3.1 NORTH SEA 
This building height gives the following limits for the North Sea location: 

 Stability limit: platform width =  39.6 m 

 Depth limit: platform width =  18.19 m 

 Vertical motion frequency limit: platform width = 96.9 m 

 Horizontal motion frequency limit: platform width = 29.4  m 

 Rotation frequency limit: platform width = 41.1 m and 514.9 m 

As mentioned, this option always gives resonance (for platforms smaller than 515 m). To avoid 

the resonance in the vertical motion, the platform must be at least 96.9 m and to avoid the reso-

nance in the rotation, the platform must not exceed 41.1 m, so there is always resonance in one 

motion. After calculations it also appears that below 97 m there is too much vertical accelera-

tion. Therefore, a platform width higher than this needs to be chosen. That width will cause res-

onance in the rotation. To limit the rotation a platform width of 190 m is considered, which is a 



zero moment width for the North Sea. In subparagraph 6.6.6 it was already shown that this is a 

value that gives low enough accelerations. However, there is again the one drawback to these 

zero moment widths. They are only optimal for a specific wavelength and thus for a specific fre-

quency of the wave. Therefore for this width of the platform the calculations were done with dif-

ferent wave frequencies and corresponding wave heights to see how good this zero moment 

width is for other frequencies. The calculated acceleration of the top of the building is shown in 

Figure 115 for different wave frequencies. In addition to the acceleration, the vertical lines indi-

cate the frequency at which the zero moment width has been "tuned" (and thus the minimum 

acceleration) and the eigenfrequency of the rotation. The eigenfrequencies of the horizontal and 

vertical motions are below 0.4 rad/s. 

 

Figure 115 - Horizontal acceleration at the top of the building for different frequencies of the wave for a build-
ing of 50m and a platform depth of 15 m at the North Sea. 

It can be seen that the zero moment width does indeed give very low acceleration but that this 

advantage only applies to that one frequency. The rest of the frequencies show the resonance 

peak and thus much too high accelerations. So the zero moment width only makes a “dent” in the 

resonance peak and is not a solution for the resonance and can therefore not be used to always 

make the floating high-rise possible. If it is precisely tuned to the eigenfrequency, it can be very 

advantageous. However, this is very difficult to match. 

7.3.2 EQUATOR 
Even for 50m buildings, the North Sea is not an option. Again, it is assumed that this also applies 

to the Atlantic Ocean. 

The final question is then, is it possible on the equator? Again the calculations are done with the 

height of 50 m and a depth of 15 m. The result is shown in Figure 116. Still the acceleration for 

the wave frequencies close to the eigenfrequency is much higher than the acceptable 0.55 m/s2 

and so it does not seem possible for the equator either. After many different, unsuccessful, at-

tempts to make floating high-rise possible on platforms with a limited width, one last attempt 

has been made. A depth of the platform was determined for which, together with the platform 

width equal to the zero moment width of 223m, the eigenfrequency is equal to the peak frequen-

cy and thus the frequency for which the zero moment width is ideal. The "dent" in the graph is 



therefore exactly at the maximum of the graph. The platform depth in that case equals 22.7 m. 

The result is shown in Figure 117. And miraculously, the accelerations fall below the limit for 

every frequency. So the floating high-rise is possible on a limited sized platform, for the mini-

mum height of high-rise buildings, 50 m, for one specific platform width and one specific depth. 

After all the fruitless attempts, one small success. 

 

Figure 116 - Horizontal acceleration at the top of the building for different frequencies of the wave for a build-
ing of 50m and a platform depth of 15 m at the Equator. 

 

Figure 117 - Horizontal acceleration at the top of the building for different frequencies of the wave for a build-
ing of 50m and a platform depth of 22.7 m at the Equator. (ZMW is zero moment width) 

7.4 CONCLUSION 

With the results from chapters 6 and 7, it can (again) be concluded that the major problem is the 

horizontal acceleration at the top of the building due to the rotation of the platform. The four 

main problems of this rotation found are as follows: 



1. The higher the building, the more the rotation of the platform affects the acceleration of 

the top of the building. 

2. If the platform is close to the stability limit, the GM value is low and thus the rotation is 

high. 

3. When the platform is not equal to the zero moment width values, much higher forces act 

on it, leading to much more rotation. 

4. The eigenfrequency of the rotation lies, for most cases, in the wave-frequency width and 

thus resonance can occur. 

The first problem is easy to solve, don't build too high. However, the aim of the research is to 

find out whether it is possible to build high. In addition, the case study with a low building height 

also shows enough problems with the horizontal acceleration. 

The second problem can be solved by taking wider platforms than this stability limit. The disad-

vantage of this is that these widths can cause resonance.  

The third problem seems easy to solve. Take platform widths equal to the zero moment width. 

However, this has four disadvantages: 

 The zero moment widths are large, and there are large steps between them. 

 They only work for one specific wavelength and thus wave frequency, the advantage 

diminishes quickly for different wavelengths. 

 They can be close to the stability limit, which in turn leads to large rotations. 

 The zero moment width can also cause an eigenfrequency that results in resonance. 

The last disadvantage of the zero moment width and the problem of increasing the platform 

width are connected to the fourth problem: Resonance.  To prevent resonance, there are two 

options: The eigenfrequency must either be lowered or raised. To do this, the formula of the ei-

genfrequency of the rotation must be examined. It contains the spring stiffness, the mass mo-

ment of inertia and the added mass. 

Lowering the eigenfrequency can be done by: 

 Increasing the mass moment of inertia.  This in turn can be done by increasing the 

mass of the platform, making the platform wider or increasing the depth.  

 The added mass can be increased.  This can also be done by increasing the width of 

the platform.  

 Finally, the spring stiffness can be reduced. This can be done , among other things , 

by making the platform smaller. 

For the first two options, the platform width must be increased, for the third option it must be 

reduced.  This makes it very complicated. It is not clear which of the three is the normative one, 

because the degrees of increase and decrease are not constant. In addition, it can be seen from 

the figures in subparagraph 6.6.7 that many combinations lead to resonance. The eigenfrequen-

cy must therefore also change significantly for many combinations before it no longer causes 

resonance. The other option, increasing the eigenfrequency, is exactly the same but then re-

versed. So this also gives the same problems.  



The combination of the second to fourth problems means that in (almost) all cases there is only 

one solution: The width of the platform must be made so large that the rotation is minimal and 

there is no resonance in the rotation. This only happens at platform widths of more than 600 m 

(depending on the location).  By also partly solving the first problem, not building too high, a less 

extreme width might be needed. The only option that gave good results in this research was the 

location around the equator with a building of 50 m high, a platform width equal to the zero 

moment width of 223 m and a depth of 22.7 m so that the eigenfrequency of the rotation is equal 

to the frequency for which the wave is highest, which is also the frequency the zero moment 

widths are tuned to. 

  



8. DISCUSSION 
This research investigated something that is still in its infancy; the building of floating platforms 

and building on top of floating platforms, floating on the sea or the ocean. This research serves 

as a first step towards one aspect: High-rise buildings on floating platforms. This aspect involves 

two large, complex structures. The high-rise building and a floating platform. To investigate 

both, and more importantly, to investigate the cooperation of these two, simplifications and as-

sumptions have been made. These are necessary to make the problem manageable, but they also 

lead to less detailed, less accurate and therefore less reliable results. This chapter discusses the 

simplifications and assumptions. These are subdivided into: Locations and conditions; building 

and platform, methodology and finally software, models and calculations. 

8.1 DISCUSSION ON LOCATIONS AND CONDITIONS ASSUMPTIONS 

The locations and conditions are described in Chapter 2 and are the result of the literature study 

and research. The first subject are the locations. For this research:  

 Three locations are used. 

 This research therefore concludes something about the conditions of these three loca-

tions and not about all possible locations.  

 For other locations a comparison can be made with the conditions of the three used loca-

tions to investigate whether it is possible to realise the floating high-rise at that location.  

In addition to the limited number of locations, not all the different possible conditions for the 

three locations have been taken into account.  The following statements are about the conditions 

used at the sites: 

 One set of conditions has been used for each locations. This means one maximum wave 

height with the corresponding peak frequency. These values can differ, even at the same 

location. 

 Different wave frequencies have been taken into account. These are based on the peak 

frequencies. No accelerations have been calculated with these frequencies. 

 No further research has been done into the wave heights at other frequencies.  

 And thus also no research into how these waves combine to form a wave field. 

This study is focused on the waves. The wind load is included but not separately investigated. 

Therefore, it is not possible to draw conclusions on the exact difference between the effect of the 

wave load and the wind load and when which load is normative. This study focused on platforms 

with limited widths. For these, the waves are normative. However, the platform widths, for 

which floating high-rise is possible, have proven to be very large and can hardly be called limited 

in size. It was noted that heights of the buildings and widths of the platforms for which the float-

ing high-rise is possible, the wind load is equal to or greater than the wave load. Therefore, more 

research is needed into the wind load separately from the wave load. The following simplifica-

tions are used for the wind: 

 The wind is not governing. This is not something that can be chosen, but it is from this 

perspective that the calculations and results have been looked at. 

 The wind has one frequency. 



 The wind has no separate frequency in this research. The frequency of the wind is equal 

to that of the wave. This is reasonable to investigate because especially the combination 

of wind and waves in the same frequency is dangerous. However, it is possible that the 

wave frequency is not close to the frequency of the wave but that the wind has a fre-

quency that can cause resonance. This has not been investigated in this study.  

 The method of calculating wind loads is only valid for buildings up to a height of 200 m. 

As many buildings that have been calculated with are higher than this, the wind calcula-

tion is no longer accurate. 

8.2 DISCUSSION ON BUILDING AND PLATFORM ASSUMPTIONS 

In this study, a simplification of the building and platform into 1D elements was used. To do this, 

the “behaviour” of the building is simplified and many values are based on other existing build-

ings and studies and not on the model itself. The following simplifications and assumptions were 

made for the building: 

 For the building only the core is used as an element, for stability. This is more often done 

in the preliminary research of the stability. In the preliminary research also a mod-

el/calculation is made for the core together with the frame of columns and beams or any 

other stability system. This is then a simple 2D model. This has not been done in this 

study. This does result in an simplification that leads to less accurate results.  

 No lateral load resisting stability systems such as outriggers, tube systems or mega 

frames were used. These can only be examined properly if the building is modelled as  

2D or 3D. These systems are often used in high-rise buildings on land and are therefore 

necessary for stability and can be extremely useful for high-rise buildings on floating 

platforms. 

 It is assumed that the building can deform "infinitely" without causing problems. 

 Since this study focuses on the stability, no research has been done into the strength of 

the building.  

 A square cross-section was used. In reality, buildings have all sorts of different shapes. 

These can be disadvantageous, but also advantageous. For example, a building with a 

round cross-section would have to withstand far fewer wind forces 

 A prismatic shape was used. A non-prismatic shape could also be advantageous. The 

lower the centre of gravity, the better the (floating) stability and the more rigidity at dif-

ferent heights in the building. 

Modelling the platform as a one-dimensional element also needed simplifications and assump-

tions. These are the following: 

 The platform is modelled as a beam. In reality, a three-dimensional platform could de-

form in all kinds of ways, other than a simple beam. The platform needs to be investigat-

ed as a slab or a similar sort of structure.  

 This 3D deformation can also cause cracks to appear in the concrete in different places, 

which will result in differences in stiffness.  

 It is assumed that the platform can deform "infinitely" without causing problems. 

 Since this study focuses on the stability, no research has been done into the strength of 

the platform. 



 One shape was examined for the platform: a box-shaped shape. In which the horizontal 

cross-section is a square. This form was chosen for its simplicity in determining, for ex-

ample, the spring stiffness and added mass. However, it is not the best shape for the plat-

form. Previous studies have shown that polygonal shapes are better, especially when it 

comes to attaching multiple platforms together.  

 A prismatic shape is used in the horizontal direction. In ships, the centre is often deeper 

than the sides, creating a (fishing rod) float shape. This is much more stable than a flat 

platform. Also, a greater platform height below the building would be better. The plat-

form deforms much more here than in other places due to the great weight of the build-

ing. A bigger height can increase the rigidity at this spot. 

The simplifications mentioned above were necessary for parametric research where many dif-

ferent situations and sizes could be tested. This gives a more quantitative result than a qualita-

tive one. The results of this research can be used as a limit from which more targeted research 

can be done on specific dimensions and locations. The parametric investigation not only made it 

necessary to simplify the modelling of the building, but also to make assumptions about the var-

ious parameters. The more parameters that remain variable, the greater the calculations. To 

keep these calculations limited, assumptions were made for many parameters based on existing 

projects or small studies. These assumptions are mostly based on expressing the parameters in 

the two parameters; height of the building and width of the platform. This results in a calculation 

with far fewer variables, but also simplifications, inaccuracies and fewer design choices. These 

assumptions are briefly described here, together with the consequences of these assumptions 

for the parameters relating to the building and the parameters relating to the platform. 

For the building these are: 

 Width of the building. The width of the building is based on three example buildings 

with different widths and heights. In reality, the width can be chosen freely and depends 

on the height of the building, but is not directly related to it. The width can be adjusted 

and may lead to different results. For example, a wider building would lead to more stiff-

ness but also to more wind load. The influence of changing the width of the building is 

investigated in the chapter on dynamic stability. 

 Stiffness of the building. The stiffness of the building is perhaps the most important pa-

rameter for the building in this study. It is determined in such a way that the same build-

ing on land (i.e. without rotation at the bottom) exactly meets the requirements of hori-

zontal displacement as described in the Eurocode. When this stiffness is applied to the 

floating high-rise, it will not be enough. Therefore the estimate is also very conservative. 

This may have led to the negative results. In Chapter 6, however, the effects of increasing 

the stiffness on the accelerations have been investigated. This can be positive but also 

negative. Therefore, more research will have to be done on the stiffness. 

 Mass of the building. The mass of the building is the most difficult parameter to esti-

mate. This is because it is very much influenced by different choice. For this study, one 

standard weight per floor area has been used. This is taken from another study. This 

mass is therefore dependent on the width of the building and on the height. This mass 

could very well be different, which would lead to different results. However, a lot of re-

search has been done in this study into changing the mass and the influences of this. 

 Mass moment of inertia of the building. The mass moment of inertia is also based on 

one example because this is also a very difficult parameter to determine. Especially when 



working with a one-dimensional element. The mass moment of inertia of the building 

could vary greatly. However, the research showed that this value mainly influenced the 

eigenfrequency of the rotation of the upper two masses. These eigenfrequencies were far 

away from the frequencies of the wave and therefore this assumption will not have much 

influence on the results. 

For the platform, different assumptions have been made for the parameters. These are: 

 Stiffness of the platform. The stiffness of the platform was investigated separately in 

this study. A parametric model was made in which the stiffness was calculated for differ-

ent lengths and heights by modelling a three point bending test. From this a calculation 

was made of the stiffness of the platform expressed in width and height. In these calcula-

tions the platform was assumed to be a beam, so it was a 2D calculation. In reality 3D 

platform will behave differently. This mainly causes other deformations where the build-

ing and the platform are connected. Still, it is a pretty good approximation. 

 Mass of the platform. The mass of the platform is calculated in the same model as the 

stiffness. The mass is thus expressed in the height and width of the platform using the 

model. The mass of the platform is only based on the dead weight. Live loads were not 

taken into account. However, this is not a problem. In most calculations, extra ballast was 

used to increase the mass of the platform. The mass of the platform therefore has more 

of a chosen value than a value that follows from the dimensions. 

 Damping. The damping value of the floating platform is assumed constant. This is be-

cause it is an almost impossible parameter to determine. It is often determined by testing 

scale models. The value that is often used for ships was used. It may well be that the 

damping is different for the platform. This will also lead to different results. However, it 

is concluded that the wave excitation changes so slowly that the homogeneous part of 

the solution of the equation of motion (the part that strongly depends on the damping) is 

negligible. 

Finally, a parameter that affects both the building and the platform is the E-modules. Only one 

value for the E-modules was used in the entire study.  In addition, only the reduced E-modules 

for cracked concrete were used in the calculations. Initially, the concrete would not have been 

cracked yet. This would lead to different results. This has not been taken into account in this 

study. For the building, a different choice would not lead to different results. As mentioned be-

fore, the stiffness follows from the Eurocode requirements. The stiffness will therefore remain 

the same if the E-modulus changes. For the platform it has consequences. The stiffness of the 

platform does depend on the choice for the E modulus. 

8.3 DISCUSSION ON METHODOLOGY 

In this study, static and dynamic stability were treated separately. This is possible because the 

two stabilities are very different. However, it would have been better to have the two parts (par-

tially) overlap. The following parts would have been easier or better if the two models could be 

used together: 

 To determine whether water could get onto the platform. This is now investigated in the 

static stability part at two moments. The moment of no rotation and the moment of max-

imum rotation. It could well be that somewhere between these moments the water could 



be on the platform. This could have been more easily investigated with the dynamic be-

haviour. This has not been investigated further.  

 The dynamic stability shows that the skew and horizontal displacement of the top of the 

building from the static stability are not reached. This will be due to the building already 

moving into reverse before it has undergone the maximum rotation/displacement. This 

will not lead to a difference in minimum values for the parameters (if it is stable, it does 

not matter anymore how much it rotates, it is stable anyway) but it will lead to a differ-

ence in results. 

 Parts of the static stability were investigated that ultimately did not matter at all because 

the dynamic stability is normative, which was unknown at the time. Especially some op-

timisation for the static stability were useless. When the two parts are used together 

they can be optimised together. 

The choice to keep static stability and dynamic stability separate is mainly due to the way of 

modelling and the programmes that are useful for it. In this research, the parametric program 

Grasshopper was very useful. However, no dynamic analysis can (yet) be done with this pro-

gram. Therefore, other programs were chosen for the dynamic stability. If in the future a dynam-

ic analysis can be done in Grasshopper, this programme would be very useful to combine the 

two forms of stability. 

The last phase of the research in which the case study was done is on the short side. A case study 

was also not the main objective but the results from the case study reveal many problems and 

some inaccuracies. In addition, a case study is a form of anecdotal evidence. The few values that 

have been studied are not representative. By using the results of the other phases, parameters 

were chosen to investigate whether floating high-rise is possible, not whether it is impossible. In 

other words, if an example is found that works, it is proven that it is possible. But with a few ex-

amples it is not possible to conclude that it is never possible. The conclusion of the case study 

chapter does draw such conclusions. These are not only based on the case study, but especially 

on the case study together with the other chapters, from which a better conclusion can be drawn 

whether it is possible or not. 

8.4 DISCUSSION ON SOFTWARE, MODELS AND CALCULATIONS 

In the paragraph on assumptions for the building and the platform, there has already been a dis-

cussion about modelling the elements as 1D. It subsequently follows that the models and the cal-

culation are 2D. This is fine for a preliminary study on floating high-rise buildings. But because 

of this, there are parts which have not been investigated or which have been taken little or no 

account of. These are the following: 

 Three of the six possible motions are omitted. For two of these this is not a problem. 

These are the horizontal displacement and the rotation in the direction perpendicular to 

the 2D model. Due to the symmetry of the platform and building, these are equal to the 

two examined horizontal motion and rotation. What has not been investigated is the 

sixth motion; the Yaw (rotation in the horizontal plane). For this, a 3D model is needed.  

 In the model, the combination of the three motions are investigated. In reality, this will 

be a combination of all six motions. This will lead to differences. Especially when work-

ing with a square platform.  



 It has not been investigated what the motions are when the wave is not perpendicular to 

the platform. This is a major simplification, especially for a square platform. The spring 

stiffness and added mass will be different if the platform rotates diagonally (e.g. if the 

corner of the square platform becomes the lowest point after rotation instead of the side 

of the square). This gives other accelerations that can be higher than the accelerations of 

the wave loads investigated in this research.  

 The wave is assumed to be prismatic in the direction that is not modelled. In reality there 

will be a complex 3D wave field that can make the platform move in all kinds of ways. 

This has not been taken into account in this investigation. 

In addition to modelling in 2D, there are several components in the static stability model that are 

inaccurate: 

 No horizontal springs are used. This is because it would not be accurate when using a 1D 

element for the platform. It also causes horizontal displacement due to the compression 

of the spring by the horizontal forces. It is then no longer possible to determine whether 

the displacement is due to the horizontal displacement of the platform or due to the rota-

tion and/or deformation of the building. The latter was the main purpose of the model. 

The only downside is that these springs produce a small moment. This moment is not 

taken into account. In the dynamic model the horizontal springs are used.  

 Secondly, a support was added to the height of the centre of gravity in the static stability 

model. Because of the lack of horizontal springs, this was necessary to keep the model 

"in place" so that the model could find an equilibrium. This support did not cause a dif-

ference between the GM method and the model, and the rotation of the platform was cal-

culated accurate. However, it does lead to incorrect results in the deformation of the 

building. These did not influence the results used for the conclusions. 

 Thirdly. The model is inaccurate for those platform widths where the stability is low but 

still sufficient. This inaccuracy is due to the platform and building rotating too much to 

achieve a final rotation. In other words, the rotation changed so much per iteration that 

it could not be determined whether there was stability, and thus an end rotation could be 

found, or whether there was no stability and the model would rotate infinitely. 

 Finally, a modelling assumption used for both static and dynamic stability that has an 

impact is the assumption that the building is modelled as a clamped beam. This means 

that the rotation in the middle of the platform is equal to the rotation of the bottom of 

the building. This simplification is more often used in preliminary models of high-rise 

buildings. However, in reality there will be a difference in rotation and the connection 

will not be a moment fixed connection but will have the behaviour of a very stiff rota-

tional spring. 

This paragraph concludes with a discussion of the dynamic model. Modelling the entire building 

as one point mass or as three point masses gives the following simplifications/inaccuracies: 

 The platform is included in one point mass. If the platform is the focus of the study, it too 

will have to be divided into several point masses. For this research, one point mass with 

an adjusted stiffness for the rotational spring, to take into account the deformation of the 

platform, was enough.  

 In the program Diana it was showed that for the eigenfrequencies close to the values of 

the wave frequencies three point masses is enough. This model is also used to check if 



the matrices, which are used for the calculations of the multi-mass model, and the eigen-

frequencies that follow from them are correct. However, it has not been checked wheth-

er the resulting solutions of the equations of motion are correct.  

 In the calculations of the limits of the frequency paragraph, the single-mass model for-

mulas were used. This is not accurate for the horizontal and rotational motions. There-

fore, these results should be used with care. Since the use of the multiple mass model 

leads to other eigenfrequencies. The single-mass model does give higher eigenfrequen-

cies than the multiple mass model. In this research, this resulted in a conservative esti-

mate. 

9. CONCLUSION 
In this chapter, the research questions, as formulated in Chapter 1, are presented again. Subse-

quently, the various research objectives are addressed and the conclusions are discussed. This is 

done by answering sub-questions using the results from Chapters 4, 5, 6 and 7 of the study, tak-

ing into account the assumptions and different situations investigated as described in Chapters 2 

and 3 and the discussion of these assumptions and situations and the subsequent results in 

Chapter 8 . These answers and conclusions are then used to answer the main research questions 

in the final paragraph. 

The main research questions of this study are as follows: 

Research question 1: 

 Is it structurally feasible to construct high-rise buildings on floating platforms which are 

limited in size regarding stability? 

Research question 2: 

What are the requirements for both the platform and the building regarding the stability of 

a floating high-rise building for different building heights? 

To answer these questions, the three phases, which were divided into five objectives, in this re-

search are discussed. 

9.1 PHASE 1 

The first phase consists of the first objective; Examining the various topics that form a basis for 

this research. For this objective, the existing literature on floating cities and floating homes was 

examined. From this literature, a beginning of the research has been made and various assump-

tions have been based on it. In addition to the research done on floating construction, there is 

research done on the various information that should be used as input and limitation of the re-

search as well. The following properties are used for the building and the platform. 

 The cross-section of the building is square and the building is prismatic, see Figure 118. 

 The cross-section of the platform is square and the platform is prismatic, see Figure 118. 

 The core of the building and the platform are made of concrete class C60/75. 



 

Figure 118 - Render of the platform and building. 

It was determined which locations needed to be examined in order to answer the research ques-

tion for a wide range of locations. This resulted in three locations:  

 The North Sea. With high wind speed, high waves and limited depth. 

 The North of the Atlantic Ocean. With extreme wave heights.  

 The Atlantic Ocean around the equator. With calm wave and wind conditions 

These form three locations with differences in depth, wave length, wave height and wind condi-

tions from extreme to minimal. In addition to the locations, various extreme cases were investi-

gated for which the floating high-rise had to be tested. These are:  

 A tsunami. A sudden wave with a very long wave length. 

 A growing storm. A transition from a calm sea to the most extreme wave heights. 

 The most extreme wave height. A regular wave of the most extreme wave the floating 

high-rise need to resist. 

 Irregular waves. The combination of multiple waves with different frequencies. 

Finally, the limits and regulations that the floating building had to meet in terms of stability were 

investigated. These regulations consist of the following serviceability limit state limits: 

 The minimum distance between the top of the platform and the water must be at least 

0.3 m. This is to prevent water from getting onto the platform. 

 The depth of the platform must be large enough so that the trough of the wave is not 

lower than the platform 

 The GM value* must be at least 0.25 m. 

 Both the vertical and horizontal acceleration at any position in the building needs to be 

below 0.55 m/s2. 

* The GM value is the distance between the centre of gravity and the meta centre. The meta cen-

tre is where the direction of the buoyancy force intersects the central axis. If the GM value is pos-

itive, there is stability. The higher the GM value, the less rotation under a certain heeling mo-

ment. 

9.2 PHASE 2 



The second phase consists of three objectives. Examining; buoyancy, static stability and dynamic 

stability. All three are discussed. 

9.2.1 BUOYANCY 
For the buoyancy, mainly the relation between the mass and the depth of the platform is deter-

mined. This is a relationship that has been used extensively in static and dynamic stability. The 

mass of the building and platform pose few problems for staying afloat. In fact, extra ballast wa-

ter can easily be used to make the platform heavier in order to achieve the desired mass or 

depth.  

9.2.2 STATIC STABILITY 
For the static stability a combination of hand calculations based on the GM-method, in which the 

GM value is calculated on the basis of certain values of the platform and building, and a model 

that can include deformations in the calculations as well is used. The GM method was used to 

check if the model was correct. The comparison showed that the results are the same when infi-

nite rigid elements are used in the model. When realistic stiffnesses are used, the results of the 

rotation and deformations are very different. Thus, the GM method is not enough when investi-

gating the different requirements for a floating high-rise building. For the limit of stability, the 

GM method was used because the model was not accurate due to the high rotations. For the sta-

bility, a linear relationship was found between the height of the building and the width of the 

platform for which the floating high-rise is stable.  

 The floating high-rise is stable if the following inequality formula is fulfilled: 

 𝐻𝑒𝑖𝑔ℎ𝑡 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 ≤  2.3936 ∗ 𝑊𝑖𝑑𝑡ℎ 𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 − 44.817 (9.1) 
 

The relationship is the result of a complicated calculation despite the seemingly simple linear 

formula found. The relationship does result from basing the other parameters (e.g. width of the 

building) on the two parameters in question. When these can be chosen freely, it may deviate 

somewhat.  

Changing the various parameters of the building and platform can have several positive and 

negative effects on the stability of the platform. These are as follows: 

 Making the platform wider provides a higher GM value and thus less rotation. This is 

positive for the displacement of the building. However, it can be negative because more 

forces act on the platform. This can be detrimental and thus cause more rotation. 

 Making the building higher causes the weight in the middle of the platform to increase. 

This will cause the platform to sink deeper in the middle and create a banana shape. This 

can be disadvantageous, because the middle is now lower, but it can be positive because 

the ends, where the water can reach the platform, bend upwards and are therefore high-

er. The increasing weight can lead to more rotation, which in turn leads to much more 

horizontal translation in the building. Finally, a taller building has a wider width and 

thus catches more wind, which leads to an increase in moment and thus rotation. 

 Making the platform higher provides more stiffness. This can be positive or negative for 

the same reason as explained above. 



The calculations gave various results with local minimums. For example, the required depth of 

platform was minimal around the values for the platform width equal to that of the wavelength, 

or a multiple of it. Investigation of the forces showed that the vertical forces on the platform 

were minimal at these platform widths.  Minimum values were found for the results depending 

on the moments due to the wave force. However, these were for other platform widths than for 

the vertical force. These values are called "zero moment widths" because for these widths the 

wave moment, regardless of position or time, is approximately equal to 0 kNm. Therefore the 

rotation is minimal when these zero moment widths are used for the platform width. It is not 

easy to determine in advance which value of the platform width this is, but it is the width for 

which the moment due to the wave force is minimal. Between two zero moment width values 

there is approximately the value of a wavelength. The zero moment widths are therefore de-

pendent on the wavelength, different wavelengths give different zero moment widths. The fol-

lowing therefore applies to the various locations: 

 The vertical forces on the platform are minimal if the platform has the same length as the 

wavelength of the wave, or a multiple of it. 

 The moment on the platform, and thus the rotation, by the wave is minimal at the so-

called zero moment width. These are different from the wavelength. 

9.2.3 DYNAMIC STABILITY 
For the last objective of the second phase; the dynamic stability, the floating high-rise was first 

modelled as a single mass (single-mass model). Then, for three different motions; Vertical mo-

tion (heave), horizontal motion (surge and sway) and rotation (roll and pitch), it was investigat-

ed how these should be calculated and which parameters influence these motions. Next, the 

floating high-rise building was modelled as three point masses (multi-mass model) with three 

degrees of freedom (DOF’s) for all three point masses, the platform being included in the lowest 

point mass. These eigenfrequencies obtained by the models differ for the horizontal motion and 

rotation. The single-mass model gave higher eigenfrequencies than the multiple mass model. 

The eigenfrequency of the vertical motion is the same for both models. In addition, the multiple 

mass model gave more eigenfrequencies. However, these were far from the frequency of the 

waves. With a model in Diana, it was concluded that three point masses is accurate enough for 

determining the eigenfrequencies and no more are needed. 

With both the single-mass models and the multi-mass model the following was concluded: 

 The vertical acceleration is minimal when the width of the platform is equal to the wave-

length or a multiple of it.  

 The vertical acceleration is only normative for small building heights and platform 

widths, whereas it is the biggest cause of seasickness. 

 If the zero moment widths are used for the width of the platform, the rotation and thus 

the horizontal acceleration is minimal. This does not mean that the accelerations are be-

low the limit. 

 The horizontal acceleration at the top of the building due to both the horizontal motion 

and the rotation is almost always normative. 

 A tsunami, which has little height and a very large wavelength on the open ocean, does 

not cause an extreme reaction. As the wave is not high, this situation is not normative. 

 The growth of the waves from a calm ocean to a storm does not cause extreme reactions 

as this happens over a longer period of time. 



 The most extreme wave height is the normative of the three.  In addition to the extreme 

wave height, irregular waves can be normative. 

For the three motions, the most influential parameters have been investigated.  They are listed 

here with the explanation of their influence. For the vertical motion, these are: 

 Platform width. A larger platform provides more spring stiffness and more added mass. 

This changes the eigenfrequency. With increasing width a reduction in maximum accel-

eration was found. As in static stability, there are minimums in the results for platform 

widths equal to the wavelength or a multiple thereof. 

 Mass. A change in the mass of the floating high-rise causes a change in the eigenfrequen-

cy. The higher the mass the lower the eigenfrequency and the higher the mass the lower 

the maximum vertical acceleration. The eigenfrequency of the vertical motion is only 

close to the wave frequency for low buildings (below 100 m) and can consequently lead 

to resonance. 

For the horizontal motion: 

 Platform width. As with the vertical motion, an increasing platform width results in a 

lower maximum acceleration. There are minimum as found in the static stability for this 

motion. For the horizontal motion, these are equal to the zero moment widths. 

 Platform depth. An increasing depth causes a reduction in horizontal acceleration. 

However, the depth can change the eigenfrequency in such a way that the eigenfrequen-

cy approaches that of the waves and thus resonance can occur. So increasing the depth is 

not always beneficial for limiting the maximum horizontal acceleration. 

 Mass. The influence of mass on the horizontal motion is the same as for the vertical mo-

tion. 

For the rotational motion: 

 Platform width. A larger platform width provides a larger GM value. This will be dis-

cussed later. The results showed a decrease in maximum rotational acceleration with in-

creasing width together with the minimums when the platform width equals the zero 

moment widths. 

 Platform depth. The analysis of the depth of the platform shows, as with the horizontal 

motion, that there is the possibility of resonance if you change it. 

 GM value. A higher GM value means less rotation of the platform. This is positive for 

static stability but not necessarily for dynamic stability. Just as for the depth of the plat-

form, a certain value for GM can cause resonance and thus extreme accelerations. In-

creasing the GM value can therefore have a negative effect on the dynamic stability. 

 Total mass. The same applies to the mass for rotation as for vertical and horizontal mo-

tion. More mass means lower maximum acceleration. However, the eigenfrequency of 

this motion is higher and much closer to the frequency of the waves. Therefore, a reso-

nance peak was seen in the analysis of the mass. This motion is the problem in the anal-

yses of the irregular waves. 

In the results of the calculations with all parameters depending on the height of the building, the 

width of the platform and the weight of the additional ballast, it can be seen that the vertical ac-

celeration is only above the limit for low buildings and small platform widths. Otherwise, the 



vertical acceleration is not a problem. However, the horizontal acceleration is a much bigger 

problem. For a 100m building, these accelerations are only below the limit for platform widths 

equal to zero moment widths. For heights of 300m and 500m, the accelerations only came below 

the limit for platforms larger than 700m. The results showed that this is even more problematic 

for the Atlantic Ocean. For the equator, the results are better, but here too resonance can be very 

problematic. 

In addition to calculating the accelerations due to the largest possible regular waves, research 

has been carried out into the different frequencies of the wave that occur in an irregular wave 

field. Each of these frequencies could occur and thus cause resonance. Therefore, the eigenfre-

quencies of the floating high-rise must not be equal to these frequencies. Using the formulas for 

the eigenfrequency of the single-mass model, it was not possible to do this with the multiple 

mass model, the combination of height of the building, width of the platform and depth of the 

platform (and therefore mass) that can lead to resonance were determined. The graphs are 

shown below for a depth of 20m. 

 

Figure 119 - A graph of different limitations for the building height and the platform width. This graph is ap-
plicable for a) the North Sea location and b) the Atlantic ocean, for a platform with a depth of 20m. 

The graphs for the North Sea and the equator are almost identical because the wave frequencies 

are almost identical. In addition to the eigenfrequency limits, the static stability limit and the 

depth limit have been added. The depth limit is an upper limit for which the chosen depth is still 

possible.  In the graph, there is a "gap" between the rotational motion limit and the stability lim-

it/ depth limit. This "gap" is there for platform depths from 15 m for the North Sea and the equa-

tor and from 20 m for the Atlantic. With lower platform depth the depth limit will be lower than 

the rotational frequency limit and thus there are no options in between these areas. 

9.3 PHASE 3 

The third phase is the test phase, in which the results of phase two are used in a case study for 

the purpose of testing, assessing and drawing conclusions. Three different inputs were used in 

the case study. One building of 500 m, one building of 50 m and platform widths equal to zero 

moment widths. The following problems were determined using the results of phase 3 together 

with phase 2: 



 The higher the building, the more the rotation of the platform affects the acceleration of 

the top of the building. 

 If the platform is close to the stability limit, the GM value is low and thus the rotation is 

high. 

 When the platform is not equal to the zero moment width values, much higher forces act 

on it, leading to much more rotation. 

 The eigenfrequency of the rotation lies, for most cases, in the wave-frequency width and 

thus resonance can occur. 

These problems lead to the following recommendations/necessary choices: 

 Don’t build to high. 

 Choose platform widths that are far from the stability limit to limit rotation. 

 Choose platform widths equal to the zero moment width which is tuned to the wave-

length of the peak frequency of the wave. 

 Avoid resonance. 

To fulfil the last three conditions, only one option remains in almost all cases. The platforms 

must be so extremely large that the conditions for the building on the platform are similar to 

those of a building on land. In this case, the conditions of the waves are almost irrelevant and the 

wind becomes the governing factor.  Then the same measures and design choices can be made to 

resist the wind as on land. 

The following conclusions were drawn for the various locations: 

 For the North Sea, the waves are too high for limited platform widths. The widths should 

be greater than 600 m to avoid resonance and keep the rotation low enough. Next, the 

extreme wind load is the big problem for high buildings. Even on huge platforms. There-

fore, it is not possible to build high-rise buildings on platforms with limited dimensions 

in the North Sea. 

 For the North Atlantic Ocean, the conditions are even more extreme than the North Sea, 

so the same conclusions apply. 

 For the equator it is possible, albeit limited. When a building height of 50 m is used, a 

platform width equal to 223 m (a zero moment width) and a depth equal to 22.7 m, the 

eigenfrequency and the frequency at which the zero moment width is tuned coincide. 

This ensures that, despite resonance, the acceleration limit can be met at all wave fre-

quencies.  From the case study it follows that other heights are possible when the plat-

form widths are equal to the zero moment width. However, this has only been tested 

with the highest possible wave and its frequency. For other frequencies these lead to too 

high acceleration as well. Therefore, it is concluded that floating high-rise buildings are 

limited in their possibilities at the equator. 

 

9.4 ANSWERING THE RESEARCH QUESTIONS 

All this leads to answering the two research questions. First, the question whether it is structur-

ally feasible to build high-rise buildings on floating platforms with limited dimensions. The an-

swer is that, with the design choices and simplifications used, it is not possible on limited plat-



forms in the North Sea and Atlantic Ocean. To get the horizontal acceleration low enough and to 

ensure that no resonance occurs, the platforms have to be larger than 600m, which is no longer 

covered by limited dimensions. So it is possible for these locations with these enormous plat-

forms, but the approach to the whole design will be different. Not just a building, but a whole city 

will have to be built on it in order to be useful. For the equator it may be possible, although the 

case study still shows many problems, it does shows that there are combinations that are prom-

ising and that there is one possibility, with a building height of 50 m was found.  

The second research question is about the requirements of the building and the platform. For 

the North Sea and the North Atlantic Ocean, a platform is needed that is so large and robust that 

the conditions are the same as on land. Then, with all the measures in place, it would be possible 

to build as high as on land. For the equator, the zero moment widths will have to be taken into 

account. These are the only possibilities that are promising. The depth of the platform will then 

have to be at least 15 m and the height of the platform 20 m. In that case, buildings between 100 

m and 600 m might be possible on platforms smaller than 400 m. For the height of 50 m, a plat-

form width of 223 m and a depth of 22.7 m must be chosen. 

 

  



10. RECOMMENDATIONS 
The conclusion of this study is that it is not possible to realise floating high-rise buildings with 

the assumptions and design choices used. This leaves a final question open; is it possible with 

other assumptions and design choices? From this study and previous and other research, the 

expectation is that floating high-rise is still possible, even on platforms with limited dimensions. 

In this study, parametric design was used to investigate the various possibilities as broadly as 

possible. So this research says a little about a lot. The next step will have to focus on the positive 

aspects that have emerged from this research. In this way, the research can be used as a basis for 

taking the steps towards more specific research in which improvements and optimisations are 

examined to make the floating high-rise possible. This chapter looks at the possibilities for fur-

ther research. 

This study is an investigation into a subpart of a topic that is still in its infancy: Floating housing 

on platforms. Since this topic is still being researched and has not yet been applied anywhere in 

the world (on a large scale), researching an extreme version, high-rise buildings on the floating 

platforms, is a study that is not supported by a great deal of research and practical knowledge. It 

is therefore important that good research is first carried out into the platforms and the habitabil-

ity of the platforms. Much can then be learned from these studies to further investigate floating 

high-rise buildings. Nevertheless, after this research, there are recommendations to continue 

researching the floating high-rise structures. In this chapter, these recommendations are pre-

sented. They will be focused on the aspect of high-rise buildings and not on other forms of float-

ing housing. In addition, the recommendations deal with the aspect of building engineering. 

Apart from this aspect, there are many other aspects that can be investigated, such as costs, as-

sembly, sustainability, politics, etc. For these subjects, It is recommend to look at the projects of, 

for example, Blue21. 

10.1 PLATFORM 

The next step to be taken is to explore different forms for the platform. In this study, one shape 

was used for the platform. A box shape with a square cross-section. However, other platform 

shapes have already been researched and better options are available. In addition to the cross-

section, the prismatic shape in the height is not ideal. There are so many possible shapes that are 

better than a box shape. Just think of ships or (fishing) floats. The improved stability that can be 

obtained with these shapes can greatly increase the possibility of floating high-rise buildings on 

platforms with limited sizes. 

Changing the shape means that new research is required into the spring stiffness, added mass, 

damping, etc. Also the distribution of these values over the platform has to be investigated. With 

non-prismatic shapes, the values will vary over the width or height of the platform. In order to 

apply these other shapes, the platform will also have to be divided into several point masses for 

the dynamic analysis. It is not possible to predict in advance how many of these masses there 

will be. 

Besides the form, many assumptions and simplifications have been made for the platform. It 

would greatly benefit the research if fewer assumptions needed to be made and less simplifica-

tion needed to be done. Again, this could follow from a research focused on the platform only. 



10.2 BUILDING 

Just as for the platform, it is advisable to look at other forms for the building. Round cross-

sections in particular can be very advantageous because of their streamlined shape. As a result, 

it catches much less wind. In addition, the prismatic shape is not necessarily ideal. For example, 

you can look at shapes like the Eiffel Tower. 

Perhaps even more important than the shape of the building is the investigation of stability sys-

tems. On land, these are always used for high-rise buildings and they could be an enormous im-

provement for floating high-rise buildings. One can think of outrigger systems, tube systems and 

mega frames. It must be said, however, that this research shows that the rotation of the platform 

is normative for smaller platform widths and that restricting this rotation is therefore more im-

portant than the stability of the building or its flexibility. 

Finally, many assumptions and simplifications were made for the building. It would benefit the 

study as well if fewer assumptions needed to be made and less simplification needed to be done. 

10.3 MODELS 

Most assumptions and simplifications of the building and platform come from using 1D elements 

for these two. This gives a good first indication but a lot can be gained by modelling the elements 

in 2D or even 3D. By doing so, most of the assumptions (e.g. weight of the building) can be calcu-

lated instead of doing an estimation. It will give more accurate results. It is easier to apply the 

recommendations for the platform and the building, for example the stability systems. However, 

this makes the models more difficult to adapt and the research less parametric. It is therefore 

recommended to take suitable/ideal dimensions in advance in order to make a more sophisti-

cated and detailed model with that set of dimensions. 

Modelling the elements in 3D ensures that the whole model has to be 3D. Here, too, there is 

much to be gained. Firstly, because all motions can then be taken into account, but because the 

irregular wave field can be applied properly as well. It is then possible to investigate how float-

ing high-rise reacts to waves that are not perpendicular to the platform and to a combination of 

waves with different frequencies, heights, lengths and directions. 

If the decision is made to keep the model in 2D, which certainly has its advantages, the next step 

is to divide the platform into different point masses and not just the building. This is necessary if 

there will be more buildings on the platform than one building in the middle. 

In the discussion, it was discussed that there are many advantages to combining static and dy-

namic stability in one model. This would be best done in Grasshopper, to keep it parametric as 

well, but the possibility of a dynamic analysis is not there in this program. These scripts will 

have to be created by the user. Something that in itself can be quite a research or job. Perhaps 

there are other programmes that can combine these two components better. 

10.4 OTHER RECOMMENDATIONS 

So far, the recommendation has been to improve the design or models. There are many more 

recommendations that cannot be directly linked to these. These are discussed here and are as 

follows: 



 A study is needed into the strength of the building and the platform. In this study, the fo-

cus was on the stability and stiffness, but the strength is just as important. 

 A more comprehensive study of the various possible conditions at a location and the use 

of a much more accurate wave field. 

 Finding the optimal location. 

 The study of the effect of motion on people. This research used a combination of studies 

on motion in buildings and motion on ships. However, floating high-rise buildings are 

different from both and studies focused on floating high-rise buildings are needed to de-

termine the limits. For example, the combination of vertical displacement and rotation 

that causes seasickness or feeling unwell from seeing motion in relation to the surround-

ings. 

 Research into the use of tuned mass dampers and other forms of motion damping. These 

have not been addressed at all in this research but can be very beneficial. For extremely 

tall buildings, these dampers are already needed on land. For example in the Taipei 101 

tower. 

 Finally, the examination of several (tall) buildings on a platform. This research shows 

that it is almost always necessary to use an extremely large platform and it would be a 

shame to leave all the empty space unused. When multiple tall buildings are used, they 

can be connected in a way that reduces the displacement of the top and thus the acceler-

ations. One can look at connecting multiple platforms into a larger whole and the effect 

this has on the high-rise. 
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APPENDIX I – LOCATION AND CONDITIONS 
This appendix deals with the locations, the conditions at the locations and the calculation of the 

conditions. First the map of the different locations is shown and the standard conditions are giv-

en. Then the waves are discussed and the calculations for different wave values are shown. This 

paragraph ends with a table with all the values used in the study. Finally, the wind load calcula-

tions are shown. 

LOCATION 

The following figure shows the three locations used on the map. These are the North Sea (top 

right), north of the Atlantic Ocean (middle) and between the North and South Atlantic around 

the equator (bottom centre). The location in the north of the Atlantic Ocean is also just called 

“Atlantic Ocean” and the location around the equator as “Equator”.  

 

Figure 120 - Locations for the conditions used in the calculations. 

The conditions for all three locations have been determined9 . These locations give the following 

values for the conditions: 

  

                                                             
9 Caires, Groeneweg, & Sterl, (2006). Holthuijsen et al., (1995). Young. (1999). Young,  Vinoth, Zieger & 
Babanin. (2012). 



Table 29 - Conditions at the different locations. 

Location 
Significant 

wave height 
[m] 

Peak period 
[s] 

Wind speed 
at reference 
height [m/s] 

Depth [m] 

North Sea 7.95 9.8 50 30 
North Atlantic 16 14 40 -* 

Equator 4 10 20 -* 
* These depths are so large they have no influence 

The peak period is the period for which the highest wave height occurs. 

WAVES 

REGULAR WAVE 

 

Figure 121 - Sinusoidal wave. (Based on figure 3-28, Bezuyen, Stive, Vaes, Vrijling & Zitman (2011) 

A standard, most simple wave can be described as a sinusoid in which the height of the wave is 

calculated. Figure 121 shows such a wave with the parameters used in the formula. The height of 

the wave varies in both place and time. So the formula is expressed in these two variables. The 

formula is as follows: 

 𝜂(𝑥, 𝑡) =
𝐻𝑤
2
sin  (

2𝜋𝑥

𝐿𝑤𝑎𝑣𝑒
−
2𝜋𝑡

𝑇𝑤𝑎𝑣𝑒
)10 (0.1) 

Where: 

𝜂 is the vertical displacement of the water level [m] 

𝐻𝑤 is the wave height [m] 

x is the distance in the direction of the wave propagation [m] 

𝐿𝑤𝑎𝑣𝑒 is the wave length [m] 

t is the time 

𝑇𝑤𝑎𝑣𝑒 is the wave period [s] 

                                                             
10 Bezuyen et al (2011) 



For the different locations the wave height and wave period are known. The wave length can 

then be calculated by the formula: 

 𝐿𝑤𝑎𝑣𝑒 = 
𝑔 ∗ 𝑇𝑤𝑎𝑣𝑒

2

2𝜋
tanh (

2𝜋𝑧

𝐿
)11 

 
(0.2) 

Where: 

g is the gravitational constant (9.81 m/s2) 

z is the depth of the water [m] 

For the Atlantic ocean locations the depth is so large that the wave length can be calculated with 

only the first part: 

 𝐿𝑤𝑎𝑣𝑒 = 
𝑔 ∗ 𝑇𝑤𝑎𝑣𝑒

2

2𝜋
 (0.3) 

For the North Sea the expression of (0.2) should be used. The wave length can then be calculated 

by an iterative process. For the period of 9.8 s this gives the following table: 

Table 30 - Wave length of a wave with a period of 9.8 s for the North Sea. 

Iteration Wave length [m] 
1 127.49 
2 135.13 
3 132.59 
4 133.44 
5 133.16 
6 133.24 
7 133.22 
8 133.23 
9 133.23 

10 133.23 
The wavelength of all three location for the peak period are shown in the table below 

Table 31 - Wave lengths for the peak period of the three locations. 

Location North Sea Atlantic ocean Equator 
Wave length [m] 133.23 306.02 156.13 

 

SIGNIFICANT WAVE HEIGHT TO MAXIMUM WAVE HEIGHT 
From the literature, the significant height of the waves is obtained from the different locations. 

This is the wave height with 13.5% change of exceeding. With this significant wave height the 

probability of exceedance can be calculated for different wave height with the formula from Be-

zuyen et al (2011): 

𝑃(𝐻 > 𝐻) =  𝑒
−2(
𝐻
𝐻𝑠
)2

 

Where: 

                                                             
11 Bezuyen et al (2011) 



𝑃(𝐻 > 𝐻) is the chance that the wave height H will be exceeded 

𝐻𝑠   is the significant wave height 

For the safety of the construction the Eurocode uses a 5% chance of exceeding (characteristic 

value of the loads) together with safety factors. By using this 5% and rewriting the formula, the 

wave height with 5% chance of exceedance can be calculated as follows: 

𝐻 = 
√

ln (0.05)

−2
∗ 𝐻𝑠 

In the following table the different wave height with 5% chance of exceedance can be seen to-

gether with the halved wave height due to the breakwaters.  

Table 32 - Wave height with a breakwater with transmission of 0.5. Hw is the wave height with breakwaters 

Location Hs [m] H5% [m] Hw [m] 
North Sea 7.95 9.73 4.87 

North Atlantic 16 19.58 9.79 
Equator 4 4.90 2.45 

IRREGULAR WAVES 

 

Figure 122 - Typical regular and random wave time histories, (Based on figure 4, Balaji, Sannasiraj, & Sundar. 
(2007)) 

The waves can be seen as regular waves, these waves have a certain period and wave height. For 

these the found values in this appendix can be used. In reality there will be more of a random 

wave pattern as shown in the figure above. This random wave or irregular wave cannot be de-

scribed by a single sine wave function. One must use the so-called Fourier analysis of waves to 

describe the waves in multiple sine functions. Every possible frequency that can occur in the 

wave Fourier series can cause resonance. Therefore all the frequencies the wave field can have, 

have to be determined. This can be done by using the Pierson-Moskovitz spectrum (Bezuyen et 

al, 2011). This spectrum gives the energy density as a function of frequencies:  

 𝑆(𝜔) =  
𝛼𝑔2

2𝜋𝜔5
𝑒
−
5
4
∗(

𝜔
𝜔𝑝
)−4

 (0.4) 

Where 

𝛼 equals 0.081 for storms 

𝜔 is the frequency 

𝜔𝑝 is the peak frequency 



The peak frequency can be calculated with the previously determined peak wave periods. The 

wave with the peak frequency has the largest share in the total wave field. The other frequencies 

will have a lesser share.  

Since this function is infinite, the limits of the wave frequency are chosen so that 5% of the fre-

quencies lie above or below this width. These values are chosen because they are often used for 

the exceeding probability of a load (De Vries, Fennis & Pasterkamp, 2013). The frequencies that 

do need to be included must therefore contain 95% of the function. To determine this percent-

age, the graph must first be scaled to a distribution function with area equal to 1 (=100%). This 

can be done by adding the term "S peak" in the denominator of the energy density function and 

then setting the integral equal to 1: 

 ∫
𝛼𝑔2

2𝜋𝜔5𝑆𝑝𝑒𝑎𝑘
𝑒
−
5
4
∗(

𝜔
𝜔𝑝
)−4

𝑑𝜔
∞

0

= 1 (0.5) 

This results in the desired function. To calculate the limits of the middle 95%, the integral of 

constant "a" to constant "b" is set to 0.95: 

 ∫
𝛼𝑔2

2𝜋𝜔5𝑆𝑝𝑒𝑎𝑘
𝑒
−
5
4
∗(

𝜔
𝜔𝑝
)−4

𝑑𝜔
𝑏

𝑎

= 0.95 (0.6) 

In addition, the results from the function must be equal at both constants: 

 𝑆(𝑎) = 𝑆(𝑏) (0.7) 
These two equations can be solved to determine the limit values a and b. In the figure below the 

graph is shown with the lines at the boundary values for the North Sea conditions as an example. 

 

Figure 123 - Frequency width limits of  95% for the North Sea. 

These give the following possible wave frequencies at the different locations: 

 

 



Table 33 - Frequency width of the wave for the three locations. 

Location Frequency width [rad/s] 
North Sea 0.43 – 1.44 

North Atlantic 0.30 – 1.01 
Equator 0.42 – 1.42 

 

To translate the energy density into a wave height, the relation between the energy and the 

height of the wave is used. This relation is 𝐸 =  𝑎 ∗ 𝐻2 (where a is a unknown constant). With 

this relation the height of the wave is determined for the different frequencies. Instead of 𝑆𝑝𝑒𝑎𝑘, 

to make the integral over the density function equal to 1, a factor is used to make sure the maxi-

mum wave height occurs at the peak frequency. In addition, the root is drawn from the total 

density function to translate it into the height of the wave. The result is the following formula: 

 𝐻𝑒𝑖𝑔ℎ𝑡 𝑤𝑎𝑣𝑒 =  
√
 
 
 

𝛼𝑔2

2𝜋𝜔5𝑓𝑎𝑐𝑡𝑜𝑟
∗ 𝑒
−
5
4
∗(
𝜔
𝜔𝑝
)
−4

  

 

(0.8) 

As an example, in Figure 124 the wave height is plotted for the conditions of the North Sea. 

 

Figure 124 - Wave height for different frequencies for the conditions of the North Sea. 

TABLE OF ALL CONDITIONS 
 

Table 34 - All condition values of the three locations. 

Location 
H5% 
[m] 

Hw 

[m] 
Tw 

[s] 
𝝎𝒘 

[rad/s] 
𝑳𝒘𝒂𝒗𝒆 
[m] 

u10 
[m/s] 

Depth 
[m] 

Frequency 
width [rad/s] 

North Sea 9.73 4.87 9.8 0.64 133 50 30 0.43 – 1.44 
North At-

lantic 
19.58 9.79 14 0.63 306 40 -* 0.30 – 1.01 

Equator 4.90 2.45 10 0.45 156 20 -* 0.42 – 1.42 
 



WIND 

For the calculation of the wind force on the building the NEN-EN 1991-1-4 (2011)  code is used 

together with assumptions and simplifications. In this appendix the formulas used are show and 

the assumptions are explained. The input for the wind force calculation, the wind speed at a ref-

erence height of 10 meters is used with a return period of 100 years. 

In the calculation the recommended values for external pressure coefficients for vertical facades 

of buildings with a rectangular floor plan are used for every height. In practise these calculations 

can only be used for buildings with a height up to 200m. For the profile of the extreme thrust, 

the guidelines of a building with a height twice of its width is used. For the wind speed the speed 

at a reference height of 10 m (u10) is used. 

The following calculation formula is used for the wind speed at reference height: 

 
𝑣𝑚(𝑧) = 𝑐𝑟(𝑧) ∗ 𝑐𝑜(𝑧) ∗ 𝑣𝑏 [𝑚/𝑠] 

 
(A-

III.9) 
Where: 

𝑧 is the height [m] 

𝑐𝑟(𝑧) is the roughness factor [-] 

𝑐𝑜(𝑧)  is the orography factor, taken as 1,0 for a terrain without mountains [-] 

𝑣𝑏 is the wind speed at reference height [m/s] 

For the roughness factor the following formula is used: 

 
𝑐𝑟(𝑧) = 𝑘𝑟 ∗ ln (

𝑧

𝑧0
) 

 

(A-
III.10) 

With: 

 
𝑘𝑟 = 0.19 ∗ (

𝑧0
𝑧0𝐼𝐼
)
0.07

 

 

(A-
III.11) 

Where: 

𝑧0 is the roughness lengt, taken as 0.003 m for a sea or coastal area; 

𝑧0𝐼𝐼  is 0.05 m (terrain category II) 

The formula for 𝑐𝑟(𝑧) only applies for buildings up to 200 m but for simplification it is also used 

for taller buildings in this research. 

For the external thrust of the wind on the building the wind turbulence intensity is taken into 

account. This intensity can be calculated as follows:  

 
𝐼𝑣(𝑧) =  

𝜎𝑣
𝑣𝑚(𝑧)

 

 

(A-
III.12) 

With: 



 
𝜎𝑣 = 𝑘𝑟 ∗ 𝑣𝑏 ∗ 𝑘𝑙 

 
(A-

III.13) 
Where: 

𝑘𝑙 is the turbulence factor, taken as 1 [-] (recommended value) 

With the obtained values, the external thrust can be calculated with the following formula: 

 𝑞𝑝(𝑧) = (1 + 7𝐼𝑣(𝑧)) ∗
1

2
∗ 𝜌 ∗ 𝑣𝑚

2 (𝑧) 

 

(A-
III.14) 

Where 

𝑞𝑝(𝑧) is the external thrust at reference height [kN/m2] 

𝜌 is the density of the air taken as 1.25 kg/m3 

For the wind pressure the external thrust needs to be multiplied with the pressure coefficient. 

For these coefficients the 𝑐𝑝𝑒,10 is used for zone D and E (NEN-EN 1991-1-4, art 7.6 – 7.8) togeth-

er this gives a factor of 1.5. For the wind pressure the following distribution from the code is 

used: 

 

Figure 125 - Distribution of the wind force. 
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APPENDIX II – WAVE AND WIND FORCES 

VERTICAL WAVE FORCE 

The function for the force due to the wave is the sinusoidal function for the wave height multi-

plied by the “force of the water”, which is the density (1025  kg/m3) multiplied by the accelera-

tion of gravity (9.81 m/s2). The wave is assumed constant perpendicular to the direction of wave 

propagation. Thus the 3D wave can be converted to 2D by multiplying the formula with the 

width of the platform. This is used for the static stability calculations. 

 

Figure 126 - Vertical wave force. 

This gives the following function for the distributed vertical force: 

 𝑞𝑣,𝑤𝑎𝑣𝑒(𝑥, 𝑡) = 𝜌𝑤𝑎𝑡𝑒𝑟 ∗ 𝑔 ∗ 𝑤𝑝 ∗  
𝐻𝑤
2
∗  sin(

2𝜋 ∗ 𝑡

𝑇𝑤
+
2𝜋 ∗ 𝑥

𝐿𝑤
) [𝑁/𝑚] 

 
(A-II.1) 

Where 

𝜌𝑤𝑎𝑡𝑒𝑟 is the density of salt water. Equal to 1025 kg/m3 

𝑤𝑝 is the width of the platform [m] 

𝐻𝑤 is the maximum height if the wave [m] 

𝑇𝑤 is the wave period [s] 

𝐿𝑤 is the wave length [m] 

In the chapter on dynamic stability, this distributed load must be translated into a representa-

tive point load. This can be done by taking the integral of 0 to the width of the platform: 

 
𝐹𝑣,𝑤(𝑡) = ∫ 𝑞𝑣,𝑤𝑎𝑣𝑒(𝑥, 𝑡) 𝑑𝑥  [𝑁]

𝑤𝑝

0

 

 
(A-II.2) 

Which is equal to: 

 
𝐹𝑣,𝑤(𝑡) = ∫ 𝜌𝑤𝑎𝑡𝑒𝑟 ∗ 𝑔 ∗ 𝑤𝑝 ∗  

𝐻𝑤
2
∗  sin(

2𝜋 ∗ 𝑡

𝑇𝑤
+
2𝜋 ∗ 𝑥

𝐿𝑤
) 𝑑𝑥  [𝑁]

𝑤𝑝

0

 

 
(A-II.3) 

 



This results in: 

 

𝐹𝑣,𝑤 (𝑡)

=  
𝐿 ∗ 𝐻 ∗ 𝐹𝑤𝑎𝑡𝑒𝑟 ∗ (2 ∗ cos (

𝜋𝑡
𝑇
)
2

∗ cos (
𝑤𝑝𝜋

𝐿
)
2

− 2 sin (
𝜋𝑡
𝑇
) cos (

𝜋𝑡
𝑇
) sin (

𝑤𝑝𝜋

𝐿
)cos (

𝑤𝑝𝜋

𝐿
) − cos (

𝑤𝑝𝜋

𝐿
)
2

− 2cos (
𝜋𝑡
𝑇

2

+ 1)

2𝜋
 [𝑁] 

(A-II.1) 

 

Since all values except t are known, the function is simplified to: 

 𝐹𝑣,𝑤(𝑡) = �̂�𝑤 ∗ sin(𝜔𝑤𝑡 + 𝜑𝑤) [𝑁] (A-II.2) 

With: 

 �̂�𝑣,𝑤 =
𝐿 ∗ 𝐻 ∗ 𝐹𝑤𝑎𝑡𝑒𝑟 ∗ 𝑤𝑝 ∗ sin (

𝑤𝑝 ∗ 𝜋

𝐿
)

2𝜋
  [𝑁] (A-II.3) 

and 

 𝜔𝑤 = 
2𝜋

𝑇𝑤
 [𝐻𝑧] (A-II.4) 

 

Since it does not matter for the result where and when the wave starts, in order to simplify it, the 

phase shift (𝜑𝑤) is taken as zero. This results in: 

 𝐹𝑣,𝑤(𝑡) = �̂�𝑣,𝑤 ∗ sin(𝜔𝑤𝑡) [𝑁] (A-II.5) 

HORIZONTAL WAVE FORCE 

The horizontal force depends on the water level. It is the difference in force between the two 

ends. If the wave is high at one end and low at the other, the force at one end is greater and the 

sum of forces is not zero. This force is only in the dynamic stability calculations and not the static 

stability calculation. Therefore the distributed force is reduced to a point load.  

 

Figure 127 - Horizontal wave force 

The resulting force of the distributed force can be calculated by: 

 
𝐹ℎ,𝑤𝑎𝑣𝑒(𝑡) =  

1

2
∗ (𝑑 + 𝐻𝑤,1(𝑡))

2
𝜌𝑤𝑎𝑡𝑒𝑟 ∗ 𝑔 − 

1

2
∗ (𝑑 + 𝐻𝑤,2(𝑡))

2
𝜌𝑤𝑎𝑡𝑒𝑟 ∗ 𝑔 

 
(A-II.4) 

Where 𝐻𝑤,1 and 𝐻𝑤,2 are the heights of the wave at the different ends of the platform. As said, 

these values are variable in time. The formulas are as follows: 



 𝐻𝑤,1(𝑡) =  
𝐻𝑤
2
cos (

2𝜋𝑡

𝑇𝑤𝑎𝑣𝑒
) [𝑚] (A-II.5) 

 

 𝐻𝑤,2(𝑡) =  
𝐻𝑤
2
cos (

2𝜋 ∗ 𝑤𝑝

𝐿𝑤
−
2𝜋𝑡

𝑇𝑤𝑎𝑣𝑒
) [𝑚] (A-II.6) 

Where 

𝐻𝑤 is the maximum height of the wave 

𝐿𝑤 is the wave length 

𝑇𝑤𝑎𝑣𝑒 is the wave period 

Since the time of the start of the motion does not matter for the calculations, the entire wave 

force can be written as one sinusoid. 

 𝐹ℎ,𝑤𝑎𝑣𝑒(𝑡) = �̂�ℎ,𝑤𝑤𝑎𝑣𝑒 ∗ sin(𝜔𝑤𝑡) [𝑁] (A-II.7) 

WAVE MOMENT 

For the calculation of the moment only the vertical force of the wave is taken into account. To 

calculate the moment due to a distributed load of any function, the area under the function need 

to be multiplied by the difference between the centre of that area and the point of rotation (force 

* arm). The area under the function can be calculated with the integral: 

 
𝐴 = ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

 

 
(A-II.8) 

To calculate the horizontal centre of an area under a function the following formula can be used: 

 
𝐶𝑒𝑛𝑡𝑟𝑒 (ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙) =  

1

𝐴
∗∫ 𝑥 ∗ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

 

 
(A-II.9) 

The point of rotation is the middle of the platform. Therefor the arm can be calculated as follows: 

 𝑎𝑟𝑚 =  
1

2
∗ 𝑤𝑝 − 

1

𝐴
∗∫ 𝑥 ∗ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

 (A-II.10) 

The arm need to be multiplied by the total force to get the bending moment: 

 
𝑀𝑜𝑚𝑒𝑛𝑡 = (

1

2
∗ 𝑤𝑝 − 

1

𝐴
∗∫ 𝑥 ∗ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
) ∗ 𝐴 

 
(A-II.11) 

This gives the formula for the moment through the wave where 𝑞𝑣,𝑤𝑎𝑣𝑒(𝑥, 𝑡) is the distributed 

wave force.  

 
𝑀𝑜𝑚𝑒𝑛𝑡𝑤𝑎𝑣𝑒(𝑡) =

1

2
∗ ∫ 𝑞𝑣,𝑤𝑎𝑣𝑒(𝑥, 𝑡) 𝑑𝑥

𝑏

𝑎

∗ 𝑤𝑝 − ∫ 𝑥 ∗ 𝑞𝑣,𝑤𝑎𝑣𝑒(𝑥, 𝑡) 𝑑𝑥
𝑏

𝑎

 

 
(A-II.12) 

For the total moment on the platform, the constants a and b can be taken as 0 and 𝑤𝑝. 



The formula for the moment is dependent on the time. For the dynamic analysis the formula for 

the moment can be simplified to a sine function: 

 𝑀𝑤𝑎𝑣𝑒(𝑡) = �̂�𝑤𝑎𝑣𝑒 ∗ sin(𝜔𝑤𝑎𝑣𝑒𝑡) [𝑁] 
 

(A-II.13) 

To calculate the most negative time for the static stability, the derivative of the moment formula 

equal to 0 has to be solved. As the time were the derivative is zero, the moment is maximum. 

This results in the following expression for the maximum moment: 

 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑀𝑜𝑚𝑒𝑛𝑡𝑤𝑎𝑣𝑒

= 
|

|(−𝑤𝑝 ∗ 𝜋 ∗ cos (
𝑤𝑝 ∗ 𝜋

𝐿𝑤𝑎𝑣𝑒
) + 𝐿𝑤𝑎𝑣𝑒 ∗ sin (

𝑤𝑝 ∗ 𝜋

𝐿𝑤𝑎𝑣𝑒
)) ∗ 𝐿𝑤𝑎𝑣𝑒 ∗ 𝜌𝑤𝑎𝑡𝑒𝑟 ∗ 𝑔 ∗ 𝑤𝑝 ∗ 𝐻𝑤𝑎𝑐𝑒

4𝜋2 |

|
 [𝑁𝑚] 

(A-II.14) 

 

WIND FORCE 

For the calculation of the wind force on the building the NEN-EN 1991-1-4 code is used together 

with assumptions and simplifications. In this appendix the formulas used are show and the as-

sumptions are explained. The input for the wind force calculation, the wind speed at a reference 

height of 10 meters is used with a return period of 100 years. 

The following calculation formula is used for the wind speed at reference height: 

 
𝑣𝑚(𝑧) = 𝑐𝑟(𝑧) ∗ 𝑐𝑜(𝑧) ∗ 𝑣𝑏[𝑚/𝑠] 

 (A-II.15) 

Where: 

z is the height [m] 

𝑐𝑟(𝑧) is the roughness factor [-] 

𝑐𝑜(𝑧)  is the orography factor, taken as 1,0 for a terrain without mountains [-] 

𝑣𝑏 is the wind speed at reference height [m/s] 

For the roughness factor the following formula is used: 

 
𝑐𝑟(𝑧) = 𝑘𝑟 ∗ ln (

𝑧

𝑧0
) [−] 

 
(A-II.16) 

With: 

 
𝑘𝑟 = 0.19 ∗ (

𝑧0
𝑧0𝐼𝐼
)
0.07

[−] 

 
(A-II.17) 

Where: 

𝑧0 is the roughness lengt, taken as 0.003 for a sea or coastal area [-] 

𝑧0𝐼𝐼  0.05 m (terrain category II) 



The formula for 𝑐𝑟(𝑧) only applies for buildings up to 200 m but for simplification it is also used 

for taller buildings in this research. 

For the external thrust of the wind on the building the wind turbulence intensity is taken into 

account. This intensity can be calculated as follows:  

 
𝐼𝑣(𝑧) =  

𝜎𝑣
𝑣𝑚(𝑧)

 [−] 

 
(A-II.18) 

With: 

 
𝜎𝑣 = 𝑘𝑟 ∗ 𝑣𝑏 ∗ 𝑘𝑙 [𝑚/𝑠] 

 (A-II.19) 

Where: 

𝑘𝑙 is the turbulence factor, taken as 1 (recommended value) 

 

With the obtained values, the external thrust can be calculated with the following formula: 

 𝑞𝑝(𝑧) = (1 + 7𝐼𝑣(𝑧)) ∗
1

2
∗ 𝜌 ∗ 𝑣𝑚

2 (𝑧) 

 
(A-II.20) 

Where 

𝑞𝑝(𝑧) is the external thrust at reference height 

𝜌 is the density of the air taken as 1.25 kg/m3 

For the wind pressure the external thrust needs to be multiplied with the pressure coefficient. 

For these coefficients the 𝑐𝑝𝑒,10 is used for zone D and E (NEN-EN 1991-1-4, art 7.6 – 7.8) to-

gether this gives a factor of 1.5. For the wind pressure the following distribution from the code is 

used: 

 



 

Figure 128 - Distribution of the wind force. 

As shown in the figure above, two external thrusts must be calculated. One with the reference 

height equal to the width of the building 𝑞𝑝(𝑤𝑏) (In the figure 𝑞𝑝(𝑏)), and one with the reference 

height equal to the height of the building 𝑞𝑝(ℎ𝑏) (In the figure 𝑞𝑝(ℎ)). The calculation of the dis-

tributed forces can be divided into three parts. The two parts with constant distribution and the 

middle part with increasing distribution. These can be converted to line loads as follows: 

 𝑞1 =  𝑞𝑝(𝑤𝑏) ∗  𝑤𝑏 (A-II.21) 
 

 𝑞2(ℎ0 =  𝑞𝑝(𝑤𝑏) +
ℎ − 𝑤𝑏
ℎ𝑏 − 2 ∗ 𝑤𝑏

∗ (𝑞𝑝(ℎ𝑏) − 𝑞𝑝(𝑤𝑏)) ∗ 𝑤𝑏 (A-II.22) 

 

 
𝑞3 =  𝑞𝑝(ℎ𝑏) ∗  𝑤𝑏 

 
(A-II.23) 

To converte these three representative forces the integral can be used: 

 𝐹1 = ∫ 𝑞1 𝑑ℎ
𝑤𝑏

0

 (A-II.24) 

 

 𝐹2 = ∫ 𝑞2 𝑑ℎ
ℎ𝑏−𝑤𝑏

𝑤𝑏

 (A-II.25) 

 

 𝐹3 = ∫ 𝑞3 𝑑ℎ
ℎ𝑏

ℎ𝑏−𝑤𝑏

 (A-II.26) 

The total wind force is the summation of these three representative forces: 

 𝐹ℎ,𝑤𝑖𝑛𝑑 = 𝐹1 + 𝐹2 + 𝐹3 (A-II.27) 
For the horizontal windforce in the dynamic calculation, the windload is made into one function 

(𝑞𝑤𝑖𝑛𝑑) with the piecewise option. Then the forces on the point masses can ba calculated by 

taking the proper integral of this one function: 



 𝐹𝑝𝑜𝑖𝑛𝑡 𝑚𝑎𝑠𝑠 1 = ∫ 𝑞𝑤𝑖𝑛𝑑 𝑑ℎ

1
2
𝐿

0

 (A-II.28) 

 

 𝐹𝑝𝑜𝑖𝑛𝑡 𝑚𝑎𝑠𝑠 2 = ∫ 𝑞𝑤𝑖𝑛𝑑 𝑑ℎ

3
2
𝐿

1
2
𝐿

 (A-II.29) 

 

 𝐹𝑝𝑜𝑖𝑛𝑡 𝑚𝑎𝑠𝑠 3 = ∫ 𝑞𝑤𝑖𝑛𝑑 𝑑ℎ

5
2
𝐿

3
2
𝐿

 (A-II.30) 

Where 

L is the distance between the point masses. 

WIND MOMENT 

For the static stability calculation the moment can be calculated by multiplying the forces with 

the arm. Which is the centre of the force to the centre of gravity (COG). Note that the distance 

COG is used throughout this research as the distance from the bottom of the platform to the 

centre of gravity and thus the height of the platform needs to be added. 

 𝑎𝑟𝑚1 =
1

2
∗ 𝑤𝑏 + ℎ𝑝 − 𝐶𝑂𝐺 (A-II.31) 

 

 𝑎𝑟𝑚2 = 𝑤𝑏 +
2

3
∗ (ℎ𝑏 − 2 ∗ 𝑤𝑏) − 𝐶𝑂𝐺 (A-II.32) 

 

 𝑎𝑟𝑚3 = ℎ𝑏 −
1

2
∗ 𝑤𝑏 + ℎ𝑝 − 𝐶𝑂𝐺 (A-II.33) 

The moment due to the wind can now be calculated with 

 𝑀𝑤𝑖𝑛𝑑 = 𝐹1 ∗ 𝑎𝑟𝑚1 + 𝐹2 ∗ 𝑎𝑟𝑚2 + 𝐹3 ∗ 𝑎𝑟𝑚3  (A-II.34) 
 

For the dynamic stability this again a bit different. The function were the three functions for the 

wind are combined into one (𝑞𝑤𝑖𝑛𝑑(𝑡)) is again used. Again the arm, which is the distance centre 

of the force and the bottom om the building, has to be multiplied with the area under de func-

tion. For the bottom mass the entire wind load has to be taken into account. For the middle mass 

only the upper 4/5 th and for the top point mass the upper 2/5 th. This results in the following 

formula’s: 

 𝑀𝑤𝑖𝑛𝑑,𝑝𝑜𝑖𝑛𝑡 𝑚𝑎𝑠𝑠 1 = ∫ 𝑞𝑤𝑖𝑛𝑑(𝑡)
ℎ𝑏

0

∗ ℎ 𝑑ℎ (A-II.35) 

 

 𝑀𝑤𝑖𝑛𝑑,𝑝𝑜𝑖𝑛𝑡 𝑚𝑎𝑠𝑠 2 = ∫ 𝑞𝑤𝑖𝑛𝑑(𝑡)
ℎ𝑏

𝐿

∗ ℎ 𝑑ℎ (A-II.36) 

 



 𝑀𝑤𝑖𝑛𝑑,𝑝𝑜𝑖𝑛𝑡 𝑚𝑎𝑠𝑠 3 = ∫ 𝑞𝑤𝑖𝑛𝑑(𝑡)
ℎ𝑏

2𝐿

∗ ℎ 𝑑ℎ (A-II.37) 

 

These functions for the moment can then be simplified to: 

 𝑀𝑤𝑖𝑛𝑑(𝑡) = �̂�𝑤𝑖𝑛𝑑 ∗ sin(𝜔𝑤𝑖𝑛𝑑𝑡) [𝑁] 
 

(A-II.38) 

The expression for �̂�𝑤𝑖𝑛𝑑 is to extensive to be shown. 

  



APPENDIX III - ASSUMPTIONS 

BUILDING WIDTH 

Because the building is modelled as a 1D element with only the "height" as dimension, either a 

constant value must be used for the dropped parameter "width of the building" or a relationship 

must be found between the height and the width of the building. Since in general the width of the 

building increases with height, a relationship is sought. To determine the width for a given 

height, three reference buildings were used; The Twin Towers of the World Trade Centre (New 

York), Zalmhaventoren (Rotterdam) and the New Orleans (Rotterdam). These are chosen as they 

have different heights and widths and a square cross-section. The dimensions of these buildings 

are given in the table below. 

Table 35 - Building width and core sizes for three representative buildings. Sources: New World Encyclopedia. 
(2020). Smeets. (2012). Schaap & Hesselink. (2019). 

Building Height [m] Building width [m] 
World Trade Centre 416 63 x 63 

Zalmhaventoren 215 38 x 38 
New Orleans 150 30 x 30 

 

Using curve fitting, a formula was created that expresses the width of the building in terms of its 

height. The formula is as follows: 

 𝑊𝑖𝑑𝑡ℎ𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 =
17

3475290
∗ ℎ𝑏
2 +
421523

3475290
∗ ℎ𝑏 +

104225

8911
 [𝑚] (AIII.1) 

 

The following figure shows the relationship in a graph, together with the data points used. 

 

Figure 129 - Relation between the height of the building and the width of the building. 

PLATFORM WIDTH AND MASS 



In the model the platform is a 1D element. Different cross-sections can be used but none of these 

are close to how the platform will be in reality. Therefore the platform is modelled in 3D in a 

separate model in grasshopper. From this model the stiffness and the weight of the platform will 

be expressed in the parameters; width of the platform and height of the platform. These are than 

used in the main model. The platform will be made out of concrete with class C60/75 and consist 

of cubes of 5 x 5 x 5 m in a waffle shape. See figure Figure 131. The platform is than simply sup-

ported at both ends and loaded with a load of 100 kN/m2. In Figure 130 a 2D representation is 

shown of the 3D loading. 

 

Figure 130 - 2D representation of the 3D model. 

With the deformation of the platform, the second moment of inertia of the 3D model can be 

translated into a 1D element by using the forgetmenot of a simply supported beam: 𝑢 =  
5

384
∗
𝑞∗𝐿2

𝐸𝐼
 

. The second moment of inertia is calculated for multiple platform heights and width. With these 

result, see Table 36, a relation is made between the sizes and the second moment of inertia. This 

is done by curve fitting. This gives the following relation: 

 𝐼𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 = (0.01198 ∗ ℎ𝑝
3  −  0.05448 ∗ ℎ𝑝

2  +  1.1877 ∗ ℎ𝑝  −  1.099) ∗ 𝑤𝑝 [𝑚
4] (AIII.2) 

 

Where 

ℎ𝑝 is the height of the platform [m] 

𝑤𝑝 is the width of the platform [m] 

The same is done for the weight of the platform. This gives the following relation: 

 𝑊𝑒𝑖𝑔ℎ𝑡𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 =
ℎ𝑝

5
 ∗ (

𝑤𝑝
3

6000
+  2.45 ∗ 𝑤𝑝

2  +  43
1

3
∗ 𝑤𝑝  −  2000) [𝑘𝑁] (AIII.3) 

 



 

Figure 131 – 3D presentation of the platform. 

Table 36 - Results from the grasshopper model for the second moment of inertia and weight of the platform 
for different platform widths and height. 

Width platform [m] Height platform [m] Second moment of inertia [m4] Weight [kN] 

100 5 497.20 27035 

200 5 994.82 105640 

300 5 1487.32 235820 

400 5 1972.33 417560 

100 10 1688.16 54070 

200 10 3420.08 211280 

100 15 4164.44 81105 

200 15 8656.62 316920 

100 20 8301.23 108140 

200 20 17978.9 422560 
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APPENDIX IV – RESULTS OF THE STATIC STABILITY 

MINIMUM PLATFORM WIDTH 

Excel was used to determine the minimum width of the platform. In Excel, the GM values and all 

values needed to calculate GM are calculated for platform widths between 50m and 500m for a 

building of a certain height. The required platform width is the platform width for which the GM 

is positive and the lowest. This platform width is the output of the calculation. As input the 

height can be chosen. For the total relationship, heights between 100 m and 800 m with steps of 

25 m are chosen. 

Below are the results for a building 100 m high and platform widths from 50 m to 67 m. This is 

only a small part of the whole and serves as an example. The red row is the row of the minimum 

platform width, in this case 59 m. 

 

Figure 132 - Minimum platform width calculations for a building of 100m and platform width from 50m to 67 
m. 

Height 

building [m]

Width 

buildng [m]

Mass 

building [kg]

Weight 

building [kN]

Width 

platform [m]

Heigt 

platform [m]

Mass 

platform [kg]

Weight 

platform [kN]

Depth 

platform [m]
Extra ballast

Total mass 

[kg]

Total weight 

[kN]
COG BM GM

100 23.87 1.89E+07 1.86E+05 50 5 6.43E+05 6.31E+03 7.64 0.00E+00 1.96E+07 1.92E+05 53.28 27.26 -22.2

100 23.87 1.89E+07 1.86E+05 51 5 6.90E+05 6.77E+03 7.36 0.00E+00 1.96E+07 1.93E+05 53.28 29.44 -20.2

100 23.87 1.89E+07 1.86E+05 52 5 7.38E+05 7.24E+03 7.10 0.00E+00 1.97E+07 1.93E+05 53.27 31.74 -18.0

100 23.87 1.89E+07 1.86E+05 53 5 7.88E+05 7.73E+03 6.85 0.00E+00 1.97E+07 1.94E+05 53.26 34.16 -15.7

100 23.87 1.89E+07 1.86E+05 54 5 8.40E+05 8.24E+03 6.62 0.00E+00 1.98E+07 1.94E+05 53.25 36.72 -13.2

100 23.87 1.89E+07 1.86E+05 55 6 8.95E+05 8.78E+03 6.40 0.00E+00 1.98E+07 1.95E+05 53.23 39.40 -10.6

100 23.87 1.89E+07 1.86E+05 56 6 9.51E+05 9.33E+03 6.19 0.00E+00 1.99E+07 1.95E+05 53.20 42.23 -7.9

100 23.87 1.89E+07 1.86E+05 57 6 1.01E+06 9.91E+03 5.99 0.00E+00 2.00E+07 1.96E+05 53.18 45.19 -5.0

100 23.87 1.89E+07 1.86E+05 58 6 1.07E+06 1.05E+04 5.80 0.00E+00 2.00E+07 1.96E+05 53.14 48.30 -1.9

100 23.87 1.89E+07 1.86E+05 59 6 1.13E+06 1.11E+04 5.63 0.00E+00 2.01E+07 1.97E+05 53.10 51.56 1.3

100 23.87 1.89E+07 1.86E+05 60 6 1.20E+06 1.18E+04 5.46 0.00E+00 2.01E+07 1.98E+05 53.06 54.96 4.6

100 23.87 1.89E+07 1.86E+05 61 6 1.27E+06 1.24E+04 5.30 0.00E+00 2.02E+07 1.98E+05 53.01 58.52 8.2

100 23.87 1.89E+07 1.86E+05 62 6 1.34E+06 1.31E+04 5.15 0.00E+00 2.03E+07 1.99E+05 52.96 62.24 11.9

100 23.87 1.89E+07 1.86E+05 63 7 1.41E+06 1.38E+04 5.00 0.00E+00 2.04E+07 2.00E+05 52.90 66.12 15.7

100 23.87 1.89E+07 1.86E+05 64 7 1.48E+06 1.46E+04 4.87 0.00E+00 2.04E+07 2.00E+05 52.83 70.16 19.8

100 23.87 1.89E+07 1.86E+05 65 7 1.56E+06 1.53E+04 4.73 0.00E+00 2.05E+07 2.01E+05 52.76 74.36 24.0

100 23.87 1.89E+07 1.86E+05 66 7 1.64E+06 1.61E+04 4.61 0.00E+00 2.06E+07 2.02E+05 52.69 78.74 28.4

100 23.87 1.89E+07 1.86E+05 67 7 1.72E+06 1.69E+04 4.49 0.00E+00 2.07E+07 2.03E+05 52.61 83.29 32.9

Height 

building [m]

Width 

buildng [m]

Mass 

building [kg]

Weight 

building [kN]

Width 

platform [m]

Heigt 

platform [m]

Mass 

platform [kg]

Weight 

platform [kN]

Depth 

platform [m]
Extra ballast

Total mass 

[kg]

Total weight 

[kN]
COG BM GM

100 23.87 1.89E+07 1.86E+05 50 5 6.43E+05 6.31E+03 7.64 0.00E+00 1.96E+07 1.92E+05 53.28 27.26 -22.2

100 23.87 1.89E+07 1.86E+05 51 5 6.90E+05 6.77E+03 7.36 0.00E+00 1.96E+07 1.93E+05 53.28 29.44 -20.2

100 23.87 1.89E+07 1.86E+05 52 5 7.38E+05 7.24E+03 7.10 0.00E+00 1.97E+07 1.93E+05 53.27 31.74 -18.0

100 23.87 1.89E+07 1.86E+05 53 5 7.88E+05 7.73E+03 6.85 0.00E+00 1.97E+07 1.94E+05 53.26 34.16 -15.7

100 23.87 1.89E+07 1.86E+05 54 5 8.40E+05 8.24E+03 6.62 0.00E+00 1.98E+07 1.94E+05 53.25 36.72 -13.2

100 23.87 1.89E+07 1.86E+05 55 6 8.95E+05 8.78E+03 6.40 0.00E+00 1.98E+07 1.95E+05 53.23 39.40 -10.6

100 23.87 1.89E+07 1.86E+05 56 6 9.51E+05 9.33E+03 6.19 0.00E+00 1.99E+07 1.95E+05 53.20 42.23 -7.9

100 23.87 1.89E+07 1.86E+05 57 6 1.01E+06 9.91E+03 5.99 0.00E+00 2.00E+07 1.96E+05 53.18 45.19 -5.0

100 23.87 1.89E+07 1.86E+05 58 6 1.07E+06 1.05E+04 5.80 0.00E+00 2.00E+07 1.96E+05 53.14 48.30 -1.9

100 23.87 1.89E+07 1.86E+05 59 6 1.13E+06 1.11E+04 5.63 0.00E+00 2.01E+07 1.97E+05 53.10 51.56 1.3

100 23.87 1.89E+07 1.86E+05 60 6 1.20E+06 1.18E+04 5.46 0.00E+00 2.01E+07 1.98E+05 53.06 54.96 4.6

100 23.87 1.89E+07 1.86E+05 61 6 1.27E+06 1.24E+04 5.30 0.00E+00 2.02E+07 1.98E+05 53.01 58.52 8.2

100 23.87 1.89E+07 1.86E+05 62 6 1.34E+06 1.31E+04 5.15 0.00E+00 2.03E+07 1.99E+05 52.96 62.24 11.9

100 23.87 1.89E+07 1.86E+05 63 7 1.41E+06 1.38E+04 5.00 0.00E+00 2.04E+07 2.00E+05 52.90 66.12 15.7

100 23.87 1.89E+07 1.86E+05 64 7 1.48E+06 1.46E+04 4.87 0.00E+00 2.04E+07 2.00E+05 52.83 70.16 19.8

100 23.87 1.89E+07 1.86E+05 65 7 1.56E+06 1.53E+04 4.73 0.00E+00 2.05E+07 2.01E+05 52.76 74.36 24.0

100 23.87 1.89E+07 1.86E+05 66 7 1.64E+06 1.61E+04 4.61 0.00E+00 2.06E+07 2.02E+05 52.69 78.74 28.4

100 23.87 1.89E+07 1.86E+05 67 7 1.72E+06 1.69E+04 4.49 0.00E+00 2.07E+07 2.03E+05 52.61 83.29 32.9



The result of the minimum platform calculation is shown in the following figure: 

 

Figure 133 - Width of the platform need with the height of the building for stability. 

Since it is very remarkable that a linear function comes out of it, the same calculations were 

done using the program Maple. Maple was not used before because calculating one equation (GM 

= 0) with two unknowns (height building and platform width) was not possible. What is possible 

with Maple is to make the formula in which the GM value depends entirely on the height of the 

building and the width of the platform: 
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(AIV.1) 

As can be seen, there seems to be no linear relationship between the height of the building and 

the width of the platform. A 3D plot of this function is made, which is shown in the figure below. 

In the plot a clear linear intersection line can be seen between the GM value plane [coloured] 

and the zero plane (black). 

 

Figure 134 - 3D plot of the GM value with the height of the building and the width of the platform as variables. 



MINIMUM PLATFORM HEIGHT AND DEPTH AND OTHER RESULTING VALUES 

The research into the minimum height and depth of the platform has yielded the most results. It 

also gives a broad result and not only a result for optimal dimensions. These results can there-

fore be used well together with the results of the dynamic calculations. In this appendix, the re-

sults of the minimum platform height and depth are shown in the form of graphs. Because these 

depths and heights of the platform are the minimum values, results of a number of other param-

eters from the model were also obtained for these values. These are also shown. These are: 

 Angle of rotation 

 2nd order moment 

 Wind moment 

 Deflection at the top of the building 

 Ration between the model and the GM method 

 Change in the angle at the fifth iteration of the model 

The angle of rotation is determined with the model for the centre of the platform and is deter-

mined after the last iteration. It is possible that the angle of rotation is different on other parts of 

the platform. The second order moment is also taken from the model. The displacement of the 

top of the building is also taken from the model. This cannot be determined simply by the rota-

tion of the platform, because the building is also flexible. The ratio between the model and the 

GM method is the ratio between the calculated angular rotation of the two methods. This ratio 

can indicate when the GM method is useful or when it underestimates or overestimates the rota-

tion. Finally, the change in the angle after the 5th iteration. This is the percentage of the differ-

ence in the angle of the 4th and 5th iteration. This expresses how big the change still is and 

shows whether the model has reached an equilibrium or whether more iterations are actually 

needed. 

All graphs have the same layout, they depend on both the platform width and the building 

height. The results different building height are plotted together. The horizontal axis shows the 

platform width and the vertical axis the parameter under investigation. The title of the graph 

indicates the parameter and the location. The graphs are subdivided by location and can be seen 

on the next page. 

  



NORTH SEA 

 

 

Figure 135 - Results of the analysis of the static stability for the North Sea. 



ATLANTIC OCEAN 

 

Figure 136 - Results of the analysis of the static stability for the Atlantic Ocean. 

 



 

EQUATOR 

 

Figure 137 - Results of the analysis of the static stability for the Equator. 



APPENDIX V – ZERO MOMENT WIDTHS 
In many results, the optimum platform width is the one that has the least amount of moment due 

to the wave, in this research called the "zero moment widths". This is because the moment due 

to the wave does not increase with increasing platform width but it has a diverging sine shape, 

see Figure 138. The formula for the moment, (determined in Appendix II) depends on two varia-

bles, the time and the width of the platform. The graph shows that at time t = 2s there are sever-

al platform widths for which the total moment due to the waves is equal to 0 kNm. For the static 

stability, however, t = 2s is not used but a calculation is made for the most "negative" time. This 

is the time for which the wave moment is maximum. 

 

Figure 138 - Wave moment at t = 2s for different platform widths for the location North Sea. 

To investigate whether there is a platform width that, regardless of time, always results in a 

wave moment of 0 kNm, a 3D graph was made of the moment due to the wave with time and 

platform width as variables. This is shown in Figure 139. The figure also shows the plane where 

the moment is equal to 0 (the black plane). The graph shows that there are certain widths of 

platform for which the maximum moment is zero. This can be seen better in Figure 140. These 

are the red and blue lines. Looking at t=2s in this 3D graph, the graph of Figure 138 can be rec-

ognised. However, there is a difference between the red and blue lines. 

On the blue lines, the moment is equal to zero but, as mentioned, the time with the highest mo-

ment is used for a specific platform width. That moment is not on the blue lines. (for example a 

platform width of 150 m has zero moment at t = 2 s but it has a substantial moment at t = 0 s. 

Which will be normtive) When determining the zero moment widths, the results from the blue 

lines should not be used.  

The red lines in the 3D graph, unlike the blue lines, are constant over time. For these platform 

widths, the moment due to the wave is, for all possible times, equal to zero. And so the moment 



at the most negative time is also equal to zero. So these widths are the zero moment widths. To 

find these zero moment widths, a combination of Figure 138 and Figure 140 is used. The 3D 

graph shows that when in Figure 138 the moment goes from positive to negative, it is a blue line. 

And when the moment goes from negative to positive, it is the wanted red line. This is how the 

zero moment widths can be determined. These are determined for the three locations and can 

be seen in Table 37.  

Please note that the zero moment widths are dependent on the wavelength. The wavelength in 

turn depends on the wave period/wave frequency. When working at a location with a different 

wave period than the peak period, the zero moment widths will be different. 

 

Figure 139 - 3D plot of the wave moment for different platform widths and times for the location of the North 
Sea. The black surface is equal to zero moment 

 

Figure 140 - 3D plot of the wave moment for different platform widths and times for the location of the North 
Sea. The black surface is equal to zero moment. The red lines are the zero moment width lines and the blue 

lines indicate the other set of values for which the moment is zero. 



Table 37 - Zero moment widths up to 800 m for the three locations. 

Location Zero moment widths [m] 
North Sea 190.6 327.6 462.4 596.5 730.3 

Atlantic Ocean 371.6 677.6    
Equator 223.3 383.9 541.9 699.1  

 

 

 

  



APPENDIX VI - BEAM STIFFNESS MATRIX 
This appendix shows how the beam stiffness matrix was determined. Each row consists of stiff-

ness’s that link the motions to a force. To determine this, one degree of freedom (DOF) is given a 

displacement or rotation of 1. It is determined what is needed to achieve this displacement or 

rotation and what is needed to keep the remaining DOF at zero. This is done for each DOF. This 

results in the following matrix for the model with three masses and nine DOFs 

 

The determination can be seen in the drawings below: 



 



 



 

 



 

APPENDIX VII – MULTIPLE MASS MODEL HAND CALCULATIONS 
This appendix shows the calculations made in the program maple. These calculations are used in 

different parts of chapter 6. The first paragraph shows how the input values were named and 

shows the calculations of the dependent parameters as determined in chapter 3. The second 

paragraph shows how the matrices are defined together with the values of these as is deter-

mined in chapter 6. Paragraph 3 shown the calculation of the eigenfrequencies. Then paragraph 

4 shows the calculation of the forces as explained in chapter 2 and Appendix II. Then in para-

graph 5 the calculation for the particular solution is shown together with the calculations of the 

maximum accelerations. This Appendix ends with the calculation of the acceleration at the top of 

the building. 

INPUT VALUES 

This paragraph shows how the input values are named and shows the calculations of the de-

pendent parameters as determined in chapter 3. There are two options: one option where the 

depth and height of the platform follows from the regulations and one option where the depth 

and height of the platform are used as input parameters. 

 









 

  



MATRICES AND ITS VALUES 

Here you can see the matrices as described in chapter 6. In addition to the matrices, the calcula-

tions of the values of the parameters in the matrices are shown as determined in the same chap-

ter. 







 

  



EIGENFREQUENCIES CALCULATION 

In this paragraph the calculation of the eigenfrequencies is shown. In chapter 6 it is explained 

that the eigenfrequencies can be determined by taking the determinant of −𝜔2 ∗ 𝑀 + 𝐾 and set 

it to zero, than solve for 𝜔. 

 

 

 

 

 

 



FORCES 

Here the calculations are shown of the different forces and moments due to the waves and wind. 

These are as described in chapter 2 and Appendix II. This ends with the force matrix. For the 

growing wave investigation the growth factor will be added here.  

 
 







 

  



PARTICULAR SOLUTION,  SOLVING THE EQUATION OF MOTION AND DETERMINING THE MAX-

IMUM ACCELERATION 

Here the calculations of the particular solution can be seen. This is calculate by solving the equa-

tion of motion. To solve all unknowns, all nine DOF are set equal to the force at four different 

time values. This creates 36 equation to solve the 36 unknowns. When the particular solution is 

known, the maximum acceleration is determined by calculating the second derivative of the mo-

tions, and then calculating the acceleration for time values between 0 and the wave period. The 

highest acceleration is the maximum acceleration. These calculations are all based on the calcu-

lation shown in chapter 6. 

 











 

  



CALCULATION OF THE MAXIMUM ACCERLERATION AT THE TOP OF THE BUILDING  

Due to the modelling the top mass is not at the same height as the top of the building. Therefore 

this extra calculation is added to calculate the horizontal displacement and acceleration at the 

top of the building. 

 

  



APPENDIX VIII - DIANA MULTIPLE MASS MODEL RESULTS 
Diana has been used to check the calculations of the Eigen Frequencies. A Diana model with 3 

point masses was created for this purpose. In addition, Diana was used to investigate the influ-

ence of multiple point masses. Models with 3, 5 and 9 point masses were made. For each of 

these, the values were calculated separately, such as the mass. In the figure below, you can see 

the three models as they appear in Diana. A schematic representation has also been made. Be-

cause the eigenfrequency calculations are made in such a way that the lowest mass is always at 

the bottom of the element, this is also done in Diana. Next, the result of the masses are equally 

distributed. This ensures that the masses are no longer at the same height. This may result in 

different values. 

   

Figure 141 – 3, 5 and 9 mass model in Diana and schematic versions. 

To compare the values of the calculations and the Diana model, the results of the calculations in 

Maple are shown below. On the left, the eigenfrequencies are expressed in rad/s and on the right 

in Hz. Diana always gives the frequencies in Hz. 



 

Figure 142 - Eigenfrequencies of the 3 mass model. Calculated with Maple. 

The results of the Diana model are shown in the table below. The results of the 5 and 9 point 

mass models are also given. The DOF or leading motion is also shown. The figure below the table 

shows the eigenmodes of the Diana model for the different eigenfrequencies of the 3-mass mod-

el. These are used to determine the leading motion and to determine whether the calculations 

are correct. The table shows that there is little difference between the eigenfrequencies of the 

models. There is some difference, but this can be caused by different rounding (Diana works 

with 5 decimals, this can cause a difference) or by the fact that the masses are not at the same 

heights. The largest deviations are in the eigenfrequencies higher than 2 Hz. These are far away 

from the eigenfrequencies limits and will therefore have no influence on the further calculations. 

It can be concluded that 3 masses are enough to model the floating high-rise accurately. 

Table 38 - Eigenfrequencies of the different DOF for the 3, 5 and 9 mass models in Diana. 

Frequency Number: 1 2 3 4 5 6 7 8 9 

3 masses 
         

Frequency [Hz] 0.0122 0.0771 0.149 1.238 2.357 3.121 6.071 6.900 10.266 

DOF 𝑢1 𝑤1 𝜃1 𝑢3 𝑤3 𝑢2 𝑤2 𝜃3 𝜃2 

5 masses 
       

  

Frequency [Hz] 0.0122 0.0771 0.109 1.288 2.385 2.989 6.501 6.759 10.169 

DOF 𝑢1 𝑤1 𝜃1 𝑢5 𝑤5 𝑢3 𝑤3 𝜃5 𝜃3 

9 masses          

Frequency [Hz] 0.0122 0.0771 0.0149 1.291 2.395 2.964 6.429 6.991 10.477 

DOF 𝑢1 𝑤1 𝜃1 𝑢9 𝑤9 𝑢5 𝑤5 𝜃9 𝜃5 

 



 

Figure 143 - eigenmodes in Diana of the example. The eigenfrequency is given in the top left corner. Note that 
some deformations are in x and some in y direction (u and w in the hand calculation). 

Below are the eigenfrequencies of the 5 and 9 mass models in Diana. These match the table but 

also show the extra frequencies that can be calculated with multiple point masses. These fre-

quencies are always higher than those found in the 3-mass model and are far out of range of the 

limiting frequencies. 



 

Figure 144 - Eigenfrequencies of the Diana model with 5 point masses. Note: The first 12 frequencies are all 
equal to 0 and thus not shown. Frequency 31 and higher are also not of interest 

 

Figure 145 - Eigenfrequencies of the Diana model with 9 point masses. Note: The first 27 frequencies are all 
equal to 0 and thus not shown. Frequency 55 and higher are also not of interest 

Limiting values have been set for the eigenfrequencies. These are between 0.3 and 1.44 rad/s. In 

order to determine which DOF must be examined to ensure that no resonance can occur, the ei-

genfrequencies are calculated for different values of the platform width and building height. This 

involves platform widths of 100, 300 and 500 m and building heights of 100, 300 and 500 m. The 

results are analysed and a conclusion is drawn about the importance of the eigenfrequency in 

connection with the resonance. This set yields 7 eigenfrequencies (two do not provide stability) 

and so it is anecdotal evidence. However, it is too complicated to do otherwise. The results of the 

9 eigenfrequencies are shown in the following nine tables. 

Table 39 - Eigenfrequencies of the horizontal motion of the bottom mass with different platform widths and 
building height in rad/s. 

Horizontal motion 
bottom mass 

Height building [m] 

Width platform [m] 100 300 500 

100 0.300 x x 

300 0.180 0.165 0.109 

500 0.140 0.137 0.056 
 

The horizontal eigenfrequency decreases with increasing platform width. This is a consequence 

of the increased mass and added mass in this direction. Despite an also increasing spring stiff-

ness. There is also a decrease in eigenfrequency for an increasing building height. Here the mass 

is also the reason. The results show that this DOF lies in the range of limiting frequencies and 

will therefore have to be investigated. 

Table 40 - Eigenfrequencies of the vertical motion of the bottom mass with different platform widths and 
building height in rad/s. 

Vertical motion 
bottom mass 

Height building [m] 

Width platform 
[m] 

100 300 500 

100 0.485 x x 



300 0.286 0.285 0.276 

500 0.222 0.222 0.221 

 

With increasing platform width, the eigenfrequencies of the vertical motion of the lower mass 

decrease. This is because the mass increases considerably due to the extra counterweight re-

quired to reach the depth and because the added mass increases considerably. The spring stiff-

ness also increases, but less than the mass and added mass together. The difference in height 

makes no difference to this motion. This is somewhat remarkable. The results show that this 

DOF lies in the range of limiting frequencies and will therefore have to be investigated. 

Table 41 - Eigenfrequencies of the rotation of the bottom mass with different platform widths and building 
height in rad/s. 

Rotation bottom 
mass 

Height building [m] 

Width platform 
[m] 

100 300 500 

100 1.264 x x 

300 0.796 0.561 0.337 

500 0.369 0.321 0.231 

 

Also, the eigenfrequencies of the rotation of the lower mass decreases as the platform width in-

creases and the height of the building increases. This has the same reasons as for the horizontal 

motion. The results show that this DOF lies in the range of limiting frequencies and will there-

fore have to be investigated. 

The results of the other six DOF show that they are outside the range of the frequency limits and 

also do not come close to this range with an even larger platform width and/or building height. 

Only the horizontal motion of the upper mass can come close for extreme value. From these val-

ues it is concluded that they do not require further investigation into the limitation of the eigen-

frequencies. 

Table 42 - Eigenfrequencies of the horizontal motion of the top mass with different platform widths and build-
ing height in rad/s. 

Horizontal mo-
tion top mass 

Height building [m] 

Width platform 
[m] 

100 300 500 

100 7.828 x x 

300 3.174 3.199 2.073 

500 3.076 1.884 2.025 

 

Table 43 - Eigenfrequencies of the vertical motion of the top mass with different platform widths and building 
height in rad/s. 

Vertical motion 
top mass 

Height building [m] 

Width platform 100 300 500 



[m] 

100 14.806 x x 

300 14.565 4.112 3.703 

500 14.558 3.179 2.696 

 

Table 44 - Eigenfrequencies of the horizontal motion of the middle mass with different platform widths and 
building height in rad/s. 

Horizontal motion 
middle mass 

Height building [m] 

Width platform [m] 100 300 500 

100 21.596 x x 

300 18.085 8.312 5.275 

500 17.993 8.309 5.267 

 

Table 45 - Eigenfrequencies of the vertical motion of the middle mass with different platform widths and 
building height in rad/s. 

Vertical motion 
middle mass 

Height building [m] 

Width platform 
[m] 

100 300 500 

100 38.144 x x 

300 38.109 12.163 9.965 

500 38.108 9.411 8.106 

 

Table 46 - Eigenfrequencies of the rotation of the top mass with different platform widths and building height 
in rad/s. 

Rotation top 
mass 

Height building [m] 

Width platform 
[m] 

100 300 500 

100 44.333 x x 

300 43.098 70.291 93.317 

500 43.064 70.206 93.306 

 

Table 47 - Eigenfrequencies of the rotation of the middle mass with different platform widths and building 
height in rad/s. 

Rotation motion 
middle mass 

Height building [m] 

Width platform 
[m] 

100 300 500 

100 64.907 x x 

300 64.440 116.550 155.460 

500 64.427 116.453 155.447 

 



APPENDIX IX - ROTATIONAL STIFFNESS WITH A DEFORMING 

PLATFORM 
The deformation of the platform is not included when the platform of the floating high-rise is 

modelled as only one point mass. To include the deformation, the formula of the rotational stiff-

ness of rotation can no longer be used. This rotational stiffness calculation method is based on 

the GM value. As described earlier, using the GM value simplifies the calculation of the moment 

balance of the support springs, the moment due to the weight and an external moment. To calcu-

late the rotational stiffness, this balance is used 

There are two ways of determining the spring stiffness of the platform for the rotation. One is by 

using the GM value: 

 
𝑘𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛,𝐺𝑀 =  𝜌𝑤𝑎𝑡𝑒𝑟 ∗ 𝑔 ∗ 𝑉 ∗ 𝐺𝑀 

 (A-IX.1) 

In chapter 2 it is show that GM can be calculated with the following formula: 

 
𝐺𝑀 =

1

2
∗ 𝑑 +

𝐼𝑖
𝑉𝑠𝑢𝑏

− 𝐶𝑂𝐺̅̅ ̅̅ ̅ 

 
(A-IX.2) 

Using 𝐼𝑖 =
1

12
∗ 𝑤𝑝4and 𝑉𝑠𝑢𝑏 = 𝑑 ∗ 𝑤𝑝

2 this is simplified to: 

 𝐺𝑀 = 
𝑤𝑝2

12𝑑
+
1

2
𝑑 − 𝐶𝑂𝐺̅̅ ̅̅ ̅ 

 
(A-IX.3) 

So k becomes: 

 𝑘𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛,𝐺𝑀 = 𝜌𝑤𝑎𝑡𝑒𝑟 ∗ 𝑔 ∗ 𝑑 ∗ 𝑤𝑝
2 ∗ (
𝑤𝑝2

12𝑑
+
1

2
𝑑 − 𝐶𝑂𝐺̅̅ ̅̅ ̅) 

 
(A-IX.4) 

The other method is by using the moment, created by the force of the springs with a vertical dis-

placement due to a rotation. This is first done for a beam with three springs.  

 

Figure 146 - Platform supported by three springs. 

The middle spring does not displace and thus does not create a moment. 

 
𝐹1 = 𝑘1 ∗ 𝜃 ∗ 𝐿 

 (A-IX.5) 

 
𝐹3 = −𝑘3 ∗ 𝜃 ∗ 𝐿 

 (A-IX.6) 



The moments around the middle of the platform due to these forces are: 

 
𝑀1 = 𝑘1 ∗ 𝜃 ∗ 𝐿

2 
 

(A-IX.7) 

 
𝑀3 = 𝑘3 ∗ 𝜃 ∗ 𝐿

2 
 

(A-IX.8) 

So the total moment due to the springs is: 

 
𝑀1 +𝑀3 = 𝑘1 ∗ 𝜃 ∗ 𝐿

2 + 𝑘3 ∗ 𝜃 ∗ 𝐿
2 = (𝑘1 + 𝑘3) ∗ 𝜃 ∗ 𝐿

2 
 

(A-IX.9) 

All the springs have the same spring stiffness so this can be simplified to: 

 
𝑀𝑠𝑝𝑟𝑖𝑛𝑔𝑠 = 2𝑘 ∗ 𝐿

2 ∗ 𝜃 
 

(A-IX.10) 

The rotational stiffness is than 2𝑘 ∗ 𝐿2. When the same is done with five springs the length L be-

tween the springs is reduced, the spring stiffness k is reduced and the moments of spring one 

and five will have the factor 2 ∗ 𝐿2.  

 

Figure 147 - Platform supported by five springs. 

 
𝐹1 = 𝑘1 ∗ 𝜃 ∗ 2𝐿 𝑎𝑛𝑑 𝐹5 = 𝑘5 ∗ 𝜃 ∗ 2𝐿  

 (A-IX.11) 

 
𝑀1 = 𝑘1 ∗ 𝜃 ∗ (2𝐿)

2 𝑎𝑛𝑑 𝑀5 = 𝑘5 ∗ 𝜃 ∗ (2𝐿)
2 

 
(A-IX.12) 

Spring two and four will have the same formula as springs one and three of the 3 spring model. 

All the moments are added again. 

 
𝑀𝑠𝑝𝑟𝑖𝑛𝑔𝑠 = (𝑘1 + 𝑘5) ∗ 𝜃 ∗ (2𝐿)

2 + (𝑘2 + 𝑘4) ∗ 𝜃 ∗ 𝐿
2 

 
(A-IX.13) 

When all springs have the same spring stiffness this is simplified to: 

 
𝑀𝑠𝑝𝑟𝑖𝑛𝑔𝑠 = 2𝑘 ∗ 𝜃 ∗ (2𝐿)

2 + 2𝑘 ∗ 𝜃 ∗ 𝐿2 
 

(A-IX.14) 

 
𝑀𝑠𝑝𝑟𝑖𝑛𝑔𝑠 = 2𝑘 ∗ 𝐿

2 ∗ (1 + 22) ∗ 𝜃 
 

(A-IX.15) 

With now 2𝑘 ∗ 𝐿2 ∗ (1 + 22) as rotational spring stiffness. The water actually forms a line-spring-

support. In order to achieve this, an infinite number of springs must be used. To calculate this, 

the number of springs is set equal to n. Next, the lengths between the springs and the spring 

stiffness’s can be determined in terms of n: 

 𝐿 =  
𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚

𝑛
 

 
(A-IX.16) 



 𝑘𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 =
𝜌𝑤𝑎𝑡𝑒𝑟 ∗ 𝑔 ∗ 𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚

2

𝑛
 

 
(A-IX.17) 

The rotational rigidity can also be described in terms of n using a summation: 

 𝑘𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛,𝑠𝑝𝑟𝑖𝑛𝑔 =  2𝑘 ∗ 𝐿
2 ∗∑𝑥2

𝑛−1
2

𝑥=1

 

 

(A-IX.18) 

Combining the three gives: 

 𝑘𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛,𝑠𝑝𝑟𝑖𝑛𝑔 =
2 ∗ 𝜌𝑤𝑎𝑡𝑒𝑟 ∗ 𝑔 ∗ 𝑤𝑝

4

𝑛3
∗∑𝑥2

𝑛−1
2

𝑥=1

 

 

(A-IX.19) 

When unlimited spring are used, 𝑛 → ∞. The limit will be: 

 𝑘𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛,𝑠𝑝𝑟𝑖𝑛𝑔 = lim
𝑛→∞
(
2 ∗ 𝜌𝑤𝑎𝑡𝑒𝑟 ∗ 𝑔 ∗ 𝑤𝑝

4

𝑛3
∗∑𝑥2

𝑛−1
2

𝑥=1

) 

 

(A-IX.20) 

 𝑘𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛,𝑠𝑝𝑟𝑖𝑛𝑔 =
1

12
∗ 𝜌𝑤𝑎𝑡𝑒𝑟 ∗ 𝑔 ∗ 𝑤𝑝

4 

 
(A-IX.21) 

This is different from the formula with GM. That formula includes the displacement of the centre 

of gravity, this is not yet included in the multiple spring method. To include this the moment due 

to the weight needs to be calculated and added to the total moment sum. This moment due to the 

weight is: 

 𝑀𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑚 ∗ 𝑔 ∗ (𝐶𝑂𝐺̅̅ ̅̅ ̅ −
1

2
𝑑) ∗ 𝜃 

 
(A-IX.22) 

The mass m can be written as 𝑑 ∗ 𝑤𝑝2 ∗ 𝜌𝑤𝑎𝑡𝑒𝑟. The moment due to the weight than becomes: 

 𝑀𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑑 ∗ 𝑤𝑝
2 ∗ 𝜌𝑤𝑎𝑡𝑒𝑟 ∗ 𝑔 ∗ (𝐶𝑂𝐺̅̅ ̅̅ ̅ −

1

2
𝑑) ∗ 𝜃 

 
(A-IX.23) 

The added part to the stiffness is than  

 𝑘𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑑 ∗ 𝑤𝑝
2 ∗ 𝜌𝑤𝑎𝑡𝑒𝑟 ∗ 𝑔 ∗ (𝐶𝑂𝐺̅̅ ̅̅ ̅ −

1

2
𝑑) 

 
(A-IX.24) 

This “stiffness” is than subtracted of the results of the limit (subtraction as the moment works in 

the opposite direction of the moment due to the springs) 

 lim
𝑛→∞
(𝑘) =  

1

12
∗ 𝜌𝑤𝑎𝑡𝑒𝑟 ∗ 𝑔 ∗ 𝑤𝑝

4 − 𝑑 ∗ 𝑤𝑝2 ∗ 𝜌𝑤𝑎𝑡𝑒𝑟 ∗ 𝑔 ∗ (𝐶𝑂𝐺̅̅ ̅̅ ̅ −
1

2
𝑑) 

 
(A-IX.25) 

This formula does not look exactly like the GM method, but it is. So this spring method can be 

used to calculate the stiffness of the spring. 



Now that the rotational stiffness can be determined with the vertical springs, the deformation of 

the platform can also be included in the determination of the rotational stiffness. To do this, Or-

dinary Differential Equations (ODEs) are used. These can be used to find a relation between 

moment and rotation in the centre of the platform. First the model with three masses is used. To 

solve an ODE, boundary conditions must be used. Figure 148 shows the schematisation with the 

different boundary condition. Two ODEs are used, one for each beam. 

 

Figure 148 - Schematisation of the platform and the boundary conditions for the ODE. 

The deflection has the form of: 

 𝑤(𝑥) =  
1

6
∗ 𝐶1 ∗ 𝑥3 +

1

2
∗ 𝐶2 ∗ 𝑥2 + 𝐶3 ∗ 𝑥 + 𝐶4 [𝑚] 

 
(A-IX.26) 

With the eight boundary conditions the four unknowns of both deflection formulas can be 

solved. Solving this means expressing the unknown constants in terms of length, stiffness, spring 

stiffness and the moment  in the middle. With the two formulas, the rotation in the middle can be 

determined and expressed in the same constants: 

 𝜃 =
𝑀𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛(𝐿

3 ∗ 𝑘 + 3𝐸𝐼)

6𝐿2 ∗ 𝐸𝐼 ∗ 𝑘
 

 
(A-IX.27) 

Rewriting this to express the moment in terms of rotation: 

 𝑀𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 =
6𝜃 ∗ 𝐿2 ∗ 𝐸𝐼 ∗ 𝑘

𝐿3 ∗ 𝑘 + 3𝐸𝐼
 

 
(A-IX.28) 

Where: 

EI Is the stiffness of the platform.  

If the platform is infinitely stiff, this formula should give the same answer as the manual calcula-

tions above. To check this, the limit is taken from EI to infinity: 



 𝑀𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 = lim
𝐸𝐼→∞

(
6𝜃 ∗ 𝐿2 ∗ 𝐸𝐼 ∗ 𝑘

𝐿3 ∗ 𝑘 + 3𝐸𝐼
) 

 
(A-IX.29) 

This gives: 

 
𝑀𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 = 2𝐿

2 ∗ 𝑘 
 

(A-IX.30) 

This is indeed the same as found earlier for a model with three springs/masses. Drawing up the 

boundary conditions is a manual job that cannot be scaled up to infinity, so the manual calcula-

tion (sum) method is used first to determine what a sufficient number of springs is. Therefore, 

the manual calculation (sum) method is first used to determine the adequate number of springs. 

The result of a given number of springs is then divided by the previous result (for example, the 

result of five springs is divided by that of three springs). To determine the difference in percent-

ages, this number is subtracted by one and multiplied by 100. The results are shown in the table 

below. 

Table 48 - Change in value for the rotational stiffness with a certain amount of spring compared to the previ-
ous value (in percentages). 

Number of 
springs 

3 5 7 9 11 13 15 

Change in 
value (%) 

N/A 8.00 2.04 0.82 0.41 0.24 0.15 

 

With nine springs, the change is less than one per cent. Therefore, nine springs is determined as 

enough to determine the rotational stiffness. The ODE method is done again, now with 9 springs. 

This gives the following formula for the moment in the middle: 

 

𝑀𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

=  
24 ∗ 𝐿2 ∗ 𝑘 ∗ (28 ∗ 𝐿9 ∗ 𝑘3 +  981 ∗ 𝐸𝐼 ∗ 𝐿6 ∗ 𝑘2 +  5832 ∗ 𝐸𝐼2 ∗ 𝐿3 ∗ 𝑘 +  3240 ∗ 𝐸𝐼3) ∗ 𝐸𝐼

97 ∗ 𝐿12 ∗ 𝑘4 +  4332 ∗ 𝐸𝐼 ∗ 𝐿9 ∗ 𝑘3 +  38340 ∗ 𝐸𝐼2 ∗ 𝐿6 ∗ 𝑘2 +  43200 ∗ 𝐸𝐼3 ∗ 𝐿3 ∗ 𝑘 +  1296 ∗ 𝐸𝐼4
∗ 𝜃 

 

(A-IX.31) 

When the expression for k and L are used in terms of n, with n equal to 9 the relationship be-

tween the moment and the rotation changes to: 

 

𝑀𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

=  
0.0329 ∗ 𝑤𝑝4 ∗ 𝑟ℎ𝑜 ∗ 𝑔 ∗ (9.91 ∗ 10−11 ∗ 𝑔3 ∗ 𝑟ℎ𝑜3 ∗ 𝑤𝑝15 +  2.28 ∗ 10−5 ∗ 𝐸𝐼 ∗ 𝑔2 ∗ 𝑟ℎ𝑜2 ∗ 𝑤𝑝10 +  0.889 ∗ 𝐸𝐼2 ∗ 𝑔 ∗ 𝑟ℎ𝑜 ∗ 𝑤𝑝5 +  3240.∗ 𝐸𝐼3) ∗ 𝐸𝐼

5.23 ∗ 10−14 ∗ 𝑔4 ∗ 𝑟ℎ𝑜4 ∗ 𝑤𝑝20 +  1.53 ∗ 10−8 ∗ 𝐸𝐼 ∗ 𝑔3 ∗ 𝑟ℎ𝑜3 ∗ 𝑤𝑝15 +  8.91 ∗ 10−4 ∗ 𝐸𝐼2 ∗ 𝑔2 ∗ 𝑟ℎ𝑜2 ∗ 𝑤𝑝10 +  6.58 ∗ 𝐸𝐼3 ∗ 𝑔 ∗ 𝑟ℎ𝑜 ∗ 𝑤𝑝5 +  1300.∗ 𝐸𝐼4

∗ 𝜃 
 

(A-
IX.32

) 

And thus the rotational stiffness, including the deformation of the platform and the second order 

moment, can be calculated with the following formula: 

 

𝑘𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

=
0.0329 ∗ 𝑤𝑝

4
∗ 𝑟ℎ𝑜 ∗ 𝑔 ∗ (9.91 ∗ 10−11 ∗ 𝑔3 ∗ 𝑟ℎ𝑜3 ∗ 𝑤𝑝15 +  2.28 ∗ 10−5 ∗ 𝐸𝐼 ∗ 𝑔2 ∗ 𝑟ℎ𝑜2 ∗ 𝑤𝑝10 +  0.889 ∗ 𝐸𝐼2 ∗ 𝑔 ∗ 𝑟ℎ𝑜 ∗ 𝑤𝑝5 +  3240.∗ 𝐸𝐼3) ∗ 𝐸𝐼

5.23 ∗ 10−14 ∗ 𝑔4 ∗ 𝑟ℎ𝑜4 ∗ 𝑤𝑝20 +  1.53 ∗ 10−8 ∗ 𝐸𝐼 ∗ 𝑔3 ∗ 𝑟ℎ𝑜3 ∗ 𝑤𝑝15 +  8.91 ∗ 10−4 ∗ 𝐸𝐼2 ∗ 𝑔2 ∗ 𝑟ℎ𝑜2 ∗ 𝑤𝑝10 +  6.58 ∗ 𝐸𝐼3 ∗ 𝑔 ∗ 𝑟ℎ𝑜 ∗ 𝑤𝑝5 +  1300.∗ 𝐸𝐼4

−  𝑑 ∗ 𝑤𝑝
2
∗ 𝜌
𝑤𝑎𝑡𝑒𝑟

∗ 𝑔 ∗ (𝐶𝑂𝐺̅̅ ̅ −
1

2
𝑑) 

 

(A-
IX.33) 

MAPLE CALCULATIONS 

Most of the calculations for the rotational spring stiffness is done in Maple. The script is shown 

below 







 









 

 

  



APPENDIX X – GROWING WAVES 
To investigate the motion for a growing wave the total solution is calculated for an extreme case: 

A building of 500 m high and a platform width of 500m at the Atlantic Ocean. In this research a 

devolving time of 40 hours is determined for a devolving storm. However, as the building can 

also sail into a storm the same calculations are done with an 1 hour developing time. In the first 

paragraph the determination of the growth factor of the wave is shown (same as in chapter 6), 

then the results are shown for the developing time of 40 hours and then of 1 hour. 

GROWTH FACTOR 

To investigate the response to a wave with a growing wave, a growth factor must be added to 

the formula of the wave. A normal exponential function was not used for this growth because 

this would mean that after reaching the full height (growth factor = 1), the wave would continue 

to grow. Instead, a formula for the growth factor was sought that starts "slowly" and does not 

exceed 1. In mathematical terms, the function must have a limit of lim𝑡→−∞(𝑔(𝑡))  = 0 and 

lim𝑡→∞(𝑔(𝑡))  = 1 This can be achieved with a so-called "S" curve. The standard formula for an S 

curve is as follows  

 
1

1 + 𝑒−𝑡
 (A-X.1) 

 

However, a typical S curve has a value of 0.5 at t = 0. The growth factor at t = 0 should actually be 

0. In addition, the value 1 is approached very quickly. Therefore, a few adjustments have been 

made to the formula. The formula has been shifted and a factor has been added so that the for-

mula has a value of 0.001 (=0.1%) at t = 0 and a value of 0.999 (=99.9%) at t = develop time. In 

this case, the develop time is equal to 40 hours * 60 * 60 = 144000 seconds or 1 hours *60*60. 

The formula becomes:  

 
𝑔𝑟𝑜𝑤𝑡ℎ 𝑓𝑎𝑐𝑡𝑜𝑟 (𝑡) =  

1

1 + 𝑒
−0.0000959271∗(𝑡−

1
2
∗144000)

 

 

(A-X..2) 

For 40 hours. The growth factor for the develop time of 40 hours looks as follows: 



 

Figure 149 - Growth factor of the growing wave, developing time is 40 hours. 

This growth factor is added to sine and cosine part of both the wave load and to the standard 

formula used to solve the particular part of the equation of motion, see the equations below.  

 
𝑭 =  

[  
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
 

𝐺𝑟𝑜𝑤𝑡ℎ 𝑓𝑎𝑐𝑡𝑜𝑟 ∗ �̂�𝑣𝑒𝑟,1,𝑤𝑎𝑣𝑒 ∗ sin(𝜔𝑤𝑎𝑣𝑒𝑡)
0
0

𝐺𝑟𝑜𝑤𝑡ℎ 𝑓𝑎𝑐𝑡𝑜𝑟 ∗ �̂�ℎ𝑜𝑟,1,𝑤𝑎𝑣𝑒 ∗ sin(𝜔𝑤𝑎𝑣𝑒𝑡) + �̂�ℎ𝑜𝑟,1,𝑤𝑖𝑛𝑑 ∗ sin(𝜔𝑤𝑖𝑛𝑑𝑡)

�̂�ℎ𝑜𝑟,2,𝑤𝑖𝑛𝑑 ∗ sin(𝜔𝑤𝑖𝑛𝑑𝑡)

�̂�ℎ𝑜𝑟,3,𝑤𝑖𝑛𝑑 ∗ sin(𝜔𝑤𝑖𝑛𝑑𝑡)

𝐺𝑟𝑜𝑤𝑡ℎ 𝑓𝑎𝑐𝑡𝑜𝑟 ∗ �̂�𝑟𝑜𝑡,1,𝑤𝑎𝑣𝑒 ∗ sin(𝜔𝑤𝑎𝑣𝑒𝑡) + �̂�𝑟𝑜𝑡,1,𝑤𝑖𝑛𝑑 ∗ sin(𝜔𝑤𝑖𝑛𝑑𝑡)

�̂�𝑟𝑜𝑡,2,𝑤𝑖𝑛𝑑 ∗ sin(𝜔𝑤𝑖𝑛𝑑𝑡)

�̂�𝑟𝑜𝑡,3,𝑤𝑖𝑛𝑑 ∗ sin(𝜔𝑤𝑖𝑛𝑑𝑡)
]  
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
 

 

 

(A-X.3) 

 

 
𝑤𝑖(𝑡) = 𝐶𝑖,1 ∗ 𝐺𝑟𝑜𝑤𝑡ℎ 𝑓𝑎𝑐𝑡𝑜𝑟 ∗ 𝑠𝑖𝑛(𝜔𝑤𝑎𝑣𝑒𝑡) + 𝐶𝑖,2 ∗ 𝐺𝑟𝑜𝑤𝑡ℎ 𝑓𝑎𝑐𝑡𝑜𝑟 ∗ 𝑐𝑜𝑠(𝜔𝑤𝑎𝑣𝑒𝑡)

+ 𝐶𝑖,3 ∗ 𝑠𝑖𝑛(𝜔𝑤𝑖𝑛𝑑𝑡) + 𝐶𝑖,4 ∗ 𝑐𝑜𝑠(𝜔𝑤𝑖𝑛𝑑𝑡) [𝑚] 
(A-X.4) 

 

  



DEVELOPING TIME = 40 HOURS 

Four graphs have been produced for each of the three different motions. Graph one is the dis-

placement/rotation from t = 0 to t = 40 hours. This is the "Developing wave". Graph two is the 

displacement/rotation from t = 40 hours to t = 40 hours + 300 seconds. This is the "Fully devel-

oped wave". The third and fourth graphs have the same time intervals but deal only with the 

homogeneous solution. 

VERTICAL MOTION 

 

Figure 150 - Growing wave result of the vertical motion with a developing time of 40 hours. a) displacement 
from t = 0 to t = 40 hours. b) the displacement from t = 40 hours to t = 40 hours + 300 seconds. c) homogene-
ous part of the displacement from t = 0 to t = 40 hours. d) homogeneous part of the displacement from t = 40 

hours to t = 40 hours + 300 seconds. 

  



HORIZONTAL MOTION 

 

Figure 151 - Growing wave result of the horizontal motion with a developing time of 40 hours. a) displace-
ment from t = 0 to t = 40 hours. b) the displacement from t = 40 hours to t = 40 hours + 300 seconds. c) homo-
geneous part of the displacement from t = 0 to t = 40 hours. d) homogeneous part of the displacement from t = 

40 hours to t = 40 hours + 300 seconds. 

  



ROTATIONAL MOTION 

 

 

Figure 152 - Growing wave result of the rotational motion with a developing time of 40 hours. a) the rotation 
from t = 0 to t = 40 hours. b) the rotation from t = 40 hours to t = 40 hours + 300 seconds. c) homogeneous 

part of the rotation from t = 0 to t = 40 hours. d) homogeneous part of the rotation from t = 40 hours to t = 40 
hours + 300 seconds. 

  



DEVELOPING TIME = 1 HOUR 

The graphs have the same setup as for the developing time of 40 hours. 

VERTICAL MOTION 

 

Figure 153 - Growing wave result of the vertical motion with a developing time of 1 hour. a) displacement 
from t = 0 to t = 1 hour. b) the displacement from t = 1 hour to t = 1 hour + 300 seconds. c) homogeneous part 
of the displacement from t = 0 to t = 1 hour. d) homogeneous part of the displacement from t = 1 hour to t = 1 

hour + 300 seconds. 

  



HORIZONTAL MOTION 

 

 

Figure 154 - Growing wave result of the horizontal motion with a developing time of 1 hour. a) displacement 
from t = 0 to t = 1 hour. b) the displacement from t = 1 hour to t = 1 hour + 300 seconds. c) homogeneous part 
of the displacement from t = 0 to t = 1 hour. d) homogeneous part of the displacement from t = 1 hour to t = 1 

hour + 300 seconds. 

  



ROTATIONAL MOTION 

 

 

Figure 155 - Growing wave result of the rotational motion with a developing time of 1 hour. a) the rotation 
from t = 0 to t = 1 hour. b) the rotation from t = 1 hour to t = 1 hour + 300 seconds. c) homogeneous part of the 

rotation from t = 0 to t = 1 hour. d) homogeneous part of the rotation from t = 1 hour to t = 1 hour + 300 sec-
onds. 

 

  



APPENDIX XI – INFLUENCING PARAMETERS 
This appendix discuss the influencing parameters: Height of the centre of gravity and damping. 

Height of the centre of gravity 

 

Figure 156 - Change in the height of the centre of gravity. 

The results for the maximum accelerations for different height of the centre of gravity (COG) of 

the floating high-rise are shown in Figure 157. These are the horizontal and angular acceleration 

of all three masses.  The COG has no direct influence on the vertical acceleration and this accel-

eration is thus not included.  

The figure shows that the COG height has almost no influence on the horizontal acceleration and 

the angular acceleration (In the figure, the angular acceleration seems to decrease strongly. 

However, if one looks at the values on the vertical axis, one can see that the decrease is minimal.) 

Thus, changing the COG has a minimal influence on all accelerations. This is interesting because 

the GM value, which has a big influence, is determined by this COG value. 

 

Figure 157 - Maximum accelerations for different centre of gravity heights. a) Horizontal acceleration. b) An-
gular acceleration. 

Damping 

The results for the maximum accelerations for different height of the centre of gravity (COG) of 

the floating high-rise are shown in Figure 158. These are the vertical, horizontal and angular ac-

celeration of all three masses.  

The accelerations of the masses all decrease with increasing damping as in the single-mass mod-

els. The damping has a greater influence on the horizontal acceleration, especially of the lower 



mass, and on the angular acceleration. Increasing the damping constant can thus bring about a 

significant reduction in the acceleration. 

 

Figure 158 - Maximum accelerations for different damping values zeta. a) Vertical acceleration. b) Horizontal 
acceleration. c) Angular acceleration. 



APPENDIX XII – MOTION AT THE TOP OF THE BUILDING 
This appendix shows the determination of the motion and acceleration at the top of the building. 

In this study, the building and the platform were modelled as three point masses connected with 

a 1d element, see Figure 159, to determine the dynamic stability. The figure shows that the posi-

tion of the point masses is chosen such that the top two have the same amount of mass. This en-

sures that the top mass is not at the top of the building but at 4/5 of the height. Due to the rota-

tion of the platform, the building will translate horizontally, the higher the building, the greater 

this translation. So there is a big chance that the top of the building is normative for the accelera-

tions. Therefore a calculation has been made to use the results for the motions of the three 

masses to calculate the motion of the top of the building. This calculation is shown here. 

 

Figure 159 - Multiple-mass model for the dynamic stability. 

For the calculations, the building is modelled as a beam, as in the static and dynamic stability. 

The deformation of a beam has the following expression: 

 𝐸𝐼 ∗
𝑑4𝑢

𝑑𝑥4
= 𝑞 (A-XII.1) 

Where 

𝐸𝐼  is the bending stiffness of the building 

𝑢  is the deformation 

𝑥  is the relative position 

𝑞  is the external load 

The external load is equal to zero in this case. The formula shows that the deformation itself is a 

third degree polynomial. It can be written as: 



 𝑢(𝑥) =  𝑐1𝑥
3 + 𝑐2𝑥

2 + 𝑐3𝑥 + 𝑐4 (A-XII.2) 
Where 

𝑐𝑖 are unknown constants 

In this case the “x” is the height from the bottom of the building. That means that the point mass-

es are at the heights: 

 ℎ1 = 0,  ℎ2 =
ℎ𝑏

3 −
1
2

 𝑎𝑛𝑑  ℎ3 =
2 ∗ ℎ𝑏

3 −
1
2

 (A-XII.3) 

Where 

ℎ𝑖 is the height of point mass i 

ℎ𝑏 is the height of the building 

This is illustrated in the figure below: 

 

Figure 160 - Relative position of the point masses. 

The deformation at these three points are known. These are the horizontal motions of the three 

point masses. These depend on the time. To keep the equations simple the dependency on the 

time has been omitted. The polynomial needs four equations to solve the unknowns.  The fourth 

equation will be the rotation at ℎ1 = 0. This rotation is also know. The rotation can be calculated 

by taking the derivative of the deflection. This gives the following four equations: 

 𝑢(0) = 𝑐4 = 𝑢1 (A-XII.4) 
 

 𝑢
(  
   
   
 
 

ℎ𝑏

3 −
1
2
)  
   
   
 
 

=
8

125
∗ 𝑐1 ∗ ℎ𝑏

3 +
4

25
∗ 𝑐2 ∗ ℎ𝑏

2 +
2

5
∗ 𝑐3 ∗ ℎ𝑏 + 𝑐4 = 𝑢2 (A-XII.5) 

 

 𝑢
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2 ∗ ℎ𝑏

3 −
1
2
)  
   
   
 
 

=
64

125
∗ 𝑐1 ∗ ℎ𝑏

3 +
16

25
∗ 𝑐2 ∗ ℎ𝑏

2 +
4

5
∗ 𝑐3 ∗ ℎ𝑏 + 𝑐4 = 𝑢3 (A-XII.6) 

 



 
𝑑𝑢

𝑑𝑥
(0) = 𝑐3 = 𝜃1 (A-XII.7) 

Where 

𝑢𝑖 is the horizontal displacement of the point masses.  

𝜃1 is the rotation of the bottom mass. 

Solving these equations gives the following result: 

 𝑐1 =  25 ∗
4 ∗ ℎ𝑏 ∗ 𝜃 +  15 ∗ 𝑢1  −  20 ∗ 𝑢2  +  5 ∗ 𝑢3

32 ∗ ℎ𝑏3
 (A-XII.8) 

 

 𝑐2 = −5 ∗
12 ∗ ℎ𝑏 ∗ 𝜃 +  35 ∗ 𝑢1  −  40 ∗ 𝑢2  +  5 ∗ 𝑢3

16 ∗ ℎ𝑏2
 (A-XII.9) 

 

 𝑐3 =  𝜃  (A-XII.10) 
 

 𝑐4 = 𝑢1  (A-XII.11) 
The expression for de deformation becomes: 

 
𝑢(𝑥) = 25 ∗

4 ∗ ℎ𝑏 ∗ 𝜃 +  15 ∗ 𝑢1  −  20 ∗ 𝑢2  +  5 ∗ 𝑢3
32 ∗ ℎ𝑏3

𝑥3 − 5

∗
12 ∗ ℎ𝑏 ∗ 𝜃 +  35 ∗ 𝑢1  −  40 ∗ 𝑢2  +  5 ∗ 𝑢3

16 ∗ ℎ𝑏2
𝑥2 + 𝜃𝑥 + 𝑢1 

(A-XII.12) 

The deformation at the top of the building can be calculated by using 𝑥 =  ℎ𝑏: 

 𝑢(ℎ𝑏) =
3 ∗ ℎ𝑏 ∗ 𝜃(𝑡)

8
+
57 ∗ 𝑢1(𝑡)

32
−
25 ∗ 𝑢2(𝑡)

8
+
75 ∗ 𝑢3(𝑡)

32
 (A-XII.13) 

In this equation the dependency on the variable time is shown for the horizontal translation and 

the rotation. To calculate the rotation at the top of the building, the derivative of 𝑢(𝑥) to x must 

be calculated and then 𝑥 =  ℎ𝑏 must be entered. For the acceleration of the horizontal motion, 

the double derivative of 𝑢(ℎ𝑏) to time (t) must be calculated. 

 

  



APPENDIX XIII – MAXIMUM ACCELERATION CALCULATIONS 

MULTIPLE MASS MODEL 
In this appendix the results of the multiple mass model are shown. These will consist of results 

from the three locations: North Sea, Atlantic Ocean and equator. For the North Sea results are 

shown for a 100, 300 and 500 m building and for a 100 m building with a set depth of 20 m. For 

the Atlantic Ocean only a building of 100m and a building of 100 m with a set depth of 20 m is 

shown. Finally for the equator only the results for a 100 m building is shown. 

NORTH SEA 

HEIGHT BUILDING = 100 M 

 



 

Figure 161 - Maximum acceleration of the three motions for a building of 100 m at the North Sea. 

HEIGHT BUILDING = 300 M 



 

Figure 162 - Maximum acceleration of the three motions for a building of 300 m at the North Sea. 

HEIGHT BUILDING = 500 M 



 

Figure 163 - Maximum acceleration of the three motions for a building of 500 m at the North Sea. 

HEIGHT BUILDING = 100 M AND DEPTH = 20 M 



 

Figure 164 - Maximum acceleration of the three motions for a building of 100 m and a depth of 20 m at the 
North Sea. 



ATLANTIC OCEAN 

HEIGHT BUILDING = 100 M 

 

Figure 165 - Maximum acceleration of the three motions for a building of 100 m at the Atlantic ocean. 



HEIGHT BUILDING = 100 M AND DEPTH = 20 M 

 

Figure 166 - Maximum acceleration of the three motions for a building of 100 m and a depth of 20 m at the 
Atlantic ocean. 



EQUATOR 

HEIGHT BUILDING = 100 M 

 

Figure 167 - Maximum acceleration of the three motions for a building of 100 m at the Equator. 



APPENDIX XIV – LIMITATION DUE TO THE FREQUENCY 
This appendix shows the results and the calculation of the limits of frequencies for the three dif-

ferent motions for the three locations in the first paragraph. First the results are shown for the 

North Sea. For the equator the results are almost the same and thus are not  shown extensively. 

At last the result for the Atlantic ocean are shown.  

In the second paragraph the results are shown of the calculation of the eigenfrequencies of both 

the single-mass models and the multi-mass models. These are compared in graphs. These are all 

results for the North Sea. 

RESULTS 

NORTH SEA 
In the program Maple, the eigenfrequency is expressed in the two independent parameters; 

height of the building and width of the platform for a predetermined depth and height of the 

platform. With this expression, a 3D graph can be made. This is used to visualise what is done 

and to check whether the following steps taken are correct. The 3D graphs of the three motion 

can be seen below for a depth of 20 m. The red surface is the limiting frequency of 0.43 rad/s 

 

Figure 168 - 3D graph of the eigenfrequency of a) the vertical motion and b) horizontal motion. c) rotational 
motion with a depth of 20 m for the conditions at the North Sea. 



The three limits are calculated for different depths. In addition to these three limits, the depth 

limit and the static stability limit were also calculated/added to obtain the following graphs: 

 

Figure 169 - Limitations for the North Sea for a platform depth of a) 10 m. b) 15 m. c) 20 m. d) 30 m. 

Both the vertical and horizontal frequency limit have a vertical boundary. This can be seen as the 

minimum platform width required to avoid resonance. Because these can therefore be used in 

the design of a floating high-rise building, the values have been precisely determined. The re-

sults are shown in the table below. 

  



Table 49 - Platform width values of the vertical limiting frequency boundaries for the vertical and horizontal 
motion at the North Sea for different depths. 

Depth [m] 15 20 30* 
Limit platform width 
vertical motion [m] 

97 84 59 

Limit platform width 
horizontal motion [m] 

29 22 6 

* Note that at the North Sea this depth is actually not possible or the chosen input. 

EQUATOR 
For the equator, the results are the same as for the North Sea. Since the only location condition 

that has an influence is the frequency limit and this is almost the same for these locations, the 

North Sea can be looked at for the equator when it comes to these limits. 

ATLANTIC OCEAN 
The same calculations and graphs were made for the Atlantic Ocean location. These can be seen 

below. 

 



Figure 170 - 3D graph of the eigenfrequency of a) the vertical motion and b) horizontal motion. c) rotational 
motion with a depth of 20 m for the conditions at the Atlantic ocean. 

 

Figure 171 - Limitations for the Atlantic ocean for a platform depth of a) 10 m. b) 15 m. c) 20 m. d) 30 m. 

Table 50 - Platform width values of the vertical limiting frequency boundaries for the vertical and horizontal 
motion at the Atlantic ocean for different depths. 

Depth [m] 15 20 30 
Limit platform width 
vertical motion [m] 

239 226 201 

Limit platform width 
horizontal motion [m] 

85 78 62 

 

 

 



SINGLE MASS VS MULTIPLE MASS MODEL 

BUILDING HEIGHT = 100 M 

 

Figure 172 - Eigenfrequencies of both the single-mass model and the multi-mass model for a building of 
100m. Numerically calculated 

BUILDING HEIGHT = 300 M 



 

BUILDING HEIGHT = 500 M 



 

CALCULATIONS 

Most of the calculation are done in maple. In the following figures the standard script is shown 

to calculate the different limits. 

 























 

 

For the rotational frequency limit, sometimes a numerical approach had to be used. For this Py-

thon has been used. First, a function is defined to determine the eigenfrequency with as input 

the height of the building and the width of the platform.  The expression used for the eigenfre-

quency comes from the Maple script shown above. Next, for 100 platform widths (from 0m to 

1000 m) the eigenfrequency is calculated for building heights of 0 to 1000 with steps of 1. This 

determines for which building height at this platform width, the eigenfrequency is closest to the 

limit. The 100 resulting points are then used in the curve fitting. A polynomial of degree ten is 

used. The curve fit is the rotation frequency limit used to create the graphs in this appendix. 



 

 



 


